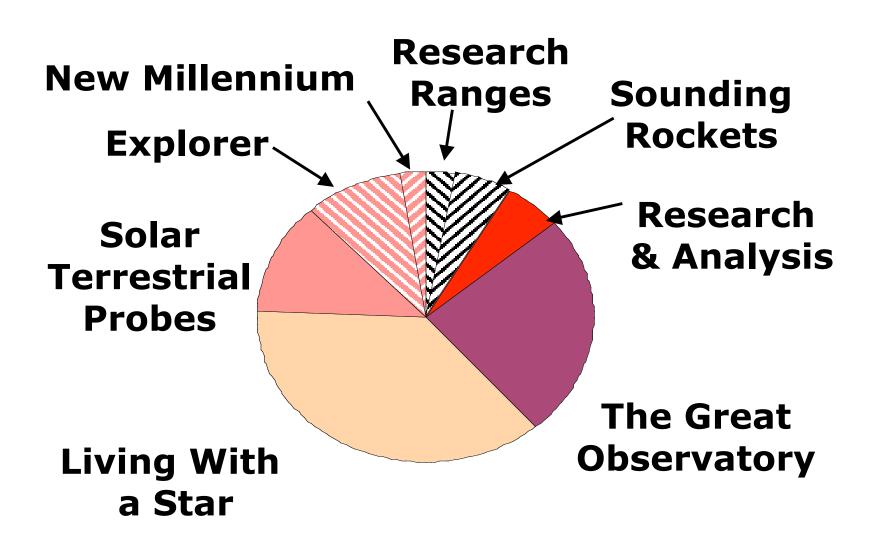


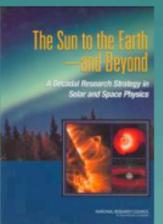
Heliophysics Division Research & Analysis Review


R. Fisher Heliophysics Division Director

28 March 2008

FY 09 Heliophysics Division

Budget: Total 575,274 M\$

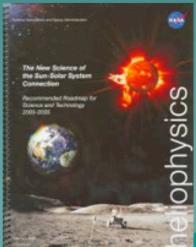

Decadal Survey Goals (1)

- Challenge 1 (Sun)
 - Understanding the structure and dynamics of the Sun's interior, the generation of solar magnetic fields, the origin of the solar cycle, the causes of solar activity, and the structure and dynamics of the corona.
- Challenge 2 (Heliosphere)
- Understanding the heliospheric structure, the distribution of magnetic fields and matter throughout the solar system, and the interaction of the solar atmosphere with the local interstellar
 March 19 Medium.

Decadal Survey Goals (2)

- Challenge 3 (Magnetospheres)
 - Understanding the space environments of Earth and other solar system bodies and their dynamical response to external and internal influences.
- Challenge 4 (Basic Physics)
 - Understanding the basic physical principles manifest in processes observed in solar and space plasmas.
- Challenge 5 (Space Weather)
 - Developing near-real-time predictive capability for understanding and quantifying the impact on human activities of dynamical processes at the Sun, in the interplanetary medium, and in Earth's magnetosphere and ionosphere.

Roadmap Goals


<u>Understand the fundamental physical</u>
<u>processes of the space environment - from</u>
<u>the Sun to Earth, to other planets, and</u>
<u>beyond to the interstellar medium.</u>

Understand how human society, technological systems, and the habitability of planets are affected by solar variability interacting with planetary magnetic fields and atmospheres.

Maximize the safety and productivity of human and robotic explorers by developing the capability to predict the extreme and dynamic conditions in space.

March 19, 2008

Heliophysics Research Budget

For *FY2007*, the following aggregates the competed research budget, including Los Cost Access to Space (LCAS - Sounding Rocket Payloads)

recode to opace (Lerie Country Rocket Layloade)	
• "SR&T"	
LCAS, HP Theory program, LWS TRT	\$63.0 M
Data and Computing	\$ 14.9 M
 Applied Information Research Program (AISRP) 	
 VXOs, and Theory Modeling and Data Services 	
 Mission Science Teams (other than "Astrophysics R&A") 	\$15 M
 PI teams for missions and instruments selected through AO 	
 Additional team members selected through competition 	
 Participating scientists, interdisciplinary scientists, science members, etc. 	working group
 Extended Missions research and data analysis funding* 	~ \$ 55.4M
Heliophysics Competed	~\$148.3 M

