
Message integrity of IAPM and IACBC

Johan H�astad�

johanh@nada.kth.se

June 26, 2001

Abstract

We give a short proof for message integrity of the IAPM modes and
IACBC modes proposed by Jutla [1].

1 Introduction

Jutla [1] gave two schemes to combine message integrity with encryption. The
methods use a block-cipher as the main ingredient. To analyze these schemes
we replace the block encryption by a random permutation and analyze the con-
struction in an information theoretic way. The rationale behind this is that
a good block cipher should be a pseudorandom permutation and thus for an
attacker that does not know the key the real situation is computationally indis-
tinguishable from the situation described above.

Note that this is a preliminary paper and in the full paper we will have a
more complete introduction which also compares to related work.

2 Preliminaries

The primitive we start with is a block-cipher f acting on n bits. Jutla describes
two di�erent modes, a CBC inspired mode called IACBC and a parallel mode
call IAPM. In both modes a block cipher with one random key is used together
with a random number r to generate a sequence of values Si which have the
property that each of them is uniformly picked and the di�erence of of Si and
Sj is also uniformly distributed for i 6= j.

One eÆcient implementation of this setup is to have

W = fK1
(r)
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and
Si = �iW;

where �i are distinct non-zero elements in GF [2n] and W is interpreted as an
element in GF [2n].

The main use of encryption is through applying f with an independent key
K2. We model fK1

as a random permutation G and fK2
as an independent

random permutation F . If the underlying block cipher gives a family of pseu-
dorandom permutations under the choice of random key this only introduces
negligible error when dealing with a computationally bounded adversary.

We study two attacks of the adversary. In both cases the adversary asks for
the encryption of a number of messages at his choice. The adversary is allowed
to be adaptive and hence each plaintext can depend on all the encryptions seen
so far.

To violate message integrity the adversary should produce a cipher text C 0

which is accepted as a valid encryption.
He violates security of encryption with advantage � if he can produce two

plaintexts P 0 and P 1 of equal length and then given the encryption of one of
them guess the correct plaintext with probability (1 + �)=2.

3 IAPM

The mode is de�ned as follows. Given a plaintext (Pi)
l�1
i=1, we de�ne a parity

check

Pl =
l�1X
i=1

Pi (1)

where the sum is block-wise exclusive-or. Numbers (Si)
l
i=0 are generated as

described in Section 2 and we let C0 = r, the random seed used to generate the
Si and for other i we have

Mi = Pi + Si

Ni = F (Mi)

Ci = Ni + Si;

except for the last block where Cl = Nl + S0.
Decryption is performed in the obvious way and a resulting plaintext is

accepted if (1) holds.
Now we let the adversary ask for encryptions of plaintexts. We denote the

j'th plaintext by P j and its i'th block by P j
i . Similar notation applies toM;N; S

and r-values. We start by a de�nition.

De�nition 3.1 There is an accident in the preprocessing stage if for any (j; i) 6=
(k; l) we have M j

i =Mk
l or N j

i = Nk
l , or r

j = rk for j 6= k.
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We have the following lemma.

Lemma 3.2 If a total of m blocks are encrypted in the preprocessing stage the

probability of having an accident is at most
�
m
2

�
2�n.

Proof: Since the the value of rj is chosen after the adversary has speci�ed
P j the probability that M j

i = Mk
l for any pair (j; i) 6= (k; l) is exactly 2�n. If

M j
i 6= Mk

l then N j
i 6= Nk

l since F is a permutation. The probability of two
di�erent r's being equal is also 2n. We have

�
m
2

�
di�erent pairs of cryptoblocks

and the lemma follows by the union bound.

We now have the integrity theorem.

