
Comments on XTS-AES

Moses Liskov∗ Kazuhiko Minematsu†

September 2, 2008

1 Introduction

This is a comment in response to the request for comment on XTS-AES,
as specified in IEEE Std. 1619-2007 [7]. Overall, we believe that the XTS-
AES algorithm, closely based on Rogaway’s XEX mode [5] plus ciphertext
stealing, is a good choice for the purpose of block-oriented data storage
encryption, and the use of an algorithm of this type is well supported by
research publications. We have two main criticisms of the publication. First,
while XEX uses one key, the proposed XTS algorithm uses two keys; Key1

is used to encipher the whitened plaintext, while Key2 is used to compute
the pre- and post-whitening values. We feel that only one key should be
used, to serve both purposes. Second, the draft incompletely analyzes the
security of XTS-AES; it needs correction and expansion in a couple of areas.

2 On the Use of Two Keys

The XTS-AES encryption procedure for a single block is described in the
draft [7] as follows. “The key is parsed as a concatenation of two fields
of equal size called Key1 and Key2, such that Key = Key1|Key2. The
ciphertext shall then be computed by the following or an equivalent sequence
of steps:

1. T ← AESenc(Key2, i) ⊗ αj

2. PP ← P ⊕ T

3. CC ← AESenc(Key1, PP )
∗The College of William and Mary
†NEC Corporation

1



4. C ← CC ⊕ T” [page 4, lines 36-42].

In contrast, the XEX algorithm, using a single α and similar notation,
would use a key half the size, Key, following this sequence:

1. T ← AESenc(Key, i) ⊗ αj

2. PP ← P ⊕ T

3. CC ← AESenc(Key, PP )

4. C ← CC ⊕ T

The advantages of using a single key are obvious: the key length required
would be halved, yet the level of security would remain effectively the same.
The draft does little to justify the choice to modify XEX so that two keys
are used instead of one:

• On page 15, lines 26-45, the XEX transform is described, for informa-
tional purposes. The draft incorrectly claims that the XEX transform
uses two keys just as XTS does. This appears to be a simple typo-
graphical mistake, but as it does appear to support the use of two
keys, we feel it is necessary to address the point. This is not the case;
see, for instance, the full version of Rogaway’s paper [6], page 4:

“Definition 2 [XEX construction] Let E : K×{0, 1}n → {0, 1}n be
a blockcipher, let α1, . . . , αk ∈ F∗

2n, and let I1, . . . , Ik ⊂ Z. Then E =
XEX[E, αI1

1 · · ·αIk
k ] is the tweakable blockcipher E : K× ({0, 1}n × I1 ×

· · ·×Ik)×{0, 1}n → {0, 1}n defined by E
Ni1...ik
K (M) = EK(M ⊕∆)⊕∆

where ∆ = αi1
1 αi2

2 · · ·αik
k N and N = EK(N)”

Note that both EK(M) and N are computed using EK , that is, with
the same key.

The document, however, later acknowledges that the XEX construc-
tion described by Rogaway uses a single key (page 17, line 53). Thus,
the section on page 15, lines 26-46 is incorrect and should be altered
in future versions, and its current text does not justify the use of two
keys.

• The document later specifically explains the motivation for the use of
two keys. The described cipher modes “use separate keys for tweak-
ing and encryption purposes. This separation is a specific example

2



of separation of key usage by purpose and is considered a good secu-
rity design practice (see NIST Key Management Guidelines [8], part 1,
section 5.2).” (page 18, lines 1-3). This step, we believe, is both unnec-
essary, and a misapplication of the security design practice described
in the NIST guidelines.

First, the use of two keys is unnecessary, because the XEX construction
has been proven secure using a single key. So, design principles aside,
we have a proof that the use of the same key for these two purposes in
this case is secure. Indeed, the suggestion in the draft that two keys
should be used amounts to a criticism of Rogaway’s XEX mode, which
has not appeared in the literature, does not address the explicit proofs
given, and which does not have an explicit basis.

Second, the justification given in the draft erroneously conflates two
notions of the word “purpose.” In the sense of the NIST guidelines [8],
the word purpose refers to the aim of the cryptographic application in
which the key is used. The NIST guideline says, “In general, a single
key should be used for only one purpose (e.g. encryption, authen-
tication, key wrapping, random number generation, or digital signa-
tures).” In the XTS construction, the key is being used for only one
purpose: tweakable encryption. Tweakable encryption is not specifi-
cally mentioned in the NIST guideline, but tweakable encryption, like
(non-tweakable) encryption, random number generation, authentica-
tion, et cetera, is meant to be an atomic cryptographic construct in
practice. Because of this, the justification given in the draft seems to
assert that two different uses of a value within an atomic cryptographic
operation amount to two different purposes.

