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Abstract

Distinct notions of message integrity (authenticity) for block-oriented symmetric encryption are de-
�ned by integrity goals to be achieved in the face of di�erent types of attacks. These notions are partially
ordered by a \dominance" relation. When chosen-plaintext attacks are considered, most integrity goals
form a lattice. The lattice is extended when known-plaintext and ciphertext-only attacks are also in-
cluded. The practical use of the dominance relation and lattice in de�ning the relative strength of
di�erent integrity notions is illustrated with common modes of encryption, such as the \in�nite gar-
ble extension" modes, and simple, non-cryptographic, manipulation detection code functions, such as
bitwise exclusive-or and constant functions.

1 Introduction

The fact that encryption does not provide message integrity (authenticity) is generally well-understood
[19], and so is the fact that often \encryption without integrity-checking is all but useless" [8]. Less well-
understood is the fact that message integrity depends intimately on the protection goals of the application
environment and the operational threats posed by that environment. Ignoring this fact may lead to
performance and usability mismatches. For example, many embedded, low-power, systems and applications
can hardly a�ord to use any of the traditional hash functions or message authentication codes proposed
to date to maintain the integrity of encrypted messages, particularly in environments exposed only to
limited-scope attacks (e.g., ciphertext-only attacks).

We explore di�erent notions of message integrity for block-oriented symmetric encryption and their relation-
ships. These notions are expressed as a combination of integrity goals to be achieved in the face of di�erent
types of attacks, as originally suggested by Naor (viz., attribution [4]). The set of all integrity goals include
both goals known to date, such as protection against existential forgery and assurance of plaintext integrity
and of non-malleability, and new ones, such as maintenance of plaintext uncertainty, and protection against
known- and chosen-plaintext forgery. Attack models include chosen-plaintext, known-plaintext, ciphertext-
only, and chosen-ciphertext attacks. The integrity notions de�ned are partially ordered by a \dominance"

�This work was performed in part while this author was on sabbatical leave from the University of Maryland, Department
of Electrical and Computer Engineering, College Park, Maryland 20742.
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relation. When chosen-plaintext attacks (CPAs) are considered, most integrity goals form a lattice. This
lattice is extended by the inclusion of ciphertext-only attacks (CoAs). Although we do not explicitly show
it, the lattice can also be extended by the inclusion of known-plaintext attacks (KPAs). The resulting
lattice shows that the strongest notion of integrity is provided by existential forgeries in CPAs and the
weakest by chosen-plaintext forgeries in CoAs.

De�ning notions of integrity in terms of a \dominance" relation enables us to characterize the relative
strength of various symmetric encryption modes precisely. The utility of such characterization extends
beyond theory; e.g., it enables us to explore the space of encryption schemes (modes) that can be composed
with a variety of Manipulation Detection Code (MDC) functions (e.g., non-cryptographic MDCs such
as bitwise exclusive-or, cyclic redundancy code, and even constant, functions), and used in a variety of
application environments exposed to well-de�ned threats. As an example of schemes whose relative strength
can be precisely evaluated, we analyze Campbell's \in�nite garble extension" (IGE) mode of encryption
[9].

The balance of this paper is organized as follows. Section 2 contains some preliminary de�nitions and
notation, Section 3 contains the de�nition of the integrity notions addressed in this paper. Section 4
contains the relations among integrity notions (i.e., dominance, incomparability, separation) based on the
de�nition of goals and attacks, and the integrity lattice and its extensions. Section 5 contains the lemmas
that help characterize the integrity properties of IGE modes when used with very simple manipulation
detection code (MDC) functions, and examples of other modes that are vulnerable with respect to di�erent
integrity notions when composed with speci�c MDC functions.

2 Background

In de�ning the relationships between di�erent notion of integrity for symmetric encryption, we will use
encryption modes by the triple � = (E;D;KG), where E is the message encryption function, D is the
message decryption function, and KG is the probabilistic key-generation algorithm. These encryption
modes are implemented with block ciphers, which can be modeled with �nite families of pseudorandom
functions (PRFs). A detailed account for the use of such functions in symmetric encryption modes intended
to satisfy secrecy goals is provided by Bellare et al. [2]. Since most practical encryption schemes use both
the encryption and decryption functions of block ciphers, a natural way to model such ciphers is with
�nite families of super-pseudorandom permutations (SPRPs) [18]. We denote both PRFs and SPRPs by
F below and distinguish which we mean in context.

Perhaps the most common method used to detect modi�cations of encrypted messages applies a MDC
function g to a plaintext message and concatenates the result with the plaintext before encryption with
E. The choice of MDC function g is entirely that of the designer; e.g., g could be a non-keyed hash, cyclic
redundancy code (CRC), bitwise exclusive-or, or even a constant, function [19]. A message thus encrypted
can be decrypted and accepted as valid only after the integrity check passes; i.e., after decryption with
D, the concatenated value of function g is removed from the plaintext, and the check passes only if this
value matches that obtained by applying the MDC function to the remaining plaintext [22, 21, 19]. If
the integrity check does not pass, a special failure indicator, denoted by Null herein, is returned.1 The
encryption scheme obtained by using this method is denoted by � o g = (E o g;D o g;KG), where � is said
to be composed with the MDC function g. In this mode, we denote the use of the key K in the encryption

1This method has been used in commercial systems such as Kerberos V5 [22, 23] and DCE [21, 23], among many others.
Note that other methods for protecting the integrity of encrypted messages exist; e.g., encrypting the message with a secret
key and then taking the keyed MAC of the ciphertext with a separate key [19, 7].
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of a plaintext string x by (EFK o g)(x), and in the decryption of ciphertext string y by (DFK o g)(y). The
passing of the integrity check at decryption is denoted by (DFK o g)(y) 6= Null.

For any key K, a forgery is any ciphertext message that is not the output of EFKo g. A \valid" forgery
is a forgery that passes the integrity check. Forgeries can be created in many ways, for example (1) by
modifying the ciphertexts of legitimate messages whose plaintext may be known by the forgerer, (2) by
including arbitrary, never-seen-before, strings into existing ciphertexts, or (3) by combinations of the two.
Ciphertexts of legitimate message encryptions can be obtained as a result of di�erent attack scenarios,
such as chosen-plaintext attacks (CPA) or ciphertext-only attacks (CoA).

All attacks considered in this paper are characterized by qe message encryptions by (EFKo g), whose
plaintext input may / may not be chosen by, or known, to an adversary, and qv forgery veri�cations; i.e.,
decryptions by (DFKo g) performed by an adversary. The encryptions and decryption total �e + �v bits,
and take time te+ tv. Note that parameters qe; �e; te can be bound by the parameters de�ning the chosen-
plaintext security of � = (E,D,KG) mode in some well-de�ned sense. (One, but not the only, way to de�ne
these bounds is to use the notion of security in the left-or-right sense for adaptive chosen-plaintext attacks
[2]). In contrast, parameters qe; �e; te; qv; �v ; tv are bound by the parameters of the function family F and
by the desired probability of adversary's success. Note that qv > 0 since the adversary must be allowed
veri�cation queries. Otherwise, the adversary cannot test whether his forgeries are correct, since he does
not know key K. For the purposes of this paper, it is su�cient that qv = 1; for other purposes, such as
determining the attack complexity and general bounds, qv may take on other values.

3 Message Integrity Notions

3.1 Goals

We de�ne new integrity goals and interpret extant ones, in the context of � o g modes of encryption.
However, it should be clear that the same goals can be de�ned in the context of other modes that aim at
protecting the integrity (authenticity) of encrypted message, such as those that compute the keyed MAC
of a message using a secret key and encrypting the message with a separate secret key [19, 7].

The strongest known goal for message integrity is that of protection against existential forgery (EF). This
goal has also been known as existential unforgeability [15] and integrity of ciphertext [7]. To defeat this
goal, an adversary only needs to �nd a \valid" forgery. Knowledge or choice of the plaintext outcome of
the forgery is unnecessary to achieve this goal. Formally, an encryption scheme or mode � o g is secure
against existential-forgeries if, for any forgery y,

Pr[(DFKo g)(y) 6= Null] � �;

where � is a negligible quantity. Throughout this paper, negligibility is used in the traditional sense [2, 20].
In addition to protection against EF goal, two other goals have been de�ned that have direct applicability
to message integrity, namely maintenance of plaintext integrity (PI) [7] and assurance non-malleability
(NM) [10, 4, 15, 7].

The goal of plaintext integrity (PI) requires it be infeasible for an adversary to create a \valid" forgery
whose decryption is a plaintext not seen before. Formally, an encryption scheme or mode � o g is secure
in the sense of PI if:

Pr[(DFKo g)(y) 6= Null and (DFKo g)(y) = x 6= xi;8i; 1 � i � qe] � �;
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where xi; 1 � i � qe, are plaintext strings used in encryption and � is a negligible quantity.

The goal of non-malleability (NM) formalizes the adversary's inability to create \valid" forgeries that are
\meaningfully related" to the unknown plaintext strings corresponding to challenge ciphertext messages.
Our interpretation of non-malleability is as follows. Let q2 be the number of challenge ciphertexts of equal
length intercepted by an adversary (i.e., the q2 plaintexts of the intercepted ciphertexts remain unknown to
the adversary). Formally, we say that an encryption scheme � o g is non-malleable (NM) if, for any message
length m and challenge ciphertexts y1; � � � ; yq2 of unknown plaintext messages x1; � � � ; xq2 2 f0; 1gm, and
for any forgery y 6= yi; 1 � i � q2 and any relationship R,

Pr[(DFKo g)(y) 6= Null and R(x1; � � � ; xq2 ; (DFKo g)(y))] � �;

where � is a negligible quantity.

We de�ne two additional integrity goals for valid forgeries, namely protection against chosen-plaintext
forgery (CPF), and assurance of plaintext-uncertainty (PU). The rationale for these goals can be summa-
rized as follows. Since di�erent plaintext outcomes of a valid forgery can restrict an adversary's ability to
take advantage of forgery to di�erent degrees, it is sensible to examine a variety of constraints placed on
these outcomes [12]. Such constraints, which were used to de�ne the NM and PI goals above, can lead to
new integrity goals and notions, further re�ning the integrity design space.

The goal of chosen-plaintext forgery (CPF) formalizes the adversary's inability to create a \valid" forgery
whose plaintext outcome is an a priori \chosen" challenge for the adversary. In our model, the challenge
plaintext string is considered to be \chosen," if every block of the string has a speci�c value determined
prior to the attack. Hence, a plaintext string x is not chosen if there is at least a block xi such that given a
speci�c constant a, Pr[xi = a] � �, where � is a negligible quantity. Formally, an encryption scheme � o g
is secure against chosen-plaintext forgeries if, for an a priori chosen challenge x and any forgery y,

Pr[(DFKo g)(y) 6= Null and (DFKo g)(y) = x 6= xi;8i; 1 � i � qe; is chosen ] � �;

where xi; 1 � i � qe, are plaintext strings used in encryption and � is a negligible quantity.

The goal of plaintext uncertainty (PU) formalizes the adversary's inability to create a "valid" forgery for
which the adversary "knows" the underlying plaintext. In our model, a plaintext string x is unknown if
there is at least a block xi such that for any chosen constant a, Pr[xi = a] � �, where � is a negligible
quantity. A plaintext string x is \known" if every block of the string is known. Formally,

Pr[(DFKo g)(y) 6= Null ) (DFKo g)(y) = x 6= xi;8i; 1 � i � qe; is unknown ] � �;

where xi; 1 � i � qe, are plaintext strings used in encryption and 1� � is a negligible quantity.

However, if one takes the view that any constraint placed on valid forgeries can be a legitimate integrity goal
then, among the additional distinct goals made possible, some may be counterintuitive from an integrity
point of view. For example, the goal of known-plaintext forgery (KPF) formalizes the adversary's inability
to create a \valid" forgery without \knowing" the underlying plaintext.2 Formally, an encryption scheme
� o g is secure against know-plaintext forgeries if, for any forgery y,

Pr[(DFKo g)(y) 6= Null ) (DFKo g)(y) = x is known ] � �;

where 1�� is a negligible quantity. Security notions using this goal can be related to other integrity notions
(e.g., PI-CPA \dominates" KPF-CPA and KPF-CPA is incomparable or separated from other notions, as

2This goal is somewhat similar to the goal of \plaintext awareness" [1, 4], except that it is independent of the random-oracle
model.
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shown in Section 4.4 below). Yet, this goal seems to lack an intuitive justi�cation for possible integrity
relevance.

Note that if other constraints of \known/unknown" and \chosen/not chosen" plaintext outcomes for valid
forgeries that di�er from the ones above are de�ned, other integrity goals may be obtained. Regard-
less of the de�nition chosen, the implication (x = is chosen ) ) (x = is known ), and equivalently,
(x = is unknown )) (x = is not chosen), must hold.

3.2 Goal { Attack Combinations

The �rst attack model considered here is the chosen-plaintext attack (CPA). In a CPA, an adversary can
obtain samples of valid encryptions for plaintext messages of his choice even though the secret encryption
key remains unknown to the adversary. In this paper, we assume that the adversary obtains the ciphertext
for all his chosen plaintext before submitting any of his forgeries for veri�cation (decryption).3. This does
not represent a restriction of the adversary's power, since it can be shown that the advantage of such an
adversary in breaking the integrity of a scheme is at least as high as that of an adversary that is allowed to
intersperse encryptions of chosen plaintext with forgery veri�cations [13, 15]. Although CPAs might appear
to be mostly of theoretical interest, they are actually quite practical [23, 24]. In fact, these are some of
the oldest known attacks in modern cryptography (viz., the \gardening" attacks of British cryptographers
during WWII [14]).

In addition to CPA models, we consider ciphertext-only attack (CoA) models; i.e., attacks in which the
adversary knows the ciphertext corresponding to plaintext strings encrypted with an unknown key, but
does not know the plaintexts strings; i.e., the plaintext strings are random, uniformly distributed and
independent of each other. (More general de�nition for CoA whereby the distribution of the plaintext
strings is known is also possible.) In this type of attacks, the adversary can make up his forgeries based
on ciphertext of valid but unknown plaintext. These attacks can be mounted very easily in practice since
they imply that the adversary only needs to eavesdrop on communication between legitimate parties to
obtain the desired ciphertext, which is intuitively easier than obtaining encryptions of chosen plaintext. A
stronger attack than CoA but weaker than CPA is the known-plaintext attack (KPA). In this attack model,
the adversary is assumed to \know" the entire message plaintext not just its corresponding ciphertext, but
cannot choose the plaintext.

