UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

HYDROLOGIC DATA FROM MONITORING OF SALINE-WATER INTRUSION IN THE CAPE CORAI AREA, LEE COUNTY, FLORIDA

U.S. GEOLOGICAL SURVEY OPEN-FILE REPORT 82-772

Prepared in cooperation with the CITY OF CAPE CORAL

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

HYDROLOGIC DATA FROM MONITORING OF SALINE-WATER INTRUSION IN THE CAPE CORAL AREA, LEE COUNTY, FLORIDA By Daniel J. Fitzpatrick

Open-File Report 82-772

Prepared in cooperation with the CITY OF CAPE CORAL

Tallahassee, Florida

UNITED STATES DEPARTMENT OF THE INTERIOR

JAMES G. WATT, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

CONTENTS

							Page							
Abstrac	:t						1							
Introdu	ctic	n					1							
Hydrolo	gic	data	collec	tion	netw	ork	2							
Well-co	nsti	ructio	on data				2							
Water-o		+ v d	at a				5							
Mator-1	ا متتما	f1	ctuatio	ne			5							
Litholo	ote	data-					6							
Referen	ices	cite	d				6							
					ILLU	STRATIONS								
Figure	1.					of rain gages and monitoring								
		we.	lls tha	t tap	the	upper and lower Hawthorn	_							
		aq	uifers	in Ca	pe C	oral and adjacent areas	3							
2. Map showing location of monitoring wells that tap the surficial aquifer in Cape Coral and adjacent areas														
adjacent areas														
3. Generalized section showing the geologic formations, lithology, and water-bearing units underlying Cape Coral														
	4.	Hydr th fr	ograph e lower om the	of wa Hawt	ter horn Haw	levels in well 2434 that taps aquifer and municipal pumpage othorn aquifer by the City of	9							
	5.	th fr	e upper om the	Hawt upper	horn Haw	levels in well 581 that taps a aquifer and municipal pumpage withorn aquifer by the City of	10							
6-:	19.	Hydr ta	ographs p the u	of v	vater Hawt	levels in selected wells that thorn and surficial aquifers:								
		6.	Wells	702,	2702	2, and 3212	23							
		7.	Wells	1059	and	721	24							
		8.	Wells	2640	and	3203	25							
		9.	Wells	2703	and	3213	25							
		10.	Wells	2643	and	3206	26							
		11.	Wells	2644	and	3207	26							

ILLUSTRATIONS (Continued)

	·	Page
Figure	12. Wells 2641 and 3204	27
	13. Wells 2701 and 3211	27
	14. Wells 2244 and 2536	28
	15. Wells 2642 and 3205	28
	16. Wells 2645 and 3208	29
	17. Wells 2700 and 3210	29
18-19.	Hydrographs of water levels in wells that tap the lower Hawthorn aquifer:	
	18. Well 2435	30
	19. Well 2526	30
	TABLES	
Table 1.	Monthly rainfall data at the reverse osmosis and lime-treatment water plants in Cape Coral	8
2.	Construction data for observation wells in Cape Coral and adjacent areas	11
3.	Chloride concentrations in ground water from the upper Hawthorn aquifer in Cape Coral and adjacent areas	14
4.	Major ion concentrations in ground water from the upper Hawthorn aquifer in Cape Coral and adjacent areas	15
5.	Chloride concentrations and specific conductance in ground water from the surficial aquifer in Cape Coral and adjacent areas for May 1980	21
6.	Major ion concentrations in ground water from the lower Hawthorn aquifer in Cape Coral and adjacent areas	22
7.	Lithologic logs of wells in Cape Coral and adjacent areas	31

CONVERSION FACTORS AND ABBREVIATIONS Factors for converting inch-pound units to International System (SI) of metric units

Multiply	<u>By</u>	<u>To obtain</u>
	Length	
<pre>inch (in) foot (ft) mile (mi)</pre>	25.40 0.3048 1.609	millimeter (mm) meter (m) kilometer (km)

National Geodetic Vertical Datum of 1929 (NGVD of 1929): A geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called "mean sea level." NGVD of 1929 is referred to as sea level in this report.

HYDROLOGIC DATA FROM MONITORING OF SALINE-WATER INTRUSION

IN THE CAPE CORAL AREA, LEE COUNTY, FLORIDA

By Daniel J. Fitzpatrick

ABSTRACT

As a result of declining water levels and saline-water intrusion in the Cape Coral area, the U.S. Geological Survey in cooperation with the City of Cape Coral established a monitoring well network in Cape Coral and adjacent areas in 1978-79. The network was designed to provide indication of lateral movement of saline water in the upper part of the Hawthorn Formation; to provide trends in water levels; and to provide background data from: (1) the aquifer in the upper part of the Hawthorn Formation; (2) the aquifer in the lower part of the Hawthorn Formation and upper part of the Tampa Limestone; and (3) the surficial aquifer. The monitoring well network consists of 77 wells.

Data collected in this network since 1978, as well as data collected from selected wells in the network prior to 1978, are compiled in this report. These data include water-quality data from 69 wells, water-level data from 29 wells, and lithologic logs from 18 wells. Other data compiled in this report include municipal pumpage and rainfall data supplied by the City of Cape Coral.

INTRODUCTION

The artesian aquifer in the upper part of the Hawthorn Formation is a major source of water supply for municipal, domestic, and irrigation uses in Cape Coral. Wells that hydraulically connect the aquifer in the upper part of the Hawthorn Formation to overlying and underlying saline water-bearing units provide a direct conduit for saline-water movement into the aquifer. This condition has resulted in a deterioration of the water quality in parts of the aquifer (Boggess and others, 1977). Declines in water levels in some areas have increased the potential for inland movement of highly saline water from the coast, as well as movement of saline water from overlying and underlying water-bearing units into the aquifer.

The U.S. Geological Survey in cooperation with the City of Cape Coral designed and established a monitoring well network in 1978-79 to evaluate the movement of saline water and water-level changes in the aquifer in the upper part of the Hawthorn Formation in Cape Coral and adjacent areas and to collect salinity and water-level data from the underlying aquifer in the lower part of the Hawthorn Formation and upper part of the Tampa Formation and from the overlying surficial aquifer.

The aquifer in the upper part of the Hawthorn Formation is locally designated as the upper Hawthorn aquifer. The aquifer in the lower part of the Hawthorn Formation and upper part of the Tampa Limestone is locally designated the lower Hawthorn aquifer. Although these aquifer names are not formally recognized by the U.S. Geological Survey, they are the local (Lee County, Florida) designations for the aquifers.

The purpose of this report is to present previously existing data as well as data collected from the monitoring well network during the initial phases of the investigation. The final phase of the investigation will evaluate the data.

HYDROLOGIC DATA COLLECTION NETWORK

Hydrologic data from the existing monitoring well network have been collected since 1978 for three aquifers that underlie Cape Coral and the adjacent area. The network of hydrologic monitoring sites now consists of 34 wells that tap the artesian upper Hawthorn aquifer, 6 wells that tap the artesian lower Hawthorn aquifer (fig. 1), and 37 wells that tap the unconfined surficial aquifer (fig. 2). Figure 3 shows the stratigraphic position and lithology of the aquifers (Sproul and others, 1972).

Water levels in five wells that tap the upper Hawthorn aquifer (fig. 1) were monitored by continuous recording devices. Water levels in selected wells that tap the three aquifers were measured monthly, bimonthly, or semiannually.

Water-quality samples were collected and analyzed semiannually from 1978-80 for wells that tap the upper Hawthorn aquifer. Background water-quality data for selected wells that tap the surficial aquifer and the lower Hawthorn aquifer were also collected.

Rainfall data (table 1) are collected at the City of Cape Coral's reverse osmosis plant in west Cape Coral and the lime water-treatment plant in south Cape Coral (fig. 1). Municipal ground-water pumpage data from the upper and lower Hawthorn aquifers at these plants (figs. 4 and 5) are also collected. Rainfall and pumpage data are supplied by the City of Cape Coral Utilities Department.

WELL-CONSTRUCTION DATA

Construction data for 77 monitoring wells (figs. 1 and 2) are given in table 2. Also included are well numbers, aquifers tapped, lithologic logs obtained, and information on whether continuous water-level data are being recorded. The altitude of land surface, relative to sea level, is also given where known.

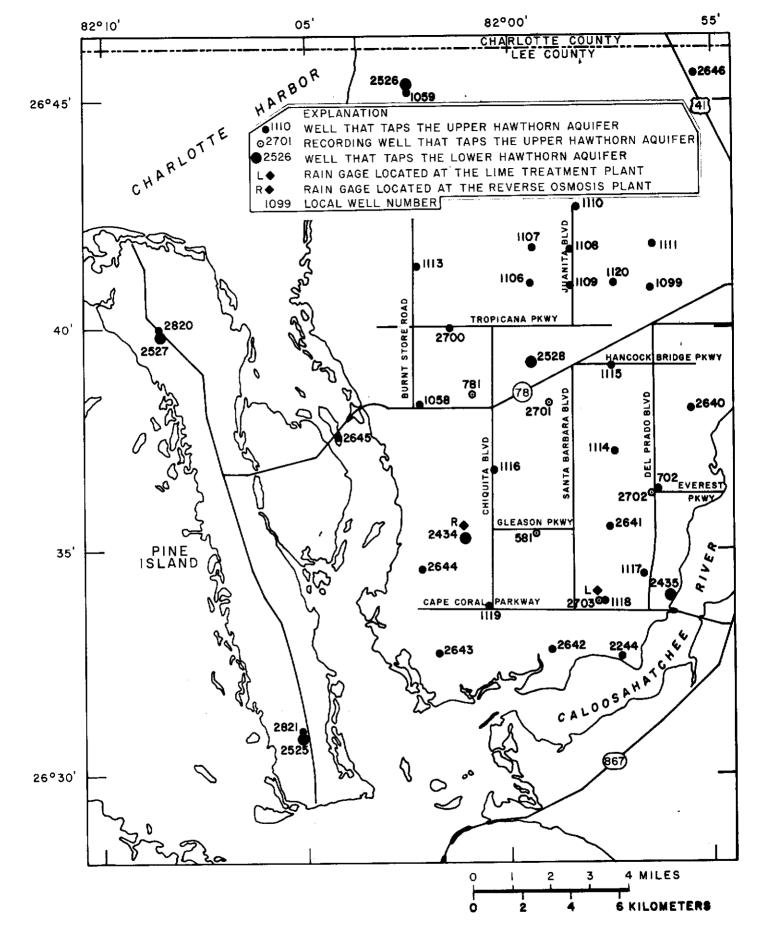


Figure 1.—Location of rain gages and monitoring wells that tap the upper and lower Hawthorn aquifers in Cape Coral and adjacent areas.

