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Abstract

We show two weaknesses in the the authentication functionality of GCM when it is used
with a short authentication tag. The first weakness raises the probability of a successful forgery
significantly. The second weakness reveals the authentication key if the attacker manages to
create successful forgeries.

1 Introduction

GCM is an authenticated-encryption block cipher mode proposed by David McGrew and John Viega
[3, 4]. NIST is currently considering standardizing additional authenticated-encryption modes of
operation, and GCM is one of the candidates.

GCM encrypts the message using the block cipher in counter mode, and computes the authentication
tag using a polynomial over GF(2128).

There are many situations in which short authentication tags are used. This is why many authenti-
cated encryption modes, including GCM, allow a range of tag sizes. A system designer who uses a
32-bit authentication tag can reasonably assume that the probability of a successful forgery is close
to 2−32. As we will show, GCM does not meet this expectation.

In section 2 we give some critique on the engineering aspects of the GCM design. The rest of the
paper describes the weaknesses in the authentication function of GCM when it is used with short
tags.

2 General comments on GCM

Before we go into the cryptanalysis of GCM we will give some general comments on the engineering
aspects of GCM. We evaluate GCM as a general-purpose cipher mode that could be used anywhere
data is being encrypted and authenticated.

A general-purpose cipher mode should adapt to the widely different circumstances in which ciphers
are used. From an engineering perspective, a mode that has acceptable behavior for almost all
situations is preferable to a mode that is very good in some situations and very bad in others.
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2.1 Message size

GCM limits the message size to 236 − 64 bytes. Though this might seem sufficient for now, it is
a significant limitation. Today 64 GB is a very large message, but there are already situations in
which a message of that size is reasonable. For example, it is entirely reasonable for a researcher
who works with large data sets to encrypt and transfer a 100 GB file to an associate. Though there
are few people today who work with large data sets like this, they will become very common as
data rates increase. Cryptographic primitives are used for several decades, and should be designed
with the future in mind. Encrypting a 100 GB file in 2015 might be as common as encrypting a 100
MB file today, or a 100 kB file in 1995. We feel that the message size restriction is unnecessarily
burdensome for a general-purpose cipher mode.

2.2 Bit sizes

GCM allows data strings to be of arbitrary bit length. Though nice in theory, this is a disadvantage
in practice. The odd bit lengths are a significant additional burden on the implementor and tester,
and the odd bit length are never used by any application. Most implementors will restrict the
implementation to handle only byte strings, but then the implementation cannot claim to implement
full GCM. In the end, there will be a need for two sets of test vectors and two certification standards:
one for byte-length implementations and one for bit-length implementations. This is all extra
work for a large number of people for no practical gain. We prefer a mode that restricts itself to
byte strings.

2.3 Performance and table size

As with any cryptographic function, performance is an important aspect. GCM implementations
can improve the performance of the authentication function by using large pre-computed tables that
contain multiples of H. As we will argue below, in the most common situations large-table imple-
mentations cannot be used, and performance comparisons should concentrate on implementations
that use small tables. The GCM authors give performance numbers for various table sizes, includ-
ing an implementation that uses a 256-byte table. Unfortunately, their results are for a relatively
rare CPU: the Motorola G4. Brian Gladman has published GCM performance numbers for x86
platforms, but unfortunately not for an implementation with small tables [1]. A useful performance
comparison with other modes would require actual performance data for small tables on the most
common desktop CPUs.

Using large tables to speed up the computation adds a significant extra cost. First of all, these
tables have to be pre-computed for each new key. A proper performance comparison takes the
pre-computation time into account. How fast can GCM encrypt a 1 kB message with a new key?
How fast can it encrypt a 100 kB message, or a 10 MB message?

For applications that use a large number of keys, the total size of all the tables becomes a problem.
For example, a wireless access point could be handling 1000 keys at any one time. If it uses a 64
kB table for each key, it needs 64 MB additional memory. This is unacceptable in small embedded
devices. Recomputing the table for every message or using smaller tables has a significant perfor-
mance penalty. These issues need to be taken into account when doing performance comparisons
with other authenticated encryption modes.
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Using large tables can also be a problem in many other situations. For example: suppose GCM
is implemented as part of a general library that provides a single abstract interface to a number
of authenticated encryption algorithms. An application uses the abstract API and the choice of
algorithm is made by a policy setting that can be changed. The application does not care, or even
know, whether it is using AES-GCM, AES-CCM, 3DES-CBC-HMAC-MD5, or a new algorithm
not yet invented when the application was written. There are many engineering and economic
advantages to such an implementation, and they are becoming more common. Designs like this are
being driven by the different national requirements for cryptographic implementations, as well as
the desire to allow third-party hardware acceleration of the cryptographic computations without
modifying existing applications.