Other types of attack models may be used for speci�c problems that include both secrecy and integrity
goals; e.g., chosen-ciphertext attacks (CCAs), which often appear in entity authentication and key ex-
change protocols. Bellare et al. [4] use these attack models in establishing relationships among di�erent
security notions in asymmetric encryption, and suggest that these relationships among their goal-attack
combinations also hold for the symmetric case. Katz and Yung [15] illustrate conditions under which such
relationships hold in symmetric encryption. In this paper, we do not address these types of goal-attack
combinations. However, we suggest that most goals that are combined with CCAs can be represented
within the integrity lattice de�ned in this paper. From an integrity point of view, such attacks are not
stronger than CPAs.

For most goals and attacks, the combination an integrity goal with an attack is straight forward. However,
some combinations require care to ensure that speci�c goals and attacks can be paired. For instance, a
question may arise as to whether a goal is or is not satis�ed at the end of an attack. More speci�cally,

3In this attack, the adversary can be given an oracle that performs all the qe encryption queries before all the qv forgery
veri�cation queries. Alternatively, the adversary can be given an encryption-only oracle whose use preceds that of a forgery-
veri�cation oracle, the order of use being enforced by a state variable
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how can an adversary determine whether he actually \knows" the plaintext outcome of his valid forgery
? In practice, it is sometimes the case that the plaintext outcome is not, or cannot be, returned to the
adversary. In such cases, we need to add a \plaintext-outcome extractor" to the de�nition of the goal-
attack combination that plays much the same role as the \plaintext extractor" in the plaintext-awareness
de�nition. Practical examples of plaintext-outcome extractors are available for speci�c integrity goals
de�ned for � o g schemes and attacks. For instance, the plaintext outcome extractors for the KPF goal
de�ned for the example schemes of Section 5.3 and CPAs, can be easily derived using the equations of
\message splicing and decomposition" invariant of CBC [23] and PCBC modes and simple properties of
bitwise exclusive-or functions.

Care must also be exercised in de�ning goal-attack combinations whenever a speci�c goal already includes
elements of an attack. For instance, in the NM-CPA combination, the de�nition of the NM goal already
includes some elements of a CoA model; i.e., the ciphertext challenges. For the NM-CPA combination,
we allow the adversary to encrypt q1 plaintext strings whose ciphertext have the same length as that of
the challenge ciphertexts. The adversary can issue its encryption queries at any time; e.g., even after he
has seen the challenge ciphertext strings. Furthermore, we require that q2 > 0; q1 + q2 = qe, where qe is
the total number of queries that can be encrypted by EFKo g, and that forgery y di�ers from any of the
ciphertexts obtained as a result of the q1 chosen-plaintext encryptions. For the NM-CoA combination, we
simply set q1 = 0, thereby removing the adversary's ability to encrypt with EFKo g; i.e., encrypt with the
same key as that used to generate the q2 challenge ciphertexts.

Note that combinations of CPA attacks with challenge ciphertexts, as suggested by the NM-CPA attack
combination, are fairly common in distributed applications [23]. For example, consider a distributed service
that uses a shared key for encrypting messages between two of its components services, S1 and S2. The
adversary is one of the legitimate clients of the distributed service, and can obtain q1 ciphertext messages
corresponding to its own chosen plaintext submitted to S1 by eavesdropping on the communication line
between S1 and S2. Similarly, the adversary can obtain the q2 (challenge) ciphertexts produced by the
encryption of other clients' plaintexts that remains unknown to the adversary. The distributed service
changes the shared key after qe encryptions performed on behalf of its client, totaling �e bits, and taking
te time.

4 Relationships Among Integrity Notions

The dominance relation between integrity notions A and B, denoted by A > B, is de�ned as follows:
A > B if A ) B and B 6) A, where A ) B means that a scheme (mode) that is secure for notion
A is also secure for notion B; and B 6) A means that not all schemes that are secure for notion B are
secure in notion A (i.e., notions B and A are separable). Integrity notions A and B are incomparable if
A 6) B and B 6) A, and equivalent if A ) B and B ) A. These relations have also been used by
Katz and Yung [15] for di�erent security notions in symmetric encryption (i.e., indistinguishability and
non-malleability in di�erent types of attacks). The relations of implication ()) and separability ( 6)) were
originally introduced by Bellare et al. for security notions in asymmetric encryption, and used later for
some integrity notions in symmetric encryption [4, 7].

In proving the dominance, incomparability, and separation relations between di�erent notions of integrity,
we use (1) integrity goal de�nitions, for the (simple) A ) B proofs, and (2) speci�c � o g modes, to
provide the necessary counter-examples for B 6) A proofs.
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Figure 1: An arrow represents a \dominance" relation (>), and there is a path from A to B if and only if
A > B. Lack of an arrow and path between two notions indicates incomparable or separated notions. The
number on an arrow represents the theorem number that establishes this relationship.

4.1 Dominance

Theorem 1: EF-ATK > PI-ATK

Proof

(1) EF-ATK ) PI-ATK.
An encryption scheme (mode) that is secure against existential forgeries (EFs) in an attack (i.e., CPA or
CoA) is also secure against integrity of plaintexts (PI) forgeries in the same attack.

Part (1) of the proof follows immediately from the de�nition of EF and PI goals, as shown by Bellare and
Namprempre [7].

(2) PI-ATK 6) EF-ATK.
An encryption scheme (mode) that is PI secure in an attack (i.e., CPA or CoA) is not necessarily secure
against EF forgeries in the same attack.

Part (2) of the proof is based on a counter-example. Let scheme � o g be an arbitrary EF-ATK secure
scheme. (Note that such schemes exist [16, 17, 13].) We show that any such scheme can be transformed
into a scheme that is PI-ATK secure but not EF-ATK secure. Let us de�ne the modi�ed scheme as
�0 o g = (E0 o g;D0 o g;KG) that is obtained as follows:

(E0 o g)(x) = ((E o g)(x))jjy0

(D0 o g)(yjjy0) = (D o g)(y);

i.e., the encryption is done by appending a random block y0 to y = (E o g)(x) (y0 is unrelated to the
plaintext or the rest of the scheme.) The plaintext is obtained by applying the D o g function to the
ciphertext remaining after the removal of the random block y0.

It is clear that the scheme is not EF secure, because once the adversary obtains a ciphertext (E o g)(x)jjy0,
he generates a forgery in which he replaces the random block y0 by a di�erent block; i.e., y

0 = (E o g)(x)jjy00; y
0
0 6=

y0. This forgery obviously decrypts correctly. Hence, the scheme is not EF secure.

Now, to show that the scheme (E0 o g;D0 o g;KG) is PI secure, we use the fact the class of all possible
forgeries can be divided into two complementary classes as follows:
(a) forgeries of type yjjy0, where y = yi = (E o g)(xi) (for some index i; 1 � i � qe) is the E o g encrypted
part of xi; 1 � i � qe. These forgeries have the property that y0 6= yi0, hence the forgery is not the
ciphertext of a previous query.
(b) forgeries of type yjjy0, where y 6= yi = (E o g)(xi);8i; 1 � i � qe.
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Any forgery in class (a) decrypts correctly as follows:

(D0 o g)(yjjy0) = (D0 o g)(yijjy0) = (D o g)(yi) = xi:

Hence, for any forgery from class (a):

Pr[(D0 o g)(yjjy0) 6= Null and (D0 o g)(y) 6= xi;8i; 1 � i � qe] = 0:

For any forgery from class (b), we will use the fact that the scheme (E o g;D o g;KG) is EF secure. Since
y 6= yi;8i; 1 � i � qe, then y is a valid forgery for the EF secure scheme (E o g;D o g;KG). Hence,

Pr[(D0 o g)(yjjy0) 6= Null and (D0 o g)(yjjy0) 6= xi;8i; 1 � i � qe] �

Pr[(D0 o g)(yjjy0) 6= Null] = Pr[(D o g)(y) 6= Null] � �;

where � is negligible. Hence, for any forgery (either from class (a) or class (b)),

Pr[(D0 o g)(yjjy0) 6= Null and (D0 o g)(yjjy0) 6= xi;8i; 1 � i � qe] � �;

where � is negligible; i.e., the scheme (E0 o g;D0 o g;KG) is PI secure. ut

Theorem 2: EF-CPA > PU-CPA

Proof

(1) EF-CPA ) PU-CPA
An encryption scheme (mode) that is secure against existential forgeries (EFs) in a CPA is also secure
against PU forgeries in the same attack.

Part (1) of the proof follows immediately from goal de�nitions.

Pr[(DFKo g)(y) 6= Null ) (DFKo g)(y) = x 6= xi;8i; 1 � i � qe; is unknown ]

= 1� Pr[(DFKo g)(y) 6= Null and (DFKo g)(y) = x = xi; for some i; 1 � i � qe; is known ]

� 1� Pr[(DFKo g)(y) 6= Null]:

However, if a scheme is EF secure, then for any forgery y, Pr[(DFKo g)(y) 6= Null] � �, where � is
negligible. Thus,

Pr[(DFKo g)(y) 6= Null ) (DFKo g)(y) = x 6= xi;8i; 1 � i � qe; is unknown ] � 1� �
def
= �;

i.e., the scheme is PU-CPA secure.

(2) PU-CPA 6) EF-CPA
An encryption scheme (mode) that is secure against plaintext-uncertain (PU) forgeries in an CPA attack
is not necessarily secure against EF forgeries in the same attack.

In Part (2) of the proof, we show that there is a scheme that is PU-CPA secure, but is not EF-CPA secure.
Let (E o g;D o g;KG) be an EF-CPA secure scheme. We show that the derived scheme (E0 o g;D0 o g;KG),

where (E0 o g)(x) = (EFKo g)(w � x)jjr; w = f(r); r
R
 f0; 1gl, w � x

def
= w � x1jjw � x2 � � � jjw � xn, and

f = FK is a PRF, is PU-CPA, but it is not EF-CPA.

The derived scheme is clearly not EF-CPA secure. For instance, let the adversary issue an encryption
query with plaintext x and obtain the corresponding ciphertext string y = (E o g)(w � x)jjr. Then the
adversary can construct the forgery y0 6= y, where y0 = (E o g)(w � x)jjz where z 6= r. This forgery
passes the integrity check, and (DFKo g)(y0) 6= Null. To see this, let w0 = f(z) 6= w. Then DFK (y0) =
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w� xjjg(w� x) and, hence, veri�es the integrity condition. Furthermore, the plaintext outcome of forgery
y0 is (D0 o g)(y0) = x0 = w � w0 � x. Hence, the scheme is not EF-CPA secure.

We show that the derived scheme is PU-CPA secure. To see this, let y0 be the adversary's forgery after qe
encryption queries with chosen plaintext input. Write y0 = ~yjjz, for some z. Two complementary cases are
identi�ed for the values of the forgery pre�x ~y, namely:
(a) there exists i; 1 � i � qe : ~y = (E o g)(xi);
(b) 8i; 1 � i � qe : ~y 6= (E o g)(xi).

In case (a), z 6= ri, hence w and wi are random, uniformly distributed, and independent (here, we assume

f
R
 R). The forgery passes the integrity check since the derived scheme is not EF-CPA secure, and the

its plaintext outcome is
x = (w � wi)� xi:

Hence, any block j; 1 � j � jxij = jxj, of the plaintext outcome can be written as xj = (w � wi) � xij.
Hence, for any arbitrary constant a

Pr[xj = a] = Pr[(w � wi)� xij = a] =
1

2l

because w;wi are random, uniformly distributed, and independent, and xij is a known constant (in the

CPA attack). For f
R
 F , where F is a (q; t; �) PRF family, we obtain

Pr[xj = a] = Pr[(w � wi)� xij = a] =
1

2l
+ �:

Hence, for any forgery in case (a), (DFKo g)(y0) 6= Null and

Pr[(D0 o g)(y0) 6= Null and (D0 o g)(y0) = x0 6= xi;8i; 1 � i � qe; is known ]

= Pr[(D0 o g)(y0) = x0 6= xi;8i; 1 � i � qe; is known ] � Pr[xj = a] =
1

2l
+ �:

In case (b), the forgery pre�x ~y is itself a forgery for the given secure EF-CPA scheme (E o g;D o g;KG),
and hence:

Pr[(D0 o g)(y0) 6= Null and (D0 o g)(y0) = x0 6= xi;8i; 1 � i � qe; is known ]

� Pr[(D0 o g)(y0) 6= Null] = Pr[(DFKo g)(~y) 6= Null] � �;

where � is negligible. Hence, for any forgery,

Pr[(D0 o g)(y0) 6= Null and (D0 o g)(y0) = x0 6= xi;8i; 1 � i � qe; is known ] � �0
def
= max

�
1

2l
+ �; �

�
;

where �0 is negligible. Or, equivalently,

Pr[(D0 o g)(y0) 6= Null ) (D0 o g)(y0) = x0 6= xi;8i; 1 � i � qe; is unknown ] � 1� �0
def
= �;

where 1� � is a negligible quantity. Hence, the derived scheme (E0 o g;D0 o g;KG) is PU-CPA secure.

Theorem 3: EF-CPA > NM-CPA

Proof

(1) EF-ATK ) NM-ATK
An encryption scheme (mode) that is secure against existential forgeries (EFs) in an attack ATK (i.e.,
CPA or CoA) is also secure against NM forgeries in the same attack.
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Part (1) of the proof follows immediately from goal de�nitions.

Pr[(DFKo g)(y0) 6= Null and R(x1; � � � ; xq2 ; (DFKo g)(y0))] � Pr[(DFKo g)(y) 6= Null]:

However, if a scheme is EF secure, then for any forgery y Pr[(DFKo g)(y) 6= Null] � �, where � is negligible.
Thus,

Pr[(DFKo g)(y0) 6= Null and R(x1; � � � ; xq2 ; (DFKo g)(y0))] � �;

for any forgery y 6= yi; 1 � i � q2, which means that the scheme is NM-CPA secure.

(2) NM-CPA 6) EF-CPA
An encryption scheme (mode) that is non-malleable in a CPA attack (i.e., NM-CPA secure) is not neces-
sarily secure in an EF-CPA attack.

In Part (2) of the proof, we show that there is a scheme that is NM-CPA secure, but is not EF-CPA secure.
In Section 5, we show that the scheme BIGE$-nzg is NM-CPA secure (Lemma 6) but not EF-CPA secure
(Lemma 7).

Theorem 4: PU-CPA > CPF-CPA

Proof

(1) PU-CPA ) CPF-CPA
An encryption scheme (mode) that is secure against plaintext-uncertain (PU) forgeries in a CPA is also
secure against chosen-plaintext forgeries (CPFs) in the same attack.

