
A Note on the Practical Value
of Single Hash Collisions
for Special File Formats

Max Gebhardt, Georg Illies, Werner Schindler

Bundesamt für Sicherheit in der Informationstechnik

G. Illies / 31 October 2005

G. Illies 31.10.2005 Folie 2

Reusable Collisions

needs: meaningful collisions

would appreciate: reusable collisions

For hash collision attacks on electronic signatures the forger

Reusable hash collision: A hash collision from which

many meaningful collisions with controllable contents

(=meanings) can easily be derived.

G. Illies 31.10.2005 Folie 3

Strategy for
Merkle-Damgard Hash Functions

Basic Property of Merkle-Damgard hash functions:
(a and a’ strings with length(a)=length(a’) = multiple of input block length,

H0 the hash function without length padding)

H0(a)=H0(a’) implies
H(a||b)=H(a’||b) for an arbitrary string b

Strategy: - Hide two messages in string b

- Use a/a’ as a “switch” that makes one of these

messages “visible”

then a/a’ is a reusable hash collision

G. Illies 31.10.2005 Folie 4

Daum/Lucks’ PostScript example

M. Daum and S. Lucks (rump session Eurocrypt ’05):

PostScript allows “if-then-else” commands (= switch)

D&L constructed a universally reusable MD5-collision for
PS satisfying the difference scheme of X. Wang, H. Yu
“How to Break MD5 ..”, Eurocrypt ’05 (we call such MD5-
collisions WY examples)

D&L pointed out: Similar constructions possible for all file
formats which allow comparable “if-then-else” constructs

G. Illies 31.10.2005 Folie 5

PostScript

M1.ps: Preamble||(S1)(S1)eq{T1} {T2}

M2.ps: Preamble||(S2)(S1)eq{T1} {T2}

Output for M1.ps is determined by commands T1,

output for M2.ps is determined by commands T2.

H0(`Preamble||(S1´)= H0(`Preamble||(S2´) implies H(M1.ps)=H(M2.ps).

G. Illies 31.10.2005 Folie 6

PostScript

Yields transformation (perfect universality):

Given any two PS documents a.ps and b.ps
one gets two others a‘.ps and b‘.ps with

same viewer or printer output as for a.ps and b.ps, resp.

H(a‘.ps)=H(b‘.ps)

G. Illies 31.10.2005 Folie 7

PDF

PDF: no programming constructs, in particular no
“if-then-else” (except for embedded JavaScript)

But: Indexed Color Spaces represented by hex strings.
(The WY strings are contained in these strings)

Also: Transfer functions translating bytes of this string
to gray scale values
Two messages printed with different grey scales

We constructed explicit WY examples for this method.

G. Illies 31.10.2005 Folie 8

PDF

Message 1

Message 2

Output for file1.pdf

Message 1

Message 2

Output for file2.pdf

H(file1.pdf)=

H(file2.pdf)

= white

G. Illies 31.10.2005 Folie 9

PDF

Files contain a stream

´.. /HelpGS1 gs .. selects the graphic state
.. 28 sc .. set color: use byte no. 28 of color string
.. (price 100$) .. Message 1
.....

.. /HelpGS2 gs ..

.. 28 sc ..

.. (price 150$) ..´ Message 2

The two graphic states HelpGS1 and HelpGS2 employ
different transfer functions.

G. Illies 31.10.2005 Folie 10

TIFF

TIFF (Tagged Image File Format, used for scanned paper
documents) also has no programming constructs

But: Offsets for the position of the graphical informations

We constructed reusable WY-examples.

G. Illies 31.10.2005 Folie 11

TIFF

H(file1.tif)=

H(file2.tif)

Output for file1.tif

Msg Part A

Msg Part B

Msg Part C

Msg Part D

Output for file2.tif

Msg Part A

Msg Part B’

Msg Part C

Msg Part D

G. Illies 31.10.2005 Folie 12

TIFF

Screenshots of a sample collision

G. Illies 31.10.2005 Folie 13

Word 97

We constructed a WY example.

Contains a macro that changes the text depending
on the value of a certain byte (explicit “if-then-else”)

This was possible without knowing any details of
the file format, just with hexeditor experiments.

Maybe also possible without macros.

G. Illies 31.10.2005 Folie 14

Word 97

Basic trick:

Bytes 0x80 to 0xFF of our Word files consist of fillers.

These 1024 bits were used for the WY collision.

The macro evaluates a certain of these 128 bytes
differing in both files.

G. Illies 31.10.2005 Folie 15

Relevance?

What about ASCII?
Of course possible with the victim’s (unlikely) cooperation:

“…if … then read at position … else read at position …”

In other words:

In the above examples (PS, PDF, TIFF, Word 97) an expert is
able to recognize a probable forgery by inspection of only one
of the two files.

G. Illies 31.10.2005 Folie 16

Relevance?

But consider signature phishing scenarios:

An attacker produces thousands of collisions.

