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Some resistance of hash functions

Near-collision resistance
Resistance against attacks finding a pair of hash values 
which differ in only small number of bit positions. 

Pseudo-collision resistance
Resistance against collision attacks where different initial 
vectors can be chosen.

Pseudo-randomness
Indistinguishability from a random function. 
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Pseudo-collision resistance

Resistance when 2 inputs controlled.
Important in the theory of the MD-
construction
There could be some application   
which requires the underlying hash 
function to have this resistance 

Knudsen et al, Preimage and pseudo-
collision attack on MD2, FSE2005

Compression 
function

V (0)=IV

M (0)

M (1)

MD-construction

Compression 
function

V (1)

hash value
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Biham and Chen attack
Near-collision attack on SHA-0

Biham and Chen, near-collision of SHA-0, CRYPTO 2004

Start collision search from some intermediate round r

Introduce new technique called neutral bits to optimize attack 
complexity

Neutral bits do not affect the difference for r rounds
Use 2k(r) messages generated from k (r) neutral bits
Using this messages gives a better probability for r rounds 
than probability when using randomly chosen messages
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Hash Function in encryption 
mode

We call the block cipher E 
the hash function in  
encryption mode  Compression 

function

V (0)=IV

Compression 
function

V (1)

Compression 
function

V (2)

Hash value
Davies-Meyer Construction

The block cipher
E(V (j), M (j))

SHA-256 in encryption mode
was proposed in 2000 by 
Handschuh and Naccache
and named SHACAL-2
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Cryptanalysis of Hash 
functions in Encryption Mode

Differential cryptanalysis of SHA-1 
Handschuh et al., SHACAL, Submission to the NESSIE project, 2000. 

Slide attack on SHA-1 and pseudo-collision attack on MD5 
Saarinen, Cryptanalysis of Block Ciphers Based on SHA-1 and MD5, 
FSE2003.

Attack which distinguishes HAVAL from a random function.
Yoshida et al., Non-randomness of the Full 4 and 5-pass HAVAL, 
SCN2004. 

Attack on 32-round SHACAL-2 by Shin at al at ACISP 2004
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Differential Cryptanalysis of a 
Hash Function in Encryption Mode

Differential characteristic defines 
the expected differences d (Yi, Yi ) 
in each round. 

Definition
A pair of plaintexts (P, P‘ )
conforms to the Differential 
characteristic if the differences 
at the output of the first r rounds 
are as expected.

Assumption
Differential characteristic has 
already been found

d (Y0, Y’0)= Input difference

d (YR, Y’R )= output difference

Differential characteristic

d (Y1, Y’1) round 0

round 1

round r -1

r 

d (Y2, Y’2)

d (Yr -1, Y’r  -1)
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Neutral bit in case of Hash 
Functions in Encryption Mode

P 

i - th bit

0

Q 

complement

1

P ’1

Q ’

complement

0

i - th bit

Assume that  (P, P') conforms to some differential characteristic

If (Q, Q‘) conforms to the differential characteristic, 
the i -th bit is called neutral bit.
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Differential Cryptanalysis of a 
Hash Function in Encryption Mode

Plaintexts generated by 
large set of neutral bits

Key

C : Ciphertext

...

Plaintexts generated by 
small set of neutral bits

C : Ciphertext

Round 0
Round 1

Round R-1

...

Round 0
Round 1

Round r-1

Attack method A Attack method B

fix

Control

E (K, P ) E (K, P )

fix Key
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Application Biham-Chen attack to 
MD5 with Saarinen’s characteristic

<<< s

F

X[t]
K[t]

Saarinen’s characteristic 

e31 e31 e31 e31

Round 2

Round 1

Difference ∆

∆

∆
∆

∆

∆

∆

Pseudo-collision

Attacks on MD5
Pseudo-collision attacks (Dobbertin., Eurocrypt ‘96 rump session) 
Pseudo-collision attacks (Saarinen, FSE 2003)
Attacks for finding collisions (Wang et al., Eurocrypt 2005).

e31 e31 e31 e31

Difference                                       

Difference                                       

same
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Experimental results on MD5
Method A found a pseudo-near collision for MD5 with 
complexity 242 which differs only in 1 bit position
Method B found a pseudo-collision for MD5 with complexity 239

Probability of characteristic obtained from neutral set is about 2-39, 
which is 29 higher than original probability.