Part (1) of the proof follows immediately from goal de�nitions. If a scheme is PU-CPA secure, then for
any forgery y

Pr[(DFKo g)(y) 6= Null ) (DFKo g)(y) = x 6= xi;8i; 1 � i � qe; is unknown ] � �;

where xi; 1 � i � qe, are plaintext strings used in encryption and 1� � is a negligible quantity. However,

((DFKo g)(y) = x 6= xi;8i; 1 � i � qe; is chosen ) ) ((DFKo g)(y) = x is known):

Or, equivalently,
((DFKo g)(y) = x is unknown ) ) (DFKo g)(y) = x = xi; for some i; 1 � i � qe; is not chosen).
This implies that

((DFKo g)(y) = x 6= xi;8i; 1 � i � qe; is unknown ) )

((DFKo g)(y) = x = xi; for some i; 1 � i � qe; is not chosen):

Hence,

� � Pr[((DFKo g)(y) 6= Null) ) ((DFKo g)(y) = x 6= xi;8i; 1 � i � qe; is unknown)

and

((DFKo g)(y) = x 6= xi;8i; 1 � i � qe; is unknown ) )

((DFKo g)(y) = x = xi; for some i i; 1 � i � qe; is not chosen)]

� Pr[((DFKo g)(y) 6= Null) ) ((DFKo g)(y) = x = xi; for some i i; 1 � i � qe; is not chosen)]

or, equivalently,

� � 1� Pr[(DFKo g)(y) 6= Null and (DFKo g)(y) = x 6= xi;8i; 1 � i � qe; is chosen ]
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or,

Pr[(DFKo g)(y) 6= Null and (DFKo g)(y) = x 6= xi;8i; 1 � i � qe; is chosen ] � 1� �
def
= �;

which means that the scheme is CPF-CPA secure.

(2) CPF-CPA 6) PU-CPA
An encryption scheme (mode) that is secure against chosen-plaintext forgeries (CPFs) in a CPA attack is
not necessarily secure against PU forgeries in the same attack.

Part (2) of the proof follows immediately from Lemmas 4 and 5, Section 5. That is, the scheme IGE$-z0
is CPF-CPA secure (Lemma 5) and is not PU-CPA secure (Lemma 4).

Theorem 5: PI-CPA > CPF-CPA

Proof

(1) PI-ATK ) CPF-ATK
An encryption scheme (mode) that is secure against plaintext-integrity (PI) forgeries in an attack ATK
(i.e., CPA or CoA) is also secure against chosen-plaintext forgeries (CPFs) in the same attack.

Part (1) of the proof follows immediately from goal de�nitions. For any forgery y,

Pr[(DFKo g)(y) 6= Null and (DFKo g)(y) = x 6= xi;8i; 1 � i � qe; is chosen ]

� Pr[(DFKo g)(y) 6= Null and (DFKo g)(y) = x 6= xi;8i; 1 � i � qe] � �;

since the scheme supposed to be PI-ATK secure.

(2) CPF-CPA 6) PI-CPA
An encryption scheme (mode) that is secure against chosen-plaintext forgeries (CPFs) in a CPA attack is
not necessarily secure against PI forgeries in the same attack.

Part (2) of the proof follows immediately from Lemmas 4 and 5, Section 5. That is, the scheme IGE$-z0
is CPF-CPA secure (Lemma 5) and is not PI-CPA secure (Lemma 4).

Theorem 6: NM-CPA > CPF-CPA

Proof

(1) NM-CPA ) CPF-CPA
An encryption scheme (mode) that is non-malleable (NM) in a CPA is also secure against chosen-plaintext
forgeries (CPFs) in the same attack.

Part (1) of the proof follows immediately from goal de�nitions. For any message length m and challenge
ciphertexts y1; � � � ; yq2 of unknown plaintext messages x1; � � � ; xq2 2 f0; 1gm, and for any forgery y 6= yi; 1 �
i � q2 and any relationship R,

Pr[(DFKo g)(y) 6= Null and R(x1; � � � ; xq2 ; (DFKo g)(y))] � �;

where � is a negligible quantity. Hence, by de�nition,

Pr[(DFKo g)(y) 6= Null ) R(x1; � � � ; xq2 ; (DFKo g)(y)) does not exist] � 1� �
def
= �:

However,

((DFKo g)(y) = x 6= xi;8i; 1 � i � q1; is chosen) ) (R(x1; � � � ; xq2 ; (DFKo g)(y)) exists);
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is true, since the plaintext challenge in a successful CPF-CPA attack could always be x = 111 � � � 1 (i.e., a

block of 1's), which means that R
def
= \ � ". Equivalently,

(R(x1; � � � ; xq2 ; (DFKo g)(y)) does not exist) ) ((DFKo g)(y) = x = xi for some i; 1 � i � q1; is not chosen):

Hence,

Pr[((DFKo g)(y) 6= Null) ) ((DFKo g)(y) = x = xi for some i; 1 � i � q1; is not chosen)]

� Pr[((DFKo g)(y) 6= Null) ) (R(x1; � � � ; xq2 ; (DFKo g)(y)) does not exist)

and (R(x1; � � � ; xq2 ; (DFKo g)(y)) does not exist)

) ((DFKo g)(y) = x = xi for some i; 1 � i � q1; is not chosen)]

� �:

This means that

Pr[(DFKo g)(y) 6= Null and (DFKo g)(y) = x 6= xi;8i; 1 � i � q1; is chosen] � �;

which means that the scheme is CPF-CPA secure.

(2) CPF-CPA 6) NM-CPA
An encryption scheme (mode) that is secure against chosen-plaintext forgeries (CPFs) in a CPA attack is
not necessarily non-malleable in the same attack.

Part (2) of the proof follows immediately from Lemmas 4 and 5, Section 5. That is, the scheme IGE$-z0
is CPF-CPA secure (Lemma 5) and is not NM-CPA secure (Lemma 4).

4.2 Incomparability and Separability

Theorem 7: PU-CPA and PI-CPA are Incomparable

Proof

(1) PU-CPA 6) PI-CPA
An encryption scheme (mode) that is PU secure in a CPA attack is not necessarily secure against PI
forgeries in the same attack.

For Part (1) of the proof, we choose the same scheme as in the proof of Theorem 2, namely, (E0 o g;D0 o g;KG),

where (E0 o g)(x) = (EFKo g)(w � x)jjr; w = f(r); r
R
 f0; 1gl, w � x

def
= w � x1jjw � x2 � � � jjw � xn, and

f = FK . We showed in the proof of Theorem 2 that this scheme is PU-CPA secure. Here, we show that
this scheme is not PI-CPA secure.

Let us choose the forgery y0 = yjjr = (E o g)(xi)jjr, where xi; 1 � i � qe is an old plaintext string. The
underlying plaintext for this forgery (which decrypts correctly) is

x0 = (w � wi)� xi:

Hence, for f
R
 R and for any old plaintext string p; 1 � p � qe and for any block index j; 1 � j �

min(jx0j; jxpj)

Pr[x0j = xpj ] = Pr[(w � wi)� xij = xpj ] =
1

2l
;
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since w;wi are random, uniformly distributed, and independent. For f
R
 F , where F is a (q; t; �) PRF

family,

Pr[x0j = xpj ] =
1

2l
+ �:

Hence, (D0 o g)(y0) 6= Null, but

Pr[(D0 o g)(y0) = xp; for some i; 1 � p � qe] � Pr[x0j = xpj ] �
1

2l
+ �:

Hence,

Pr[(D0 o g)(y0) 6= Null and (D0 o g)(y0) = x0 6= xi;8i; 1 � i � qe]

= Pr[(D0 o g)(y0) = x0 6= xi;8i; 1 � i � qe]

= 1� Pr[(D0 o g)(y0) = xi; for some i; 1 � i � qe] � 1�
1

2l
� �;

and hence, it cannot be negligible.

(2) PI-ATK 6) PU-ATK
An encryption scheme (mode) that is PI secure in an attack (i.e., CPA or CoA) is not necessarily secure
against PU forgeries in the same attack.

For Part (2) of the proof, we construct the encryption scheme (E0 o g;D0 o g;KG) from the EF secure
encryption scheme (E o g;D o g;KG) in the same way as in the proof of Theorem 1. The encryption
scheme (E0 o g;D0 o g;KG) is thus PI secure. We show that this scheme is not PU secure. Let us construct
a forgery in the same way, namely y0 = (E o g)(x)jjy00; y

0
0 6= y0, where x is a plaintext used at encryption.

This forgery obviously decrypts correctly; i.e., (D0 o g)(y0) = x is known, hence,

Pr[(D0 o g)(y0) 6= Null and (D0 o g)(y0) = x0 is known ] = 1:

Hence, the scheme is not PU secure. ut

Theorem 8: NM-CPA is separable from PI-CPA, PU-CPA, and KPF-CPA

Proof

In Section 5, we show that scheme BIGE$-nzg is NM-CPA secure (Lemma 6), but not PI-CPA and KPF-
CPA secure (Lemma 7). Hence, NM-CPA 6) PI-CPA and NM-CPA 6) KPF-CPA.

When implemented with the CBC mode and used to encrypt messages consisting of an integer number of
l-bit blocks (possibly after padding), the Variable Input Length (VIL) cipher of Bellare and Rogaway [5, 6]
can be shown generate at least a random block in the plaintext outcome of any forgery produced in a CPA
[11]. Hence, the composition of this scheme with the MDC function nzg(x) de�ned for the BIGE$-nzg
scheme (viz., Section 5), namely VIL-CBC-nzg, is a PU-CPA secure scheme. However, this scheme is not
NM-CPA secure for the same reasons the scheme IGE$-z0 is not NM-CPA secure (viz., end of the Proof
of Lemma 4). Hence, PU-CPA 6) NM-CPA.

4.3 Extensions of the CPA Lattice

Theorems 1 - 8 show that the integrity goals de�ned in Section 3 form a lattice for chosen-plaintext attacks.
In this section we show that, if we also consider ciphertext-only attacks, the top of the lattice remains EF-
CPA, but CPF-CoA becomes the new bottom of the lattice.
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Theorem 9: EF-CPA > EF-CoA

Proof

(1) EF-CPA ) EF-CoA An encryption scheme (mode) that is EF-CPA secure is also secure against EF-
CoA attacks.

Part (1) of the proof follows directly from the following observation.

Observation:
An encryption scheme (mode) that is secure with respect to a given goal (i.e., EF, PI, PU, PA, NM, CPA)
in an CPA attack is also secure with respect to the same goal in a CoA attack.

This is true because an adversary that breaks integrity with respect to a goal in a CoA attack will break
security in a CPA attack, since the adversary can obviously ignore the plaintext and use only the ciphertext
obtained.

(2) EF-CoA 6) EF-CPA An encryption scheme (mode) that is EF-CoA secure is not necessarily secure
against EF-CPA attacks.

Part (2) of the proof follows directly from Lemmas 2 and 4, Section 5. That is scheme IGE$-z0 is EF-CoA
secure (Lemma 2) and is not EF-CPA secure (Lemma 4).

Theorem 10: CPF-CPA > CPF-CoA

Proof

(1) CPF-CPA ) CPF-CoA An encryption scheme (mode) that is CPF-CPA secure is also secure against
CPF-CoA attacks.

Part (1) of the proof follows directly from the the observation of the Proof in Theorem 9.

(2) CPF-CoA 6) CPF-CPA An encryption scheme (mode) that is CPF-CoA secure is not necessarily secure
against CPF-CPA attacks.

Part (2) of the proof is based on a counter-example. Let scheme � o g be consist of � � XOR$ [2], and
g(x) � fper-block, bitwise exclusive-org. It is easy to see that this scheme is CPF-CoA secure since any
modi�cation of the ciphertext that causes the bitwise exclusive-or check to pass remains unknown to (and
therefore cannot be a priori predicted by) the adversary. In contrast, if the adversary can encrypt plaintext
of his choice, he can (1) encrypt a plaintext message that di�ers from the challenge plaintext by a single
bit, and (2) simply 
ip the appropriate bit of the ciphertext obtained.

4.4 Other Relationships

Theorem 11: PI-CPA > KPF-CPA

Proof

(1) PI-CPA ) KPF-CPA
An encryption scheme (mode) that is PI-CPA secure is also KPF-CPA secure.

Part (1) of the proof follows immediately from goal de�nitions. If a scheme that is PI secure, then for any
forgery y

Pr[(DFKo g)(y) 6= Null and (DFKo g)(y) = x 6= xi;8i; 1 � i � qe] � �;

where xi; 1 � i � qe are the plaintext strings used for the encryption queries and � is a negligible quantity.
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Equivalently,

1� Pr[(DFKo g)(y) 6= Null) (DFKo g)(y) = x = xi; for some i; 1 � i � qe] � �;

or,

Pr[(DFKo g)(y) 6= Null) (DFKo g)(y) = x = xi; for some i; 1 � i � qe] � 1� �
def
= �:

However, ((DFKo g)(y) = x = xi; for some i; 1 � i � qe)) ((DFKo g)(y) = x is known ). Hence,

� � Pr[((DFKo g)(y) 6= Null) (DFKo g)(y) = x = xi for some i; 1 � i � qe)

and ((DFKo g)(y) = x = xi for some i; 1 � i � qe)) (DFKo g)(y) = x is known )]

� Pr[(DFKo g)(y) 6= Null) (DFKo g)(y) = x is known ];

which means that the scheme is KPF-CPA secure. ut

(2) KPF-CPA 6) PI-CPA
An encryption scheme (mode) that is KPF-CPA secure is not necessarily secure against PI-CPA attacks.

Part (2) of the proof follows immediately from the counter-example provided by Lemmas 3 and 4, Section
5. That is, scheme IGE$-c is KPF-CPA secure (Lemma 3) but it is not PI-CPA secure (Lemma 4).

Theorem 12: KPF-CPA is incomparable with CPF-CPA and with PU-CPA

Proof

(1) KPF-CPA 6) CPF-CPA
An encryption scheme (mode) that is KPF-CPA secure is not necessarily CPF-CPA secure.

Part (1) of the proof follows immediately from the fact that scheme IGE$-c is KPF-CPA secure (Lemma
3) but is not CPF-CPA secure in the face of a truncation attack since function g = c placed in the last
block of a plaintext is a known constant.

(2) CPF-CPA 6) KPF-CPA
An encryption scheme (mode) that is CPF-CPA secure is not necessarily KPF-CPA secure.

Part (2) of the proof follows immediately from the observation that scheme BIGE$-nzg is CPF-CPA secure,
as a consequence of Theorem 6, and is not KPF-CPA secure, by Lemma 7, Section 5.

Note that the scheme BIGE$-nzg also shows that CPF-CoA 6) KPF-CPA.