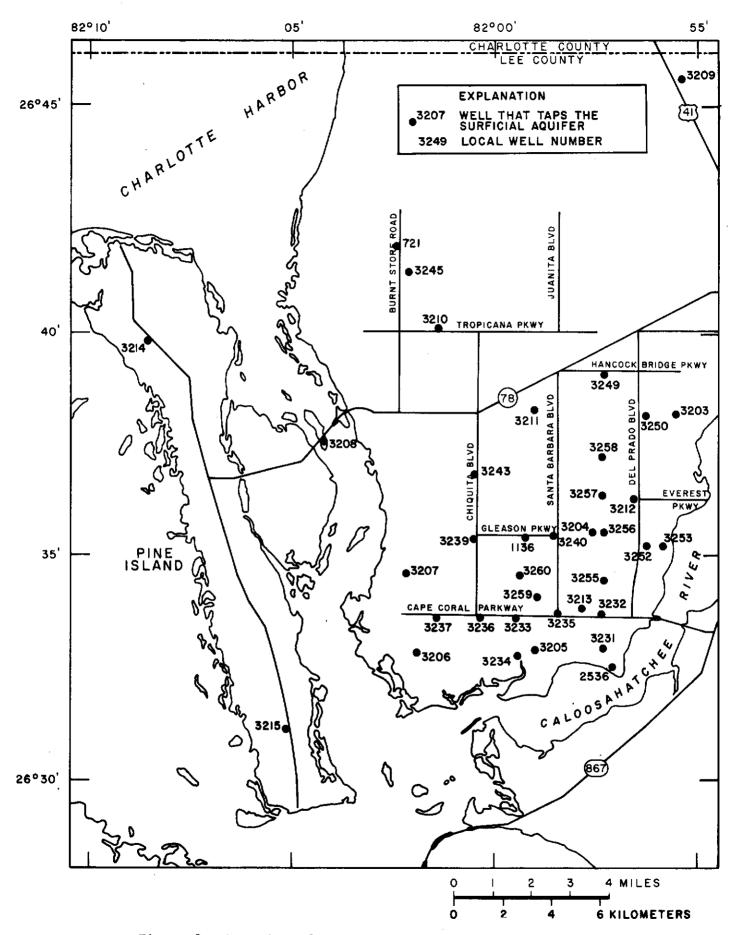


Figure 2.—Location of monitoring wells that tap the surficial aquifer in Cape Coral and adjacent areas.

Each well is identified by two numbering systems: a local number and a unique number. The local well number consists of a sequence number. This system is used in Lee County for ease of identification; however, the numbers are not necessarily unique as the well number could be duplicated in areas other than Lee County. The unique identification numbers are used for computer storage of data and are based on the grid system of latitude and longitude. These numbers consist of 15 digits and provide the geographic locations of the wells. The first six digits represent degrees, minutes, and seconds of the latitude; the next seven represent the degrees, minutes, and seconds of the longitude. The last two digits are a sequential number within a l second grid. For example, if the latitude-longitude for two or more sites are identical, sequential numbers 01, 02, or 03 are assigned to give each site a unique number.

WATER-QUALITY DATA

Water samples were collected from wells that tap the upper Hawthorn aquifer to detect changes in water quality. Since 1978, chloride concentrations were determined semiannually (table 3), and analyses for major ion concentrations were made annually for wells in the upper Hawthorn aquifer (table 4). Analyses for major ion concentrations made prior to 1978 are also included in table 4.

Water samples from wells that tap the surficial aquifer were analyzed for chloride concentrations and specific conductance (table 5).

Water samples from wells that tap the lower Hawthorn aquifer were analyzed for major ion concentrations (table 6).

WATER-LEVEL FLUCTUATIONS

Selected water-level data from wells in the monitoring well network are illustrated in figures 4-19. Data used in the hydrographs are based on either monthly, bimonthly, or semiannual tape measurements for those wells without continuous water-level recorders. Wells with recorders (table 2) are represented by hydrographs of the daily high on the last day of each month. Monthly water-level fluctuations in well 2434 that taps the lower Hawthorn aquifer and well 581 that taps the upper Hawthorn aquifer are illustrated with monthly municipal pumpage in figures 4 and 5. In addition to well 581, long-term fluctuations in the upper Hawthorn aquifer (1966-80) are represented by wells 702 and 2702 in figure 6. In 1978, well 702 was replaced by well 2702.

Water levels in the surficial aquifer, relative to those in the upper Hawthorn aquifer, are illustrated in figures 6-17 where data from the two aquifers are available at or near the same location. Hydrographs of other wells that tap the lower Hawthorn aguifer are shown in figures 18 and 19.

LITHOLOGIC DATA

Selected lithologic logs for wells from the monitoring well network are given in table 7. All logs were prepared by the U.S. Geological Survey.

REFERENCES CITED

- Boggess, D. H., Missimer, T. M., and O'Donnell, T. H., 1977, Saline-water intrusion related to well construction in Lee County, Florida: U.S. Geological Survey Water-Resources Investigations 77-33, 29 p.
- Sproul, C. R., Boggess, D. H., Woodard, H. J., 1972, Saline-water intrusion from deep artesian sources in the McGregor Isles area of Lee County, Florida: Florida Division of Geology Information Circular no. 75, 30 p.

DEPTH (feet)	SERIES	FORMATION	LITHOLOGY	WATER-BEARING UNITS
	HOLOCENE, PLEISTO- CENE, PLIOCENE	UNDIFFERENTI- ATED DEPOSITS	SAND, FOSSILIFEROUS LIMESTONE, WHITE TO YELLOW, SANDY, MARLY, FOSSILIFEROUS	SURFICIAL AQUIFER
		TAMIAMI FORMATION	CLAY,CALCAREOUS,GREEN	
100 —			SAND & SANDSTONE, GRAY, CALCAREOUS	
			CLAY, GRAY, SANDY, TO SHOOT PHOSPHATIC	
200 –			LIMESTONE, GRAY - WHITE, CHALKY, SANDY, PHOSPHATIC	AQUIFER IN UPPER PART OF HAWTHORN FORMATION
300 -				
400 -	MIOCENE	HAWTHORN FORMATION	GREEN; SOME LIMESTONE	
500 —			LIMESTONE, GRAY-WHITE, SANDY, PHOSPHATIC	AQUIFER IN LOWER PART OF HAWTHORN FORMATION AND UPPER PART OF TAMPA LIMESTONE
600 -			Control Cont	
700 -		TAMPA LIMESTONE	LIMESTONE, GRAY & TAN, SLIGHTLY PHOSPHATIC	

Figure 3.—Geologic formations, lithology, and water-bearing units underlying Cape Coral (modified from Boggess and others, 1977).

œ

Table 1.—Monthly rainfall data at the reverse osmosis and lime-treatment water plants in Cape Coral¹/

[Rainfall shown in inches; LT - lime-treatment plant, RO - reverse osmosis plant]

	1975 IT RO		1976		197	1977		8	197	9	198	0	Me	an
Month	LT	RO	LT	RO	LT	RO	LT	RO	LT	RO	LT	RO	LT	RO
January	0.6	_	0.0	-	5.6	-	3.5	3.9	7.8	8.65	2.25	2.0	3.3	4.85
February	0.9	-	2.6		0.1	_	5.0	3.8	2.8	1.45	1.75	2.2	2.2	2.5
March	2.0	_	0.3	-	0.0	_	4.9	4.8	0.45	1.0	3.7	2.7	1.9	2.8
April	3.0	-	1.1	_	1.4	-	2.0	1.6	3.15	5.3	5.3	2.3	2.65	3.1
May	2.4	_	4.5	_	2.7		7.6	2.4	9.4	8.7	3.6	3.35	5.03	4.8
June	4.5	_	5.4	-	7.4	_	`9.65	5.7	3.65	1.85	2.5	2.05	5.5	3.2
July	17.4	-	5.8	-	7.8	_	13.95	14.6	2.45	3.95	7.05	9.15	9.1	9.2
August	4.1	_	12.65	-	15.2	16.0	11.7	8.45	16.45	17.25	10.25	8.3	11.7	12.5
September	8.35	_	12.3	-	13.2	9.5	7.2	3.95	9.85	15.95	5.9	2.1	9.46	7.9
October	3.6	-	2.9	-	1.4	0.2	2.5	2.65	0.55	0.55	2.85	3.05	2.3	1.6
November	1.4	-	3.3	_	1.4	2.0	0.75	0.5	1.15	1.85	3.5	3.9	1.91	2.1
December	0.3	-	2.25	-	4.55	3.25	5.7	4.45	4.4	5.55	0.55	0.45	2.95	3.4
TOTAL	48.55	_	53.1	_	60.75	_	74.45	56.8	62.1	72.05	49.2	41.55	58.0	57.95

^{1/} Rainfall data supplied by the City of Cape Coral.

