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Abstract. In this paper, we propose TMAC, Two-Key CBC Message
Authentication Code. TMAC is a refinement of XCBC (which is a variant
of CBC MAC) shown by Black and Rogaway. We use only (k + n)-bit
key for TMAC while XCBC uses (k + 2n)-bit key, where k is the key
length of the underlying block cipher and n is its block length. The cost
for reducing the size of secret keys is almost negligible; only one shift
and one conditional XOR. Similarly to XCBC, our algorithm correctly
and efficiently handles messages of arbitrary bit length.

1 Introduction

Let E : {0,1}* x {0,1}* — {0,1}" be a block cipher: it uses a k-bit key K €
{0,1}* to encrypt an n-bit block X € {0,1}" into an n-bit ciphertext ¥ =
FEx(X).

1.1 CBC MAC

The CBC MAC [8,10] is the simplest and most well-known algorithm to make a
MAC from a block cipher. Let M = M |[Ms|| - - -||My, be a message string such
that |My| = |[M2| = -+ = |My,| = n. Then CBCg, (M), the CBC MAC of M

under key K, is defined as C),, where
Cy = Exg(M; & Ci_y)

fore=1,...;mand Cy =0".

Bellare, Kilian, and Rogaway proved the security of the CBC MAC for fixed
message length mn [3]. Tt is well known, however, that the CBC MAC is not
secure if the message length varies.

1.2 EMAC

To deal with variable message length in blocks m, Encrypted MAC (EMAC)
was developed. EMAC encrypts CBCg, (M) using a new block cipher key K.
That 1s,

EMACg,, pg, (M) = Ex,(CBCgy (M)) .



EMAC was developed for the RACE project [4]. Petrank and Rackoff then proved
the security [12].

A problem is that the message length is limited to a positive multiple of n,
that is, the domain is limited to ({0, 1}")*. The simplest approach to deal with
messages whose lengths are not a multiple of n is to append the minimal 107 to
M as a padding so that the length is a multiple of n. Note that the padding is
appended even if the size of the message is already a multiple of n.

In this way, EMAC can deal with completely variable message length. In
other words, the domain is {0, 1}*. We call this EMAC*.

1.3 RMAC

Jaulmes, Joux, and Valette proposed RMAC [11] which is an extension of EMAC.
RMAC encrypts CBCp, (M) with K2 @ R, where R is an n-bit random string
and 1t 18 a part of the tag. That is,

RMACEKl Er, (M) = (EK2@R(CBCEK1 (M))’ R) :

They showed that the security of RMAC is beyond the birthday paradox
limit. However, the tag length is n bits longer than the other CBC MAC variants.

1.4 XCBC

EMAC* and RMAC require 1 + [(|M]| 4+ 1)/n] block cipher invocations. Black
and Rogaway proposed XCBC [5] which requires only [|M|/n] block cipher
invocations.

XCBC takes three keys: one block cipher key Kj, and two n-bit keys K,
and K3. XCBC makes two cases to deal with arbitrary length messages: M €
({0,1}H)* and M & ({0,1})*. If M € ({0,1})* then XCBC computes exactly the
same as the CBC MAC, except XORing an n-bit key K before encrypting the
last block. If M ¢ ({0,1})* then minimal 10 padding (¢ > 0) is appended to
M so that the length is a multiple of n, and XCBC computes exactly the same
as the CBC MAC, except XORing another n-bit key K3 before encrypting the
last block.

1.5 Owur Contribution

The key length of XCBC is (k + 2n) bits in total. To reduce the key length, the
authors suggested the following solution [6] for n < k < 2n. A secret key is a
single key K of E. Then for some distinct constants C1,, C1p, Cs, and Cj, let

K = the first & bits of Ex(Cr4)||Ex(Cls),
Ky = Eg(Cy),
Ks = Ex(Cs).

This key derivation uses one k-bit key, but it has two problems:



1. The number of block cipher invocations is no longer optimal since it requires
3 or 4 additional block cipher invocations.
2. Tt needs two key schedulings for two block cipher keys K and K.

