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1 Introduction

In this document we propose a new mode of operation for symmetric key block
cipher algorithms. The main feature distinguishing the proposed mode from
existing modes is that along with providing con�dentiality of the message, it
also provides message integrity. In other words, the new mode is not just a
mode of operation for encryption, but a mode of operation for authenticated
encryption. As the title of the document suggests, the new mode achieves the
additional property with little extra overhead, as will be explained below.

The new mode is also highly parallelizable. In fact, it has critical path of only
two block cipher invocations. By one estimate, a hardware implementation of this
mode on a single board (housing 1000 block cipher units) achieves terabits/sec
(1012 bits/sec) of authenticated encryption. Moreover, there is no penalty for
doing a serial implementation of this mode.

The new mode also comes with proofs of security, assuming that the under-
lying block ciphers are secure. For con�dentiality, the mode achieves the same
provable security bound as CBC. For authentication, the mode achieves the same
provable security bound as CBC-MAC.

The new parallelizable mode removes chaining from the well known CBC
mode, and instead does an input whitening (as well an output whitening) with
a pairwise independent sequence. Thus, it becomes similar to the ECB mode.
However, with the input whitening with the pairwise independent sequence the
new mode has provable security similar to CBC (Note: ECB does not have
security guarantees like CBC). Also, the output whitening with the pairwise
independent sequence guarantees message integrity.

The pairwise independent sequence can be generated with little overhead. In
fact, the input and output whitening sequence need only be pairwise di�erentially
uniform, which is a weaker property than pairwise independence, as explained
in the details below. The weaker pairwise di�erentially uniform sequence can be
generated with even lesser overhead.

The parallelizable mode comes in two 
avors. These 
avors refer to how the
pairwise di�erentially uniform sequence is generated. In one mode, we just use
a pairwise independent sequence generated by a subset construction. In another
mode, the pairwise di�erentially uniform sequence is generated by (a� i) modulo
a �xed prime number. There will be one standard prime number for each bit-size



block cipher. Thus, for 64 bit block ciphers the prime could be 264 � 257. For
128 bit block ciphers, the prime could be 2128 � 159.

The modes are described below in more detail.

We �rst give de�nitions of pairwise independence and related concepts. Then
we describe the parallelizable mode using the algebraic construction a� i modulo
a �xed prime. Next, we describe the mode using only exclusive-or operations. In
section 5, the di�erent notions of security are de�ned. In section 6, we prove that
the IAPM construction is secure for message integrity. We �rst start by proving
the theorem for the construction in Fig 2 with t=1. In section 6.1 we give an
alternative proof of this theorem inspired by Johan H�astad. In section 6.2 we
extend the proof to arbitrary t. Then, in section 6.3 we prove the theorem for
the construction in Fig 1, i.e.the IAPM mode using GFp. Finally, in section 7
we prove that the IAPM scheme is secure for message secrecy as well.

2 De�nitions

De�nition 1 (pair-wise independence) A sequence of uniformly distributed n-
bit random numbers s1; s2; :::; sm, is called pair-wise independent if for every pair
i; j; i 6= j, and every pair of n bit constants c1 and c2, probability that si = c1

and sj = c2 is 2
�2n.

De�nition 2 (pair-wise di�erentially-uniform) A sequence of uniformly dis-
tributed n-bit random numbers s1; s2; :::; sm, is called pair-wise di�erentially-

uniform if for every pair i; j; i 6= j, and every n bit constant c, probability that
si � sj is c is 2

�n.

It is a fact that a pair-wise independent uniformly distributed sequence is
also pair-wise di�erentially uniform.

De�nition 3 (pair-wise di�erentially-uniform in GFp) A sequence of random
numbers s1; s2; :::; sm uniformly distributed in GFp, is called pair-wise di�erentially-
uniform in GFp if for every pair i; j; i 6= j, and every constant c in GFp, proba-

bility that (si � sj) mod p is c is 1=p.

A sequence ofm pair-wise independent numbers can be generated from about
logm independent random numbers by a subset construction. The subset con-
struction only involves exclusive-or operations.

A pair-wise independent sequence can also be generated by an algebraic
construction in GFp, by using two independent random numbers a and b in
GFp. The sequence is given by si = (a+ i � b) mod p.

A pair-wise di�erentially uniform in GFp sequence can be generated from
only a single random number a in GFp by de�ning si = (i � a) mod p.

3 Integrity Aware Parallelizable Mode (IAPM) using a

prime number

Let n be the block size of the underlying block cipher. We will restrict our
attention to n = 128 in this paper. If the block cipher requires keys of length



k, then this mode requires two independent keys of length k. Let these keys
be called K0 and K1. From now on, we will use fK to denote the encryption
function under key K.

The message to be encrypted P , is divided into blocks of length n each. Let
these blocks be P1; P2; :::; Pm�1. As in CBC, a random initial vector r of length n
bits is chosen. The vector r need not be chosen randomly, as long as it is unique
for each message. This random vector is used to generate a new random vector
a using the block cipher and key K0, which in turn is used to prepare m+1 new
pairwise di�erentially uniform vectors S0; S1; :::; Sm.

Let p = 2128 � 159. The number p is known to be a prime. This prime will
be �xed for all invocations of this mode using block ciphers of block size 128 bit.
For 64-bit ciphers p = 264 � 257 is recommended.

Now, the sequence S0; S1; :::Sm is generated by the following procedure:

procedure pairwise di� uniform sequence(in r;m;K0; out S)
f

a = fK0(r)
if (a � (2128 � 159)) a = (a+ 159) mod 2128

S0 = a

for j = 1 to m do
Sj = (Sj�1 + a) mod 2128

if (a > Sj) Sj = Sj + 159
end for

g

The condition (a > Sj) is equivalent to 128-bit integer addition over
ow in
the previous step. Note that we do not reduce modulo p if (Sj�1+a) < 2128, but
we do compensate by 159 if (Sj�1 + a) � 2128, as in the latter case, (Sj�1 + a)
mod p = Sj�1 + a� (2128 � 159) = (Sj�1 + a� 2128) + 159.

In this mode, the input and output whitening is done by 128-bit integer addition.
The ciphertext message C =< C0; C1; :::; Cm > is generated as follows (see �g
1):

C0 = r

for i = 1 to m� 1 do
Mi = (Pi + Si) mod 2128

Ni = fK1(Mi)
Ci = (Ni + Si) mod 2128

end for

checksum = P1 � P2 � :::� Pm�1

Mm = (checksum + Sm) mod 2128

Nm = fK1(Mm)
Cm = (Nm + S0) mod 2128

Note that for computing the checksum we use xor instead of addition modulo
2128. The scheme is secure even if the checksum is computed by a modulo 2128

sum, but for the standard we prefer that the checksum be computed by an
xor-sum. Note that S0 is used in the last step.

