#### **New Modes of Encryption - A Perspective and a Proposal**

Virgil D. Gligor\*

**Pompiliu Donescu** 

1

VDG Inc 6009 Brookside Drive Chevy Chase, Maryland 20815

{gligor, pompiliu}@eng.umd.edu

NIST Modes of Operation Workshop Baltimore, Maryland October 20, 2000

(\*) Part of this work was performed while on sabbatical leave from the University of Maryland, Department of Electrical and Computer Engineering, College Park, Maryland 20742

GD - 10/20/00

# Outline

- 1. Security Claims
- 2. Operational Claims
- 3. Evidence
- 4. Examples: XCBC, XECB-MAC and PM-XOR
- 5. Proposal: Three\* Distinct Mode Candidates
- 6. Intellectual Property Status

# **1. Security Claims for Modes of Encryption**

1. *Claim* = a security notion supported by

a mode or scheme of encryption

- 2. Security *Notion* = < security goal, attack characteristics>
- 3. Security Goal: confidentiality, integrity (authenticity), common
  - Examples:
    - confidentiality: indistinguishability (IND)
    - integrity: resistance to existential forgery (EF)
    - common: resistance to key searches (KS)
    - combinations
- 4. Attack Characteristics (models)
  - Examples:
    - Chosen (Known) Plaintext
    - Ciphertext-only
    - Chosen ciphertext
    - combinations

#### **Example of a Chosen-Plaintext Attack**

Distributed Service: S (S1, S2), shared key K; Clients: Client 1. ... Adv, ..., Client n Adversary: Adv



In attack scenario: S1 becomes an Encryption Oracle S2 becomes a Decryption Oracle

### **Example of Ciphertext-only Attack**

Distributed Service: S (S1, S2), shared key K; Clients: Client 1,..., Client n Adversary: Adv is not a client



In attack scenario: No Encryption Oracle: plaintext i is r.u.d (Adv known absolutely nothing about plaintext i) S2 becomes a Decryption Oracle

GD - 10/20/00

#### **Example of Integrity Goals**

*Existential Forgery* protection (EF) :  $Pr[D_{K}(forgery) = /= Null]$  is negligible

Other Integrity Notions: constraints on  $D_{\rm K}$ (forgery) =/= Null

#### **Examples:**

Non-malleability (NM) :

given ciphertext challenge y whose plaintext x may be unknown, find forgery of the same length as y : Pr [ $D_K$ (forgery) =/= Null and Relationship( $D_K$ (forgery), x) ] is negligible

#### Integrity of Plaintexts (PI) :

**Pr**  $[D_{K}(\text{forgery}) = /= \text{Null and } D_{K}(\text{forgery}) = /= \text{plaintexts encrypted before }]$  is negligible

#### Assurance of *Plaintext Uncertainty* (PU) :

**Pr**  $[D_{K}(\text{forgery}) = |= \text{Null} = D_{K}(\text{forgery}) = |= \text{plaintexts encrypted before and is unknown}]$  is close to 1

#### **Protection against** *Chosen-Plaintext Forgery* (CPF) : given a chosen plaintext challenge x, **Pr** $[D_{K}(\text{forgery}) = /= \text{Null and } D_{K}(\text{forgery}) = x = /= \text{plaintexts encrypted before }]$ is negligible

Note:some constraints may be integrity counter-intuitive; e.g.,<br/>assurance of Known-Plaintext Forgery (KPF)<br/> $\Pr [D_K(forgery) = /= Null => D_K(forgery) is known ] is close to 1.$ 

#### **Relationships among Integrity Notions**



Legend:  $A \longrightarrow B$  iff  $A \implies B$  and  $B \implies A$  (`dominance'') $A \implies B$  iff mode is secure in A is also secure in BGD = 10/20/00 $B \implies A$  iff mode is secure in B is not secure in A

### **Examples of Modes Satisfying Different Integrity Notions**

Encryption Mode - "redundancy" function or Encryption Mode + MAC Mode



Note: italics designate modes presented in NIST Workshop on AES Modes of Encryption GD - 10/20/00

