
Abstract Much of what is known about avian

species-habitat relations has been derived from

studies of birds at local scales. It is entirely un-

clear whether the relations observed at these

scales translate to the larger landscape in a pre-

dictable linear fashion. We derived habitat mod-

els and mapped predicted abundances for three

forest bird species of eastern North America

using bird counts, environmental variables, and

hierarchical models applied at three spatial scales.

Our purpose was to understand habitat associa-

tions at multiple spatial scales and create predic-

tive abundance maps for purposes of conservation

planning at a landscape scale given the constraint

that the variables used in this exercise were de-

rived from local-level studies. Our models indi-

cated a substantial influence of landscape context

for all species, many of which were counter to

reported associations at finer spatial extents. We

found land cover composition provided the

greatest contribution to the relative explained

variance in counts for all three species; spatial

structure was second in importance. No single

spatial scale dominated any model, indicating that

these species are responding to factors at multiple

spatial scales. For purposes of conservation

planning, areas of predicted high abundance

should be investigated to evaluate the conserva-

tion potential of the landscape in their general

vicinity. In addition, the models and spatial pat-

terns of abundance among species suggest loca-

tions where conservation actions may benefit

more than one species.
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Introduction

Land managers want to focus their efforts to

conserve bird populations by geographically tar-

geting conservation areas (Sample and Mossman

1997) for those species in greatest need (Rich

et al. 2004; U.S. Fish and Wildlife Service 2002).

Models of bird habitat associations are used to

better understand observed patterns of occupancy

and abundance and identify environmental fac-

tors subject to management (Seoane et al. 2004;

Thogmartin et al. 2004). Most habitat models are

represented as linear combinations of environ-

mental factors representing local-scale features of

the habitat (Burnham and Anderson 2002; Scott
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et al. 2002). Regional scale maps are often habitat

suitability maps relying on assumptions about

how different species use the larger-scale land-

scape (e.g., Roseberry and Sudkamp 1998); this

approach to mapping species occurrence and

abundance is often referred to as a ‘coarse filter’

approach (Scott et al. 1993; Pearlstine et al. 2002;

Diamond et al. 2003; Noon et al. 2003). However,

these assumptions about how species use the

landscape are primarily derived from studies

conducted at a local level, but are assumed to

represent the habitat relations of a species at the

larger landscape scale.

Variability in bird habitat associations across

spatial scales complicates our understanding of

how birds use habitats. Species habitat associa-

tions may change in strength and direction across

spatial scales (Wiens 1981; Wiens et al. 1987). It is

necessary to address these multiple spatial scales

in habitat analyses (Brennan et al. 2002; Holland

et al. 2004) to test the importance of our local

level understanding about bird-habitat associa-

tions at these coarser landscape scales.

Such coarse-filter models are rarely tested

against data collected systematically across a re-

gion and rarely are they represented as maps of

predictions across an entire region. Because of

these deficiencies, these coarse-filter models are

limited in their usefulness. Data-based models are

preferable over these coarse-filter approaches

because they are developed in the face of data

and allow for mapped predictions useful for re-

gional conservation planning (Venier et al. 1999;

Gustafson et al. 2002; McKenney et al. 2002;

Thogmartin et al. 2004, 2006)

Maps of predicted bird abundances are visual

and quantitative tools readily useable by conser-

vation planners (Scott et al. 2002; Rempel and

Kushneriuk 2003; Thogmartin et al. 2004). We

employ a hierarchical mixed-effects modeling

approach that accommodates nuisances associ-

ated with the response data; hierarchical models

may address the temporal and spatial correlation

common in many ecological data sets (Gelman

et al. 1995; Link et al. 2002; Thogmartin et al.

2004). In this paper we derived habitat models

and mapped predicted abundances for three bird

species using bird counts, environmental vari-

ables, and hierarchical models applied at multiple

spatial scales. We focused on three forest bird

species of eastern North America, the Black-bil-

led Cuckoo (BBCU; Coccyzus erythropthalmus),

Red-headed Woodpecker (RHWO; Melanerpes

erythrocephalus), and Wood Thrush (WOTH;

Hylocichla mustelina). Each of these bird species

are identified by the U.S. Fish and Wildlife Ser-

vice as regional and national resource conserva-

tion priorities (U.S. Fish and Wildlife Service

2002; Rich et al. 2004).

We specifically address the following questions:

(1) Can local species-habitat relations be extrap-

olated to landscape-scale habitat associations? (2)

Can environmental factors explain spatial struc-

ture in forest bird abundance? (3) What are the

most important species habitat associations

explaining forest bird abundance? (4) What pat-

terns of abundance do we expect from a hierar-

chical spatial count model for the three bird

species?

Methods

Study area

In North America, bird conservation planning

occurs within physiographically defined bird

conservation regions that are comprised of simi-

lar bird communities, habitats, and manage-

ment issues (http://www.nabci-us.org/bcrs.html).

