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Appendix 1: Control Charts for Variables Data – classical Shewhart control chart: 
 
 When plate counts provide estimates of large levels of organisms, the estimated 
levels (cfu/ml or cfu/g) can be considered as variables data and the classical control chart 
procedures can be used.  Here it is assumed that the probability of a non-detect is virtually 
zero.  For these types of microbiological data, a log base 10 transformation is used to 
remove the correlation between means and variances that have been observed often for 
these types of data and to make the distribution of the output variable used for tracking the 
process more symmetric than the measured count data1.    
 

There are several control charts that may be used to control variables type data. 
Some of these charts are: the Xi and MR, (Individual and moving range) X and R, 
(Average and Range), CUSUM, (Cumulative Sum) and X and s, (Average and Standard 
Deviation). 

 
This example includes the Xi and MR charts. The Xi chart just involves plotting the 

individual results over time.  The MR chart involves a slightly more complicated 
calculation involving taking the difference between the present sample result, Xi and the 
previous sample result. Xi-1.  Thus, the points that are plotted are: MRi = Xi – Xi-1, for 
values of i = 2,  …, n.    These charts were chosen to be shown here because they are easy 
to construct and are common charts used to monitor processes for which control with 
respect to levels of microbiological organisms is desired.  
 
Xi and MR Chart: The example briefly described here is for log(10) transformed generic E. 
coli.  
 
Steps required for developing Xi and MR charts are: 
 

1. Define the characteristic ……… Generic E. coli levels measured from a 25 gram  
sample, using 3M Petrifilm™  

2. Determine sample size (number of samples) ……….. 1 for Xi and 2 for MR charts 
3. Log(10) transform the data  
4. Calculate mean from control data 
5. Calculate Moving Ranges   
6. Calculate Xi and MR control limits 
7. Place control limits on charts with baseline data 
8. Plot baseline data and connect consecutive points with a line 
9. Place control limits on a blank chart 
10. Collect new data  
11. Plot new Xi and MR values as they are collected 
12. Connect each point to the previous point with a straight line. 
13. View both the Xi and MR charts after each point for out of control signals. 

 
After defining the characteristic and deciding that the Xi and MR is the appropriate 

chart for one’s particular situation, baseline data are collected. Baseline data, both Xi 
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values, (Log(10) transformed) and MR values are placed on a baseline control chart prior to 
calculating control limits, (Figure 1). 

 
 After collecting about 30 Xi values and 29 MRi values, (there is one less MR than 
Xi since the first MR is not calculated until the second Xi is collected), one can calculate 
control limits. Before calculating control limits one must first calculate the average moving 
range, ( RM ) and the average of the Xi values, ( X ). 
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Note:  For computing the standard deviation, σ, needed to establish upper and lower control 
limits, or other criteria used for evaluating a process, a relationship between RM and σ 
when the results are distributed as a normal distribution. The relationship is simply σ = 

RM /d2, where d2 is a constant = 1.128. Thus, for example, the upper Shewhart control 
limit is the mean plus 3 times an average  divided by 1.128.  
 
MR Chart Control Limit Formulae: 
UCLMR= D4 x RM  = 3.267 x 0.93 = 3.04 
LCLMR= D3 x RM  = 0 x 0.93 = 0 
Center Line, ( RM ) = 0.93 
 
Values of D4 and D3, can be found in material on quality control published by professional 
organizations, for example as given in the endnotes2 .  
 
Xi Chart Control Limit Formulae: 

UCLXi = ( X or Target) + (3 x (
2d
RM )) = 1.43 + (3 x (

128.1
93.0 )) = 3.90 

LCLXi = ( X or Target) - (3 x (
2d
RM )) = 1.43 - (3 x (

128.1
93.0 )) = -1.06 

Center Line, ( X ) = 1.43 

(3 x (
2d
RM )) may be replaced with (2.66 x RM ) 

Note: If data are put into a computer, calculator, or spreadsheet, it
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 might be simpler to 

compute the sample standard deviation, using the “usual” formula,  
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where n is the number of samples (n = 30).  The upper and lower limits are set at   ( X  + 
3s). However, this method may provide wider limits than those calculated using the first 
method (Wheeler and Chambers, 1992).  
 

After calculating control limits and the central value (the mean), horizontal lines at 
these values are placed to the control chart and the baseline data are plotted, Xi and MRi 
versus i (Figure 2). 
 

 
Figure 1: Baseline data plotted on the control charts with limits derived from the 
baseline data. 
 

The baseline data, when plotted, produce a “stable appearing” process. The limits 
are then transferred to a blank control chart and Xi and MRi values are plotted as they are 
collected. After the Xi and MRi are plotted and connected to the previous point with a 
straight line, both the Xi and MR charts are viewed for out of control sequences.  Pyzdek 
(1974) suggests the following out of control rules be used: 
 
Xi Chart: 

1. Any point exceeding a control limit 
2. Eight consecutive points on the same side of the average, ( X ) 

 
 
 

AOAC 9-30-05 Contract Deliverable for  
Contract # 223-01-2464 Modification 12 

 
 



Appendix F.1 - SAWG SPC Appendices 8-8-06 
Page 4 of 36 

 

MR Chart: 
1. Any point exceeding a control limit 
2. Eight consecutive points on the same side of the average, ( RM ) 

 
Figure 2 demonstrates a process with a positive shift in E. coli counts. At about point 

number 19 the process showed a positive shift. This was identified after the eighth 
consecutive point above average on the Xi chart, and confirmed by the out of control point 
exceeding the UCLXi on point number 27. Although the process average had shifted up 
there is no indication that the variation had increased, (Figure 2). If this were the case, then 
the reason for the out of control pattern would be systemic, affecting the processing within 
the plant, and would not be from a source which would only affect a portion of the process 
output, such as a supplier effect.  That is, certain possible causes could be eliminated from 
consideration.   
. 

 
Figure 2: Log(10) E. coli counts illustrating an increase in CFU per ml 
 

A large “movement” between two consecutive sample values in the Xi chart may 
cause the MR chart to exceed the UCLMR while both Xi points were within the control 
limits on the Xi chart.  Such a signal may signify a shift in the process mean: a positive 
shift if the latter result were the large one, for example, (see Figure 3).  Or, if a shift in the 
mean did not occur, then the signal in the MR chart could imply that, while in a systematic 
way the process is not out of control, there could still be some factor associated with one of 
the two samples affecting results.  Consequently, an investigation of the sources associated 
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with the two samples might provide a clue of an uncontrolled factor that could be 
contributing to process variation or could lead to actions that could lead to an improvement 
of the process.  If this were to happen with some regularity, the motivation to investigate 
would be increased. 
 
 If possible a moving range average using more than 2 results might provide a more 
accurate detection of short term variation.  The more terms used though the harder it would 
be to identify probable causal factors.  With computers, it is possible that more than one 
type of moving range could be computed; for example the two-term moving range, and a 5- 
term moving range.  The ideas presented here remain the same regardless of the number of 
terms used in the moving range – just different parameters values for D4 and D3 would be 
used.  
 