Original differential characteristic

Pseudo-collision

Improved differential characteristic

Pseudo-collisionOverall prob. Overall prob.
Improved!2-48 2-39

2-16

2-16

2-16

2-7

2-16

2-16

1

1st round

2nd round

3rd round

4th round

1

Improved!
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Introduction to SHA-256

Proposed in 2000 by NIST
Adopted as FIPS standard in 2002

Resistance against known attacks studied
Security report at SAC 2003 by Gilbert and Handschuh
Property related to Chabaud-Joux attack by Hawkes et al
in 2004 

Pseudo-collision attack on variant of SHA-256 with 34 rounds 
demonstrated at SAC 2005 by Yoshida and Biryukov
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SHA-2-XOR, variant of SHA-256

Simplify SHA-256 by replacing ADD by XOR

C

Ch

∑1

∑0

Ma

A B E F G HW

K

D

T1

T2

CA B E F G HDRound 64

Round 2
Round 1

Round 3

V (1)

V (0)

W0
W1

W63
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p0

P1

p2

d(Y1, Y’1)

Pseudo-collision attack on 
SHA-2-XOR at SAC 2005 

Differential cryptanalysis
Biham, Shamir, Differential 
Cryptanalysis of the Data Encryption 
Standard, 1993.
The aim is to find differential 
characteristics for the whole cipher. 

A differential characteristic

d(Y2, Y’2)

d(Y3, Y’3)
d(Y4, Y’4) = output 

difference

d(Y0, Y’0) = input difference

Input modification
Select input values that follows the characteristic with 
probability 1 in the first several( or many) rounds.

Rijmen and Preneel, Improved characteristics for differential
cryptanalysis of hash functions based on block ciphers, FSE 94
Wang et al, Cryptanalysis of the hash functions MD4 and RIPEMD, 
Eurocrypt 2005
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Best probability 2-8

Properties used:
CH(0,0,0) = 0
CH(1,1,1) = 0/1 with 
probability 1/2

MJ behaves linearly

dC

Ch

∑1

∑0

Ma

dA dB dE dF dG dHW

K

dD

T1

T2

dCdA dB dE dF dG dHdD

The only place where 
probability paid

The best one-round iterative 
characteristics

0x3b3b3b3b 0xc0c0c0c0
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Input modification

19-round charactericstic with probability 1

15 round charactericstic with prob. 2-120

34-round pseudo-collision 
with prob. 2-120 !!

Modify these bits
Modify some bits of register values and 
W0, W1,...,W15 to ensure the following 
152-bit conditions to hold:

For j =2,3,10,11,18,19,26,27
(F0  G0 )(j ) =0x08080808(j ) 

(E0 F0 )(j ) =0x08080808(j )

(Et  Et +1)(j ) =0x08080808(j ) , t = 1,2...,16

W0
W1

W15
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Experimental results on 
SHA-2-XOR

Q = 0x4939a45a 0x79ec4172 0xf0ef52a9 0xa8161bbe
0xd92f76e4 0x21962dfe 0xd88e6416 0xfac1edb2

Q’= 0xfa8a17e9 0xca5ff2c1 0x435ce11a 0x1ba5a80d
0xd5237ae8 0x2d9a21f2 0xd482681a 0xf6cde1be

Plaintext pair which produces a pseudo collision for 10 rounds:

Probability of the 10-round characteristic obtained from 
set of neutral bits is about 2-23.7, which is 256 higher than the 
original probability.

The size of set is 27, r = 7.