A GCM implementation in such a library is given a new key. How large should it make the pre-
computed table? The application is not going to provide any information about the intended use
of the key, as that is not part of the abstract API. If the library uses a large table, it will consume
unacceptably large amounts of memory when an application uses a large number of keys. The
library almost certainly will have to restrict itself to using a small table.

The library could adaptively change the size of the table, creating a small table initially and then
a larger table when the key is used a lot. When a table has not been used for a while the large
table can be deleted to free up memory for other tables. Such constructions are possible, but add
significant complexity (and therefore development and testing costs) to the implementation. Even
worse, it produces a system with very unpredictable performance. When the load on the system
increases the throughput can suddenly drop when the library can no longer maintain enough large
tables in memory. The slowdown increases the number of keys that are actively in use, which makes
the problem worse. Even when the load drops back to the previous level, the throughput might not
recover because the loss of throughput has increased the number of keys in use.

In our experience, such adaptive implementation techniques do not work well. There are always
situations in which the adaptive technique fails to implement a reasonable solution, which results
in an unexpected performance drop that is hard to explain to a customer.

Another disadvantage is the sheer amount of confidential data these tables generate. The tables
contain key material, and have to be protected just like other key material. In some situations
this means the tables have to be kept in main memory and cannot be swapped to a swap file.
(Swap file security can be complicated, and using a swap file for keying material is forbidden by
certain certification standards.) Using non-swappable memory exacerbates the memory problems
introduced by using large pre-computed tables.

For these reasons we believe that the most widely used software implementations (which are in-
evitably in the form of a generic library) will use a small table of 256 bytes. Therefore, performance
comparisons of GCM to other modes should concentrate on GCM implementations that use a 256
byte table. Performance numbers for implementations with larger tables are less relevant as those
large tables are only useable in certain specific settings.

2.4 CTR mode collisions

GCM can use any size IV, but it prefers a 96-bit IV. As long as the IV is 96 bits there is never a
collision in the CTR mode encryption.
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For any other size of IV GCM uses the GHASH function to generate a pseudo-random 128-bit
starting value Y0 for the CTR mode encryption. This introduces the risk of collisions. After
about 264 blocks of data have been processed we can expect a collision on the counter values.
Unfortunately, GCM is rather fragile, as a collision between two messages tends to reveal the
authentication key H.

If we assume that all plaintext is known, then each GCM-encrypted message reveals a sequence of
key stream blocks of the form E(K, i), E(K, i + 1), . . .. Suppose one of these blocks is ever used
to encrypt the authentication tag of another message. The attacker can now decrypt the GHASH
intermediate result in the authentication computation. This leads to a simple polynomial equation
for the authentication key H which the attacker can solve. Thus, a single collision leads to a loss
of the authentication key, and a loss of all authentication security.

This is an example of a general phenomenon: block cipher modes lose some security once the
amount of data processed gets close to the birthday bound. However, the severity of the security
loss is different for different modes. Fragility, like the complete loss of authentication security, is
not a desirable property.

2.5 Length of the authentication tag

The GCM specifications [4] state that the length of the authentication tag T must be fixed for a
single key, but that is not repeated in the NIST submission [3].

Applications must be very careful not to allow different tag length with the same key as this leads
to a loss of security. This restriction should be made very clear to users of GCM.

3 Linear behavior of the GCM authentication function

The GCM authentication function has three inputs: the authentication key H, the additional
authentication data, and the ciphertext. Our attack does not use the additional authentication
data, so we ignore it for the rest of the paper.

The first part of the authentication function consists of converting the ciphertext to a sequence of
blocks which we will call C1, . . . , Cn where n is the total number of blocks used. Blocks C2, . . . , Cn

are the ciphertext, and C1 encodes the length of the ciphertext.1

The authentication function can now be written as

T := K0 +
n∑

i=1

CiH
i

in GF(2128), where K0 is a block of key stream generated by the block cipher. The authentication
tag consists of the leading bits of T .

We are going to analyze the authentication function in terms of linear operations on bits.
1Note that we number the Ci blocks in reverse order from the numbering used in the GCM specifications.
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3.1 Representations of GF(2128)

There are many ways to represent the field GF(2128). We use several of them.

• The abstract element of GF(2128) is written as a single capital letter: e.g. X.

• The 127-degree polynomial over GF(2) that corresponds to X is denoted as Poly(X).

• The 128 coefficients of the polynomial Poly(X) are individual bits which we write as X0, X1, . . . , X127.

• The vector of length 128 over GF(2) which is made up from the polynomial coefficients is
written as X. We have X = (X0 · · ·X127)T .

Readers who do not understand the relations between these notations can find the details in any
textbook on discrete mathematics.

3.2 Multiplication by a constant is linear

The function
X 7→ C ·X

in GF(2128) for some constant field element C is a linear function when viewed in terms of bit
vectors. In other words, for each C there is a 128× 128 matrix MC over GF(2) such that

C ·X = MCX

for all X. It is easy to see that the coefficients of MC are linear functions of the bits of C.