The above scheme is invertible. The inversion process yields blocks P1; P2; :::; Pm.
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Fig. 1. Integrity Aware Parallelizable Mode (IAPM)

The decrypted plaintext is < P1; P2; :::; Pm�1 >. Message integrity is veri�ed by
checking

Pm = P1 � P2 � :::� Pm�1

Here is the pseudo-code for decryption:
r = C0

invoke pairwise di� uniform sequence(r;m;K0; S);
for i = 1 to m� 1 do

Ni = (Ci � Si) mod 2128

Mi = f
�1
K1(Ni)

Pi = (Mi � Si) mod 2128

end for

checksum = P1 � P2 � :::� Pm�1

Nm = (Cm � S0) mod 2128

Mm = f
�1
K1(Nm)

Pm = (Mm � Sm) mod 2128

Integrity � (Pm == checksum)

4 IAPM with only xor operations

The mode described above uses integer addition. We now describe a similar mode
in which the only operations are block cipher invocations and exclusive-or op-
erations. In particular, the pairwise di�erentially uniform sequence is generated



using a subset construction. Actually, this sequence has the stronger property
of pairwise independence. The subset construction is also optimized using Gray
code (http://hissa.nist.gov/dads/HTML/graycode.html). The penalty one has
to pay in this mode is that instead of generating one extra vector a as described
in the previous section, one now generates about logm new vectors, where m is
the number of blocks in the message to be encrypted.

As before the message P to be encrypted, is divided into blocks of length n
each. Let these blocks be P1; P2; :::; Pm�1. The initial vector r is used to generate
t = dlog(m + 2)e new vectors, which in turn are used to prepare m + 1 new
pairwise independent vectors S0; S1; :::; Sm.

The following pseudo-code is the proposed method of generating the sequence
S.

procedure pairwise independent sequence(in r;m;K0; out S)
f

W0 = fK0(r);
S0 =W0;
for i = 1 to m do

j = i+ 1;
k = 0;
/* �nd the index of the least signi�cant ON bit in (i+ 1) */
while ((j&1) == 0) do

k = k + 1; j = j >> 1; /* increment k and right shift */
end while

if ((j � 1) == 0) /* if (i+ 1) is a power of 2 */
Wk = fK0(W0 + k);

Si = Si�1 �Wk;
end for

g

Note that Si is obtained from Si�1 in just one XOR. The inner while loop
condition is checked two times on average.

The ciphertext message C =< C0; C1; :::; Cm > is generated as follows (see
�g 2):

C0 = r

for i = 1 to m� 1 do
Mi = (Pi � Si)
Ni = fK1(Mi)
Ci = (Ni � Si)

end for

checksum = P1 � P2 � :::� Pm�1

Mm = (checksum � Sm)
Nm = fK1(Mm)
Cm = (Nm � S0)

Again, note that S0 is used in the last step. This pseudo-code is same as the
one in the previous section except that all integer additions have been replaced
by exclusive or operations.
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Fig. 2. IAPM with only xor operations

Here is the pseudo-code for decryption:

r = C0

invoke pairwise independent sequence(r;m;K0; S);
for i = 1 to m� 1 do

Ni = (Ci � Si)
Mi = f

�1
K1(Ni)

Pi = (Mi � Si)
end for

checksum = P1 � P2 � :::� Pm�1

Nm = (Cm � S0)
Mm = f

�1
K1(Nm)

Pm = (Mm � Sm)
Integrity � (Pm == checksum)

5 Encryption Schemes: Message Security with Integrity

Awareness

We give de�nitions of schemes which explicitly de�ne the notion of secrecy of
the input message.

In addition, we also de�ne the notion of message integrity. Moreover, we allow
arbitrary length input messages (upto a certain bound).



Let Coins be the set of in�nite binary strings. Let l(n) = 2O(n), and w(n) =
O(n). Let N be the natural numbers.
De�nition A (probabilistic, symmetric, stateless) encryption scheme with mes-
sage integrity consists of the following:

{ initialization: All parties exchange information over private lines to estab-
lish a private key x 2 f0; 1gn. All parties store x in their respective private
memories, and jxj = n is the security parameter.

{ message sending with integrity:

Let E : f0; 1gn �Coins�N � f0; 1gl(n) ! f0; 1gl(n) �N

D : f0; 1gn �N � f0; 1gl(n) ! f0; 1gl(n) �N

MDC : N � f0; 1gl(n) ! f0; 1gw(n)

be polynomial-times function ensembles. In E, the third argument is sup-
posed to be the length of the plain-text, and E produces a pair consisting of
cipher-text and its length. Similarly, in D the second argument is the length of
the cipher-text. We will drop the length arguments when it is clear from con-
text. The functions E and D have the property that for all x 2 f0; 1gn, for all
P 2 f0; 1gl(n), c 2 Coins

Dx(Ex(c; P )) = PkMDC(P )

We will usually drop the random argument to E as well, and just think of E
as a probabilistic function ensemble.It is also conceivable that MDC may depend
on Coins, cipher-text.
De�nition (Security under Find-then-Guess [8], [2])

Let

A1 : N �Coins� f0; 1gl(n)!f0; 1gl(n)

A2 : Coins� f0; 1gl(n)!f0; 1gl(n) � f0; 1gl(n)

A3 : N �Coins� f0; 1gl(n) � f0; 1gl(n)!f0; 1gl(n)

A : Coins� f0; 1gl(n)!f0; 1g

be adversaries.
The chosen plaintext attack works as follows:

(choose a private key) Randomly choose a private key x.
(chosen plaintext attack-I) Choose R2U Coins. For j 2 [1::l(n)], phase j
works as follows. Let

C = (Ex(P
1); :::; Ex(P

j�1))

be the concatenation of the encryptions of the �rst j � 1 message blocks (ap-
propriately padded with zeroes). Then P j = A1(j; R;C). At the end of at most
p � l(n) phases, let P = hP

1
; :::; P

p
i be all the message blocks produced by A1,

and let C = hEx(P
1); :::; Ex(P

p)i be the encryption of P .
(choose a private message block) Let hP 00

; P
01i = A2(R;C) be the pair

of message blocks produced by A2. It is required that neither P 00 nor P 01 is



among the message blocks in P . Also P 00 and P 01 should be of the same length.
Choose b2Uf0; 1g privately, let P 0 = P

0b be the privately chosen message, and
let C 0 = Ex(P

0) be the encryption of P 0.
(chosen plaintext attack-II) the chosen plaintext attack is continued as in
part I, resulting in another encrypted sequence D of an adaptively chosen plain-
text sequence P 00 = hP p+2

; :::; P
p+1+p0i. We will extend C to denote the complete

encrypted sequence C = hEx(P
1); :::; Ex(P

p); Ex(P
0); Ex(P

p+2); :::; Ex(P
p+1+p0)i.

