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Abstract

The Velocity Interferometer System for Any Reflector (VISAR a widely used diag-
nostic at Sandia National Laboratories. Although the apagagprinciples of the VISAR
are well established, recently deployed systems (sucheafashh push-pull and air delay
VISAR) require more careful consideration, and many comasgsumptions about VISAR
are coming into question. This report presents a comprarereiew of VISAR analysis
to address these issues. Detailed treatment of severdenumeter configurations is given
to identify important aspects of the operation and charaetigon of VISAR systems. The
calculation of velocity from interferometer measuremastalso described. The goal is
to derive the standard VISAR analysis relationships, iaiavhen these relationships are
valid, and provide alternative methods when the standaatysis fails.
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CHAPTER 1

Introduction

Velocity measurements play a vital role in dynamic compagssesearch. When combined
with mass and momentum conservation, material and waveielmeasurements yield
mechanical information for materials under extreme coowlé [1]. Velocity is generally
easier to measure than other continuum properties,étress or temperature), and in some
case, is the only information obtainable in highly compegssystems.

Numerous optical techniques exist for measuring veloaityan extreme conditions. Active
shock breakout [2], where changes in the reflected ligiensitysignal the arrival of me-
chanical waves, is one example; inclined mirror measurés[8h which rely on changes
in reflected lighdirection is another. The most versatile optical velocity measuremare
based on changes in the reflected optidalse a generalization of more familiar quantities
(such as wavelength). In practice, optical phase cannotdssuned directly; instead, an
interferometer is used to measure the difference betweseagtical phase at two different
times.

Shock compression experiments using velocity interfetoyraate back to the 1960's [4],
but such measurements were rare until the development ¥Elbeity Interferometer Sys-
tem for Any Reflector (VISAR) [5]. Since that time, VISAR sgsts have become a stan-
dard velocity diagnostic. Over the years, improvementsrandifications to the original
VISAR configuration have been made, including the develagroemultiple channel sys-
tems, increased tolerance to incoherent light, and betterresolution [6].

1.1 Overview of a VISAR measurement

The essential components of a VISAR measurement are dbestin Figure 1.1. Coherent
light (typically from a 514.5 or 532 nm laser) is used to illmate the object of interest. An

optical relay directs light toward the object and colletts teflected radiation. Reflected
light is sent to an interferometer, producing an output ammhg the input signal and a
time delayed version of the input signal. The output is seéng¢h fast optical detectors

and analyzed to infer the object’s motion.

VISAR analysis is comprised of two basic operations: deieimg the fringe shift and
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Figure 1.1. Overview of a VISAR measurement.
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the velocity calculation. Fringe shift is a normalized measof how the optical phase
difference compares to a reference value. Velocity follétesn the fringe shift, and in
many applications, is proportional to the fringe shift. dtigh the two operations are very
much related to one another, it is useful to separate thewofoceptual clarity.

1.2 Purpose and scope of this work

This report serves three basic purposes. First, the widadpuse of VISAR in dynamic
compression research has created the need for a compnreheescription of the principles
and limitations of this diagnostic. Next, recently depldysystems, such as the fast push-
pull VISAR [7] and air delay VISAR [8], challenge traditiohassumptions about VISAR
and require more careful consideration. Finally, this repeecedes the release of a new
analysis package, PointVISAR [9], which incorporates mofctine theory described here.

Throughout this work, there is an emphasis on the fundarh@ngary underlying VISAR
measurements. At various stages, general results areegdoictandard forms found in
most discussions of VISAR. Assumptions and approximatesaslearly noted to indicate
when the standard forms are valid, and what can be done wegratk not. Much of the
theory presented here is not new, but has been collecteddnaariety of published papers
and personal discussions as noted in the references.

There are many things that this report does not cover. Nongttés made to follow the
history of the VISAR or its use in shock experiments; if th8sof interest, the reader is
directed to Reference 6. The report focuses exclusively [BAR measurements of a
single point (typically< 1 mm in diameter) because the vast majority of VISAR measure-
ments are performed at a point or collection of points. Ferriost part, detector speed
limitations are ignored. No attempt has been made to contpargeneral performance
of VISAR with other interferometry methods [10, 11]. Thisnet meant as a criticism of
alternate diagnostics, which may complement VISAR in soitt@aons and supplant it in
others. However, VISAR remains the most common velocitguiistic at Sandia, so such
comparisons must be postponed until the alternatives becoane established.

1.3 Chapter organization

The organization of this report is intended to match the oofeoperations in VISAR
analysis. Interferometer theory, which forms the bulk o fhinge shift calculation, is
presented in Chapter 2. Remaining aspects of the fringecsthdulation and the conversion
to velocity are described in Chapter 3. Velocity correctioreeded in various situations
are discussed in Chapter 4. Characterization and perfaenassessment of a VISAR
system is developed in Chapter 5. An overall summary of VIS&Rysis is given in
Chapter 6. Appendix A compares the noise performance of twmonconly used VISAR
configurations.
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CHAPTER 2

Interferometer theory

Interferometers are based on wave superposition, whichomapnstructive or destructive.
VISAR systems utilize a specific type of interference, kn@asmivision of amplitude [12],
where an optical signal is split into distinct paths andrlagzombined. The classical
example of such a system is the Michelson interferometglri[lL@trated in Figure 2.1.
Light entering the interferometer is directed along twdhgaty the beamsplitter (BS) and
travels different distances to mirrors M1 and M2. The recoat beams are measured
by detector D in the focal plane of lens L. Adjustment of therori positions controls the
interference of the recombined beams.

The Michelson interferometer provides a conceptual stgrpoint for this discussion.
Next, the wide angle Michelson interferometer is describedlemonstrate a feasible,
though somewhat limited, interferometry system for velpoeasurements. Results from
the wide angle Michelson interferometer are then applietiéccommon VISAR configu-
rations (conventional and push-pull) used in dynamic casgion research.

2.1 The Michelson interferometer

The basic utility of a Michelson interferometer is its séingly to optical phase changes.
Optical phasep(t) is the time varying quantity that describes oscillationsaafoherent
electric fieldE at a particular point in space (for a single light polariaaji

E = A(t) cosp(t) (2.1)

The functionA(t) describes field amplitude modulations, which are assumée tmuch
slower than cog(t). In this framework, incoherent light may be treated as agtion
of many independent coherent sources, yielding a randoimabphase.

For a monochromatic source, the optical phase is lineama:ti
p(t) = wot + @ (2.2)

whereay is the radial frequency=f 21co/Ap) and ¢, is the reference phase at the point of
interest.
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Figure 2.1. The Michelson interferometer.

For clarity, mirrors M1 and M2 are shown at an angle of;96
practice, different orientations are used to eliminatetiplel re-
flections and minimize space requirements.
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2.1.1 Principles

Suppose that light entering a Michelson interferometeralanzed and collimated,e.

the input electric field is a plane wave with an electric fiehdpditude Eq(t). In general,
the input field is composed of a coherent (subscript “c”) amdh@oherent (subscript “i”)
component.