We modeled avian abundance for populations

occurring in Bird Conservation Region 23, the

Prairie Hardwood Transition of the United

States, a region historically dominated by prairies

in the south and west and beech-maple forest in

the north and east, separated by an oak savanna

(McNab and Avers 1994; U.S. NABCI Commit-

tee 2000). The Prairie Hardwood Transition

occupies 230,111 km2, stretching from central

Minnesota through central and southern Wis-

consin and Michigan, including small sections of

northeastern Iowa, and northern Illinois and

Indiana; Lake Michigan bisects the region. The

predominant land uses/land covers in this region

are row crop agriculture (36%), agricultural

grassland (27%), and deciduous forest (21%).

Much of the region is a rolling plain of loess-

mantled ridges over sandstone and carbonate
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bedrock and pre-Illinoian ground moraine, con-

tributing to a diversity of topographic relief and

vegetation (McNab and Avers 1994). The Prairie

Hardwood Transition, as its name implies, grad-

ually changes from beech-maple forest in the

north to agriculture (historically tallgrass prairie)

in the south. There is also a gradient in climate

(primarily increasing precipitation) from north-

west to southeast, with climatic differences most

pronounced east of Lake Michigan.

The data

We used 1840 bird counts collected by the North

American Breeding Bird Survey (BBS) as the

response in our models. Each BBS route contains

50 evenly spaced survey locations (stops) at which

an observer counts all birds seen or heard in a

3-min period. Stops on survey routes are sepa-

rated by ~800 m, and routes are ~40 km in length.

We used the sum of counts from the 50 stops in a

year’s route survey as an index of abundance

along the route for that year. The 1840 counts we

used for model building were produced by 310

observers over 140 routes between 1981 and 2001;

an additional 396 counts were held back for

model evaluation. Over a 20-year period observ-

ers changed; not all routes were run each year and

no route was run more than once per year.

Modeling approach

We employed a hierarchical modeling approach to

map predicted abundances for bird species at a

regional scale. Our modeling approach was hier-

archical in two ways. First, we used a multilevel

Bayesian model (Gelman et al. 1995; Link et al.

2002) to derive unbiased estimates of associations

between environmental covariates and bird

abundance. The approach was statistically hier-

archical because multiple parameters in the model

(i.e., the observer, year, and spatial dependence

effects described below) were related by a joint

probability model that reflected the dependence

among them (Gelman et al. 1995). In our case,

bird counts were similar to each other to varying

degrees because of temporal and spatial correla-

tion and correlated observational error (Link and

Sauer 2002), each of which created a level of

correlated structure between survey counts. The

nesting of observers within routes over time con-

stituted the hierarchy organizing the data.

The second means by which our approach was

hierarchical was that we evaluated the association

of environmental parameters to bird counts at

multiple spatial extents. This is a common

consideration in studies of avian occurrence,

distribution, and abundance (Scott et al. 2002).

The approach was ecologically hierarchical

because bird-habitat associations were evaluated

and mapped at three logarithmically related,

nested spatial extents representing spatial scales

of ecological processes influencing avian popula-

tion dynamics on the breeding grounds.

Thogmartin et al. (2004) introduced the meth-

odology we employed to assess associations be-

tween bird abundance and environmental

variables. Avian counts were modeled as a Pois-

son process resulting from a loglinear function of

explanatory variables describing habitat, spatial

relatedness, and individual effects of observer and

year (Long 1997). The model is written as:

ZðsiÞ ¼lðsiÞ þ
Xn

k¼1

cikðZðsÞ � lðskÞÞ þ xðsiÞ

þ gIðsiÞ þ cðsiÞ þ eðsiÞ

where Z is the response at location i at spatial

coordinates si, l(si) is the large-scale, non-spatial

trend surface that may depend on covariates

(independent environmental variables), e are the

error terms that are independent with zero mean

and constant variance s2, cik are the spatial

dependence parameters, i, k=1,..., n where the

dependence is symmetric and pair-wise depen-

dence occurs only between neighboring survey

locations. Spatial dependence between survey

counts was incorporated as a first-order condi-

tional autoregression based upon an irregular

lattice describing the spatial neighborhood of

routes. Observer effects gI (novice) and x (ob-

server) were accommodated in the model so as to

minimize bias in the parameter estimates (Link

and Sauer 2002). Because novice observers are

often overwhelmed by their responsibilities the

novice effect led to the exclusion of their counts;

experienced observers still exhibit differences in
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how frequently they count some species, so we

included a random effect to control for these

observer-specific differences. Route-regression

methods (Geissler and Sauer 1990), a standard

method for estimating trend in BBS data, sug-

gested each of the species we modeled exhibited

substantial declines or increases in relative

abundance in the Prairie Hardwood Transition

between 1981 and 2001 (J. Sauer, USGS Patuxent

Wildlife Research Center, unpublished data).

Thus, a linear year effect c was included to re-

move this temporal trend in the counts to reveal a

temporally unbiased estimate of counts relative to

environmental characteristics. In effect, the gen-

eral model was an over-dispersed Poisson

regression with fixed and random effects, with

diffuse or non-informative priors and hyper-

priors assigned to each parameter (Table 1).

The initial environmental variables (l(si)=b1-

xi1+...+bjxij) considered in the models were iden-

tified a priori from published habitat associations

of the three bird species (Table 2) (Roth et al.

1996; Smith et al. 2000; Hughes 2001). Species

experts reviewed each a priori global model.