(3) KPF-CPA 6) PU-CPA
An encryption scheme (mode) that is KPF-CPA secure is not necessarily PU-CPA secure.

Part (3) follows immediately from the same example as in Part (1).

(4) PU-CPA 6) KPF-CPA
An encryption scheme (mode) that is PU-CPA secure is not necessarily KPF-CPA secure.

Part (4) follows immediately from the observation that the VIL-CBC-nzg mode is PU-CPA secure but not
KPF-CPA secure, since it generates at least a random block in the plaintext outcome of a forgery in a
CPA [11].
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5 Examples of Integrity Characteristics of Practical Encryption Schemes

5.1 The In�nite Garble Extension Mode

Most of the proofs of theorems presented in the previous section are based on examples provided by
Lemmas 1 { 7 of this section. These lemmas refer to schemes derived from an encryption mode that was
proposed by Carl Campbell at the �rst National Bureau of Standards Conference on Computer Security
and the Data Encryption Standard, in February 1977 [9]. Campbell called his mode the \In�nite Garble
Extension" mode and, for this reason, we denote it by IGE below. Although Campbell's mode appears to
have been proposed about the same time as the CBC mode, its integrity properties have not been explained
in published literature to date.

IGE uses the family F of super-pseudorandom permutation functions (SPRPs), which is de�ned as follows.
([3], [18]). Let F : f0; 1gk � f0; 1gl ! f0; 1gl be a pseudorandom permutation family and f = FK be a

permutation randomly chosen by key K (i.e., K
R
 f0; 1gk) and f�1 = F�1K its inverse. Let P l denote all

the permutations on f0; 1gl, and A be a two-oracle adversary. F is a SPRP if the advantage of function
family F , AdvsprpF (t; q; �), is

AdvsprpF (t; q; �) = max
A
fAdvsprpF (A)g � �;

where the maximum is taken over all the adversaries A issuing q enciphering or deciphering queries totaling
� = ql bits and taking time t, � is a negligible quantity, and the advantage of an adversary A is

AdvsprpF (A) = jPr[A = 1 : f; f�1
R
 F ]� Pr[A = 1 : f; f�1

R
 P l]j:

IGE is based on the following block chaining sequence:

yi = f(xi � yi�1)� xi�1

for encryption, and
xi = f�1(yi � xi�1)� yi�1

for decryption, where f
R
 F , or f = FK . Note that chaining is symmetric in encryption/decryption,

and consequently this mode propagates errors until the end of a message, thereby extending the error
propagation characteristics of CBC. The initialization phase could be de�ned as: r0  f0; 1gl ; y0 =
f 0(r0); x0 = r0, where f 0 = FK0 , K and K 0 being two distinct keys. (Other initialization de�nitions
can be used.) Hence, the encryption and decryption functions for the stateless mode (denoted by IGE$
below) are de�ned by E�IGE$FK (x) and D�IGE$FK (y), as follows:

function E�IGE$f (x)
r0  f0; 1g

l

y0 = f 0(r0); x0 = r0
for i = 1; � � � ; n do f
yi = f(xi � yi�1)� xi�1 g
return y = y0jjy1y2 � � � yn

function D�IGE$f (y)
Parse y as y0jjy1 � � � yn
r0 = f 0�1(y0); x0 = r0
for i = 1; � � � ; n do f
xi = f�1(yi � xi�1)� yi�1 g
return x = x1x2 � � � xn

A stateful IGE mode can be de�ned in a similar manner to that used for the XCBC stateful mode.

[Note that IGE$ is based on the CBC mode in the sense that its output block i is exclusive-ored plaintext
block i�1. Hence, the IGE$ scheme is secure in the real-or-random (or left or right) sense against adaptive
chosen plaintext attacks and the proof is very similar to that of Bellare et al. [2].]
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Let us introduce the scheme � o g � IGE$-z0 = (E�IGE$ o z0;D�IGE$ o z0;KG) by using function
g(x) = z0 = f 0(r0+1) to de�ne y = E o z0 = E

FK (xjjz0)). Hence, the scheme IGE$-z0 encrypts any plaintext
x = x1 � � � xn by appending block xn+1 = z0 to plaintext x, and then encrypting string x1 � � � xnxn+1.

Let us introduce the scheme �0 o g � IGE$-c = (E�IGE$ o c;D�IGE$ o c;KG) by using function
g(x) = c, where c is a known constant, to de�ne y = E o c = EFK (xjjc)). Hence, the scheme IGE$-c
encrypts any plaintext x = x1 � � � xn by appending block xn+1 = c to plaintext x, and then encrypting
string x1 � � � xnxn+1.

The integrity properties of schemes IGE$-z0 and IGE$-c are formalized in Lemmas 1 { 5 (whose proofs
can be found in the appendix).

To state Lemma 1 [Main IGE Lemma], we need to introduce two sets, namely

Se = fypk � xpk�1; 1 � p � qe; 1 � k � npg;

which consists of all inputs to f�1 that can be made up by taking the exclusive-or of every plaintext block
of the qe strings x

p = xp1 � � � x
p
n with every block of the qe ciphertext strings y

p = yp0y
p
1 � � � y

p
n obtained at

encryption; and set
Sdj = fys � xs�1; 1 � s < jg;

which consists of all the combinations ys � xs�1 of forgery y plaintext and ciphertext blocks used at the
decryption of y up to (but not including) position j.

For any f
R
 P l and Se, we de�ne the �nite family of random functions GS : f0; 1gk � f0; 1gl ! f0; 1gl

whose members are f; f , with f de�ned as:

f =

(
f�1(t); t 2 Se

v(t); t 2 f0; 1gl � Se; v
R
 Rl;l

;

where Rl;l is the set of all functions from f0; 1gl to f0; 1gl. We denote by f
R
 GS the random selection of

f and f from GS.

The family of functions GS behaves exactly like P l when the plaintext blocks input to f and ciphertext
blocks input to f�1 are those generated during the encryption of any adversary's qe chosen-plaintext
queries, and behaves exactly like Rl;l during the decryption of any ciphertext block not in Se.

Note that the familyGS is well-de�ned for any message-integrity attack because, by de�nition (viz., Section
3.2), in any such attack, all qe encryption queries precede the forgery veri�cation queries. (Also note that
we allow qe = 0 and, in this case, Se = ; and f = v.)

For Lemmas 1-7 we de�ne Succ the event that the forgery is successful for the chosen goal-attack combi-
nation. Then in the proofs of these Lemmas, we use the result of Fact 0 below (whose proof can be found

elsewhere [13]) that provides the reduction from f
R
 F to f

R
 GS.

Fact 0

(a)
Pr

f
R
 F

[Succ] � �+ Pr
f
R
 P l

[Succ]:

(b)

Pr
f
R
 P l

[Succ] � Pr
f
R
 GS

[Succ] +
�v(�v � l)

l22l+1
:
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where �v
l
is the total number of ciphertext blocks used in all veri�ed forgeries. Unless we state otherwise,

assume that f
R
 GS (and drop this subscript from Pr

f
R
 GS

[Succ].)

Let i denote the position of the �rst ciphertext block in the forgery y = y0y1 � � � yn such that yi�xi�1 does
not collide with any of the ypk � xpk�1 values generated during the encryption of the qe queries. Formally, i

is the index of the �rst block such that yi � xi�1 =2 Se and Sdi � Se.

Lemma 1 [Main IGE Lemma]

Let y = y0y1 � � � yn be a forged ciphertext and x = x0x1 � � � xn be its decryption by the functionD�IGE$
f (y).

Let a be an arbitrary constant value.
(a) If y0 6= yp0;8p; 1 � p � qe, then

Pr
f
R
 GS

[xn = a] �
n�e
l2l

+
n2

2l+1

Pr
f
R
 P l

[xn = a] � �0
def
=

n�e
l2l

+
n(2n� 1)

2l+1
;

where qe is the maximum number of encryption queries, totaling at most �e bits.
(b) If i; 1 � i � n, is the �rst block for which yi � xi�1 =2 Se, then

Pr
f
R
 GS

[xn = a] �
n�e
l2l

+
n2

2l+1

Pr
f
R
 P l

[xn = a] � �0
def
=

n�e
l2l

+
n(2n� 1)

2l+1
;

where the total number of bits for the qe encryption queries is at most �e.

One can also show that the conclusions of Main IGE$ Lemma remain valid if the constant a is replaced with
the random, uniformly distributed, and independent z0 = f 0(r0 + 1). This is formalized in the following
corollary.

Corollary

Let y = y0y1 � � � yn be a forged ciphertext and x = x0x1 � � � xn be its decryption by the functionD�IGE$
f (y).

(a) If y0 6= yp0;8p; 1 � p � qe, then

Pr
f
R
 GS

[xn = z0] �
n�e
l2l

+
n2

2l+1

Pr
f
R
 P l

[xn = z0] � �0
def
=

n�e
l2l

+
n(2n� 1)

2l+1
;

where where the total number of bits for the qe encryption queries is at most �e bits.
(b) If i; 1 � i � n, is the �rst block for which yi � xi�1 =2 Se, then

Pr
f
R
 GS

[xn = z0] �
n�e
l2l

+
n2

2l+1

Pr
f
R
 P l

[xn = z0] � �0
def
=

n�e
l2l

+
n(2n� 1)

2l+1
;

where qe is the maximum number of encryption queries, totaling at most �e bits.
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Lemma 2. The scheme IGE$-z0 is EF-CoA secure.

Lemma 3. The scheme IGE$-c is KPF-CPA secure.

Lemma 4. The schemes IGE$-z0 and IGE$-c are not EF-CPA, PU-CPA, PI-CPA, and NM-CPA secure.

Lemma 5. The scheme IGE$-z0 is CPF-CPA secure.

5.2 The Bidirectional In�nite Garble Extension Mode

In this section, we de�ne a variant of the IGE modes that is intended to illustrate, among other things, the
separation between NM-CPA and several other integrity notions such as EF, PI, and PA in chosen-plaintext
attacks.

The bidirectional IGE (BIGE) scheme consists of the application of the IGE scheme to the input plaintext
to obtain an intermediate \hidden" ciphertext, followed by the application of the IGE chaining to the
hidden ciphertext in opposite direction to obtain the ciphertext that is output to the user. This general
description allows for several actual variants of the bidirectional IGE scheme, namely the stateless or
stateful schemes, or schemes that use di�erent keys per pass in each direction. In our example here, the
scheme that uses three keys, one per pass in one direction, and one for we have the initialization phase.
That is, during initialization we set: r0  f0; 1g

l; y0 = f 0(r0); x0 = r0, where f 0 = FK0 , K and K 0 are
the two distinct keys, and F is the SPRP family. Then, the �rst pass generates the hidden ciphertext as
zi = f(xi � zi�1) � xi�1; 1 � i � n = jxj. The second pass consists of y0 = f 0(zn), where f

0 = FK0 , and
yi = f 00(zn�i � yi�1)� zn�i+1; 1 � i � n, where f 00 = FK00 , K;K 0 and K 00 are distinct keys.

In the BIGE$ scheme de�ned below, the actual encryption and decryption functions for the stateless
bidirectional IGE scheme that uses two keys, one for each pass, are de�ned by E�BIGE$FK ;F 0

K
;F 00

K (x) and
D�BIGE$FK ;F 0

K
;F 00

K (y), as follows:

function E�BIGE$f;f
0;f 00(x)

r0  f0; 1gl

z0 = f 0(r0); x0 = r0
for i = 1; � � � ; n do f
zi = f(xi � zi�1)� xi�1 g
y0 = f 0(zn)
for i = 1; � � � ; n do f
yi = f 00(zn�i � yi�1) � zn�i+1
g
return y = y0jjy1y2 � � � yn

function D�BIGE$f;f
0;f 00(y)

Parse y as y0jjy1 � � � yn
zn = f 0�1(y0);
for i = 1; � � � ; n do f
zn�i = f 00�1(yi�zn�i+1)�yi�1
g
r0 = f 0�1(z0); x0 = r0
for i = 1; � � � ; n do f
xi = f�1(zi � xi�1)� zi�1 g
return x = x1x2 � � � xn

Let us introduce the scheme � o g � BIGE$-nzg = (E�BIGE$ o nzg;D�BIGE$ o nzg;KG) by using

function g(x) = nzg(x) = r
R
 f0; 1gl; r 6= 0 to de�ne y = E o g = EFK ;F 0

K
;F 00

K (xjjg)). Hence, the scheme
BIGE$-nzg encrypts any plaintext x = x1 � � � xn by appending block xn+1 = r to plaintext x, and then
encrypting string x1 � � � xnxn+1. The integrity check performed upon the decryption of a forgery y0 is simply
x0n+1 6= 0.
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The intuition behind the BIGE$ scheme is as follows. Any modi�cation of ciphertext would cause a
modi�cation of the hidden ciphertext, which acts as the input to the second pass of encryption. The
resulting hidden ciphertext's modi�cation is unpredictable and propagates from the block position where
it occurs until the block z0 of the hidden ciphertext. The propagation cannot be stopped by the adversary
with more than negligible probability, since the adversary does know the values of the hidden ciphertext
input to the second pass of encryption with non-negligible probability. (To stop the propagation of any
modi�cation to ciphertext output to the user, the adversary would have to know both the input and the
output to second encryption pass, as illustrated by the proof of Lemma 4.) Furthermore, any unpredictable
modi�cation of the hidden ciphertext starting with block z0, ends up propagating throughout the message
plaintext during the second decryption pass. Hence, the entire plaintext output of BIGE$ will contain
blocks whose content is unpredictable.

The integrity properties of the scheme BIGE$-nzg are formalized in the following lemmas (whose the proofs
can be found in the appendix).

Lemma 6. The scheme BIGE$-nzg is NM-CPA secure.

Lemma 7. The scheme BIGE$-nzg is not EF-CPA, PI-CPA and KPF-CPA secure.

5.3 Other Examples

Example 1. Let � be one of the modes fCBC, PCBCg, and function g(x) be the per-block, bitwise
exclusive-or function, which we denote by XOR. The schemes � o XOR are CPF-CoA secure, but not
CPF-CPA secure [19], or secure with respect to any other goals.

Example 2. Let � be one of the modes fCBC, PCBCg, and function g(x) be the \confounded CRC-32"
function used by Kerberos V [22] and DCE [21]. The schemes � o XOR are CPF-CPA secure, and not
secure with respect to any of the other goals CPAs [23].