Eo(t) = Ec(t) + Ei(t) (2.3)
The total electric field at the detector is given by:
E(t) = a1Eo(t —t1) + agEq(t —t2) (2.4)

wherea; represents the coupling afjdepresents the transit time of theth leg (j = 1,2).
The second path of the Michelson interferometer, whichaostmirror M2, is physically
longer than the first path by a distarateThe difference in transit time between the paths
is given by:

2d
2-ti=" (2.5)

wherecy is the vacuum speed of light.

At visible wavelengths, optical phase oscillates nedP Hr, substantially faster than any
high speed detector(10° — 1012 Hz cutoff). As such, the optical intensttyneasured by
a detector is given by the time average of the total electld 8quared [15]:

1(t) = n (E%(t)) (2.6)

wheren is a constant dictated by the electric field units [16]. THemsity of a monochro-
matic wave is proportional to half the square of its ampktud

2(t)) — (A2 o :A_2
(E“(t)) = (A°cos (et + &n) ) 5

so the output intensity of a Michelson interferometer isa®ivs.
(1) = n((arBolt 1) +aco(t ~12))°)
= 1@ [Eelt 1) + Ei(t —10))* + B [Eolt —t2) + Ei(t — 1)
+ 2% Eclt—t) + Bt —t)] Eclt—t2) +Ei(t )] ) (27)

All terms in Equation 2.7 containing a single incoherentdac¢at a specific time) average
to zero.

I(t)=n <a§ [E2(t —t1) + EA(t —t1)] + a3 [E2(t —tp) + EA(t —to)]

+ 2ay80Fo(t — 1) Eg(t — 1)) (2.8)

1The symbol formally denotes radiant intensity [14], the optical power unit solid angle. The quantity
in Equation 2.6 is actually the irradianEgoptical power per unit area), which is proportional to tlogRting
vector [15]. The symbadl is used to prevent confusion between irradiance and etdihil.
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The first two terms can be expressed in terms of the inputsitien

o(t) = n (E§(t)) = n (EZ(t) + EA(1))
| (t) = af lo(t —ty) +a5 lo(t —tp) + 28180 (Ec(t —t1)Ec(t —t2)) (2.9)

The remaining bracketed term can be expanded by assuminthéhaterferometer input
contains a single coherent signal.

Eq(t) = A(t) cosp(t)
(Eelt —t)Eo(t —12)) = At —t)At—to) (cosp(t —tr) cosp(t ~tz))  (2.10)

The time average can be reduced by recalling that 2cosB = co§ A+ B) + cog§A— B).
The first term averages to zero: if apd) averages to zero, a similar result would occur
for the sum of two phase functions. The second term, howdweesn’t necessarily average
to zero because the difference between two phases may belg g&yying function. For
compactness, the phase difference will be denoted by theamb(t).

P(t)=@(t—t1) —@(t—tz2) (= wot for monochromatic inpyt (2.11)

Alt—t)At—t)
2

(Eo(t —t1)Ec(t —tp)) = cosd(t) (2.12)

The value ofA(t) can be expressed in terms of the coherent input intehsity

=n{Acogg(t)) = nA;(t)
(Eg(t —t1)Eg(t —12)) \/I (t —tg)lo(t —tp) cosd(t) (2.13)

Combining the results fofEc(t —t1)Ec(t —t2)) with Equation 2.9 yields the complete ex-
pression for the output intensity as a function of inputmsiey and phase difference.

I(t) = a% lo(t—t1) + a% lo(t —t2) + 2&1&2\/|C(t —11)le(t —t2) cosd(t) (2.14)

The output signaD(t) is proportional to the total power striking the detector #mel de-
tector responsivity, which is assumed to be constant oeed#tector’s active area and the
narrow wavelength range of interest. These proportionédittors can be merged into a
new set of coupling constanas andas.

D(t) = &2 lo(t —t1) + &3 lo(t —t2) + 281801/1c(t — t1)lc(t —t) cOsD(t) (2.15)

2.1.2 Limitations

In practice, the input of a Michelson interferometer cartmoperfectly collimated, which
means that radiation is distributed over some angular rafgdllustrate this point, it is
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helpful to think of a Michelson interferometer in terms oétbquivalent optical system [15]
shown in Figure 2.2. From the detector’s point of view, tharheplitter and mirrors create
two virtual images (11 and 12) of the input. Since each irgevfeter path is traversed
twice in one round trip, the virtual sources are separated digtance of @.

Collimating lens L transforms light traveling in a partiadldirection to a point on the
detector D. As shown in Figure 2.2, normal rays are imageteténter of the detector,
while rays emitted at an angl® are imaged to radius from the center. The mapping of
angle to detector location is controlled by the focal lenfyth

r=fo (2.16)

In most situations;, (< 0.5 mm) is much smaller thah (~ 25 mm), so the relevant angular
range is quite small< 1°).

Light emitted by the virtual sources at a particular angle ba treated as a plane wave
passing through that angle; interference at each angleersdbnceptually similar to the
preceding discussion. For simplicity, consider the inmgubé entirely coherent and as-
sume that interferometer coupling constants are euat a; = a). A spatially uniform
intensitylp from the source in the directighresults in an angular intensity6) at the lens.

1(6) = 28%19[1+ cosapT(6)]
|max

= == [1+coswpt(6)) (Imax= 48%1) (2.17)

The angular dependencemis evident in Figure 2.2 as the path between the virtual gsurc
varies with the anglé.

2d
= 2.1
1(6) 5 C0SH (2.18)
Combining this result with Equations 2.16—-2.17 yields thiofving intensity distribution.
1(r) = Imax |1 cos( A sec! (2.19)
2 Ao f

This intensity pattern corresponds to a series of circulagés, also known as Haidinger
fringes or fringes of equal inclination [17], in the detecfdane. If one mirror is tilted
with respect the other, the virtual images are no longerlleaeand the interference pattern
changes to parallel fringes, also known as Fizeau fringésnges of equal thickness [17].
Michelson interferometers are generally constructeditoieate Fizeau fringes, allowing
the circular fringe pattern to be seen.

The intensity at the central point of the detedtoe 0) is given by:

I(r=0)= 'mTaX [1+ cos%} (2.20)

so the center is brightest whehis an even multiple of\p/8 and darkest whed is an
odd multiple ofAp/8. However, the detector signal is proportional to an irdegver the

17
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active area, not just the central intensity. The extent twlwvintensity variations affect the
measurement can be characterized by the spotgiziefined here as the distance from a
central bright spot to the first intensity minimum.

T
s 47d/ Ao 7 <A
° 5q (@>20)

For small mirror separations, the interferometer spot Eazsomparable td, leading to
uniform detecter illumination. Large mirror separationsyever, lead to small spot sizes
and appreciable intensity variations.

