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Outline of SHA-1 compression function
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Design history of SHA-1

  Steps #Chaining Variables Message Expansion Rotations
MD4 1990 48 4 Permutation multi 
MD5 1991 64 4 Permutation multi 

SHA-0 1992 80 5 Recurrence  single 
SHA-1 1994 80 5 Recurrence + Bit-Rotation single 
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Outline of SHA-1 – Message Expansion
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Diffusion Property of the SHA-0/1 Message 
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Diffusion Property of the SHA-0/1 Message 
Expansion

)1( 161382 >>⊕⊕⊕= ++++ ttttt WWWWW

How does a change 
of one bit in the 
expanded message 
affect other bits?

Forward expansion:
Reverse expansion:

1)( 161483 <<⊕⊕⊕= −−−− ttttt WWWWW
In the case of SHA-0, there is no such diffusion
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Outline of SHA – State Update
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Rotations in the State Update

How are these constants 
chosen?

Would there be an 
improvement if multiple sets 
of rotation constants are 
used?

How are currently known 
attacks affected by different 
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The working principle of a collision attack 
applied to SHA

1. A linear approximation 
for SHA is constructed.

2. (Near/Pseudo)Collisions 
for the linear 
approximation are 
determined.
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SHA is searched among 
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Method to assess attack complexity

1. A linear approximation for 
SHA is constructed.

2. (Near/Pseudo)Collisions for 
the linear approximation are 
determined.

3. A collision for the real SHA 
is searched among the 
collisions for the linear 

Linear Approximation

Input Difference 

Characteristic, Conditions 
& Final Collision Search

approximation.

Strong correlation between
weight of input difference(2) and #conditions(3)

Hamming weight of input difference is enough
for our purposes 
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Hamming weights for variants of SHA-1
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Single vs. multiple sets of rotation 
constants
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Comparing different rotation constants –
Results for A in SHA-0
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Comparing different rotation constants –
Results for A in SHA-1
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Comparing different rotation constants –
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Comparing different rotation constants –
Results for A in SHA-1
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Comparing different rotation constants –
Results for B in SHA-1
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New single set of rotation constants
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Why small rotation constants?

„It‘s not only about security, it is also about performance“

Consider platforms where constant-time shifter/rotators
are not available. 

e.g. i286, Pentium IV
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Summary

Design space exploration of SHA-1-like hash functions
Steady vs. irregular increase of security with increased 
#steps

In the case of SHA-1 higher rotation constants would 
increase the steadiness
Performace on platforms without constant-time shifters is 
decrease
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Summary

Framework can be used to look at
other design options as well
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Impact of Rotations in SHA-1 and Related Hash
Functions

Norbert Pramstaller and Christian Rechberger and Vincent Rijmen
Institute for Applied Information Processing and Communications (IAIK)
Graz University of Technology, Inffeldgasse 16a, A–8010 Graz, Austria

Abstract— SHA-1 uses a single set of rotation constants within
the compression function. However, most other members of the
MD4 family of hash functions use multiple sets of rotation
constants, i. e. the rotation amounts change with the step being
processed.

To our knowledge, no design rationales on the choice of
rotation constants are given on any of these hash functions.
This is the first paper that analyzes rotations in iterated hash
functions. We focus on SHA-1-like hash functions and use recent
developments in the analysis of these hash functions to evaluate
the security implications of using multiple sets of rotation
constants in the compression function instead of a single set.
Additionally, we give some observations on the set of constants
used in SHA-0 and SHA-1.

I. INTRODUCTION

SHA-0 was introduced in 1993 and SHA-1 was introduced
in 1995 without giving any rationales on the design. Both are
based on the MD4 design strategy, however the used message
expansions are more complex. Additionally, a single set of
rotation constants instead of multiple sets are used during state
update, i. e. the rotation constants remain the same for all steps.
Later on, in 1998, the hash function HAS-160 was specified
for use in South Korea’s Digital Signature Algorithm. The
structure of HAS-160 is very similar to SHA-1. However, one
distinct feature is the use of multiple sets of rotation constants
(as in MD4 and MD5) instead of a single set. Several questions
are open so far:

1) Why were the rotation constants for SHA-1 chosen as
they are?

2) Would there be better choices for these constants from
a security point of view?