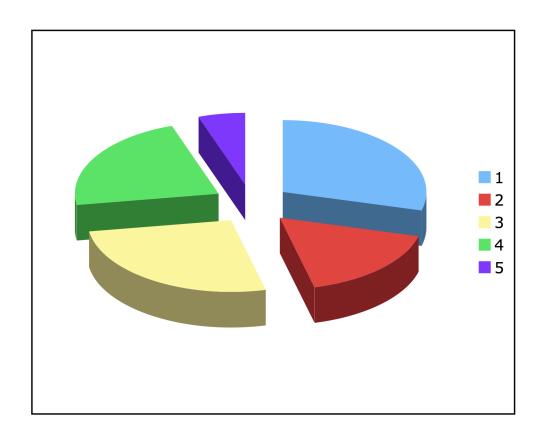
^{*} FY08 planning number - competed via Senior Review Process every two-three yrs.

Heliophysics R&A Elements

	Element	~Value* (M\$) NRA
•	Supporting Research & Technology (SR&T)	63.6	ROSES
	 Solar-Heliosphere SR&T 		
	 Geospace SR&T 		
	 LWS Target Research and Technology 		
•	Data and Computing	14.9	ROSES
	- ASIRP		
	– VXO		
	 SEC Data and Modeling 		
•	Guest Investigator Program	11.5	ROSES
	 Geospace GI Program 		
	 Solar and Heliospheric GI Program 		
	– Total	93.3	

.

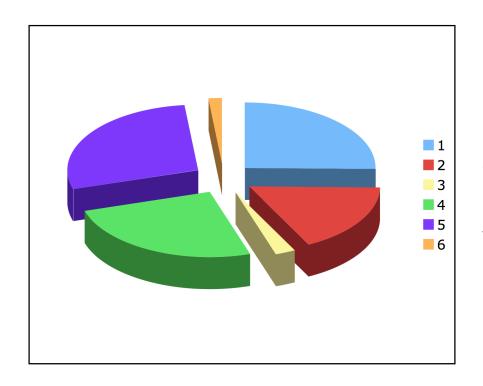
Helio Competed Elements


- LWS Targeted Research and Technology
- Solar and Heliophysics SR&T
 - Solar Magnetic Fields and Helioseismology
 - -Solar Activity
 - -Solar X- and gamma-ray
 - UV/Optical
 - IR/Sub-mm/Radio
 - -Heliospheric Physics
 - -Solar Wind
 - -CME and Solar System Response
 - -Advanced Tools and Techniques* (new ROSES task)
- Geospace SR&T
 - –Inner and Outer Magnetosphere
 - -lonosphere
 - -Mesosphere and Thermosphere
 - –Particles and Fields
 - -HP Theory Program
- Low Cost Access to Space (Sounding Rocket Payloads)
 - –Solar and Helio SR Payloads

~\$59.6 M in FY2008

–Geospace SR Payloads

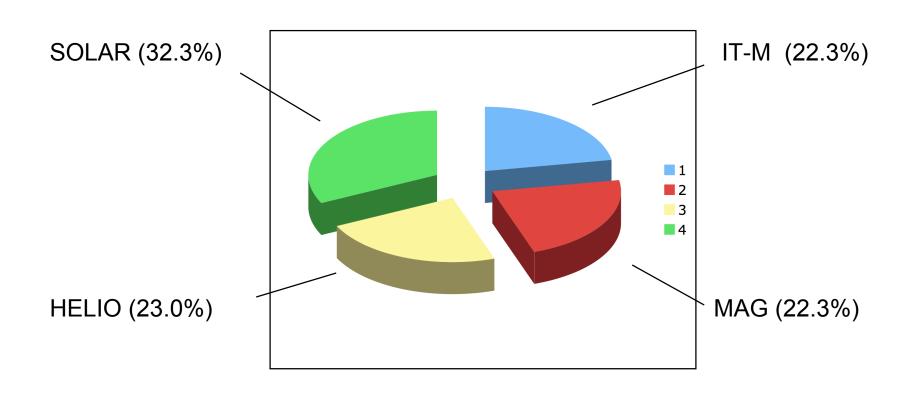
Heliophysics SR&T/TR&T Distribution FY04-06



TR&T 17.3 M\$
ASIRP 10.1 M\$
Solar and helio 15.7 M\$
Geospace 13.2 M\$
HPD Theory 3.2M\$

