
OCB : Parallelizable Authenticated Encryption

PMAC : Parallelizable Message Authentication Code

Phillip Rogaway

UC Davis (USA) and
CMU (Thailand)

NIST Modes of Operation Workshop - 20 October 2000

with assistance from Mihir Bellare (UCSD)
and John Black (UNR)

rogaway@cs.ucdavis.edu
www.cs.ucdavis.edu

What I'm doing

- Refining a parallelizable scheme recently suggested by
 [Jutla] for authenticated encryption (privacy+authenticity)

- Improving on [Bellare, Guerin, Rogaway], [Bernstein],
 [Gligor, Donescu] for a parallelizable MAC.

OCB

PMAC

OCB (Offset CodeBook) Mode

 (1) The adversary can't understand anything about plaintexts
 Formalized as IND - CPA [GM, BDJR]

(2) The adversary can't produce valid ciphertexts
 Formalized as Integrity of Ciphertexts [KY, BR, BN]

Security Goals

A
MM

CC �K (.)�K (0 | . |)

A
M1
C1 �K (.)

Mq
Cq

. . .
C*

A BK K

�K (A B Ra Rb)

�K (Rb)

 A B Ra
This sort of encryption-scheme
usage, to bind together a private
message, is very common in the
literature and in practice. But
is completely bogus when
using IND-CPA encryption.

Why is Integrity-of-Ciphertexts important?

Because users of encryption often assume, wrongly, that they
have it! Achieving IND-CPA + integrity-of-ciphertexts
implies IND-CCA [BN] and non-malleablity-CCA,
so an encryption scheme with Integrity-of-Ciphertexts is
far less likely to be misused.

+

M [1]

C [1]

EK

M [2]

2L + R

C [2]

EK

M [3]

C [3]

EK

M [4]

C [4]

EK

M [1] + M [2] + M [3] + M [4]

Tag

+ + 3L + R

+ 1L + R 2L + R+ + 3L + R

1L + R

EK

 Nonce 4L + R

EK

+

+

5L + R

+

4L + R

OCB (full final block)

 R

EK

L

11...11

OR

00...01

+

EK

2L + R

EK EK EK

Tag

+ + 3L + R

+ 1L + R 2L + R+ + 3L + R

1L + R

EK

4L + R

EK

R

+

+

5L + R

+

4L + R + 6L + R

chop

pad

len

W

M [1] M [2] M [3] M [4]

C [1] C [2] C [3] C [4]

OCB (short final block)

M [1] + M [2] + M [3] + W

 Nonce

procedure Encrypt (K; Nonce; M)

L = EK(1
128
) _ 0

127
1 // Do during key-setup

R = EK(Nonce)

Let m = maxf1; djM j=128eg

Let M [1]; : : : ;M [m] be strings s.t. M [1] � � �M [m] =M and jM [i]j = 128 for 1 � i < m

O�set = L+R

for i = 1 to m� 1 do
C[i] = EK(M [i] + O�set) + O�set

O�set = O�set + L

if jM [m]j = 128 then Mask = EK(O�set) + O�set

C[m] =M [m]�Mask

O�set = O�set + L

PreTag =M [1]� � � � �M [m � 1]�M [m] + O�set

Tag = EK(PreTag)

else W = pad(M [m])

Mask = EK(O�set) + O�set

C[m] =M [m]� (last jM [m]j bits of Mask)

O�set = O�set + L

PreTag =M [1]� � � � �M [m � 1]�W + O�set

O�set = O�set + L

Tag = EK(PreTag) + O�set

return (Nonce; C[1] � � �C[m]; T [1::tagLen])

OCB Advantages

 (1) Fully parallelizable - important for HW and SW
 (2) Arbitrary domain - any bitstring can be encrypted
 (3) Short ciphertexts - | M | + | Nonce | + | T |
 (4) Fewer block-cipher calls - ceiling{ | M | / n } + 2
 (5) Nonces - counter is fine - needn't be unpredictable
 (6) Short key - OCB defined as using one AES key
 (7) Fast key setup - one AES invocation to make L
 (8) Addition version - three 128-bit adds per block
 one 128-bit xor per block
 (9) XOR version - four 128-bit xors per block,
 some shifting/xoring or table-lookups
 to make the offsets

OCB/xor
Gray codes and GF(2128)

Addition is less pleasant than you might think
 - Add-with-carry unavailable from C
 - Dependency among instructions slows things down

 L1: add ecx, edi L1: xor ecx, edi
 adc edx, ebp xor edx, ebp
 adc edx, ebp xor eax, ebp
 dec eax dec eax
 jne L1 jne L1

4.1 cycles
2.5 cycles

Offset(i+1) = Offset(i) xor L (ntz(i))
where L(0) = L and
 L (j) << 1 if lsb(L(j)) =0
 L (j +1) =

 L (j) << 1 xor CONST otherwise

+

M [1]

1L

C [1]

EK

M [2]

2L

C [2]

EK

M [3]

3L

C [3]

EK

Tag

EK

+ +

+

M [4]

Final (L)+

C [1] + C [2] + C [3]

PMAC (full final block)

EK

L

00...00

OR

00...01

+

M [1]

1L

C [1]

EK

M [2]

2L

C [2]

EK

M [3]

3L

C [3]

EK

C [1] + C [2] + C [3]

Tag

EK

pad

+ +

+

M [4]

PMAC (short final block)

PMAC Advantages

 (1) Fully parallelizable - important for HW and SW
 (2) Arbitrary domain - any bitstring can be MACed
 (3) Deterministic - uses no nonces or random values
 (4) Short MACs - up to 128 bits, but 64 bits is enough
 (5) Fewer block-cipher calls - ceiling{ | M | / n }
 (6) Short key - PMAC defined as using one AES key
 (7) Fast key setup - one AES invocation to make L
 (8) Addition version - two 128-bit adds per block
 one 128-bit xor per block
 (9) XOR version - three 128-bit xors per block,
 some shifting/xoring or table-lookups
 to make the offsets