3) Is there a security advantage of using multiple sets of
rotation constants instead of a single set?

We attempt to give some answers to these questions. To
our knowledge this is the first article which deals with the
issue of rotation constants in iterated hash functions. The
outline and main contributions of this article are as follows.
In Section II, we give a short description of SHA-1 and HAS-
160. Afterwards, in Section III, we review and comment on
currently known analysis strategies for SHA-1. This review
serves as an important starting point for some comparisons
done later in this article. Looking at HAS-160, we see that
due to its non-recursive message expansion the basic building
block for most of these strategies (elementary collisions as
introduced by [3]) can not be directly applied. However, the

Rijmen-Oswald extension [15] can be used to overcome these
problems.

Afterwards we turn to the influence of multiple sets of
rotation constants. We analyze the effect of multiple sets of
rotation constants in simplified models in Section IV. We show
that these multiple sets improve the avalanche effect in the first
steps of our simplified, linearized model.

Section V contains the main contribution. We compare
single and multiple sets of rotation constants in hash functions
like SHA-1, HAS-160 and variations thereof. We identify
two reasons why the complexity of an attack increases when
multiple sets are used. Firstly, we show that the weight of
collision-producing differences increases and secondly, we
show that more conditions are needed due to an optimization
trick which is less effective with multiple sets. Here, we also
give a first observation on the design of SHA-1. For 80 or
more steps, the benefits of multiple sets over a single set of
rotation constants is negligible (in terms of Hamming weight
of a collision-producing difference). Additionally, we analyze
the attack complexity for variants of SHA-1 having different
single sets of rotation constants. We show that in the case of
full SHA-1 (80 steps), rotating the chaining variable A by 5
to the left and chaining variable B by 2 to the right are the
smallest possible values which do not impair security. Finally,
we discuss advantages of having these small constants.

A. Notation and terminology

TABLE I
NOTATION

notation description
A ⊕ B addition of A and B modulo 2 (XOR)
A + B addition of A and B modulo 232

A ∨ B logical OR of two bit-strings A and B
Mt input message word t (32 bits), index t starts with 0

Wt expanded input message word t (32 bits), index t starts with 0

A ≪ n bit-rotation of A by n positions to the left, 0 ≤ n ≤ 31

step the SHA-1 compression function consists of 80 steps
round the SHA-1 compression function consists of 4 rounds

N number of steps of the compression function

Table I contains a description of symbols used throughout
this article. Note that if negative integers are used as rotation
constants, the rotation direction is reversed from left to right.
Whenever we talk about Hamming weight of differential
patterns we refer to the smallest Hamming weight we found
using an adapted version [13] of Leon’s algorithm [7] for
finding low-weight words in linear codes.



II. DESCRIPTION OF USED HASH FUNCTIONS

In this section, we shortly describe SHA-1 and the differ-
ences of HAS-160 compared to SHA-1.

A. SHA-0 and SHA-1

The SHA family of hash functions is described in [11].
Briefly, their compression function consists of two phases: a
message expansion and a state update transformation. These
phases are explained in more detail in the following. SHA-
0 and SHA-1 share the same state update, but SHA-0 has a
simpler message expansion. Both SHA-0 and SHA-1 consist
of 80 steps. Since we will study variable-step versions in this
article, we denote the number of steps by N .

1) Message expansion.: In SHA-1, the message expansion
is defined as follows. The input is a 512-bit message, denoted
by a row vector m. The message is also represented by 16
32-bit words, denoted by Mt, with t = 0, 1, . . . , 15.

In the message expansion, this input is expanded linearly
into N 32-bit words Wt, also denoted as the 32N -bit expanded
message word w. The words Wt are defined as follows.

Wt = Mt, t = 0, . . . , 15 (1)
Wt = (Wt−3 ⊕ Wt−8 ⊕ Wt−14 ⊕ Wt−16) ≪ 1, t > 15(2)

The message expansion of SHA-0 is very similar, but uses:

Wt = Wt−3 ⊕ Wt−8 ⊕ Wt−14 ⊕ Wt−16, t > 15 . (3)

Consequently, a bit at a certain position i in one of the words
of w only depends on the bits at corresponding positions in
the words of m.