(predict the bit) The advantage of the adversary is

AdvA = jPr[A(R;C) = b]� 1=2j

An encryption scheme is said to be (t; q; �; �)-secure against chosen plaintext

attack if for any adversary A (including A1; A2; A3) which runs in time at most
t and asks at most q queries of Ex, these totaling at most � blocks, its advantage

is at most �.
The following notion of security is also called integrity of ciphertext ([4]).

De�nition (Message Integrity): Consider an adversary A running in two stages.
In the �rst stage (�nd) A asks r queries of the oracle Ex. Let the oracle replies
be C1

; :::C
r. Subsequently, A produces a cipher-text C 0, di�erent from each Ci,

i 2 [1::r]. Since D has length of the cipher-text as a parameter, the breakup of
Dx(C

0) as P 0
kP

00, where jP 00
j = w(n), is well de�ned. The adversary's success

probability is given by

Succ
def
= Pr[MDC(P 0) = P

00]

An encryption scheme is secure for message integrity if for any adversary A, A's
success probability is negligible.

6 Message Integrity

In this section we show that the mode of operation IAPM in Fig 2 guarantees
message integrity with high probability. We �rst restrict to the case where only
one W is generated , i.e. W0, as that brings out the main idea of the proof. In
the next subsection we show how the proof easily generalizes to arbitrarily many
W's. Finally, we show how these proofs also generalize to the mod p construction

of Fig 1 (in which case only one W is generated anyway).
In the following theorem, we will assume that the block cipher (under a key

K1) is a a random permutation F . We also assume that the t W 's are generated
using an independent random permutation G (for instance, using a di�erent key
K2 in a block cipher).

Let the adversary's queries in the �rst stage be p1; P 2
; :::P

z . We write p1

in lower case, as for each adversary p
1 is �xed. All random variables will be

denoted by upper case letters. Let the corresponding ciphertexts be C1
; :::; C

z .
We will use C to denote the sequence of ciphertext messages C1

; :::; C
z. For all

random variables corresponding to a block, we will use superscripts to denote
the message number, and subscripts to denote blocks in a particular message.
Thus Ci

j
will be the random variable representing the jth block in ciphertext



message i. More precisely, this variable should be written C
i

j
(F;G), as it is a

function of the two permutations. However, we will drop the arguments when it
is clear from context.

Let the adversary's query in the second stage be cipher-text C 0, di�erent
from all ciphertexts in the �rst stage. We will use primed variables to denote the
variables in the second stage.

We will use W to denote the set of variables fW i

j
: i 2 [1::z]; j 2 [1::t]g [

fW
0

j
; j 2 [1::t]g. We will use S

i (S0) to denote masks or \whitening" blocks

generated using W
i (W 0 resp). Any method can be used to generate Si from

W
i, as long as Si

j
are pairwise di�erentially uniform. For a particular adversary,

S
i

j
is a function of permutation G and the initial vector, and hence should (more

precisely) be written as Si
j
(G;Ci

0(F;G)) (C
i

0(F;G) being the IV used to generate

W
i

1). But, we will drop the arguments as it will be clear from context. For any
constant r, we will denote by Si

j
(r) the random variable Si

j
(G; r).

The variables M and N are as in Fig 2. For example, M i

j
= P

i

j
� S

i

j
.

We start with some informal observations to aid the reader in the eventual
formal proof. Since the new ciphertext C 0 is di�erent from all old ciphertexts,
it must di�er from each old ciphertext Ci in a least block number, say d(i).
For each C

i (except at most one Ck), the block number d(i) = 0, with high
probability. In Lemma 3 we show that with high probability N

0

d(k)
is di�erent

from all old N
i

j
, and all other new N

0 blocks (except for a special case). Thus,

M
0

d(k)
is random. Then it follows (Theorem 1) that in either case the checksum

is unlikely to validate.

We �rst prove the theorem for schemes in which the pairwise di�erentially
uniform sequence is generated using only one W , i.e. t = 1. The general case is
addressed in a later subsection.

Theorem1. Let A be an adversary attacking the message integrity of IAPM

(t = 1) with random permutations F and G. Let A make at most z queries in

the �rst stage, totaling at most � blocks. Let u = �+ z. Let v be the maximum

number of blocks in the second stage. Then for adversary A,

Succ < (2 � u2 + z
2 + (z + 1)2 + u+ v + 2 + o(1)) � 2�n

Proof:

In the �rst stage the adversary makes queries with a total of at most m plain-
text messages (chosen adaptively). W.l.o.g. assume that the adversary actually
makes exactly m total message queries in the �rst stage. Let Li be the random
variable representing the length of ciphertext Ci (i.e. the checksum block has
index Li � 1). Similarly, L0 will denote the length of C 0.

We prove that either the adversary forces the following event E0, or the event
E1 happens with high probability. In either case the checksum validates with low
probability.

The �rst event E0 is called deletion attempt, as the adversary in this case
just truncates an original ciphertext, but retains the last block.



Event E0 (deletion attempt): There is an i 2 [1::z], such that 2 � L
0
< L

i,
and

(i) 8j 2 [0::L0 � 2] : C 0

j
= C

i

j

and (ii) C 0

L0�1 = C
i

Li�1

Event E1 says that there is a block in the new ciphertext C 0, such that its
N variable is di�erent from all previous Ns (i.e. from original ciphertexts from
the �rst stage), and also di�erent from all other new Ns.

Event E1: there is an x 2 [1::L0 � 1] such that

(i) 8s 2 [1::z]8j 2 [1::Ls � 1] : N 0

x
6= N

s

j

and (ii) 8j 2 [1::L0 � 1]; j 6= x : N 0

x
6= N

0

j

We next show that in both cases (i.e E0 or E1) the checksum validates with
low probability.

For the case that E0 happens, we have (since S0 = S
i and N

0

L0�1 = N
i

Li�1
),

(

L
0
�1X

j=1

P
0

j
= 0) ^ E0

)

L
0
�2X

j=1

(P i

j
) +M

i

Li�1 + S
i

L0�1 = 0

�

L
0
�2X

j=1

(P i

j
) +

L
i
�2X

j=1

(P i

j
) + S

i

Li�1 + S
i

L0�1 = 0

Note that ri can be chosen after P i has been determined (as P i is a deterministic
function of C1

; : : : ; C
i�1), and hence the Sis are independent of P i. Since the

S
is are pairwise di�erentially uniform and L

0
< L

i, the above event happens
with probability at most 2�n.