Total SR&T/TR&TCompeted programs: 69.6M\$ FY08

Proposals by Discipline Included in Portfolio



Solar and heliophysics	107
Geospace Science	72
Heliophsyics Theory	10
Heliophysics GI	107
LWS TR&T	118
VxO Heliophysics	7

421 funded proposals through FY07

Heliophysics Division Proposal Acceptance by Discipline: Balance

Proposals selected FY2005 - 2007

HpD R & A Portfolio (FY2008)

ROSES Elements for FY2008 (as of 3/19/2008)

Number of Research Awards

Roses Element	ITM	MAG	Helio	Solar	Total	% ITM	% Mag	% Helio 9	% Solar %	% Total
Solar and Helio Physics	0	0	40	67	107	0%	0%	37%	63%	100%
Geospace Science	36	36	0	0	72	50%	50%	0%	0%	100%
Heliophysics Theory	2	3	1	4	10	20%	30%	10%	40%	100%
Heliophysics GI*	17	29	25	36	107	16%	27%	23%	34%	100%
LWS TR&Technology	38	23	29	28	118	32%	19%	25%	24%	100%
VxO for Heliophysics Data	1	3	2	1	7	14%	43%	29%	14%	100%

NB: In Helio Physics there are: Helio/Instrum 4; Helio/LCAS 2

In Solar Physics there are: Solar/instrum 6; Solar/LCAS 8

In the VxO we have a single proposal which is interdisciplinary (i.e. "Other")

421 TOTAL PROP

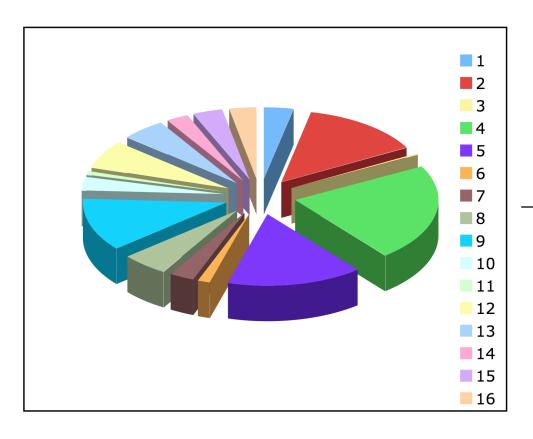
FUNDING FOR: 59.6 M\$

~142 K\$ mean 26% acceptance 1 in 3.84 selection

^{*} The GI program includes 8 Stereo proposals (5 Solar and 3 Helio)

The Guest Investigator Program

- 143 proposals submitted in May
 - Competition included a special STEREO GIP
- 48 selections announced prior to AGU
 - 21 awards to general Solar & Heliospheric investigations
 - 7 for the STEREO GIP
 - 20 selected for the general Geospace investigations
- Proposals for ROSES 2008 GIP will be due May 9.
 - Will include call for IBEX GIs.



The Guest Investigator Program

- 1. MO&DA for currently operating missions
- 2. Guest Investigator Program
- 3. SEC Data and Modeling Services
 - SDAC and VSO,
 - SPDF (e.g. CDAWeb, OMNIWeb, etc.),
 - CCMC
 - New VxOs
 - Resident Archives
- 4. Multimission Operations Project at GSFC
 - Concentrates on control center functions and flight dynamics
 - Sustain operations and flight dynamics infrastructure
 - Promote new operations tools and architectures
 - Supports <u>all</u> Space-Science operations at GSFC

Mission Costs (Est.) FY08

AIM		M\$
THEMIS	11.1	
IBEX	?	
STEREO	17.7	
Hinode	12.4	Prime Ops
CINDI	1.05	•
TWINS	2.28	
Voyager	4.3	
SOHO	9.6	
Wind	2.5	
Geotail	0.6	Extended One
Cluster II	5.1	Extended Ops
ACE	4.1	
Fast	1.9	
Trace	2.7	
Rhessi	2.5	

Senior Review 2008

- The 6th Senior Review for the operating HP missions will be held during the week of April 8.
 - Proposals and Mission Archive Plans received February 21.
 - The review will cover the period FY-09 to FY-12.
- 12 missions are participating in the review are
 - ACE, RHESSI, SOHO, STEREO, Voyager and Wind
 - AIM, Cluster, FAST, Geotail, THEMIS and TIMED
 - GIP performance and spacecraft usage by GIs is reviewed.
- The review will be conducted in the context of the Heliophysics Strategic Goals expressed in the 2007 SMD Science Plan and the 2006 HP Roadmap with the view of that there will be several new missions launched during this period:
 - SDO, IBEX, TWINS, and CNOFS/CINDI.
- The panel's report will be published in early June.