These problems may be significant if one frequently changes the secret key.

In this paper, we propose TMAC, Two-Key CBC Message Authentication
Code. TMAC is a refinement of XCBC shown by Black and Rogaway. We use only
(k=+n)-bit key for TMAC while XCBC uses (k+2n)-bit key. The cost for reducing
the size of secret keys is almost negligible; only one shift and one conditional
XOR. Similarly to XCBC, the domain is {0,1}* and it requires [|M|/n] block
cipher invocations.

We show a comparison of CBC MAC and its variants in Table 1, where M
is the message and F is a block cipher. The third column gives the number of
invocations of E, assuming |M| > 0. The fourth column gives the number of
different keys used for F.

Table 1. Comparison of CBC MAC and Its Variants.

Name | Domain | #FE Invocations |#E Keys|Key Length
CBC MAC [8,10,3] |({o,1}™")™ M|/n 1 k
EMAC* [4, 12] 017 [T+ (M| + 1)/n 2 2k
RMAC [11] 0,17 [T+ [(M|+ 1)/n 2 2k
XCBC [5,6] | {o,1}" [[M]/n] 1 k+2n
TMAC (Our proposal)| {0, 1}* [|M|/n] 1 k+n

1.6 Other Related Works

Recently, some researchers proposed parallelizable MAC algorithms. Bellare,
Guérin, and Rogaway proposed XOR MAC [2]. Gligor, and Donescu proposed
XECB-MAC [9]. Black and Rogaway proposed PMAC [7].

However, these MAC algorithms have overhead as follows. XOR MAC re-
quires much more invocations of £ than the other MAC algorithms. XECB-MAC
requires modulo 2" arithmetic and three more invocations of £ than XCBC and
TMAC. PMAC needs to generate a sequence of masks.

Therefore, TMAC and XCBC are better than these algorithms in non-parallelizable
environment.

2 Mathematical Preliminaries

2.1 Notation

If A is a finite set then #A denotes the number of elements in A. For a set A,
z & A means that z is randomly chosen from A. If a € {0,1}" is a string then
|| denotes its length in bits. If o, 8 € {0, 1} are equal-length strings then o ® 8
is their bitwise XOR.



For an n-bit string o = a,—1 -+ - ayag € {0, 1}, let
a<<€l=a,_9a,_3 - -ajagl .

Similarly, let
a>1=0a,_1a,_2--asa; .

2.2 The Field with 2™ Points
We interchangeably think of a point @ in GF(2") in any of the following ways:

1. as an abstract point in a field;

2. as an n-bit string a,_1 ---ayaq € {0, 1}"™;

3. as a formal polynomial a(u) = An_1u” "1 4 4+ aju+ ag with binary coeffi-
clents.

To add two points in GF(2"), take their bitwise XOR. We denote this oper-
ation by a @ b.

To multiply two points, fix some irreducible polynomial f(u) having binary
coefficients and degree n. To be concrete, choose the lexicographically first poly-
nomial among the irreducible degree n polynomials having a minimum number
of coefficients. We list some indicated polynomials.

J) =uw+ut+uwd+u+1 for n = 64,
flu)=u'2®+u" +u?+u+1 forn=128, and
Jw) =u?® +ul® +ud +u? + 1 for n = 256.

To multiply two points @ € GF(2") and b € GF(2"), regard a and b as polyno-
mials a(u) = ap_1u” "t 4+ -+ aju+ ag and b(u) = by_qu" "L + -+ byu + by,
form their product ¢(u) where one adds and multiplies coefficients in GF(2), and
take the remainder when dividing ¢(u) by f(u).

Note that it is particularly easy to multiply a point ¢ € {0,1}" by u. We
show a method for n = 128, where f(u) = u!?®4+u”+u?+u+1. Then multiplying
@ = ajar---arag by u yields a product a,_1u? + ap_su?" ! 4+ - + aju® + agu.
Thus, if a1 =0, then ¢ -u=a < 1. If a,,_1 = 1, then we must add u*?® to
a < 1. Since u'? +u” +u?4u+1=0 we have u'?® = u”"+u? +u+1, so adding
u'?® means to xor by 0'2°10000111. In summary, when n = 128,

wou— a1 if ay97 =0, (1)
T (a < 1) 9012910000111 otherwise,

where a -u = a(u) - umod f(u).