He tries to get signatures from thousands of victims
at the same time. Some victims may sign a message.

He is off with his prey before the forgery is detected.

G. Illies 31.10.2005 Folie 17

Conclusion

We constructed some new examples for the idea of
Daum/Lucks (and O. Mikle …). Discussions of
some other (non-document) formats in the paper.

The trick often works also without explicit “if-then-else”.
Typical for common file formats?

The trick works with collision attacks for arbitrary IV
(e.g. workload 269 for SHA-1 according to Wang et al.)

Another argument against Merkle-Dam. hash functions?

G. Illies 31.10.2005 Folie 18

Contact

Bundesamt für Sicherheit in der
Informationstechnik (BSI)

Dr. Georg Illies
Mainzer Str. 85
53179 Bonn

Tel: +49 (0)1888-9582-658
Fax: +49 (0)1888-9582-90658

georg.illies@bsi.bund.de
www.bsi.bund.de
www.bsi-fuer-buerger.de

A Note on the Practical Value
of Single Hash Collisions
for Special File Formats

Max Gebhardt, Georg Illies, Werner Schindler

Bundesamt für Sicherheit in der Informationstechnik (BSI)
Godesberger Allee 185–189

53175 Bonn, Germany
{Maximilian.Gebhardt,Georg.Illies,Werner.Schindler}@bsi.bund.de

Abstract. We investigate Merkle-Damgard hash functions and different
file formats. Our goal is to construct many meaningful hash collisions
with given semantic contents from one single abstract collision. We show
that this is not only possible for PostScript ([DL1], [DL2]) but also for
PDF, TIFF and MS Word 97. Our results suggest that this property
might be typical for ’higher’ file formats.

1 Introduction

In the last two years for several hash functions tremendous progress has been
achieved in the construction of collisions ([WLFCY],[WY],[J2],[WYuY],[WYiY]).
In particular, concrete collisions for MD5 and SHA-0 were generated and a (the-
oretical) break of SHA-1 (more precisely: a clear improvement compared to the
birthday attack) was described. These findings make it necessary to reconsider
the actual security level of crypto systems built upon such hash functions.

The ’classical’ threat induced by hash collisions is the following: If someone
was able to create two documents having identical hash values and if he could
persuade a person to sign one of these documents digitally (employing that hash
function) he would at the same time obtain a valid signature for the second
document. Clearly, this could cause a serious problem for the signer. Similarly, a
dishonest signer could create two such documents, sign the first and later claim
that he signed the second one, e.g. in case of liability, to discredit a signature
system. Of course, signature schemes should exclude such attacks regardless
whether they are viewed as realistic under real-world conditions, i.e. with respect
to actual signature laws and practice. That is, the used hash function should not
only have the one-way-property but also be collision-resistant.

Two standard arguments are often given to relativize or to relax the second
requirement: The first argument says that it is much more difficult to construct
collisions for meaningful documents and having sufficient control over the content
of those documents than to construct collisions for meaningless abstract strings

of characters. It is well known that this argument is not true for generic attacks
(Yuval’s birthday attack, see [MOV] Section 9.7.1). Recent papers explain how
abstract collisions can be used to obtain meaningful collisions of files: [Mi] (and
more rudimentary [Ka]1) for executables, [LW], [KL] for certificates and [DL1],
[DL2] for PostScript documents. If, for instance, the method described in [WYiY]
indeed allows the generation of SHA-1 collisions with an effort of no more than
269 SHA-1 computations finding meaningful SHA-1 format file collisions (to be
defined below) needs the same complexity.

A further argument says that the knowledge of a secret key even may pay off
high costs since it allows to decrypt or to sign any further message without
additional efforts. In contrast, forging signatures without knowing the key yet
needed one collision per forged signature - presumably at a high cost. How-
ever, the construction in [DL1] has the interesting property that starting with
a specific single MD5-collision one may construct a number of meaningful MD5
collisions of PostScript documents almost for free: In fact, using this ’basic’ col-
lision one can transform any two given Postscript documents M1.ps and M2.ps
into two others with identical hash values. More precisely,

(M1.ps,M2.ps) 7−→ (M̃1.ps, M̃2.ps)

such that
md5(M̃1.ps) = md5(M̃2.ps)

and such that the output (of PostScript viewers or printers) for M̃1.ps and
M̃2.ps is the same as for M1.ps and M2.ps, respectively. We point out that this
transformation needs no further cryptographic workload (compare Section 3 for
details). Hence it is natural to consider other file formats.

In this paper we use the following sloppy terminology for hash collisions:

– Abstract collisions: Two arbitrary strings having identical hash values or
identical values of the compression function.

– Meaningful format file collisions: The two strings represent syntactically cor-
rect files for a certain format with different (partially predefined) message
meanings.

– Reusable collisions: An abstract collision which can be used to easily con-
struct many meaningful format file collisions.