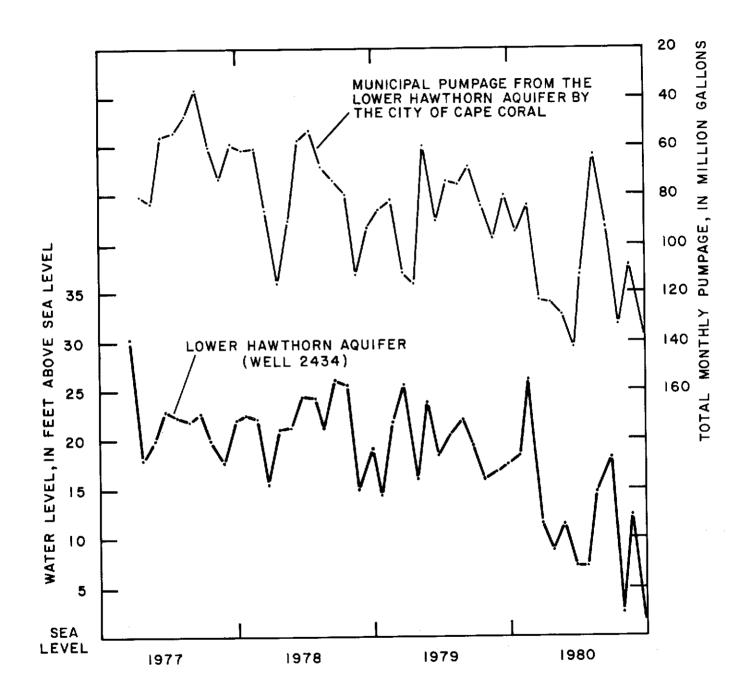


Figure 4.--Water levels in well 2434 that taps the lower Hawthorn aquifer and municipal pumpage from the lower Hawthorn aquifer by the City of Cape Coral.

Figure 5.—Water levels in well 581 that taps the upper Hawthorn aquifer and municipal pumpage from the upper Hawthorn aquifer by the City of Cape Coral.

Table 2.—Construction data for observation wells in Cape Coral and adjacent areas
[Aquifer designation: WT. surficial: UH. Upper Hawthorn; LH. Lower Hawthorn]

Datum of land Lithosurface above Water Well Well Depth Date Local logic level sea level cased diameter drilled depth well Identification Aqui-(feet) recorder log (feet) (feet) (inches) (year) fer No. number X 8 9.58 1965 177 2635320815922.01 UH _ 581 2 7.45 108 1966 UH 702 2636270815627.01 6.23 4 18 9 1968 2641530820223.01 WT 721 X 6 10.01 82 279 1966 2638340820053.01 UH 781 4 6.00 95 146 1964 1058 2638140820207.01 UH X 2 10.55 . 156 UH 1970 163 1059 2645170820221.01 2 14.98 219 129 2640530815632.01 UH 1099 11.96 2 1970 228 143 UH 1106 2640540815926.01 14.37 2 1970 191 136 2641460815923.01 UH 1107 2 15.20 137 1970 216 1108 2641440815826.01 UH 2 13.06 87 84 1970 2640550815381.01 UH 1109 15.79 2 238 147 1970 2642410815824.01 UH 1110 2 16.76 1970 166 2641470815627.01 UH 1111 2 5.95 130 126 1970 UH 2641200820221.01 1113 9.55 126 2 172 1970 1114 2637200815731.01 UH 12.99 2 169 147 1970 IJН 1115 2639050815728.01 2 9.02 106 201 UH 1970 2636330820027.01 1116 6.75 2 1970 248 _ UH 2634380815632.01 1117 2 5.45 213 126 1970 1118 2634040815758.01 UH 4.35 2 224 42 1970 UH 1119 2633470820026.01 13.99 2 106 1970 1120 2640550815727.01 UH 9.71 4 15 20 2635320815922.02 WT 1970 1136 5.38 4 1975 207 150 UH 2244 2632420815721.01 X 6.34 4 353 1977 700 LH 2635260820102.01 2434 5.19 X 352 4 704 1977 LH 2435 2633070815559.01 X 4 3.89 405 1977 645 2631170820510.01 LH 2525 X 4 10.71 605 300 LH 1977 2645170820221.02 2526 7.94 X 4 1977 605 360 2639550820831.01 LH 2527 X 11.96 4 1977 625 420 2639070815927.01 LH 2528 Х 5.36 4 19 45 1977 2632360815708.01 WT 2536

Table 2.—Construction data for observation wells in Cape Coral and adjacent areas—Continued

[Aquifer designation: WT, surficial; UH, Upper Hawthorn; LH, Lower Hawthorn]

Local well	Identification number	Aqui- fer	Date drilled (year)	Well depth (feet)	Depth cased (feet)	Well diameter (inches)	Datum of land surface above sea level (feet)	Water level recorder	Litho- logic log
2640	2638130815528.01	UH	1978	180	128	4	7.54		X
2641	2635330815734.01	UH	1978	170	118	4	8.29		X
2642	2632570815857.01	UH	1978	160	108	4	5.12		X
2643	2632530820142.01	UH	1978	200	141	4	6.53		X
2644	2634400820220.01	UH	1978	178	128	4	6.60		X
2645	2637430820412.01	UH	1978	210	160	4	5.54		X
2646	2645370815522.02	UH	1978	220	170	4	20.81		X
2700	2640020820128.01	UH	1978	205	165	4	6.46		X
2701	2638190815858.01	UH	1978	206	175	4	13.04	X	X
2702	2636210815637.01	UH	1978	155	120	4	7.83	X	X
2703	2633570815756.02	UH	1978	159	120	4	5.20	X	X
2820	2639550820831.02	UH	1978	241	192	4	7.56		X
2821	2631170820510.02	UH	1978	340	290	4	3.95		X
3203	2638130815528.02	WT	1978	20	8	1.25	7.54		X
3204	2635330815734.02	WT	1978	20	8	1.25	8.29		X
3205	2632570815857.02	WT	1978	18	8	1.25	5.12		X
3206	2632530820142.02	WT	1978	18	8	1.25	6.53		X
3207	2634400820220.02	WT	1978	18	8	1.25	6.60		Х
3208	2637430820412.02	WT	1978	18	8	1.25	5.54		Х
3209	2645370815522.03	WT	1978	18	8	1.25	20.81		X
3210	2640020820128.02	WT	1978	18	8	1.25	6.46		Х
3211	2638190815858.02	WT	1978	18	8	1.25	13.04		X
3212	2636210815637.02	WT	1978	18	8	1.25	7.83		X
3213	2633570815756.03	WT	1978	18	8	1.25	5.20		X
3214	2639550820831.04	WT	1978	18	8	1.25	7.56		X
3215	2631170820510.03	WT	1978	18	8	1.25	3.95		X
3231	2633110815728.01	WT	1979	45	35	2	_		
3232	2633470815729.01	WT	1979	27	22	2	_		
3233	2633450815729.01	WT	1979	20	10	2	-		

Local well No.	Identification number	Aqui- fer	Date drilled (year)	Well depth (feet)	Depth cased (feet)	Well diameter (inches)	Datum of land surface above sea level (feet)	Water level recorder	Litho- logic log
3234	2632580815927.01	WT	1979	23	13	2	_		•
3235	2633470815827.01	WT	1979	17	7	2	_		
3236	2633460820025.01	WT	1979	20	10	2	_		
3237	2633470820125.01	WT	1979	40	30	2	_		
3239	2635300820027.01	WT	1979	17	12	2	_		
3240	2635310815829.01	WT	1979	22	17	2	-		
3243	2637220820028.01	WT	1979	27	17	2	_		
3245	2641230820221.01	WT	1979	27	17	2	_		
3249	2639050815726.01	WT	1979	15	10	2	-		
3250	2638100815623.01	WT	1979	22	12	2	_		
3252	2635180815627.01	WT	1979	40	35	2	_		
3253	2635180815555.01	WT	1979	35	30	2	-		
3255	2634290815724.01	WT	1979	25	20	2	-		
3256	2635330815723.01	WT	1979	28	23	2	_		
3257	2636240815724.01	WT	1979	25	22	2	_		
3258	2637190815724.01	WT	1979	29	25	2	_		
3259	2634140815857.01	WT	1979	22	17	2	_		
3260	2634390815926.01	WT	1979	25	20	2	_		

Table 3.--Chloride concentrations in ground water from the upper Hawthorn aquifer in Cape Coral and adjacent areas

[Concentrations in milligrams per liter]

	197	'8	1	.979	1	.980
Well No.	Apr-May	Nov	May	0ct	May	0ct
581	250	240	250	235	310	215
702	87	9 0	92	100	210	-
781	440	420	440	410	410	400
1058	500	450	580	500	570	560
1059	450	430	440	445	440	400
2007	450	430	440	777	440	400
1099		75	_	_	77	85
1106	180	185	200	175	190	175
1107	200	190	190	190	190	175
1108	260	260	260	250	260	220
1109	79	75	88	90	110	165
						_05
1110	400	400	380	380	440	420
1111	230	245	240	230	170	_
1113	98 0	1,125	1,100	1,080	1,100	1,100
1114	460	465	340	_	-,	480
1115	280	280	260	245	220	220
1117	89	50	89	-	-	9 5
1118	340	340	360	350	_	320
1119	340	370	270	375	260	280
1120	110	120	87	75	80	75
2244	390	300	430	360	380	355
2640	200	200	200	190	180	105
2641	150	140	140	140	140	185
2642	260	280	280	275		140
2643	1,100	975	1,100		2 9 0	280
2644	980	1,000	980	1,025 975	980 990	1,000
2044	300	1,000	3 60	9/3	990	900
2645	460	450	450	450	430	400
2646	_	50	85	90	_	75
2700	-	1,050	980	1,000	980	1,050
2701	_	40	50		52	60
2702	_	205	230	250	210	200
0700		4 = -				
2703	_	450	420	385	400	-
2820	-	620	650	725	660	650
2821	_	550	420	430	510	500