To illustrate the significance of intensity variations, smer an interferometer coupled to
a 1 mm diameter detector by a 25 mm focal length lgnd < 0.02). Figure 2.3 shows
the intensity distribution on the output detector for savgrlues ofd/A. Even at moder-
ate mirror separationsl(= 1000Aq), the detector intensity is obviously not constant. The
problem is even more severedt 10000Ag, where the central spot lies entirely inside
the detector along with additional intensity cycles. Sitloe outer cycles carry a signifi-
cant fraction of the total power striking the detector, thetfthat the central spot is bright
only weakly affects the output signal. The distinction bedw constructive and destructive
interference is thus quite subtle, and eventually disajseavery large mirror separations.

In principle, intensity distribution issues could be matigd with the use of a sufficiently
small detector. However, this solution leads to low sigeaeéls as little of the input power
can be collected by the detector. An alternate solution mpierate the interferometer at
d = 0, which produces a flat intensity field. While this may seenatractive solution,
it would eliminate the relative delay between the combingdals, rendering the system
useless for measuring phase difference. Instead, one st mnodified configuration or
carefully collimate light entering the system [8].

2.2 The wide angle Michelson interferometer

The shortcomings of the Michelson interferometer can beaamree by creating a non-
zero mirror separation that has zero virtual separationis Ehachieved by placing an
uncompensated dielectric slab or etalon in one leg of trexfetometer, creating a wide
angle Michelson interferometer (WAMI) [18] as shown in Fig2.4. The purpose of the
etalon is to create a virtual mirror image M2’ that is closetlie beam splitter than the
actual mirror M2, yielding a uniform detector illuminatiosince the interferometer legs
have different physical lengths, there remains a relatime tlelay (and thus interference)
between the recombined light signals. This time delay isnatian of the size and optical
properties of the etalon, and is derived in Section 5.1. By, it will be assumed that the
delay time is known.
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2.2.1 Principles

From the discussion in Section 2.1, the detector output tOMAMI can be expressed as
follows.

D(t) = & lo(t —t1) +85 lo(t —t2) + 28182+/1c(t —t1)lc(t —t2) cosP(t) (2.22)

The phase differenc®(t) describes the difference in phase between light passingghr
each leg of the interferometer.

Pt)=0@t—t1)—@t—t1—1) (2.23)

In situations where the input is completely coherégt 1) with a slowly varying ampli-
tude, the detector output can be reduced to a simpler form.

D(t) = lo(t) [&2 + &5 + 28182 cosd(t)] (2.24)

To illustrate the sensitivity of a WAMI to phase changes,mge that the input intensity
is constant. For convenience, the valudoivill be combined with the scaling factors as
follows.

Do = lo (& + &) Ap =2l &8,
D(t) = Do+ Ap cosd(t) (2.25)

The detector output is thus a sinusoidal functiorbofvith an offsetDg and an amplitude
Ap. If the phase difference increases linearly in time, theecter signal for a WAMI
would appear as shown in Figure 2.5. When the input is momoeétic, the value ofp(t)

is simplyanT, so variations ib(t) correspond to changes in the product of input frequency
and the time delay. Once the time delay has been determiN@dl\d is capable of sensing
minute frequency changes, a capability that can be tiecetDtppler shift of light reflected
from a moving target.

The oscillation magnitude in a WAMI cannot exceed the sigrfitset. Quantitatively, this
constraint can be formulated in terms of the interferomstating factors.

Ap < Do « 288, < & + &5 (2.26)

The values o "dictate the system contrast, a quantity that describesiihy @f the inter-
ferometer to distinguish constructive and destructiverfierence. The numerical definition
of contrast [15], also called fringe visibility, is given by

C— Imax— Imin - Dmax— Dmin (2.27)

" Imax+Imin  Dmax+ Dmin

wherelmax is the maximum intensity (corresponding to constructiterii@rence) andinn
is the minimum intensity (corresponding to destructiveifdrence). From this definition,
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contrast is always between zero and unity. For the WAMI, i@sttcan be expressed as
follows.

Dmax= Do+ Ap Dmin = Do —Ap

=5

(2.28)

Maximum contrast occurs when the oscillation magnitudeaéqjtne signal offset, which
can only be achieved when = &,.

2.2.2 Limitations

Although the WAMI is capable of measuring phase changesg e a number of practical
difficulties for this configuration. These problems fallarttvo general categories: input
sensitivity and phase uncertainty.

Input sensitivity describes the WAMI's inability to septgavariations of input intensity

from phase changes. When the input intensity is time depgratecontains incoherent
light, these variations are carried in the detector outprigawith optical phase changes.
As such, it can be difficult to interpret data from a WAMI urdesptical phase is the only
time varying quantity.

Phase uncertainty occurs in the WAMI because of the cosinetifin in Equation 2.25.
The periodic nature of this function means that a particusédine ofD corresponds to an
infinite number of values ab, each differing by an integer multiple of2 Furthermore, the
symmetry of the cosine function &= 0 and® = 7 creates sign ambiguities that obscure
whether® is increasing or decreasing. Determining the phase anglethe symmetry
points, where light intensity is at a minimum or maximum,|lsamprecise because of the
flatness of the detector signal.

2.3 The conventional VISAR

The conventional VISAR (Velocity Interferometer System Any Reflector) [5] is a ro-
bust system that builds upon the strengths of the WAMI. Shealrematically in Figure
2.6, the conventional VISAR is essentially two WAMI systethat operate on different
polarizations of the input. Light entering the interferdards intentionally unpolarized,
resulting in two output signals obtained with a polarizireamsplitter (PBS) and a pair of
detectors (D1 and D2). The two polarizations are phaseeshifith respect to one another
through the use of a/B wave plate (WP) in one leg of the interferometer. Finallgeam
intensity monitor (BIM) is located at the input of the interdmeter for tracking changes in
the input intensity.
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Figure 2.6. The conventional VISAR.
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Figure 2.7. Conventional VISAR detector output signals.

23



2.3.1 Principles

The output of one VISAR detector is similar to a WAMI systentiwihe addition of an
extra subscript to indicate which polarization is being suzad.

Dy(t) = &34 lo(t —t1) +83; lo(t —t2) + 2811821/ 1c(t —t1)lc(t —t2) cosd(t)  (2.29)

In this notationajj refers to the coupling factor for light of polarizatigrpassing through
legi. The output of the second detector has a similar form:

Dz(t) = é%Z |o(t — t]_) + é%Z |o(t — tz) + 2&12&22\/&;@ —t1)|c(t — tz) COSq)z(t) (2.30)

where®, is a phase difference function that accounts for the roupghrssage through the
1/8 wave plate. The wave plate time delays both polarizatigres dertain amount, gener-
ating a small correction to the value ofbut of critical importance is the delay difference
between polarizations. This difference can be associaiidcawelative phase deldy.