The GI Program

- 143 proposals submitted in May
 - Competition included a special STEREO GIP
- 48 selections announced prior to AGU
 - 21 awards to general Solar & Heliospheric investigations
 - 7 for the STEREO GIP
 - 20 selected for the general Geospace investigations
- Proposals for ROSES 2008 GIP will be due May 9.
 - Will include call for IBEX GIs.

GIP Budgets (\$M)

FY	<u>05</u>	<u>06</u>	<u>07</u>	<u>08</u>	<u>09</u>	<u>10</u>	<u>11</u>
Total							
Program	13.7	10.0	11.5	11.8	16.2	15.7	16.0
New Awards	6.2	0	5.2*	6.1•	5.0°	4.8	6.2

- Includes \$540k for new Voyager Guest Investigators from 2005 Senior Review
- New awards in FY-08 included ~\$850k for STEREO Guest Investigators
- O New awards in FY-09 include ~\$1000k for IBEX Guest Investigators

LWS TR&T Strategic Plan

based on the LWS TR&T Science Definition Team report of November 2003

- LWS is a systematic, goal-oriented research program targeting those aspects of the Sun-Earth system that affect life and society.
- The TR&T component of LWS is to provide the theory, modeling, and data analysis necessary to enable an integrated, system-wide approach to LWS science.

TR&T Supports:

- Focused Science Teams
- Strategic Capabilities
- Cross-cutting Workshops
- Summer Schools

LWS TR&T Strategic GOALS

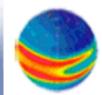
- Solar Storms ...deliver the understanding and modeling required for useful prediction of the variable solar particulate and radiative environment at the Earth, Moon, Mars, and throughout the solar system
- Sun Climate ...deliver the understanding of how and to what degree variations in the solar radiative and particulate output contribute to changes in global and regional climate over a wide range of time scales
- **Near Earth Radiation** ...deliver the understanding and modeling required for effective forecasting/specification of magnetospheric radiation and plasma environments
- **Ionosphere-Thermosphere** ...deliver understanding and predictive models of upper atmospheric and ionospheric responses to changes in solar electromagnetic radiation, and to coupling above and below

Proposals and Awards

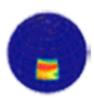
- 155 current awards with average funding level of \$121,000
 - 26% of these have separately funded co-Investigators
 - Most have 3 year duration (SC 5 year duration)

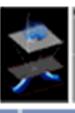
ROSES 2007

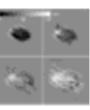
- 161 proposals submitted for TR&T, ~ \$5 M available
- Proposal selection March 2008
- Partnership opportunity with Planetary Division one Focus Topic

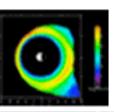


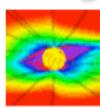
LWS TR&T Focus Topics


2004	2005	2006	2007
Determine the solar origins of the plasma and magnetic flux observed in an ICME	Shock acceleration of SEPs by interplanetay CMEs	Predict emergence of solar active regions before they are visible	Exploring the magnetic connection between the photosphere and low corona
Determine the topology and evolution of the open magnetic field of the Sun connecting the photosphere through the corona to the heliosphere	Mechanism for solar wind heating and acceleration	Understand how flares accelerate particles near the Sun (i.e., through shocks and/or reconnection) and how they contribute to large SEP events	Prediction of the Interplane1 tary Magnetic Field Vector Bz at L1
Relate solar-energetic particles to their origin at the sun and inner heliosphere	Solar wind plasma entry and transport in the magnetosphere	Effects of ionospheric- magnetospheric plasma redistribution on storms	Toward combined models of acceleration, loss and transport of energetic electrons and protons in the magnetosphere
Determine the mechanisms responsible for the formation and loss of new radiation belts in the slot region in response to geo-effective solar wind structures	Storm effects on global electrodynamics and middle and low latitude ionosphere	Investigate the global distribution, sources and effects of large electron density gradients at middle and low latitudes	Determine the sources of daily variability in the thermosphere and ionosphere
Quantify the response of thermospheric density and composition to solar and high latitude forcing	Atmospheric abundance of greenhouse gases and dynamics of the upper atmosphere	Solar origins of irradiance variations	Solar Modulation of the galactic cosmic rays and the production of cosmogenic isotope archives of long-term solar activity, used to interpret past climate changes
Quantify the sensitivity of regional and global climate to solar forcing in the full context of the interactive climate system			Extreme Space Weather Events in the Solar System