Also, note that it is easy to devide a point a € {0,1}" by u, meaning that
one multiplies @ by the multiplicative inverse of u in the field: a-u~'. We show a
method for n = 128. Then multiplying a = a1s7- - - ayao by u™?! yields a product
AU 24ay_ou” 34 - Fasuta+agut. Thus, if ag = 0, then au™t = a > 1.
If ap = 1, then we must add u=" to @ > 1. Since u'® +u”" +u? +u +1 =10 we



have u'?" =u® 4+ u 41+ u"', so adding u=" = u®” + u® 4+ u 4 1 means to xor
by 10'2°1000011. In summary, whern n = 128,

1 Jax>1 if ag =0, 9
TR T U@ > 1) @ 101291000011 otherwise. (2)

3 Specification

3.1 Basic Specification

To use TMAC, one must specify a block cipher E.

The block cipher E is a function F : Kg x {0,1}* — {0,1}", where each
E(K,-) = Eg(-) is a permutation on {0,1}", K is the set of possible keys and
n is the block length. The popular block cipher to use with TMAC 1s likely to
be AES, but any other block cipher is fine.

TMAC is a function taking two keys K1 € Kg, Ky € {0,1}" and a message
M € {0,1}*, and returning a string in {0,1}". The key space K of TMAC is
K = Kg x {0,1}". The function is defined in Fig. 1 and illustrated in Fig. 2.

Algorithm TMACEKIJ(2 (M)
if M e ({o,1}™)*
then K + K> -uand P+ M
else K « K5 and P « M]|[10', where i < n — 1 — |M| mod n
Let P = Pi||P:||- - - || Pm, where |P1| = |P2| = = |Pm| =n
Co «— 0"
for i+ 1tom—1do
Ci & Er, (P ® Ci1)
return 7' = Ex, (P @ Cre1 & K)

Fig. 1. Definition of TMAC.

Fig. 2. lllustration of TMAC.

In the third line of Fig. 1 and in the last block of left hand side in Fig. 2,
K3 -uis a multiplication in GF(27). It can be computed with only one shift and
one conditional XOR as shown in (1).



3.2 User Option

We have two options on the computation of K - u. The first option is to keep
both K5 and K5 -u in the memory. It uses a memory of 2n bits.

The second option uses a memory of only n bits. We first keep Ks in the
memory. When K5 - u is needed, we compute Ky -u from Ky. We then replace
K5 with K5 - u in the memory. Next when K5 is needed, we compute K5 from
Ky -u and replace Ky -u with K5 in the memory. Repeat this process.

Note that it is easy to compute K5 from K5 - u since multiplication by u~
can be computed with only one shift and one conditional XOR as shown in (2).

1

3.3 Comparison with XCBC

XCBC is obtained by replacing Ks - 2 with K3 in Fig. 2, where K3 € {0,1}"
is a random string. In another way around, TMAC is obtained from XCBC by
replacing Kz with K5 - 2. The size of keys is reduced from (k+ 2n) bits to (k+n)
bits in this way.

4 Security of TMAC

4.1 Security Definitions

An adversary A is an algorithm with an oracle (or oracles). The oracle computes
some function. Without loss of generality, adversaries are assumed to never ask
a query outside the domain of the oracle, and to never repeat a query.

A block cipher is a function F : Kg x {0,1}" — {0, 1}" where Kg is a finite
set and each Fx(-) = F(K,-) is a permutation on {0, 1}"”. Let Perm(n) denote
the set of all permutations on {0, 1}". We say that P is a random permutation
if P is randomly chosen from Perm(n).

Note that {Fx(-) | K € Kg} should look like Perm(n). For an adversary A,
we define

AdVgP(A) « Pr(K & Kg cAPRC) = 1) — Pr(P £ Perm(n) S APO) = 1)

The adversary A cannot distinguish {Ex (-) | K € Kg} from Perm(n) if AdvP(A)
is negligible.