Interactions were included if suggested by the

biology of the species. Each variable was evaluated

at three scales, derived from logarithmically re-

lated buffers around BBS routes. These buffers

were 0.1, 1, and 10 km, and corresponded to 800,

8,000, and ~80,000 ha spatial extents, respectively.

We conducted model fitting in WinBUGS 4.1

(Spiegelhalter et al. 2003), a statistical package

conducting Bayesian inference with Markov chain

Monte Carlo (MCMC) methods (Gibbs Sam-

pling) (Link and Sauer 2002). MCMC is a generic

term describing a collection of methods simulat-

ing draws from complex distributions. In an

MCMC approach, the previous sample values are

used to randomly generate the next sample value,

generating a Markov chain (the transition

probabilities between sample values are only

a function of the most recent sample value).

Explanatory continuous variables in the model

were standardized; this aided model convergence

and placed the slope coefficients on a comparable

scale. For each model we ran the Markov chain

until convergence occurred (15,000 iterations)

and an additional 3000 iterations past conver-

gence. This chain creation was conducted five

times to create replicate chains for the Gelman-

Rubin diagnostic (Brooks and Gelman 1998;

Spiegelhalter et al. 2003), comparing within-chain

and between-chain variability. Code for the

model we implemented is available in Thogmar-

tin et al. (2004: http://www.esapubs.org/archive/

appl/A014/035/suppl-1.htm).

Models were developed within each of the

three scales (800, 8000, and ~80,000 ha); that is,

the variables within any single model were de-

rived from the same spatial scale. We followed an

information-theoretic approach to ranking these

models (Burnham and Anderson 2002) using the

Deviance Information Criterion (DIC), where

DIC ¼ �Dþ pD, which is the posterior mean of

Table 1 Priors and effect type for the main model effects for the model. ZðsiÞ ¼ lðsiÞ þ
Pn

k¼1

cik ðZðskÞ � lðskÞÞ þ xkðsÞ
þ gIðsÞ þ ckðsÞ þ eðskÞ

Variable Definition Effect type Prior distribution (expected value, precisiona)

l Environmental factors Fixed Normal (0.0, 0.000001)b

Z Spatial relatedness Random Flat (for the CAR-related intercept)c

sSpace~ Gamma (0.5, 0.0005)
x Observer-experience effect Random Normal (0.0, sObserver)

sObserver~ Gamma (0.001, 0.001)
g Novice-observer effect Fixed Normal (0.0, 0.000001)
y Year effect Random Normal (0.0, sYear)

sYear~ Gamma (0.001, 0.001)
e Error Random Normal (0.0, s Noise)

sNoise~ Gamma (0.001, 0.001)

aPrecision rather than variance is described, with precision simply 1/variance
bEssentially a flat or non-informative prior distribution
cSee Thomas et al. (2002) for details regarding flat prior relating to the conditional autoregression implemented in Win-
BUGS
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the deviance ( �D) plus the effective number of

parameters (pD) (Spiegelhalter et al. 2002). As a

means of assessing the weight of models relative

to each other in the best subset of models, DIC

model weights were calculated as:

wi ¼
expð� 1

2 DiÞ
PR

i¼1

expð� 1
2 DiÞ

;

where Di is the difference between model i and

the best model.

Because a single ‘best’ model may vary from

data set to data set despite being collected from

the same underlying process (Burnham and

Anderson 2002, p. 151), we conducted multi-

model inference by averaging across model

parameters to create an average model. We

averaged the model parameters using the model

weights sensu Burnham and Anderson (2002).

Models averaged across the different scales al-

lowed us to determine the relative weight or merit

of the individual spatial scales. Inference and

model averaging were constrained to only those

models within 5 DIC units of the best model. As a

reference, we also calculated a null model for

each species that contained observer, year, and

autocorrelation effects, but which did not contain

environmental covariates. As a means of inferring

relative contributions of environmental and spa-

tial variables, we calculated the relative portion of

the explained variance explained by the various

suites of variables.

Because most of what is known about forest

birds is derived from local-level studies, habitat

associations appearing at only coarse spatial

scales are largely unknown. Following an ap-

proach outlined in Thogmartin et al. (2004), we

supplemented our a priori models with variables

identified through post hoc exploration of various

environmental variables. The aim of the post hoc

exploration was to remove residual spatial auto-

correlation in bird counts and increase explained

variance. The post hoc exploration included five

suites of variables: landscape composition, land-

scape configuration, terrain heterogeneity and

physiognomy, potential human disturbance, and

interspecies competition (Thogmartin et al.