Targeted Research and Technology







HOME

proposals

science results

reports

news

related sites

contacts

LWS TR&T Focus Teams:

2006

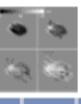
- Predict Emergence of Solar Active Regions Before they are Visible
- Flares particle acceleration near the Sun and Contribution to large SEP events
- Effects of Ionospheric-Magnetospheric Plasma Redistribution on Storms
- Global Distribution, Sources and Effects of Large Electron Density Gradients
- Solar Origins of Irradiance Variations

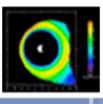
2005

- Shock acceleration of SEPs by interplanetay CMEs
- Mechanism for solar wind heating and acceleration
- Solar wind plasma entry and transport in the magnetosphere
- Storm effects on global electrodynamics and middle and low latitude ionosphere
- TR&T website: http://lws-trt.gsfc.nasa.gov

- strategic capability
- focus teams
- steering committee
- mowg

Targeted Research and Technology





HOME

proposals

science results

reports

news

related sites

contacts

LWS TR&T Strategic Capability:

- strategic capability
- focus teams
- steering committee
- mowg

2006

3D Model of an Active Region Coronal Magnetic Field

A primary goal of the LWS Program is the development of first-principles-based predictive and specification models for the coupled Sun-Earth system. Such models are essential for making progress on the science priorities and to assist in the interpretation and linking together of the data that will be produced by the LWS missions, other NASA-SEC missions, and ground-based facilities. Models serve multiple purposes. They act as tools for science investigations, as prototypes and test beds for first-principles-based prediction and specification capabilities, as frameworks for linking disparate data sets at vantage points throughout the HP system, and as strategic planning aids for testing new mission concepts.

These efforts can leverage existing modeling resources, but will also likely require significant new code development and possibly multi- institutional collaborations. The primary function of such code development is to provide a tool for science and a prototype operational tool. Proposals for strategic capabilities are competed separately from the targeted investigations efforts. The defining characteristics of a successful proposal to provide a strategic capability should include, but need not necessarily be limited to, the following:

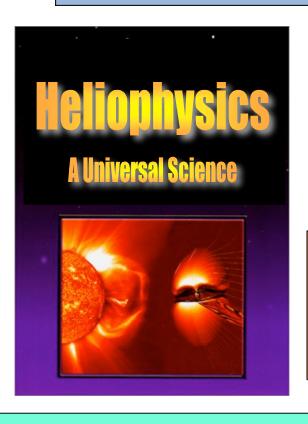
2005

NASA/NSF (AFOSR) Partnership for Collaborative Space Weather Modeling

- A Comprehensive Magnetosphere-Ionosphere Model
- Time-Dependent 3D Model for the Corona and Ambient Solar Wind
- Earth Moon Mars Radiation Model

Space weather refers to conditions on the sun and in the solar wind, interplanetary medium, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and can endanger human life or health. Mitigation of these adverse effects requires understanding of the fundamental physical processes that affect the state of the Sun, solar wind, interplanetary medium, magnetosphere, ionosphere, and upper atmosphere. This understanding is being achieved by a variety of ongoing programs that address research, observations, and modeling of the space environment.

Creation & Annihilation of Magnetic fields


Dynamos
Diffusion
Dissipation
Reconnection

Magnetic Coupling

Non-Local (Non-Contact) Flow-Object Cross-Scale (Hierarchical) Neutral-Plasma Dusty Plasmas

Spontaneous Generation of Structures and Transients

Flux Ropes-Filaments Current Sheets Cellular Structures Turbulence Waves & Emissions