Similarly, a MAC function family from {0, 1}* to {0,1}" is a map F : Kp X
{0,1}* — {0,1}" where Kp is a set with an associated distribution. We write
Fi () for F(K,-). We say that AF'x() forges if A outputs (x, Fx(x)) where A
never queried # to its oracle Fi(-). Then we define

mac def - R Fr(-
AdvT*(A) = Pr(K & Kp : AT50) forges) .
Let Rand(*, n) denote the set of all functions from {0, 1}* to {0, 1}”. This set is
given a probability measure by asserting that a random element R of Rand(x*, n)



associates to each string « € {0,1}* a random string R(x) € {0,1}". Then we
define

adv"P* (A)  [pr(i & Kp o ATKO = 1) — Pr(R & Rand(x, n) : ARO = 1)

Also we write et
AQvPP(t,q) = max {adviP(A)},

where the maximum 1s over all adversaries who run in time at most ¢ and make
at most ¢ queries. Further we write

AdvE(t, q, p) def mjmx{l-\dv?ac(.%l)} and 1-\dvgPrf (t,q,p) def max {1-\dvgprf (.A)} ,

where the maximum is over all adversaries who run in time at most ¢, make at
most ¢ queries, each of which is at most p-bits.

4.2 Theorem Statements

We give the following information-theoretic bound on the security of TMAC. A
proof of this lemma is given in the next section.
We idealize a block cipher by a random permutation drawn from Perm(n).

Lemma 4.1. Let A be an adversary which asks at most q queries, each of which
is at most nm-bils. Assume m < 2" /4. Then

Pr(P; £ Perm(n); K £ {0,1}7 : ATMACPLG() = )
2 1 2
—Pr(R £ Rand(x,n) : AF0) =1)| < (377127—:)(] .
From the above theorem, it is standard to pass to the complexity-theoretic
result. (For example, see [3, Section 3.2].) Then we have the following corollary.

Corollary 4.1. Let E : Kg x {0,1}™ — {0,1}" be the underlying block cipher
used in TMAC. Then

(3m? + 1)¢?

()

AdeTii/[rfAC (t,q,nm) <

where t' =1+ O(mq) and ¢’ = mq.

The security of MAC is also derived in the usual way. (For example, see [3,
Proposition 2.7].) Then we have the following theorem.

Theorem 4.1. Let E : Kg x {0,1}" — {0,1}" be the underlying block cipher
used in TMAC. Then

(3m?+1)¢* +1

T SN

AdviRiac(t, ¢, nm) <

where t' =1+ O(mq) and ¢’ = mq.



Algorithm FCBCg, | By, Bk, (M)
if M € ({o,1}")*
then K « K>, and P+ M
else K « K, and P < M||10°, where i < n —1— |M| mod n
Let P = Pi||P:||- - - || Pm, where |Pi| = |P2| = -+ = |Pm| =n
Co «— 0"
fori: < 1tom—1do
Ci & Er (P ® Ci1)
return Ex(Prm @ Cro1)

Fig. 3. Definition of FCBC.

Fig. 4. lllustration of FCBC.

4.3 Proof of Lemma 4.1

For a random permutation P and a random n-bit string K, let

We first show that P(-), Q1(+), Q2(-) are indistinguishable from three independent
random permutations Py (-), Pa(), Ps(-).

Lemma 4.2. Let A be an adversary which asks at most q queries. Then

Pr(P & Perm(n); K & {0,1}" : AP PE®)PUKWE) — 1)
2
—Pr(Py, Ps, P3 £ Perm(n) : APLC)P2(),Ps(0) — | <

DN | W
3

A proof is given in the appendix.

Next we recall FCBC which appeared in the analysis of XCBC [5]. FCBC
is a function taking three keys Ky, Ky, K3 € Kp and a message M € {0, 1}*,
and returning a string in {0, 1}, where F is the underlying block cipher. The
function is defined in Fig. 3 and illustrated in Fig. 4. Black and Rogaway showed
the following result for FCBC [5].