Po(t) = [p(t —t2) — B] — p(t —t1) = (1) — B (2.31)
The value off is controlled by rotating the/B wave plate about its axis; since light passes
through the plate twice, the phase shift ranges from zerméoquarter of a wave. When
B = 1/2, the two detector signals are said to be in perfect quadrattis convenient to
expresg3 in terms of a quadrature errer which describes how far off the system is from
perfect quadrature.

Po(t) =P(t) —m/2—¢ (2.32)
Combining this definition with the above expressionrconverts the cosine factor to a
sine.

Do(t) = 82, lg(t —t1) 485, lo(t —t) 4 2812800+/I(t —t1)lc(t —t2) Sin(D(t) — ) (2.33)

Figure 2.7 shows a conceptual example of howheD, and BIM signals would appear
for a measurement of steadily increasfh@) and decreasing input intensity.

The BIM is not exposed to any interference, and is thus dy@coportional to total input
intensity.

Deim(t) = &3 lo(t —t3) (2.34)
The time shiftts reflects the fact that light striking the BIM travels alongiffietent path
than that reaching detectors D1 and D2; the consiémriginates from coupling factors
associated with that path. If it is assumed that the inpetisity varies slowly with respect
to the time scales, ty, andts, then the factorso(t —tj) (i = 1,2,3) can be replaced by
lo(t). Under such circumstances, it becomes advantageous t@liperthe signal®; and
D, with respect to the BIM:

Da(t) le(t)

Dy = — a2, + @b+ 2a1181 - cosD(t) (2.35)
Deim(t) ~—— lo(t)
X0 %,—/
Ax(t)
Do(t — — — — le(t) .
Dy = 2 _ a2, + a5y + 2a108> el )sm(tb(t) —£) (2.36)
Deim(t) ~—— lo(t)
Yo —V—’A O
Y
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where the barred variables indicate the ratio of an intenf@ter coupling factor to the BIM
coupling factor €.9.,a3, = &3,/83).

Each normalized signal is composed of two contributions-erstant offset and sinusoidal
function (with possibly a time dependent amplitude)—theatgoetrically define a family
of ellipses. For fixed values d§/lo, the output of the interferometer lies along a single
ellipse as shown in Figure 2.8. Ideally, the ellipse is aleioentered about the poifit, 1)
with an amplitude of unity, but in general< I, so the amplitude is less than or equal to the
offset and the system contrast is less than or equal to &inkg. additional complication is
imperfect quadratures(£ 0), which leads to non-circular ellipses.

Conversion from a pointDy, Dy) on the ellipse to the angke is found by taking the ratio
of the sinusoidal terms in Equations 2.35 and 2.36.

cosP(t) = Dx,gi)i(t_)xo
sin(®(t)—¢) = % = sind(t) cose — cosP(t) sine

Dy(t) — Yo Ax(t)
Dx(t) —Xo Ay(t)

tan®(t) = tane + sece (2.37)

Note thatAy(t)/Ay(t) is independent of input power fluctuations.

2.3.2 Limitations

Unlike the WAMI, the conventional VISAR is insensitive tonations of the input inten-

sity, a benefit gained through BIM normalization. After naidimation, the center of a
conventional ellipse is essentially fixed; the ellipse sty vary with changes of the in-
put intensity ratio, but such effects cancel out in the dakon of phase difference. For
purely coherent input, normalized VISAR signals trace osingle ellipse; changes in the
coherent/incoherent ratio move the data across a famifpselbf the same shape.

Since the calculation of phase difference in a conventighahR involves a tangent rather
than a cosine function, many of the limitations of the WAMe aemoved. Bycarefuleval-
uation of the inverse tangent, it is possible to remove the ambiguity from® and deter-
mine if this quantity is increasing or decreasing. Also, ke of quadrature signals avoids
the issues near maxima and minima—since these signals tceinmataneously be zero,
the accuracy in calculating is dramatically improved. The conventional VISAR retains
the 2T phase ambiguity present in WAMI systems, but this ambigsitot insurmountable
(Section 5.4.1).

2Strictly speaking, there are two contrast values in a cotimeal VISAR, but they are typically assumed
to be identical [19].
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Figure 2.8. Examples of an imperfect (solid line) and perfect
(dashed line) ellipse for a conventional VISAR.
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2.4 The push-pull VISAR

A modification to the conventional VISAR was proposed by Hem$20] to improve the
efficiency of light usage. In a conventional VISAR, half oethght entering the system
does not reach the detectors, but is lost by reflectionnéssson to the opposite side of the
primary beamsplitter. This light can be used to drive a sé@®@t of detectors as shown in
Figure 2.9, creating two conventional VISARs (one on eade sif the beamsplitter) and
thus four optical signals. Subtraction between the apjmtgsignal pairs creates what is
known as a push-pull VISAR. Traditionally, subtraction erformed by electronic differ-
ential amplifiers prior to data acquisition. For maximumeinesolution, all four detector
signals can be acquired separately, an approach becomiegommmmon in current VISAR
systems [7].

2.4.1 Principles

For notational simplicity, it is assumed here that the sdqumair of detectors in a push-pull
VISAR are located precisely the same distance from the belgtes as the first pair; if
this is not true, a minor timing correction may be needed ignaithe two signal pairs.
Also, the polarizing beamsplitters are assumed to be aligna similar fashion so that the
same optical polarization is measured by detectors D1A/BABD2A/D2B. The second
pair of detectors in a push-pull VISAR operate in nearly thmes fashion as the first pair
with the exception of a negative sign for one coupling camst&his change results from
different recombination of beams at the beamsplittay.(light from leg 1 is reflected rather
than transmitted). The results from the previous sectiontlcas be applied to a push-pull
system with specific coupling constants for each signal.

Daa(t) = &y lo(t —t1) + 83 lo(t —t2)

+ 2811821/ I(t —t7)l¢(t —to) cosD(t) (2.38)
Doa(t) = &, lo(t —t1) + 83 lo(t —t2)

+ 28108004/ 1c(t —t1)I¢(t — t2) SIN(P(t) — €) (2.39)
Dig(t) = b2, lo(t —t1) + b3, lo(t —12)

— 2b11021+/1c(t —t1)1¢(t — ) cosD(t) (2.40)
Dog(t) = b2, lo(t —t1) + b3, lo(t — t2)

— 2b12D20+/Ic(t —t1)1c(t —t) Sin(D(t) — €) (2.41)

In many cases, no BIM is available in push-pull VISAR systeresther no measurement
of input intensity is made, or if it is, the measurement isrelaacross multiple VISAR
channels. Hence, BIM normalization is not typically penfed in a push-pull VISAR.
Figure 2.10 shows an example of how the four detector sigofaés push-pull VISAR
would appear for steadily increasidyt) and decreasing input intensity.