Table 4.--Major ion concentrations in ground water from the upper Hawthorn aquifer in Cape Coral and adjacent areas

													ļ	Hardı as Ca		Disso		e Ce		
well No.	Date of collection	Silica (SiO_2)	Iron (Fe)	Calcium (Ca)	Magnesium (Mg)	Strontium (Sr)	Sodium (Na)	Potassium (K)	Sulfate (504)	Chloride (C1)	Fluoride (F)	Bicarbonate (HCO_3)	Alkalinity as CaC03	Calcium/magnesium	Noncarbonate	Residue at 180°C	Calculated	Specific conductance (umhos/cm at 25°C)	pH (units)	Temperature (°C)
581	04/25/78 05/10/79 05/14/80	43 60 59	0.06 0.03 0.08	56 57 57	45	3.3 3.2 4.0	95 82 120	13		250 250 310	0.8 0.9 1.2	240 240 –	200	320 330 350	130	580 717 877	- 643 735	1,140 1,170 1,400	8.3 8.1 7.6	26
702	04/24/78 05/09/79	49 44	0.05	46 45	34 39	2.2	41 47	8.5 8.3	21 15	87 92	0.7		230 230	260 280	28 46	431 449	427 431	735 730	7.8 8.0	25 26
781	04/27/78 05/08/79 05/13/80	36 37 36	0.00 0.02 0.01	64	60	5.0 4.8 5.0	190 180 180	19	81 65 70	440	1.6 1.5 1.7	210	170 170 170	410	240	1,050 1,040 1,020	997 975 938	1,790 1,900 1,850	8.1 8.1 8.0	28
1058	04/27/78 05/08/79 05/13/80	29 30 32	0.03 0.01 0.03	74	72	5.0	260	19	150 120 120	580	0.9 0.8 1.0	200 200 –	160	490	320	1,230 1,350 1,310	1,260	2,190 2,350 2,375	7.8 7.5 7.8	26
1059	08/27/75 04/27/78 05/07/79 05/16/80	31 38 30 33	0.01 0.01 0.01 0.01	95	45	5.0 4.7	170 170	6.9 7.2 7.5 6.5		440 450 440 440	0.8	210 210	170 170	440 430 430 410	260 260	1,028 1,050 1,110 1,020	912	1,600 1,780 1,810 1,900	7.9 7.3	27 26 26 28
1099	06/27/75 05/09/79 05/12/80	31 42	0.03 0.00 0.08	54	41	1.7	55	5.8 5.6 6.2	12 - 18	_	1.4 - 1.0	284 290 -	240	260 310 260	68	-	386 - 430	650 840 850	7.6 7.9 7.8	26

Table 4.—Major ion concentrations in ground water from the upper Hawthorn aquifer in Cape Coral and adjacent areas—Continued

													3		iness CaCO		olved ids	e ce		
Well No.	Date of collection	Silica (SiO ₂)	Iron (Fe)	Calcium (Ca)	Magnesium (Mg)	Strontium (Sr)	Sodium (Na)	Potassium (K)	Sulfate (SO4)	Chloride (C1)	Fluoride (F)	Bicarbonate (HCO_3)	Alkalinity as CaCO3	Calcium/magnesium	Noncarbonate	Residue at 180°C	Calculated	Specific conductance (umhos/cm at 25°C)	pH (units)	Temperature (°C)
1106	07/17/75 04/27/78 05/07/79 05/13/80	48 48 47 48	0.02 0.00 0.07 0.01	52 53	41	3.1 2.9 2.8 2.7	94 95 87 77	14 17	36 43 40 33		1.4 1.2 1.2 1.3		237 240 230 230	300	87 64 95 69	684 641 683 645	621 620 632 596	1,060 1,080 1,130 1,140	7.3 8.0 7.3 7.9	26 26
1107	07/23/75 04/26/78 05/08/79 05/13/80	37 32 36 39	0.02 0.01 0.00 0.01	55 55	38 40	3.0 2.8 2.8 2.6	75		18 21 17 15	200 1 9 0	1.4 1.2 1.3 1.3	240	210	320 300 310 300	110 100 100 93	675 591 581 586	558 555 545 555	1,100 995 1,080 1,060	7.3 8.2 8.0 8.0	25 26
1108	07/16/75 04/26/78 05/08/79 05/13/80	29 30 30 31	0.01 0.00 0.00 0.01	63 57 60 53	54 54	6.0 6.3 5.4 5.7	100	10 11 12 12	15 18 14 9.3	260	1.4 1.3 1.3 1.4	260	215 210 210 210	380 370 380 360	170 160 170 150	688 691 720 698	650 666 647 630	1,210 1,215 1,300 1,270	7.4 7.9 7.7 8.0	26 26
1109	07/16/75 04/27/78 05/07/79 05/13/80	37 48 40 46	0.02 0.01 0.09 0.01	40 40 41 39	31 35	1.0 2.2 1.9 1.9		12 12 12 12	22 26 24 24	85 79 88 110	1.5 1.4 1.3 1.2	275 280 290 -	226 230 240 230	320 230 250 240	98 0 11 10	410 417 448 482	420 - 443 -	725 770 850	7.9 7.2 8.1	26 26 26 26
1110	07/16/75 04/27/78 05/09/79 05/12/80	37 38 35 38	0.00 0.00 0.00 0.02	74 71	64 65 61 63		140 120	16 14 17 16	32 30	410 400 380 440	1.3 1.3 1.2 1.3	229 230 230 -	190 190	440 460 440 420	2 7 0 2 5 0	1,130 949 1,030 1,020	885 885 835 946	1,650 1,630 1,680 1,950	7.3 7.8 7.8 7.9	26 26

Table 4.--Major ion concentrations in ground water from the upper Hawthorn aquifer in Cape Coral and adjacent areas--Continued

									- <u>-</u>					Hard as C	ness aCO3	Disso soli				
Well No.	Date of collection	Silica $(\$10_2)$	Iron (Fe)	Calcium (Ca)	Magnesium (Mg)	Strontium (Sr)	Sodium (Na)	Potassium (K)	Sulfate (${ m SO}_4$)	Chloride (C1)	Fluoride (F)	Bicarbonate (HCO_3)	Alkalinity as CaCO3	Calcium/magnesium	Noncarbonate	Residue at 180°C	Calculated	Specific conductance (umhos/cm at 25°C)	pH (units)	Temperature (°C)
1111	07/23/75 04/27/78 05/09/79 05/12/80	38 37	0.14 0.00 0.02 0.01	73 69 69 48	50 51	2.7 2.8 2.5 1.8	95	11 10 11 8	19 26 21 18	230 240	0.9	307 300 310	250	380 3 9 0	140 140 130 83	630 683 729 558	669 670 667 511	1,200 1,210 1,240 1,000	7.3 8.1 7.9 8.0	27 26 27 26
1113	08/27/75 04/26/78 05/07/79 05/16/80	21 21	0.04	150	110 110 120 120	7.7 5.6	460	16 19	250 230	1,000 980 1,100 1,100	0.7 0.7	169 160 160		810 880	680 740	2,360 2,310 2,460 2,340	2,060	3,900 4,000 4,100 4,150	7.4 7.6 7.5 7.9	27 26 26 28
1114	04/25/78 05/11/79		0.01	75 70		3.8 3.2	200 180	11 12	110 69	460 340	1.0	220 220	180 180	460 420	280 240	1,140 936	1,070 876	1,900 1,900	8.0 7.9	26 27
1115	04/25/78 05/09/79 05/13/80	27	0.15 0.03 0.00	83 82 77	45 50 44	1.8	95 72 76	4.4 3.9 2.6	15 14 13	260	0.6 0.6 0.5	280 270 -	230 220 180	410	1 9 0	644 772 586	- 644 568	1,300 1,350 1,150	7.3 8.0 8.0	28 28 26
1116	04/25/78	61	0.03	45	32	2.0	36	12	19	95	1.0	250	210	250	41	432	426	710	8.0	25
1117	04/24/78		0.05	44 44		1.5	36 39	4.4 4.4	33 31	89 89	0.7 0.8	200 200	160 160	220 240	59 71	381 385	354 358	650 630	8.1 7.9	25 26
1118	04/24/78 05/09/79		0.05		44 49	2.0	170 170	10 12	68 64	340 360	0.9	210 220	170 180	320 350	150 170	772 922		1,500 1,550	8.0 7.9	25 26

Table 4.--Major ion concentrations in ground water from the upper Hawthorn aquifer in Cape Coral and adjacent areas--Continued

															iness CaCO3		solved lids	w l		
Well No.	Date of collection	Silica (SiO ₂)	Iron (Fe)	Calcium (Ca)	Magnesium (Mg)	Strontium (Sr)	Sodium (Na)	Potassium (K)	Sulfate (SO ₄)	Chloride (Cl)	Fluoride (F)	Bicarbonate (HCO3)	Alkalinity as CaCO3	Calcium/magnesium	Noncarbonate	Residue at 180°C	Calculated	Specific conductance (umhos/cm at 25°C)	pH (units)	Temperature (°C)
1119	04/25/78 05/10/79 05/14/80	36 65 63	0.04 0.02 0.01	89	48	1.8 1.3 1.3	79	10 7.3 8.2		340 270 260	0.4 0.4 0.4	250 260 –	210 210 220	420	200 210 180	794 865 750	828 705 691	1,520 1,300 1,320	7.6 7.9 7.9	26
1120	07/17/75 04/27/78 05/09/79 05/12/80	45 33 46 56	0.02 0.01 0.03 0.04	43 40	36 38	1.3 2.6 2.3 1.3	65 52	14 14 14 11	43 44 31 -	110 87		281 290 290 -	240	290 260 260 220	61 21 21 34	530 488 457 437	530 492 454 393	920 845 770 680	7.4 8.0 7.8 8.2	26
2244	04/26/78 05/11/79 05/14/80	23 23 22	0.03 0.04 0.01	51	51	1.9 2.0 1.8	210	10 9.9 9.6		390 430 380	1.3	220 210 -	170	280 340 280	99 170 110	833 999 958	859 922 855	1,520 1,750 1,700	8.2 7.9 7.9	24 26 27
2640	05/19/78 05/10/79 05/13/80	23 25 25	0.01 0.02 0.01	62	42	1.5 1.9 1.8	68	4.4 4.5 4.2	40	200	0.6 0.6 0.8	230 240 –		330 330 320	140 130 150	665 587 590	584 562 535	1,100 1,040 1,100	7.8 7.0 7.8	- 26 27
2641	05/18/78 05/11/79 05/14/80	51 51 50	0.01 0.06 0.01	49 47 47	37 39 35	2.0 2.2 2.2	55 56 61	9.5 9.7 10			1.0	240 240 -	200 200 200	280	80 84 64	513 508 509	487 476 475	870 890 9 30	7.8 8.2	27 26 28
2642	05/18/78 05/10/79 05/14/80	42 44 43	0.01 0.00 0.01	57	45	1.4 1.8 1.8	120 120 130	12	32 33 30	280	0.7 0.9 0.9	230 230 -	190	310 330 320	140	779 740 817	679 707 721	1,300 1,390 1,300	7.8 7.9	28 25 27