Proposition 4.1 (Black and Rogaway [5]). Let A be an adversary which
asks at most q queries, each of which is at most nm-bits. Assume m < 2"/4.



Then
Pr(Py, Py, P3 & Perm(n) : AFOBCrPLrrs () = 1)

(2m? 4+ 1)¢?

—Pr(R £ Rand(x,n) : ARG = 1] < 5

We finally give a proof of Lemma 4.1.

Proof (of Lemma 4.1). By the triangle inequality,

Pr(P; £ Perm(n); K £ 0,1} : ATMACP K, () — 1) 3)
—Pr(R £ Rand(x,n) : ARG = 1)‘
is at most
Pr(Py, Py, Ps & Perm(n) : A¥CBCPLP P () — 1) "
4
—Pr(R il Rand(x,n) : ARG = 1)‘
R el B n . ATMACpk, x,() —
+ |Pr(Py & Perm(n); K &< {0,1}": A LR =) 5)
5
— Pr(Py, Py, P3 & Perm(n) : AFCBCR P pa() = 1)‘

Proposition 4.1 [5] gives us an upper bound on (4). We next bound (5). (5) is at
most

Pr(P & Perm(n); K £ {0, 1}" : APO-PIES) PRS0 —

— Pr(Py, Ps, Ps il Perm(n) : AP0 P2(),Pa () — )

since any adversary which does well in the setting (5) could be converted to
one which does well in the setting (6), where we assume that A in (6) makes at
most mq total queries to her oracles. By applying Lemma 4.2, (5) is bounded by
m?q?/2". Therefore (3) is at most

(2m? + 1)¢* n m2q? B (3m? +1)¢*

2n 2n 2n

5 Discussion

5.1 Summary of Properties

We give a summary of properties of TMAC in Table 2.



Table 2. Summary of Properties.

Security Function Message Authentication Code. More generally,
TMAC is a variable input length ({0,1}") pseudo-
random function (VIPRF) with fixed output length

({0, 1}").
FError Propagation Not applicable.

Synchronization Not applicable.

Parallelizability Sequential.

Keying Material Two keys. One block cipher key and one n-bit key,

where n is the block length of the block cipher.
Ctr/1V /Nonce Requirements |None. No counter/IV /nonce is used.

Memory Requirements Very modest. Memory requirements for the CBC
MAC plus n bit for key.
Pre-processing Capability Limited. Key-setup of the underlying block cipher

and K3 - u can be pre-computed. Additional pre-
computation is not possible.
Message-Length Requirements|Arbitrarily length. Any bit string M € {0,1}" can

be computed, including the empty string. The length
of the string need not be known in advance.
Ciphertext Expansion Not applicable.

5.2 Advantages

Short Key. TMAC requires only (k+n)-bit keys while XCBC uses (k+2n)-bit
keys.

Provable Security. We proved that TMAC is a variable input length ({0, 1}*)
pseudorandom function (VIPRF) with fixed output length ({0,1}") by as-
suming that the underlying block cipher is a pseudorandom permutation.

Efficiency. TMAC uses max{1, [|M]|/n]} block cipher calls. The overhead be-
yond block cipher calls 1s almost negligible.

Arbitrarily Message Length. Any bit string M € {0, 1}* can be computed,
including the empty string. The length of the string need not be known in
advance.

No Re-Keying. Whereas some competing schemes (e.g., in [1,4,11]) would
require invoking E with two or three different keys, TMAC requires only one
key as XCBC. Therefore any key-setup costs are minimized. This enhances
efficiency in both software and hardware.

No decryption. As for any CBC MAC variant, TMAC does not use decryption
of the block cipher.

Backwards Compatibility. TMAC with K, = 0" is backwards compatible
with the CBC MAC.

Simplicity. Because TMAC is simple, it is easily implemented in both software
and hardware.
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5.3 Limitations

We note the following limitations. They apply to any CBC MAC variants and
therefore none of them is specific to TMAC.

