Computer drawing of flow around an airfoil.
 Aerodynamic force equals a constant times the velocity squared.

Lift is created by deflecting a flow of air and drag is generated on a body in a wide variety of ways. From Newton's second law of motion, the aerodynamic forces on the body (lift and drag) are directly related to the change in momentum of the fluid with time. The fluid momentum is equal to the mass times the velocity of the fluid. Since the air moves, defining the mass gets a little tricky. Modern aerodynamicists relate the effect of mass on lift and drag to the air density. At the time of the Wright brothers, the effect of mass was included in the Smeaton pressure coefficient. In both systems, the lift and drag depend on the square of the velocity.

The velocity used in the lift and drag equations is the relative velocity between an object and the flow. Since the aerodynamic force depends on the square of the velocity, doubling the velocity will quadruple the lift and drag.

Let's investigate the dependence of lift on velocity using a Java simulator.

You can download your own copy of this applet by pushing the following button:

Button to Download Applet

The program is downloaded in .zip format. You must save the file to disk and then "Extract" the files. Click on "velocity.html" to run the program off-line.

You can change the value of the velocity by using the slider below the airfoil graphic, or by backspacing, typing in your value, and hitting "Return" inside the input box next to the slider. You can perform the calculations in either English or metric units by using the drop menu labeled "Select Units". The red dot on the graph shows the current set of conditions.

As an experiment, set the velocity to 50 mph and note the amount of lift. Now double the velocity to 100 mph. What is the value of the lift? How does it compare to the previous measurement?


Activities:

Button to Display Slide



Navigation..

Button to Display Wright Index

Re-Living the Wright Way
Learning Technologies Home Page
http://www.grc.nasa.gov/WWW/K-12
NASA Glenn Home Page
http://www.grc.nasa.gov
NASA Home Page
http://www.nasa.gov

 


 by Tom Benson
Please send suggestions/corrections to: Carol Galica
Curator: Dave Mazza

Last Updated Thu, Oct 14 09:30:57 AM EDT 2004 by Tom Benson