In practice, we found 10 pseudo-collisions for 10 rounds with 
complexity 227
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Theoretical results on 
SHA-2-XOR

We can use 768 bits of input  
How many input bits we have used so far and will be able to 
control to add rounds? 
In order to obtain 10-round pseudo-collisions, what we did:

Fix each of the words W0, W1, …, W6 to 0
Use the 2-neutral set of size 27

We use 7 * 32bits to construct 10-round pseudo-collisions, 
therefore we can control the message words, W7, W8, …, W15
(=freedom of 9 * 32 bits.) to add 13 rounds.
We find a pseudo-collision for 22-rounds of SHA-2-XOR with 
complexity 2120
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Comparison with previous attack 
Differential 
path

Optimization
technique

# of 
rounds

Pseudo-collision attack on 
SHA-2-XOR at SAC2005

One-round 
iterative

Same as 
above

34Input 
modification

Neutral bits 22

2120

Pseudo-collision attack on 
SHA-2-XOR in this talk

Complexity 

2120

Both attacks are based on one-round iterative differential 
characteristic whose Hammming weight iterative is high
Unlikely to obtain a high probability for the same characteristic 
in SHA-256 as in SHA-2-XOR
Not possible to apply both attack to actual SHA-256 in a 
straightforward way 
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Observation on real SHA-256
The previous result:
Attack on 32-round SHACAL-2 by Shin et al at ACISP 2004
This is based on a 14-round truncated differential characteristic

Associated probability 2-32 which has been improved to 2-18.7 by:
Fixing some bits of plaintext pairs
Constructing multiple differential characteristics.

Our results:
We found a plaintext-pair with set of 20 neutral Bits for r = 5
This set gave us a probability 2-8.01 for the 14-round truncated 
characteristic, 210 higher than previous probability 2-18.7
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Conlusions

We discussed some resistance and tried to apply the Biham-
Chen attack to study well-known hash functions.

Some improved results on MD5 and a SHA-256 variant were 
presented. 

The generic approach here may find interesting results on 
hash functions for which differential characteristics have 
been already found.
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Abstract. Biham and Chen proposed an attack on SHA-0 at Crypt
2004. In this paper, we apply the Biham-Chen attack to analyze SHA-
like hash functions regarding pseudo-collision resistance and pseudo-
randomness. We present a scenario about how to attack SHA-like hash
functions applying the Biham and Chen attack. Using this scenario, we
present a differential attack on the MD5 hash function and a differential
attack on a variant of SHA-256 hash function. We also study certain
several rounds’ property of the real SHA-256 function.

Keywords: Differential attack, Pseudo-collision resistance, Pseudo-randomness.

1 Introduction

A cryptographic hash function is an algorithm that takes input strings of arbi-
trary (typically very large) length and maps these to short fixed length output
strings.

Biham and Chen proposed an attack on the SHA-0 hash function at Crypt
2004 [1]. The attack seems to have a great influence on the future analysis and
design of hash functions because it uses very generic technique which is the use
of neutral bits. It is quite natural and interesting to apply this technique to other
hash function whose structure and boolean functions are similar to SHA-0, such
as the MD-family and the SHA-family for the next generation, which we call
SHA-like hash functions.

In this paper, we apply the Biham-Chen attack to analyze such hash functions
regarding pseudo-collision resistance and pseudo-randomness. The importance of
pseudo-collision resistance is related to collision resistance. Pseudo-collision re-
sistance is a resistance against finding a collision obtained from more relaxed con-
dition that different initial vectors can be chosen. Pseudo-collision resistance has
? This work was supported in part by a consignment research from the National In-

stitute on Information and Communications Technology (NiCT), Japan. This work
was supported in part by the Concerted Research Action (GOA) Ambiorics 2005/11
of the Flemish Government.



a particular importance for a hash function constructed by the MD-construction
because in this case pseudo-collision resistance for the hash function can be
translated into collision resistance for its compression function. The theory of
the MD-construction, on which the securities of many popular hash functions
rely, does not guarantee collision resistance for a hash function without pseudo-
collision resistance for its compression function. It has also pointed out at FSE
2005 [12] that pseudo-collision resistance has an importance in some application.

The outline of this paper is as follows. In Section 5.1, we give a brief descrip-
tion of the Biham and Chen attack. In Section 3 we present an scenario how to
attack SHA-like hash functions applying the Biham and Chen attack. Using this
scenario, we present a differential attack on the MD5 hash function. in Section
4 and a differential attack on a variant of SHA-256 hash function in Section 5
where we also study the several rounds’ property of the real SHA-256 function.
Our conclusions are given in Section 6.

