OCB Mode

Phillip Rogaway

Department of Computer Science
UC Davis + Chiang Mai Univ
rogaway@cs.ucdavis.edu
http://www.cs.ucdavis.edu/~rogaway
+66 1 530 7620 +1 530 753 0987

Mihir Bellare

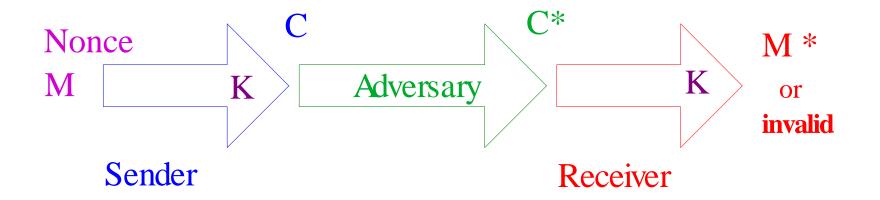
UCSD mihir@cs.ucsd.edu

John Black

UNR jrb@cs.unr.edu

Ted Krovetz

Digital Fountain tdk@acm.org


Looking—contact Ted!

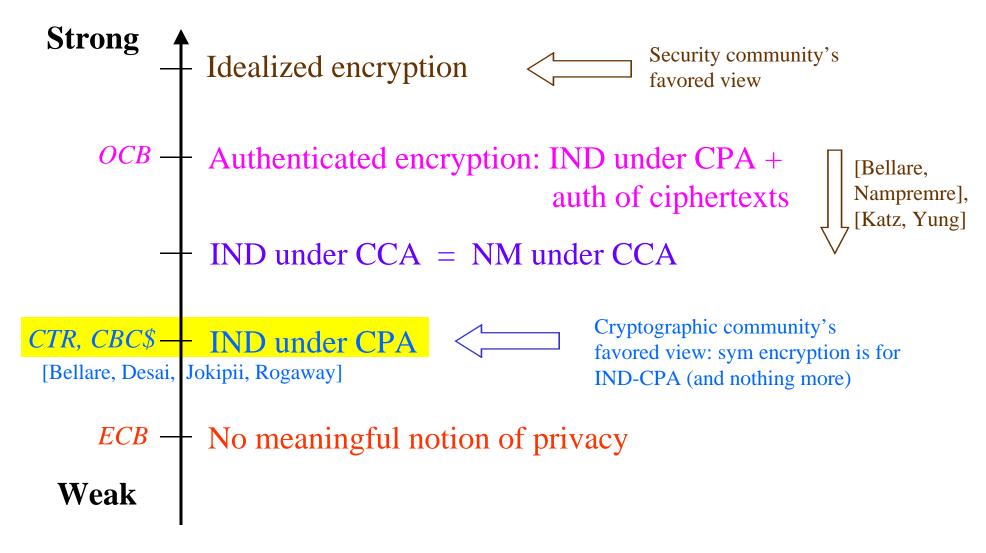
NIST Modes of Operation Workshop 2 – Aug 24, 2001 - Santa Barbara, California

Two Cryptographic Goals

Privacy What the Adversary sees tells her nothing of significance about the underlying message M that the Sender sent Authenticity The Receiver is sure that the string he receives was sent (in exactly this form) by the Sender

Authenticated Encryption Achieves both privacy and authenticity

Why Authenticated Encryption?


Efficiency

By merging privacy and authenticity one can achieve efficiency difficult to achieve if handling them separately

• Easier-to-correctly-use abstraction

By delivering strong security properties one may minimize encryption-scheme misuse

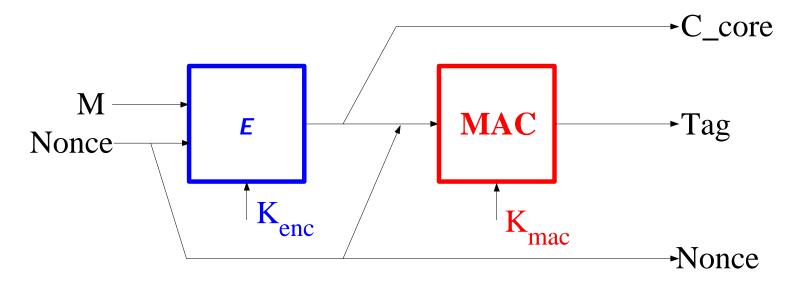
What does Encryption **Do**?

Right or Wrong?