 

 
 
Figure 3: A down shift in CFUs per ml. first picked up by an out of control signal on 
the MR chart. 
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Appendix 2: Control Chart for Poisson Distributed Characteristics, with one sample 
size - the C Chart 
 

When counts are not high and there is a non-trivial probability of not detecting any 
colony forming units (recorded as ND), the counts seen on a plate can not readily be 
considered as variable data, as in the previous example (Appendix 1).  In this case, a 
discrete distribution, such as a Poisson distribution or negative binomial distribution can be 
considered de modeling the distribution of counts (where ND is zero).  Microbiological 
examples which fit Poisson-like probability distributions are not as common as those which 
lend themselves to the binomial or normal distributions. The Poisson distribution is 
characterized completely by the value of one parameter, which is the expected value of the 
distribution.  The variance of the Poisson is equal to the expected value, and since the 
lowest possible value is zero, and there is no limit for the highest values, the distribution is 
positive skewed.  Poisson distributions arise under very specialized conditions, when an 
assumption of “pure” or simple uniformity is appropriate.  However, often this assumption 
is not appropriate; rather there are many factors that can affect the results, all acting 
simultaneously so that pure or simple uniformity is not appropriate. Consequently, two 
parameter distributions such as a negative binomial or even binomial distribution, under 
certain circumstances can fit data well (Appendix 3).  However, the Poisson distribution is 
an important one, and it some circumstances it might provide a good fit to the data.  Thus, 
this example is being given. 

 
Data for this example were generated using a Poisson distribution, so the Poisson 

distribution will provide a good fit to the data.  A procedure for determining this is given. 
The example continues with a retrospective analysis, demonstrating one of the features 
(and possible pitfalls) of such an analysis.   

 
The C chart is used when sample size (number of units or amount of material, being 

sampled for one analysis) is constant for all samples; the U chart is used for circumstances 
where sample size may vary. Without loss of generality, it is assumed that the sample size 
is 1; that is, the direct counts for some material are being recorded.  

 
A word of caution:  the Poisson distribution is a skewed distribution, thus α- and β-

probabilities need to be calculated taking into consideration when the probability of being 
above or below the target value is not 50%.   

 
Control Chart for Poisson distribution with a constant sample size=1  
 

For this example the number of organisms that appear on an aerobic plate count 
(APC), Petrifilm™, from pre-operational food contact surfaces swabs, (1 square inch, 2.54 
cm x 2.54 cm) are counted and expressed as Colony forming units, (CFUs), per square 
inch, (sampling area). For this example the area is swabbed with moistened cotton tipped 
swab. The swab is used to plate the results on Petrifilm™. The number of colonies is 
counted after a 48 hour incubation period.  
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The data from the one hundred swabs are given in Table 1. (Note: these data are not 
actual data, but were generated using a Poisson distribution). The table includes the 
observed frequency of results, the predicted frequency assuming a Poisson distribution 
estimated from the data using the maximum likelihood estimate (MLE)3; the likelihood 
ratio contribution for the observed result, the likelihood ratio contribution for the observed 
result when combining the results greater than 6 into one category, and the chi-square 
statistic for the observed result, which is the square of the difference between the observed 
and expected frequencies divided by the expected frequencies, (f-e)2/e, where f is the 
observed frequency, e is the expected or predicted frequency derived from, using the 
estimated Poisson distribution.  The likelihood ratio contribution is minus twice the product 
of the observed frequency and the difference of the natural logarithms of the observed and 
expected frequencies, or, symbolically: 

 
    -2f[ln(f) –ln(e)], 

 
where “ln()” is the natural logarithm. 
 
.   The sum of the chi-square and likelihood-ratio contributions are statistics that are 
asymptotically distributed as a chi-square with k-1 degrees of freedom, where k is the 
number of distinct results (or categories) for which estimates are made.  The likelihood 
ratio when combining results greater than 6 has 8 categories so that the chi-square 
approximation is based on 7 degrees of freedom.  The results do not indicate any severe 
lack of fit, notwithstanding the 13 negative results that were observed when only 9 were 
predicted, and the large observed value of 11, which would not be predicted to be seen very 
often.      
 
Table 1: Results from the 100 preoperational swab, counts, frequency of results, and 

predicted frequency using maximum likelihood estimate for Poisson distribution 
 
 

                                                 likelihood 
                                                    ratio        chi 
           observed    predicted    likelihood     combined     square 
 count    frequency    frequency      ratio          7 df        7 df 
    0         13          9.1          9.35          9.35        1.701 
    1         20         21.8         -3.40         -3.40        0.144 
    2         27         26.1          1.78          1.78        0.029 
    3         19         20.9         -3.62         -3.62        0.173 
    4         10         12.5         -4.53         -4.53        0.515 
    5          6          6.0         -0.04         -0.04        0.000 
    6          2          2.4         -0.74         -0.74        0.069 
    7          1          0.8          0.38          5.70        1.129 
    8          0          0.2           .             .           . 
    9          1          0.1          5.43           .           . 
   11          1          0.0         11.33           .           .   . 
   sum        100          100           16.0            4.50          3.76 
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Accepting that the underlying distribution of results is a Poisson distribution with 
expected value of 2.4, the steps involved in using a C control chart are: 

 
1. Define the characteristic…  APC counts per sampling location 
2. Determine sample size ….  1 square inch area, 1 sampling area 
3. Collect baseline data 
4. Calculate Control Limits 
5. Place Control Limits on chart of baseline data 
6. Plot the baseline data 
7. Connect consecutive plotted points with a straight line 
8. Place control limits on a new chart 
9. Collect and plot data as collected 
10. Connect each point to previous point with a straight line 
11. Observe chart for out of control signals after each point 

 
The formula for C Center line and control limits are: 
 

Average Count = =C
SamplesofNumber

CFUsofNumberTotal
__

___  

where: Sample_size = 1 and Number_of_Samples = k = 100 (in this example).  
 

=C 40.2
100
240

=   

Center Line = =C  2.40  
 
Control Limit Calculations: 

 Standard Deviation: σ =  C   - that is, it is assumed that the distribution is a Poisson 
distribution.   
 
Upper Control Limit C:  
UCLc = ( )( )CC ×+ 3  
UCLc = ( )( ) 05.740.2340.2 =×+  
 
Lower Control Limit C: 
LCLc = ( )( )CC ×− 3  
LCLc = ( )( ) 25.240.2340.2 −=×− so LCLc = 0 
 

For the upper limit, if the underlying distribution was a Poisson with expected value 
equal to 2.40, then the probability of a result greater than 6 is 1.16%; and greater than 7 is 
0.334%.  This depending upon the α -probability desired, either a result greater than or 
equal to 7 or 8 would be considered as presumptive evidence of an out of control process.  
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 For the lower limit, the probability of 0 is 9.1%, which for the α -probability (in this 
document) would be considered as too high.  Thus, a single value of 0 would not, by itself 
be considered as an indication of a process change.   
 