– Universal collisions: An abstract collision which can be used to easily con-
struct meaningful format file collisions with (almost) arbitrary predefined
message meanings.

Clearly, the requirements for universal collisions are much stronger than for
reusable collisions. The construction and the properties of such ’reusable’ and
’universal’ collisions (also implicit in [Mi] and [Ka] for executables) is the main

1 [Ka] also describes other situations in which such collisions could be harmful, e.g.
Digital Right Management.

topic of this short note. We point out that for document file formats the term
’message meaning’ means the ’human message’ encoded in the file, e.g. graph-
ics and texts displayed or printed from electronic document files. However, it is
hardly possible to give a precise definition. We point out that it has been a fun-
damental problem in the context of electronic signatures to specify file formats
with reasonably unambiguous translations into ’human messages’.

In Section 2 we briefly describe the structure of Merkle-Damgard hash functions,
basic properties and the general strategy for constructing meaningful collisions
provided that one is able to generate abstract collisions of the compression func-
tion. We examined several document file formats in Section 3. It will be shown
that PDF and TIFF share the ’reusability’ property with PostScript at least to
a certain extent, although PostScript seems to be particularly well suited in that
direction. Also the MS Word 97 file format allows the construction of mean-
ingful format file collisions, at least if macros are employed. In Section 4 and
Section 5 we sketch results from [Mi] for executables and from [LW] and [KL]
for certificates. We also have a look at RPM files (Red Hat Package Manager),
a widespread format for distributing Linux program packages.

We consider the reusability of abstract collisions, and whether such constructions
can be detected by an expert in case of a trial at court. We generated concrete
collisions of PDF, TIFF and Word 97 files for MD5. To avoid misuse by free-
riders who might modify the example files we restrict ourselves to the description
of the central aspects but do not publish the files themselves.

We point out that this note is a byproduct of ongoing work on hash functions
at the Federal Office for Information Security (BSI), Germany. According to the
German Signature Act the BSI has to annually publish a list of recommended
algorithms and parameters for qualified electronic signatures. The authors of
this note are no experts for file formats. We just wanted to get an idea of the
relevance of the ’trick’ employed in [DL1] and [DL2] for digital signatures.

2 Merkle-Damgard hash functions and meaningful
collisions

A compression function is a function

f : {0, 1}n × {0, 1}m −→ {0, 1}n

with some m,n ≥ 1. Given the compression function f and an IV ∈ {0, 1}n and
k ≥ 1 we define the k-block compression function

fk,IV : {0, 1}km −→ {0, 1}n

in the following way: Let x = x1||x2|| . . . ||xk with m-bit blocks xi and let for
i = 0, . . . , k the values hi be defined recursively by

h0 := IV, hi := f(hi−1, xi) for i = 1, . . . , k.

then
fk,IV (x) := hk

From the compression function f and a (fixed) initialization vector IV one ob-
tains a Merkle-Damgard hash function

h : {0, 1}∗ −→ {0, 1}n

as follows: First, the bit string x ∈ {0, 1}∗ is padded in a pre-defined way,
typically by appending a ’1’ (bit), then a sequence of ’0’ bits and a 64-bit value
denoting the length of x. The number of zeroes is chosen minimal so that the
length of the whole string x̃ is a multiple of the block length m, let’s say lm.
Finally, the hash value of x is given by

h(x) := fl,IV (x̃)

All the hash functions commonly in use (in particular MD5, SHA-1, RIPEMD160)
are Merkle-Damgard hash functions.

We are concerned with the following situation: There is an integer k ≥ 1 (de-
pending on the concrete hash function) and a method that for any given IV
delivers pairs of different strings x, x′ ∈ {0, 1}km with fk,IV (x) = fk,IV (x′), i.e.
abstract k-block collisions of the compression function with arbitrary IV . The
attacks on specific hash functions cited above actually provide such methods
to construct abstract k-block collisions (k = 2 for MD5) of the compression
functions (only theoretical for SHA-1 with k = 1).

A first simple observation now is that for a given string a with bitlength k1m
finding two different strings b, b′ with equal bitlengths k2m satisfying h(a||b) =
h(a||b′) is equivalent to finding a collision of the (multiblock) collision function
described above:

fk2,IV ′(b) = fk2,IV ′(b′), with IV ′ := fk1,IV (a).

The second observation is that then also

h(a||b||c) = h(a||b′||c)

for every string c.

A straightforward strategy to construct meaningful collisions to a given file for-
mat works as follows: Determine a suitable string a so that for a reasonable
portion of pairs b, b′ which are delivered by the abstract collision search there
exist strings c such that

M = a||b||c, M ′ = a||b′||c

represent meaningful messages for that specific file format. The pair b, b′ is a
universal collision if (for fixed a) it is always possible to choose a string c so that
M and M ′ have any predetermined meaning. Daum and Lucks used the term
’poisoned messages’ for such constructions.