2) State update transformation.: The state update transfor-
mation starts from a (fixed) initial state for 5 32-bit registers
and updates them in N steps, using one word Wt in every step.
Figure 1 illustrates one step of the state update transformation.
The function f depends on the step number: steps 0 to 19
(round 1) use the IF-function and steps 40 to 59 (round 3) use
the MAJ-function.

fif(B, C, D) = BC ⊕ BD (4)
fmaj(B, C, D) = BC ⊕ BD ⊕ CD (5)

The remaining rounds use a 3-input XOR. A round constant
Kt is added in every step. There are four different constants;
one for each round. After the last application of the state
update transformation, the initial register values are added to
the final values, and the result is either the input to the next
iteration function or the final digest.

B. HAS-160

HAS-160 [17] is designed for use with the South Korean
KCDSA digital signature algorithm [16]. The output length is
160 bits. A security evaluation of KCDSA by Lim et al. can
be found in [9], [5]. An independent English description of
HAS-160 is available [10], [8]. HAS-160 can be seen as a
predecessor of the HAS-V family of hash functions proposed
in [12]. The design is based on SHA-1, however some features
are distinct. Subsequently, only the differences to SHA-1 are
described.

At Bt Ct Dt Et

Bt+1 Ct+1 Dt+1 Et+1

<< 5

At+1

>> 2

+

+

+

+

f
Wt

Kt

Fig. 1. One step of the state update transformation of SHA-1

1) Round constants.: HAS-160 uses a different set of round
constants. We do not need their actual values in this article.

2) Message expansion.: In SHA-0 and SHA-1, 16 input
message words Mt are expanded into 80 expanded message
words Wt using a recursive definition. In HAS-160, the 16
input words are expanded into 20 words (differently for each
round) and permuted for each of the four rounds. For actual
permutation tables and expansion tables, refer to [10], [8].

3) Boolean functions in the state update.: The only differ-
ence to SHA-1 is the 3-input Boolean function used for steps
40-59. We denote this function fhas3.

fhas3(B, C, D) = C ⊕ (B ∨ D) (6)

The impact of this difference with respect to collision-search
attacks is analyzed in Section V-B.

4) Rotations in the state update.: In SHA-0 and SHA-1,
the chaining variable At is rotated by 5 bit-positions to the
left before it is input to a modular addition. In HAS-160, this
single rotation constant is replaced by multiple constants, i. e.
each step within a round rotates At differently. The actual
values are

S1(t mod 20) = {5, 11, 7, 15, 6, 13, 8, 14, 7,

12, 9, 11, 8, 15, 6, 12, 9, 14, 5, 13},

0 6 t 6 79

(7)

In SHA-0 and SHA-1, the chaining variable Bt is rotated by
30 bit-positions to the left before it becomes variable Ct+1. In
HAS-160, this single rotation constant is replaced by multiple
rotation constants for each round. The actual values are

S2(t) = 10, 0 6 t 6 19 ,

S2(t) = 17, 20 6 t 6 39 ,

S2(t) = 25, 40 6 t 6 59 ,

S2(t) = 30, 60 6 t 6 79 .

(8)

Note that this concept of having multiple sets of rotation
constants is different to what is referred to as data dependent
rotations (DDR).



III. OUTLINE OF RECENT ATTACKS ON SHA-0 AND SHA-1

In this section we give an overview and comment on all the
analysis techniques that were used in recent years to analyze
SHA-0 or SHA-1. The content of this section is the basis for
our approach to compare variants of SHA-1 later in this article.

A. Differential characteristics

Most recent collision attacks use the following strategy.
Firstly, a differential characteristic through the compression
function of the hash function is constructed. Secondly, mes-
sages are constructed, which follow the characteristic.

B. Original Chabaud-Joux approach

In the original approach of Chabaud and Joux [3], the
differential characteristic is determined by constructing a linear
approximation for all the nonlinear elements of SHA. Subse-
quently, Chabaud and Joux look for a differential characteristic
through this linear approximation. Since a differential char-
acteristic propagates in a deterministic way through a linear
function, the characteristic is determined completely by the
choice of input difference. Hence, there are 2512 different
characteristics. A fraction of 2−160 of these, results in a zero
output difference (a collision).