2 Description of the Biham and Chen attack

In this section, we give a brief description of the Biham and Chen attack. What
the attack does is that for a given differential characteristic, the attack improves
its probability by starting the collision search from some intermediate round r.
The attack uses so called neutral bits which do not affect the difference for r
rounds. If the attacker obtains k(r) neutral bits, he can generate a set of 2k(r)

messages. For the characteristic from round 0 to r − 1, using this set gives us
a better probability than the probability when using a set of randomly chosen
messages.

The Biham and Chen attack significantly reduces the complexity of the attack
on SHA-0 by Chabaud and Joux and allowed to find near-collisions for the SHA-0
[1].

The Biham-Chen technique of neutral bits is a special case of the definition
of “good pair oracle” (or space oracle) given in [6]. The difficulty in the case of
block ciphers is that the attacker can not control the key and thus typically can
not gain first rounds for free unless there is a property that holds with probability
one for all the keys. In the case of hash functions the attacker may control the
key (the message) and thus may prepare a large set of pairs with guaranteed
propagation of the differences in the initial rounds. In the case of block ciphers
similar phenomenon can be exploited only once the attacker has identified the
first good pair for the full cipher.

3 Differential Cryptanalysis of hash functions in
encryption mode

Any compression function of SHA-like hash function is constructed from a block
cipher denoted by E(K, P ), using the Davies-Meyer mode. Therefore we obtain
a block cipher E(K, P ) from such a compression function if the Davies-Meyer
chaining is peeled off.



Several cryptanalytic techniques ranging from differential cryptanalysis [4]
to slide attacks [5] have been applied to study the security of well-known hash
functions in encryption mode. For example, differential cryptanalysis of SHA-
1 has been shown in [11]. A slide attack on SHA-1 and an attack on MD5
which finds one high-probability differential characteristic were given in [16].
The strongest version of the HAVAL hash function in encryption mode was
shown to be non-random[19].

In this paper, we apply the Biham-Chen attack to hash functions in encryp-
tion mode. First we assume that a differential characteristic ∆ for the n-bit block
cipher E(K, P ) has been already found and the key value K is fixed to one value
K = K0, we make the following definitions:

Definition 1. The differential characteristic ∆ defines the expected differences δ
of the values of registers in each round. We say that a pair of plaintexts conforms
to δr if Ei(K0, P ) ⊕ Ei(K0, P

′) = δi for every i ∈ {1, . . . , r}, where Ei(K0, P )
consists of the first i rounds of E(K0, P ).

Definition 2. Let P and P’ be a pair of plaintexts that conforms to δr for some
r. We say that i-th bit of the plaintexts is a neutral bit with respect to P and P ′ if
a pair of the plaintexts received by complementing the i-th bits of P and P ′ also
conform to δr. We say that the pair of the i-th bit and j-th bit of the plaintexts
is neutral with respect to P and P ′ if all the pairs of the plaintexts received by
complementing the any subset of these bits {i}, {j}, {i, j}-th bits of P and P ′

also conform to δr. We say that a set of bits S ∈ {0, ..., n − 1} is neutral with
respect to P and P ′ if all the pairs of the plaintexts received by complementing
the any subset of the bits in S in both plaintexts P and P ′ also conform to δr.
We say that a subset S ∈ {0, ..., n− 1} of bits of the plaintexts is 2-neutral with
respect to P and P ′ if every bit ∈ S is neutral, and every pair of bits in S is also
neutral.

In the Table 1, we show an algorithm for finding a 2-neutral set which we
will use in the following in section. In this algorithm, we say that there is an
edge between two bits, i-th bit and j-th bit if the pair of these bits is neutral.

Table 1. An algorithm for finding a 2-neutral set

Find a pair of plaintexts that conforms to δr for some r
Find the set S of singles of neutral bits
Find simultaneous neutral pairs in S
while do

Count the number of edges for each element of S
If the resulting set is a neutral set, break
Remove from S one of the elements which has the least number of edges.
Let the resulting set be S

end while



4 Application to the MD5

4.1 Description of the MD5

In this section, we give a brief description of the MD5 hash function and the
block cipher based on the hash function, which is sufficient to understand the
concepts introduced in this paper. For a full description of MD5 we refer to [15].