As in a conventional VISAR, it is convenient to assume thatittput intensity variations
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Figure 2.10.Push-pull VISAR signals.
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of a push-pull VISAR are slow compared to the interferomatansit times.

DlA( ) = (831 +83;) lo(t) + 24118211c(t) cosd(t) (2.42)
Doa(t) = (855+ 85,) lo(t) + 2812820l c(t) SIN(P(t) — €) (2.43)
Dig(t) = (02, +b3;) lo(t) — 2b11bo1lc(t) cosD(t) (2.44)
Das(t) = (b, + b5,) lo(t) — 2b12boolc(t) sin(D(t) — €) (2.45)
Pairwise subtraction of the signals from each side of thelsgiitter results in two signals:
Dx(t) = N1aDaa(t) — N18D1s(t) (2.46)
= [n1a (851 +83)) —n1s (bT1+031) ] lo(t) +2[N1a811821 + M18D11021] I¢(t) cOSP(Y)
X(t) Adlt)
Dy(t) = n2aD2a(t) — N2sD2s(t) (2.47)
= [N2a (83,4 83,) — s (B3, +3,)] |o(t2+ 2 [N2ada2822 -+ Nagbi2byy] |c(t2
Yolt) A;Et)

wheren is a scaling factor for each signal, which can be controllephysical means(g.,
increasing the gain for a particular detector) or numelyicals in the case of a conventional
VISAR, these signals parametrically describe an ellipgeopagh now the ellipse center is
a function of the total input intensity, and can change duthre measurement. To avoid
this complication, push-pull VISAR signals must be propedaled to fix the ellipse center
at the origin (Section 5.2.2).

Dy(t) = Ax(t) cosd(t) (2.48)
Dy(t) = Ay(t) sin(P(t) —€) (2.49)
Note thatDy andDy are symmetric about zero, which by Equation 2.27 corresptmohfi-

nite signal contrast. Since this is meaningless, one tllpioafers to the dynamic contrast
defined in Section 5.3.1.

Following the same logic leading to Equation 2.37, the pltalerence is related to the
reduced push-pull data signals through a tangent function.

y(t) Ax(t)
tand(t) = tane + X(0) Ayt >secs (2.50)
Aside from the fact that the center of the ellipse is locatetha origin, the analysis of
a push-pull VISAR is very similar to the analysis of a convemal VISAR. The overall
size of a push-pull ellipse is proportional to the coheratgnsity, rather than the coherent
intensity fraction, but such variations do not affect thé&cgkation of phase difference as
the ratioAx(t) /Ay(t) is independent offc(t).

2.4.2 Limitations

The push-pull VISAR shares many of the benefits and shortogsnof the conventional
VISAR. With the correct signal balancing, a push-pull VISARnsensitive to variations
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in the input intensity and incoherent light. Phase uncetyais reduced by the use of
guadrature, although therZambiguity remains and must be dealt with just as in a con-
ventional VISAR. The push-pull VISAR has largely supplaht®nventional VISAR in
dynamic compression research, so it is worthwhile to candite relative benefits of each
system. The relative advantages of each system will be dered in three areas: low light
sensitivity, analysis simplicity, and tolerance to rapitensity changes.

For measurements with low coherent intensity, the pushepuafiguration has some advan-
tages over a conventional VISAR. Certainly the push-pustesmn makes the most efficient
use of input intensity, although there is no more than £2times more light than in a
conventional VISAR. This additional light gives a pushipdISAR approximately 40%
better noise performance (Appendix A) over a similar cotieeral VISAR. The push-pull
configuration also has an advantage when large amountsalienent light are present; if
pairwise subtraction is performed prior to signal acgigsita larger dynamic range to the
coherent signal of interest. However, the gains of a pushy8AR come with certain
costs. In addition to the extra equipment needs and alighragrush-pull VISARmustbe
properly balanced in order to achieve the same accuracy @svamtional VISAR. Hence,
one should not assume that measurements made with a pdSHPAR are intrinsically
superior.

From an analysis perspective, a push-pull VISAR is easide#d with than a conventional
VISAR. Conventional VISAR analysis requires an ellipseditietermine the ellipse center,
a step that may be unnecessary (though certainly recommgfod@ well configured push-

pull system. There is also an intuitive advantage to a pushvbSAR because the ellipse
radius is a function of coherent light only—changes in irexamt intensity do not cause
the VISAR ellipse to contract as for a conventional VISAR.

When input intensity changes on time scales comparahlette analysis described above
willyield a transient contrast loss. A revised analysigrigightforward for the conventional
VISAR configuration when an accurate BIM signal is presentalhdetectors are precisely
cross-timed.

52 A2

a a
Di(t) = é121 Deim(t+tz—t1)+ % Deim(t+t3—t2)
3 3
+ 2811821/ I¢(t —t1)l¢(t —t2) cosd(t) (2.51)
A2 A2

a &
Dy(t) = élgz DBIM(t+t3_t3)+§ Deim(t+t3—1t2))

+ 28108004/ 16t —tp)Ic(t — ) SiN(P(t) —&)  (2.52)

By isolating terms containinfg(t) and taking a ratio, it should be possible to extract phase
difference information from the three data signals. Raidations are harder to deal with

in a push-pull VISAR because there is often no direct measitres input intensity. During

a rapid intensity variation, a push-pull VISAR becomes uabeed and the center drifts
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away from the origin. To demonstrate this, consider justaptecal polarization.

Xo(t) = NM1a [831l0(t —t1) + 83410t —t2)] — N1g [BE1lo(t —t1) +b3yl0(t —t2)]
= [N1a831 — N1802] lo(t —t1) + [114851 — N18034] lo(t —to) (2.53)

Except in certain special cases, it is impossible to balanpash-pull for arbitrary input
intensity.
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CHAPTER 3

Optical velocimetry

Optical phase based velocimetry relies on the relativistippler effect [21]. When a
moving object is illuminated with light of waveleng#y, the reflected wavelength is given
> A 1-v/co

Ao 1+v/co
wherev s the object velocity and is the vacuum speed of light; the approximation follows
from the fact thatv/cy is typically less than 0.001. Hence, measurements of reflect
wavelength (or more precisely, the reflected optical phaae)be used to track object
motion.

~1-2v/cy (3.1)

The theory behind optical velocimetry is developed herdied stages. First, the forward
problem is considered to show how known object motion candsel io predict the re-
sulting changes in optical phase. Next, the forward probemverted to demonstrate a
process for extracting velocity from measured optical pledsanges. The general result is
then reduced to a simpler form, denoted here as the VISARoa&ppation, that relates the
velocity of an object directly to an interferometer measuzat.