It depends on what definition E satisfies

$$\begin{array}{c}
A \cdot R_{A} \\
& B \cdot E_{K} (A \cdot B \cdot R_{A} \cdot R_{B} \cdot S_{K})
\end{array}$$

$$\begin{array}{c}
E_{K} (R_{B}) \\
& E_{K} (R_{B})
\end{array}$$


Generic Composition

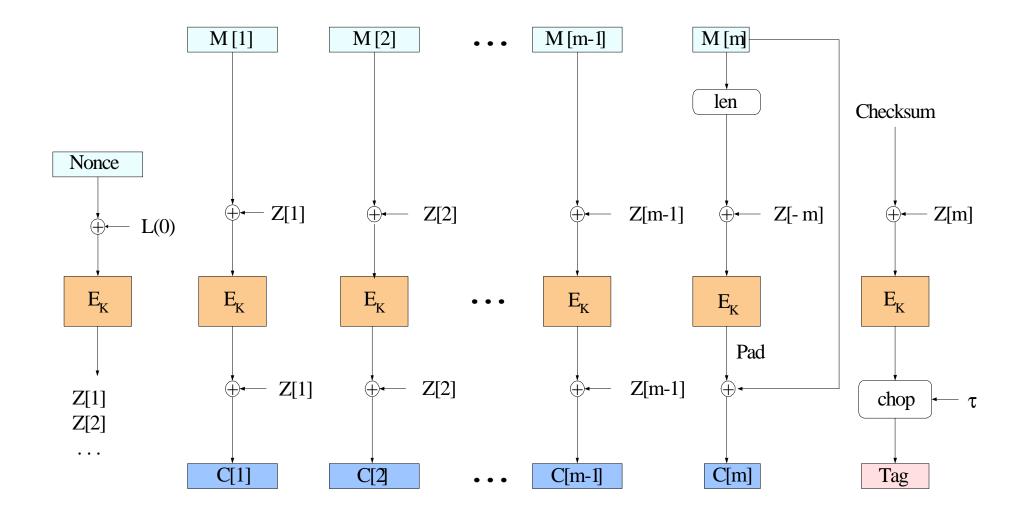
Folklore approach. See
[Bellare, Namprempre]
and [Krawczyk]
tion
for analysis.

Traditional approach to authenticated encryption

Glue together an encryption scheme (E) and a Message Authentication Code (MAC)

Preferred way to do generic composition:

Generic Composition


- + Versatile, clean architecture
- + Reduces design work
- + Quick rejection of forged messages if use optimized MAC (eg., UMAC)
- + Inherits the characteristics of the modes one builds from
- Cost ≈ (cost to encrypt) + (cost to MAC) For CBC Enc + CBC MAC, cost ≈ 2 × (cost to CBC Enc)
- Often misused
- Two keys
- Inherits characteristics of the modes one builds from

Trying to do Better

- Numerous attempts to make privacy + authenticity cheaper
- One approach: stick with generic composition, but find cheaper privacy algorithm and cheaper authenticity algorithms
- Make authenticity an "incidental" adjunct to privacy within a conventional-looking mode
 - CBC-with-various-checksums (wrong)
 - PCBC in Kerberos (wrong)
 - PCBC of [Gligor, Donescu 99] (wrong)
 - [Jutla Aug 00] First correct solution
- Jutla described two modes, IACBC and IAPM
- A lovely start, but many improvements possible
- OCB: inspired by IAPM, but many new characteristics

What is OCB?

- Authenticated-encryption scheme
- Uses any block cipher (eg. AES)
- Computational cost ≈ cost of CBC
- OCB-AES good in SW or HW
- Lots of nice characteristics designed in:
 - Uses $\lceil |M| / n \rceil + 2$ block-cipher calls
 - Uses any nonce (needn't be unpredictable)
 - Works on messages of any length
 - Creates minimum-length ciphertext
 - Uses a single block-cipher key, each block-cipher keyed with it
 - Quick key setup suitable for single-message sessions
 - Essentially endian-neutral
 - Fully parallelizable
 - No n-bit additions
- Provably secure: if you break OCB-AES you've broken AES
- In IEEE 802.11 draft. Paper to appear at ACM CCS '01

Checksum = $M[1] \oplus M[2] \oplus \cdots \oplus M[m-1] \oplus C[m]0^* \oplus Pad$

 $Z[i] = Z[i-1] \oplus L(\mathbf{ntz}(i))$

 $L(0) = E_K(0)$ and each L(i) obtained from L(i-1) by a shift and conditional xor