For the case E1, by Lemma 2, the checksum validates with probability at
most 1=(2n � u� v)

Thus the adversary's success probability is upper bounded by

Pr[:(E0 _ E1)] +
1

2n � (u+ v)
+

1

2n

which by Lemma 3 is at most

(u2 + z
2 + u+ v + 2) � 2�n + (u2 + (z + 1)2) � 2�n +O(u+ v) � 2�2n

2

Lemma2. Pr[
P

L
0
�1

j=1 P
0

j
= 0 j E1] � 1

2n�(u+v)



Proof: F being a random permutation, under E1, F�1(N 0

x
) can not take values

already assigned to F
�1(Ns

j
), s 2 [1::z], j 2 [1::Ls � 1]. Also, F�1(N 0

x
) can

be chosen after F�1(N 0

j
) have been assigned values (j 6= x). Thus, under the

condition that event E1 has happened we have that M 0

x
= F

�1(N 0

x
) can take

any of the other values, i.e. excluding the following (at most) (� + z) + L
0 � 2

values, with equal probability (independently of C, C 0, ri, i 2 [1::z], G, and
hence independently of W , and independent of E1 itself):

{ values already taken by Ms

1 ; :::;M
s

Ls�1, for each s, and
{ the values to be taken (or already �xed) by M 0

j
, j 2 [1::L0 � 1], j 6= x.

Now,
P

L
0
�1

j=1 P
0

j
= 0 i�

F
�1(N 0

x
) = M

0

x
=

L
0
�1X

j=1;j 6=x

(M 0

j
� S

0

j
) � S

0

x

Given any value of the RHS, since the LHS can take (at least) 2n � (u+ v � 2)
values, the probability of LHS being equal to RHS is at most 1=(2n � (u+ v)).
2

Lemma3. Let events E0,E1 be as in Theorem 1. Then,

Prob[:(E0 _ E1)] < (u2 + z
2 + u+ v) � 2�n + (u2 + (z + 1)2) � 2�n

Proof: We �rst calculate the probability of event (E0_E1) happening under the
assumption that F and G are random functions (instead of random permuta-
tions). Since F (and G) is invoked only u times ((z+1) times resp.), a standard
argument shows that the error introduced in calculating the probability of event
(E0 _ E1) is at most (u2 + (z + 1)2) � 2�n.

We now consider an event, which says that all the M variables are di�erent.
The goal is to claim independence of the corresponding N variables, and hence
the C variables. However, the situation is complicated by the fact that the con-
dition that all the M i

j
variables for some i are di�erent, may cause the variables

C
i
0

j
, for i0 < i, to be no more independent. However, a weaker statement can be

proved by induction. To this end, consider the event E2(y), for y � z:

8i; i
0
2 [1::y];8j; j0; j 2 [1::Li � 1]; j0 2 [1::Li

0

� 1]; (i; j) 6= (i0; j0) : (M i

j
6=M

i
0

j0
)

Event E2(z) will also be denoted by E2.
We also predicate on the event that all the initial variables Ci

0 are di�erent.
Let E3 be the event that

8i; j 2 [1::z]; i 6= j : Ci

0 6= C
j

0

For �!r = r
1
; :::; r

z , all ri di�erent, let E3(�!r ) be the event that for all i 2 [1::z],
C
i

0 = r
i.

Let l() be the length of the �rst ciphertext (determined by the adversary). We
will use constant ci to denote strings of arbitrary block length. We will use c to



denote the sequence c1; :::; cz. The function j � j is used below to represent length
of a message in blocks. Given a sequence of ciphertext messages c1; :::; ci, i � z,
let l(c1; :::; ci) be the length of the (i+ 1)th ciphertext (which is determined by
the adversary, and therefore is a deterministic function of c1; :::ci). Recall that
each ciphertext includes the block Ci

0, which is just ri under E3(�!r ). Also, since
C
0 is a deterministic function of C, given c1; :::; cz let the ciphertext in the second

stage be c0 with length l
0. We have

Pr[:(E0 _ E1) ^ E2 j E3(�!r ) ] =
X

c1: jc1j=l()

:::

X
ci: jcij=l(ci�1;:::;c1)

:::

:::

X
cz: jczj=l(cm�1;:::;c1)

Pr[:(E0 _ E1) ^
^
i

C
i = c

i
^ E2 j E3(�!r ) ] (1)

In this sum, if for some i, ci0 6= r
i, then the inside expression is zero. Also, if

event E0 holds for c (which determines c0), then the inside expression above for
that c is zero. So, from now on, we will assume that E0 does not hold for C = c.
Then, the inside expression above becomes:

Pr[:(E0 _ E1) ^
^
i

C
i = c

i
^ E2 j E3(�!r )]

� minx2[1::l0�1]

� X
s2[1::z];j2[1::jcsj�1]

Pr[(N 0

x
= N

s

j
) ^
^
i

C
i = c

i
^ E2 j E3(�!r )]

+
X

j2[1::l0�1];j 6=x

Pr[(N 0

x
= N

0

j
) ^
^
i

C
i = c

i
^ E2 j E3(�!r )]

�

For each s; j, we have (N 0

x
= N

s

j
) i� (S0

x�
�S

s

j�
) = (C 0

x
�C

s

j
), where S0

x�
; S

s

j�

are the masks that are used for these ciphertext blocks. That is, j� = j if
j < jc

s
j � 1 and j

� = 0 otherwise, and similarly x� = x if x < l
0
� 1 and x

� = 0
otherwise (Similarly for j 6= x we have (N 0

x
= N

0

j
) i� (S0

x�
� S

0

j�
) = (C 0

x
� C

0

j
)).

Since each of the summands in the expression above has a conjunct C = c

for some constant string c (and since the forged ciphertext C 0 is a function of
C), it follows that each of the summands in the �rst sum can be written as
Pr[(S0

x�
(c00) � S

s

j�
(cs0) = c

0

x
� c

s

j
) ^ C = c ^ E2 j E3(�!r )]. Note that S0

x�
(c00) �

S
s

j�
(cs0) can in some cases be identically zero. As c is some constant string, then

c
0

x
� c

s

j
is also constant, and recall that the variables S(c0) depend only on the

choice of G. Thus, each of these summands (if S0
x�
(c00)�S

s

j�
(cs0) is not identically

zero) can be bounded by

Pr[S0
x�
(c00)� S

s

j�
(cs0) = c

0

x
� c

s

j
^ C = c ^ E2 j E3(�!r )]

= Pr[C = c ^ E2 j S0
x�
(c00)� S

s

j�
(cs0) = c

0

x
� c

s

j
^ E3(�!r )]

� Pr[S0
x�
(c00)� S

s

j�
(cs0) = c

0

x
� c

s

j
j E3(�!r )]

� (2�n)� � Pr[S0
x�
(c00)� S

s

j�
(cs0) = c

0

x
� c

s

j
j E3(�!r )]

where the last inequality follows by Claim 5 with � =
P

i2[1::z](l(c
i�1

; : : : ; c
1)�

1). A similar inequality holds for the summands in the second sum (i.e. N 0

x
=



N
0

j
case). Thus, by Claim 4, the inside expression in equation (1) is at most

2�n� � (u+ v) � 2�n. Since we have 2n� summands, it follows that

Pr[:(E0 _E1) ^E2 j E3(�!r )] � (u+ v) � 2�n

Finally, we calculate Pr[:(E0 _ E1)]