Sequential Block Cipher Calls. The CBC MAC and its variants, including
TMAC, are not parallelizable.

Limited Pre-processing Capability. Key-setup of the underlying block ci-
pher and K5 -u can be pre-computed. Additional pre-computation is not
possible without knowing the message.

5.4 Design Rationale

TMAC is generalized to TMAC family as follows. Let €y and Cs in {0,1}" be
two distinct constants. Let H : Kg x {0,1}" — {0, 1}" be a (universal) hash
function as follows, where K g is the set of possible keys of H.

For any y € {0,1}", #{K € Ky | Hx(C1) = y} = £,

For any y € {0, 1}", #{K € Ky | Hx(C2) =y} = #2K,LH, and

For any y € {0,1}", #{K € Ky | Hx(C1) & Hg(Co) = y} = F5.
By using C1,C» and H, TMAC family is specified in Fig. 5 and Fig. 6.

A
-~
=

—
[o2e]
~

—
Nej
=

AlgOI‘ithm TMACEKlyHK27C17C2 (M)
if M € ({o,1}™")*
then K «+ Hg,(C1) and P+ M
else K « Hy,(C2) and P « M|[10', where i < n — 1 — |M| mod n
Let P = Pi||P2||-- - ||Pm, where |Pi| = |P2| = -+ = |Pm| =n
Co «— 0"
for: <+ 1tom—1do
Ci & Er (P ® Ci1)
return Ex, (Prm @ Cpey @ K)

Fig. 5. Definition of TMAC family.

Fig. 6. lllustration of TMAC family.

We can then prove the security of TMAC family similarly to Lemma 4.1,
Corollary 4.1 and Theorem 4.1. The security bounds are exactly the same as
Lemma 4.1, Corollary 4.1 and Theorem 4.1.
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Our choice for TMAC corresponds to Kg = {0,1}", Hg(z) = K -2, C; = u,
and Cy = 1, or equivalently Hg(Cy) = K -u and Hg(C2) = K, where K €
{0, 1}". Tt is easy to see that our choice meets the conditions (7),(8), and (9).
Below, we list reasons of this choice.

— We adopted multiplications in GF(2") since it is simple, easy to understand,
and easy to implement for appropriate constants.

— We adopted 1 and u as constants, since multiplications by 1 and u are both
easy to implement efficiently as we have seen in (1).

— The reason why we let Hg(C1) = K -uand Hg(C2) = K (not Hg(Cy) = K
and Hg(Cs) = K - u) is that, most of the case we have M ¢ ({0,1}™)F,
rather than M € ({0,1}™)*, if the message is a random string. Therefore we
have chosen computationally easier way for the case M ¢ ({0,1}")*.

6 Test Vectors

Test vectors will be provided in a separate paper.

7 Performance Estimation

Similarly to XCBC, TMAC uses [|M|/n] block cipher invocations for any non-
empty message M. (The empty string is an exception; it requires one block
cipher invocation.) Overhead beyond block cipher calls is almost negligible.
The size of secret keys is n bits smaller than XCBC. The cost for this short
key is to use K»-u. It is computed with only one shift and one conditional XOR.

8 Intellectual Property Statement

The authors of this paper have no patent related to TMAC. As far as we know,
TMAC is covered by no patents.
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A Proof of Lemma 4.2

Let {AM) } be a set of n-bit strings, that is, A € {0 1}” for 1 <
Vi < q. We say {A , - (DY} are distinct as shorthand for AW £ AU) for
1<Vi<Vj<yq.

Before proving Lemma 4.2, we need the following lemma.