Chabaud and Joux use the same linear approximation in
every step. Consequently, every local collision contains the
same number of corrections, i. e. 5. They impose the additional
constraint that the pattern of perturbations is a valid expanded
message, which accounts for another reduction factor 2−160.
Hence, there remain 192 “free” bits.

C. Rijmen-Oswald extension

In [15], it is proposed to drop the condition that the
perturbation pattern should be a valid expanded message.
Any collision-producing difference, i. e. input difference that
produces output difference zero in the linearized model, can be
used. This approach increases the number of free bits to 352.
The approach still results in collisions that are linear combi-
nations of local collisions, each consisting of a perturbation
and 5 corrections, but there are now less restrictions on the
perturbation pattern.

Until now, it hasn’t been demonstrated that this extension
can result in better differential characteristics for SHA-1.
However, for other hash functions, the improvement could be
significant.

D. Multi-block

In multi-block collisions, we can also use differentials that
don’t result in a zero output. For instance, in a two-block
collision, all we require is that the output difference in both
blocks is equal, because then, final feed-forward will result in
cancelation of the differences (with a certain probability). For
a z-block collision, we get 512z − 160 free bits (512z − 320
if we require that the perturbation pattern is a valid expanded
message).

E. Exploiting non-linearity—improvements by Wang et al.
If we study the differentials used by Wang et al. [21],

[19], then we see that they create even more freedom by
allowing differential characteristics that don’t follow the linear
approximation in the first steps. The propagation of differences
through nonlinear functions is non-deterministic and this can
be exploited. The possibility to exploit non-linear behavior is
also observed in [2]. The Rijmen-Oswald extension can be
adapted to exploit this additional freedom.

F. Removing conditions

For the second step of the attack, constructing a pair of mes-
sages that follows this characteristic, a number of conditions
on message words and intermediate chaining variables need to
be fulfilled. As already observed in [3], conditions on the first
steps can be pre-fulfilled. Using the fact that their exist neutral
bits in the compression function, this approach was extended
to cover the first 20-22 steps of SHA-0 [1]. Wang et al. employ
a different technique called message modification in their
collision-search attacks on SHA-0 [21] and SHA-1 [19] to
pre-fulfill the conditions in more than 20 steps. Note that a
variant of this technique is also used in the analysis of MD4
and MD5 [18], [20], [6].

G. Decrease final search complexity

There are still several ways to speed up the attack. Firstly,
it is advantageous to choose the bit position of message
differences to be in the MSB, since there a possible change
in the carry has no effect. The reason for this is that in this
case no condition on message words and chaining variables
are necessary to prevent this carry. A simple optimization is
therefore to rotate each word of the difference such that the
number of MSBs of value 1 is maximized.

A second trick deals with the implementation of the final
search. After pre-fulfilling some conditions, the remaining
conditions can only be fulfilled using random trials. There
are two natural ways to talk about the time-complexity of
this final search. One is to use the numbers of message pairs
needed. In this case, the time complexity can be estimated
by 2c, where c corresponds to the number of conditions that
cannot be pre-fulfilled. Another way of looking at it is to use
the number of steps as a means to express time complexity.
It seems natural to define the time-complexity 1 to be the N
steps of the compression function.

A “good” pre-computed 13-word or 14-word message-pair
can be used as a starting point. Depending on the conditions on
the message words m14, m15 and m16 we get up to 96 degrees
of freedom for our final search. If all degrees of freedom are
used without finding a collision, a new pre-computed message
pair is needed. However, we can stop our step-computations
after the first condition with probability p1 = 1/2, after the
second condition p2 = 1/4 and so on. Since we assume
random trials for conditions we cannot pre-fulfill, we always
estimate the probability for fulfilling the conditions to be 0.5.

Starting from step 13 or 14, on average 10 steps are enough.
Therefore we estimate the time-complexity of our final search
to be 2c−3 (for N = 80). Joux et al. [4] use a similar reasoning



and arrive at 2c−2. The difference is that there the same
amount of computation is assumed for the second message
pair. However, the steps for the second message pair are only
needed if all conditions are fulfilled in order to check if the
messages really collide.

H. Application of attacks to HAS-160

Due to the non-recursive structure of the message expansion
of HAS-160, a direct application of the Chabaud-Joux ap-
proach is not possible. However, using the approach described
in [15], generating a differential characteristic for HAS-160 is
straightforward. Some details on constructing messages that
follow this characteristic are given in Section V-B.