Pr[:(E0 _ E1)]

� Pr[:(E0 _ E1) ^ E2 j E3] + Pr[:E2 j E3] + Pr[:E3]

� Pr[:E3] +X
r1;:::;rz

((Pr[:(E0 _ E1) ^ E2 jE3(�!r )] + Pr[:E2 jE3(�!r )]) � Pr[E3(�!r )jE3])

� z
2
� 2�n + (u+ v) � 2�n + (u)2 � 2�n

where the last inequality follows by Claim 6. 2

Claim 4: For each constant c (and its corresponding c0) for which event E0 does
not hold, and constant �!r with distinct values, there is an x 2 [1::l0 � 1] such
that

(i) 8s 2 [1::z]8j 2 [1::jcsj � 1]:
if S0

x�
(c00)� S

s

j�
(cs0) is identically zero then c

0

x
� c

s

j
6= 0, otherwise

Pr[S0
x�
(c00)� S

s

j�
(cs0) = c

0

x
� c

s

j
j E3(�!r )] � 2�n;

(ii) 8j 2 [1::jl0 � 1]; j 6= x;:

Pr[S0
x�
(c00)� S

0

j�
(cs0) = c

0

x
� c

0

j
j E3(�!r )] � 2�n

Proof: These are the di�erent cases (we will drop the argument from S
s and S0

as it will be clear from context):

(a) (New IV) If for all i 2 [1::z], c00 6= r
i, then we choose x = 1. In that case

N
0

1 = N
0

j
is same as C 0

1 � C
0

j
= S

0

1 � S
0

j�
, where j� = j if j 6= (l0 � 1), and

j
� = 0 otherwise. Thus, for j 2 [1::l0�1]; j 6= x, since S0 is pairwise di�erentially
uniform, probability of (S01 � S

0

j�
= c

0

1 � c
0

j
) is 2�n (even under E3(�!r )).

Similarly, N 0

1 = N
s

j
is same as C 0

1�C
s

j
= S

0

1�S
s

j�
, where j� = j if j 6= jc

s
j�1,

and j� = 0 otherwise. Under event E3(�!r ), and the fact that c00 is di�erent from
all ri, we have that S01 � S

s

j�
is uniformly distributed.

(b) There exists a k, k 2 [1::z] such that c00 = r
k . For all other k0 2 [1::z],

c
0

0 6= r
k . Thus S0 = S

k. We have several cases:
(b1) (truncation attempt) If c0 is a truncation of ck, then we let x = l

0� 1 which
is the index of the last block of c0.
(b2) (extension attempt) If c0 is an extension of ck, then we let x = jc

k
j�1 which

is the index of the last block of ck.
(b3) Otherwise, let x be the least index in which c0 and c

k are di�erent.

In all the cases (b1), (b2) and (b3), conjunct (ii) is handled as in (a).



In case (b1), N 0

x
= N

s

j
is same as C 0

l0�1 � S
k

0 = C
s

j
� S

s

j�
, where j� = j if

j 6= jcsj� 1, and j� = 0 otherwise. Now, for s = k, j� = 0 (in which case S00�S
s

j

is identically zero), we have c0
x
� c

s

j
= c

0

l0�1 � c
k

jckj�1
. This quantity is not zero,

since E0 (the deletion attempt) doesn't hold for c. Otherwise, S00�S
s

j�
= S

k

0 �S
s

j

is uniformly distributed.

In case (b2), N 0

x
= N

s

j
is same as C 0

jckj�1
�S

k

jckj�1
= C

s

j
�S

s

j�
, where j� = j

if j 6= jc
s
j � 1, and j� = 0 otherwise. When s = k, j� is never jckj � 1, and hence

S
k

jckj�1
� S

s

j�
is uniformly distributed.

In case (b3), N 0

x
= N

s

j
is same as C 0

x
� S

k

x�
= C

s

j
� S

s

j�
, where j� = j if

j 6= jcsj � 1, and j
� = 0 otherwise, and x

� = x if x 6= (l0 � 1), and x
� = 0

otherwise. If s = k, and j
� = x

�, then either j� = x
� = 0, or j = x. In the

latter case, c0
x
� c

s

j
= c

0

x
� c

k

x
, which is non-zero as x is the index in which c

0

and c
k di�er. In the former case, j = jckj � 1, and x = (l0 � 1). In this case,

c
0

x
� c

s

j
= c

0

l0�1� c
k

jckj�1
. If this quantity is zero, then since x (= (l0� 1)) was the

least index in which c
k and c

0 di�ered, event E0 would hold for c, leading to a
contradiction. In other cases, Sk

x�
� S

s

j�
is uniformly distributed. 2

Recall that E3(�!r ) is the event that all Ci

0 are distinct (and set to �!r ).

Claim 5: Let l1 be the length of the �rst ciphertext. Let y � z. For any constant
lengths li (i 2 [2::y]) and constant strings ci, (i 2 [1::y], jcij = li), and any
function G independent of F ,

Pr[
^

i2[1::y]

C
i = c

i
^ E2(y) j G ^ E3(�!r )] � (2�n)�

where � = �i2[1::y](l
i � 1).

Proof: The above probability is zero unless for all i 2 [2::y], li = l(c1; :::; ci�1).
From now on, we will assume that the li are indeed such.

We do induction over y, with base case y = 0.
The base case is vacuously true, as � = 0 and conditional probability of TRUE
is 1.

Now assume that the lemma is true for y. We prove the lemma for y + 1. The
explanation for the inequalities is given below the sequence of inequalities.

Pr[
^

i2[1::y+1]

C
i = c

i
^ E2(y + 1) j G ^ E3(�!r )]

� Pr[Cy+1 = c
y+1

j

^
i2[1::y]

C
i = c

i
^ E2(y + 1) ^ G ^E3(�!r )]

� Pr[
^

i2[1::y]

C
i = c

i
^ E2(y + 1) j G ^E3(�!r )]

� (2�n)l
y+1

�1
� Pr[

^
i2[1::y]

C
i = c

i
^ E2(y) j G ^ E3(�!r )]

� (2�n)�i2[1::y](l
i
�1)



The second inequality follows because under the condition E2(y+1), all the
M

y+1
j

are di�erent from the previous M , and hence the sequence of variables,

for all j 2 [1::Ly+1
� 1], F (My+1

j
) can take all possible (2n)(L

y+1
�1) values,

independently of G, and F (M�y

j
), and hence also all ciphertext messages till

index t. Hence, the sequence C
y+1
j

= F (M
y+1
j

) � S
y+1
j

can take all possible

values. Moreover, Ly+1 = l(c1; :::; cy) = l
y+1.

