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Two Cryptographic Goals

M
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Privacy    What the Adversary sees tells her nothing of significance
                about the underlying message M that the Sender sent
Authenticity The Receiver is sure that the string he receives was

sent (in exactly this form) by the Sender 

Authenticated Encryption    Achieves both privacy and authenticity
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Why Authenticated Encryption?

•  Efficiency
       By merging privacy and authenticity one can achieve
       efficiency difficult to achieve if handling them separately

•  Easier-to-correctly-use abstraction
      By delivering strong security properties one may
       minimize encryption-scheme misuse
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What does Encryption Do?

No meaningful notion of privacyECB

IND under CPACTR, CBC$

IND under CCA  =  NM under CCA

Authenticated encryption: IND under CPA + 
                                           auth of ciphertexts

OCB

Idealized encryption Security community’s
favored view

Cryptographic community’s
favored view: sym encryption is for
IND-CPA (and nothing more)

[Bellare,
Nampremre],
[Katz, Yung]

Strong

Weak

[Bellare, Desai,  Jokipii, Rogaway]
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Right or Wrong?
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It depends on what definition E  satisfies
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Generic Composition

M
Nonce

Kenc

E MAC

Kmac

Tag

C_core

Nonce

Glue together an encryption scheme  ( E  )
                  and a Message Authentication Code (MAC)

Traditional approach to authenticated encryption

Folklore approach. See 
[Bellare, Namprempre]

and [Krawczyk]
for analysis.

Preferred way to do generic composition:
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Generic Composition

+ Versatile, clean architecture
+ Reduces design work
+ Quick rejection of forged messages if use optimized MAC
    (eg., UMAC)
+ Inherits the characteristics of the modes one builds from

- Cost ≈  (cost to encrypt) + (cost to MAC)
       For CBC Enc + CBC MAC, cost ≈  2 ×  (cost to CBC Enc)
- Often misused
- Two keys
- Inherits characteristics of the modes one builds from
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Trying to do Better

• Numerous attempts to make privacy + authenticity cheaper
• One approach: stick with generic composition, but find cheaper
  privacy algorithm and cheaper authenticity algorithms
• Make authenticity an “incidental” adjunct to privacy within a
   conventional-looking mode

•  CBC-with-various-checksums      (wrong)
•  PCBC in Kerberos                         (wrong)
•  PCBC of [Gligor, Donescu  99]    (wrong)
•  [Jutla - Aug 00]    First correct solution

•  Jutla described two modes, IACBC and IAPM
•  A lovely start, but many improvements possible
•  OCB: inspired by IAPM, but many new characteristics
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What is OCB?

• Authenticated-encryption scheme
• Uses any block cipher (eg. AES)
• Computational cost  ≈ cost of CBC
• OCB-AES good in SW or HW
• Lots of nice characteristics designed in:

• Uses   |M| / n  + 2 block-cipher calls
• Uses any nonce (needn’t be unpredictable)
• Works on messages of any length
• Creates minimum-length ciphertext
• Uses a single block-cipher key,  each block-cipher keyed with it
• Quick key setup – suitable for single-message sessions
• Essentially endian-neutral
• Fully parallelizable
• No n-bit additions

• Provably secure:  if you  break OCB-AES you’ve broken AES
• In IEEE 802.11 draft.    Paper to appear at ACM CCS ’01
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Checksum = M[1] ⊕ M[2] ⊕  …  ⊕ M[m-1] ⊕ C[m]0* ⊕ Pad

Z[i] = Z[i-1] ⊕ L(ntz(i))
L(0) = EK(0)  and each  L(i) obtained from L(i-1) by a shift and conditional xor
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Definition of OCB[E, t]

algorithm  OCB-Encrypt K (Nonce,  M)
L(0)   = EK (0)
L(-1) = lsb(L(0))?  (L(0) >> 1) ⊕  Const43  :  (L(0) >>1)
for i = 1, 2, … do L(i)  = msb(L(i-1))?  (L(i-1) << 1) ⊕  Const87 : (L(i-1) <<1)
Partition M into M[1] ... M[m]     // each n bits,  except M[m] may be shorter
Offset = EK (Nonce ⊕ L(0))
for i=1 to m-1 do
        Offset = Offset ⊕ L(ntz(i))
        C[i] = EK (M[i] ⊕  Offset) ⊕ Offset
Offset = Offset ⊕ L(ntz(m))
Pad  = EK (len(M[m]) ⊕  Offset  ⊕  L(-1))
C[m] = M[m] ⊕  (first |M[m] |   bits of  Pad)
Checksum = M[1] ⊕ ... ⊕  M[m-1] ⊕ C[m]0* ⊕ Pad
Tag = first τ bits of EK(Checksum ⊕ Offset)
return C[1] ... C[m] || Tag 
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Assembly Speed
Data from Helger Lipmaa    www.tcs.hut.fi/~helger     helger@tcs.hut.fi

 OCB-AES                 16.9 cpb    (271 cycles)
 CBC-AES                 15.9 cpb    (255 cycles)
 ECB-AES                 14.9 cpb    (239 cycles)
 CBCMAC-AES        15.5 cpb    (248 cycles)

6.5 % slower

The above data is for 1 Kbyte messages.  Code is  pure Pentium 3 assembly.
The block cipher is AES128.  Overhead so small that AES with a C-code CBC
wrapper is slightly more expensive than AES with an assembly OCB wrapper.