MD5 is a cryptographic hash function which was proposed in 1992 and
has been one of the most well-known hash function. MD5 is constructed from
MD(Merkle-Damg̊ard) –construction and Davis-Meier mode. MD5 has 64 rounds,
three kinds of non-linear functions, cyclic rotations, and round-dependent con-
stants. The hash value calculated by MD5 is 128 bits long.

The function obtained from the compression function of MD5 by removing
the feed-forward operation of the Davis-Meier mode is invertible. This function
can be used as a block cipher which is called MD5 in encryption mode. We
denote it by E(K, S). The block cipher was analyzed in FSE 2003 [16].

The function E(K, S) is an iterated design that only uses simple operations
on 32-bit words. The 128-bit input Vj is loaded into 4 registers (A,B, C, D)
and the 512-bit message block is divided into 16 words of 32 bits (W0 . . .W15)
and these words are expanded to a sequence of 64 words through the message
schedule. MD5 encrypts the initial value using this sequence as a key.

The 4 registers are updated through a number of rounds. The MD5 com-
pression function consists of 64 rounds and have the following four non-linear
functions f1, f2, f3, f4. Every round function has arithmetic addition, a round-
dependent constant Ki.

f1(X, Y, Z) = (X ∧ Y ) ∨ (X ∧ Z);
f2(X, Y, Z) = (X ∧ Z) ∨ (Y ∧ Z);
f3(X, Y, Z) = X ⊕ Y ⊕ Z;
f4(X, Y, Z) = (X ∨ Z)⊕ Y ;

where X is bitwise complement of X.
The t-th round of the compression function updates the 4 registers using

input word Xt and the constant Ki as input.

4.2 Pseudo-collision Attack on the MD5 hash function

By definition, to find a pseudo-collision, an attacker can inject differences both
into the message schedule and registers. The attacker would require a complexity
264 to find a pseudo-collision if MD5 is a ideal hash function.

In the ideal case, if both of an input difference and an output difference are
fixed, then the probability that a plaintext pair with the input difference results
in the output difference is 2−128.



In cryptanalysis of MD5 in encryption mode, Saarinen found a iterative dif-
ferential characteristics with a high probability 2−48 at FSE 2003 [16].

δ = 80000000 80000000 80000000 80000000

↓
E(K, P )⊕ E(K, P ⊕ δ) = δ

This means that this function E(P,K) which is the core function of MD5 does
not behave as a random function. This characteristic leads to an attack finding a
pseudo-collision with a complexity 248 due to the feed-forward operation of the
Davis-Meyer mode.

In this section, we will see how much the method presented here improves
the probability of this characteristic by using the particular set of plaintexts ,
rather than using a set of randomly chosen plaintexts. We set the key value K
to be 0 so we study the resulting function E(P, 0).

Since MD5 uses four different non-linear functions, it is interesting to see
how much the probability is improved for each 16 rounds by finding neutral bits.
Here is the result on this which is shown in the Table 2.

Table 2. The best probability for each 16 rounds

Rounds This paper The previous result [16]

0-15 2−6.49 2−16

16-31 2−9.33 2−16

32-47 1 1
48-63 2−7.22 2−16

Next we used the algorithm shown in the Table 1 to find some good set of
inputs to E(P,K). In order to attack many rounds, we have to create a large
value for r. The problem is that if r is larger, then the number of neutral bits is
smaller. It turned out that the optimal value for r is 6 in this respect.

In practice we found a pseudo-near-collision which differ only in 1 bit position
with with complexity 242:

P = A‖|B‖C‖D = 4315524f 79ba3feb 51453fe2 e3af887c

P ⊕ δ = c315524f f9ba3feb d1453fe2 63af887c

MD5(0, P )⊕MD5(0, P ⊕ δ) = 00000000 00000000 00100000 00000000

The running time was approximately half a week with 32 CPU’s in parallel.
Next in order to find a pseudo collision, we take another approach where we

pay attention to the key input to the block cipher. For r, we use a large value as



possible. The number of neutral bits could be too small to obtain enough inputs
used in an attack. Instead, we use the key input. In the following experiment, we
used 10 for r and chose random values for the key words from round 0 to round
9. Therefore we had 242 inputs which consist of 26 plaintext inputs and 236 key
inputs where the values for the first 10 words are fixed to 0 and the other ones
are chosen randomly.