If an actual Poisson distribution was not assumed or any other distribution could not 
be found to fit the data, then the square root transformation, or its variations (x+3/8)1/2, 
could be used for plotting and construction a control chart.    

 
In this example, the SPC chart of Figure 1 is constructed, with the upper limit of 7 

and the lower limit of 0, derived assuming that the results are distributed as a Poisson 
distribution.  The last 40 points are shown on the chart.  
 
 

 
Figure 1:   A C chart showing the last 40 data points of the baseline data plotted 

 
Upon an examination of this chart, out of the 40 points, only one had a value of 7 

(or more), and there were 8 zero results.  Moreover there does not seem to be a consistent 
trend (in actuality CUSUMS or moving averages would be computed as well to judge 
trends).  By these usual rules, it might be reasonable to conclude that the 40 points plotted 
represent a set of data for which the process is in control.  Only one result reached the value 
of 7, but that, by itself, would not be a reason to suspect an out-of control situation.  
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However, a further examination might lead to some questions and further 
exploration of the process.  The probability of 8 or more zero results from 40, when the 
underlying distribution is Poisson is about 2.5%; however, what may be of interest is that 
the 8 values seemed to be “clustered” with respect to time, where 3 zero results occurred 
within the first 6 times of sampling, and the other 5 zero results occurred within a span of 
11 samples 18 samples later.   

 
To explore the possibility that this pattern represents a possible source of 

unexplained variation, consider a one-sided CUSUM for the occurrence of negative results. 
That is, consider a CUSUM, Sk, where, S0 = 0, k k 1 kS max(0,S p−= + −δ ) ,  δk is the 
Kronecker delta function for a negative result for the kth sample ( = 1 when the result is 
negative, otherwise equal to 0), and p is a constant equal to the probability of a negative 
result ( = 0.091).  Let the signal for “out of control” – meaning that the probability of a 
negative, somewhere, was greater than 9.1% - be 5.  That is, when the CUSUM value is 
equal to or greater than 5 the CUSUM signals and the null hypothesis that the probability of 
a negative was equal to or less than 9.1% over the 40 samples would be rejected in favor of 
the alternative hypothesis that for some time the actual probability was greater than 9.1%.  
The reason for selecting the signal limit of 5 is: the ARL for this CUSUM with a signal 
limit of 5 is about 346 when the underlying probability of a negative result is 9.1%, as 
predicated from the assumed Poisson distribution with parameter value equal to 2.4.  Thus, 
if this CUSUM rule had been constructed before the samples were being collected, the one 
sided α -probability would have an assigned value of 0.29%.  

 
Calculating this CUSUM with these 40 samples, at the 34th sample, the CUSUM 

exceeded 5.0 so that a signal would have occurred.  Table 2 provides an example of a 
spread sheet that can be used for the calculations of CUSUM.  The above formula for the 
CUSUM implies that the CUSUM value at the kth sample depends on the CUSUM value 
for the (k-1)th  sample and an increment value, which is the value of the kth sample minus 
the target constant, μ.  The updated value of the CUSUM for the kth sample is the sum of 
the previous CUSUM value plus the increment, provided this sum is not less than zero; 
otherwise it is set equal to zero.  Thus the formula for the CUSUM can be written as: 
 
  CUSUMk =   max(0, CUSUMk-1 + incrementk) 
 
where the value of the increment = δk - p.   Table 2 presents the calculations of the CUSUM 
for the 40 samples using the above formula.  
 

As can be seen from Table 2, the CUSUM value exceeds the value of 5 at the 34th 
sample, thereby suggesting that the process mean probability of a negative exceeded its 
target value of 9.1% at least some time at or before the 34th sample.  However, the 
probability of a Type 1 error with respect to the statistical question, given the 40 data 
points, is not the same as the assigned α-error probability given above (based on the ARL).  
The statistical question involves deciding between two hypotheses: the null hypotheses, H0: 
the probability of negative results is never larger than 9.1% over the period of time that the 
samples were collected; versus the alternative, HA, that at some time, the probability 
exceeded 9.1%.  To help evaluate possible answers, the probability of seeing a signal 
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within 40 samples is needed, when the probability of a negative is equal to 9.1% over the 
40 samples, thereby assuming that the null hypothesis is true.  The 2nd percentile of the 
distribution of run lengths (estimated by simulation using the binomial random generator 
for SAS®, release 8.0) is about 40 samples, indicating that the retrospective α -probability 
of a Type 1 error is about 2% (that is, of having a signal within the first 40 samples when 
the probability was 9.1% of a negative result).  
 

Table 2:  Calculation spreadsheet for CUSM. 
 
                             target 
        sample    sample    fraction       increment 
        number    result    positive    (result-target)    CUSUM 
           1        0         0.09           -0.09          0.00 
           2        0         0.09           -0.09          0.00 
           3        1         0.09            0.91          0.91 
           4        0         0.09           -0.09          0.82 
           5        1         0.09            0.91          1.73 
           6        1         0.09            0.91          2.64 
           7        0         0.09           -0.09          2.55 
           8        0         0.09           -0.09          2.46 
           9        0         0.09           -0.09          2.36 
          10        0         0.09           -0.09          2.27 
          11        0         0.09           -0.09          2.18 
          12        0         0.09           -0.09          2.09 
          13        0         0.09           -0.09          2.00 
          14        0         0.09           -0.09          1.91 
          15        0         0.09           -0.09          1.82 
          16        0         0.09           -0.09          1.73 
          17        0         0.09           -0.09          1.64 
          18        0         0.09           -0.09          1.55 
          19        0         0.09           -0.09          1.46 
          20        0         0.09           -0.09          1.37 
          21        0         0.09           -0.09          1.28 
          22        0         0.09           -0.09          1.18 
          23        0         0.09           -0.09          1.09 
          24        1         0.09            0.91          2.00 
          25        1         0.09            0.91          2.91 
          26        0         0.09           -0.09          2.82 
          27        1         0.09            0.91          3.73 
          28        0         0.09           -0.09          3.64 
          29        0         0.09           -0.09          3.55 
          30        0         0.09           -0.09          3.46 
          31        1         0.09            0.91          4.37 
          32        0         0.09           -0.09          4.28 
          33        0         0.09           -0.09          4.19 
          34        1         0.09            0.91          5.09 
          35        0         0.09           -0.09          5.00 
          36        0         0.09           -0.09          4.91 
          37        0         0.09           -0.09          4.82 
          38        0         0.09           -0.09          4.73 
          39        0         0.09           -0.09          4.64 
          40        0         0.09           -0.09          4.55 
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Retrospective analyses such as this one are fraught with problems regarding the 
“true” magnitude of the α - and β- probabilities.  The only reason that this CUSUM was 
designed, after the fact, was because of the pattern of negative results that were observed 
and the higher than expected frequency of them in the 40 samples.  However, any truly 
“random” sequence of numbers could turn up patterns that are suggestive of possible non-
randomness suggesting a more complex generator (of the numbers), which, when 
statistically tested for, would result in a low calculated α -probability.  Notwithstanding 
these types of problems, the results of this analysis might suggest or provide evidence of 
the existence of a factor that is causing excess process variation, and that further 
examination of the process would be worthwhile; for example, the producer might explore 
to see if there were any common sources peculiar to the initial 6 and the later 11 data 
points.  If there were, then particular sharper criteria or rules related to the possible 
common sources could be constructed; if there were not, then the observed pattern could be 
considered as arising due to statistical variation.  
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Appendix 3:  Count Data that is not Poisson distributed, with many non-detect values. 
 