Table 4.--Major ion concentrations in ground water from the upper Hawthorn aquifer in Cape Coral and adjacent areas--Continued

											į		a	Hardn is Ca		Disso soli		ice ((i D
Well No.	Date of collection	Silica (SiO ₂)	Iron (Fe)	Calcium (Ca)	Magnesium (Mg)	Strontium (Sr)	Sodium (Na)	Potassium (K)	Sulfate (80_4)	Chloride (Cl)	Fluoride (F)	Bicarbonate (HCO3)	Alkalinity as CaC03	Calcium/magnesium	Noncarbonate	Residue at 180°C	Calculated	Specific conductance (umhos/cm at 25°C)	pH (units)	Temperature (°C)
- 1	05/16/78 05/10/79 05/14/80	27 29 30	0.01 0.05 0.03	88 - 97	97 100	9.5 - 7.2	550 - 540	_		1,100 1,100 980	0.8		180 180 180	630 - 660	450 - 480	2,400 2,290 2,460	_ '	3,860 4,300 3,900	- 7.7 7.8	2 2
	05/17/78 05/10/79 05/14/80	27 28 30	0.01 0.11 0.02		95 100 110	11 9.9 10	550 520 520	24 26 24	190 210 180	980 980 990	0.7 0.9 1.0	240	200 200 200	610 620 690	420			3,690 3,800 3,800	7.8 7.7	
2645	05/23/78 05/08/79 05/16/80	31 30 32	0.01 0.00 0.01	70 69 62	. 58 54 55		210 210 210	15 15 14	71 66 59	450	0.9 1.1 1.1	240 250 -	200 210 200	400	200	1,160 1,110 1,080	1,020	1,970	7 <u>.</u> 2	222
2646	05/22/78 05/07/79	43 39	0.01 0.08	50 38	36 35	3.0 2.9	70 37	11 10	23 17	- 85	1.4	220 230	180 190	280 240	96 54	538 409	506 379	842 670	7.9 7.3	
2700	09/08/78 05/08/79 05/16/80	17 17 18	0.01 0.01 0.04	120	100 100 110	26	480 450 470	20 21 19	270 260 250	1,100 980 980	0.5	170	140	760 740 810	600	2,330 2,270 2,240	2,060	3,810 4,000 4,000	7.4 7.1	
2701	09/06/78 05/09/79 05/13/80	21 22 23	0.00 0.02 0.01	37	25 27 26	1.3 1.3 1.2	37 34 45	4.1 4 4.2	13 12 11	50	1.1 1.2 1.3	240 230 -	200 190 200	210	10 16 0	309	314 302 -	580 580	8.0 7.9 8.2) [:
2702	09/01/78 05/09/79 05/13/80	33 34 33	0.03 0.00 0.01	57	45 44 41	3.4	120 96 120	10 8.5 8.9	68 63 60		1.0	240 250 -	200 210 200	330	160 120 110	693			8.0 8.2	2 3

Table 4.—Major ion concentrations in ground water from the upper Hawthorn aquifer in Cape Coral and adjacent areas—Continued

														Hard as C		1	olved lids			
Well No.	Date of collection	Silica (SiO ₂)	Iron (Fe)	Calcium (Ca)	Magnesium (Mg)	Strontium (Sr)	Sodium (Na)	Potassium (K)	Sulfate (SO4)	Chloride (C1)	Fluoride (F)	Bicarbonate (HCO_3)	Alkalinity as CaCO ₃	Calcium/magnesium	Noncarbonate	Residue at 180°C	Calculated	Specific conductance (umhos/cm at 25°C)	pH (units)	Temperature (°C)
2703	08/31/78 05/10/79 05/14/80	39 34 37	0.00 0.00 0.01	67	46	1.8	200	11 12 11	74	420	0.8 0.7 0.8	230		360		991 1,020 1,120	973	1,710 1,750 1,800	7.9 7.6 8.1	1 1
2820	09/19/78 05/08/79 05/16/80	19 18 20	0.00 0.00 0.03	84	66	7.9	250	21 23 22	28	650	1.3 1.4 1.4	180		490	340		1,070 1,220 1,260	2,260 2,500 2,575	- 7.3 -	26 26 28
2821	10/26/78 05/08/79 05/16/80	25 24 24	0.00 0.00 0.02	63	68	6.8 7.1 8.6	240	20 20 18	220	420	1.8 1.8 1.8	1 9 0		450	290	1,250 1,250 1,310	1,230 - 1,260	2,050 2,170 2,300	- 7.6 -	28 28

Table 5.--Chloride concentrations and specific conductance in ground water from the surficial aquifer in Cape Coral and adjacent areas for May 1980

Local well No.	Specific conductance (umhos/cm at 25°C)	Chloride (mg/L)
		<u> </u>
1136	575	30
2536	57,000	20,500
3203	485	40
3205	3,200	740
3206	14,300	4,040
3207	4,900	1,260
3208	9,100	1,140
3214	600	60
3215	1,170	250
3231	22,500	8,100
3232	1,020	145
3233	2,250	400
3234	25,000	9,600
3235	92 0	75
3236	1,650	260
3237	8,500	2,500
3239	1,850	280
3240	570	45
3243	2,750	725
3245	710	10
3249	660	10
3250	575	15
3252	16,600	5,100
3253	44,000	21,200
3255	900	80
3256	735	45
3257	585	40
3258	700	15
3259	970	125
3260	815	75

														Hardness as CaCO ₃			olved ids			
Well No.	Date of collection	Silica (SiO ₂)	Iron (Fe)	Calcium (Ca)	Magnesium (Mg)	Strontium (Sr)	Sodium (Na)	Potassium (K)	Sulfate (SO ₄)	Chloride (C1)	Fluoride (F)	Bicarbonate (HCO_3)	Alkalinity as CaCO ₃	Calcium/magnesium	Noncarbonate	Residue at 180°C	Calculated	Specific conductance (umhos/cm at 25°C)	pH (units)	Temperature (°C)
2434	06/16/78	21	0.00	56	69	8.4	220	18	130	400	2.2	240	200	430	240	1,200	1,040	1,900	7.5	26
2525	06/22/78	26	0.00	70	67	9.3	230	19	180	420	1.7	190	160	460	310	1,190	1,120	2,060	7.6	 27
2526	06/22/78	15	0.00	74	81	13	300	15	150	580	1.7	170	140	530	390	1,420	1,310	2,530	7.8	28
2527	06/22/78	17	0.00	170	160	27	920	30	310	1,900	1.2	150	120	1,100	990	4,230	3,610	6,510	7.5	27
2528	06/09/78	16	0.01	99	100	20	500	22	240	920	1.2	170	140	680	540	2,220	2,000	3,650	7.4	28

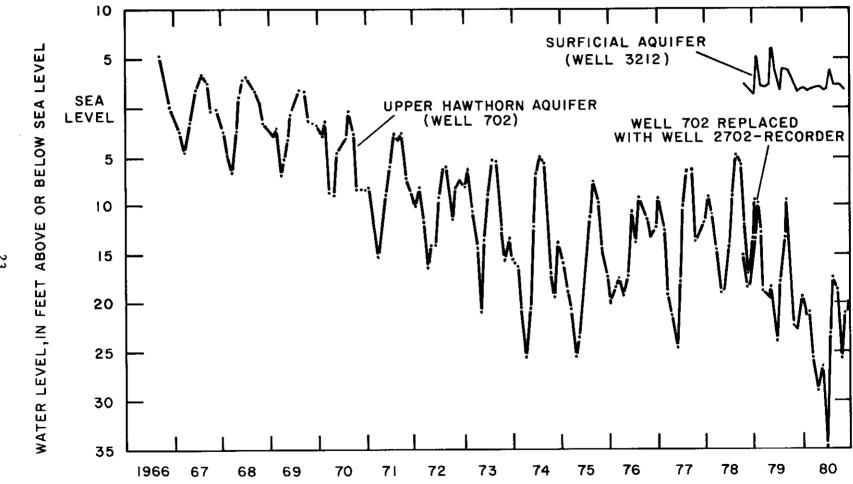


Figure 6.--Water levels in wells 702 and 2702 that tap the upper Hawthorn aquifer and well 3212 that taps the surficial aquifer.