# **2. Operational Claims for Modes of Encryption**

- 1. *Claim* = a operational notion supported by a mode or scheme of encryption
- 2. Operational *Notion* = < operational goals, mode characteristics >
- 3. Operational *Goal*: cost-performance, simplicity, others
  - Examples of (related) goals:
    - cost-performance:
      - low power consumption
      - high speed (e.g., throughput)
      - low implementation cost (e.g., hardware ``real-estate'')
    - simplicity
      - single cryptographic primitive, key

### 4. Mode Characteristics

- Examples:
  - State: stateless, stateful
  - Degree of parallelism
    - sequential
    - interleaved (apriori known or negotiated no. of proc. units)
    - fully parallel (independent of no. of processing units)
  - Separated Confidentiality and Integrity keys
  - Other: incremental, out-of-order processing

#### **Examples of Operational Claims**

#### Low- and High-End Goals

- cost-performance:
  - low power consumption
  - speed: moderate (e.g., < 100 MBS)
  - low implementation cost
- simplicity
  - single cryptographic primitive (AES), key

> 100 GBS hardware

single crypto prim.

#### Low- and High-End Mode Characteristics

- State: stateful
- Degree of parallelism
  - sequential (single processor)
- Separated Confidentiality and Integrity keys: No
- Others: incremental, out-of-order processing: No

stateful, stateless

fully parallel for Conf. & Integrity Yes Yes for both Conf. & Integrity

### **3. Evidence for Claims**

#### 1. Mode specification

#### 2. Security Claim

- goal - attack pair(s)

#### 3. "Proof "

- formal: Mode spec. satisfies Security Claim
  - standing assumption: AES is secure w.r.t. all known attacks
- peer review
- other empirical evidence: known attacks

#### 4. Operational Claim

- goal - mode characteristics pair(s)

#### **5.** Operational evidence

- implementation + performance tests
- other empirical evidence

## **XCBC Encryption**

Fact: Encryption is not intended to provide integrity

### Motivation

- Encryption w/o integrity checking is all but useless [Bellovin 98]
- Define family of encryption modes to help provide integrity with non-cryptographic "redundancy" functions
- Security claims: IND-CPA confidentiality and EF-CPA integrity, reasonable bounds
- Operational claims: preferred for Low- to Mid-End op. environment
- Knowledge of operational environments:
  - apriori obtained
  - discovered via negotiation

#### **Operational Claims** Preferred environments : low- to mid-end

#### Goals

#### - cost performance

- •low power consumption
- speed: moderate to high (e.g., close to CBC-UMAC-MMX30)
- low implementation cost

#### - simplicity

• single cryptographic primitive (AES), key

#### **Mode Characteristics**

- State: stateful, stateless
- Degree of parallelism: sequential (single processor), interleaved (known no. procs.)
- Separated Confidentiality and Integrity keys: No
- Others: incremental, out-of-order processing: Yes (if interleaved)

# **Stateless XCBC Scheme - Encryption of** $x = x_1x_2x_3$

(single key is also possible)



Examples of  $S_i$  and *op* combinations (+ is mod  $2^1$ ;  $\bigoplus$  is bitwise exclusive-or) op = +  $S_i = S_{i-1} + r_0$ ,  $S_0 = 0$  (written as  $S_i = i \ge r_0$ )

Other *S<sub>i</sub>* and *op* definitions exist (e.g., C.S. Jutla's and P. Rogaway's proposals) GD - 10/20/00

# **Stateless XCBC-XOR Scheme - Encryption of** $x = x_1x_2x_3$

unpredictable function of message x



Example:  $g(x) = x_1 \oplus x2 \oplus x3 \oplus z'_0$ ;  $z'_0 = z_0$ 

GD - 10/20/00

Other examples of g(x) exist

### Selection Criteria for $S_i$ , op, g(x)?

Satisfy Security Claims:

Proof for integrity goal: EF-CPA (must be able to do the proofs for selected S<sub>i</sub>, op, g(x)):
integrity: [GD 00]