Example 3. The scheme � o g � BIGE$-c = (E�BIGE$ o c;D�BIGE$ o c;KG) by using function
g(x) = c where c is a constant is EF-CPA secure. (The proof is very similar to the proof of Lemma 6.)
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A Proofs

Proof of Lemma 1 [Main IGE Lemma]

By using Fact 0, we reduce the proof from f
R
 F to f

R
 GS. In the proof of this lemma we use the

notation Pr[:] = Pr
f
R
 GS

[:]. We �rst present the part of the proof that is common for both parts (a) and

(b) of Lemma 1, and then we complete the proof for parts (a) and (b) separately.

Block xn = f(yn � xn�1) � yn�1 of the decrypted forgery y is random, uniformly distributed, and inde-
pendent of anything else, including value a, whenever f(yn � xn�1) is random, uniformly distributed, and
independent of anything else. For this to happen, yn�xn�1 must not collide with any element of either Se

or Sdn (since, in this case, f(yn�xn�1) = v(yn�xn�1); v
R
 Rl;l and yn�xn�1 has never been encountered

before). Let event Cn be de�ned as:

Cn : yn � xn�1 2 S
e [ Sdn:

In this case, i.e., when there are no collisions, we have

Pr[xn = ajCn] �
1

2l
:

By standard conditioning,

Pr[xn = a] � Pr[Cn] + Pr[xn = ajCn] � Pr[Cn] +
1

2l
:

To determine Pr[Cn], we use standard conditioning again, and obtain

Pr[Cn] � Pr[Cn�1] + Pr[CnjCn�1] � Pr[C1] +
n�1X
j=1

Pr[Cj+1jCj];

where event Cj is de�ned in a similar manner to that of Cn, namely

Cj : yj � xj�1 2 S
e [ Sdj :

We now determine an upper bound for Pr[Cj+1jCj ]. Event Cj is true for 1 � j � n � 1 means that
yj � xj�1 does not collide with any element of either Se or Sdn. In this case, xj = f(yj � xj�1) � yj�1 =
v(yj � xj�1) � yj�1 is random, uniformly distributed and independent of anything else, since yj�1 is a

constant, v
R
 Rl;l and yi�xi�1 has never been encountered before. Hence, since yj+1 is a chosen constant,

yj+1 � xj is also random, uniformly distributed, and independent of anything else. This means that

Pr[yj+1 � xj = ypk � xpk�1jCj] �
1

2l
; 8p; k; 1 � p � qe; 1 � k � np;

P r[yj+1 � xj = ys � xs�1jCj] �
1

2l
; 8s; 1 � s � j:

But, by standard conditioning and union bound,

Pr[Cj+1jCj ] = Pr[yj+1 � xj 2 S
e [ Sdj+1jCj ]

� Pr[yj+1 � xj 2 S
ejCj] + Pr[yj+1 � xj 2 S

d
j+1jCj ]

�
qeX
p=1

npX
k=1

Pr[yj+1 � xj = ypk � xpk�1jCj ]

+
jX

s=1

Pr[yj+1 � xj = ys � xs�1jCj ]:

1



Thus,

Pr[Cj+1jCj] �
�e
l
+ j

2l

because there are at most �e
l
elements in Se (the �e

l
ciphertext blocks include yp0; 1 � p � qe and ypk; 1 �

p � qe; 1 � k � np), and j elements in Sdj+1 (y
1 � x0; � � � ; y

j � xj�1).

Now we consider event C1 of part (a) of the Lemma separately from event Ci of part (b) of the Lemma.

(a) Since y0 6= yp0;8p; 1 � p � qe, it follows that r0 = f 0(y0) = v0(y0) is random, uniformly distributed, and
independent of anything else. Here v0 is the corresponding function for f 0 constructed in the same way as

v, namely, v0
R
 Rl;l. Hence x0 = r0 is random, uniformly distributed, and independent of anything else.

Hence y1 � x0 2 Se happens with probability at most jS
ej
2l

=
�e
l

2l
. From here on, we apply the same idea

(viz., also part (b) below), namely:

Pr[xn = a] � Pr[xn = ajy1 � x0 =2 Se] + Pr[y1 � x0 2 S
e] �

�e
l2l

+
(n� i)�e

l2l
+
n2 � i2

2l+1

�
n�e
l2l

+
n2

2l+1
:

Hence, by Fact 0 with �v
l
= n,

Pr
f
R
 P l

[xn = a] � Pr
f
R
 P l

[xn = a] +
n(n� 1)

2l+1
�

n�e
l2l

+
n2

2l+1
+
n(n� 1)

2l+1

= �0
def
=

n�e
l2l

+
n(2n� 1)

2l+1
:

(b) However, by the Lemma hypothesis, event Cj is true for j < i and event Ci is false. Hence,

Pr[Cn] � Pr[Ci] +
n�1X
j=i

Pr[Cj+1jCj]

=
n�1X
j=i

Pr[Cj+1jCj ]:

Using the formula for Pr[Cj+1jCj] we obtain

Pr[Cn] �
n�1X
j=i

Pr[Cj+1jCj ] �
n�1X
j=i

�e
l
+ j

2l
=

(n� i)�e
l2l

+
(n� i)(i + n� 1)

2l+1

�
(n� i)�e

l2l
+
n2 � i2

2l+1
:

Finally,

Pr[xn = a] � Pr[Cn] +
1

2l
�

(n� i)�e
l2l

+
n2 � i2

2l+1
+

1

2l
�

n�e
l2l

+
n2

2l+1
:

Hence, by Fact 0 with �v
l
= n,

Pr
f
R
 P l

[xn = a] � �0
def
=

n�e
l2l

+
n2

2l+1
+
n(n� 1)

2l+1
=

n�e
l2l

+
n(2n� 1)

2l+1
:

ut
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Proof of Lemma 2

We have to show that for the IGE$-z0 encryption mode, whenever the adversary knows only valid ciphertext
strings (by the de�nition of EF-CoA), any forgery y passes the integrity check with negligible probability.
In CoA, the plaintext strings used for generating the valid ciphertexts the adversary sees are random
strings.

The forged ciphertext that the adversary generates can fall into one of the following complementary classes:
(a) the forgery is a truncation of a known valid ciphertext string;
(b) the forgery is an extension of a known valid ciphertext string;
(c) the forgery is neither a truncation nor an extension of a known ciphertext string.

In case (c), the forged ciphertext y can be such that either (c1) y0 = yp0 for some p; 1 � p � qe, or (c2)
y0 6= yp0 ;8p; 1 � p � qe; in the former case, the forged ciphertext and ciphertext string yi will di�er from
each other in at least one block yk; 1 � k � min(ni + 1; n+ 1). Hence, case (c) can be further divided into
two complementary subcases:
(c1) the forged ciphertext string has a common pre�x with an existent ciphertext;
(c2) the forged ciphertext is di�erent from any existent ciphertext starting with its �rst block (y0).

We summarize these classes of forgeries and de�ne them formally. The forged ciphertext y belongs to one
of the following complementary classes de�ned as follows:
(a) 9i; 1 � i � qe : n < ni and 8j; 1 � j � n + 1 : yk = yik; i.e., the forged ciphertext is a truncation of
ciphertext yi;
(b) 9i; 1 � i � qe : n > ni and 8j; 1 � j � ni + 1 : yk = yik; i.e., the forged ciphertext is a extension of
ciphertext yi;
(c1) 9i; 1 � i � qe;9j; 1 � j < min(ni + 1; n + 1) : 8k; 1 � k < j : yk = yik and yj 6= yij; i.e., the forged

ciphertext and ciphertext yi have a common pre�x;
(c2) y0 6= yi0;8i; 1 � i � qe; i.e., there is no previous ciphertext that has a common pre�x with the forged
ciphertext.

Now, we show that, for an arbitrary forgery in each of the complementary cases de�ned above, the probabil-
ity of adversary's success is negligible. We determine upper bounds on Pr

f
R
 F

[(D�IGE$� z0)(y) 6= Null]

and the maximum of these bounds is an upper bound for Pr
f
R
 F

[(D�IGE$ � z0)(y) 6= Null] for any

forgery type.

By using Fact 0, we have
Pr

f
R
 F

[Succ] � �+ Pr
f
R
 P l

[Succ];

where Succ � (xn+1 = z0). Hence, for the balance of this proof, we use the notation Pr[:] = Pr
f
R
 P l

[:],

unless otherwise speci�ed.

Upper bound for forgeries of type (a).
In this case, the forgery is a truncation of ciphertext i, and hence, the decrypted plaintext blocks are:
xk = xik;8k; 0 � k � n + 1 < ni + 1. Thus, the integrity condition xn+1 = z0 becomes xin+1 = zi0 and
hence, it happens with probability 1=2l; i.e.,

Pr[xn+1 = z0] =
1

2l
;

since xin+1 is random, uniformly distributed, and independent of anything else, by the de�nition of CoAs.
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Upper bound for forgeries of type (b).
In this case, the forgery is a extension of ciphertext i, and hence, the decrypted plaintext blocks are:
xk = xik;8k; 0 � k � ni + 1 < n+ 1.

Since n + 1 > ni + 1, there must exist a ciphertext block yni+2. To compute an upper bound on the
probability of successful forgery, we condition on the event of collisions between yni+2 � xni+1 with ypk �
xpk�1;8p; k; 1 � p � qe; 1 � k � np + 1. Let D be the event de�ning the collisions yni+2 � xni+1 =
ypk � xpk�1; 1 � p � qe; 1 � k � np + 1, or using the de�nition for set Se, yni+2 � xni+1 2 S

e; we obtain

D : yni+2 � xni+1 2 S
e:

By union bound,

Pr[D] �
qeX
p=1

np+1X
k=1

Pr[yni+2 � xni+1 = ypk � xpk�1]:

Since event D implies yni+2�xni+1 = ypk�x
p
k�1, and since xni+1 = xini+1 = zi0, it follows that yni+2� z

i
0 =

ypk � xpk�1. In this equality, xpk�1 is random and uniformly distributed because either xpk�1 = xp0 when
k�1 = 0 or xpk�1 is a random block due to the CoA attack when k�1 � 1. Furthermore, since zi0 is encrypted
with key K 0, it follows that xpk�1 and zi0 are independent. Since yni+2 and ypk; 1 � p � qe; 1 � k � np + 1
are chosen constants,

Pr[yni+2 � zi0 = ypk � xpk�1] =
1

2l
:

Thus, since �e
l
includes all the ciphertext blocks (yp0 ; y

p
1 ; � � � ; y

p
n+p+1; 1 � p � qe),

Pr[D] �
�e
l2l

:

If D is false, then we can choose ni+2 as the position of the �rst block that does not yield a collision with
any element in Se. Furthermore, by the Corollary to Lemma 1 [Main IGE Lemma] with a = z0, we obtain,

Pr[xn+1 = z0 j D] �
(n+ 1)�e

l2l
+

(n+ 1)2

2l+1
:

Hence, by standard conditioning,

Pr[xn+1 = z0] � Pr[xn+1 = z0 j D] + Pr[D]

�
(n+ 1)�e

l2l
+

(n+ 1)2

2l+1
+

�e
l2l

=
(n+ 2)�e

l2l
+
(n+ 1)2

2l+1
:

Upper bound for forgeries of type (c1).
In a similar manner to the proof for the forgeries of type (b), we condition the probability of successful
forgery on the event of collisions between yj � xj�1 and ypk � xpk�1; 1 � p � qe; 1 � k � np + 1. Let Dj the
event de�ning these collisions. Formally,

Dj : yj � xj�1 2 S
e:

By union bound,

Pr[Dj] �
qeX
p=1

np+1X
k=1

Pr[yj � xj�1 = ypk � xpk�1]:

Consider the collisions yj � xj�1 = ypk � xpk�1. Since j is the �rst index such that yj 6= yij, it follows that

xj�1 = xij�1. Hence, these collisions can be expressed as yj � xij�1 = ypk � xpk�1. In this equality, xij�1

4



is random, uniformly distributed and independent of any xpk; y
p
k; 1 � p � qe; 1 � k � np + 1, with the

exception of xij�1, by the de�nition of CoA. For p = i; k = j, we have xij�1 = xpk�1, but by the de�nition

of j (yj 6= yij), yj � xij�1 6= yij � xij�1. Since yj; y
p
k; 1 � p � qe; 1 � k � np + 1 are constants, then

Pr[yj � xij�1 = ypk � xpk�1] �
1

2l
:

Note that Pr[yj � xij�1 = ypk � xpk�1] = 0 for i = p; j = k from the de�nition of yj. Hence, by the same
arguments as for the case of forgeries of type (b),

Pr[Dj] �
�e
l2l

:

Furthermore, in a manner similar to that for the case of forgeries of type (b),

Pr[xn+1 = z0 j Dj] �
(n+ 1)�e

l2l
+

(n+ 1)(2n + 1)

2l+1
;

by the Corollary to Lemma 1 [ Main IGE Lemma ] with a = z0.

Upper bound for forgeries of type (c2).
In a similar manner to the proof for the forgeries of type (c1), we condition the probability of successful
forgery on the event of collisions between y1 � x0 and ypk � xpk�1; 1 � p � qe; 1 � k � np + 1. Hence, we
de�ne event D as for the case of forgeries of type (c1)

D : y1 � x0 2 S
e:

By union bound,

Pr[D] �
qeX
p=1

np+1X
k=1

Pr[y1 � x0 = ypk � xpk�1]:

Thus, we consider the collision y1 � x0 = ypk � xpk�1. In this equality xpk�1 is random and uniformly
distributed since it is either rp0 for k� 1 = 0 or is a random and uniformly distributed plaintext block in a
CoA for k� 1 � 1. Furthermore, x0 = r0 = f 0�1(y0) is the decryption of block y0 6= yp0 ;8p; 1 � p � qe with
a di�erent key, hence x0 is independent of anything else, and hence, it si independent of xpk�1. Therefore,

Pr[y1 � x0 = ypk � xpk�1] �
1

2l
;

and
Pr[D] �

�e
l2l

:

From here on, the computation of the upper bound for forgeries of type (c2) is similar with the computation
for the upper bound for forgeries of type (c1) in which one chooses j = 1.