3 Document file formats

We picked out PDF, TIFF and the MS Word 97 (.doc) file format to examine
whether there are reusable or even universal collisions for these file formats.
PDF and TIFF are sometimes mentioned in discussions about suitable document
file formats for electronic signatures. Although the Word file format is not a
candidate for such applications — it is a format for word processing not for
the exact description of a document — it is perhaps the most commonly used
document file format for the average PC user.

3.1 PostScript

We will shortly describe the method of [DL1]. The ’poisoned messages’ have the
following shape:

M̃1.ps = PS-preamble||(S1)(S1)eq{T1}{T2}
M̃2.ps = PS-preamble||(S2)(S1)eq{T1}{T2}

with some strings S1 and S2 and two sets of further PostScript-commands T1 and
T2. This is an ’if-then-else’-construction: A PostScript-viewer or printer checks
if the two S-strings in parantheses (i.e., S1, S1 for M̃1.ps and S1, S2 for M̃2.ps)
are equal. In the first case the commands of T1 are executed, while in the second
the commands of T2 are performed. Thus for M̃1.ps one will get a display or
printer output determined by T1 and for M̃2.ps an output determined by T2.

So the general strategy described in the last section applied to this situation
would be to fix a =PS-preamble||(with the preamble filled by comments such
that a has a suitable blocklength and then to find b, b′ as above with h(a||b) =
h(a||b′). Setting S1 := b and S2 := b′ yields h(M̃1.ps) = h(M̃2.ps) for any T1 and
T2.

Thus the pair a||b, a||b′ is a universal collision in the sense of Section 1. It is
described in [DL1] how a concrete universal collision for MD5 can be constructed.
A concrete collision is given in [DL2]. Similar constructions are possible for any
file format that allows such if-then-else conditions on strings within the file.

3.2 PDF

PDF (Portable Document Format) is a widely used document format for plat-
form independent distribution of documents. Version 1.3 is specified in [PDF].
If certain interactive features of PDF (e.g. forms, web capture) are disabled the
format is basically suitable to precisely describe the appearance of a document
(at least if viewers and printing software obey the PDF specification). In contrast
to PostScript PDF has no programming language features such as procedures,
variables and control constructs (except for the above excluded possibility to

have JavaScript actions for forms). Because of that it is somewhat more difficult
to find something like a reusable or universal collision.

In PDF files arbitrary strings (i.e. without restrictions on the allowed characters)
can occur only in streams and as color strings. The latter delivers a possibility to
construct poisoned messages. We just include here some snippets of a PDF-file
experiment with Acrobat Reader. The comments (after the %s) should explain
what is going on here:

%PDF-1.3

.

.

.

4 0 obj

<</Type /Page

/Parent 3 0 R

/MediaBox [0 0 612 792]

/Contents 8 0 R

/Resources <</ProcSet 6 0 R

/Font << /F1 7 0 R >>

/ColorSpace <</HelpCS 5 0 R>> %Ref. to color space

/ExtGState <</HelpGS1 9 0 R %Ref. 1. graph. state

/HelpGS2 11 0 R>>%Ref. 2. graph. state

>>

>>

endobj

5 0 obj %This is the indexed color space.

[/Indexed %The string in parantheses is the color

/DeviceGray %string. It’s length must be <257

63 %(here =64). Color no. 6 is ’!’=0x20

(gh%J$|!c gh%J$!c /F"r7%J$.d*_gh%J$!\ cF"r7%%J$.d$!c ?}o!#l‘)

]

endobj

.

.

.

8 0 obj %This is the text stream. It contains

<</Length 93>> %two different pieces of text in

stream %two different gray scales

BT

/HelpCS cs %use the above defined color space

/HelpGS1 gs %use the first graphic state

/F1 24 Tf

100 100 Td

6 sc %color no. 6: ’!’=0x21 --> zero ink in 1. gs

(the interest

rate is 16.00%) Tj %first text

/HelpGS2 gs %now use the second graphic state

/F1 24 Tf

0 30 Td

6 sc %color no. 6: ’!’=0x21 --> full ink in 2. gs

(loan free of

interest) Tj %second text

ET

endstream

endobj

9 0 obj %This is the first graphic state.

<< /Type /ExtGState

/TR 10 0 R %Ref. to the used transfer function

>>

endobj

10 0 obj %This transfer function is used in the

<< /FunctionType 4 %first graphic state

/Domain [0.0 1.0] %The function is designed to output 1

/Range [0.0 1.0] %for input 0x21 (zero ink) and output 0

/Length 40 %for input 0x20 (full ink)

>>

stream

{0.126 sub 500 mul}

endstream

endobj

11 0 obj %This is the second graphic state.

<< /Type /ExtGState

/TR 12 0 R %Ref. to the used transfer function

>>

endobj

12 0 obj %This transfer function is used in the

<< /FunctionType 4 %second graphic state

/Domain [0.0 1.0] %The function is designed to output 0

/Range [0.0 1.0] %for input 0x21 (full ink) and output 1

/Length 40 %for input 0x20 (zero ink)

>>

stream

{0.126 sub 500 mul 1 exch sub}

endstream

endobj

.