Explosive Energy Conversions

Solar (Stellar) Flares CMEs Substorms Bursty Bulk Flows

Generation of Penetrating Radiation

GCRs SCRs ACRs Radiation Belts

Coupling Sun, heliosphere, galactic environment, and planetary climate

Dynamos in stars and planets
Radiative and electromagnetic couplings

Notional Scope of the TR&T Program

CHARACTERIZATION OF THE COMPETED ELEMENTS FY07

ELEMENT	WIN RATE	AVE. AWARI	D New Budget
GI program		Ψ	Ινίφ
GI-Geospace	2.95	90,928	4.3
GI-S&H	3.28	92,857	5.2
Geospace SR&T (w/LCAS)			
Geo-SR&T	3.79	157,265	
HP Theory Prog.	2.88	417,085	3.9
Solar-Heliospheric SR&T (w/LCAS)			
S-H SR&T	7.85	90,705	2.8
LWS - TRT	3.57	90,705	3.9
ASIRP,Data,			
Computing and Models			
ASIRP-A	N/A	N/A	3.4
ASIRP-H	6.6	136,434	3.2
VxO	2.0+	85,182	2.1
Grand Aggregate FY07 all elements	3.94	140.243	22.3
* Partial data available		647	7/164

FY 2006 Summary

Status of Current Missions

Mission	Launch	Phase	Extension to *	Dec	Jan	Feb	Mar	Remarks
Polar	2/24/96	Extended	Apr 30, 2008					Exhausted hydrazine fuel on Februay 11
Ulysses	10/06/90	Extended	≤ July 1, 2008					Spacecraft operations to conclude NLT July 1, 2008
FAST	8/21/96	Extended	Jul 2008					
Geotail	7/24/92	Extended	Jul 2008					
TRACE	4/01/98	Extended	> Nov 2008					Will terminate operations after launch of SDO
STEREO	10/25/06	Prime	Feb 2009					
THEMIS	2/17/07	Prime	Mar 2009					1st "Tail" season.
AIM	4/25/07	Prime	June 2009					Safehold on Feb 7, recovery nearly complete
Hinode	9/23/06	Prime	Nov 2009					Switched to S-band for downlink
Cluster	7/16/00	Extended	~ 2010					
ACE	8/27/97	Extended	> 2013					
RHESSI	2/05/02	Extended	> 2013					
SOHO	12/02/95	Extended	> 2013					
TIMED	12/07/01	Extended	> 2013					GUVI scan motor stopped on December 8.
Voyager 1 + 2	8/20/77	Extended	> 2013					
Wind	11/01/94	Extended	> 2013					

^{*} Extension date subject of future Senior Reviews: 2008, 2010, etc.

IONOSPHERIC PHYSICS

Current Assets

	(Goal F2) Radiation Dynamics	(Goal F3) Plasma / Neutral	(Goal H2) Prediction / Specification	(Goal H3) Solar Coupling
AIM				Mesosphere
TIMED			Mesosphere	Mesosphere
FAST	Ionosphere		Ionosphere	
CINDI		Ionosphere Thermosphere	Ionosphere Thermosphere	Ionosphere thermosphere

Science Progress No Application

Very Limited

Address Some Goals

March 19, 2008

MAGNETOSPHERIC PHYSICS

Current Missions F1 F2 H2 J1 **J4** Mission Acc/Trans Recon Environ SW Extr Rad Env ACE Solar Wind Wind Solar Wind GEOTAIL Outer Mag THEMIS هفلنا FAST Auroral Zn CLUSTER Outer Mag No Color Key Limited Good Application March 19, 2008

Current Assets Heliosphere Science

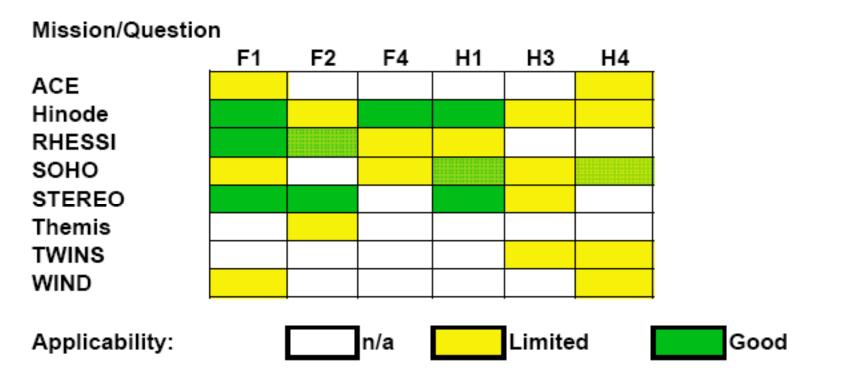
Mission	D1 Causes of Solar Activity	D2 Heliosph. Structure, LISM Interact.	D3 Drivers of Earth Space Environment	D4 Basic Principles	D5 Near Real Time Pred.	R1 Space Env. Pred.	R2 Under- standing	R3 Safe- guarding Journey
ACE								
Cluster								
SOHO								
STEREO								
Ulysses								
Voyager								
Wind								
Cassini								
GOES								
Messenger								
N. Horizons								
Polar								
Sampex								