2004). There was little or no information in the

literature on the influence of climate on these

forest species, unlike grassland species from the

same region (Thogmartin et al. 2006). In addition,

climate and land cover are often highly correlated

and, therefore, climate may not improve models

Table 2 Environmental covariates included in initial (global) models of habitat associations for three forest birds in Bird
Conservation Region 23, the Prairie-Hardwood Transition

Environmental suite Variable Species

Land cover composition Beech-oak forest (%) BBCU
Pine forest (%) WOTH
Deciduous forest (%) RHWO, WOTH
Wooded wetland (%) BBCU, WOTH
Grassland (%) RHWO
Urban grass (%) BBCU, RHWO
Row crop (%) RHWO

Land cover configuration Area-weighted forest patch size (ha) BBCU
Patchy forest (%)a RHWO
Perforated forest (%)a RHWO

Terrain heterogeneity and physiognomy Mean static wetness index
(scales between 1 [dry] to 19 [moist])b

BBCU, RHWO, WOTH

River density (km/km2) RHWO
Spatial correlation Normal conditional autoregressionc BBCU, RHWO, WOTH

aMean composition of constituent forest fragmentation types for 81 km2 areas. Patchy forests were areas where forest
composition was < 40%; and perforated forests were >60% forest with high connectivity of forest patches (Riitters et al.
2000)
bAlso known as the topographic convergence index, static wetness is measured as ln(Catchment Area/tangent of the slope
angle)
cSecond-order (small area) correlation
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that include land cover (Venier et al. 2004).

Therefore, climate variables were not included a

priori but were examined post hoc. A regression

tree approach was implemented to identify the

best candidates for inclusion (De’ath and Fabri-

cius 2000; O’Connor and Wagner 2004). The

inclusion of these post-hoc variables in the hier-

archical models was evaluated with DIC, but if

the 95% Bayesian credibility intervals overlapped

zero the variable was not included in the final

model and map.

We mapped predicted abundance by summing

geographic information system grid layers of

standardized environmental predictors with

weights according to their model-averaged slope

coefficients, using the ArcGIS Spatial Analyst

grid calculator (ArcGIS 8.0 and 9.x, Environ-

mental Systems Research, Inc., Redlands, CA)

(Thogmartin et al. 2004, 2006). Final map reso-

lution was 1 ha. The route-level posterior esti-

mates of the standard deviation of the predictions

were included in the maps of predicted relative

abundance.

Gelman et al. (1995: chapter 6) described a

procedure for assessing goodness of fit using a

posterior predictive check whereby parameter

sets derived from the original data (15,000 sets of

parameters [5· 3000 iterations]) are compared to

parameter sets derived for a replicate data set

generated following model specifications. A

poorly fitted model will exhibit a diagnostic near 0

or 1, whereas values close to 0.5 are desired as

indicating neither over- nor under-fitting.

We used Breeding Bird Survey data held back

from model calibration and independent point

counts conducted on public lands to assess the

accuracy of the models and maps we developed.

The point counts were from 17 locations within

the Prairie Hardwood Transition (Thogmartin

et al. 2004) and were available from the National

Point Count Database (http://www.mp2-pwrc.

usgs.gov/point/index.htm). The root mean square

prediction error (RMSPE) was calculated as a

measure of model fit against independent data.

The RMSPE is the square root of the squared

differences between the observed (i.e., withheld

BBS or independent point counts) and the

expected (model predictions) divided by the

sample size, with a smaller number indicating

better model performance relative to the inde-

pendent data. Methodology used to gather counts

differed between the point counts and the BBS

and, therefore, when the point and BBS counts

were compared they were first natural log-trans-

formed (ln(x+1)) to place the data on a similar

scale. We also did not accommodate the very

factors that we posited as being potential nui-

sances biasing our results, that of year, observer,

and spatial correlation; failure to accommodate

these factors immediately places the model eval-

uation at a disadvantage. A proper assessment

would entail stripping from the evaluation data

year, observer, and spatial correlation effects,

something that we could not do because we

lacked certain necessary information (particularly

for the point count data). Regardless of this po-

tential for bias in the model assessment, a com-

parison between the model predictions and

independent, uncorrected field data provides

information on the magnitude of discrepancies

that one might expect when using the model for

conservation purposes such as site acquisition.

Results

Wood Thrushes occurred at more sites than either

Red-headed Woodpeckers or Black-billed Cuck-

oos, but Red-headed Woodpeckers, when they

did occur, were more abundant (Table 3). Black-

billed Cuckoos were least frequent in their

occurrence and abundance. Distributions of all

species counts were highly kurtotic, resulting in

high pre-modeling overdispersion for each spe-

cies.

Models of bird abundance indicated a sub-

stantial association with environmental variables

for all species; the null model tended to perform

poorly in comparison to models with explanatory

variables (Table 4). The final averaged models

were composed almost entirely of variables se-

lected a priori; only one additional explanatory

variable was identified during the post hoc

exploration (Table 5). However, some a priori

variables chosen because of previously reported

positive associations with species abundance

turned out to have negative associations at the

spatial extents we examined. For instance, we had
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expected Black-billed Cuckoos to be more

abundant in landscapes abundant in urban grass

as these birds are often sighted in the context of

golf courses; our model suggested urban grass

negatively influenced Black-billed Cuckoo abun-

dance. Similarly, we had expected Red-headed

Woodpeckers to be positively associated with

patchy forest, which we believed would have

provided the field-forest conditions most similar

to the savannah conditions emblematic of this

species; we found this species to be negatively

associated with patchy forest at the coarsest scale.

Models for the three species also retained the

spatial correlation term, contrary to our expecta-

tion that an appropriate set of environmental co-

variates would obviate the need for its inclusion.