Theorem 3.3 Consider IAPM. Suppose l0+m � 2(n�1)=2. The probability that

the adversary produces a ciphertext C 0 of length l0 that is accepted as legitimate

after having had m blocks encrypted in the preprocessing phase is at most

�
1 +

�
l0 +m

2

��
21�n:

Proof: We prove that the probability of a successful forgery conditioned upon
no accident in the preprocessing stage is at most

�
1 + l0m+

�
l0

2

��
21�n:

In view of Lemma 3.2 this is suÆcient to establish the theorem. We prove this
bound for any �xed outcome of the preprocessing stage. We concentrate of
triples (F;G; r) that lead to one speci�c node where the adversary has seen m
encryptions. Note that once both all plaintexts and ciphertexts are �xed the
property of having an accident depends on (G; r) only. This follows since it can
be written as equalities involving only P;C and S-values. We have the following
lemma.

Lemma 3.4 After any preprocessing all (G; r) with no accident are equally

likely.

Proof: Once (G; r) without an accident is speci�ed the condition on F is that
it takes m di�erent values at m di�erent points and thus the probability that
F ful�lls this is always the same.

Lemma 3.5 The fraction of (G; r) without any accident after m block encryp-

tions is at least 1�
�
m
2

�
21�n.

Proof: This follows since the probability that M j
i 6= Mk

l or N j
i 6= Nk

l for
(j; i) 6= (k; l) or rj = rk for j 6= k is each 2�n and we apply the union
bound.
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Let us return to the proof of Theorem 3.3. The adversary has produced a
ciphertext (C 0

i)
l0

i=0 which at decryption produces (P 0

i )
l0

i=1. We need to estimate
the probability that P 0 satis�es (1). We need the following de�nition.

De�nition 3.6 A block C 0

i is a forced collision if for some j in the preprocessing

stage Cj
0 = C 0

0 and if i < l0 C 0

i = Cj
i or i = l0 and C 0

i = Cj
l where l is the length

of message j.

We have two cases:

1. All blocks of C 0 are forced collision.

2. Some block of C 0 is not a forced collision.

In the �rst case we reason as follows. Since the r's are all di�erent there is a
unique j causing the forced collisions and let l be the length of this message.
Since C 0 is di�erent from Cj and all blocks are forced collisions we must have
l > l0. This gives that P 0

i = P j
i for 1 � i � l0 � 1 while P 0

l0 = P j
l + Sl + Sl0 . We

conclude that

l0X
i=1

P 0

i =

l0�1X
i=1

P j
i + P j

l + Sl + Sl0 (2)

If we did not have any conditioning the probability of this being 0 would
be exactly 2�n. Note that this is only a probability over (G; r) and thus con-
ditioning is in fact easy to deal with. We know by Lemma 3.4 and Lemma 3.5
that we pick (G; r) with uniform probability from a subset of density at least
(1�

�
m
2

�
21�n) we conclude that also in the conditioned case the probability of

(2) being 0 is at most

2�n(1�

�
m

2

�
2�n)�1 � 21�n

and this completes the analysis in the case of all blocks being forced collisions.
In the case where at least one block is not a forced collision we argue as

follows. Say that we have a spurious collision if two N -values that are not equal
with probability 1 are equal. By the property of no accident in the preprocessing
stage we have no spurious collision in the preprocessing steps. We have at most

l0m+
�
l0

2

�
pairs that can result in an spurious collision. If we did not have any

conditioning the probability of such a collision happening would be at most

2�n(l0m+

�
l0

2

�
):

Since the event of a spurious collision only depends on (G; r) we can reason
as above and conclude that if we condition upon no accident happening in the
preprocessing this probability increases by at most a factor (1�

�
m
2

�
21�n)�1 � 2.
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Now assume that we have no spurious collisions and take one N 0

i which does
not appear in preprocessing or as N 0

i0 for i
0 6= i. Fix F�1 at all values queried

in preprocessing and at points other than N 0

i when decrypting C 0. This leaves
2n � m � (l0 � 1) values that can appear as F�1(N 0

i ) and only one of them
produces a valid plaintext. We conclude that the probability of a successful
forgery conditioned upon no accident in the preprocessing stage is at most

21�n(l0m+

�
l0

2

�
) + (2n � (m+ l0))�1 � 21�n(1 + l0m+

�
l0

2

�
);

and the proof of the theorem is complete.