The last inequality follows by induction. 2

Claim 6: For every �xed �!r with distinct values,

Pr[:E2 j E3(�!r )] < u
2
� 2�n

Proof: Recall that Event E2 is

8i; i
0
2 [1::z];8j; j0; j 2 [1::Li]; j0 2 [1::Li

0

]; (i; j) 6= (i0; j0) : (M i

j
6=M

i
0

j0
)

Under E3(�!r ), we have
(a) The set of variables fW i

1g, i 2 [1::z], are uniformly random and independent
variables.
(b) For each i, the variable W i

1 is independent of all ciphertext messages Ci
0

,
i
0
< i, and hence all plaintext messages P i

0

, i0 � i. This follows because W i

1 can
be chosen after Ci

0

, i0 < i have been chosen.
Given E3(�!r ), the probability that event E2 does not happen is at most

(�i2[1::z]L
i)2 � 2�n, which is at most u2 � 2�n. This is seen as follows:

Pr[M i

j
=M

i
0

j0
] = Pr[P i

j
� S

i

j
= P

i
0

j0
� S

i
0

j0
] = Pr[Si

j
= S

i
0

j0
� P

i

j
� P

i
0

j0
]

Without loss of generality, let i � i
0. Then from (b) above it follows that this

probability is at most 2�n (if i = i
0, then we also use the fact that the sequence

S is pairwise di�erentially uniform). 2

6.1 Alternate Proof Sketch

In this section we give an alternate proof of Theorem 1 which was suggested by
Johan H�astad.

We �rst expand the notation, and generalize event E2 to E6 as follows. Given
C = c, and G = g, where c is a constant sequence of ciphertexts and g is
a constant permutation the M values are �xed, because M i

j
= P

i

j
� S

i

j
. The

variable P i

j
is completely �xed by c, and S

i

j
is �xed by g(ci0)'s. We will write

M
i

j
(c; g) for this value of M i

j
. Similarly, for N i

j
. So, for any c and g, and y � z,

de�ne E6(y; c; g) to be

8i; i
0
2 [1::y];8j; j0; j 2 [1::li � 1]; j0 2 [1::li

0

� 1]; (i; j) 6= (i0; j0) :

(M i

j
(c; g) 6=M

i
0

j0
(c; g)) ^ (N i

j
(c; g) 6= N

i
0

j0
(c; g))

Note that E2 as in the previous section, and C = c and G = g implies
E6(z; c; g) as F is a permutation.



In the following lemma we assume that F and G are random permutations.
This is di�erent from lemma 3 in the previous section, where we had to �rst
assume F to be a random function, and then add the error probability.

Lemma4. For every constant c, and for any permutation g such that E6(z; c; g),

Pr[G = gjC = c ^ E6(z; c; G)] =
Pr[G = g]

Pr[E6(z; c; G)]

Proof: Let U be the universe of G. Under the condition C = c and E6(z; c; G)
we show that every g such that E6(z; c; g) holds, is equally likely to be G. Since
c is �xed, �xing G to g, �xes the N variables to a single value (with all N 's
di�erent, for otherwise E6(z; c; g) wouldn't hold). This value of the N variables
is not ruled out as all the M variables are di�erent (by E6(z; c; G)), and F is a
random permutation. Thus,

Pr[G = gjC = c ^ E6(z; c; G)]

=
1

#g : E6(z; c; g)

=
1

jU j �Pr[E6(z; c; G)]

=
Pr[G = g]

Pr[E6(z; c; G)]

2

The proof of lemma 3 in the previous section now changes where we bound
the value of

Pr[S0
x�
(c00)� S

s

j�
(cs0) = c

0

x
� c

s

j
^ C = c ^ E6 j E3(�!r )]

This can now be written as

Pr[S0
x�
(c00)� S

s

j�
(cs0) = c

0

x
� c

s

j
j C = c ^ E6(z; c; G) ^ E3(�!r )]

� Pr[C = c ^ E6(z; c; G) j E3(�!r )]

The �rst factor is upper bounded by 2�n=Pr[E6(z; c; G)] by using the above
lemma (all the di�erent cases are handled as in claim 4). From equation (1), we
then get

Pr[:(E0 _ E1) ^ E6 j E3(�!r )] � (u+ v) � 2�n

Lemma 3 then follows by proving that Pr[:E6jE3(�!r )] < u
2 �2�n as in claim 6.

Rest of theorem 1 is as before, with a slightly better bound as there is no error
term corresponding to assuming F and G to be random functions.



6.2 General Case

We now prove the scheme IAPM (t � 1) secure for message integrity. Here F
and G are independent random permutations.

Theorem5. Let A be an adversary attacking the message integrity of IAPM

(t � 1) with random permutations F and G. Let A make at most z queries in

the �rst stage, totaling at most � blocks. Let u = �+ z. Let v be the maximum

number of blocks in the second stage. Then for adversary A,

Succ < (2 � u2 + 2tz2 + tm+ t
2(z + 1)2 + 3t(2z + 1)(u+ v) + 2 + o(1)) � 2�n

Proof Sketch: We �rst calculate the adversary's success probability assuming
that G is a random function. Then, the error introduced in the probability
because of this approximation is at most ((t(z + 1))2 � 2�n).

The di�erences in the proof from that of Theorem 1 are (i) we can not assume
a priori, that the sequence Si is pairwise di�erentially uniform, (ii) E3(�!r ) as
de�ned in Lemma 3 does not imply that Si is independent of Sj , for i 6= j, (iii) in
proof of Theorem 1, the case of event E0 requires Si to be pairwise di�erentially
uniform, and (iv) in claim 4 case (a), S0(c00) is not necessarily independent of all
S
i(ri).

To this end, Event E3 is now de�ned to be the event that all entries in the
following (multi-) set are di�erent:

fC
i

0; i 2 [1::z]g [ fG(Ci

0) + j � 1; i 2 [1::z]; j 2 [1::t� 1]g

For �!r = r
1
; :::; r

z , all ri di�erent, let E3(�!r ) be the event E3 and that for all
i 2 [1::z]; Ci

0 = r
i.

For �!r =r1; :::; rz , all ri di�erent, Pr[: E3(�!r )] � (2tz2 + tm) � 2�n

Under event E3, for all i 2 [1::z], the sequence Si is pairwise di�erentially
uniform, and is independent of Sj (j 2 [1::z], j 6= i). Now (in Theorem 1) the
case of event E0 is also handled under the condition E3(�!r ).

In Claim 4, case (a) (i.e. New IV) now requires showing that S0(c00) (with c
0

0

di�erent from all ri) is independent of all Si(ri) (i 2 [1::z]).

Consider the following events (note that W i

1 = G(ri)):

EventE4 :8i 2 [1::z];8j 2 [1::t� 1] : c00 6=W
i

1 + j � 1

Event E5:8i 2 [1::z] : jG(c00)�W
i

1j > t ^ jG(c00)� r
i
j > t ^ jG(c00)� c

0

0j > t

Now given that, for all k 2 [1::z]; c00 6= r
k , and under event E4, it is the case

that c00 has never been an oracle query to G, and thus Pr[:E5 j E4 ^ E3(�!r )]
< 2t(2z + 1) � 2�n. Also, Pr[: E4 j E3(�!r )] � zt � 2�n.