3.1 The forward problem

Suppose that an object of interest is a reflédctdmegligible thickness located at position
X(t) at timet. At an arbitrary reference positioq, chosen to be always to the right of the
object, monochromatic light is emitted at timpeas shown in Figure 3.1. This light reaches
the object at timeg, is reflected, and returns to the reference plane attime

Throughout this discussion, it will be assumed that the abjelocity is always substan-
tially smaller than the speed of light. As such, terms caritg powers ofv/cg)? or higher

will be neglected. Although the Doppler shift is often dedwith assumption of constant
object velocity, this is not necessary when dealing withagptphase, which is frame in-
variant [16]. Hence, the general result derived here do¢place any limits upon the

LApart from practical detailse(g.,optical relay design and efficiency), the reflector may besze or
diffuse. This is one advantage of the VISAR over a Michelsaerferometer [22] for open beam optical
relays.
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Figure 3.1. Light transit in an optical velocity measurement.
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magnitude of acceleration, although it is assumed thaemely large accelerations exist
for only brief intervals so that < ¢g.

3.1.1 Reflected optical phase

The output optical phase at tigis equivalent to the input phase at titlag23], aside from
a possible phase del@y, from the reflection (assumed to be constant). For monochroma
input, this equivalence can be expressed as follows.

¢(tc) = @n(ta) — Om
= tota+ @ — dn (3.2)

Events ata andtc are separated from the reflectiontgby a durationr :

ta=tg—T c=tg+T
7o X Xe) (3.3)
Co
so the output phase is related to the object position at diee@me.
¢(tc) = wo(tc —2T) + @ — &
2
= W tc—%(xr—X(tc—T» + @ —%m (3.4)

A VISAR does not measure optical phase, but rather the phtiseedce (Chapter 2):
P(t) = gt —t1) — @t —tp) (3.5)

wheret; andt, are the interferometer transit times. Using Equation 3vasp difference
can be expressed as:

D(t) = 2%0 [% (tp—t1) +X(t —tg — T1) — X(t —tg—Tg)]
= j_: [% (to—t) +X(t—t1 —T1) —x(t —to— Tz)} (3.6)

whereT, represents the transit time of light from positigft — t; — T;) to the reference
position, now located at the entrance plane of the intenfieter.

The value ofT; can be determined from Equation 3.3.
_ X —X(t-t—T)
Co

The actual transit times are rarely needed as changgsaire bounded by the maximum
position change during an experiment of duratigp

T

(3.7)

AX v,
AT < %= g‘oaxtexp (3.8)
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Variations inT; are generally small compared to diagnostic limitationsrotighout this
work, it is assumed thd can be treated as a constant; for higher timing precisiergtive
evaluation of Equation 3.7 must be performed.

The interferometer transit times are related by the interfester delayr:
th=t1+1 (3.9)

wheret; is usually constant. Ideally is also constant, but this quantity can vary with
velocity if the interferometer contains dispersive comgats (Section 5.1.2).

T=T1p <1+25V(t_t1C;T_T)) (3.10)

The dispersion free delay is given lny, the dispersion magnitude kY, and the object
velocity by v(t). The Taylor series expansion gft — 1) differs from x(t — 1p) only by
terms of order(v/cp)? or higher; also, dispersive variationsirare of opposite sign from
the changes in the transit tinffeand partially cancel. Thus, it is reasonable to replace
X(t — 1) with x(t — 7o) andv(t — 1) with v(t — 19) in Equation 3.6.

D(t) = j_ﬂ% <1+25V(t_t1;OT°_T)) FX(t—t,—T)

—x(t—tl—ro—T)} (3.11)

For notational compactness, a new quarityill be used to eliminate constant time shifts.

X({t)=x(t—t—T) (3.12)

o) = 21 {@ <1+ 25@) X () - X(t— r@] (3.13)

In later chapters, the primes will be omitted, but they atained here to remind the reader
of the fundamental time shift between object motion and tkasured signals.

Given a known motion history, Equation 3.13 describes plifference at an operating
wavelengthAg and delay timerg. At any given time, phase difference is dictated by the
current position as well as the position at a timeearlier. Forward analysis can also
be used when object motion history is expressed by a knowetiamwith a finite num-
ber of adjustable parameters; these parameters would bstedjto optimally match the
measured phase difference. However, such analysis is netgé used in velocimetry
measurements because it is relatively slow and does noamgeg a unique solution.

2Motion towards the interferometer corresponds to an irsgredr (for & > 0) but a decrease if; similar
logic applies for motion away from the interferometer
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3.1.2 Physical interpretation

To develop some physical intuition, suppose that disper&Emegligible in a particular
VISAR measurement.

4 coto

() =31

FX(t) =X (t— r)] (3.14)

The first term is a constant that is independent of motion. fin@ary concern of this
discussion is value of (t) — X (t — T).

When an object is at rest, Equation 3.14 indicates that thesared phase difference will
be a constant. Furthermore, measurements at constanitysimid a different constant
phase.

®(t) ~X(t)—X(t—1)=Vvr (constant velocity) (3.15)

A particular velocity corresponds to a certain phase dffiee, so it follows that changes
in velocity are linked to changes in phase difference. Siheephase difference scales
with product of velocity and interferometer delay, it is pifide to configure a VISAR to
optimally track a particular velocity range.@.,choosing a large delay time for small ve-
locities).

The qualitative behavior of a VISAR make it a “velocity infienometer”. If the object under
study formed one leg of a Michelson interferometer [22],gghdifference would change
with displacement, making it a “displacement interferoenet Velocity interferometers
are better suited for the study of fast moving objects asligghanging phase differences
from a displacement interferometer may be difficult to traldiowever, the term “velocity
interferometer” may be misleading as VISAR data can be aedlyn terms of velocity or
displacement. Aside from numerical issues discusseddatehe two analysis approaches
are identical.

3.2 The inverse problem

Velocimetry measurements are the inverse of the above sfiEmu—given a measured
phase difference, the position [24—-26] is determined; cilanay then derived by nu-
merical differentiation. Conceptually, there is littldfdiulty in inverting Equation 3.13.

X(t) =%(t—ro)+2—7(;¢(t)—% <1+25%) (3.16)

The inverse problem is iterative because the result at tidepends on conditions at an
earlier timet — 179. Before delving into the details of the iteration, one must §pecify an
initial condition to begin the calculation.
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3.2.1 Initial conditions

Suppose that an object moves at a fixed velogifgr t <t;. The object’s position & may
then be written as follows.

X (t) =X (t — 10) + &(D(ti) L <1+25W) =X (ti — To) +ViTo

4 2
Ao, . Colo \

This expression can be used to write the initial phase @iffee in terms of the initial

velocity.
() = 2T 2+ (1+o) (3.18)
Ao L2
Note that the value ob(t;) may drift due to the thermal/mechanical variations in ttterin
ferometer. Such variations are general slow compared &tidarof a single measurement,
but may be significant between measurements. Hence, therimamalue ofd(t;) is al-
ways calculated from the initial quadrature signals in a ARSmeasurement, not from

Equation 3.18.