IV. ROTATIONS DURING THE STEP UPDATE—ANALYSIS OF
SIMPLIFIED MODELS

The original step update function of HAS-160 is defined as
follows:

At+5 = (At+4 ≪ S0) + f(At+3, At+2 ≪ S1, At+1 ≪ S1)

+At ≪ S1 + Wt + Kt,
(9)

whereas S0 has different values for each step of a round
and S1 has different values for different rounds as defined
in Section II-B.4. Note that the SHA-1 state update has the
same structure, but S0 has always a value of 5 and S1 has
always a value of 30.

In order to analyze the impact of the multiple constants in
S0, we use a simplified model of the state update. We replace
the modular addition by an XOR and the function f by a 3-
input XOR. In a first approximation, we consider only two
chaining variables, and therefore only one bit-rotation.

At+2 = (At+1 ≪ S0) ⊕ At (10)

If we introduce a single-bit difference in one of the chaining
variables of Equation 10, we observe an increase of the
Hamming weight of this difference with increased number of
steps. Our first observation is that whenever S0 is constant
and a multiple of 2, the number of affected bits decreases.
Summing over all 80 steps, we get a maximum of 283 affected
bits in the chaining variables when we apply a single-bit
difference in the first chaining variable. When we do the same
computations for multiple rotation constants we get a total
of 1077 affected bits. Note that if half of the bits would be
affected in each step, we would arrive at 80 × 16 = 1280
affected bits.

Figure 2 gives another point of view: the number of affected
bits per step for a single rotation constant. Here we distinguish
between cases where the value for the bit-rotations is a
multiple of 2, and where this is not the case. The symmetry
in Figure 2 can be explained by our simplified and linearized
model. If we apply the same method to compute the number
of affected bits for the case of multiple rotation constants, we
get the result shown in Figure 3.

We observe a much steeper increase in the first rounds. Due
to the multiple rotation constants, differences do not cancel out
early. Later on, the ideal 16 affected bits per round are reached.
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Fig. 2. Number of affected bits per step for constant bit-rotations. The
constant is not a multiple of 2 in the left figure. In the right figure, the used
constant is a multiple of 2

Next, we extend our model to three chaining variables to
contain the second bit-rotation of variable B. The resulting
equation is as follows:

At+3 = (At+2 ≪ S0) ⊕ At+1 ⊕ At ≪ S1 . (11)

Our simulation results and conclusions are pretty similar to
the case for two chaining variables. Therefore we omit them.
However, we found an example were we “outperformed”
the ideal case: we used a constant 24-bit rotation for A
and “pseudo-random” rotations for B. Using this setting, we
arrived at 1352 bit-flips after 80 steps.

V. IMPACT OF MULTIPLE ROTATION CONSTANTS ON THE
ATTACK COMPLEXITY

In this section, we are comparing several variants of SHA-1.
We use the approach described in [15] to find low-weight input
differences, which in turn can be used to analyze the complex-
ity of a collision-search attack. Even if we consider the recent
results by Wang et al. , comparing Hamming weights using this
method is sound since the underlying principle is the same.

Quote from [12]: “The variable shift amount seems to
provide better immunity against attacks such as differential
collision in SHA-0 [3]. The generalization of inner collisions
to a full compression function seemed to be harder with
variable shift amounts.”
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Fig. 3. Number of affected bits per step for multiple rotation constants

The method of [3] assumes a message expansion defined
by a recursion, which is a reason for the difficulties of
applying this approach to HAS-160. However, these problems
are overcome if the Rijmen-Oswald extension is applied.

Multiple rotation constants account for a slightly increased
Hamming weight of collision-producing differences, which in
turn slightly increases the number of conditions that have to be
fulfilled in the final search for a collision. Later on, we will
show that this increase is negligible after 80 or more steps.
There are two reasons why multiple rotation constants result
in higher collision-search complexity:

1) Higher Hamming weight of the collision-producing dif-
ference in the linearized model

2) It is less likely to take advantage of some condition-
reducing effects.