Under events E4, E5 and E3(�!r ), and c00 di�erent from all ri, S0(c00) is indeed
independent of previous Si(ri), and is also pairwise di�erentially uniform. 2



6.3 Modes using GFp

We now prove theorem 1 for the IAPM scheme as in Fig 1, i.e using the mod p
construction.

Note that a = fK0(r) translates to a
i = G(Ci

0) for all i 2 [1::z], and a
0 =

G(C 0

0), under the assumption that fK0 is modeled as a random function (the
error introduced by considering G as a random function instead of a random
permutation is as before). We now predicate our whole analysis on the condition
that for all i 2 [1::z], G(Ci

0) < p, and G(C 0

0) < p. The probability of this not
happening is at most (z + 1) � (2n � p)=p.

Given this condition, it follows that for all i, ai, and also a
0 are uniformly

distributed in GFp (as G is a random function).
We next show that for each i; j, Si

j
is uniformly distributed in GFp.

From now on we will drop i from the superscript. We will denote by S�
j
the

intermediate value after execution of the �rst step in the for-loop, i.e. S�
j
=

(Sj�1 + a)mod 2n. Thus, if a > S
�

j
then Sj = S

�

j
+ (2n � p), else Sj = S

�

j
.

First we prove that there is no over
ow in the last step of the for-loop (S�
j
=

Sj + 159), i.e. while adding (2n � p).
If (S0 =)a < (2n � p), then let t be the least j such that Sj � (2n � p),

other-wise t = 0. Clearly, for j � t, the condition (a > S
�

j
) could not have been

satis�ed, as (2n � p) is much smaller than 2n�1.
We next show by induction that for j � t, Sj � (2n� p). Clearly, for j = t it

is true by de�nition of t. If for some j > t, (a � S
�

j
), then Sj = Sj�1 + a, hence

by induction Sj � (2n�p). If for some j > t, (a > S
�

j
), then S�

j
= Sj�1+a�2n,

which is less than p, as a < p by design. Thus, there is no over
ow while adding
(2n � p), and hence Sj > (2n � p).

Claim 7: For every i; j, Si
j
is uniformly distributed in GFp.

Proof: Indeed, Si
j
= a

i � (j + 1)mod p. Clearly, this is true for j = 0. Suppose

it is true for j � 1, then we show that Si
j
= a

i � (j + 1)mod p. Now, (a > Sj)

holds i� (Si
j�1 + a

i) � 2n. So, suppose (Si
j�1 + a

i) < 2n, then S
i

j
= S

i

j�1 + a
i,

and hence S
i

j
= a

i � (j + 1) mod p, by induction. If (Si
j�1 + a

i) � 2n then,

S
i

j
= (Si

j�1+a
i)�2n+(2n�p), since there is no over
ow while adding (2n�p),

and the claim follows. 2

Claim 8: For each i, the sequence Si
j
is pairwise-di�erentially uniform in GFp.

Proof: Since, Si
j
= a

i
� (j + 1)mod p, and S

i

j0
= a

i
� (j0 + 1)mod p, Si

j
� S

i

j0
=

a
i
� (j � j

0)mod p, and hence the claim follows. 2

Claim 9: For any constant c 2 [0::2n � 1], Pr[Si � Sj = c mod 2n] � 2=p.
Proof:

Note that Si �Sj = cmod 2n and Si � Sj implies Si�Sj = cmod p. On the
other hand, Si�Sj = cmod 2n and Si < Sj implies Si�Sj = c� 2n, and hence
Si � Sj = c� 2n mod p.

Thus,

Pr[Si � Sj = c mod 2n]



= Pr[Si � Sj = c mod 2n ^ Si � Sj ] + Pr[Si � Sj = c mod 2n ^ Si < Sj ]

� Pr[Si � Sj = c mod p] + Pr[Si � Sj = c� 2n mod p]

� 2=p

where the last inequality follows by the previous claim. 2

For modes of practical interest, the term (z+1)�O(n) in the following theorem
is really (z+1)�2n. For example, for 128 bit block ciphers, since p = 2128�159,
this term is (z + 1) � 159.

Theorem6. Let A be an adversary attacking the message integrity of IAPM

(t = 1) with the GFp construction (�g 1), with random permutations F and G.

Let A make at most z queries in the �rst stage, totaling at most � blocks. Let

u = �+ z. Let v be the maximum number of blocks in the second stage. Then for

adversary A,

Succ < (2 � u2 + z
2 + (z + 1)2 + u+ v + 2 + o(1) + (z + 1) �O(n)) � 2�n

Proof: The proof is the same as the proof of theorem 1 except for a few di�er-
ences. Firstly, as said earlier we predicate on the condition that for all i 2 [1::z],
G(Ci

0) � p, and G(C 0

0) � p. The probability of this not happening is at most
(z+1)�(2n�p)=p, and that is an extra additive factor in the adversary's success
probability.

We will use the following notation: (X)y will stand for X reduced modulo y,
i.e. (X)y is the unique number in [0::y � 1] such that X = (X)y mod y. Next
in the proof of theorem 1, the case where E0 happens, now becomes (the big
summations are xor-sums)

(

L
0
�1X

j=1

P
0

j
= 0) ^ E0

)

L
0
�2X

j=1

(P i

j
)� (M i

Li�1 � S
i

L0�1)2n = 0

�

L
0
�2X

j=1

(P i

j
)� (

L
i
�2X

j=1

(P i

j
) + S

i

Li�1 � S
i

L0�1)2n = 0

� (Si
Li�1 � S

i

L0�1 =

L
0
�2X

j=1

(P i

j
)�

L
i
�2X

j=1

(P i

j
))mod 2n

This event happens with probability at most 2=p by claim 9.

Similarly lemma 2 now modi�es as follows:
P

L
0
�1

j=1 P
0

j
= 0 i�

(M 0

x
� S

0

x
)2n =

L
0
�1X

j=1;j 6=x

(M 0

j
� S

0

j
)2n



or

(M 0

x
= S

0

x
+

L
0
�1X

j=1;j 6=x

(M 0

j
� S

0

j
)2n)mod 2

n

The probability in lemma 2 remains as before.
In lemma 3, for each s; j, we now have (N 0

x
= N

s

j
) i� (S0

x�
� S

s

j�
) = (C 0

x
�

C
s

j
)mod 2n, and thus by Claim 9 the probability bounds in claim 4 are in terms

of 2=p instead of 2�n. Similarly, the bound in claim 6 is now u
2
� 2=p.