All of the models were well fitted. Bayes’

p-values of the Gelman et al. diagnostic for the

best model equaled 0.53, 0.62, and 0.38 for Black-

billed Cuckoo, Red-headed Woodpecker, and

Wood Thrush, respectively (Tables 4 and 5).

Eight models competed for the best subset of

variables for Black-billed Cuckoo, indicating

some model uncertainty (Table 4). The best-per-

forming models suggested Black-billed Cuckoo

abundance was associated with beech-oak forest

and sensitive to forest patch size. In addition, the

Black-billed Cuckoo was more abundant in

wooded wetlands embedded within drier land-

scapes (riparian systems); they were negatively

associated with urban grass. The habitat associa-

tions were consistent across all three scales we

assessed (Table 5). We predicted the Black-billed

Cuckoo to be most abundant in northern portions

of the Prairie Hardwood Transition, in north

central Wisconsin and northwestern Michigan

(Fig. 1).

The two best models for the Red-headed

Woodpecker had a combined weight of 91%,

indicating low model uncertainty (Table 4). Red-

headed Woodpecker abundance was higher in dry

landscapes with a high proportion of grassland,

deciduous forest, and row crops as found at

coarse spatial scales (Table 5). Associations with

grassland, urban grass, and row crops were also

measured at fine spatial scales. Red-headed

Woodpeckers were predicted to be most abun-

dant in the Driftless Area Ecoregion (McNab and

Avers 1994) of southwestern Wisconsin, north-

eastern Iowa, and southeastern Minnesota

(Fig. 1).

The Wood Thrush had the highest model

uncertainty. Ten models were contenders for the

best model and the null model had a weight of 4%

(Table 4). However, interpretation was simplified

because the same variables appeared at multiple

spatial scales, indicating the uncertainty was with

the scale of analysis rather than the variables in-

cluded in the models. Wood Thrush abundance had

a strong positive association with the proportion of

the landscape in deciduous forest at all spatial

scales and a weak positive association with wooded

wetlands at intermediate and coarse spatial scales

(Table 5). We predicted Wood Thrush abundance

to be lower in landscapes with more pine forests.

Associations with wetness were more complex;

Wood Thrush abundance tended to be higher in

drier landscapes, as measured at fine and coarse

scales, but weakly higher in wetter landscapes, as

measured at intermediate spatial scales. The map

indicated that the Driftless Area Ecoregion and

parts of northern Wisconsin and Michigan were

predicted to have the highest abundances for this

species (Fig. 1). The Wood Thrush was the only

species to include a credible environmental co-

variate identified post-hoc in the model set

describing its abundance; this variable, forest

proximity, measures both the degree of patch iso-

lation and the degree of fragmentation of forest

within 1 km of each focal patch (Gustafson and

Parker 1992). In this case, Wood Thrushes were

more abundant in landscapes in which forests were

comprised of large patches in close proximity to

one another.

Table 3 Summary statistics for breeding bird survey counts collected 1981–2001 for three forest bird species in the Prairie-
hardwood Transition of the upper midwestern US

Species Mean Variance Count sum Total zero counts (%) Non-zero mean Non-zero variance

Black-billed Cuckoo 0.90 2.62 1654 59.3 2.21 3.55
Red-headed Woodpecker 2.25 17.13 4133 41.6 3.85 23.19
Wood Thrush 1.28 3.84 2351 47.7 2.44 4.49
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Observations from the withheld BBS data

indicated slightly higher counts for the Black-

billed Cuckoo than we predicted (RMSPE = 0.51;

Fig. 2) and counts for the Wood Thrush were

considerably higher than predicted (RMPSE =

2.67). Of withheld BBS counts for Black-billed

Table 4 Parameter estimates for the best subset of models fitted to 1981–2001 Breeding Bird Survey route counts for three
forest bird species in the Prairie-hardwood Transition of the upper midwestern US

Best subset model Explanatory variable Scale
(ha)

Parametersa DICb DDICc wi
d Evidence

ratioe

Black-billed Cuckoo
1 Beech-oak forest, forest patch area, wooded

wetlands, urban grass
8,000 513.4 3977.9 0 0.23 1.00

2 Beech-oak forest, wooded wetlands,
urban grass

8,000 514.0 3978.1 0.2 0.21 1.11

3 Beech-oak forest, wooded wetlands,
urban grass

80,000 516.4 3979.3 1.45 0.11 2.06

4 Beech-oak forest, forest patch area,
wetness, wooded wetlands, urban grass

800 512.8 3979.3 1.48 0.11 2.10

5 Beech-oak forest, forest patch area,
wetness, wooded wetlands, urban grass

8,000 511.2 3979.3 1.49 0.11 2.11

6 Beech-oak forest, forest patch area,
wetness, wooded wetlands, urban grass

80,000 517.0 3979.7 1.84 0.09 2.51

7 Beech-oak forest, wetness, wooded
wetlands, urban grass

800 512.4 3979.8 1.94 0.09 2.64

8 Beech-oak forest, wetness, wooded
wetlands, urban grass

80,000 517.0 3980.6 2.7 0.06 3.86

Null 519.9 3985.5 7.65 0.01 45.83

Red-headed Woodpecker
1 Grassland, deciduous forest, row crop, river

density, patchy forest
80,000 416.3 5256.3 0 0.67 1.00

2 Grassland800, urban grass, row crop,
perforated forest, wetness

800 412.5 5258.3 2.06 0.24 2.80

Null 420.0 5265.7 9.44 0.01 112.17

Wood Thrush
1 Deciduous forest 8,000 388.3 4621.5 0 0.13 1.00
2 Wetness, deciduous forest, evergreen forest 80,000 394.6 4621.7 0.22 0.12 1.12
3 Wetness, deciduous forest, evergreen forest,