This example presents data that do not seem to have arisen from a Poisson distribution.   
 

Table 1: Obtained counts, together with goodness-of-fit statistics for a Poisson 
distribution. 

 
                                                  likelihood 
                                                    ratio        chi 
           observed    predicted    likelihood     combined     square 
 count    frequency    frequency      ratio          7 df        7 df 
    0         15          4.9         33.39         33.39       20.576 
    1         19         14.8          9.40          9.40        1.168 
    2         22         22.3         -0.65         -0.65        0.005 
    3         15         22.4         -12.0         -12.0        2.447 
    4         10         16.9         -10.4         -10.4        2.790 
    5          6         10.1         -6.31         -6.31        1.696 
    6          4          5.1         -1.93         -1.93        0.234 
    7          2          2.2         -0.36         13.68        2.643 
    8          0          0.8           .             .           . 
    9          1          0.3          2.58           .           . 
   10          3          0.1         21.53           .           . 
   11          1          0.0          7.57           .           . 
   15          1          0.0         19.55           .           . 
   20          1          0.0         37.40           .           .  .     
  Sum         100         100         99.68         25.10         31.56 
 
With 7 degrees of freedom, the likelihood ratio test and the chi-square test for lack of fit are 
significant, with significance levels less than 0.01, suggesting that the fitted Poisson 
distribution does not fit the data well. 
 
 A two parameter distribution, the negative binomial is a distribution which is often 
used to model the distribution generating the data when the Poisson does not provide a 
good fit.  The probability density, f(k|p, n) of the negative binomial is: 
 

n kf (k | p, n) K(n,k)p (1 p) , k 0,1,....= − =  
 
where n and p are parameters whose values are to be estimated and K(n, k) is a binomial-
like coefficient.  The above data were fit to a negative binomial, using a maximum 
likelihood estimates (MLE) of the parameter values.  The MLE of p and n were 0.3655 
1.7342, respectively.  Table 2 provides summary statistics for the MLE fitted negative 
binomial.  The likelihood ratio with 8 degrees of freedom was obtained by pooling all the 
results greater than 7 into one category. 
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Table 2: Obtained counts, together with goodness-of-fit statistics for a negative 
binomial distribution 

                                                                                                     likelihood 
                                                    ratio        chi 
           observed    predicted    likelihood     combined     square 
 count    frequency    frequency      ratio          8 df        8 df 
    0         15         17.5         -4.56         -4.56        0.347 
    1         19         19.2         -0.42         -0.42        0.002 
    2         22         16.7         12.23         12.23        1.709 
    3         15         13.2          3.93          3.93        0.257 
    4         10          9.9          0.24          0.24        0.001 
    5          6          7.2         -2.17         -2.17        0.197 
    6          4          5.1         -1.97         -1.97        0.245 
    7          2          3.6         -2.34         -2.34        0.704 
    8          0          2.5           .           -1.38        0.075 
    9          1          1.7         -1.07           .           . 
   10          3          1.2          5.69           .           . 
   11          1          0.8          0.48           .           . 
   15          1          0.2          3.69           .           . 
   20          1          0.0          7.84           .           .   . 
  sum          100         100a         21.57         3.55         3.54 
a) The sum includes predicted numbers for counts not shown, for example, a count of 12, up to a count of 20. 
 
From Table 2 it appears that the fitted negative binomial distribution fits the data well.  
Assuming that the distribution generating the count data is the estimated negative binomial 
distribution, the probability that an individual count would be greater than or equal to 18 is 
0.133%.  Thus, the individual limit, corresponding to the Shewhart limit of 3 standard 
deviation units above the mean for a normal distribution, would be 18, using the negative 
binomial distribution. 
 
 The assumption that these data were collected for a process under control is 
important here.  The 15 non-detects may suggest a measurement problem, insofar as the 
number of these seems high compared to what might have been expected if it were believed 
the distribution of counts would be Poisson distributed. This might be one area of further, 
retrospective, exploration.  Many other distributions could be fit to these data directly, for 
example Poisson with added zeros, or other types of distributions.  
  
 As suggested in this document, another possible way of constructing a SPC plan 
and chart is to consider transformations of the data in an attempt to make the data more 
symmetric and nearly normal.  Figure 1 is a comparison of the box-plots, of the square root 
transformed counts with the raw counts.  The square root transformed counts are multiplied 
by 2, so that the means of the two sets of numbers are nearly the same. As is clearly seen, 
the square root transformed results provide a more symmetric distribution than that of the 
raw counts.  The means and standard deviations for the raw counts and twice the square 
root of the counts, and the control limits derived from them are given in Table 3. 
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Table 3: Means, standard deviations and control limits when using raw counts and 
square root transformed counts. 

 
                                           limit:      limit 
                                          3 std dev    using 
                                  std      above      square 
     type              mean       dev      mean        root 
 raw counts             3.01      3.20      12.62         . 
twice square root       2.97      1.79       8.36      17.47   

 
The Shewhart limit of 3 standard deviations above the mean using the square root 
transformation is 18 (rounding up from the 17.47 given in Table 3), the same as that 
derived using the fitted negative binomial.  From the 100 raw counts, only 1 was above 18. 
 
 
                   12 + 
                      | 
                      |            0 
                      | 
                   10 +            0 
                      | 
                      |            0           0 
                      | 
                    8 + 
                      |                        0 
                      |            | 
                      |            |           | 
                    6 +            |           | 
                      |            |           | 
                      |            |           | 
                      |            |           | 
                    4 +         +-----+     +-----+ 
                      |         |     |     |     | 
                      |         |  +  |     *--+--* 
                      |         |     |     |     | 
                    2 +         *-----*     +-----+ 
                      |         |     |        | 
                      |         +-----+        | 
                      |            |           | 
                    0 +            |           | 
                       ------------+-----------+----------- 
                         count data (x)       2 x1/2 

Figure 1: Box-plots of counts and twice the square root of the counts.  The high values 
of 15 and 20 for the count data are not shown. 
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Appendix 4  - Control Chart for Binomially Distributed Data, with one sample size 
 

This example is a very important one since often qualitative analyses, looking just for 
the presence of some pathogen in samples, are performed.  A chart that can be used to track 
the control of a process with respect to the presence of some pathogen on samples is called 
a “NP” - control chart.  Generally such charts can be used for a binomially - like distributed 
characteristics (a two-class attribute test), for example, the detecting of Salmonella spp on 
samples.  One of the classifications is assigned the name “defective” or positive, and it is 
that classification for which process control is measured.  P refers to the percentage or 
probability of “defective” units (positive units of some product); the magnitude of P is to be 
controlled (usually to be low as possible).   