Lemma A.1. Let q, q1,q2, g3 be positive integers such that ¢ = q1 + q2 + q3. Let
(1) (q1) (1) (g2) (1) plas)
3

E AR SRR D N 2 S -

be fired n-bit strings such that {x(ll), e l‘(lql)} are distinct, {x(zl), .. .’x(qu)} are
distinct, and {xgl), Cel xgqe’)} are distinct. Similarly, Let

y:([l)’ A "y:([ql)’ygl)’ A "ygq2)’yé1)’ A "yéqa)

be fired n-bit strings such that {ygl), e ygql), ygl) .. .,yg%), ygl) .. .,y3 } are

bl bl

distinct. Let P € Perm(n) and K € {0,1}". Then the number of (P, K) which
satisfies

PalDy =y for L <Vi<qy,
P(K & (2))— ' Jor 1 <Vi< qs, and (10)
P((K )& xéﬂ) =) for1 <Vi<gs

13



is at least (2" — (g1 + g2+ ¢3))! - (2" — (q192 + 193 + 9293)).

We note that (2" — (¢1 +¢2 + ¢3))' - (2" — (q192 + 193 + q293)) > (2" —q)! -
(2" - %) since q1g2 + q143 + qaqs = TG

Proof (of Lemma A.1). We first count the number of K.

Number of K. First, for any fixed ¢ and j such that 1 <7 < ¢y and 1 < j < g3,
(#)

we have exactly one K such that 27’ = K @ 25 Since there are q1q2 choice of
(,7), we have

#{K l‘(li) =Ko l‘(zj) for 1 <3i< gy and 1 <35 <qg2} <quga . (11)

Next, for any fixed 7 and j such that 1 < ¢ < ¢y and 1 < j < g3, we have
exactly one K such that l‘(ll) =(K-u® 2 Since there are q19s choice of (4, j),
we have

#{K o) = (K w@ed for 1 <3< g and 1 <3< g3} <qugs . (12)

Next, for any fixed ¢ and j such that 1 < ¢ < ¢ and 1 < j < g3, we have
exactly one K such that K & J:(ZZ) =(K-u® xgj). Since there are ¢1q3 choice of
(,7), we have

#K | Kozl = (K-u)y@2§) for 1 <3< g and 1< 35 < g3} < qags . (13)

Then from (11), (12) and (13), we have at least 2" — (q1¢2 + q1¢3 + ¢293)
choice of K € {0,1}" which satisfies the following three conditions:

x(lli)gél(@x(zj) ' for 1 <Vi<g; and 1 <Vj < gqs,
l‘(ll) # (K~u)@xgj) for 1 <Vi<ygq; and 1 <Vj < g3, and
K@x(;)gé(K~u)®x(‘7) for 1 <Vi<gsand 1 <Vj<gs.

We now fix any K which satisfies these three conditions.
Number of P. Now K 1s fixed in such a way that
{x(ll), . x(lql), K& x(zl), LK x(ZqQ), (K -u)® xgl), (K u) @ xgqa)}

(which are inputs to P) are distinct. Also, the corresponding outputs

1 1 1
{yg )a .. 'aygql)ay; )a .. 'ayg(h)ayg )a .. ~ay:(3q3)}
are distinct. In other words, for P, the above ¢ 4 ¢2 + ¢3 input-output pairs are
determined. The remaining 2" — (¢1 + ¢2 + ¢3) input-output pairs are undeter-
mined. Therefore we have (2" — (q1 + ¢2 + ¢3))! possible choice of P for any such
fixed K.
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Completing the Proof. To summarize, we have:

— at least 2" — (q192 + q193 + ¢2¢3) choice of K, and
— (2" = (g1 + g2 + ¢3))! choice of P when K is fixed.

This concludes the proof of the lemma. a

We now prove Lemma 4.2.

Proof (of Lemma 4.2). Let O1, 04,03 be either P(:), P(K & ), P(K -u) & -)
or Pi(+), Pa(+), Ps(:). The adversary A has oracle access to Oy, O3 and Os.
There are three types of queries A can make: either (1, 2) which denotes the
query “what is O (x)?,” (2,#) which denotes the query “what is Os(z)?,” or
(3, 2) which denotes the query “what is Oz(z)?.” For the i-th query .4 makes to
O;, define the query-answer pair (J:(Z), (Z)) € {0,1}" x {0,1}", where A’s query

i Y
was (7, l‘;l)) and the answer it got was y;»l).