wooded wetland
8,000 390.0 4621.8 0.27 0.12 1.14

4 Wetness, deciduous forest 800 390.2 4621.9 0.35 0.11 1.19
5 Wetness, deciduous forest, evergreen forest,

wooded wetland
80,000 394.9 4622.2 0.66 0.10 1.39

6 Wetness, deciduous forest, forest proximityf 8,000 395.6 4622.5 0.97 0.08 1.62
7 Wetness, deciduous forest, evergreen forest 8,000 396.9 4622.5 0.98 0.08 1.63
8 Deciduous forest, evergreen forest 80,000 397.1 4622.5 1.04 0.08 1.68
9 Deciduous forest 80,000 396.3 4622.8 1.25 0.07 1.87
10 Wetness, deciduous forest, forest proximityf 80,000 392.8 4623.1 1.61 0.06 2.24
Null 399.7 4623.7 2.21 0.04 3.02

The Null model, included for comparison, in each case is a model with observer, year, and spatial correlation, but without
environmental covariates. Model weights, wi, do not sum to 1 because of rounding error and inclusion of only those models
within 5 DIC of the best model
aParameters is the effective number of parameters (pD), and is given by the posterior mean of the deviance minus the
deviance of the posterior means
bDIC is Deviance Information Criterion. See text for details
cDDIC is the difference between the best model and the model of interest
dwi is the model weight, as described in the text
eEvidence ratio is the model weight for the best model divided by the weight for the model of interest
fThe post hoc contributed variable, forest proximity, was included at the 800 ha scale
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Cuckoo, 95% were within 1 bird of the prediction,

whereas 95% of Wood Thrush counts were

within 5.3 birds of the prediction. Red-headed

Woodpecker counts were higher than pre-

dicted (RMPSE = 2.40); 95% of Red-headed

Woodpecker counts were within 4.8 birds of

the prediction. The model and map for the

Red-headed Woodpecker seem to have pre-

dicted unreasonably high counts in the Driftless

Area of Wisconsin, southeastern Minnesota, and

Table 5 Median and lower (LCL) and upper (UCL)
confidence limits of the posterior distribution of
explanatory variable slopes for an average model derived

from the Kullback–Leibler best subset of models for three
forest bird species in the Prairie-hardwood Transition of
the upper midwestern US

Species Explanatory Variable Scale (ha) Median 95% LCL 95% UCL Variable
Importance

Black-billed Cuckoo Beech-Oak Forest (%) 800 0.232 0.228 0.236 0.20
8000 0.179 0.175 0.184 0.54

80,000 0.251 0.246 0.256 0.26
Area-weighted Forest Patch Size (ha) 800 0.066 0.062 0.069 0.11

8000 0.104 0.101 0.108 0.34
80,000 0.016 0.012 0.020 0.09

Mean Static Wetness Index
(scales between 1 [dry] to 19 [moist])

800 –0.161 –0.165 –0.156 0.20
8000 –0.052 –0.056 –0.048 0.11

80,000 –0.083 –0.087 –0.078 0.15
Wooded Wetland (%) 800 0.187 0.183 0.191 0.20

8000 0.205 0.202 0.209 .54
80,000 0.192 0.188 0.197 0.26

Urban Grass (%) 800 –0.297 –0.301 –0.292 0.20
8000 –0.372 –0.377 –0.367 0.54

80,000 –0.237 –0.241 –0.232 0.26
Normal Conditional Autoregression –1.092 –1.098 –1.085 1.00

Red-headed Woodpecker Grassland (%) 8000 0.285 0.280 0.289 0.26
80,000 0.329 0.324 0.333 0.74

Urban Grass (%) 800 0.130 0.127 0.133 0.26
Deciduous Forest (%) 80,000 0.298 0.291 0.304 0.74
Row Crop (%) 800 0.484 0.479 0.489 0.26

80,000 0.375 0.369 0.381 0.74
River Density (km/km2) 80,000 –0.164 –0.167 –0.160 0.74
Patchy Forest (%) 80,000 –0.264 –0.268 –0.259 0.74
Perforated Forest (%) 800 0.134 0.130 0.138 0.26
Mean Static Wetness Index

(scales between 1 [dry] to 19 [moist])
800 –0.331 –0.337 –0.326 0.26

Normal Conditional Autoregression –0.221 –0.224 –0.217 1.00

Wood Thrush Mean Static Wetness Index
(scales between 1 [dry] to 19 [moist])