 
 The letters “NP” are used as a mnemonic for the plotting of the number of “positive 

results”; the expected value of the number of positive results is equal to the sample size, N, 
times the assumed proportion of positive samples, P – or, symbolically, NP.   

 
In this example, it is assumed a sample size of 50 product tests, constituting one 

sample, for which the number of positive results is the output.  A NP-chart is a plot of the 
number of “positive” test results within a sample over time. The example given in 
Appendix 5 provides methodology that can be used when the sample sizes are not the same 
(using a P-chart or a transformation of the results). 
 
Control Chart for Binomially Distributed Data Plotted as the Number of Positive 
Outcomes from an Inspection 
 

For the NP - control chart, “N” indicates sample size, (often an upper case N is used to 
symbolize population size, but it is the SPC convention to use an upper case N which 
stands for sample size – the number of units being considered together as one sample), and 
P represents the proportion of the units that are “defective,” as described above.  The set of 
N units is referred to as a “sample”, so that the first N-unit set is labeled sample 1; the 
second N-unit set is labeled sample 2, and so forth.  An NP-chart is simply a plot of Xi  =  
the number of defective units in the ith sample, versus sample index value (or some other 
appropriate time measure), with lines connected between successive data points. The steps 
involved in determining the control limits for a NP-control are: 

 
1. Define the characteristic…  Presence of Salmonella spp. in 25 grams of product 
2. Determine sample size…..  Sample size = 50, 25-gram units 
3. Collect baseline data 
4. Calculate Control Limits 
5. Place Control Limits on chart of baseline data 
6. Plot the baseline data 
7. Connect consecutive plotted points with a straight line 
8. Place control limits on a new chart 
9. Collect and plot data as collected 
10. Connect each point to previous point with a straight line 
11. Observe chart for out of control signals after each point 

AOAC 9-30-05 Contract Deliverable for  
Contract # 223-01-2464 Modification 12 

 
 



Appendix F.1 - SAWG SPC Appendices 8-8-06 
Page 17 of 36 

 

For this example, Figure 1 is the number of Salmonella spp. positive units identified in 
a sample of 50 units of product is plotted versus sample number (or time of sampling) on 
the NP control chart.   After about 30 data points have been collected, (a rule of thumb for 
normal or nearly normal data is that about 30 data points should used for control limit 
calculations) the control limits are ready to be calculated.  

 
 

 
Figure 1. Base line Salmonella spp. data collected in sample size = 50. 
 
The formula for NP Center line and control limits are: 

Average Proportion Positive = =P
SamplesofNumbersizeSample

Xi
k

i

___
1

×

∑
=  

where Sample_size = N = 50; and Number_of_Samples = k = 40 (in this example). 
 

=P 0825.0
4050

165
=

×
 = 8.25% 

 
Center Line = =PN Sample Size x =P 50 x 0.0825 = 4.125 
 (This gives the expected number of positive results per sample). 
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Control Limit Calculations: 
 Standard Deviation: σ =  (1 )NP P× −   - that is, it is assumed that distribution is a 
binomial distribution.  In actuality this may not be true even when the process is in control 
because of inherent intra-sample correlations that would cause the expected value of the 
number of positive results to vary by sample.  

Note:  An estimate of the standard deviation can be computed as: σ = 

k
2

i
i 1

N (P P)

k 1
−

−

−

∑
, 

where k is the number of samples (= 40) and Pi is the fraction of positive results (of the N 
analyses) for the ith sample.     
 

In this example, it is assumed that “the best” control is achieved so that the 
deviations from the expected value follow a binomial distribution, implying that the 
standard deviation is proportional (p(1-p))1/2, where p is the expected percentage of positive 
units.   If this assumption is incorrect and that the expected value of the probability of 
defects on a unit changes from day to day or sample to sample, a condition known as over-
dispersion may exist.  In this case, the standard formula for standard deviation, or the MR 
statistic discussed in Appendix 1, could be used, for the number of positive results, or for 
the arc-sine transformation: yi = N sin-1(Pi

1/2).   Evidence of this condition may be identified 
by plotting the baseline data on the chart with control limits calculated in the manner 
shown and observing many point either “out of control” or at least near the extremes, but 
that the deviations seem random and symmetric. More formal statistical tests for “over-
dispersion” can be made using statistical programs such as PROC GENMOD of SAS4.  
Such a pattern might arise, when there are uncontrollable factors, such as day-to-day 
variations attributable to environment or slight, but uncontrollable differences, of supply 
input quality.  In this case, the process standard deviation can be computed using the above 
standard formula.  However, if this case does exist, the producing establishment should 
strive to eliminate some of these sources that contribute to the variability of the process, 
particularly when the establishment determines that the characteristic should be binomially 
distributed.  Obtaining better control and eliminating factors that cause over dispersion 
usually leads to improvements, (reduction in percentage of defective units in this example) 
which means new control limits will need to be calculated once the improvement is 
documented.   
 

In the following it is assumed a binomial distribution describes the number of 
positive results. 
 
Upper Control Limit NP:  
UCLNP = ( )( ))1(3 PPNPN −××+  
1- =P 1 - 0.0825 = 0.9175 
UCLNP = ( )( ) 96.99175.0125.43125.4 =××+  
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Lower Control Limit NP: 
LCLNP = ( )( ))1(3 PPNPN −××−  

LCLNP = ( )( ) 071.19175.0125.43125.4 =−=××−  
 

From the above data, the average proportion of Salmonella spp. positive was 
0.0825. If the expected proportion of positive results for each 50-set sample was 8.25%, 
then the average or expected number of positive results in a 50-set sample is 4.125, 
( =PN 4.125), and the control limits would be 9.96 and 0 for the UCLNP and LCLNP, 
respectively.  A value of 10 then would be considered as out of control. (The actual 
probability of 10 or more positive units in 50 units, when the probability of a positive is 
8.25 % and the true underlying distribution is binomial, is 0.70%, which provides a 
reasonably low α-error rate.)  Since the calculated value of LCLNP is a negative value and 
since one can never find fewer than zero positives in a sample, the LCLNP defaults to zero. 
(A result of zero may not be considered by itself to be an out of control event, since the 
probability of no positive results from 50 samples, given a true percentage of 8.25% and a 
binomial distribution, is 1.35 %, which is substantially larger than the nominal value of α 
of 0.135% used by Shewhart, when the underlying distribution is normal).  By placing the 
control limits and center line on the baseline data run chart a control chart is produced 
(Figure 2). 
 