Definition of OCB[E, t]

```
algorithm OCB-Encrypt <sub>K</sub> (Nonce, M)
L(0) = E_K(\mathbf{0})
L(-1) = lsb(L(0))? (L(0) >> 1) \oplus Const43 : (L(0) >> 1)
for i = 1, 2, ... do L(i) = msb(L(i-1))? (L(i-1) << 1) \oplus Const87 : (L(i-1) << 1)
Partition M into M[1] \cdots M[m] // each n bits, except M[m] may be shorter
Offset = E_K (Nonce \oplus L(0))
for i=1 to m-1 do
     Offset = Offset \oplus L(ntz(i))
     C[i] = E_K(M[i] \oplus Offset) \oplus Offset
Offset = Offset \oplus L(ntz(m))
Pad = E_K (len(M[m]) \oplus Offset \oplus L(-1))
C[m] = M[m] \oplus (first \mid M[m] \mid bits of Pad)
Checksum = M[1] \oplus \cdots \oplus M[m-1] \oplus C[m]0* \oplus Pad
Tag = first \tau bits of E_{\kappa} (Checksum \oplus Offset)
return C[1] ··· C[m] || Tag
```

Assembly Speed

Data from **Helger Lipmaa** www.tcs.hut.fi/~helger helger@tcs.hut.fi // **Best Pentium AES code known. Helger's code is for sale, btw.**

OCB-AES	16.9 cpb	(271 cycles) ► 65.0/ slawer
CBC-AES	15.9 cpb	$\frac{\text{(271 cycles)}}{\text{(255 cycles)}} > 6.5 \% \text{ slower}$
ECB-AES	14.9 cpb	(239 cycles)
CBCMAC-AES	15.5 cpb	(248 cycles)

The above data is for 1 Kbyte messages. Code is pure Pentium 3 assembly. The block cipher is AES128. Overhead so small that AES with a C-code CBC wrapper is slightly more expensive than AES with an assembly OCB wrapper.

C Speed

Data from Ted Krovetz. Compiler is MS VC++. Uses rijndael-alg-fst.c ref code.

Why I like OCB

- Ease-of-correct-use. Reasons: all-in-one approach; any type of nonce; parameterization limited to block cipher and tag length
- Aggressively optimized: ≈ optimal in many dimensions: key length, ciphertext length, key setup time, encryption time, decryption time, available parallelism; SW characteristics; HW characteristics; ...
- Simple but highly non-obvious
- Ideal setting for practice-oriented provable security

What is Provable Security?

- Provable security begins with [Goldwasser, Micali 82]
- Despite the name, one doesn't really *prove* security
- Instead, one gives *reductions*: theorems of the form

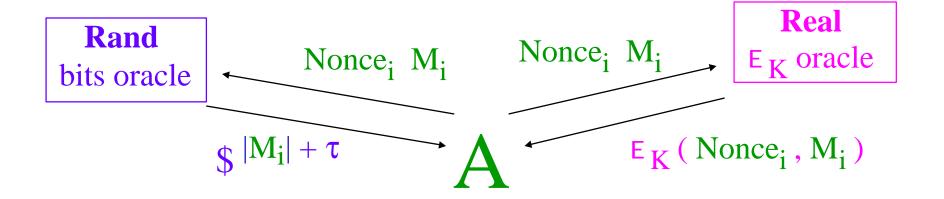
If a certain primitive is secure then the scheme based on it is secure

Eg:

If AES is a secure block cipher then OCB-AES is a secure authenticated-encryption scheme Equivalently:

If some adversary A does a good job at breaking OCB-AES then some comparably efficient B does a good job to break AES

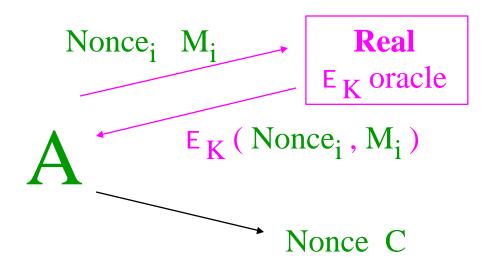
• Actual theorems quantitative: they measure how much security is "lost" across the reduction.


The Power of **Definitions**

- Let's you carry on an intelligent conversation
- Let's you investigate the "space" of goals and how they are related
- Often let's you easily see when protocols are wrong
- Let's you prove when things are right, to the extent that we know how to do this.

It took about an hour to break the NSA's "Dual Counter Mode". What did I have that the NSA authors didn't? Just an understanding of a good **definition** for the goal.