By convention [27], interferometer measurements are agaiekin terms of a fringe shift
F(t), which describes the change in phase difference at a plartittsme from the initial
phase difference (normalized by a complete phase revalutio

_ ) —(t)
F(t)= —om (3.19)
D(t) = D(t;) + 27T (t) = 4}\—"20 %+ (1+ )| +2nF (1)
Equation 3.16 can be rewritten in terms of the fringe shift.
X(t)=X(t—10)+ (1+ )10V, + )\—ZOF (t) —d1oV (t — 10) (3.20)

To begin using Equation 3.20, the initial condition positid(t;) must be specified. Since
X (t) is usually differentiated to yield (t), the value of(t;) is arbitrary and typically set
to zero.

3.2.2 lterative analysis

Inverse analysis relies on iterative analysis of the frigigiét data. Analysis begins att;,
and proceeds throughout the fringe shift record. At a paldrctimet, the current position
is determined from the current fringe shift, the positioh-atry, and the velocity at — 1o.
Interpolation may be required if the time baseFqt) is not compatible withrg, but in
principle, the calculation is straightforward.

Although inverse analysis provides a potentially exactdpson of the object’s motion,
there are practical difficulties that limit the utility ofithmethod.
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1. Signal noise
Noise is a problem for numerical differentiation, which e&sded to convert position
to velocity and to evaluaté(t — 1) in dispersive systems. Hence, velocity noise will

be substantially worse than signal noise.

2. Missing data
Intervals of missing fringe shift data, such as when cohieasompletely lost (Sec-
tion 5.3), present problems for inverse analysis. If therval is very short, posi-
tion change may be negligible, so it might be permissiblekip sver the missing
data [26]. Extended periods of missing data, however, wbelanore difficult to
handle.

Thus, it is often impractical to apply inverse analysis tol8AR measurement.

3.3 The VISAR approximation

It is often is desirable to calculate velocity directly fralhe measured fringe shift. This can
be done using an approximate analysis for time scales mugérlthanty. Such treatment
is known as the VISAR approximation, an approach used in otetst reduction schemes.

3.3.1 Derivation

Suppose that the positiot) is an analytic function [28], so that the function at titnean
be represented in terms of a Taylor series expansion from.

2 . 3
X(t) = X(t — 19) +V/(t — ro)ro+a’(t—ro)ﬁ+ dat-t) , .

2! dt 3! (3-21)

Hered (t) is the objects’s acceleration. Substitution of this exgansto Equation 3.20
eliminates the term(t — 1o).

2
15

13
V(t—T10)To+a (t—T0)5 + dat=t0) % .

b= (L 8)10Y + 2R (1) — STov(t — 1)

2! dt 3!
(3.22)
This leads to the following expression @t — 19):
V(t—T10) :\/+LF(t)—a’(t—ro)L
' 2(1+9)10 2!(1+9)
K
_ 2

_dd{t-1) 1B (3.23)

dt  31(1+9)

whereK is the fringe constant or VPF (Velocity Per Fringe) of theenférometer.
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Truncation of Equation 3.23 yields the most basic form of\fl@AR approximation.
V(t—10) ~ Vi +KF(t) + O(10) (3.24)

The reasoning behind this truncation is thigts typically a small number, so terms that
scale withtp are negligible, especially in comparison witfitd. In many cases, the time
shift is omitted, leading to another form of the VISAR apgroation.

V(t) =V, + KF(t) + O(To) (3.25)

Higher accuracy is possible if one considers a Taylor sexpansion of velocity from time
t — 1o tot — y1p, Wherey is a constant.

da(t—10) (1—y)%13
dt 2!
Combining this expansion with Equation 3.23 yields thedwihg series.

V(t—yo) =V (t—1T0) +&(t— o) (1~ y)To+ +- (3.26)

V{t— yio) =V - KF (1) + (1— y- 2'<171+5>) (t - 70)1To

(1-y)? 1 da(t—1o) »
+< 2l _mu+®) g ot (320

Choosingy = (1/2+0)/(1+ &) ~ (1+ &)/2 forces the acceleration term to zero, so a
truncation of the series has an error of ordér

V(t — yTo) = Vi + KF (t) + O(13) (3.28)

This is the standard form of the VISAR approximation [27thalugh in practice Equation
3.25 is commonly used in data reduction. Examples in the sigsection demonstrate
when the distinction between approximations is important.

The VISAR approximation has many practical advantagesioverse analysis. Foremost
among these is the fact that velocity is directly proporicto fringe shift. This simple
relation avoids iteration and makes the calculation faramobust. Noise amplification is
no longer an issue as signal noise translates directly titglnoise. Missing data is also
not an issue in the VISAR approximation—picking up the ckdttan after momentary or
extended periods of contrast loss is trivial.

The disadvantage of the VISAR approximation lies in its iighto track motion changes
on time scales comparable tg. This is not an issue when the interferometer delay is
shorter than the diagnostic time resolution, but is becgnain issue in modern VISAR
systems [8]. Truncation of the Taylor series leading to HEQua3.28 assumes that next
term in the series is substantially smaller than the VISA$dhgtion (Section 5.4.2).

da(t—1o) Tg K . .

v YO eK(FS ——

i 24 <K (0F) < 100200 (no dispersion)
dd(t—19) Ao
<
dt 1078

(3.29)
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For sufficiently small values add /dt, the VISAR approximation is reliable. Although it
is tempting to generate higher accuracy by consideribg 1/4) (i.e. Richardson extrap-
olation [29]), refinements achieved by this process arevib&n the motion history is not
analytic.

3.3.2 Examples

To illustrate the performance of the VISAR approximatiodiferent time scales, consider
an ideal case where an object moves with a linearly incrgasfocity that terminates at a
maximum value/y, at timet,.

0 t<O0
t
V(t)= V- 0<t<, (3.30)
r
Vm t>t

Suppose that this motion is tracked by a dispersion free R$#Ath delay timety and
fringe constank. To eliminate the use of specific values #r&ndvy, the problem can be
formulated in terms of normalized quantities:

To Vim 9T

which lead to normalized expressions for the inverse arsaéysl VISAR approximation.

KO =xT-1)+F () (3.31)
Uf-1/2) ~F(1) (3.32)

The normalized motion history is given by the following eggsions.
0 (f<o
Vi)=<¢ f/g 0<f<g (3.33)
1 t>g

For this specified velocity, the displacement may be detezthanalytically:

0 t<o
fH =< t?/29 0<i<g (3.34)
t-g/2 f>g¢

and used with Equation 3.31 to determine the resulting érisigjft. The calculated fringe
shift may be then be inserted into Equation 3.32 to deternvetaity given by the VISAR
approximation.

When the rise time is substantially slower than the interfegter delay, as shown in Figure
3.2(a) fort; = 10 19, the standard VISAR approximation (shifted y/2) is a very good
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Figure 3.2. VISAR approximation examples.