 
Figure 2. NP control chart of baseline data 
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The control limits are calculated and the plot of the baseline data confirms the 

control limits appear reasonable, as in Figure 2. The control limits are then transferred to a 
blank control chart, or extended from the control chart containing the baseline data, and 
data points are plotted and connect to the previous plotted point with a straight line. Figures 
3 and 4 demonstrate two control charts that show a period of expected performance 
followed by an out of control period.  Figure 3 shows a process with the incidence of 
Salmonella spp. increasing, while Figure 4 shows a reduction in Salmonella spp. Both of 
the charts thus show out of control conditions, because both of these red point series are 
‘unexpected’ from what would be seen, based on the baseline data and the assumption that 
the process was in control.  
 
 

 
Figure 3. NP chart showing an increase in Salmonella spp. 
 
 
The identification of the out of control signal suggests an investigation as to what caused 
the out of control condition. It is through the identification and control of factors that 
adversely affect the process that leads to process improvement. Once these are controlled 
often a new level of quality is achieved. A new level of quality in this case can be identified 
by an “out of control” condition where an unexpectedly high number of consecutive points 
fall below average (Figure 4). The informed manufacturer at this point would identify the 
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conditions required to produce these better results and after a brief time calculate new 
control limits based on the new level of quality that the process is producing. There are 
methods described for computing new control limits, see Wheeler and Chamber, 19925, for 
examples. 
 
 

 
Figure 4. NP chart showing a reduction in Salmonella spp. 
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Appendix 5 - Control Chart for Binomially Distributed Data Plotted as Proportions (P 
Chart), with varying sample sizes 

 
The example given in Appendix 4, of the binomial control chart plotted the number of 

positive results out of a sample of 50 units.  The characteristic feature in that example was 
that the number of units per sample was fixed (= 50), so that the expected number of 
positive results per sample (of 50 units) was the same.  However, in many situations the 
sample size is not the same and thus the expected number of positive results would not be 
the same. Thus plotting the number of positive results is not appropriate for a control chart 
since the underlying assumption for the data to be used for plotting, namely, that the results 
are from a common distribution when the process is under control, would not be satisfied.  

 
A simple adjustment might be to plot the proportion of positive results, Pi rather than 

the number of positive results; however, while the expected value would be same for all 
samples, the expected variances of the results will no longer be the same.  Thus, such data 
would not be usable for plotting for the reason given above.  However, one possible way of 
correcting this is to plot: Zi =  iN  (Pi – P), where P is the assumed true proportion of 
positive results and Ni is the sample size for the ith sample.  In this case, the expected value 
of Z is zero, and the standard deviation of Z is [P(1-P)]1/2.  For sufficiently large Ni, the 
distribution would be the same (approximately normal) for each plotted data point, so that 
the Zi could be used for plotting a control chart.  A control chart for Z would have Shewart 
control limits of  +3[P(1-P)]1/2.  CUSUMS and moving averages could be constructed with 
the Zi values.  Or, if the sample sizes were not that large, an arcsine transformation: yi =  
sin-1(Pi

1/2) could be used, setting Zi = iN  (yi – y ).  
 
If the number of distinct values of Ni is small (say two or three) it would be possible to 

just plot the Pi, and have two or three Shewhart limits depicted on the same chart. The 
following is an example of a P-chart with two Shewhart limits for two values of Ni ( = 50 
or 100).  . 

 
Similar as above for the other charts, the steps involved are: 
 
1. Define the characteristic………  Presence of Salmonella spp. 
2. Determine sample size or sizes …  Sample size = 50 or 100 25-gram units 
3. Collect baseline data 
4. Calculate Control Limits 
5. Place Control Limits on chart of baseline data 
6. Convert observations to proportions 
7. Plot the baseline data 
8. Connect consecutive plotted points with a straight line 
9. Place control limits on a new chart 
10. Collect and plot data as collected 
11. Connect each point to previous point with a straight line 
12. Observe chart for out of control signals after each point 
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For this example, Figure 1 is the number of Salmonella spp. positive units identified in 
a sample of 50 units of product is plotted versus sample number (or time of sampling) on 
the NP control chart.   After about 30 data points (results from 30 samples) have been 
collected, (a rule of thumb for normal or nearly normal data is that 20-30 data points should 
used for control limit calculations) the control limits are ready to be calculated. These data 
will be used to calculate control limits when these values are converted to proportions.  
 
 

 
Figure 1. Base line Salmonella spp. data collected in sample size = 50 
 
 
The formula for P Center line and control limits are: 
 

Average Proportion Positive = =P
SamplesofNumbersizeSample

Xi
k

i

___
1

×

∑
=  

where Sample_size = Ni = 50; and Number_of_Samples = k = 40 (in this example). 
 

=P 0825.0
4050

165
=

×
 = 8.25% 
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Center Line = =P 0.0825 
 
Control Limit Calculations: 

 Standard Deviation: σ =  n
PP )1( −×

  - that is, it is assumed that distribution is a 

binomial distribution.   
 
When Ni = 50 
 
Upper Control Limit P:  

UCLP = 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −×
×+

n
PPP )1(3  

1- =P 1 -0.0825 = 0.9175 

UCLP = 1992.0
50

9175.00825.030825.0 =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
×+  

 
 
Lower Control Limit P: 

LCLP = 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −×
×−

n
PPP )1(3  

LCLP = 0342.0
50

9175.00825.030825.0 −=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×
×−  so LCLP = 0 

 
For the process that the data were collected from above the average proportion of 
Salmonella spp. positive was 0.0825. The average or expected proportion of positive 
samples in a sample size of 50 is 0.0825, ( =P 0.0825), and the control limits calculate to 
be 0.1992 and 0 for the UCLP and LCLP, respectively.  By placing the control limits and 
center line on a P control chart and then transforming the actual baseline data into 
proportion by dividing by the sample size, (50 for the baseline data) and plotting these data 
on the control chart, the baseline data can be viewed for stability (Figure 2). Figure 3 gives 
a schematic showing the relationship of NP-charts and P-charts when the sample size is the 
same (=50).   
 
 When the sample size is 100, the Shewhart control limits are determined using the 
same formulas as above, expect substituting the sample size 100 for 50.   The target mean 
remains the same at 0.0825; the upper limit decreases to 0.165; and the lower limit would 
be zero.  For a sample size of 100, the probability of no positive samples is 0.018%, well 
below the α-probability of 0.135%. The probability of one or zero positive results in a 100-
sample set is 0.18%, so that even one positive result could be used as the lower limit when 
the sample size is 100.  
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Figure 2. P control chart of baseline data 
 
 
  
 

AOAC 9-30-05 Contract Deliverable for  
Contract # 223-01-2464 Modification 12 

 
 



Appendix F.1 - SAWG SPC Appendices 8-8-06 
Page 26 of 36 

 

 
Figure 3. A comparison of center line and control limits for an NP and P-charts. 
 
 

A control chart can be set up to accommodate two sample sizes. The new control 
chart has one lower control limit, (zero), one center line and two upper control limits, one 
for sample size 50 and one for sample size 100 (Figure 4). Data for both sample sizes are 
plotted on the chart. On this chart observations from a sample of size 50 are shown in black 
and observations from a sample size of 100 are shown on blue. All observed values are 
divided by their respective sample sizes before plotting. Notice how the data are connected 
in chronological order and sample size differences can be handled.  
 