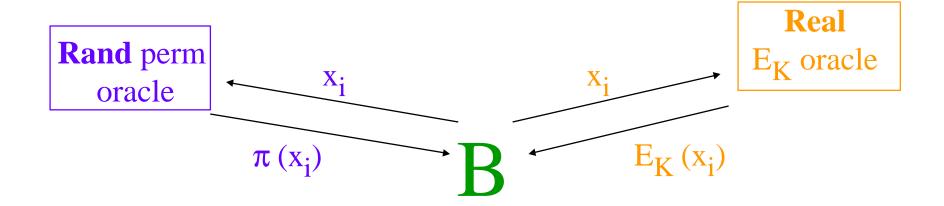
Privacy Indistinguishability from Random Bits


[Goldwasser, Micali] [Bellare, Desai, Jokipii, Rogaway]

$$\mathbf{Adv}^{\mathbf{priv}}(\mathbf{A}) = \Pr[\mathbf{A}^{\mathbf{Real}} = 1] - \Pr[\mathbf{A}^{\mathbf{Rand}} = 1]$$

Authenticity: Authenticty of Ciphertexts

[Bellare, Rogaway] [Katz, Yung] this paper


A forges if she outputs forgery attempt Nonce C s.t.

- C is **valid** (it decrypts to a message, not to **invalid**)
- there was no $\mathbf{E}_{\mathbf{K}}$ query Nonce $\mathbf{M}_{\mathbf{i}}$ that returned \mathbf{C}

 $Adv^{auth}(A) = Pr[A forges]$

Block-Cipher Security PRP and Strong PRP

[Goldreich, Goldwasser, Micali]
[Luby, Rackoff]
[Bellare, Kilian, Rogaway]

$$\mathbf{Adv}^{\mathbf{prp}}(\mathbf{B}) = \Pr[\mathbf{B}^{\mathbf{E}_{\mathbf{K}}} = 1] - \Pr[\mathbf{B}^{\mathbf{\pi}} = 1]$$

$$Adv^{sprp}$$
 (B)= $Pr[B^{E_K E_{K^{-1}}} = 1] - Pr[B^{\pi \pi^{-1}} = 1]$

OCB Theorems

Privacy theorem:

```
Suppose \exists an adversary \mathbf{A} that breaks \mathbf{OCB-E} with:

time = t

total-num-of-blocks = \sigma

adv = \mathbf{Adv}^{\mathbf{priv}}(\mathbf{A})
```

Then
$$\exists$$
 an adversary \mathbf{B}
that breaks block cipher \mathbf{E} with:
 $time \approx t$
 $num-of-queries \approx \sigma$
 $\mathbf{Adv}^{\mathbf{prp}}(\mathbf{B}) \approx \mathbf{Adv}^{\mathbf{priv}}(\mathbf{A}) - 1.5 \ \sigma^2 / 2^n$

Authenticity theorem:

Suppose \exists an adversary \mathbf{A} that breaks $\mathbf{OCB}\text{-}\mathbf{E}$ with: that breaks block cipher \mathbf{E} with: time = t time \approx t total-num-of-blocks = σ adv = $\mathbf{Adv}^{\mathbf{auth}}(\mathbf{A})$ that breaks block cipher \mathbf{E} with: time \approx t $\mathbf{Adv}^{\mathbf{sprp}}(\mathbf{B}) \approx \mathbf{Adv}^{\mathbf{priv}}(\mathbf{A}) - 1.5 \ \sigma^2 / 2^n$

What Provable Security Does, and Doesn't, Buy You

- + Strong evidence that scheme does what was intended
- + Best assurance cryptographers know how to deliver
- + Quantitative usage guidance
- An absolute guarantee
- Protection from issues not captured by our abstractions
- Protection from usage errors
- Protection from implementation errors

	Domain	Ciphertext	IV rqmt	Calls / msg	Calls / keysetup	Key length (#E-keys)	/ blk overhead	E circuit depth
IAPM (lazy mod p) [Jutla 00,01]	$(\{0,1\}^n)^+$	$ M + \tau$	nonce (Jutla's presentation gave rand version)	$ \mathbf{M} /n+2$	0	2k (2)	1 xor 2 add 1 addp	2
XECB-XOR [GD 01]	{0,1}*	$\lceil \mathbf{M} / \mathbf{n} \rceil + \mathbf{n}$	ctr	$\lceil \mathbf{M} / \mathbf{n} \rceil + 1$	0	k+2n (1)	1 xor 3 add	1
OCB [R+ 00,01]	{0,1}*	$ M + \tau$	nonce	$\lceil \mathbf{M} /\mathbf{n} \rceil + 2$	1	k (1)	4 xor	3

For More Information

- OCB web page → www.cs.ucdavis.edu/~rogaway
 Contains FAQ, papers, reference code, licensing info...
- Feel free to call or send email
- Upcoming talks: MIT (Oct 26), ACM CCS (Nov 5-8), Stanford (TBA)
- Or grab me now!

Anything Else ??