.

.

The displayed text for the above file is ’loan free of interest’. If the character
’ !’= 0x21 at position 6 in the color string (in object 5 0) is changed to ’ ’= 0x20
the displayed text is ’the interest rate is 16.00%’. The characters in the color

string may have any of the 256 byte values except for ’(’ =0x28 and ’)’=0x29
the delimiters of strings in PDF.

To perform the general strategy of Section 2 one would use the color string for b
and b′. Once these two different strings have been found (and hopefully do not
contain ’(’,’)’) one chooses a color number (character position) with different
characters in b and b′ (6 in the above example). The rest of the file has to be
modified accordingly: The chosen color number has to be employed in object
8 0 and the transfer functions in objects 10 0 and 12 0 respectively have to be
modified (in the above example they are specific to 0x20 and 0x21).

Remark: In the above example we have printed the two texts at different posi-
tions. ’White on Black’ is ’White’ in PDF unless the ’overprint mode’ is active.
With a correctly working overprint mode the above reusable collisions would be
nearly universal. But we were not able to activate this feature and it is said in
[PDF] that it is device dependent. So we only claim here that basically it should
be possible to construct nearly universal collisions for black/white texts if all
the viewers and printers strictly obey the specification. (A possible solution to
overcome the overprint problem is to print the overlap of the two texts in black
at the end. This basically works but the results we obtained were not perfect,
the shape of the resulting characters was not really smooth, some information
about the hidden text leaked out.)

3.3 TIFF

TIFF (Tagged Image File Format) is a standard image file format described in
[TIFF] in particular used for scanning paper documents:

A TIFF file has a maximal length of 232 bytes. The pages of a TIFF document
are described by IFDs (image file directories). At the beginning of the TIFF
file there is a header which at its end contains a 4-byte offset (offsets in TIFF
always give the position relative to the 1. byte of the file) that specifies the start
address of the first IFD. Every IFD contains several 12-byte directory entries
and a 4-byte value at the end, the latter being either the offset to specify the
start of the next IFD if there is any or the value 0x00000000 if there is no further
IFD.

Obviously the offsets to the next IFD could be used to construct poisoned mes-
sages: Two documents only differing in one of these offsets could be very different.
But this does not work for example for the collision attack on MD5 described
in [WY] as the hash input strings do not differ at the first 32 bytes for their
collisions. One would have to find an attack with differences also for the first 4
bytes. Even then as the offset to the first IFD is located quite at the beginning
of the file this first IFD probably cannot be used for the attack and only the
second and the following IFDs could be different.

A closer look at the directory entries in an IFD delivers a method that leads to
a more practical ’poisoned message’ attack. One of the 12-byte directory entries

could look as follows:

tag type count value
0x0111 0x0003 0x00000003 0x000014e0

The 2-byte tag 0x0111 indicates that the entry describes the offsets of the strips
of the IFD: Every page can be split up in strips which can be located at different
positions in the file. The 2-byte type 0x0003 indicates that the offsets will be
given as ’shorts’ i.e. 2-byte values. The 4-byte count 0x00000003 indicates that
there are 3 strips. The 4-byte value gives the offset of the location in the TIFF file
where three 2-byte offsets for the three strips can be found stored consecutively
namely at 0x000014e0. (If the count was 0x00000001 or 0x00000002 then ’value’
would contain the 1 or 2 short offsets themselves but not their address.)

To perform the general procedure described in Section 2 one would let the 6
bytes at offset 0x000014e0 be part of the strings b, b′. And if one of the three
2-byte offsets for the strips differs for b and b′ to display the corresponding strip
the viewer will look at different locations in the TIFF file.

Of course there must not be overlaps between the resulting storage area of the
strip data and other data in the TIFF file which leads to additional constraints
on b and b′ which will be satisfied with good probability if b is random and the
TIFF pages contain significantly less than 215 byte information (for example fax
quality text pages). Thus one can get very well reusable collisions2 for TIFF
files.

If one tries to produce MD5 collisions for TIFF using the abstract collision attack
described in [WY] one is restricted by the actual differences between b and b′

that can occur. As can be seen from the TIFF reference the strips of the page
must have the same length except for the last which can be significantly smaller.
So the best that can be expected is a reusable collision that allows to produce
colliding TIFF pages with basically arbitrary given contents but such that the
first halfs (or the second halfs) of the pages are equal.

3.4 Word 97

In this subsection we treat meaningful MD5 file format Word 97 collisions.
Roughly speaking, we give a Word macro that performs a specific action de-
pending on the status of a particular if-condition. In our concrete example the
last decimal digit of a purchase price, a fee or something like that should be dis-
played, resp. printed, in white instead of in black. In other words, the final digit
should be invisible for the potential victim on the screen, resp. on the printout.
2 There is also an index entry for the lengths of the strips which is a further constraint:

The exchanged graphical data basically should have the same lengths. But practical
experiments show that viewers are quite tolerant with respect to that, we didn’t
need to care about this.