 An interpretation of this chart is as follows: 1. the process was operating in a 
relatively stable manner for the first third of the chart. The result at sample number nine, 
where the data point fell between the two control limits, does not indicate an out of control 
signal since this point is associated with a sample size equal to 50 and this point is below 
the UCLP for sample size 50. 2. Even though the criteria for declaring a process out of 
control did not occur, the pattern of results suggested that improvements could be made.  
Suppose such an attempt to change the process was made in order to try to decrease the 
process mean, and the data points when the processing was conducted after the change was 
plotted. In this example (Figure 4), the change seems to have made a difference as the level 
of positives dropped after the change was made. 3. Further suppose that after additional 
data were collected so that there are about 30 values (in this example 28) new control limits 
were established for this process.  Then the (data corresponding to the points in the circle 
would be used for the calculations of new control limits using the above formulas with 
sample size equal to 100 or 50). 
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Figure 4. P Chart developed to accommodate two sample sizes 
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Appendix 6:  Control Chart for Poisson distribution for more than one sample size or 
when one expresses results in a unit size not equal to sample size -  the U Chart 
 
 When data are collected using more than one sample size (amount of material 
sampled) and an underlying Poisson – like distribution can be assumed, a U chart may be 
used to do process control. A U chart is a plot of observation per sample, normalized to a 
fixed unit size.  
 
 In this example APC counts are measured for a fully cooked product. Briefly, a 10 
% dilution is prepared by removing10 grams of fully cooked product from post-packaged 
product aseptically and placing it in 90 ml of diluent, stomached for 60 seconds and then 1 
ml is plated and incubated for 48 hours. After the incubation CFUs are counted and data are 
reported as CFUs per gram. Since the actual amount of product in the one ml of plated 
diluent is actually 0.10 gram a situation is presented where count data are reported in units 
other than that equal to the sample size, and counts are low. At later time, the size if the 
same changes to a value different than 0.10 grams.  In this case, all data could be 
standardized to be expressed in per gram units, where control limits would depend on the 
same size, in a similar fashion as given in Appendix 4, for P- charts.  The standardization is 
just dividing the counts by the sample size: U = C/sample size.  For these reasons a U chart 
is chosen as the chart to use for process control for this characteristic.  
Actual Counts of the last 100 samples were: 
 

Table 1.  Results from the previous 100 APC, (CFUs) per ml and the frequency of 
results 

 
Count per ml.                 Frequency  

0 49 
1 29 
2 13 
3   3 
4   3 
5   1 
8 1 

                    11                                     1 
 
For graphing purposes, each observation is divided by the sample size to express the results 
as CFUs per ml, (a 1 CFU outcome is reported as 1/.1 = 10 CFUs per ml 

 
The steps involved in using a U control chart are: 
 

1.    Define the characteristic…  APC counts per gram 
2.    Determine sample size …. 1 ml, .1 gram 
3.    Collect baseline data 
4.    Calculate Control Limits 
5.    Place Control Limits on chart of baseline data 
6.    Standardized the data by dividing by sample size 
7.    Plot the baseline data 
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8.    Connect consecutive plotted points with a straight line 
9.    Place control limits on a new chart 
10. Collect and plot data as collected 
11. Connect each point to previous point with a straight line 
12. Observe chart for out of control signals after each point 

 
The formula for U Center line and control limits are: 
 

Average Count = =U
SamplesofNumberSizeSample

CFUsofNumberTotal
___

___
×

 

Where: Sample_size =0 .1 and Number_of_Samples = k = 100 (in this example). 
 

=U 10
1001.0

100
=

×
 CFUs per ml 

Center Line = =U  10  
 
Control Limit Calculations: 

 Standard Deviation: σ =  n
U

  - that is, it is assumed that distribution is a Poisson 

distribution.   
 
The control limits for the U chart are calculated as:  
 
Upper Control Limit U:  

UCLU = 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×+

n
UU 3  

UCLU = 40
1.0

10310 =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×+  

 
Lower Control Limit L: 

LCLU = 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
×−

n
UU 3  

LCLU = 20
1.0

10310 −=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×+ so LCLU = 0 

These control limits were then placed on a single attribute, (U) control chart and the last 40 
data points are plotted to view how some of the baseline fit on the chart (Figure 1). 
 

The control chart illustrates how the user divides each observation by the sample 
size and plots the standardized results, (for the first observation 1 CFU is divided by 0.1 
gram which provides a value of 10, so 10 is plotted as the first point, representing 10 cfu/g). 
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If the sample were to change to 0.5 instead of 0.1, then the control limits would 

change: the upper control limit would equal: 10 + 3(10/0.5)0.5 = 23.4, and the lower control 
limit would equal 0, since 10 – 3(10/0.5)0.5 < 0.   
 
 

 
Figure 1: U Chart of CFUs per gram of fully cooked product 
 
As with the P chart, a U chart can also accommodate more than one sample size, and, as 
with the P chart, the larger the sample size the closer the control limits are to the center 
line. 
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 Appendix 7: Control Charts for Rare Events: 
 
The Failure Control Chart, F Chart: 
 
 For events that are rare, to the extent that reasonable subgroup sample sizes would 
yield many zero values, a Failure Control Chart (F Chart) is an effective method for gaining 
an understanding as to whether the rate of the event is increasing, decreasing or remaining 
approximately stable. This particular chart was in fact developed to help answer this 
question. When the process is in control, the duration of time between events would be 
expected to follow an exponential probability distribution, which is described by a single 
parameter, given everything else being equal.  In other words, it can be assumed that the 
number of failures expected over any number of times would be proportional to the number 
of samples, and the distribution of the number of failures would be binomial. The 
approximation made for determining the control limits is that the number of samples can be 
considered a continuous variable, associated with time.  This assumption is reasonable 
when it is assumed that the failure rate is small.  When the process is in control, it is 
assumed that the value of the failure rate parameter is constant over time.   
 
 In order to develop an F Chart the average time (number of samples) between 
events must be estimated. After an event, the time or number of samples since the last event 
are determined. The distribution of the times between events is assumed to be exponential 
distribution when the process is under control.  Again the rule of thumb of observing 20- 30 
or more events, to obtain a good estimate of the average time between events is 
recommended.  The average time is referred to as “Mean Time Between Failure,” MTBF, 
to keep consistent with reliability engineering convention.  The probability of having not 
failed based on the current MTBF is calculated as follows: 

Reliability: R = Probability of not failing = MTBF
t

e
−

 where t is the number of 
samples since the previous failure. 

 
High values of R imply low values of t, which would be undesirable.  
 