Satisfy Operational Claims: - Goals: low- to mid-end environments

#### **Performance Example (by Jason S. Papadopoulos)**

PC: 366 MHz Intel Celeron; OS: Red Hat Linux 5.2; Compiler: egcs; optimization: -o3-mcpu = I686 - fomit - frame - pointer Block Enc/Dec : openSSL DES

in-cache timing : 64B, 256B, 512B, 1KB, 2KB, 4KB, 8KB, 16KB, 64KB, 256 KB

- aligned data on 8 byte boundary

CBC-UMAC-MMX30 42.86 - 46.48 clocks / byte; and for 8B - 77.23 clocks/byte XCBC-XOR 43.38 - 44.62 clocks / byte; and for 8B - 49.57 clocks/byte - unaligned data (8 byte boundary +1) CBC-UMAC-MMX30 44.13 - 47.35 clocks / byte; and for 8B - 80.85 clocks/byte

XCBC-XOR 44.38 - 45.00 clocks / byte; and for 8B - 49.58 clocks/byte

# **XECB - MAC**

### Motivation

- Stand-alone, fully parallel family of MACs, like the XOR-MAC

- with better throughput
- reasonable security bounds for EF- CPA

- XORC (and ctr-mode) needs a MAC with similar mode characteristics using the same cryptographic primitive

[ XORC, and ctr-mode, does *not* allow non-cryptographic "redundancy" function g(x) ]

### **Preferred Operational Environment: High-End**

XORC (ctr-mode) + XECB (or any other similar MAC) requires two keys
 => two separate passes in *single processor*, *sequential* implementations
 => approx. twice the power consumption and half speed of XCBC-XOR

**Stateful XECB - MAC: Example**  $x = x_1x_2x_3$ 



Examples of  $S_i$  and *op* combinations (+ is mod 2<sup>1</sup>;  $\bigoplus$  bitwise exclusive-or) op = +  $S_i = S_{i-1} + r_0$ ,  $S_0 = 0$  (written as  $S_i = i \ge r_0$ ) op =  $\bigoplus$   $S_i = S_{i-1} \ge a$ ,  $S_0 = r_0$  (written as  $S_i = a^i \ge r_0$ ; *a* is a *lcs* constant) GD - 10/20/00 Other  $S_i$  and *op* definitions exist (e.g., P. Rogaway's PMAC)

# Parallel Mode

# Motivation

- Fully Parallel Mode like C.S. Jutla's IAPM using a different S<sub>i</sub> (S<sub>i</sub> elements are *not* pairwise independent)

- Define family of parallel encryption modes to help provide integrity with non-cryptographic "redundancy" functions

- Security Claims (w/o proof) : IND-CPA confidentiality and EF-CPA integrity, reasonable bounds

# **Preferred Operational Environment: Mid- to High-End**

- Single key for both Confidentiality and Integrity

# Stateless Parallel Mode - Encryption of $x = x_1x_2x_3$



unpredictable function of message x



Example:  $g(x) = x_1 \oplus x_2 \oplus x_3 \oplus z_0$ ;  $y_i = Enc_K(x_i + S'_i) + S_i$ ;  $S'_i = i \times z_1$ ,  $S_i = i \times r_0$ ; also use DESX if necessary GD - 10/20/00 Other examples of S'<sub>i</sub>,  $S_i$ , g(x) exist (e.g., C.S. Jutla's and P. Rogaway's proposals) **Proposal: Three\* Distinct Modes of Operation** and Candidates (as of 10-18-2000)

#### • based on *preferred* environments of operation

**1.** Low- to Mid-End (very simple extensions of the venerable CBC)

- XCBC-XOR

- (possibly) interleaved mode
- IACBC
- XIGE-z<sub>0</sub> / XABC -z<sub>0</sub> (XCBC-like extensions of IGE / ABC)

2. *Mid- to High-End (single confidentiality and integrity key)* 

- IAPM
- PM-XOR
- OCB

3. High-End (separate or independent key for confidentiality and integrity modes)

- ctr-mode for encryption
- XECB-MAC, PMAC for integrity
- (\*) ctr-mode + XECB-MAC, ctr-mode + PMAC for both

GD - 10/20/00

(\*) the third mode of operation requires two separate AES modes

### **Intellectual Property Status**

**3** patent applications filed

Patent Application 1: on 1/31/2000

Patent Application 2: on 3/31/2000

Patent Application 3: on 8/24/2000