800 –0.246 –0.251 –0.241 0.11
8000 0.096 0.091 0.100 0.28

80,000 –0.025 –0.028 –0.022 0.28
Deciduous Forest (%) 800 0.532 0.528 0.536 0.11

8000 0.548 0.542 0.553 0.42
80,000 0.567 0.561 0.573 0.43

Wooded Wetland (%) 8000 0.031 0.026 0.035 0.12
80,000 0.003 –0.002 0.009 0.10

Pine Forest (%) 8000 –0.095 –0.101 –0.089 0.20
80,000 –0.086 –0.092 –0.080 0.30

Area-weighted Forest Proximitya 800 0.233 0.229 0.237 0.14
Normal Conditional Autoregression –0.426 –0.431 –0.422 1.00

Variable importance is the sum of the model weights for those models in the Kullback–Liebler best subset of models in
which the variable occurs
aPost-hoc identified variable
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northeastern Iowa where Red-headed Wood-

pecker are common (Fig. 1).

Point counts from 17 study locations in the

Prairie Hardwood Transition suggested that

Black-billed Cuckoo and Wood Thrush observa-

tions were roughly in line with predictions

(RMPSE = 1.38 and 1.13, respectively), and Red-

headed Woodpecker counts were considerably

below predictions (RMPSE = 1.36; Fig. 3). As

expected, the point count observations exhibited

considerably more variability relative to the pre-

dictions as a consequence of not controlling for

annual and observer effects in the point counts.

Individual point counts were frequently zero de-

spite an expectation of a positive count, possibly

as a result of issues relating to species detect-

ability.

Discussion

Local species-habitat applied to landscape

scales

For forest birds in the Prairie Hardwood Transi-

tion, the final models we generated generally

consisted of environmental variables selected a

priori, variables that had been measured in fine-

scale studies of these species. Only one species, the

Wood Thrush, had a model substantially improved

by the addition of a post hoc-identified variable.

Therefore, we believe that our results captured

relevant ecological processes structuring regional

abundances of these birds and that, for these birds

in this region, findings identified at the local scale

generally scale linearly to the larger landscape.

Fig. 1 Maps of predicted relative abundance for three forest bird species in the Prairie-hardwood transition of the upper
midwestern U.S. Dots represent the standard deviation of the prediction
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The strength of the relations between the envi-

ronmental variables and the species counts dif-

fered by scale, but the posited direction of the

relationships generally held true for each species.

Exceptions included the negative relationship

of Black-billed Cuckoo with urban grass compo-

sition. Black-billed Cuckoos are sometimes found

in parks, golf courses, and residential gardens

associated with human habitation (Hughes 2001).

Our finding that Black-billed Cuckoos are nega-

tively associated with urban grass suggests the

local level result may be misleading. It is con-

ceivable that Black-billed Cuckoos are simply

more observable in parks, golf courses, and resi-

dential gardens when they occur there. We also

found seemingly contradictory results for Wood

Thrush relations with mesic conditions. Wood

Thrushes were strongly negatively related to

mesic conditions at the finest resolution of study

and somewhat positively related at the interme-

diate scale of study. We interpret these findings in

the following manner: that Wood Thrushes are

most abundant in xeric patches embedded within

relatively moist landscapes.
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Fig. 2 Observed Breeding Bird Survey counts for three
forest birds in the Prairiehardwood Transition of the upper
midwestern U.S., withheld from model construction and
fitted to expected counts. The solid line is a least-squares
regression whereas the dotted line is the one-to-one line of
correspondence. Sample size was n=396 for each species
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Fig. 3 Observed point counts of forest birds collected on
17 Federal lands in the Prairie-hardwood Transition of the
upper midwestern U.S. plotted against hierarchical spatial
count model predictions (predicted)
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No single spatial scale dominated any model,

indicating that these species are responding to

factors at multiple spatial scales. Lee et al. (2002),

working in eastern Canada, similarly observed

that the relative importance of habitat variables

varied by bird species and with the scale of mea-

surement; no single scale of inquiry was of primary

importance. This concurs with the observations of

Wiens et al. (1987) who found that habitat asso-

ciations of shrubsteppe birds varied with the spa-

tial scale of analysis. A single species could have a

positive association with a habitat variable mea-

sured at a local scale and negative or no associa-

tions with the same variable measured at regional

or biogeographic scales. We observed the same

phenomenon for the Wood Thrush, which was

positively associated with an index of wetness at

the intermediate spatial scale and negatively

associated at the smallest and largest spatial

scales. It was perhaps more surprising that we

found generally consistent habitat associations

across scales for each species.

Importance of spatial structure

As with the grassland birds we studied earlier

(Thogmartin et al. 2006), extensive spatial struc-

turing related to the spatial autocorrelation term

remained unaccounted for by relevant ecological

factors. While land cover configuration and

composition have received much emphasis in the

wildlife and ornithological literature, much less

attention has been devoted to spatial structure

(Koenig 2001; Lichstein et al. 2002). Yet, it is

reasonable to presume routes close together tend

to be more similar in bird species composition

and abundance than those farther apart. We

know that bird abundances are often expressed

along a spatial gradient of increasing or decreas-

ing abundance, even if we do not know exactly

what is driving this gradient. Using a model that

includes a term for spatial autocorrelation will

reduce error and help clarify explanatory envi-

ronmental factors.