3.3 Squaring is linear

The function
X 7→ X2

in GF(2128) is linear. This is due to the fact that GF(2128) is a field of characteristic 2, which
implies that

∀A,B : (A + B)2 = A2 + B2

(There is an extra term 2AB but 2AB = AB ⊕AB = 0 so this term disappears.)

Thus, there is a fixed matrix MS such that

X2 = MSX

for all X. Note that MS does not depend on anything except the chosen field representation, which
is public.
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3.4 Error polynomials

We want to change the ciphertext of a GCM message without the change being detected by the
recipient. If the original ciphertext consists of the blocks Ci and the modified ciphertext of the
blocks C ′i, then we want

n∑

i=1

CiH
i =

n∑

i=1

C ′iH
i

or at least we need agreement in the leading bits that form the actual authentication tag. This can
be restated by saying that we need to have the leading bits of

∑
i(Ci − C ′i)H

i to be zero. We call
this difference polynomial the error polynomial, and for the rest of the paper we are looking for
coefficients Ei such that the leading bits of

∑

i

EiH
i

are zero. We restrict ourselves to only have nonzero coefficients when i is a power of two. In other
words, we look for coefficients Di such that the leading bits of

E :=
∑

i

DiH
2i

are zero, where Di := E2i . We should point out that the structure of GCM imposes significant
restrictions in choosing D0 as the D0 block is used to encode the length of the message and additional
authentication data. There are, however, no restrictions on any of the other Di values, although
the message length we need grows exponentially with the number of Di coefficients that we use.

Let’s look at the error polynomial in terms of bit vectors. We get

E :=
∑

i

MDi(MS)iH

where E is the result of the error polynomial. Observe that (MS)i is a fixed known matrix for each
value of i. If we define

AD :=
∑

i

MDi(MS)i

then we have E = AD ·H. The matrix AD is a 128× 128 matrix over GF(2).

Matrix MS is fixed, and the coefficients of each MDi are linear combinations of the bits of the
corresponding Di. Thus, the coefficients of each MDi(MS)i are a linear combination of the bits of
the corresponding Di, and the coefficients of AD are linear combinations of the bits of the Di’s.

4 Increasing the forgery probability

It is now easy to force bits of the error polynomial to zero. Write equations setting each of the bits
in a single row of AD to zero. Each equation imposes a single linear constraint on the choice we
have for the bits of the Di values. To force a single result bit to zero we have to create 128 linear
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constraints. If we have n different Di coefficients to choose, we have 128 · n free variables and we
can force n− 1 bits of the result to zero.2

Let’s assume that GCM is used with a 32-bit authentication tag. We furthermore assume that
there is a known (properly authenticated) message of 217 blocks (about 2 MB).

Due to the details of GCM, the block corresponding to D0 of our error polynomial encodes the
length of the message. In our first attack we won’t change the length of the message, so we have
D0 = 0.

The blocks D1, . . . , D17 can be freely chosen in any message forgery attempt. With 17 times 128
free variables we can find nonzero solutions that zero out 16 rows of the AD matrix as described
above. This, in turn, ensures us that the first 16 bits of the authentication tag will not change if
we apply the differences Di to the ciphertext. With only 16 effective authentication bits left, we
have a 2−16 chance of a successful forgery. This is a much higher chance than one would reasonably
expect from a 32-bit authentication code.

5 Recovering the authentication key

After 216 forgery attempts we can expect a successful forgery. A successful forgery reveals the fact
that the authentication tag wasn’t changed, which is the same as saying that the first 32 bits of E
were unchanged. We already knew the first 16 bits were zero, but the fact that the other 16 bits
are zero gives us 16 linear equations on the bits of H.

With these equations we can write H as follows:

H = XH ′

where H ′ is a 112-bit column vector representing the unknown bits of H, and X is a known 128×112
matrix derived from the linear equations we have for the bits of H. We now have

E = AD ·X ·H ′

and the matrix AD ·X is a 128 by 112 bit matrix. Forcing a complete row to zero only requires
112 free variables, so for the next forgery attempt we can use our 17× 128 free variables in the Di

values to zero 19 rows of the matrix AD ·X. This improves the forgery probability to 2−13.

This process can obviously be repeated. Every time a forgery is successful it reveals more informa-
tion about H, which makes the next forgery even easier. Towards the end we can create forgeries
where we have forced 31 of the error polynomial bits to zero, at which point the receiver is revealing
one bit of information about H with every forgery attempt.

This quickly leads to a situation in which the attacker knows all of H, after which arbitrary forgeries
can be created without any chance of detection by the receiver.