Hence, for any forgery type

Pr[xn+1 = z0] �
(n+ 2)�e

l2l
+

(n+ 1)(2n+ 1)

2l+1
;

i.e., the probability that the integrity check passes, or equivalently that the EF-CoA adversary is successful,
is

Pr[(D�IGE$� z0)(y) 6= Null] �
(n+ 2)�e

l2l
+

(n+ 1)(2n + 1)

2l+1
+

1

2l
;
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and, by Fact 0

Pr
f
R
 F

[(D�IGE$� z0)(y) 6= Null] � �+
(n+ 2)�e

l2l
+

(n+ 1)(2n + 1)

2l+1
+

1

2l
;

i.e., this probability is negligible, and scheme IGE$-z0 is EF-CoA secure. ut

Proof of Lemma 3

We prove that scheme IGE$-c is KPF-CPA secure. Hence, we must show that, for any forgery y,

Pr
f
R
 F

[(D�IGE$� c)(y) 6= Null ) (D�IGE$� c)(y) = x is known ] � �;

where 1�� is negligible. By de�nition, ((D�IGE$�c)(y) 6= Null ) (D�IGE$�c)(y) = x is known ) �
((D�IGE$� c)(y) = Null or (D�IGE$� c)(y) = x is known ). Hence, we must show that

Pr
f
R
 F

[(D�IGE$� c)(y) = Null or (D�IGE$� c)(y) = x is known ] � �;

where 1� � is negligible.

For the balance of this proof, we use the notation Pr[:] = Pr
f
R
 P l

[:], unless otherwise speci�ed.

To prove this lemma, we divide the space of all possible forgeries into two complementary classes: (a)
forgeries that have at least a ciphertext block yi such that yi � xi�1 does not collide with any element of
Se, ypk � xpk�1; 1 � p � qe; 1 � k � np + 1, and (b) forgeries for which any block leads to a collision with
some element of Se, ypk � xpk�1; 1 � p � qe; 1 � k � np + 1.

Let y be an arbitrary forgery in class (a), and i the index of the �rst block such that yi � xi�1 does not
collide with any elements of Se, ypk � xpk�1; 1 � p � qe; 1 � k � np + 1. Then, since c is a constant, by
Lemma 1 [ Main IGE Lemma] with a = c,

Pr[xn+1 = c] �
(n+ 1)�e

l2l
+

(n+ 1)(2n + 1)

2l+1
:

Hence, by the de�nition of event (D�IGE$� c)(y) 6= Null:

Pr[(D�IGE$� c)(y) 6= Null] = Pr[xn+1 = c] �
(n+ 1)�e

l2l
+

(n+ 1)(2n + 1)

2l+1
:

and, by Fact 0

Pr
f
R
 F

[(D�IGE$� c)(y) 6= Null] = Pr
f
R
 F

[xn+1 = c] � 1� �

= �+
(n+ 1)�e

l2l
+

(n+ 1)(2n+ 1)

2l+1
:

Thus,

Pr
f
R
 F

[(D�IGE$� c)(y) = Null or (D�IGE$� c)(y) = x is known ] �

Pr
f
R
 F

[(D�IGE$� c)(y) = Null] = 1� Pr
f
R
 F

[(D�IGE$� c)(y) 6= Null] � �

where 1� � = �+ (n+1)�e
l2l

+ (n+1)(2n+1)
2l+1

is negligible.
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Let y be an arbitrary forgery in class (b); i.e., for any i a block, yi � xi�1 collides with any element of
Se, ypk � xpk�1; 1 � p � qe; 1 � k � np + 1. Hence, xi = f�1(yi � xi�1) � yi�1 = xpk � ypk�1 � yi�1 is
known. If the last decrypted plaintext block leads to xn+1 = c, then the ciphertext decrypts correctly
and the adversary knows the entire plaintext outcome of forgery. Hence event ((D�IGE$ � c)(y) =
Null or (D�IGE$ � c)(y) = x is known ) is true. If the last decrypted plaintext block leads to xn+1 6=
c, then the ciphertext does not decrypt correctly. Hence (D�IGE$ � c)(y) = Null, and thus event
((D�IGE$� c)(y) = Null or (D�IGE$� c)(y) = x is known ) is still true. Thus, for any forgery in class
(b)

Pr
f
R
 F

[(D�IGE$� c)(y) = Null or (D�IGE$� c)(y) = x is known ] = 1:

Hence, for any forgery (either of class (a) or (b)),

Pr
f
R
 F

[(D�IGE$� c)(y) 6= Null ) (D�IGE$� c)(y) = x is known ] � �;

where 1 � � is negligible, and by the de�nition of security against known-plaintext forgeries, the IGE$-c
scheme is KPF-CPA secure.

Proof of Lemma 4

First, we prove that the IGE$-z0 and IGE$-c encryption modes are not secure against EF-CPA attacks,
and then we prove that these schemes are not PI-CPA, PU-CPA, and NM-CPA secure. To prove the �rst
part of the lemma, it is su�cient to provide counter-examples that show that an adversary can construct
a forgery y that passes the integrity check provided by xn+1 = z0 for IGE$-z0 and the integrity check
xn+1 = c for IGE$-c (and whose plaintext x is known to the adversary.)

We show that the adversary can choose a plaintext with certain properties, obtain the ciphertext, then, he
can construct a forgery that yields some changes plaintext blocks only in the middle of the plaintext, and
thus, the beginning and the ending of the plaintext are unmodi�ed and, hence, the decrypted plaintext
passes the integrity checks xn+1 = z0 or xn+1 = c.

Let an adversary submit for encryption the chosen plaintext
x = x1 � � � xi�2xi�1xixi+1 � � � xm, where xi�2 = xi and xi�1 = xi+1. That is, the adversary simply constructs
a plaintext that replicates two consecutive blocks in the two positions that follow those blocks. The
adversary obtains ciphertext y = y1 � � � yi�2yi�1yiyi+1 � � � ym, and constructs forgery (of equal length, m)
as follows:

y0 = y01 � � � y
0
i�2y

0
i�1y

0
iy
0
i+1 � � � y

0
m;

where

y01 � � � y
0
i�2 = y1 � � � yi�2

y0i�1 = yi+1

y0i = yi�2

y0i+1 � � � y
0
m = yi+1 � � � ym:

In other words, the forgery y0 6= y is

y0 = y1 � � � yi�2yi+1yi�2yi+1 � � � ym:

Next, we describe the attack outcome. The decryption of forgery y0, namely x0, will contain (1) the same
plaintext blocks as those of the chosen plaintext x up to position i� 2; i.e., x0j = xj;8j; 1 � j � i� 2; (2)

7



the same plaintext blocks as those of the chosen plaintext x from position i+1 to the end of the message;
i.e., x0j = xj;8j; i + 1 � j � m; and (3) two modi�ed plaintext blocks (both with a known/predictable
modi�cation) at position i� 1, i.e., x0i�1 = xi+1 � yi � yi�2, and at position i; i.e., x0i = xi � yi�1 � yi+1.

To verify the outcome of this attack, we compute x0i�1; x
0
i, and x0i�1. That is,

x0i�1 = f�1(y0i�1 � x0i�2)� y0i�2 = f�1(yi+1 � xi)� yi�2

= xi+1 � yi � yi�2

which is known to the adversary.

x0i = f�1(y0i � x0i�1)� y0i�1 = f�1(yi�2 � xi+1 � yi � yi�2)� yi+1

= f�1(xi�1 � yi)� yi+1 = xi � yi�1 � yi+1

which is known to the adversary.

x0i+1 = f�1(y0i+1 � x0i)� y0i = f�1(yi+1 � xi � yi�1 � yi+1)� yi�2

= f�1(xi � yi�1)� yi�2 = f�1(xi�2 � yi�1)� yi�2 = xi�1 = xi+1:

which means that the plaintext at position i+ 1 remains unmodi�ed.

x0i+2 = f�1(y0i+2 � x0i+1)� y0i+1 = f�1(yi+2 � xi+1)� yi+1 = xi+2:

which means that the plaintext at position i+2 also remains unmodi�ed. From this point on, all remaining
plaintext blocks remain unmodi�ed to the end of the message.

Hence, the integrity conditions x0n+1 = z0 for the IGE$-z0 or x0n+1 = c for the IGE$-c are veri�ed with
probability 1 (one), i.e., neither scheme is secure against EF-CPA.
The same counter-example as that given above is su�cient to show that the IGE$-z0 and IGE$-c are not
PU-CPA, and PI-CPA secure. (The actual proof for PI-CPA security involves the event that there are no
collisions in the inputs to function f ; i.e., includes the bound �R de�ned in the proof of Lemma 6, Fact
1 below.) A similar example can be used to prove that these schemes are not NM-CPA secure, also. For
instance, construct a forgery in which all but the last two blocks of the plaintext outcome contain all 1's,
and the last two blocks contain the known but garbled data produced by the exclusive-or operations with
ciphertext blocks obtained at encryption. Modify the plaintext outcome of the forgery as follows: divide
(i.e., by integer division) the plaintext outcome of the forgery by 22l, where l is the block size, thereby

shifting the garbled blocks out of the message and zero-�lling its �rst two blocks. The relationship R
def
=�

holds among the modi�ed plaintext outcome and the similarly modi�ed (but unknown) plaintext of the
challenge ciphertexts. ut

Proof of Lemma 5

To prove this lemma, we partition all possible forgeries into successively smaller classes, and demonstrate
that, for each class of forgery, either the integrity check fails or the plaintext outcome of forgery includes
an unknown block.

We note that all forgeries can be created in the following three complementary ways. That is, a forgery
y0 = y00y

0
1 � � � y

0
ny
0
n+1 can be:

(1) a truncation of a ciphertext message ypk of length np+1 obtained at encryption, namely, y0j = ypj ;8j; 0 �
j � n+ 1 < np + 1;

8



(2) an extensions of a ciphertext message yp of length np+1 obtained at encryption, namely, y0j = ypj ;8j; 0 �
j � np + 1 < n+ 1; and
(3) in neither class (1) nor (2). That is, the forgery is a ciphertext message such that there exists index
s � minfn+ 1; np + 1g : y0s 6= yps whose ciphertext block di�ers from block s of a ciphertext message yp of
length np + 1 obtained at encryption. We denote by j be the minimum of these indices s.

It is easy to see that for forgeries of types (1) and (2) the lemma is proved, since for case (1) the integrity
check passes with only negligible probability whereas for case (2) plaintext block x0np+1, which contains

random block zp0 , is unknown, and hence could not be chosen by the adversary. That is, for any forgery of
type (1), x0n+1 = xpn+1 is a constant since n < np, and z00 is a random variable. Thus

Pr
f
R
 P l

[z00 = x0n+1] = Pr
f;f 0

R
 P l

[z00 = x0n+1]

= Pr
f;f 0

R
 P l

[z00 = x0n+1]� Pr
f
R
 P l;f 0

R
 Rl;l

[z00 = x0n+1] + Pr
f
R
 P l;f 0

R
 Rl;l

[z00 = x0n+1]

= AdvD(P
l; Rl;l) +

1

2l
;

where AdvD(P
l; Rl;l) is the advantage of an adversary D in distinguishing between f 0

R
 P l from f 0

R
 Rl;l

using an encryption oracle for f 0 in the process of implementing the IGE$ scheme. Also, since ran-

dom variable z00 is uniformly distributed when f 0
R
 Rl;l and since x0n+1 is a constant, it follows that

Pr
f
R
 P l;f 0

R
 Rl;l

[z00 = x0n+1] = 1=2l. However, by the bound of the birthday attack, AdvD(P
l; Rl;l) � qe(qe�1)

2l+1

since z00 = zp0 = f 0(rp0 + 1) and 1 � p � qe. Hence,

Pr
f
R
 P l

[((DFKo g)(y0) 6= Null and ((DFKo g)(y0) = x 6= xi; 1 � i � qe; is chosen]

� Pr
f
R
 P l

[((DFKo g)(y0) 6= Null] = Pr
f
R
 P l

[z00 = x0n+1] =
1

2l
+
qe(qe � 1)

2l+1
:

For any forgery of type (2), x0np+1 = xpnp+1 = zp0 , which is random. Hence, event x0np+1 = xnp+1 has

the same distribution as zp0 and happens with probability 1
2l
+ qe(qe�1)

2l+1
whenever f 0

R
 P l (by the same

argument as in case (1)). Hence,

Pr
f
R
 P l

[((DFKo g)(y0) 6= Null and ((DFKo g)(y0) = x 6= xi; 1 � i � qe; is chosen]

� Pr
f
R
 P l

[x0np+1 = xnp+1] = Pr
f
R
 P l

[xnp+1 = zp0 ] = Pr
f 0
R
 P

[xnp+1 = zp0 ]

=
1

2l
+
qe(qe � 1)

2l+1
:

To complete the proof of the lemma, we partition forgeries of type (3) further. We �rst distinguish the
case whereby there exists a ciphertext block position j; 0 � j � n + 1, such that the input to f�1 at
that block position does not collide with any of possible inputs to f used during encryption. That is,
y00 6= yp0;8p; 1 � p � qe or y

0
j � x0j�1 =2 Se. Then, by the Corollary to the Main IGE Lemma (Lemma 1),

Pr
f
R
 P l

[x0n+1 = z00] �
(n+ 1)�e

l2l
+

(n+ 1)(2n+ 1)

2l+1
:

Hence,

Pr
f
R
 P l

[((DFKo g)(y0) 6= Null and ((DFKo g)(y0) = x 6= xi; 1 � i � qe; is chosen]

� Pr
f
R
 P l

[((DFKo g)(y0) 6= Null] = Pr
f
R
 P l

[x0n+1 = z00] �
(n+ 1)�e

l2l
+

(n+ 1)(2n + 1)

2l+1
:
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The lemma is proven for this case also.

In all remaining type (3) cases, all inputs to f�1 during decryption collide with some inputs to f used
during encryption. That is, y00 = yp0 ; for some p; 1 � p � qe or all y

0
j � x0j�1 2 S

e;8j; 1 � j � n.

Let a type (3) forgery y0 di�er from any of the qe encrypted messages at block position j, 1 � j � n+ 1;
i.e., the adversary chooses x0i = xpi ;8i; 1 � i � j � 1. We show that plaintext obtained at position j during
the decryption of the forgery y0, namely x0j , can be chosen only with negligible probability, or that the
integrity condition happens with negligible probability. This completes the proof since the maximum of
all the probabilities of passing the integrity check and choosing all the plaintext of the forgery decryption
is negligible.

If the adversary chooses x0i = xpi , the chosen plaintext blocks could be obtained up to position j of the
forgery decryption. Now, we show that the chosen plaintext can be obtained at position j with only
negligible probability. We have two complementary cases to analyze: (a) j � n and (b) j = n+ 1.

(a) For j � n, we compute an upper bound on the probability of the integrity condition x0j = xj , where xj
is the chosen value. However, by de�nition, x0j = f�1(y0j � x0j�1) � y0j�1, and by hypothesis, y0j � x0j�1 2
Se;8j; 1 � j � n. Thus, a collision y0j � x0j�1 = yst � xst�1 must take place for some s; t, 1 � t � ns+1; 1 �
s � qe.