We point out that we did not study the Word format in detail. Instead, we
followed a purely empirical approach where our only tool was an ordinary hex
editor. The key observation was the following: After some meaningful bytes the
first sector of a Word 97 file (512 Bytes) merely contains fillers (’FF’). Practical
experiments underline that Word 97 neglects the values of these fillers.

Hence an adversary may overwrite a subsequence of fillers (e.g. Bytes 0x80 to
0xFF in our example; the numbering starts with 0x00) with a hex editor by
strings that lead to abstract collisions. These strings are used as b and b′ and
result in two different Word files having the same hash value.

The macro scans this area and evaluates a simple arithmetic expression that
is different for both collisions. In case of MD5, for instance, the msb of byte
0x80 + 0x13 = 0x93 equals 0 for one file and 1 for the other if we use the
construction from [WY] (keep in mind the ’little endian’ convention for MD5).
Or equivalently, interpreted as a character byte 0x93 is < 128 in the first case
but ≥ 128 in the second. Depending on the value of this character the macro
either has no effect or it searches the $-sign in the displayed text and changes
the color of the last digit of the corresponding price from black to white.

The following list collects the particular steps. The example macro is included
in the annex. we point out that the general procedure is the same for any hash
function provided that an adversary is able to generate abstract collisions to
given IVs.

1. The adversary opens a Word file ’contract0.doc’ and writes the text.
2. The adversary writes a macro with the following property: If the ASCII value

of byte 0x93 is < 127 the macro has no effect. Otherwise it selects the $-sign
within the (visible) text and changes the preceding digit of the price from
black to white.

3. The adversary connects the macro with contract0.doc and saves contract0.doc.
4. The adversary generates a collision of two 256-byte strings for which the

first 128 bytes equal the first 128 bytes of contract0.doc. Then he uses a hex
editor to replace bytes 0x80 to 0xFF of contract0.doc by the respective sub-
strings, obtaining two different files contract.doc and cheatingcontract.doc.
Byte 0x93 of contract.doc is < 127 whereas byte 0x93 of cheatingcontract.doc
is ≥ 128.

5. The adversary sends cheatingcontract.doc to his victim.
6. The victim opens cheatingcontract.doc. If he rejects the use of macros (Case

A) nothing happens, i.e. he will see the correct text. That is, the attack has
been unsuccessful. Otherwise (Case B) the displayed or printed price appears
to be lower by factor 10.

7. If the victim agrees with the contract (which may depend on the displayed
text) he signs cheatingcontract.doc and sends it back to the adversary.

8. In Case B the adversary might replace the document cheatingcontract.doc
by contract.doc later.

Remark 1. a) This method seems to deliver a collision which is reusable to a cer-
tain extent: Experiments indicate that exchanging characters of the text (keeping

the length constant) does not change the bytes in the file located prior to the
b, b′ positions.
b) We already have pointed out that we followed an empirical approach. The
Word format is yet very complicated and contains hundreds of parameters like
offsets and modifiers. So it might not be too surprising if someone was able
to evaluate more sophisticated methods to produce poisoned messages without
using macros, similarly to the constructions for PostScript, PDF and TIFF.
However, the straight-forward idea to use the offset contained in the FIB (File
Information Block) of a Word 97 document, which determines the beginning of
the proper text does not seem to work. As the Word format does not seem to be
interesting enough with respect to digital signatures we did not go into details.

3.5 Concrete examples for MD5

We constructed MD5 format file collisions for PDF, TIFF and Word 97 where we
used [WY]. The concrete MD5-PDF-collision seems to work for Acrobat Readers
from version 4 to 8. The concrete MD5-TIFF-collision consists of two pages that
differ at 25 % (instead of 50 %). This is due to the shape of the files produced
by our scanning software: The files contained four strips of almost equal size,
and for convenience we did not change this structure.

4 Executables and packages

In this section we observe that universal collisions can be constructed for binary
executables and reusable collisions for RPM. These are probably less interesting
in practice than the results for document file formats: The signing party should
really understand and accept the code it signs otherwise there will arise problems
also without hash collisions.

4.1 Plain binaries

Obviously assembler languages for common processors allow if-then-else con-
structions and offset constructions of poisoned programs. Also reusable and even
universal collisions are possible. [Mi] describes a way to obtain such executables
by writing suitable C-code instead of assembler3: After compilation one inspects
the resulting executable to find out where the strings b, b′ are located. This
method could also be suitable to construct universal collisions - of course this
depends on the assumption that the compiler keeps some ’natural’ order of the
relevant data and commands of the C-program in the executable file.