2If we were to try to force n bits to zero we would have as many variables as equations, and the obvious solution
of setting all Di = 0 would be the only one. The all-zero solution is of course not interesting.
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5.1 A disastrous usage scenario

There are some situations in which even shorter authentication tags are entirely reasonable. For
example, suppose a secure telephone system uses short authenticated and encrypted packets with
48 bytes of payload to transfer the voice data to the other side with low latency. Rather than have
a large authentication tag for each packet it is reasonable to use an 8-bit authentication tag, with
an expected forgery rate of 2−8. This is acceptable for voice systems, as an attacker that can forge
less than 0.5% of the packets cannot effectively forge the voice channel because the result would be
mostly silence due to bad packets. Let’s also assume that the communication protocol returns an
indication of packet failures (e.g. for quality control, error logging, vocoder switching, or any other
reason).

If the designer chooses GCM things fall apart very quickly. The attacker has two Di blocks to play
with, and can force one bit of the error polynomial result to zero. After 128 forgery attempts he
succeeds once and learns 7 bits of H. He can now force 2 bits of to zero, and learns the next 6 bits
after 64 attempts. All in all it takes, on average, less than 1000 forgery attempts to recover H, after
which the attacker can forge all the packets he wants. If each packet contains 20 ms of sound (a
reasonable value) the attacker could try 5 forgeries per second. This would introduce a 10% packet
loss rate, which results in a voice channel that is noticeably flawed but still quite useable. After
about three minutes the attacker knows H and can forge all subsequent packets.

6 Further improvements and future work

There are small improvements that can be made to this attack. The block that corresponds to D0

of the error polynomial encodes the message length. If the length of the message is not a multiple
of 16, then the attacker can extend the message length by appending zero bytes to the ciphertext.
This changes only the length encoding in D0. By introducing a nonzero D0, the all-zero solution is
no longer possible when we solve for suitable Di values. This means that the attacker can zero out
k bits of the tag using only k Di’s, rather than the k + 1 we had before. As the efficiency of the
attack is dominated by finding the first successful forgery, this doubles the efficiency of the attack.

We have only given a very simple analysis of how to proceed with the attack when linear equations
on the bits of H are known. There might be better ways of using this knowledge.

Every failure in a forgery attack provides partial knowledge about H. The attacker knows that at
least one of remaining bits in E was nonzero. Using this information is much harder, but it could
lead to further improvements.

Our attack uses only linear analysis. It might be fruitful to analyze GCM in terms of non-linear
functions in the bits of H. The coefficients of Hi are in general d’th degree functions of the bits
of H, where d is the Hamming weight of i. For example, allowing quadratic functions on the bits
of H in our attack would increase the number of Ei coefficients that can be used in the attack for
a given message length. The whole analysis then becomes far more complex, and it remains to be
seen whether this leads to an improved attack.
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7 Fixing GCM

The weakness of the authentication function of GCM is not fundamental to GHASH. It is well
known that an n’th degree polynomial can have n roots, so the collision probability for GHASH
when applied to a 2k block message is around 2−(128−k), which will be acceptable in many situations.

The problem is in the way the GCM truncates the GHASH result. The linear structure of GHASH
allows us to force individual bits of the truncated result to zero. GCM encrypts the GHASH result
by xorring it with a block of key stream, which does not prevent manipulation of the individual
output bits.

CWC (a competing mode) solves this very same problem by encrypting the hash result with the
block cipher before xorring it with a block of the key stream [2]. As far as we can see this construction
would resolve the GCM short-tag authentication weakness.

We must point out that we have not done any cryptanalysis or security proofs for this modified
version of GCM. We strongly urge people not to use this version until cryptanalytical review and
security proofs have been completed.

8 GCM’s proof of security

Our attack does not provide a counterexample to GCM’s proof of security [4]. Rather, our attack
is exactly on the boundary of what the proof claims the security of GCM is.

From the reactions we have gotten to our results it seems that most people in the field had not
realized that this type of attack was allowed by the security proof. This suggests that the crypto-
graphic community could do a better job documenting and explaining exactly what each security
proof promises. (This should not be taken as a criticism of the GCM authors. Their claims are in
fact easier to read than most. But there is still ample room for improvement.)

9 Recommendations

Based on these weaknesses, our recommendations are:

• Do not use GCM. Consider using one of the other authenticated encryption modes, such as
CWC, OCB, or CCM.

• If other considerations dictate the use of GCM, use it only with a 128-bit tag.

10 Conclusion

GCM has two authentication weaknesses.

The first weakness is that an n-bit tag provides only n − k bits of authentication security when
messages are 2k blocks long. Competing modes do not have this problem, or have it only when
n = 128, in which case the practical effect is minimal.
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The second weakness is that a successful forgery immediately reveals information about the authen-
tication key. This weakness exacerbates the consequences of the first one, and leads to a complete
loss of authentication security.
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