We next turn to security.

Theorem 3.7 If a total of m blocks have been encrypted in IAPM-mode then

assuming m � 2(n�1)=2, the advantage of the adversary in the encrypt and

compare game is at most 3
�
m
2

�
2�n.

Proof: Since all r's are picked randomly the probability of an accident during
the encryptions, including the two test encryptions is at most

�
m
2

�
2�n. We

assume that there is no such accident and �x one transcript.
Now consider the changed transcript where the two test ciphertext are in-

terchanged. Keeping the same S-values we can calculate the N -values used
in decryptions of these messages. Say that we have a post-accident if two N -
values produced this way are equal or one of these N -values have been seen
elsewhere. If we did not have any conditioning the probability of a post acci-
dent would be at most

�
m
2

�
2�n. The conditioning can only increase by a factor

(1 �
�
m
2

�
21�n)�1 � 2. If there is no accident or a post-accident the changed

transcript happens with exactly the same probability as the original transcript
and in this case the adversary has no advantage in guessing which is the correct
encryption. This proves the theorem.

4 IACBC

The mode is similar to IAPM but it chains the blocks. We �rst expand the
plaintext using the same parity-check (1) and generate numbers (Si)

l
i=0. We let

N0 = C0 = G(r), where r is the random seed used to generate the Si and for
other i we have

Mi = Pi +Ni�1

Ni = F (Mi)

Ci = Ni + Si;

except for the last block where Cl+1 = Nl+1 + S0.
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Theorem 4.1 Consider IACBC. Suppose l0 + m � 2(n�1)=2. The probability

that the adversary produces a ciphertext C 0of length l0 after having had m blocks

encrypted in the preprocessing phase is at most�
1 +

�
l0 +m

2

��
21�n:

Proof: The di�erences to the proof in IAPM mode not substantial and let us
mainly point out the di�erences.

We de�ne an accident as before. The probability of M j
i =Mk

l is still about
2�n. For j 6= k this is exactly true since going over all 2n values of r produces all
2n values of each Mi and Ni (as long as the plaintext is �xed). This argument
does not apply to j = k, l < i but, and we have to be slightly more careful. We
can estimate the probability of a �rst accident at some point and conditioning
uponM j

i�1 not being equal to any previousM -value we see that the probability

of an accident involvingM j
i given that it is the m'th encrypted block is at most

(2n �m)�1 and thus at most 21�n for m < 2n�1.
In particular assuming that m < 2n�1 Lemma 3.2 remains true upto a factor

of 2.

Lemma 4.2 If a total of m blocks are encrypted in the preprocessing stage of

IACBC, the probability of having an accident is at most
�
m
2

�
21�n.

Lemma 3.4 remains true without any change. Note that Mi = Pi + Si�1 +
Ci�1 for i � 2 and M1 = P1 + C0. Thus the condition of no accident can be
phrased in terms of (G; r) only and once it is ful�lled we only specify F at a
�xed number of points.

Lemma 3.5 also remains true. The equalities we check are either independent
of (G; r) (i.e. involving only M j

1 for di�erent j's) or hold with probability 2�n.
The number of equalities is the same.

In the proof of the theorem itself we have the same two cases. When we only
have forced collisions then

P 0

l0 = P j
l +N j

l�1 +N 0

l0�1 = P j
l + Cj

l�1 + Sjl�1 + Cj
l0�1 + Sjl0�1

and thus again to accept a message requires a nontrivial equality involving of
S-values.

The case when we have some spurious collisions is analyzed as before. We
�rst analyze the probability that all values are di�erent and then �xing every-
thing except this last value of F�1, the argument is as before.

The case of encryption is equally similar and we omit the details.

Theorem 4.3 If a total of m blocks have been encrypted in IACBC-mode then

the advantage of the adversary in the encrypt and compare game is at most

3
�
m
2

�
21�n.

The change of the bound comes from the loss of a factor of two in Lemma 4.2
compared to Lemma 3.2.
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