Our experiment confirmed that the probability of this characteristic obtained
from a 2-neutral set of size 6 is 2−39, which is 29 higher than the probability of
the same rounds of the original characteristic. This means that with a probability
2−39 the following equation holds:

MD5(K0, P ) = MD5(K0, P ⊕ δ)
What this means to the security of MD5 (E(K, P ) with the Davies-Meyer

chaining) that for such a plaintext P , a pair of chaining variable (P, P ⊕ δ) and
a pair of message block (M = M ′ = K0) produce a pseudo-collision for MD5:

P = A‖B‖C‖D = 0xe1b1c8f8 0x55143ae6 0x75babfe9 0x001558a1

P ⊕ δ = 0x61b1c8f8 0xd5143ae6 0xf5babfe9 0x801558a1

K0 = 0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x00000000 0x00000000

0x00000000 0x00000000 0x6009f204 0xd2bf6eee

0xb52517de 0x2f1889c8 0x72417083 0xa1cf21a1

This means that MD5 has weakness in randomness and pseudo-collision resis-
tance.

Since several techniques to find full collisions as well as pseudo-collisions for
MD5 quite efficiently have been already known [7] [10] [18], here we attempt to
explain about two reasons why our result is of interest. The first reason is that
the attacker could expect more freedom. In the pseudo-collision attacks [7] [10],
the values for several message words are determined during the process of the
attacks. In our attacks, we can choose any value for message(key) freely before
starting the attack. The second reason is its simplicity. we use a simple but good
characteristic. To improve its probability, we do not perform a detailed analysis
of the boolean function which is done in [18]. Our algorithm automatically finds
us a good set of inputs of MD5.

5 Application to the SHA-256

5.1 Description of the SHA-256

In this section, we give a brief description of the SHA-256 hash function, which
is sufficient to understand the concepts introduced in this paper. For a full de-
scription of SHA-256 we refer to [14].

The 256-bit chaining variable Vj is loaded into 8 registers (A,B,C, D, E, F,G, H)
and the 512-bit message block is divided into 16 words of 32 bits (W0 . . .W15)



and these words are expanded to a sequence of 64 words through the message
schedule:

σ0(X) = ROTR7(X)⊕ROTR18(X)⊕ SHR3(X);
σ1(X) = ROTR17(X)⊕ROTR19(X)⊕ SHR10(X);

Wt = σ1(Wt−2) + Wt−7 + σ0(Wt−15) + Wt−16

where ROTRn is right rotation by n bits.
The 8 registers are updated through a number of rounds. The SHA-256 com-

pression function consists of 64 rounds. Every round function has arithmetic
addition, a round-dependent constant Ki, two linear functions Σ0, Σ1, and two
non-linear functions CH, MJ .

CH(X, Y, Z) = (X ∧ Y )⊕ (X ∧ Z);
MJ(X, Y, Z) = (X ∧ Y )⊕ (Y ∧ Z)⊕ (Z ∧X);

Σ0(X) = ROTR2(X)⊕ROTR13(X)⊕ROTR22(X);
Σ1(X) = ROTR6(X)⊕ROTR11(X)⊕ROTR25(X),

where X is bitwise complement of X. The t-th round of the compression func-
tion updates the 8 registers using the word Wt and the constant Ki as input.
The compression function updates the 8 registers according to the following
algorithm:

T1t(Et, Ft, Gt,Ht,Kt,Wt) = Ht + Σ1(Et) + CH(Et, Ft, Gt) + Kt + Wt ;
T2t(At, Bt, Ct) = Σ0(At) + MJ(At, Bt, Ct) ;

Ht+1 = Gt;Gt+1 = Ft;Ft+1 = Et;Et+1 = Dt + T1t ;
Dt+1 = Ct;Ct+1 = Bt;Bt+1 = At;At+1 = T1t + T2t.

5.2 Application to the SHA-2-XOR

We consider a SHA-256 variant in which every arithmetic addition is replaced
by XOR operation. We call this variant SHA-2-XOR.