Without loss of generality, we assume that A makes ¢; queries to O1(2), ¢z
queries to Oz(z), and ¢z queries to Os(x), where q; + ¢2 + ¢35 = ¢. Further, we
assume that A is deterministic (otherwise we consider arbitrarily fixed random
tape).

Define view v of A as

o= (@D ), (),
(l‘(zl) y;l)) (l,(zqz) yqu))

1 1 3 3
(87 5), o ()
We say that v is a possible view if the following three conditions are satisfied:
{ygl), e ygql)} are distinct,

{ygl), ce yqu)} are distinct, and
{ygl), e yéqe’)} are distinct.

We note that since A never repeats a query, we have

{x(ll), .. .,x(lql)} are distinct,
{x(zl . .,x(ZqQ)} are distinct, and
{xgl), . .,xgqe’)} are distinct.

We also note that since A is deterministic, the i-th query A makes is fully

determined by the first ¢ — 1 query-answer pairs. Then the number of all possible

(C20 L 10 I ¢
2n—g1)!  (2r—g2)!  (2"—g3)

(0 or 1) depends only on v. Hence denote by C4(v) the final output of A as a

function of v.

Let v, be a set of all possible view v such that 4 outputs 1. That is,
def def

view Ngyis Ny = i 7. Similarly, the final output of A

Vone = {v | Ca(v) = 1}. We let Nope = #vone. Also, let vgo0q be a set of
all possible view v such that {ygl), e ygql), ygl), e yg%), ygl), e yéqa)} are
. def Y
distinct. We let Nyooq = #Vg00d, then Nyooq = (2n—(q12+q;+q3))!' Therefore we
have
#{U | v e (”one N vgood)} Z None - (Nall - Ngood) . (14)
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Fvaluation of prang. We first evaluate
def B . AP1(), P2 (), Pa(r) —
Prand = Pr(Py, Py, Ps & Perm(n) : A =1).

We have

_ #{(P1, Py, P) | AR O) P00 P50 = 1)
Prand = {(2n)l}3 .

For each v € vope, the number of (P, Pa, Ps) such that

Py(a)) =y for 1 < Vi< g,

Pz(x%Z)) = y;) for 1 < Vi< g9, and (15)

Py(xf) = 4 for 1 <Vi < g
is exactly (2" —q1)!- (2" — ¢2)! - (2" — ¢3)!. Therefore, we have

Z #{(Pl,Pz,Pg) | (Pl,Pz,Pg) satisfying (15)}

Prand =

il {2m)3
_ (2" =)t (27— g2)! - (27 — g3)!
= Mone e

None
~ Nat

Bvaluation of preqi. We next evaluate
Preal def Pr(P & Perm(n); K & {0,1}" : APC)P(ES), PUK0)&) 1) .

We have
#{(P, K)

Preal = (2n)l “on .

Then from Lemma A.1, we have

P, K) | (P, K) satisfying (10
3 #{(P K) | (P K) ying (10)}

real 2
Preat = (2m)1-2n
UE(voneﬂvgood)
2" —q)! q°
> RS VL T
ve(voneﬂvgood)

From (14) we have

2" —q)! q°
rea> None_Na Noo T anNy 1-
Preat > ( 11+ Ngood) 2! 5. on

None N, ood (2n —f])' q2
= —14+ =) Ny ——r - [ 1= : 1
(Nall * Nall) T 2.9n (16)
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Completing the Proof. Now we have

Ngoo -1 2" — q)!
9_d>1_M and Na”.w>1.
Nai — 2.2n (2”)' -
The first inequality follows since
Ngood _ HlSiSq—l (1 - 22_")
Nan H1§z’§q1—1 (1 - n) 'H1§z’§q2—1 (1 - 2%) 'H1§z’§q3—1 (1 - 2%)

Then from (16) we have

q(¢—1) q
rea> rand = T o an : 1_
b ’—(p ¢ 2.2n) ( 2.9

2

> Prand — g_” . (17)

Applying the same argument to 1 — preq; and 1 — prgng vields that

2

1- Preal Z 1 — Prand — g_” . (18)

Finally, (17) and (18) give |preai — Prand] < g—i. a
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