A. Higher Hamming weight of the collision-producing differ-
ence in the linearized model

We consider the first point now. In order to study the
effect of different rotation constants in an actual design, we
searched for low-weight collision-producing differences in
variants of SHA-1, where we slightly changed the state update
transformation.

Firstly, we compare the state update transformations used
by SHA-1 and HAS-160. The result is depicted in Figure 4.

We consider three different state update variations. The
original HAS-160 state update having multiple sets of rotation
constants, the original SHA-1 state update having a single set
of rotation constants and a new state update having different
multiple sets of rotation constants. These variations of the
state update are combined with both the HAS-160 message
expansion (depicted on the left) and the SHA-1 message
expansion (depicted on the right).

When looking at the values, we observe that using the
HAS-160 message expansion instead of the SHA-1 message
expansion actually decreases the best found Hamming weight.
We also see that the lower Hamming weights for versions
using a single set of rotation constants catch up on the
Hamming weights of the variants with multiple sets with
increased number of steps. In the case of the HAS-160

20 40 60 80 100 120
0

100

200

300

400

500

600

700

800

number of steps N

H
am

m
in

g 
w

ei
gh

t

variable rotation(HAS−160)
constant rotation (SHA−1)
variable rotation(new)

20 30 40 50 60 70 80 90 100 110 120
0

100

200

300

400

500

600

700

800

number of steps N

H
am

m
in

g 
w

ei
gh

t

variable rotation (HAS−160)
constant rotation (SHA−1)
variable rotation (new)

Fig. 4. Weight of collision-producing differences for single and multiple
sets of rotation constants. On the left, the HAS-160 message expansion is
computed for up to 80 steps. On the right, the SHA-1 message expansion is
computed for up to 120 steps

message expansion, this happens after 30 steps. In the case
of SHA-1 the difference between single and multiple sets of
rotation constants vanishes after 80 steps. This gives us a first
hint on the choice made by the designers of SHA.

Observation 1: The difference between a single set rotation
constants and multiple sets of rotation constants vanishes
with increased number of steps. In contrast to the HAS-160
message expansion, the SHA-1 message expansion delays this
process until step 80.

Secondly, we evaluate the effect of different single sets of
rotation constants for SHA-1. Instead of rotating variable A by
5 positions to the left, we evaluated the attack complexity for
all possibilities from 0-31. The results are depicted in Figure 5.
In the step-reduced version, we see considerable differences
for the chosen rotation constants of A. The constant 5,
which was chosen for SHA-1, is in this setting favorable
for the attacker. However, with increased number of steps,
this advantage vanishes. After 80 steps, five bit-rotations are
already enough to arrive at the plateau of Hamming weights
found.

We apply the same technique for chaining variable B.
Instead of rotating variable B by 30 positions to the left, we
again evaluated the attack complexity for all possibilities from
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Fig. 5. Hamming weight of collision-producing differences for all possible
bit-rotations of A and 20 to 120 steps of SHA-1
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Fig. 6. Hamming weight of collision-producing differences for all possible
bit-rotations of B and 30 to 120 steps of SHA-1

0-31. The results are depicted in Figure 6.
In the step-reduced version, we see considerable differences

for the chosen rotation constants of B. The constant 30, which
was chosen for SHA-1, is in this setting again favorable for
the attacker. However, with increased number of steps, this
advantage vanishes. After 80 steps, the value 30 (or −2) is
already enough to arrive at the plateau of Hamming weights
found.

Observation 2: In the case of full SHA-1 (80 steps), 5 is
the lowest possible value for rotating A and 30 is the highest
possible value for rotating B to result in comparatively high
Hamming weights for collision-producing differences.

The advantage of having these constants is as follows: Let’s
consider platforms where constant-time shifters or rotators
(see e. g. [14]) are neither implemented in hardware nor as
microcode. There, rotating B by e. g. 2 positions to the right
instead of more is faster. Note that these observations cannot
be seen as a design criterium for the SHA family since they
do not apply to SHA-0. Refer to Appendix for details.