An analogy may be appropriate. When encrypting a long message with
a block cipher in CBC mode, we run the block cipher in each round
with the same key. While this constitutes multiple uses of the key itself,
this is not an example of using the same key for multiple purposes; all
these uses of the key are merely internal steps in an algorithm with an
overall purpose: to encrypt the long message. XTS is similar in that it
is an algorithm with an overall purpose: to tweakably encrypt a block
of input.

Furthermore, the justifications for the NIST guideline design principle
do not apply in this case. The justifications are:

1. “The use of the same key for two different cryptographic pro-
cesses may weaken the security provided by one or both of the

3



processes.”
This makes it even clearer that the principle isn’t meant to ap-
ply here, as the two uses of the keys in XTS are not different
processes. In addition, the construction is proven secure with a
single key.

2. “Limiting the use of a key limits the damage that could be done
if the key is compromised.”
The XTS construction is insecure if Key2 is compromised, and
has no analysis justifying its security if Key1 is compromised.
The compromise of either key invalidates our security analysis
completely. The separation does not help. (If one of the keys
were used for some other purpose besides XTS, then that purpose
might not be affected if the other key were revealed. But this
scenario would in itself violate the design principle.)

3. “Some uses of keys interfere with each other.”
This is not the case here.

Furthermore, the draft does not explicitly analyze the security of XTS;
it relies instead of the analysis of XEX mode. XEX mode is only proven
secure with one key. If two keys are to be used, the security of this choice
should be explicitly addressed. We describe a better security analysis in the
following section.

3 On Security Analysis

The draft gives a rather weak explanation of the security analysis for XTS-
AES. Currently, the errors are:

1. The draft attempts to rely on the security analysis for XEX that can-
not be directly applied when XEX is altered to use two keys,

2. The draft mis-cites Rogaway’s analysis [6], which gives a bound of
9.5q2/2n,1

3. There is better analysis possible, both if the use of two keys is kept,
or if it is removed, and

4. There is insufficient analysis of the mode of operation, that is, of the
use of sequential-tweak ECB mode with ciphertext stealing.

1It is possible that the authors confused Theorem 1 of [5] / Theorem 7 of [6], which
gives a bound of 4.5q2/2n but for XE rather than XEX.

4



3.1 Security Proof of XEX

In the draft, XEX is explained as a provably secure scheme having 4.5q2/2n

security bound, when n-bit block cipher is used and the adversary is allowed
to ask at most q queries for both encryption and decryption, i.e., Chosen-
Ciphertext Attack (CCA). However the bound shown by Rogaway’s papers
is larger: 9.5q2/2n (Theorem 2 of [5], Theorem 8 of [6]). The improvement
to 4.5q2/2n is due to Minematsu [3], which is not mentioned in the draft.
This improvement is obtained by the following analysis. If the standard is
to be adjusted to use a single key, the justification should cite Minematsu’s
analysis for the security bound of 4.5q2/2n.

3.1.1 Analysis

We first consider a general tweakable block cipher using two keyed permu-
tations over M = {0, 1}n, E : K1 × M → M and G : K2 × M → M.
Two keys, K1 ∈ K1 and K2 ∈ K2, can be dependent or independent.
Specifically, we consider tweak consisting of two parts, i ∈ M and j ∈ J
((i, j) ∈ T = M×J ).

The encryption is written as:

T ← f(j, GK2(i))
PP ← P ⊕ T

CC ← EK1(PP )
C ← CC ⊕ T

where (i, j) ∈ T is the tweak and P ∈ M (C ∈ M) is the plaintext (ci-
phertext) block. Decryption procedure is clear, thus omitted. The function
f : J ×M → M is a deterministic function2 called the offset function. Let
us denote the above scheme by TW[EK1 , GK2 , f ].

We say f is (ε, γ, ρ)-uniform if

1. maxj 6=j′,δ∈M Pr[f(j, V ) ⊕ f(j′, V ) = δ] ≤ ε
and maxj 6=j′,δ∈M Pr[f(j, V ) ⊕ f(j′, V ′) = δ] ≤ ε

2. maxj∈J ,δ∈M Pr[f(j, V ) = δ] ≤ γ

3. maxj∈J ,δ∈M Pr[f(j, V ) ⊕ V = δ] ≤ ρ

where V and V ′ are independent and uniformly random over M.

2This can be probabilistic, but for simplicity we consider only deterministic functions.