3 Actually [Mi] describes how to produce colliding selfextracting executables common
to MS Windows users.

4.2 RPM

In the Linux world executables normally are distributed as packages. One of the
most popular package formats is RPM (Red Hat Package Management) which
is used by many Linux distributions and described for example in [Ba].

An RPM package consists of four successive parts: The lead, the signature, the
header and the archive. The lead is some sort of exterior badge whose integrity is
not secured, the signature contains the size, the MD5 hash value and optionally
a PGP-signature of the rest of the file (header+archive). We assume now that
the PGP-signature employs MD5 as hash function and ask for some reusable
collisions for (header+archive) to forge the RPM-signature.

The header itself contains another header and after that several 16-bytes index
entries and a store at the end. The index entries look as follows:

tag type offset count
4 bytes 4bytes 4 bytes 4bytes

A useful index entry for constructing reusable hash collisions has tag 0x000003ff
which corresponds to RPMTAG PREIN specifying the pre-installation script.
Let the type for that entry be 0x0000006 corresponding to STRING type and
the count be 0x00000001 then offset would give the location of a string inside
the store: This is a shell script to be executed before installation. But Linux
shells allow if-then-else constructions and allow to compare strings. So ’poisoned
packages’ should be possible: b and b′ are strings contained in the pre-installation
script. As the archive which contains the binaries is located behind the header
and thus much of the pre-installation script and at least the binaries and also
some information contained in the store (for example the post-installation script
which on the other side could probably as well be used for the ’poisoning’) do
not need to be known when the collision is constructed.

Remark: The other index entries in the header restrict the reusableness of the
collision to a certain extent.

5 Certificates

In [KL] and [LW] the possibility of constructing X.509 certificates for DSA with
different primes p (one of them for example weak against DL algorithms!) but
the same MD5 hash value was observed. [LW] also explicitely deliver two ASN.1
DER encoded X.509 certificates for RSA with two different RSA-moduli but the
same MD5 hash value.

These examples show that collisions of X.509 certificates can be constructed.
The question we are dealing with here is whether reusable collisions can be
constructed. This should also be the case — in the trivial sense of extending col-
lisions in different ways — as there are fields in X.509 certificates which contain

strings of different lengths for example the ’subject organization’ field located
ahead of the public key. But this possibility does not seem to have much value
in practice as the field ’serial number’ is determined by the CA and is located
quite at the beginning of the ASN.1 DER encoded X.509 file. So if the CA works
correctly and gives different serial numbers to different certificates such a hash
collision will only be usable for one pair of X.509 certificates.

6 Discussion

We picked out several file formats and searched for ways to construct reusable or
universal collisions similar to that in [DL1] for PostScript. It turned out that this
was in fact possible for all examined document file formats although to a different
extent. If there were no explicit program language control constructions (e.g. for
PDF and TIFF) these could be faked by some tricks. Maybe this is typical for
many common file formats except for primitive ones like ASCII text files.

We believe that these observations are relevant with respect to digital signatures
and at least serve as good examples to contradict the wide-spread opinion that
abstract collisions of the compression function do not cause any threat in real
life.

Two arguments could naturally arise:

1. The phenomenon is not new: If file formats allow program structures (macros,
scripting) in documents it is possible to fool people even without hash colli-
sions. The displayed content just has to differ in different environments (time,
hardware).

This is not really true. The unambiguity of the ’human message’ (cf. the in-
troduction) is a solvable problem for digital signatures. However, some of the
examples mentioned in this paper show that also file formats suitable with re-
spect to that and excluding such kind of tricks, e.g. TIFF, are vulnerable against
’poisoned message’ collisions, and this makes a difference.

2. A quick look at the document with a hex editor reveals the ’trick’ of the
forger even if only one message still exists since the victim has not stored his
version. (This is an important difference to meaningful collisions of ASCII files,
for instance.)

This argument is basically true except for the adjective ’quick’. Examining a file
in a certain format that uses all kinds of different compressions and encodings
can be quite complicated. However, although an expert should be able to figure
out what has been done (provided that he knows such constructions) even if all
sort of obfuscating was applied the following ’ signature phishing’ scenario seems
to be possible: From a reusable abstract collision an attacker generates 1000
meaningful collisions in a specific file format. He sends one meassage of each
pair to potential victims, hoping to get at least some valid signatures. He uses
these signatures for fraud and disappears before his attack will be recognized. In

this specific scenario reusable hash collisions may turn out to be quite valuable
for the crook.

Once a concrete format file collision (a||b||c) and (a||b′||c) is known the string c
might be replaced by c′ keeping the collision property but changing the meaning
of the encoded human message. Hence we do not publish concrete examples to
avoid misuse by free-riders. Instead, we described the central aspects to sensitize
the community and to put experts into the position to detect such constructions.

The examples given in this paper seem to indicate a practical basic weakness
of the Merkle-Damgard construction in addition to those mentioned in [MOV]
Section 9.7, [J1] and [KS].