TABLE II
CONDITIONS THAT NEED TO BE FULFILLED IN ORDER TO HAVE A

DIFFERENTIAL BEHAVIOR IDENTICAL TO THAT OF AN XOR

input differences fxor fmaj fhas3

000 0 always always
001 1 B ⊕ C = 1 B = 0

010 1 B ⊕ D = 1 always
011 0 C ⊕ D = 1 B = 0

100 1 C ⊕ D = 1 D = 1

101 0 B ⊕ D = 1 B ⊕ D = 0

110 0 B ⊕ C = 1 D = 1

111 1 always B ⊕ D = 0

B. Impact of multiple rotation constants on the condition
generating phase

Let us now consider the second point mentioned above: the
assumption, that it is less likely to take advantage of some
condition-reducing effects due to multiple sets of rotation
constants. This refers to the second step of our analysis:
deriving conditions on chaining variables and input message
words to make the real hash function behave like the linearized
model.

Before looking at the effect of multiple sets of rotation
constants, the effect of the new non-linear Boolean function
introduced in HAS-160 is analyzed: the fMAJ function used
in SHA-1 has the nice property (for an attacker) that whatever
(non-zero) input difference is applied, it is always possible
to find conditions on the inputs which modifies the output
difference towards an XOR-like behavior. This ensures that
every possible collision-producing message difference in the
linearized model can lead to a real collision, assuming a
number of conditions is fulfilled.

As illustrated in Table II, the new Boolean function does
not increase the difficulty for an attacker to find conditions.
As opposed to fif (input difference 011), we can always find
conditions on the inputs of fhas3 to make it behave like an
XOR for all input differences.

The new Boolean function does not put additional hurdles
for an attack. Due to multiple sets of rotation constants
aligning differences to optimize the carry-drop effect (see
Section III-G) is less effective. At this point, it is difficult to
estimate the influence on the attack complexity compared to
SHA-1, since the bit-rotation of the SHA-1 message expansion
has a similar effect.

VI. CONCLUSION

We have analyzed the effect of multiple sets of rotation
constants in HAS-160 and compared them to the single set
of rotation constants used in SHA-1. The bottom line is that
multiple sets increase the attack complexity, the difference
to a single set however vanishes for increased number of
steps. In our comparisons, the Hamming weight of collision-
producing differences in a linearized model was used as a
means to compare attack complexities on a relative scale. We
also gave some observations on the design of the compression
function of SHA-1. For 80 or more steps of SHA-1, the
benefits of having multiple sets of rotation constants instead of
a single set are negligible. We finally observe that the chosen



values for rotations used in the state update of SHA-1 are on
the edge as far as the provided security level is concerned.
Without impairing security, rotating the chaining variable A
by 5 to the left and chaining variable B by 2 to the right are
the smallest possible values. Platforms without constant-time
shifters benefit from this choice.

ACKNOWLEDGEMENTS

The work in this paper has been supported by the Austrian
Science Fund (FWF), project P18138.

REFERENCES

[1] Eli Biham and Rafi Chen. Near-Collisions of SHA-0. In Matthew K.
Franklin, editor, Advances in Cryptology - CRYPTO 2004, 24th Annual
International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 2004, Proceedings, volume 3152 of LNCS, pages 290–
305. Springer, 2004.

[2] Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe
Lemuet, and William Jalby. Collisions of SHA-0 and Reduced SHA-1.
In Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005:
24th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005.
Proceedings, volume 3494 of LNCS, pages 36–57. Springer, 2005.

[3] Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0.
In Hugo Krawczyk, editor, Advances in Cryptology - CRYPTO ’98, 18th
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 23-27, 1998, Proceedings, volume 1462, pages 56–71.
Springer, 1998.

[4] Antoine Joux, Patrick Carribault, William Jalby, and Christophe Lemuet.
Full iterative differential collisions in SHA-0, 2004. Preprint.

[5] KCDSA Task Force Team. The Korean Certificate-based Digital Signa-
ture Algorithm, 1998. Available at http://grouper.ieee.org/
groups/1363/P1363a/contributions/kcdsa1363.pdf.

[6] Vlastimil Klima. Finding MD5 Collisions on a Notebook PC Using
Multi-message Modifications, 2005. Preprint, available at http://
eprint.iacr.org/2005/102.

[7] Jeffrey S. Leon. A probabilistic algorithm for computing minimum
weights of large error-correcting codes. IEEE Transactions on Informa-
tion Theory, 34(5):1354–1359, 1988.

