
Key Feedback Mode: a Keystream

Generator with Provable Security

Johan Håstad

Royal Inst. of Technology, Sweden

Institute for Advanced Study

Mats Näslund

Ericsson Research, Sweden

1

The setup

Given A good block cryptosystem

(AES).

Wanted A good pseudorandom

generator.

2

A good pseudorandom generator

PRG

Long "random-looking" sequence

Short random seed

10010110110101.....01

001010110101010110001011011101.......01

• Generates many random looking

bits from a short initial seed.

• Looks very similar to truly random

bits. Passes many statistical tests.

3

Which statistical tests?

Classically A list of good standard

tests.

Blum-Micali, Yao: All tests that can

be implemented efficiently.

4

Passing a statistical test

PR Probability the test rejects a truly

random string.

PG Probability the test rejects a string

which is the output of the

generator (on a random seed).

|PR − PG| ≥ ε ⇔ ε-distinguishes.

5

How good is AES?

1. Hard to crack given only the

cryptotext.

2. Hard to find the key given both

the plaintext and the cryptotext.

3. Looks like a random permutation

when the key is unknown.

6

The easy solution

Assume AESK(·) behaves like a

random permutation.

Counter-mode, i.e. outputting

AESK(ctr + i), i = 0,1,2 . . .

gives a good pseudorandom generator

which is very efficient and (almost by

definition) passes all statistical tests.

7

Our proposal

Assume that it is hard to find the key

given the plaintext and the ciphertext

(a diamond in the raw).

Cut and polish it to get a good

pseudorandom generator.

8

Traditional academic set-up

We have a function f which is

one-way, i.e. can be computed

efficiently but cannot be inverted

efficiently.

We construct a pseudorandom

generator Gf with provable properties.

9

A sequence of constructions

Blum-Micali

(82)

f discrete ex-

ponentiation.

Yao (82) f any one-way

permutation.

Goldreich-

Levin (88)

f any one-way

permutation,

more efficient

construction.

HILL (90) f any one-way

function.

10

The BMGL generator

Let f be a one-way permutation

mapping {0,1}n to {0,1}n.

Let x0 be random initial seed and r a

random string in {0,1}n.

xi = f(xi−1)

bi = 〈r, xi〉 =
∑n

j=1 rjx
i
j mod 2

Output of Gf is b1, b2, b3 . . .

Keep iterating f and outputting the

xor of the bits defined by the vector r.
11

Properties of the BMGL generator

• If f is a permutation that cannot

be inverted in polynomial time

then the output of Gf cannot be

distinguished from truly random

bits in polynomial time.

• If f is a one-way function which

remain one-way even when

iterated, then the same conclusion

is true. [Levin]

12

In our case

Our one-way function

fAES(x) = AES(x, P)

for any fixed plaintext message P .

Note, input is KEY, output is normal

output (i.e. the ciphertext).

Blocksize=keysize

13

Properties of our one-way function

Assumption: cannot be inverted much

faster than exhaustive search.

It is probably not a permutation,

although we do not know this for sure.

14

A tempting alternative

The encryption function

fAES(x) = AES(K, x).

It is a permutation (good).

It is as easy to invert as to compute

(bad).

We get no provable properties, no

source of contradiction.
15

Problems to discuss

Moving from “polynomial time” to

concrete security. Assume that close

to 2256 encryptions are required to

invert f . Need to optimize proofs and

chase constants.

Limit time of statistical tests to

something concrete (most natural

tests are faster than the generator).

Speed of generator is bad. Only

outputs one bit for a full

block-encryption.
16

Improving speed

We can output more bits for each

iteration.

• Output Rxj for an m × n matrix R.

Either random or Toeplitz

(constant on diagonals).

• Compute axj in GF [2n] and output

any m bits. A random a ∈ GF [2n].

17

The final BMGL-generator

P

?

K - AES

�

6

?

R - C

?

output key stream (RC)

Key Feedback Mode.

18

Type of assumption needed

It is hard to invert fAES, not only in

the ordinary sense but it remains hard

when iterated.

19

Type of conclusion wanted

No statistical test using time less than

230 evaluations of AES can guess

whether a string is truly random or

output of BMGL with probability

greater than 1
2 + 2−30 of being

correct.

20

Details of assumptions

Let f(i) be f iterated i times, i.e.

f(i)(x) =
i︷ ︸︸ ︷

f(f(..f(x)..)).

i-inverting: Given y = f(i)(x) for

random x, find z such that f(z) = y.

Theorem: A random f cannot be

i-inverted faster than ≈ 2n/i on n bit

strings.

21

ε strong function

A one-way function f is ε strong if it

cannot be i-inverted faster than ε2n/i

evaluations of f .

A random function is about 1-strong.

We expect fAES to be ε-strong for a

reasonably large ε.

22

A concrete theorem

Assume that fAES on 256-bit blocks

is 2−25-strong.

Output 40 bits for each iteration for a

total output of 230 bits.

Statistical test has running time is at

most 225 applications of AES.

Cannot guess whether a string is

random or output from the

BMGL-generator and be correct with

probability ≥ .500000001.
23

Another concrete theorem

Assume that fAES on 256-bit blocks

is 2−32-strong.

Output 4 bits for each iteration for a

total output of 230 bits.

Statistical test has running time is at

most 228 applications of AES.

Cannot guess whether a string is

random or output from the

BMGL-generator and be correct with

probability ≥ .500000000001.
24

One small problem

Seed size. Theorems as stated

requires a random matrix of size

m× n, (40× 256).

Accepting a speed decrease by a

factor 2, can reduce seed size from

256m to 256 bits maintaining security.

25

Summary

• Key feed back mode. Keep the

same fixed plaintext. Feed output

as key for next round.

• Output a simple function of the

ciphertext at each iteration.

• Behaves provably as random bits

unless the function becomes easy

on its iterates.

26