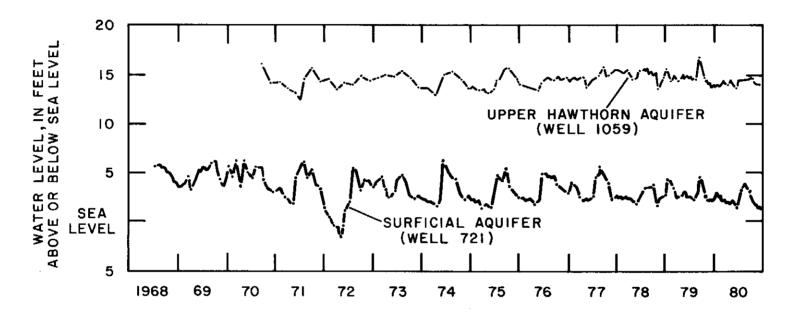


Figure 7.—Water levels in well 1059 that taps the upper Hawthorn aquifer and well 721 that taps the surficial aquifer.

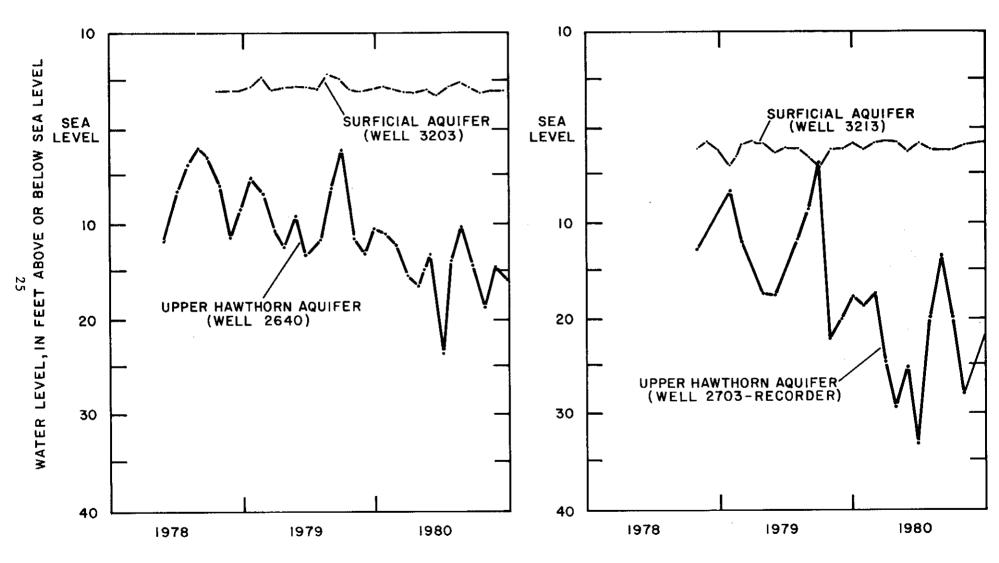
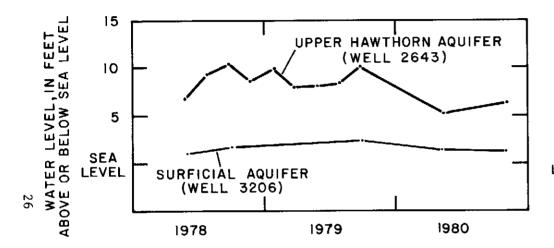



Figure 8.—Water levels in well 2640 that taps the upper Hawthorn aquifer and well 3203 that taps the surficial aquifer.

Figure 9.—Water levels in well 2703 that taps the upper Hawthorn aquifer and well 3213 that taps the surficial aquifer.

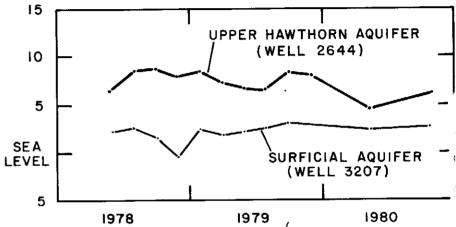


Figure 10.—Water levels in well 2643 that taps the upper Hawthorn aquifer and well 3206 that taps the surficial aquifer.

Figure 11.—Water levels in well 2644 that taps the upper Hawthorn aquifer and well 3207 that taps the surficial aquifer.

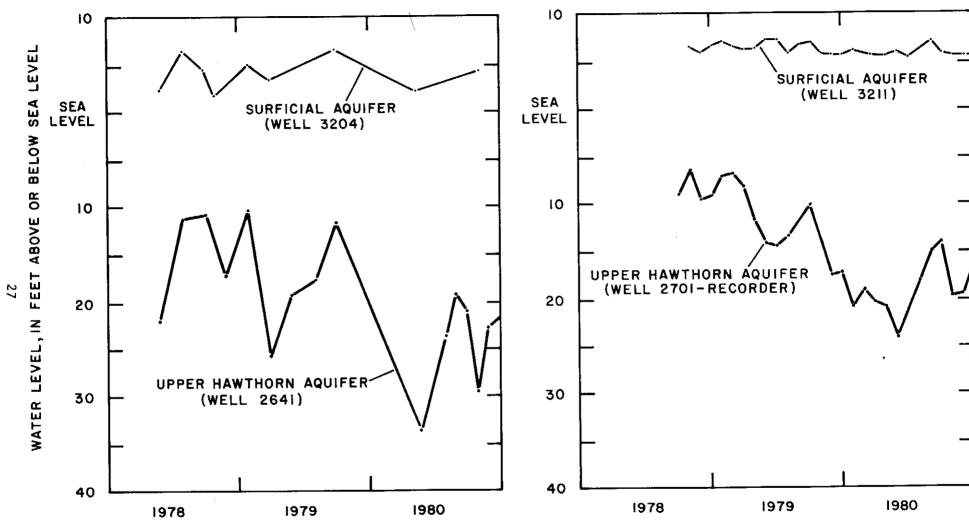


Figure 12.—Water levels in well 2641 that taps the upper Hawthorn aquifer and well 3204 that taps the surficial aquifer.

Figure 13.—Water levels in well 2701 that taps the upper Hawthorn aquifer and well 3211 that taps the surficial aquifer.

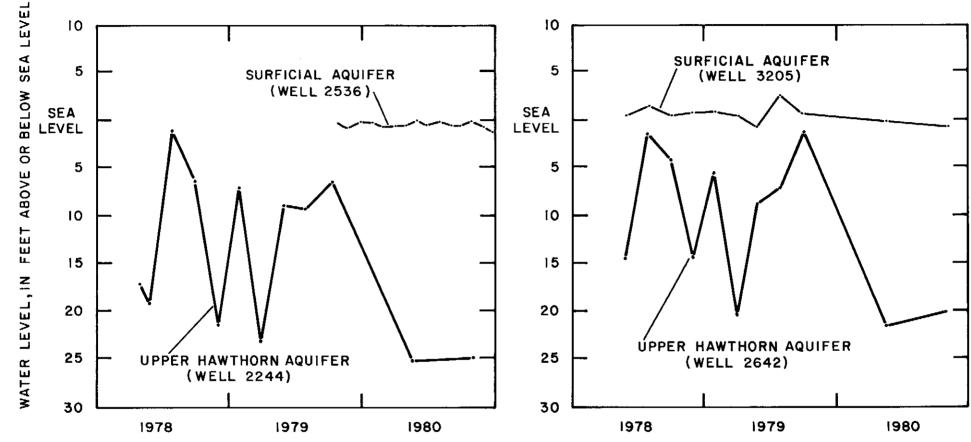


Figure 14.—Water levels in well 2244 that taps the upper Hawthorn aquifer and well 2536 that taps the surficial aquifer.

Figure 15.--Water levels in well 2642 that taps the upper Hawthorn aquifer and well 3205 that taps the surficial aquifer.

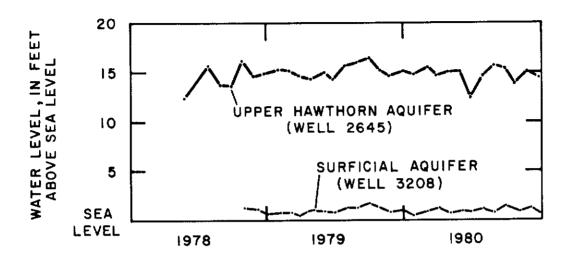


Figure 16.—Water levels in well 2645 that taps the upper Hawthorn aquifer and well 3208 that taps the surficial aquifer.

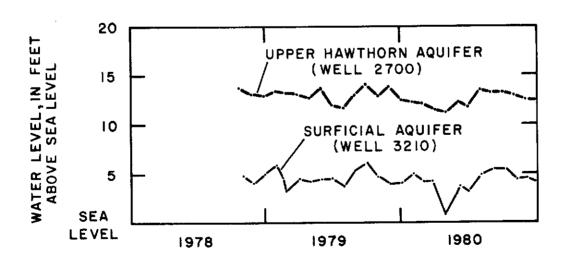


Figure 17.--Water levels in well 2700 that taps the upper Hawthorn aquifer and well 3210 that taps the surficial aquifer.

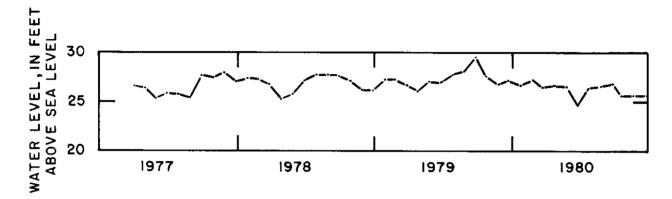


Figure 18.--Water levels in well 2435 that taps the lower Hawthorn aquifer.

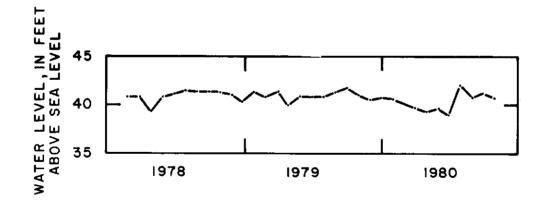


Figure 19.--Water levels in well 2526 that taps the lower Hawthorn aquifer.