We discuss pseudo-collision resistance and pseudo-randomness of this func-
tion. In the ideal case, the attacker would require a complexity 2128 to find a
pseudo-collision and if both of an input difference and an output difference are
fixed, then the probability that a plaintext pair with the input difference results
in the output difference is 2−256.

At SAC 2005 [20], Yoshida and Biryukov presented a pseudo-collision attack
on the reduced SHA-2-XOR with 34-rounds using the best one-round iterative
characteristic with a high probability 2−8. The attack is of complexity 2120 and
uses the input modification technique which ensures some conditions to hold so
that for the first 19-rounds no probability is paid.

Here we consider an attack which also uses this iterative characteristic but
in order to improve the probability for the first several rounds, we apply the
technique of neutral bits, instead of the input modification technique.



Here P = A‖|B‖C‖D‖E‖F‖G‖H

δ = 0xb3b3b3b3 0xb3b3b3b3 0xb3b3b3b3 0xb3b3b3b3

0x0c0c0c0c 0x0c0c0c0c 0x0c0c0c0c 0x0c0c0c0c

↓
E(K, P )⊕ E(K, P ⊕ δ) = δ

In this section, we will see how much the method presented here improves
the probability of this characteristic by using the particular set of plaintexts ,
rather than using a set of randomly chosen plaintexts. We set the key value K
to be 0 so we study the resulting function E(0, P ).

Table 3. The set of neutral bits of size 27 for r = 7, (the bits are numbered in the
range 0, ..., 255)

.

P = 0x4939a45a 0x79ec4172 0xf0ef5249 0x29b5bb6f

0xd92f76e4 0x21962dfe 0xd88e64f6 0x7b624d63

P⊕δ = 0xfa8a17e9 0xca5ff2c1 0x435ce1fa 0x9a0608dc

0xd5237ae8 0x2d9a21f2 0xd48268fa 0x776e416f

Pairs: (128 0), (129 1),(132 4),(133 5),(134 6),(135 7),(136 8),
(137 9),(140 12),(141 13),(142 14),(143 15),(144 16),(145 17),
(148 20),(149 21),(150 22),(151 23),(152 24),(153 25),(156 28),

(157 29),(158 30),(159 31),(165 37),(166 38),(167 39)

For r = 7, an experiment using the algorithm1 gave us a 2-neutral set of
size 53. In order to estimate probability with a practical complexity, we took a
sub-set of size of 27 shown in the Table 3.

Our experiment confirmed that the probability of 10-round of this character-
istic obtained from this 2-neutral set is 2−23.678072 which is slightly more than
2−24. This is 256 higher than the probability in the original characteristic.

This means that with a probability 2−23.678072 the following equation holds:

E10(0, P )⊕ E10(0, P ⊕ δ) = δ

In practice we found 10 right pairs of plaintexts (P, P⊕δ) with complexity 227.
What this means to the security of SHA-2-XOR (E(K, P ) with the Davies-Meyer
chaining) is that for such a plaintext P , a pair of chaining variable (P, P ⊕δ) and
a pair of message (M = 0,M ′ = M) produces a pseudo-collision for 10 rounds
of SHA-2-XOR hash function. A pair of plaintexts which produce such a pseudo
collision is as follows:

P = 0x4939a45a 0x79ec4172 0xf0ef52a9 0xa8161bbe



0xd92f76e4 0x21962dfe 0xd88e6416 0xfac1edb2

P ⊕ δ = 0xfa8a17e9 0xca5ff2c1 0x435ce11a 0x1ba5a80d

0xd5237ae8 0x2d9a21f2 0xd482681a 0xf6cde1be

Now the interesting question is how many rounds we could add to this 10-
rounds from theoretical point of view. In principle, we can use 768 bits of input
in the case of SHA-2-XOR. What we need to consider is that how many input
bits we have used so far and will be able to control to add rounds. In order to
obtain 10-round pseudo-collisions, we had to do two things:

1) Fix each of the words W0,W1, . . . ,W6 to 0
2) Use the 2-neutral set of size 27
This means that we use 7· 32bits to construct 10-round pseudo-collisions,

therefore we can control the message words, W7,W8, . . . ,W15 (=freedom of 9·
32 bits.) to add 12 rounds.