5



Let URPn denote the uniform random permutation (URP), which is a
permutation uniformly chosen from all permutations over M. We derive an
upper bound of maximum advantage in distinguishing TW[URPn, URPn, f ]
from the perfect tweakable permutation (PTP), which is a collection of inde-
pendent URPs indexed by the tweak, for any CCA-adversaries with q queries
and infinite computational power. Here, two URPs in TW[URPn, URPn, f ]
share the same internal randomness. This maximum advantage is denoted
by AdvTW[URPn,URPn,f ](q). Then, Theorem 4 of [3] proved that if f is (ε, γ, ρ)-
uniform, we have

AdvTW[URPn,URPn,f ](q) ≤
(

2ε + γ + ρ +
1

2n+1

)
q2. (1)

If we define f as
f(j, v) def= v ⊗ αj , (2)

where α is a primitive element over GF(2n) and J = {1, 2, . . . , 2n−2}, we
clearly obtain an instance of XEX. In this case, we can easily confirm that f
is (2−n, 2−n, 2−n)-uniform and thus the security bound for XEX using URPn,
denoted by XEX-URPn, is

AdvXEX-URPn(q) ≤ (2 · 2−n + 2−n + 2−n + 2−(n+1))q2 = 4.5q2/2n. (3)

Note that j = 0 must be excluded, as f(0, v) = v for any v, which implies
ρ = 1. Moreover, if j = 0 was allowed, a simple attack based on this fact
existed, as pointed out by [6] and [3]. Hence if XEX is used, one must
be careful to avoid j being 0.

The security of XEX-AES is obtained by combining Equation (3) for
n = 128 and the standard technique for converting information-theoretical
result into computational one, which is as follows.

AdvXEX-AES(q, τ) ≤ AdvAES(2q, τ ′) +
4.5q2

2128
, (4)

where τ denotes the adversary’s time complexity and AdvAES(2q, τ ′) is the
maximum advantage in distinguishing AES from URP128 using CCA with
2q queries and τ ′ = τ + O(q) time complexity (O(q) can be more specific,
see ,e.g. Rogaway [6]).

Notes. The above analysis crucially depends on the methodology devel-
oped by Maurer [2]. It is not much popular, however, for some cases (in-
cluding this case) it can offer a slight tighter bound than previous ones.

6



For example, the security bound of 3-round Feistel permutation using in-
dependent pseudorandom functions, (aka 3-round Luby-Rackoff cipher) was
previously known as 2

(
q
2

)
/2n +

(
q
2

)
/22n [4]. However Maurer [2] proved that

the latter term could be removed.

3.2 Security Proof of XTS

As currently described in the standard, XTS differs from XEX with cipher-
text stealing in that it uses two keys. We have argued in section 2 that only
one key should be used, and this remains our primary suggestion. However,
if this suggestion is not accepted, we note that the current security analysis
cited in the document does not apply to XTS, since it does not adjust the
analysis of XEX for the use of two keys. Below, we give a security analysis
for XTS as written that is better than the current draft. Specifically, it (1)
achieves a better security bound, and (2) avoids trying to apply the analysis
of XEX inappropriately.

3.3 Analysis

Using the definitions of previous section, XTS-AES without ciphertext steal-
ing is defined as TW[AESK1 ,AESK2 , f ] (K1 and K2 are independent), while
XEX-AES is TW[AESK ,AESK , f ], where f is as defined as Equation (2).

Although the security proof of XTS can not be directly derived from
the original proof of Rogaway [5][6], it is easily derived from the analysis
of Section 3.1 with a minor modification. The result is almost the same as
the results of Liskov et al. [1], but slightly improves it. The analysis is as
follows. We first observe that the procedure defined as

T ← f(j, URPn(i)), where f is defined as Eq. (2) (5)

is 2−n-Almost XOR uniform (2−n-AXU) for any (i, j) ∈ T , where T =
M × {0, 1, . . . , 2n−2}. That is, for all (i, j), (i′, j′) ∈ T and (i, j) 6= (i′, j′),
we have

Pr[f(j, URPn(i)) ⊕ f(j′, URPn(i′)) = δ] ≤ 2−n. (6)

Using this fact and a result of Liskov et al. (Theorem 2 of [1]), we can
obtain

Adv
TW[URP

(1)
n ,URP

(2)
n ,f ]

(q) ≤ 3q2

2n
, (7)

7



where (URP
(1)
n ,URP

(2)
n ) denotes a pair of independent URPs over M. More-

over, Minematsu (Theorem 1 of [3]) improved3 this to

Adv
TW[URP

(1)
n ,URP

(2)
n ,f ]

(q) ≤ q2

2n
. (8)

The maximum (q, τ)-CCA advantage in distinguishing (URP
(1)
128, URP

(2)
128)

from (AESK1 , AESK2), is at most 2AdvAESK
(q, τ ′). The formal security proof

of XTS (w/o ciphertext stealing) is obtained by this observation and Equa-
tion (8), which is as follows.

AdvXTS-AES(q, τ) ≤ 2AdvAES(q, τ ′) +
q2

2128
. (9)

This bound is almost the same as the bound of XEX shown by Equation
(4).