References

[Ba] E.C. Bailey, Maximum RPM, Red Hat, 2000, online at:
http://www.rpm.org/max-rpm/

[DL1] M. Daum, S. Lucks, The Story of Alice and Bob, Presented
at the rump session of Eurocrypt ’05, May 2005. Online
http://www.cits.rub.de/imperia/md/content/magnus/rump−ec05.pdf

[DL2] M. Daum, S. Lucks, concrete postscript collisions online at
http://www.cits.rub.de/MD5Collisions/

[J1] A. Joux, Multicollisions in Iterated Hash Functions, Crypto 2004, LNCS 3152
(2004), 306-316.

[J2] A. Joux, Collisions for SHA-0, Presented at the rump seesion of Crypto ’04,
August 2004.

[Ka] D. Kaminsky, MD5 to be considered harmful someday, preprint, December
2004, http://www.doxpara.com/md5 someday.pdf.

[KL] J. Kelsey, B. Laurie, Contributions to the mailing list cryp-
tography@metzdowd.com, December 22, 2004, online at
http://diswww.mit.edu/bloom-picayune/crypto/16587.

[KS] J. Kelsey, B. Schneier, Second preimages on n-bit hash functions for
much less than 2n work, Cryptology ePrint Archive, Report 2004/304,
http://eprint.iacr.org/2004/304.

[LW] A. Lenstra, B. de Weger, On the possibility of constructing meaningful hash
collisions for public keys, In ACISP 2005, Springer LNCS 3574 (2005), 267-279.
Full version at http://www.win.tue.nl/ bdeweger/CollidingCertificates/ddl-
full.pdf.

[Mi] O. Mikle, Practical Attacks on Digital Signatures Using MD5 Message Digest,
Cryptology ePrint Archive, Report 2004/356, http://eprint.iacr.org/2004/356.

[MOV] A. Menezes, P. C. van Oorschot, S. A. Vanstone, Handbook of Applied Cryp-
tography, CRC Press, Boca Raton, 1997.

[PDF] Adobe Systems Incorporated, PDF Reference, 2nd edition, Addison Wesley,
online at:
http://partners.adobe.com/public/developer/pdf/index reference.html

[TIFF] TIFF Revision 6.0, Adobe Developers Association, online at:
http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf

[WLFCY] X. Wang, X. Lai, D. Feng, H. Chen and X. Yu, Cryptanalysis of the Hash
Functions MD4 and RIPEMD, EuroCrypt 2005, Springer LNCS 3494 (2005),
118.

[WY] X. Wang and H. Yu , How to Break MD5 and Other Hash Functions, Euro-
Crypt 2005, Springer LNCS 3494 (2005), 1935.

[WYiY] X. Wang, Y. L. Yin, H. Yu, Collision Search Attacks on SHA-1, Crypto 2005,
Springer LNCS 3621 (2005), 17-36.

[WYuY] X. Wang, H. Yu, Y. L. Yin Efficient Collision Search Attacks on SHA-0,
Crypto 2005, Springer LNCS 3621 (2005), 1-16.

A The Word 97 macro

Sub collision()

Dim b(512) As Byte

FName$ = ActiveDocument.Name

Open FName$ For Binary Access Read As #1 Len = 512

Get #1, , b ’the price 1000$ is contained in 2nd line of

Close #1 ’the .doc file; that line is selected by

’the Selection .. Count:=2 command

If b(147) >= 128 Then

Selection.Collapse Direction:=wdCollapseStart

Selection.GoTo What:=wdGoToLine, Which:=wdGoToAbsolute, Count:=2

Selection.MoveRight Unit:=wdCharacter, Count:=1

Selection.Find.ClearFormatting

With Selection.Find

.Text = ’$’

.Forward = True

.Wrap = wdFindContinue

.Format = False

.MatchWholeWord = False

.MatchWildcards = False

.MatchSoundsLike = False

.MatchAllWordForms = False

End With

Selection.Find.Execute

Selection.MoveLeft Unit:=wdCharacter, Count:=3

Selection.MoveRight Unit:=wdCharacter, Extend:=wdCharacter

Selection.Font.ColorIndex = wdWhite

Selection.GoTo What:=wdGoToLine, Which:=wdGoToAbsolute, Count:=1

Selection.Collapse Direction:=wdCollapseEnd

End If ’by the Selection .. Count:=1 command

’the cursor returns to the first character

’in the text (disguise of attack)

End Sub

	Illes_PPT.pdf
	A Note on the Practical Valueof Single Hash Collisionsfor Special File Formats
	Reusable Collisions
	Strategy for Merkle-Damgard Hash Functions
	Daum/Lucks’ PostScript example
	PostScript
	PostScript
	PDF
	PDF
	PDF
	TIFF
	TIFF
	TIFF
	Word 97
	Word 97
	Relevance?
	Relevance?
	Conclusion
	Contact