If y0j�x
0
j�1 = yst �x

s
t�1, 1 � s � qe; 1 � t � ns+1, then, since x0j = f�1(y0j�x

0
j�1)� y

0
j�1 and y0j�1 = ypj�1

by the de�nition of block position j, we obtain x0j = xst � yst�1 � y0j�1 = xst � yst�1 � ypj�1. Now note
that (s; t) 6= (p; j) , (s; t � 1) 6= (p; j � 1) by the de�nition of block position j. This means that
x0j = xj , xst � yst�1 = xj � ypj�1. However, the two sides of the equation xst � yst�1 = xj � ypj�1 are

random because xst ; xj are chosen constants and yst�1; y
p
j�1 are random since f

R
 P l. The two sides of the

equation are also independent of each other whenever yst�1 and ypj�1 are distinct (i.e., do not collide with
each other). To compute the probability that yst�1 and ypj�1 are distinct, we de�ne D (Distinct) to be the
event that all inputs to function f = FK used during the qe encryptions are distinct. Fact 1 provides a
bound for the probability of D.

Fact 1

Let D Distinct denote the event at all inputs to function f = FK used during the qe encryptions ypk =
f(xpk � ypk�1)� xpk�1; 1 � p � qe; 1 � k � np, are distinct. Then,

Pr
f
R
 Rl;l

[D] � �R
def
=

1

2l+1

 
�2e
l2
�
�e
l

!

and

Pr
f
R
 P l

[D] � �P
def
= �R +

�e(�e � l)

l22l+1
=

�e(�e � l)

l22l
:

Then, the probability of event x0j = xj , xst � yst�1 = xj � ypj�1 can be bound by using standard
conditioning and Fact 1.

Pr
f
R
 P l

[x0j = xj] � Pr
f
R
 P l

[x0j = xj j D] + Pr
f
R
 P l

[D] � Pr
f
R
 P l

[x0j = xj j D] +
�e(�e � l)

l22l
:

However, by the same argument as that used in (1), we obtain

Pr
f
R
 P l

[x0j = xj j D] = AdvD(P
l; Rl;l) + Pr

f
R
 Rl;l

[x0j = xj j D];
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or

Pr
f
R
 P l

[x0j = xj j D] �
�e(�e � l)

l22l+1
+

1

2l
;

since, when f
R
 Rl;l and event D is true, yst�1 and ypj�1 where (s; t�1) 6= (p; j�1), are random, uniformly

distributed, and independent, and thus Pr
f
R
 Rl;l

[x0j = xj jD] = 1=2l. Hence,

Pr
f
R
 P l

[x0j = xj ] �
3�e(�e � l)

l22l+1
+

1

2l
;

which shows that Pr
f
R
 P l

[x0j = xj ] is negligible.

(b) For j = n+1, we compute an upper bound for the probability of the integrity condition x0j = z00. (The
proof of the negligible upper bound for this case is almost identical to that for case j � n. We repeat it here
for completeness.) However, by de�nition x0j = f�1(y0j � x0j�1)� y0j�1, and by hypothesis y0j � x0j�1 2 Se.
Hence, a collision y0j � x0j�1 = yst � xst�1 must take place for some s; t, 1 � t � ns + 1; 1 � s � qe.

If y0j�x
0
j�1 = yst �x

s
t�1, 1 � s � qe; 1 � t � ns+1, then, since x0j = f�1(y0j�x

0
j�1)� y

0
j�1 and y0j�1 = ypj�1

by the de�nition of of block position j, we obtain x0j = xst � yst�1 � y0j�1 = xst � yst�1 � ypj�1. Note that
(s; t) 6= (p; j) , (s; t� 1) 6= (p; j � 1) by the de�nition of block position j.

The integrity condition x0j = z00 , xst � yst�1 = zp0 � ypj�1, where the right hand side is random and
independent of the left hand side. This is the case because zp0 is random and independent of yst�1 and
ypj�1, since it is generated using function f 0 with key K 0 6= K, and xst 6= xpj = zp0 , since block position
(s; t) 6= (p; j); j = n+ 1, and xst is a chosen constant. Using the same arguments as in case (a), we obtain
an upper bound for the probability of x0j = z00, as follows:

Pr
f
R
 P l

[x0j = z00] = Pr
f 0
R
 P

[x0j = z00] �
1

2l
+
qe(qe � 1)

2l+1
:

Finally, for any possible forgery, the probability of success is bounded by the maximum of the probabilities
obtained for cases (1) - 3(a)(b); i.e.,

Pr
f
R
 P l

[((DFKo g)(y0) 6= Null and ((DFKo g)(y0) = x 6= xi is chosen; 1 � i � qe] �

max

�
(n+ 1)�e

l2l
+
(n+ 1)(2n+ 1)

2l+1
;
3�e(�e � l)

l22l+1
+

1

2l
;
1

2l
+
qe(qe � 1)

2l+1

�
:

Hence, when the scheme is implemented with the SPRP family F ,

Pr
f
R
 F

[((DFKo g)(y0) 6= Null and ((DFKo g)(y0) = x 6= xi; 1 � i � qe is chosen] � �0
def
=

max

�
(n+ 1)�e

l2l
+

(n+ 1)(2n + 1)

2l+1
;
3�e(�e � l)

l22l+1
+

1

2l
;
1

2l
+
qe(qe � 1)

2l+1

�
+ �;

and �0 is negligible. ut

Proof of Lemma 6

This proof is based �rst on replacing SPRP family F with the family of random functions GS, i.e., f; f
R
 

GS . Next, we use the idea that if the inputs to function f in the reverse pass of the decryption are di�erent
from all the quantities obtained at encryption (either from the unknown plaintext of the challenges or the
plaintext the adversary chooses to encrypt), and if they are di�erent (i.e., do not collide among themselves),
the plaintext outcome of the forgery is random, uniformly distributed, and independent of anything else
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(since, for these input, f = v and v
R
 Rl;l). Hence, for the most part, the proof focuses on determining

upper bounds for these events.

Let qe = q1 + q2 with q1; q2 de�ned in the NM-CPA, and de�ne the following sets (encompassing both the
unknown plaintexts corresponding to the ciphertext challenges, and the plaintexts chosen by the adversary):

Se = fzpk � xpk�1; 1 � p � qe; 1 � k � np + 1g

Sd = fzs � xs�1; 1 � s � n+ 1g:

T e = fxpk � zpk�1; 1 � p � qe; 1 � k � np + 1g:

If the elements of the set Sd do not collide with each other (i.e., the set Se is collision-free) and Se\Sd = �
(i.e., the empty set), then the inputs to the functions f at decryption are new, and hence the quantities
f(zs�xs�1) = v(zs�xs�1) are random, uniformly distributed, and mutually independent and independent
of anything else. Furthermore, all plaintexts xs = f(zs � xs�1)� zs�1 are random, uniformly distributed,
and mutually independent and independent of anything else. Hence, there is no relationship among the
decrypted plaintext and the challenge plaintexts.

Let us de�ne the following events:

D : T e is collision-free

A : Se \ Sd = �

B : Sd is collision-free:

Event D is the event Distinct from Fact 1, hence

Pr
f
R
 P l

[D] � �P
def
=

�e(�e � l)

l22l
:

In the following we consider Pr[:] = Pr
f
R
 GS

[:] and drop the subscript.

If both the events A and B are true, then the event R(x1; � � � ; xq2 ; (DFKo g)(y)) is false, i.e., there does not
exist any relationship between the decrypted plaintext and the challenge plaintexts. Hence, the following
implication is true: R(x1; � � � ; xq2 ; (DFKo g)(y)) ) A and B � A or B. Hence,

(DFKo g)(y) 6= Null and R(x1; � � � ; xq2 ; (DFKo g)(y)) ) (DFKo g)(y) 6= Null and (A or B)

Hence,

Pr[(DFKo g)(y) 6= Null and R(x1; � � � ; xq2 ; (DFKo g)(y))] �

Pr[((DFKo g)(y) 6= Null and (A or B)] � Pr[A or B]:

Now, we compute an upper bound for the probability of event A or B.

Let us de�ne the following set:
Sdi = fzs � xs�1; 1 � s � ig

and events:

Ai : Se \ Sdi = �

Bi : Sdi is collision-free:

12



Hence, event A = An+1 and event B = Bn+1. For any index i, we obtain, by standard conditioning,

Pr[Ai+1 or Bi+1] � Pr[Ai+1 or Bi+1 j Ai and Bi] + Pr[Ai or Bi];

and, using standard conditioning repeatedly, we obtain

Pr[A or B] = Pr[An+1 or Bn+1]

� Pr[An+1 or Bn+1 j An and Bn] + Pr[An or Bn]:

� Pr[A1 or B1] +
nX
i=1

Pr[Ai+1 or Bi+1 j Ai and Bi]:

First, we determine an upper bound for Pr[Ai+1 or Bi+1 j Ai and Bi]. By union bound,

Pr[Ai+1 or Bi+1 j Ai and Bi] � Pr[Ai+1 j Ai and Bi] + Pr[Bi+1 j Ai and Bi]

= Pr[zi+1 � xi 2 S
e j Ai and Bi] + Pr[zi+1 � xi 2 S

d
i j Ai and Bi]:

To see this, note that if event Ai is true, then Se \Sdi = �. Hence, since Sdi+1 = Sdi [ fzi+1 � xig, then, for
Se \ Sdi+1 6= �, zi+1 � xi must be in Se. Hence, Pr[Ai+1 j Ai and Bi] = Pr[zi+1 � xi 2 Se j Ai and Bi].
Similarly, if event Bi is true, i.e., S

d
i is collision-free, then for Bi+1 to be false, zi+1 � xi must be in Sdi .

Hence, Pr[Bi+1 j Ai and Bi] = Pr[zi+1 � xi 2 S
d
i j Ai and Bi].

Furthermore, by union bound,

Pr[zi+1 � xi 2 S
e j Ai and Bi] �

qeX
p=1

np+1X
k=1

Pr[zi+1 � xi = zpk � xpk�1 j Ai and Bi]

Pr[zi+1 � xi 2 S
d
i j Ai and Bi] �

iX
j=1

Pr[zi+1 � xi = zj � xj�1 j Ai and Bi]:

Whenever Ai and Bi are true, element zi � xi�1 has never been seen before, and hence f(zi � xi�1) =
v(zi�xi�1) is random, uniformly distributed and independent of anything else. Thus, xi = f(zi�xi�1)�zi�1
is random, uniformly distributed, and independent of anything else, and each of the events zi+1 � xi =
zpk � xpk�1 and zi+1 � xi = zj � xj�1 happens with probability 1=2l. Hence,

Pr[zi+1 � xi 2 S
e j Ai and Bi] �

qeX
p=1

np+1X
k=1

Pr[zi+1 � xi = zpk � xpk�1 j Ai and Bi] =
qeX
p=1

np+1X
k=1

1

2l
�

�e
l2l

Pr[zi+1 � xi 2 S
d
i j Ai and Bi] �

iX
j=1

Pr[zi+1 � xi = zj � xj�1 j Ai and Bi] =
iX

j=1

1

2l
=

i

2l
:

Then

Pr[Ai+1 or Bi+1 j Ai and Bi] �
�e
l2l

+
i

2l
:

Second, we �nd an upper bound for Pr[A1 or B1]. S
d
1 = fz1 � x0g has only one element, and hence it is

collision free. Therefore, event B1 is always true. Hence, we �nd an upper bound for Pr[A1]. We introduce
event

C : z0 6= zp0 and z0 6= yp0 ; 8p; 1 � p � qe:

By standard conditioning,
Pr[A1] � Pr[A1 j C] + Pr[C]:

13



By union bound,

Pr[A1 j C] �
qeX
p=1

np+1X
k=1

Pr[z1 � x0 = zpk � xpk�1 j C]:

Now, let us assume event C is true. In this case, z0 has never been the input to f 0, and hence x0 = f 0(z0) =

v0(z0); v
0 R Rl;l is random, uniformly distributed, and independent of anything else, hence

Pr[z1 � x0 = zpk � xpk�1 j C] =
1

2l
:

Thus,
qeX
p=1

np+1X
k=1

Pr[z1 � x0 = zpk � xpk�1 j C] �
qeX
p=1

np+1X
k=1

1

2l
�

�e
l2l

;

and
Pr[A1] �

�e
l2l

+ Pr[C]:

Now, we �nd an upper bound for Pr[C]. Using the conditioning on the event D (Distinct) and standard
conditioning, we obtain:

Pr[C] � Pr[C j D] + Pr[D];

where, by Fact 1 and the fact that f
R
 GS means that f; f 0; f 00

R
 P l, we have

Pr[D] = Pr
f
R
 P l

[D] � �P
def
=

�e(�e � l)

l22l
:

Next, we use the following claim (whose proof is at the end of this Lemma).

Claim

Pr[C j D] �
2(n+ 1)�e

l2l
+

(n+ 1)2

2l
+
�e(�e + l)

l22l+1
:

Thus,

Pr[C] � �P +
2(n+ 1)�e

l2l
+
(n+ 1)2

2l
+
�e(�e + l)

l22l+1
:

Hence,

Pr[A1 or B1] �
�e
l2l

+ �P +
2(n+ 1)�e

l2l
+

(n+ 1)2

2l
+
�e(�e + l)

l22l+1
:

Furthermore,

Pr[A or B] � Pr[A1 or B1] +
nX
i=1

Pr[Ai+1 or Bi+1 j Ai and Bi]

� �P +
�e
l2l

+
�e(�e + l)

l22l+1
+
2(n+ 1)�e

l2l
+
(n+ 1)2

2l
+

nX
i=1

�
�e
l2l

+
i

2l

�

� �P +
�e
l2l

+
�e(�e + l)

l22l+1
+
2(n+ 1)�e

l2l
+
(n+ 1)2

2l
+
n�e
l2l

+
n2

2l+1

� �P +
�e(�e + l)

l22l+1
+

3(n+ 1)�e
l2l

+
3(n+ 1)2

2l+1
:

14



Finally,

Pr[(DFKo g)(y) 6= Null and R(x1; � � � ; xq2 ; (DFKo g)(y))] �

Pr[((DFKo g)(y) 6= Null and (A or B)] � Pr[A or B] �

�P +
�e(�e + l)

l22l+1
+
3(n+ 1)�e

l2l
+
3(n+ 1)2

2l+1
:

Hence, when the scheme is implemented with the pseudo-random family F , by Fact 0 (with �v=l = 2(n+1)),
we have

Pr
f
R
 F

[(DFKo g)(y) 6= Null and R(x1; � � � ; xq2 ; (DFKo g)(y))]

� �P +
�e(�e + l)

l22l+1
+

3(n+ 1)�e
l2l

+
3(n+ 1)2

2l+1
+
2(n+ 1)(2n+ 1)

2l+1
+ �;

i.e., the scheme is NM-CPA secure. ut

Proof of Claim

We introduce the set of all inputs to function f 00 at decryption in the reversed direction, namely

Re = fypk � zpnp�k+2; 1 � p � qe; 1 � k � np + 1g:

Note that zp0 does not appear in the de�nition of set Re.