Table 7.--Lithologic logs of wells in Cape Coral and adjacent areas

	Well 2434
Depth (feet)	Description
0-15	Sand, fine to medium, tan, slightly phosphatic; some limestone.
15-25	Same, shell fragments.
25-30	Clay, gray, sandy; some limestone and shell fragments.
30-40	Clay, gray; some limestone.
40-45	Sandstone, dark gray, clayey; some limestone.
45-80	Clay, green.
80 -9 0	Clay, green; some shell.
90-105	Clay, gray-green, sandy; some phosphate gravel and limestone.
105-135	Limestone, gray-white, marly, phosphatic.
135-150	Limestone, gray-white, sandy, marly, phosphatic.
150-165	Limestone, gray-white, phosphatic.
165-190	Limestone, gray-white, marly, phosphatic.
190-205	Same, more marl.
205-225	Limestone, gray-white, marly, and phosphatic.
225-230	Limestone, gray-white, marly; some phosphate.
230-255	Limestone, gray-white, phosphatic, and marl.
255-270	Same, less phosphate.
270-275	Marl, gray-white, phosphatic; some limestone.
275-28 0	Limestone, gray-white, marly, phosphatic.
280-300	Marl, gray-white, phosphatic; some limestone.
300-315	Clay, gray-green, phosphatic; some limestone.
315-330	Limestone, gray-white, marly, phosphatic.
330-335	Marl, gray-white phosphatic; some limestone.
335-340	Limestone, gray-white, marly, phosphatic.
340-355	Marl, gray-white, phosphatic; some limestone.
355-370	Limestone, gray-white, marly, phosphatic.
370-400	Same, less marl.
400-415	Limestone, gray-white, marly.
415-420	Same, slightly crystalline; some phosphate.
420-515	Limestone, gray-white, marly, slightly crystalline.
515-570	Limestone, gray-white, crystalline, marly.
570-605	Limestone, gray-white, marly.
605-675	Limestone, gray-white, crystalline, marly.
675-700	Limestone, gray-white, marly, crystalline.

Table 7.--Lithologic logs of wells in Cape Coral and adjacent areas--Continued

	Well 2525
Depth (feet)	Description
0~5	Sand, fine, brown.
5-10	Sand, fine, tan; shell.
10-27	Shell fragments, some sand.
27-30	Shell, limestone fragments.
30-40	Limestone, gray and tan, sandy; shell fragments.
4055	Clay, gray, sandy.
55-135	Clay, green.
135-140	Clay, gray and white, phosphatic.
140-145	Clay, white.
145-155	Clay, gray and white, sandy, phosphatic.
155-165	Clay, gray, phosphate gravel.
165-185	Clay, gray, phosphatic.
185-210	Clay, gray, sandy, phosphatic.
210-240	Sand, fine, gray, phosphatic, clayey.
240-265	Marl, gray, sandy, phosphatic.
265-290	Limestone, gray, phosphatic, marly.
290-340	Limestone, gray-white, sandy, phosphatic.
340-360	Limestone, gray-white, sandy, phosphatic, marly.
360-417	Limestone, gray-white, slightly phosphatic.
417-420	Limestone, dark gray and tan, hard, phosphatic.
420-430	Marl, green.
430-440	Marl, gray-white, phosphatic.
440-445	Marl, green, phosphatic.
445-485	Limestone, gray and tan, hard.
485-505	Limestone, gray, phosphatic.
505-525	Marl, gray-white, phosphatic.
525-545	Limestone, tan, phosphatic.
545-555	Marl, gray, phosphatic.
555-625	Limestone, tan, sugary.
625-645	Limestone, light gray, slightly phosphatic.

Table 7.--Lithologic logs of wells in Cape Coral and adjacent areas---Continued

	Well 2526
Depth (feet)	Description
5-10	Limestone, creamy tan, sandy, marly; some shell fragments.
10-15	Sand, fine, tan, marly; some limestone and shell fragments.
15-20	Sand, fine, dark tan, marly; some fill and shell fragments.
20-30	Limestone, creamy tan, sandy.
30-35	Sandstone, creamy tan, marly; some limestone.
35-50	Clay, gray, sandy; some limestone.
50 - 55	Clay, green, sandy; some limestone and shell fragments.
55 – 65	Clay, gray, sandy; some shell fragments.
65-80	Clay, gray, sandy; some limestone.
80-125	Clay, green, sandy.
125-130	Sandstone, gray, marly, phosphatic; some limestone.
130-145	Sand, fine, dark gray, marly, phosphatic; some limestone.
145-160	Limestone, gray-white, sandy, marly, phosphatic.
160-170	Sandstone, gray-white, phosphatic; some limestone.
170-185	Sandstone, gray-white, phosphatic, dolomitic; some limestone.
185-200	Limestone, gray-white, sandy, phosphatic.
200-205	Sandstone, gray-white, phosphatic; some limestone.
205-225	Limestone, white, sandy, phosphatic.
225-250	Limestone, gray-white, sandy, marly, phosphatic.
250-265	Limestone, gray-white, sandy, very marly, phosphatic.
265-275	Marl, tan; some limestone.
275-295	Limestone, gray, marly, sandy, phosphatic.
295-305	Limestone, white to gray, very marly, phosphatic.
305-310	Sand, fine to medium tan, very marly; some limestone.
310-330	Clay, white to gray, phosphatic.
330-340	Limestone, gray-white, marly, phosphatic; some shell fragments.
340-375	Limestone, gray-white, very marly, phosphatic.
375-405	Limestone, gray-white, sandy, phosphatic.
405-415	Limestone, gray-white, marly, phosphatic.
415-435	Marl, white to gray, phosphatic; some limestone.
435-445	Limestone, gray-white, marly, phosphatic.
445-485	Marl, gray-white, phosphatic; some limestone.
485-495	Limestone, gray-white, marly, very phosphatic.
495-505	Limestone, gray-white, marly, phosphatic.
505-535	Limestone, white to gray, marly.
535-545	Marl, white to gray, slightly phosphatic, some limestone.
545-555	Limestone, tan, marly.
555-595	Marl, white to gray; some limestone.
595-605	Limestone, tan-white, marly, slightly phosphatic.

Table 7. -- Lithologic logs of wells in Cape Coral and adjacent areas -- Continued

	Well 2527	
Depth (feet)	Description	
0-20	Sand, fine to medium, tan; shell fragments.	
20-55	Limestone, creamy tan, sandy; some crystalline, gray, lime- stone; shell fragments.	
55-65	Sandstone, creamy tan and limestone, gray, crystalline.	
65-70	Same as above; some shell fragments.	
70-85	Marl, gray, sandy, slightly phosphatic; some limestone.	
85~100	Sand, fine to medium, dark green, very marly, phosphatic; some shell fragments.	
100-120	Clay, gray-green, sandy, phosphatic; some limestone.	
120-160	Clay, green, sandy.	
160-170	Sand, medium, green, very marly, phosphatic.	
170-180	Limestone, green, marly, phosphatic.	
180-195	Clay, green, slightly phosphatic.	
195-205	Clay, green, sandy, very phosphatic; some limestone.	
205-215	Limestone, gray-white, slightly marly.	
215-235	Limestone, gray-white, marly, phosphatic.	
235-245	Marl, gray-white, phosphatic; some limestone.	
245-275	Limestone, gray-white, marly, phosphatic.	
275-285	Marl, gray-white, phosphatic; some limestone.	
285-325	Limestone, gray-white, marly, phosphatic.	
325-375	Marl, gray-white, phosphatic; some limestone.	
375-385	Marl, gray-white, phosphatic; some limestone, and dolomite.	
385-405	Limestone, gray-white, crystalline.	
405-425	Marl, gray-white, phosphatic; some limestone.	
425-435	Limestone, gray-white, slightly marly.	
435-455	Limestone, white to gray, slightly crystalline.	
455-505	Limestone, gray-white, slightly phosphatic, crystalline.	
505-525	No sample.	
525-555	Limestone, gray-white, slightly phosphatic and crystalline.	
555-565	Limestone, white to tan, slightly crystalline.	
565-605	Limestone, gray-white and tan, crystalline.	

Table 7.--Lithologic logs of wells in Cape Coral and adjacent areas--Continued

	Well 2528
Depth (feet)	Description
0-10	Shell, creamy tan, sandy.
10-20	Sandstone, creamy tan; shell fragments.
20-40	Marl, creamy tan, sandy; shell fragments.
40-50	Clay, gray; some shell fragments.
50-65	Sand, medium, dark brown, very clayey; some shell fragments.
65-8 5	Clay, green, sandy; some shell.
85-105	Same, phosphatic.
105-125	Sand, medium to coarse, gray-green, marly; some shell.
125-145	Same, without shell.
145-165	Clay, green, sandy.
165-225	Clay, dark gray, sandy; some shell fragments.
225-245	Sand, medium to coarse, dark gray, very marly.
245-260	Clay, gray, sandy; some shell fragments.
260-275	Sand, medium to coarse, gray, marly, phosphatic; some shell fragments.
275-295	Same as above; some limestone.
295-305	Clay, green, sandy; some shell fragments and limestone.
305-345	Sand, medium to coarse, dark gray, marly, phosphatic; some limestone and shell fragments.
345-405	Limestone, gray-white, marly, phosphatic.
405-415	Same, some crystalline limestone.
415-435	Limestone, gray-white, very marly, phosphatic.
435-465	Limestone, gray-white, phosphatic, slightly crystalline.
465-625	No samples available.

Table 7.--Lithologic logs of wells in Cape Coral and adjacent areas--Continued

Well 2536	
Depth (feet)	Description
0-10	Sand, fine to medium dark brown.
10-19	Sand, medium to coarse, light brown.
19-20	Sand and shell, phosphatic, clayey.
20-30	Clay, gray.
30-45	Clay, green, sandy.