Thus,

Succ < (u2+z2+(z+1)2+1+o(1))�2�n+(u2+u+v+1)�2=p+(z+1)�(2n�p)=p

However, since 2n�p � n, or 2n�p = O(n), we have that 1=p < 2�n+2n�2�2n.
Thus replacing 2�n by 1=p only adds a second order term to adversary's success
probability.

2

7 Message Secrecy

We now prove security in the �nd-then-guess model, which implies that the
IAPM scheme (both for �g 1 and �g 2) is secure for message secrecy.
Theorem7. Let A be a chosen plaintext attack adversary of the encryption

scheme IAPM with random permutations F and G, making at most z queries,

these totaling at most u blocks. Then

AdvA � (3u2=2 + z
2) �

1

2n

Proof:

We will calculate the probability of the adversary's success under the as-
sumption that F and G are random functions. A standard argument shows that
the error introduced in calculating the probability is at most (u2 + z

2) � 2�n�1.
As in the previous theorem, we will use subscripts to denote particular blocks

in a message. We will use constants ci, c0, di to denote strings of arbitrary block
length. Let the z queries be divided into p queries in the �rst phase, one query
in the \choose" phase, and p

0 queries in the second phase. Thus z = p+ 1 + p
0.

We will use c to denote the sequence c1; :::; cz.
Let l() be the length of the �rst ciphertext (determined by the adversary).

The function j � j is used below to represent length of a message in blocks. Given
a sequence of ciphertext messages c1; :::; ci, i � z, let l(c1; :::; ci) be the length of
the (i+ 1)th ciphertext (which is determined by the adversary, and therefore is
a deterministic function of c1; :::ci).

As in lemma 3, we consider the event E2, under which all theM variables are
di�erent. Similarly, we also predicate on the event that all the initial variables
are di�erent (event E3). Recall that the event E2(y) is that all the variables in
the following multi-set are di�erent:

fM
i

j
; i 2 [1::y]; j 2 [1::Li � 1]g



Event E2(z) is also written as just E2. The event E3 now requires that all initial
variables are di�erent:

fC
i

0; i 2 [1::p]g [ fC 0

0g [ fC
i

0; i 2 [p+ 2::p+ 1 + p
0]g

Note that Cp+1 is another name for C 0.

We have,

Pr[A(R;C) = b ^ E2 j E3(�!r ) ] =
X

c1: jc1j=l()

:::

X
ci: jcij=l(ci�1;:::;c1)

:::

:::

X
cz: jczj=l(cm�1;:::;c1)

Pr[A(R;C) = b ^ C = c ^ E2 j E3(�!r ) ]

If for some i, ci0 6= r
i, then the inside expression is zero.

The inside expression can be written as

Pr[A(R;C) = b ^ C = c ^ E2 j E3(�!r ) ]

= Pr[A(R; c) = 0 ^

^
i2[1::z]

C
i = c

i : ^b = 0 ^ E2 j E3(�!r ) ] +

Pr[A(R; c) = 1 ^

^
i2[1::z]

C
i = c

i : ^b = 1 ^ E2 j E3(�!r ) ]

where when b = 0, Cp+1 = C
0 is the encryption of P 00, and when b = 1 it is the

encryption of P 01. Let's concentrate on the �rst summand.

Pr[A(R; c) = 0 ^

^
i2[1::z]

C
i = c

i
^ b = 0 ^ E2 j E3(�!r ) ]

= Pr[A(R; c) = 0 j
^

i2[1::z]

C
i = c

i
^ b = 0 ^ E2 ^ E3(�!r ) ] �

Pr[
^

i2[1::z]

C
i = c

i
^ E2 j b = 0 ^ E3(�!r ) ] � Pr[b = 0]

= Pr[A(R; c) = 0] � Pr[
^

i2[1::z]

C
i = c

i
^ E2 j b = 0 ^ E3(�!r ) ] � Pr[b = 0]

This quantity is upper bounded by

1

2
� (2�n)� � Pr[A(R; c) = 0]

by Claim 5, and lower bounded by

1

2
� (1� �(�� 1)=2 � 2�n) � (2�n)� � Pr[A(R; c) = 0]

by Claim 10 below, where � = �i2[1::z](l
i
� 1). Note that, both Claim 5 and

Claim 10 hold regardless of whether b = 0 or b = 1.



Thus,

1

2
�(1��(��1)=2�2�n)�(2�n)� � Pr[A(R;C) = b^C = c^E2 j E3(�!r )] �

1

2
�(2�n)�

and hence,

1

2
� (1� �(�� 1)=2 � 2�n) � Pr[A(R;C) = b ^E2 j E3(�!r )] �

1

2

Thus by Claim 6, and Pr[: E3] � z
2 � 2�n�1, we have

jPr[A(R;C) = b]�
1

2
j � (u2 + z

2
=2) � 2�n

2

Claim 10: Let l1 be the length of the �rst ciphertext. Let y � z, and j 2 [0; 1].
For any constant lengths li (i 2 [2::y]) and constant strings ci, (i 2 [1::y], jcij =
li), such that for all i 2 [2::y], li = l(c1; :::; ci�1),

Pr[
^

i2[1::y]

C
i = c

i
^ E2(y) jb = j ^ E3(�!r )] � (1� �(�� 1)=2 � 2�n) � (2�n)�

where � = �i2[1::y](l
i
� 1).

Proof:

We do induction over y, with base case y = 0.
The base case is vacuously true, as � = 0 and conditional probability of TRUE
is 1.
Now assume that the lemma is true for y. We prove the lemma for y + 1. The
explanation for the inequalities is given below the sequence of inequalities.

Pr[
^

i2[1::y+1]

C
i = c

i
^ E2(y + 1) j b = j ^E3(�!r )]

= Pr[Cy+1 = c
y+1

j

^
i2[1::y]

C
i = c

i
^ E2(y + 1) ^ b = j ^ E3(�!r )]

� Pr[
^

i2[1::y]

C
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i
^ E2(y + 1) j b = j ^E3(�!r )]

= (2�n)l
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�1
� Pr[

^
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C
i = c

i
^ E2(y) j b = j ^ E3(�!r )]

� Pr[E2(y + 1) j
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C
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i
^ E2(y) ^ b = j ^ E3(�!r )]

� (2�n)l
y+1

�1
� Pr[

^
i2[1::y]

C
i = c

i
^ E2(y) j b = j ^ E3(�!r )]

� (1� [(ly+1
� 1)(ly+1

� 2)=2 + (ly+1
� 1) � (�i2[1::y](l

i
� 1))] � 2�n)

and the claim follows by induction. The last inequality is seen as follows. Given
the ciphertexts upto Cy, the plaintexts upto P y+1 are �xed. Also, given E2(y),



E2(y+1) is just the M values in message y+1 being di�erent from each other and
also di�erent from all earlier M values. Given that S are pair-wise di�erentially
uniform, the bound then follows by upper-bounding :E2(y + 1).

The probability of Cy+1 = c
y+1 is calculated as in Claim 5. 2
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