To compute Pr[C j D] we divide the choice of ciphertext forgeries into several complementary classes, then
compute the probability for each class of forgeries. The forged ciphertext that the adversary generates can
fall into one of the following complementary classes:
(a) the forgery is a truncation of a known valid ciphertext string;
(b) the forgery is an extension of a known valid ciphertext string;
(c) the forgery is neither a truncation nor an extension of a known ciphertext string. Case (c) can be
further divided into two complementary subcases:
(c1) the forged ciphertext string has a common pre�x with an existent ciphertext;
(c2) the forged ciphertext is di�erent from any existent ciphertext starting with its �rst block (y0).

For each classes of forgery we �nd an upper bound the probability that z0 collides with some zp0 or yp0.

(a) If the forgery is a truncation of a valid ciphertext, then there exists s; 1 � s � qe : y = y0y1 � � � yn+1; yk =
ysk;8k; 0 � k � n + 1 < ns + 1. Then z0 = zsns�n by the de�nition of the BIGE$ decryption. 4 Then,
we have the collision between zsns�n and zp0 , or between zsns�n and yp0; 1 � p � qe, w here zp0 and yp0 are
computed by enciphering with a di�erent key. Furthermore, Pr[C j D] = Pr

f
R
 GS

[C j D], (based on our

notation), then f; f 0; f 00
R
 P l. Hence, an adversary can distinguish between f 0

R
 P l and f 0

R
 Rl;l in the

computation of zp0 or yp0; 1 � p � qe. Hence,

Pr[C j D] = Pr
f
R
 GS

[C j D]
def
= Pr

f;f 0;f 00
R
 GS ;f;f 0;f 00

R
 P l

[C j D]

= Pr
f;f 0;f 00

R
 GS;f;f 0;f 00

R
 P l

[C j D]� Pr
f;f 0;f 00

R
 GS ;f;f 00

R
 P l;f 0

R
 Rl;l

[C j D]

+ Pr
f;f 0;f 00

R
 GS;f;f 00

R
 P l;f 0

R
 Rl;l

[C j D] � AdvD(P
l; Rl;l) + Pr

f;f 0;f 00
R
 GS ;f;f 00

R
 P l;f 0

R
 Rl;l

[C j D];

4Since y0 = ys0, then zn+1 = zsns+1; furthermore, if y1 = ys1 then zn = f 0�1(y1 � zn+1)� y0 = f 0�1(ys1 � zsns+1)� ys0 = zsns ;
etc.
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where the advantage refers to distinguishing between f 0
R
 P l and f 0

R
 Rl;l. Since there are 2qe queries

to f 0, it follows that

AdvD(P
l; Rl;l) �

2qe(2qe � 1)

2l+1
=

qe(2qe � 1)

2l
:

We introduce the notation Pr0[C j D]
def
= Pr

f;f 0;f 00
R
 GS ;f;f 00

R
 P l;f 0

R
 Rl;l

[C j D], and we compute an upper

bound for Pr0[C j D]. By union bound,

Pr0[C j D] �
qeX
p=1

�
Pr0[z0 = zp0 j D] + Pr0[z0 = yp0 j D]

�
:

Since zp0 = f 0(rp0) and yp0 = f 0(zpnp+1) are encrypted with a di�erent key than the one used to obtain

zsns�n; ns � n � 1, then zp0 and yp0 are random, uniformly distributed, and independent of zsns�n since

f 0
R
 Rl;l. Hence,

Pr0[z0 = zp0 j D] = Pr0[zsns�n = zp0 j D] =
1

2l

Pr0[z0 = yp0 j D] = Pr0[zsns�n = yp0 j D] =
1

2l
:

Hence, by union bound,

Pr0[C j D] �
2qe
2l

:

Hence,

Pr[C j D] �
qe(2qe � 1)

2l
+

2qe
2l

=
qe(2qe + 1)

2l
:

(b) If y = yi0y
i
1 � � � y

i
ni+1 � � � yn+1 where n > ni, then we show that yni+2 � zn�ni 2 R

e with low probability,
and this enables us to show that events z0 = zp0 or z0 = yp0 occur with low probability in a manner similar
to the Main IGE Lemma. Hence, by standard conditioning we have

Pr[C j D] � Pr[C j D and yni+2 � zn�ni =2 R
e] + Pr[yni+2 � zn�ni 2 R

e j D]:

If yni+2 � zn�ni =2 Re and f
R
 GS, then z0 = zp0 happens with probability (n+1)�e

l2l
+ (n+1)2

2l+1
in a manner

similar to the Corollary to the Main IGE Lemma, since zp0 is obtained by encrypting with a di�erent key.
The same conclusion is reached for the collisions z0 = yp0. Hence,

Pr[C j D and yni+2 � zn�ni =2 R
e] �

2(n+ 1)�e
l2l

+
2(n+ 1)2

2l+1
=

2(n+ 1)�e
l2l

+
(n+ 1)2

2l
:

Now, we compute an upper bound for Pr[yni+2 � zn�ni 2 Re j D]. For the extension forgery, we have
zn�ni = zi0 = f 0(ri0) by the de�nition of the decryption of the BIGE$ scheme. (The argument is similar
to the one used in case (a).) Hence, we use the same argument as in case (a) for the computing an upper

bound for the probability when f
R
 GS. We use the advantage of an adversary in making the distinction

between f 0
R
 P l and f 0

R
 Rl;l in computing zi0

Pr[yni+2 � zn�ni 2 R
e j D] = Pr

f
R
 GS

[yni+2 � zn�ni 2 R
e j D]

= Pr
f;f 0;f 00

R
 GS ;f;f 0;f 00

R
 P l

[yni+2 � zn�ni 2 R
e j D]

= Pr
f;f 0;f 00

R
 GS ;f;f 00

R
 P l;f 0

R
 Rl;l

[yni+2 � zn�ni 2 R
e j D]

� Pr
f;f 0;f 00

R
 GS ;f;f 00

R
 P l;f 0

R
 Rl;l

[yni+2 � zn�ni 2 R
e j D]

+ Pr
f;f 0;f 00

R
 GS ;f;f 00

R
 P l;f 0

R
 Rl;l

[yni+2 � zn�ni 2 R
e j D]

� AdvD(P
l; Rl;l) + Pr

f;f 0;f 00
R
 GS ;f;f 00

R
 P l;f 0

R
 Rl;l

[yni+2 � zn�ni 2 R
e j D]:
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In a manner similar to case (a),

AdvD(P
l; Rl;l) �

qe(2qe � 1)

2l
:

Now, we compute an upper bound for the second term Pr
f;f 0;f 00

R
 G;f;f 00

R
 P l;f 0

R
 Rl;l

[:], which we denote by

Pr0[:]; i.e., we compute an upper bound for Pr0[yni+2 � zn�ni 2 Re j D]. Since zi0 = f 0(ri0); f
0 R Rl;l is

computed with a di�erent key, it follows that zi0 is random and uniformly distributed, and since it does not
appear in Re, then zi0 is independent of any terms in Re. Hence, since yni+2 is a constant, it follows that
yni+2� zn�ni = yni+2� z

i
0 is random uniformly distributed, and independent of any element of Re. Hence

Pr0[yni+2 � zn�ni 2 R
e j D] �

jRej

2l
�

�e
l2l

:

Hence,

Pr[yni+2 � zn�ni 2 R
e j D] �

qe(2qe � 1)

2l
+

�e
l2l

;

and, by standard conditioning,

Pr[C j D] � Pr[C j D and yni+2 � zn�ni =2 R
e] + Pr[yni+2 � zn�ni 2 R

e j D]

�
2(n+ 1)�e

l2l
+

(n+ 1)2

2l
+
qe(2qe � 1)

2l
+

�e
l2l

:

(c1) Let j be the index of the �rst block where yj 6= yij; 1 � j � minfn + 1; ni + 1g. By standard
conditioning,

Pr[C j D] � Pr[C j D and yj � zn�j+2 =2 Re] + Pr[yj � zn�j+2 2 R
e j D]:

In a similar manner to the proof for the forgeries of type (b) (using the Corollary to the Main IGE Lemma),
we have

Pr[C j D and yj � zn�j+2 =2 Re] �
2(n+ 1)�e

l2l
+

(n+ 1)2

2l
:

Now, we �nd an upper bound for collisions between yj�zn�j+2 and y
p
k�z

p
np�k+2

; 1 � p � qe; 1 � k � np+1.
Let Dj the event de�ning these collisions. Formally,

Dj : yj � zn�j+2 2 R
e:

Since j is the �rst index such that yj 6= yij, it follows that zn�j+2 = zini�j+2 = f(xini�j+2�z
i
ni�j+1

)�xini�j+1,

i.e., they are the image through f
R
 P l. Hence, as in case (b) an adversary can distinguish between f

R
 P l

and f
R
 Rl;l and

Pr[Dj j D] = Pr
f;f 0;f 00

R
 G;f;f 0;f 00

R
 P l

[Dj j D]

= Pr
f;f 0;f 00

R
 G;f;f 0;f 00

R
 P l

[Dj j D]� Pr
f;f 0;f 00

R
 G;f 0;f 00

R
 P l;f

R
 Rl;l

[Dj j D]

+ Pr
f;f 0;f 00

R
 G;f 0;f 00

R
 P l;f

R
 Rl;l

[Dj j D]

� AdvD(P
l; Rl;l) + Pr

f;f 0;f 00
R
 G;f 0;f 00

R
 P l;f

R
 Rl;l

[Dj j D]

where the advantage of the distinguisher takes into account that f sees �e
l
blocks, i.e.,

AdvD(P
l; Rl;l) �

�e(�e � l)

l22l+1
:
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Hence, we compute an upper bound for Pr0[Dj jD]
def
= Pr

f;f 0;f 00
R
 G;f 0;f 00

R
 P l;f

R
 Rl;l

[Dj j D]. By union bound

we have

Pr0[Dj j D] �
qeX
p=1

np+1X
k=1

Pr0[yj � zn�j+2 = ypk � zpn�k+2 j D]:

Since j is the �rst index such that yj 6= yij, it follows that zn�j+2 = zini�j+2. Hence, these collisions can

be expressed as yj � zini�j+2 = ypk � zpnp�k+2. For i 6= p or j 6= k, since D is true, zini�j+2 and zpnp�k+2 are

random, uniformly distributed, and mutually independent (since f
R
 Rl;l); hence, the collision happens

with probability 1=2l. If i = p; j = k, the collision would reduce to yj = yij, which would be impossible by
the de�nition of index j. Thus,

Pr0[Dj j D] �
jRej

2l
=

�e
l2l

:

Hence,

Pr[Dj j D] �
�e(�e � l)

l22l+1
+

�e
l2l

=
�e(�e + l)

l22l+1
:

Thus, by standard conditioning,

Pr[C j D] � Pr[C j D and Dj ] + Pr[Dj j D]

�
2(n+ 1)�e

l2l
+

(n+ 1)2

2l
+
�e(�e + l)

l22l+1
:

(c2) If y0 6= yp0 ;8p; 1 � p � qe, then zn+1 is random, uniformly distributed, and independent of any zpk since
it is encrypted with a di�erent key. The same argument as in case (c1) is applied to y1 � zn+1. Hence,

Pr[C j D] �
2(n+ 1)�e

l2l
+

(n+ 1)2

2l
+
�e(�e + l)

l22l+1
:

Thus, for any forgery type,

Pr[C j D] �
2(n+ 1)�e

l2l
+

(n+ 1)2

2l
+
�e(�e + l)

l22l+1
:

ut

Proof of Lemma 7

This proof is similar to the Proof of Lemma 6. Let Pr[:] = Pr
f
R
 GS

[:]. Let y be any forgery, y 6= yp; 1 �

p � qe. If the events A and B that are de�ned in the proof of Lemma 6 are true, then the resulting

plaintext is random and uniformly distributed (since f; f 0; f 00
R
 GS and we have inputs to f that have

not been seen before). Thus, the condition xn+1 = 0 happens with probability 1=2l. Hence, by standard
conditioning,

Pr[xn+1 = 0] � Pr[xn+1 = 0 j A and B] + Pr[(A or B)]

�
1

2l
+ �P +

�e(�e + l)

l22l+1
+

3(n+ 1)�e
l2l

+
3(n+ 1)2

2l+1
:

Hence, when the scheme is implemented with the SPRP family F , we have by Fact 0,

Pr
f
R
 F

[xn+1 = 0] � �P +
�e(�e + l)

l22l+1
+

3(n+ 1)�e
l2l

+
3(n+ 1)2

2l+1
+

2(n+ 1)(2n + 1)

2l+1
+ �:
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Finally, the integrity condition passes with probability

Pr
f
R
 F

[xn+1 6= 0] = 1� Pr
f
R
 F

[xn+1 = 0]

� 1�

 
�P +

�e(�e + l)

l22l+1
+

3(n+ 1)�e
l2l

+
3(n+ 1)2

2l+1
+

2(n+ 1)(2n + 1)

2l+1
+ �

!
;

i.e., this probability is not negligible, and hence the scheme is not EF-CPA secure.

Since any forgery that passes the integrity check of scheme BIGE$-nzg includes at least a random block
with non-negligible probability, the scheme BIGE$, which is not EF-CPA secure, cannot be KPF-CPA and
PI-CPA secure. ut

Proof of Fact 1

It is clear that if all inputs to f = FK are distinct, then the ciphertext blocks obtained at encryption are
random, uniformly distributed, and mutually independent. Let ypk = f(xpk� ypk�1)� ypk�1 with all distinct
inputs to f . It follows that f(xpk � ypk�1) is random, uniformly distributed, and independent of anything
else, and hence ypk is random, uniformly distributed, and independent of anything else.

To bound the probability of the event de�ning collisions in the input to f , namely D, we use the same
proof idea used by Bellare et al. [2] in their proof of the Main CBC Lemma. The only di�erence is that,
in this case, the collisions include only the given plaintext strings and there is no notion of left or right
plaintext strings. Hence, following the proof of the Main CBC Lemma, the size of the prohibited set in
this case is half of the size obtained by Bellare et al.; viz., their Claim 4 [2].

Up to now, we have considered f = FK a random function. When f is a random permutation, the bound
changes by adding the term 1

2l+1
�e
l

��e
l
� 1

�
. ut
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