Table 7.--Lithologic logs of wells in Cape Coral and adjacent areas--Continued

Well 2640	
Depth (feet)	Description
0-10	Sand, tan, medium grained; some shell fragments and white clay.
10-30	Limestone, creamy tan, sandy, marly and shell fragments.
30 - 40	Clay, green; some shell fragments.
40-70	Clay, green.
70-80	Clay, green; some shell fragments.
80-90	Clay, green, sandy; some shell fragments.
90-100	Sand, fine, gray, clayey; some shell.
100-110	Sand, fine, gray, very clayey; phosphate gravel.
110-120	Sand, fine, dark gray, clayey, phosphatic.
120-130	Limestone, gray-white, sandy, phosphatic.
130-140	Limestone, gray-white, phosphatic.
140-180	Limestone, gray-white, marly, phosphatic.

Table 7.--Lithologic logs of wells in Cape Coral and adjacent areas--Continued

Well 2641	
Depth (feet)	Description
0-10	Sand, tan; some marl; shell fragments.
10-20	Limestone creamy tan, sandy; some shell fragments.
20-30	Sand, tan, marly; some limestone; phosphate.
30-40	Clay, green; some shell fragments.
40-80	Clay, green.
80-90	Clay, green, sandy; some shell fragments.
90-100	Sand, fine, dark gray, clayey, phosphatic.
100-120	Limestone, gray-white, sandy, phosphatic.
120-140	Limestone, gray-white, marly; sand, phosphatic.
140-170	Limestone, gray-white, very marly, sandy, phosphatic.

Table 7.--Lithologic logs of wells in Cape Coral and adjacent areas---Continued

Well 2642	
Depth (feet)	Description
0-10	Sand, fine to medium, tan; some limestone.
10-30	Sand, fine to medium, tan, clayey; some limestone.
30-40	Clay, gray, sandy; some limestone, shell fragments.
40-60	Clay, gray, very sandy, phosphatic.
60-70	Clay, green, sandy; some limestone; shell fragments.
70-80	Clay, green, sandy.
80-90	Clay, gray, sandy.
90-100	Clay, dark gray, sandy, very phosphatic.
100-120	Limestone, gray-white, sandy, phosphatic.
120-140	Limestone, gray-white, marly, sandy, phosphatic.
140-160	Limestone, gray-white, very marly, sandy, phosphatic.

Table 7.--Lithologic logs of wells in Cape Coral and adjacent areas--Continued

	Well 2643	
Depth (feet)	Description	
0-10	Sand, fine to medium, tan.	
10-30	Sand, fine to medium, tan; some limestone; shell fragments.	
30-40	Sand, fine to medium, tan, clayey, phosphatic; some limestone.	
40-50	Clay, gray, sandy; some shell fragments.	
50-60	Clay, green, sandy; some shell.	
60-80	Clay, green.	
80-90	Clay, green, sandy.	
90-110	Clay, green.	
110-120	Clay, gray, sandy, phosphatic.	
120-130	Clay, dark gray, sandy, phosphatic.	
130-140	Limestone, gray-white, marly, sandy, phosphatic.	
140-160	Limestone, gray-white, sandy, phosphatic.	
160-190	Limestone, gray-white, sandy, marly, phosphatic.	
190-200	Limestone, gray-white, sandy, very marly, phosphatic.	

Table 7.--Lithologic logs of wells in Cape Coral and adjacent areas--Continued

	Well 2644	
Depth (feet)	Description	
0-10	Sand, fine to medium, tan.	
10-30	Sand, fine to medium, tan; some limestone; shell fragments.	
30-40	Sand, fine to medium, tan, marly; some limestone; shell	
	fragments.	
40-50	Sand, fine to medium, tan, very marly; some limestone and	
	shell fragments.	
50-60	Clay, gray, sandy; some shell fragments.	
60-70	Clay, gray, some shell fragments.	
70-100	Clay, green; some shell.	
100-120	Clay, green.	
120-140	Sand, dark gray, clayey; some limestone, phosphate.	
140-160	Limestone, gray-white, sandy, phosphatic.	
160-178	Limestone, gray-white, marly, sandy, phosphatic.	

Table 7.--Lithologic logs of wells in Cape Coral and adjacent areas--Continued

	Well 2645	
Depth (feet)	Description	
0-10	Sand, fine to medium, tan, clayey, phosphatic.	
10-20	Sand, fine to medium, tan, clayey, some shell fragments; fill.	
20-50	Limestone, creamy tan, sandy, marly; some shell fragments.	
50 - 70	Clay, gray, sandy; some limestone.	
70-90	Clay, green; some shell fragments.	
90-130	Clay, green.	
130-150	Sand, dark gray, clayey, phosphatic; some limestone.	
150-170	Limestone, gray-white, sandy, phosphatic.	
170-190	Limestone, gray-white, marly, sandy, phosphatic.	
190-210	Limestone, gray-white, very marly, sandy, phosphatic.	

Table 7.--Lithologic logs of wells in Cape Coral and adjacent areas---Continued

Well 2646		
Depth (feet)	Description	
0-10	Limestone, creamy tan; some shell.	
10-20	Limestone, creamy tan, marly, sandy.	
20-40	Clay, gray; some limestone and shell fragments.	
40-50	Clay, green, sandy; some shell.	
50 -9 0	Clay, green.	
90-100	Clay, green, sandy; some shell fragments.	
100-140	Sand, dark gray, clayey, phosphatic; some limestone.	
140-160	Limestone, gray-white, sandy, phosphatic.	
160-180	Limestone, gray-white, sandy, marly, phosphatic.	
180-200	Limestone, gray-white, marly; sand, very fine, phosphatic.	
200-220	Limestone, gray-white, marly, sandy, phosphatic.	

Table 7.--Lithologic logs of wells in Cape Coral and adjacent areas--Continued

	Well 2700		
Depth (feet)	Description		
0-10	Sand, fine, tan and shell fragments.		
10-20	Limestone, tan, sandy and shell fragments.		
20-30	Limestone, tan, marly, phosphatic and shell fragments.		
30-70	Clay, green.		
70-90	Clay, green and shell fragments.		
90-100	Clay, green, sandy.		
100-110	Sand, fine, gray.		
110-120	Sand, fine, gray, clayey, phosphatic; shell fragments.		
120-130	Sandstone, gray, phosphatic.		
130-140	Sand, dark gray, fine, phosphatic.		
140-150	Sand, gray, fine, clayey, phosphatic.		
150-160	Limestone, gray-white, sandy, phosphatic.		
160-170	Limestone, gray, sandy, marly, phosphatic.		
170-180	Limestone, gray-white, sandy, phosphatic.		
180-205	Limestone, gray-white, sandy, phosphatic; some shell fragments.		

Table 7.--Lithologic logs of wells in Cape Coral and adjacent areas--Continued

Well 2701		
Depth (feet)	Description	
0-10	Limestone, iron stained, sandy and shell fragments.	
10-20	Sand, fine, tan and shell fragments.	
20-30	Sand, medium, tan and shell fragments.	
30-40	Limestone, gray; sand, medium, tan; shell fragments.	
40-50	Limestone, gray and shell fragments.	
50-60	Sand, fine, gray, clayey; shell fragments; some limestone.	
60-70	Clay; sandstone, gray; shell fragments.	
70-80	Clay, green, slightly sandy.	
80-100	Clay, green.	
100-110	Sandstone, gray; shell fragments.	
110-120	Sandstone, gray, clayey, phosphatic; shell fragments.	
120-130	Sand, fine, dark gray, clayey, phosphatic.	
130-140	Marl, gray-white, sandy, phosphatic.	
140-150	Limestone, gray-white, sandy, phosphatic.	
150-170	Limestone, gray-white, phosphatic.	
170-190	Limestone, gray-white, marly, phosphatic.	
190-206	Limestone, gray-white, phosphatic.	

Table 7.--Lithologic logs of wells in Cape Coral and adjacent areas--Continued

Well 2702		
Depth (feet)	Description	
0-10	Sand, fine to medium, tan.	
10-20	Sand, fine to medium, tan and shell fragments.	
20-30	Clay, gray; shell fragments.	
30-50	Limestone, gray, marly; shell fragments.	
50-60	Limestone, gray; green clay; shell fragments.	
60-70	Clay, green.	
70-80	Clay, green; sandstone, gray; shell fragments.	
80-95	Sand, dark gray, very phosphatic, clayey.	
95-155	Limestone, gray-white, phosphatic.	

Table 7.--Lithologic logs of wells in Cape Coral and adjacent areas--Continued

Well 2703		
Depth (feet)	Description	
0-10	Sand, fine to medium, tan.	
10-30	Limestone, tan, sandy.	
30-50	Limestone, gray, sandy, marly.	
50~70	Sand, very fine and green clay.	
70-90	Clay, green, sandy.	
90-100	Clay, gray, sandy; slightly phosphatic.	
100-110	Sand, dark gray, clayey, very phosphatic.	
110-140	Limestone, gray-white, phosphatic.	
140-150	Limestone, gray-white, clayey, phosphatic.	
150-159	Limestone, gray-white, phosphatic; shell fragments.	

Table 7.--Lithologic logs of wells in Cape Coral and adjacent areas--Continued

Well 2820		
Depth (feet)	Description	
0-10	Sand, fine, tan.	
10-50	Sand, fine, tan and shell fragments.	
50-60	Sandstone, tan and shell fragments.	
60-70	Sandstone, tan; limestone, gray; shell fragments.	
70 -9 0	Limestone, gray, marly, sandy and green clay.	
90-160	Clay, green, sandy.	
160-170	Clay, green, sandy, slightly phosphatic	
170-19 0	Sand, very fine, green, slightly phosphatic.	
190-200	Sand, very fine, green, phosphatic; some gray clay.	
200-210	Sand, gray, slightly phosphatic, some limestone.	
210-220	Limestone, gray-white, marly, slightly phosphatic; shell fragments.	
220-230	Limestone, gray, marly, phosphatic.	
230-241	Limestone, gray-white, marly, phosphatic.	