HPD Assets Non-HPD Assets

partially addresses RFA

fully addresses RFA

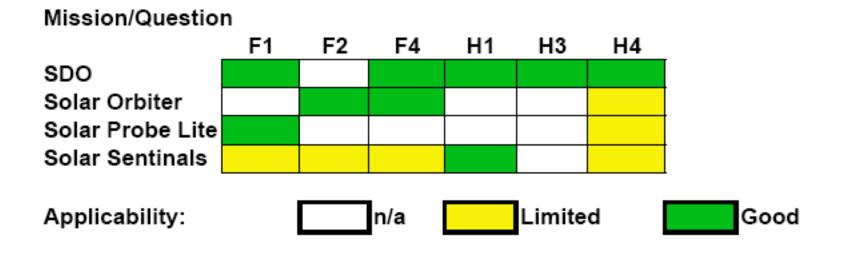
March 19, 2008


12

Current Missions and Solar Physics

(Substantial progress only)

Current Mission Matrix (as of 3/2008)
Applicability for Solar Physics



Note that there are other missions not mentioned here: these are the ones that are assessed to contribute most significantly to advancing solar physics.

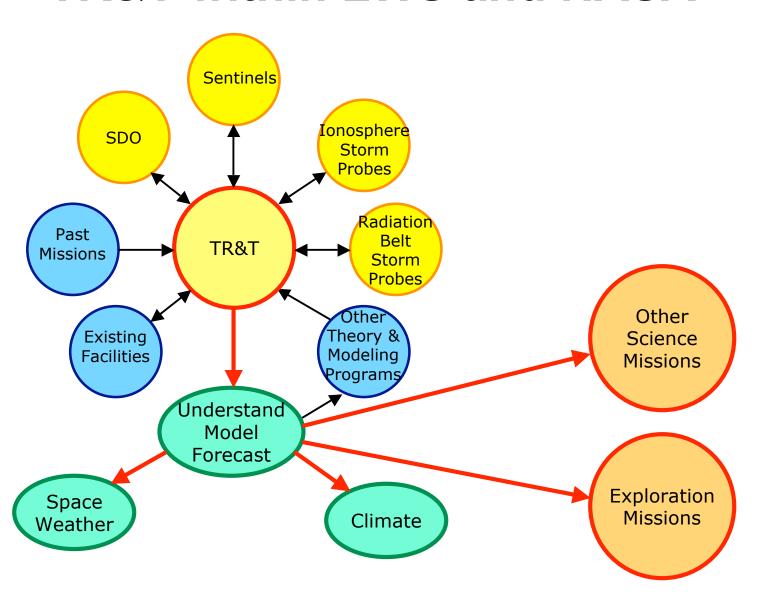
Future Assets - where we want to go...

Future Near-term Mission Set Applicability for Solar Physics

The missions listed are the ones which are in the FY2009 Presidential Submission only

CHARACTERIZATION OF THE COMPETED ELEMENTS FY06

ELEMENT	WIN RATE	AVE. AWARD	TOTAL BUDGET
GI program GI-Geospace GI-S&H	2.95 4.02	99,928 123,877	5,900 4,643
Geospace SR&T (w/LCAS)			
Geo-SR&T HP Theory Prog.	4.10 2.88	157,265 417,085	13,629 3,760
Solar-Heliospheric SR&T (w/LCAS)			
S-H SR&T	3.92	155,415	15,152
LWS - TRT	3.38	97,595	18,727
ASIRP,Data, Computing and Models			
ASIRP-A ASIRP-H	N/A 5.99	N/A 162,185	5,233 5,723
SEC Data Serv-ugrade		Variable 85,182	2,632 1784
Grand Aggregate FY04-FY07*, all elements * Partial data available	3.79	133,018	81,699 704/2673



Other R&A Programs

 Guest Investigator Programs Geospace GI Program Solar and Heliospheric GI Program 	8.4 6.5 ~ \$15 M in FY2007
 Data and Computing and Models 	
• ASIRP	10.9
•VXO	1.4
 SEC Data, Computing, and Modeling Services 	2.6
	~ \$15 M in FY2007

TR&T within LWS and NASA