Note that XTS does not require to avoid j = 0, as the offset function
of XTS needs not be (ε, γ, ρ)-uniform, but only be ε-AXU if it is combined
with URP. This difference is significant in security, but has no impact on
effectiveness for practical applications.

3.4 Ciphertext Stealing

In addition, the XTS construction varies from the XEX construction in that
XTS is to be used in an implied mode of operation: namely, a large chunk
of data is to be encrypted block by block, where a large number of blocks
use the same i value but sequential j values. XEX is intended for use in
this mode also. However, XTS handles the use of a non-full block via the
well-known “ciphertext stealing” trick, whereas XEX does not. The draft
does not justify the implied assertion that the use of ciphertext stealing in
this algorithm is secure.

The following is a sketch of a proof that ciphertext stealing is sound if the
basic scheme is sound. Let A be an adversary. If, each time A makes a query
involving a partial block, A were to learn CP in addition to C1, . . . , Cm, the
probability for A to succeed would not diminish. Thus, it cannot hurt to
reveal C1, . . . , Cm|CP,Cm−1. This, in turn, can be determined by the adver-
sary without making any queries involving a partial block, if the adversary
may specify i, j at will: the adversary simply queries P1, . . . , Pm−1 for i, 1

3In fact, the results are more general: if Equation (5) is replaced with any keyed
function being ε-AXU for all possible tweaks and the key is independent, Liskov et al.
proved the bound 3εq2 and Minematsu improved it to εq2.

8



through i, m− 1, which reveals C1, . . . , Cm−2, Cm|CP . Now that the adver-
sary has learned CP , the simply make another query with respect to the
same tweaks: P1, . . . , Pm−1, Pm|CP . Thus, if we assume that no adversary
can break the scheme if they were to make no partial block queries, then no
adversary can break the scheme with ciphertext stealing either.

4 Editorial and Other Comments

1. The draft seems to confuse the conference version and the full version
Rogaway’s paper. The bibliography lists only the conference version
[5], but many of the references directly reference the full version [6].
(For instance, there is no Theorem 8 in the conference version, but it
is cited on page 16 line 11.)

2. It should be mentioned explicitly in the description that when en-
ciphering many blocks, successive T values can and should be com-
puted from prior ones via multiplication by α (providing that i re-
mains fixed). This optimization, which is one of the best features of
XEX, should be explicitly recommended in the standard.

3. In the description of α on page 3, lines 6-7, we take it that α is the
GF (2128) element corresponding to 2. But this should be made ex-
plicit. Furthermore, XEX mode allows for various choices for α and
even for the use multiple distinct α values. The choice of this partic-
ular value needs to be explained and justified. We believe that the
implied value of α is a good choice, because multiplication by 2 is
especially inexpensive.

4. On page 5, line 12: i should be “the value of the 128-bit nonce”, since
the term “tweak” refers, properly, to the tweak input of the tweakable
blockcipher, in this case, one of the values (i, q) through (i,m − 1).

5. In the security analysis (section D.4.2), we feel there is too much em-
phasis on the security advantage bound (e.g. 4.5q2/2n) and not enough
emphasis on the fact that XTS-AES is not absolutely secure, and its
security rests on the security of AES.

References

[1] M. Liskov, R. Rivest, and D. Wagner. “Tweakable Block Ciphers.”
Advances in Cryptology- CRYPTO’02, LNCS 2442, pp. 31-46, 2002.

9



[2] U. Maurer. “Indistinguishability of Random Systems.” Advances in
Cryptology- EUROCRYPT’02, LNCS 2332, pp. 110-132, 2002.

[3] K. Minematsu. “Improved Security Analysis of XEX and LRW Modes.”
Selected Areas in Cryptography- SAC’06, LNCS 4356, pp.96-113, 2007.

[4] M. Naor and O. Reingold. “On the Construction of Pseudorandom Per-
mutations: Luby-Rackoff Revisited.” Journal of Cryptology, vol. 12, no.
1, pp. 29-66, 1999.

[5] P. Rogaway. “Efficient Instantiations of Tweakable Blockciphers and
Refinements to Modes OCB and PMAC.” Advances in Cryptology- ASI-
ACRYPT’04. LNCS 3329, pp. 16-31, 2004.

[6] P. Rogaway. “Efficient Instantiations of Tweakable Blockciphers and
Refinements to Modes OCB and PMAC.” (the full version of [5]), avail-
able from http://www.cs.ucdavis.edu/~rogaway/papers

[7] The XTS-AES Tweakable Block Cipher (An Extract from IEEE Std
1619-2007),
http://grouper.ieee.org/groups/1619tmp/1619-2007-NIST-Submission.pdf

[8] NIST Key Management Guidelines SP800-57.

10