This discussion above means that 38-rounds of SHA-2-XOR has weakness
in randomness and 22-rounds of SHA-2-XOR has weakness in pseudo-collision
resistance.

5.3 Application to the SHA-256

SHA-256 in encryption mode was proposed for use as a block cipher by Hand-
schuh and Naccache and named SHACAL-2 [11]. The block cipher was selected
as one of the NESSIE finalists.

In [17], an attack on the reduced 32-round SHACAL-2 using a 14-round
truncated differential characteristic is presented. Since the round function of
SHACAL-2 is exactly same as the round function of SHA-256, this 14-round
characteristic shown in the Table 4 can be considered as some interesting prop-
erty of SHA-256. In the Table 4 we denote by ei1,...,ik,∼ a 32-bit word that has
1’s in the positions i1, . . . , ik, and unconcerned values in the positions of the bits
(ik + 1) ∼ 31, and 0’s in the rest of bit positions and we also denote by z0 a
32-bit word that has 0 in the positions 0 and unconcerned values in the other
bit positions.

This characteristic has a probability 2−32 which has been improved to ap-
proximately 2−18.7 in [17] using two kinds of technique:
1) Fixing some bits of plaintext pairs
2) Computing possible dE10 values and construct multiple differential charac-
teristics.

Here we use the technique described before to improve the probability and
compare the results with the ones in Table[17].

We found a pair of plaintexts with the set of 20 Neutral Bits for r = 5, which
is shown in the Table 5.

Our experiment confirmed that using this set gave us a probability 2−8.01

for the 14-round truncated characteristic. This is about 210 higher than the
improved probability in [17].



Table 4. A 14-round truncated differential characteristic (M1 = {9, 18, 29}, M2 =
{6, 9, 18, 25, 29}, M3 = {6, 9, 18, 20, 25})

Round dAt dBt dCt dDt dEt dFt dGt dHt Prob.

Input(t = 0) 0 0 eM1 0 0 e31 eM2 0 2−10

1 e31 0 0 eM1 e31 0 e31 eM2 2−10

2 0 e31 0 0 0 e31 0 e31 2−2

3 0 0 e31 0 0 0 e31 0 2−2

4 0 0 0 e31 0 0 0 e31 1

5 e31 0 0 0 0 0 0 0 2−4

6 eM1 e31 0 0 0 0 0 0 1

7 z0 eM1 e31 0 0 0 0 0 1

8 ? z0 eM1 e31 0 0 0 0 1

9 ? ? z0 eM3,∼ e31 0 0 0 2−4

10 ? ? ? z0 eM3,∼ e31 0 0 1

11 ? ? ? ? z0 eM3,∼ e31 0 1

12 ? ? ? ? ? z0 eM3,∼ e31 1

13 ? ? ? ? ? ? z0 e31 1

14 ? ? ? ? ? ? ? z0

Table 5. The set of neutral bits of size 28 for r = 5, (the bits are numbered in the
range 0, ..., 255)

.

P = 0x2e76ad25 0x3c0d407b 0xd54f19d7 0xe8c7e1e3

0xb25f725c 0x618fad55 0xb63b2fe8 0x9326a499

P ⊕ δ0 = 0x2e76ad25 0x3c0d407b 0xf54b1bd7 0xe8c7e1e3

0xb25f725c 0xe18fad55 0x942f2da8 0x9326a499

Singles: 45,46,49,51,71,74,75,87,88,153,172,
176,186,192,198,199,200,209,214,220



6 Conclusions

We applied the Biham-Chen attack to analyze SHA-like hash functions regard-
ing pseudo-collision resistance and pseudo-randomness. Using our scenario, we
presented a differential attack on the MD5 hash function and a differential attack
on a variant of SHA-2-XOR hash function. We also studied the several rounds’
property of the real SHA-256 function. We observed that in all the case, some
previous results on the differential probability were improved. For the future
work, we will use other kinds of neutral bits (triplets) to attack more rounds.
We think that even better probabilities may be obtained with the resulting set.
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