// Best Pentium AES code known.  Helger’s code is for sale, btw.

C Speed

 OCB-AES                 28.1 cpb    (449 cycles)
 CBCMAC-AES        26.8 cpb    (428 cycles)

4.9 % slower

Data from Ted Krovetz . Compiler is MS VC++.   Uses rijndael-alg-fst.c ref code.



Slide 13

Why I like OCB

• Ease-of-correct-use.  Reasons: all-in-one approach; any type of
nonce; parameterization limited to block cipher and tag length 

• Aggressively optimized:  ≈ optimal in many dimensions:
      key length, ciphertext length, key setup time, encryption time, 
      decryption time,  available parallelism; SW characteristics;
      HW characteristics; … 
• Simple but highly non-obvious
• Ideal setting for practice-oriented provable security
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What is Provable Security?

• Provable security begins with [Goldwasser, Micali 82] 
• Despite the name, one doesn’t really prove security
• Instead, one gives reductions: theorems of the form
      If a certain primitive is secure 
      then the scheme based on it is secure
  Eg:
      If AES is a secure block cipher 
      then OCB-AES is a secure authenticated-encryption scheme
  Equivalently:
      If some adversary A does a good job at breaking OCB-AES
      then some comparably efficient B does a good job to break AES
• Actual theorems quantitative: they measure how much security is 
   “lost” across the reduction.
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The Power of Definitions(

)

• Let’s you carry on an intelligent conversation
• Let’s you investigate the “space” of goals and
   how they are related
• Often let’s you easily see when protocols are wrong
• Let’s you prove when things are right, to the extent
  that we know how to do this.

It took about an hour to break the NSA’s “Dual Counter Mode”.
What did I have that the NSA authors didn’t?  Just an understanding 
of a good definition for the goal.
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Privacy
Indistinguishability from Random Bits

A E K ( Noncei , Mi )

Real
E K oracleNoncei  Mi

Rand 
bits oracle

$ |Mi| + τ

Advpriv (A) = Pr[AReal = 1] – Pr[ARand = 1]

[Goldwasser, Micali]
[Bellare, Desai,

Jokipii, Rogaway]

Noncei  Mi
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Authenticity:
Authenticty of Ciphertexts

A

Noncei   Mi

E K ( Noncei , Mi )

Real
E K oracle

Advauth (A) = Pr[A forges]

Nonce  C

A forges if she outputs
forgery attempt Nonce  C  s.t.
• C is valid (it decrypts
   to a message, not to invalid)
• there was no E K query
   Nonce  Mi that returned C

[Bellare, Rogaway]
[Katz, Yung]

this paper
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Block-Cipher Security
PRP and Strong PRP

[Goldreich, Goldwasser, Micali]
[Luby, Rackoff]

[Bellare, Kilian, Rogaway]

B EK (xi)

Real
EK oraclexi

Rand perm 
oracle

π (xi)

Advprp (B) = Pr[BEK = 1] – Pr[Bπ = 1]

xi

Advsprp (B)= Pr[BEK EK
-1 = 1] – Pr[Bπ π−1 = 1]
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OCB Theorems

Suppose ∃ an adversary A
that breaks OCB-E  with:
time =  t
total-num-of-blocks = σ
adv  = Advpriv (A)

Then ∃ an adversary B
that breaks block cipher E with:
time ≈  t
num-of-queries ≈ σ
Advprp (B) ≈ Advpriv(A) – 1.5 σ2 / 2n

Privacy theorem:

Suppose ∃ an adversary A
that breaks OCB-E  with:
time =  t
total-num-of-blocks = σ
adv  = Advauth (A)

Then ∃ an adversary B
that breaks block cipher E with:
time ≈  t
num-of-queries ≈ σ
Advsprp (B) ≈ Advpriv(A) – 1.5 σ2 / 2n

Authenticity theorem:
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What Provable Security Does, and
Doesn’t, Buy You

+ Strong evidence that scheme does what was intended
+ Best assurance cryptographers know how to deliver
+ Quantitative usage guidance

- An absolute guarantee
- Protection from issues not captured by our abstractions
- Protection from usage errors
- Protection from implementation errors
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For More Information

•  OCB web page →  www.cs.ucdavis.edu/~rogaway
    Contains FAQ, papers, reference code, licensing info...
•  Feel free to call or send email
•  Upcoming talks: MIT (Oct 26), ACM CCS (Nov 5-8), Stanford (TBA)

•  Or grab me now!

Anything Else ??