Species habitat associations

Very little research has focused on the Black-bil-

led Cuckoo; much of our information heretofore

was derived from state and provincial atlases and

a few focused behavioral nesting studies (Hughes

2001). Black-billed Cuckoo populations are

believed to strongly depend upon insect out-

breaks, primarily caterpillars (Lepidoptera lar-

vae) and cicadas (Cicadidae) (Hughes 2001).

Given this major ecological driver, we might

expect habitat associations to be relatively weak.

However, recent work by Gale et al. (2001)

examining Breeding Bird Census data in associa-

tion with gypsy moth (Lymantria dispar) out-

breaks in Pennsylvania showed patterns

inconsistent with the notion that gypsy moths

stimulate general and predictable increases in bird

populations.

Our findings for Black-billed Cuckoo support

previous observations of an association with

wooded wetlands, riparian areas, and deciduous

forests (Hughes 2001). However, we also identi-

fied specific forest type associations as well as

area sensitivity, unusual for a shrub-nesting spe-

cies (Galli et al. 1976; Martin 1981). What emer-

ges is a shrub-nesting species associated with

riparian and wetland habitats within more heavily

forested landscapes, and a species that is less

abundant in urban/suburban areas.

We derived new information about habitat

associations of the Red-headed Woodpecker at

regional spatial scales. Our finding that land-

scapes with roughly equal proportions of grass-

land, row crops, and deciduous forest were

associated with high abundances of Red-headed

Woodpeckers has not, to our knowledge, previ-

ously been reported. This combination of major

land cover types may be most likely to have the

tall, dead trees suitable for nesting (Giese and

Cuthbert 2003) and mast trees needed for food

(Smith and Scarlett 1987). Our model also sup-

ports previous descriptions of the Red-headed

Woodpeckers as associated with dry sites, forests

perforated by canopy gaps, and to some extent

with parks or golf courses (urban grass) (Smith

et al. 2000).

Our model for the Wood Thrush supports its

described association with deciduous forests at all

spatial scales and sensitivity to forest fragmenta-

tion (Roth et al. 1996; Donovan and Flather 2002;

Lee et al. 2002). Our observed Wood Thrush

associations with wooded wetlands fit reported
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associations with mesic forests and with moist

soils (Sargent et al. 2003). However, Wood

Thrush is not considered a riparian species, and

this is reflected in a mixed response to our wet-

ness index across spatial scales.

Expected patterns of abundance

The factors represented by our predictive models

have expanded our knowledge of species habitat

associations across a range of spatial scales from

relatively fine (800 ha) to coarse (80,000 ha)

within a single Bird Conservation Region.

For the Black-billed Cuckoo and Red-headed

Woodpecker, species that have been the subjects

of less research than other songbirds, the infor-

mation contained in these models should

strengthen conservation plans for these species.

The models we developed could be used as the a

priori expectation for modeling attempts of a

similar nature in other areas of the species

range. We might expect, however, that in

extrapolating these models to other parts of the

species range that the parameter values associ-

ated with the variables to change. What is not

clear from these results is whether the scale

relationships are robust to changes in where the

species is modeled.

The maps of predicted abundance across the

Prairie Hardwood Transition can be used to

suggest locations where conservation efforts

should be focused for each species. However, we

acknowledge that our models contain some

uncertainty; additional field data are needed to

verify our predictions.

We suggest that the appropriate spatial scale

to address this issue of uncertainty is roughly

approximated by political units the size of

townships (93 km2) and counties (mean size of

counties in the Prairie Hardwood Transition was

790 km2). Because of technical limitations in

how the models are translated into maps, infer-

ring conservation value for land units much

smaller than a township may not be justified.

This necessarily coarse application of the models

allows land managers many possible options for

how and where to improve habitat for these

species.

In addition, the models and spatial patterns

of abundance among species can suggest loca-

tions where conservation actions may benefit

more than one species. The concurrence of

models and maps for the Cerulean Warbler

(Dendroica cerulea; Thogmartin et al. 2004) and

Wood Thrush indicates that similar habitat

management will benefit both species. Conser-

vation of forests in the northern portions of the

Prairie Hardwood Transition, especially in

Wisconsin and Michigan, will most benefit

Black-billed Cuckoo. Among the species we

studied, the Red-headed Woodpecker will re-

quire strategies and geographically targeted

conservation actions unique to this species. Al-

though the Driftless Area is modeled as a

center of abundance for the species, the map

indicates that this species has potential for

manageable populations across the Prairie

Hardwood Transition wherever suitable habitat

can be found.

Conclusions

We modeled and mapped the relative abundance

of three forest birds of high conservation concern

using a hierarchical spatial count model. Our

analysis was designed to integrate 20 years of

BBS data across a region, looking for associations

with relatively stable landscape factors that might

be amenable to management. We found that lo-

cal-scale studies are useful for informing land-

scape-scale models predicting patterns in regional

abundance, at least for the three forest species we

studied. These models and maps should be useful

in directing regional conservation efforts and can

inform modeling activities for these species in

other regions.
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