[8] Chae Hoon Lim. The revised version of KCDSA, 2000. Unpub-
lished Manuscript, available at http://dasan.sejong.ac.kr/
∼chlim/pub/kcdsa1.ps.

[9] Chae Hoon Lim and Pil Joong Lee. A Study on the Proposed Korean
Digital Signature Algorithm. In Kazuo Ohta and Dingyi Pei, editors,
Advances in Cryptology - ASIACRYPT ’98, International Conference on
the Theory and Applications of Cryptology and Information Security,
Beijing, China, October 18-22, 1998, Proceedings, volume 1514 of
Lecture Notes in Computer Science, pages 175–186. Springer, 1998.

[10] Jack Lloyd. A Description of HAS-160, 2003. Available at www.
randombit.net/papers/has160.html.

[11] National Institute of Standards and Technology (NIST). FIPS-180-2:
Secure Hash Standard, August 2002. Available online at http://
www.itl.nist.gov/fipspubs/.

[12] Nan Kyoung Park, Joon Ho Hwang, and Pil Joong Lee: HAS-V: A New
Hash Function with Variable Output Length. In Douglas R. Stinson
and Stafford E. Tavares, editors, Advances in Cryptology - CRYPTO
’98, 18th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 23-27, 1998, Proceedings, volume 2012, pages
202–216. Springer, 2001.

[13] Norbert Pramstaller, Christian Rechberger, and Vincent Rijmen. Exploit-
ing Coding Theory for Collision Attacks on SHA-1. In Cryptography
and Coding, 10th IMA International Conference, Cirencester, UK,
December 19-21, 2005, Proceedings to appear, LNCS. Springer, 2005.

[14] Jan M. Rabaey. Digital Integrated Circuits. Prentice Hall, 1996.
[15] Vincent Rijmen and Elisabeth Oswald. Update on SHA-1. In Alfred

Menezes, editor, Topics in Cryptology - CT-RSA 2005, The Cryptogra-
phers’ Track at the RSA Conference 2005, San Francisco, CA, USA,
February 14-18, 2005, Proceedings, volume 3376 of LNCS, pages 58–
71. Springer, 2005.

[16] TTA. Digital Signature Mechanism with Appendix - Part 2 : Certificate-
based Digital Signature Algorithm, TTAS.KO-12.0011/R1, 2000.

5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

rotation constant for A

H
am

m
in

g 
w

ei
gh

t o
f c

ol
lis

io
n−

pr
od

uc
in

g 
di

ffe
re

nc
e

120 steps 

80 steps 

50 steps 

20 steps 
30 steps 

Fig. 7. Hamming weight of collision-producing differences for all possible
bit-rotations of A and 20 to 120 steps of SHA-0

[17] TTA. Hash Function Standard - Part 2: Hash Function Algorithm
Standard (HAS-160), TTAS.KO-12.0011/R1, 2000.

[18] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan
Yu. Cryptanalysis of the Hash Functions MD4 and RIPEMD. In
Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005:
24th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005.
Proceedings, volume 3494 of LNCS, pages 1–18. Springer, 2005.

[19] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions
in the Full SHA-1. In Victor Shoup, editor, Advances in Cryptology -
CRYPTO 2005, 25th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 14-18, 2005, Proceedings, volume
3621 of LNCS, pages 17–36. Springer, 2005.

[20] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash
Functions. In Ronald Cramer, editor, Advances in Cryptology - EURO-
CRYPT 2005: 24th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-
26, 2005. Proceedings, volume 3494 of LNCS, pages 19–35. Springer,
2005.

[21] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient Collision
Search Attacks on SHA-0. In Victor Shoup, editor, Advances in Cryptol-
ogy - CRYPTO 2005, 25th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 14-18, 2005, Proceedings,
volume 3621 of LNCS, pages 1–16. Springer, 2005.

APPENDIX

We evaluate the effect of different single sets of rotation
constants for SHA-0. Instead of rotating variable A by 5
positions to the left, we evaluated the attack complexity for all
possibilities from 0-31. The results are depicted in Figure 7.

Using the Hamming weight for the rotation constant 5 as
a starting point, we see that higher as well as lower Ham-
ming weights for collision-producing differences are possible
when choosing different rotation constants. This holds for all
considered variants from 20 to 120 steps.
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