 The follows from the definition of the exponential distribution, which has the 
cumulative distribution function, cdf(t) = 1- exp(-t/β), where β is a constant.  The expected 
value of a random variable distributed as an exponential distribution with parameter β is β.  
Thus the value of MTBF is estimated from baseline data consisting of many samples by 
just dividing the number of samples by the number of failures, assuming that this last value 
is not zero.  To get a reasonable accurate estimate of MTBF, following the normal 
convention, the number of samples collected should provide about 20-30 failures.  
However, the standard error of this estimate assuming that the number of samples between 
failures is distributed as an exponential distribution is MTBF/n0.5, where n is the number of 
failures.  The error CV thus is 100%/n0.5.  To have an error CV of less than 20% would 
require more than 25 failures; to have CV of less than 10% would require more than 100 
failures.  If it is anticipated that the failure rate would be low, so that MTBF would be 
large, this latter number of failures might be difficult to obtain.  However, an error CV 
larger than 20% could impact on the accuracy of the control charting. Thus it seems that at 
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least 20-30 positive results, and possibly more, should be used when computing MTBF for 
a control chart   
 

For example, during a previous year, a plant collected 4,400 E. coli 0157:H7 samples, 
of those samples, 44 samples tested positive. The MTBF can be determined by dividing the 
number of sample by the number of positives: 

 

MTBF = 100
44

4400
=   

Time is a continuous variable and sample number is a discrete variable.  This 
discrepancy may cause some problems when the MTBF is “small.”  In the example being 
presented, MTBF = 100, so that the probability t =1 is 1%, since R = e-1/100 = 0.99 is the 
probability of not failing, so that the probability of a positive sample is 1-0.99 = 0.01.  The 
implication of this is that two consecutive positive samples, providing an observation of t = 
1, is not enough to signal “out of control” if the control limits are set where the α-
probability is to be low, about 0.135%, based on the normal distribution assumption for the 
Shewhart (one-sided) control limit of μ + 3σ.  In order to have a α-probability that low or 
lower, the MTBF must be no less than 750 samples.  

 
There are many ways this “problem” can be dealt with.  The easiest is just to count 

the number of samples between positive results, exclusively, so that the above example 
would provide an observation of t = 0, (two consecutive events would mean no negative 
results between events), and thus would automatically (regardless of the value of MTBF) 
provide an “out of control” signal.  This is a “conservative” approach insofar as it assigns 
the number of days the minimum it could be assuming that time was a continuous variable 
and what is being measured is that time when a “failure” takes place.  In practice this 
should not create a serious bias in the α- and β-probabilities, but has the effect of increasing 
the α-probability slightly while decreasing the β-probability slightly over actual values. 
Thus, the time, t in the above formula is, (t), equal to number of samples since last positive 
-1.  
 
 Steps required to develop an effective F Charts are: 
 

1. Define the event of interest……….Positive finding of  E. coli 0157:H7 
2. Calculate the MTBF …………….. From last 20- 30 events 
3. After an event determine the time or number of samples since the last event. 
4. Determine t, by subtracting 1 from the answer in 3. 

(or combining 3 and 4, determine the number of samples between positive 
events , exclusive of the positive samples) 

5. Determine the ‘probability’, R, of having not failed, using t, computed in 4. 
6. Plot this probability of having not failed. 
7. Connect the plotted point to the previously plotted point. 
8. Review the chart for out of control signals after each point. 
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Note that the MTBF is not directly placed on the F-Chart, rather the F-chart is 
scaled from zero to 100% with limits set at a probability equal to those historically set 
by Shewhart at 0.13% and 99.87%.  These probabilities correspond closely to the upper 
and lower control limits set at μ +  3σ for the usual Shewhart control chart, discussed 
above.  The target line corresponding to the mean is at 50% (labeled F~ ).  When the 
times between events are distributed as an exponential distribution, the probabilities, R, 
will be distributed as a uniform distribution between 0 and 1, and thus the data points, 
R, would be randomly distributed around the center line (0.5) rather than being 
distributed non- symmetrically as would be the case if the times themselves were 
plotted.  Thus R could be used for constructing moving averages, CUSUMS, or other 
trend statistics, keeping in mind though that the underlying assumption is a uniform 
distribution rather than a normal distribution. 

 
After each event, the time since the last event or number of samples since the last 

event are placed in the space labeled, Time Since Last Failure - 1 (t), and the 
probability of not having a failure is calculated and entered in the space labeled 
Probability of not Having a Failure ( R ). An F Chart with a MTBF of 100 may look 
like that illustrated in Figure 1. 
 

 
 
Figure 1. An F Chart of E. coli 0157:H7 events for a process with a MTBF of 100 
samples 
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For this example, with a MTBF of 100 samples, the first event on this chart occurred after 
202 samples (actually the 203rd sample). This corresponds to a probability of not having a 
failure of 0.1327 because  

R = MTBF
t

e
−

= 100
202−

e =0.1327. 
 

Stated another way the process had about an 87% chance of having an event before 
it did. In setting the chart up in this manner, it allows one to look at the graph of events in a 
similar fashion that one would look at a single attribute, such as, the NP chart discussed in 
Appendix 4. For example, eight consecutive points below F~ (Figure 2) would indicate an 
increase in MTBF and eight consecutive points above F~ (Figure 3) would indicate the 
MTBF is decreasing. Other indicators that the MTBF is increasing or decreasing would be 
a single point below the LCLF or a single point above the UCLF, respectively. Figure 4 
illustrates a process with a point below the LCLF.  (Note, as discussed above, that because 
the MTBF is only 100, for a point to exceed the UCLF requires two consecutive positive 
samples, or zero samples between failures.)    

 
Of course, as with all SPC charts, an out of control signal should be investigated.  

An investigation of points above the UCLF or eight consecutive points above F~  = 0.5 
would help one identify processing conditions which raise the probability of an event. 
Removal of the conditions which raise the probability of an event could lower the 
probability of the event. This would in turn cause an increase in the MTBF, resulting in 
either a point below the LCLF or eight consecutive points below F~ .  

 
Figure 2. An F Chart showing an increase in the MTBF 
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Figure 3. An F Chart showing a decrease in the MTBF 
 

 
Figure 4. An F Chart showing a point below the LCLF, indicating the MTBF may be 
increasing 
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1 Almost any microbiological data set of counts will have a distribution that is skewed so that a log 
transformation would make the distribution more symmetric.  See for example the USDA Food Safety 
Inspection microbiological baseline surveys for counts of generic E. coli and other organisms.  In fact this 
seems to be mostly true for any population data of living things.  Part of the reason might be due to the 
inherent randomness associated with growth or cell division that “pure living” systems exhibit – namely an 
exponential growth.    
2 American Society for Testing Materials, from ASTM Manual on Quality Control of Materials, Philadelphia, 
January 1951, p. 115. 
3Discussion of maximum likelihood estimation, and maximum likelihood ratio and chi-square statistics can be 
found, in:  Kendall and Stuart’s The advanced theory of statistics, vol. 2. Charles Grifffen and Company 
Limited, London. 
4 SAS, SAS Institute Inc. , Cary NC.   
5 Wheeler, Donald J. and Chambers, David S. 1992 “Understanding Statistical Process Control. 2nd edition.” 
SPC Press, Inc. 
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