Normalized time

(a) Slow velocity risetf = 10 1p)
(b) Moderate velocity riset{= 1)
(c) Fast velocity riset{ = 19/10)
Thin black lines show the standard VISAR approximationftsti

by 19/2), while thin gray lines show the unshifted approximation.
Heavy lines indicate the specified velocity histories.
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match to the actual velocity. The unshifted form of the agpration lies to the right of the
input history but has a similar shape; the remaining formhefapproximation, where ve-
locity is time shifted byrg, would lie to the left of the input history by the same amounat
shown). Whertg is smaller than the measurement time resolution, the difiez between
the different forms of the approximation can be neglectedweler, if precise timing is
required €.g.,traversal time measurements), it may be important to usentire accurate
version of the VISAR approximation. Otherwise, all threenfie of the approximation are
largely interchangeable.

As the velocity rise time approaches the interferometeaydéme, differences between
the actual and calculated velocity begin to appear. The&alitaset, = 19 is shown in
Figure 3.2(b) to illustrate this point. The midpoint of thESAR approximation crosses the
midpoint of the input history, and at this intersection thapss are equal.However, there
are significant deviations during the initial and final pong of the ramp. For rise times
faster than the interferometer delay, the VISAR approxiomeits a poor representation of
the true velocity history. Figure 3.2(c) demonstrates tbisthe casd, = 79/10. Once
again, the VISAR approximation crosses the original his&ithe midpoint, but that is the
extent of their agreement. The slope of the VISAR approxiomas substantially different
than the original history, and the approximation indicatessiderable velocity prior to
actual motion.

For situations where the VISAR approximation does not woell welocity can be cal-
culated using inverse analysis. In the absence of noisersavanalysis reproduces the
specified velocity history within numerical precision. leal measurements, the fringe
signal is a combination of actual motion and random fluctuetie.g.,detector noise).

F(f) = Fnpu(®) +Aa(t) (3.35)

HereA represents the noise amplitude and) is a random function with a mean value of
zero and variance of unity. Combining the forward calcolat{Equation 3.33) with this
random function produces a noisy fringe shift, which can beduin the inverse analysis
to calculate the position history. This result can then beenically differentiated for a
meaningful comparison of the inverse analysis and inpubiys

Based on the examples shown in Figure 3.2, there is littletpoiapplying inverse analysis
to situations wherg > 1 as the VISAR approximation does an excellent job with little
effort. To illustrate when the inverse analysis might oufipen the VISAR approximation,
consider the casg = 19 with a relatively low noise amplitude (0.1%). Several exéesp
of this case are shown in Figure 3.3(a-c). In plot (a), v&jois calculated from a central
finite difference method [29]:
v(t) = X(t+ts) — X(t —ts) (3.36)
2s

wherets is the time interval between data points € 179/10 in this example). Inverse
analysis provides a reasonable reconstruction of the ihistidry, with minor deviations

3This agreement results from the fact the VISAR approxinmaiaccurate twg. Itis large values of jerk
(da/dt)—such as the velocity ramp corners—that cause problemsheacceleration itself.
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Figure 3.3. Inverse analysis examples.

(a-c) Moderate rise times (= 19) and low noise A = 0.1%)

(d-f) Moderate rise timeg,(= 1p) and moderate noisé\(= 1%)
(g-i) Fast rise timest( = 19/10) and moderate noisé & 1%)

Thin black lines show the inverse analysis for a given ingstiy
(heavy black lines) and noise level. Thin gray lines indictite
unshiftedVISAR approximation, which is proportional to fringe
shift, for comparison.
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at the beginning and ending of the ramp and some oscillatiotise steady state. These
oscillations are of order 1-2%, and represent a conside(abl- 20x) amplification of the
fringe shift noise. This shortcoming of numerical diffetiation is a fundamental concern
in any inverse analysis of VISAR data.

The difficulties in performing an inverse analysis are shamore dramatically in Figure
3.3(b). In this case, the sampling interval is decreased iy 10 to 79/100 with the same
rise time and noise levels as Figure 3.3(a). This changeeirséimpling rate corresponds
to substantially larger steady state noise20%) because the finite difference algorithm
is sensitive to small variations in neighboring sample o{eimilar effects can be seen in
Ref. 26). One solution for this problem is to perform the dative over time scales larger
thants, reducing the effect of point to point noise in the derivaialculation. A convenient
way of implementing a derivative time scale is to perform deseof polynomial fit§ at
each point of the calculated displacement:

it (t) = iaa(t) t (3.37)

whereg;(t) is determined by a least squares fitxgf) over the range —ty/2 <t <t+
ty/2. In addition to smoothing, the use of local polynomial ffigtiprovides an analytic
representation of the velocity.

v= 30 S 1) b2 (3.38)
it 2, -
The refined derivative, shown in Figure 3.3(c), is substdigtbetter than Equation 3.36 at
dealing with noise. In fact, the refined derivative worksrelsetter at higher sampling rates
(for fixed values oty), although there are practical limits as to how smatian be made.

To illustrate the process of selecting a proper valug,afonsider a moderately noisy signal
(A = 1%) as shown in Figure 3.3(d-f); apart from larger noise lleiee input history for
these plots is identical to Figure 3.3(c). In Figure 3.3é&djmall derivative timet§ = 1o/10)

is used to allow filtering over approximately ten points éléthat the sampling interval is
To/100). Although the calculated velocity follows the gengrath of the input history, the
noisy result & 20%) is hardly a worthwhile gain over the VISAR approximatid.arger
derivative time scales, such gs= 1p/2 (Figure 3.3(e)), lead to more reasonable results,
but it is imperative thaty not be too large. In Figure 3.3(f), the derivative time isesgual
to 1p, yielding a result that is quite similar to the VISAR appnmation. Similar results
can be obtained for faster velocity changes as shown in &i818(g-i), where a velocity
history fort; = 79/10 (A = 1% andts = 179/100) is analyzed with derivative times of/10,
To/5, andrp respectively (1% noise levels amg/ 100 sampling).

The tradeoff between accurate rise times and smoothneksais by makingy large, the
results are typically smooth but have a slower rise time. Joa would be to choosg

4This process is similar to a Savitsky-Golay filter [30], bahdoe implemented in a different fashion to
avoid redundant calculations. Linear fits were used to yeddresults shown in Figure 3.3.
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such that it is no smaller than it needs to be. Obviously,dissussion uses an advantage
unavailable in most experiments—the input history is alyelnown—Dbut there are con-
straints for choosing a reasonable rise time. For a lindacitg ramp (Equation 3.33), the
fringe shift rise time equals the sum of the true rise timethiednterferometer delay, so an
estimate of, can be made by subtracting from the measured rise time Bf(t). Further
refinement is possible by performing the calculation fofedént values ofy to determine
the maximum value that does not substantially broaden tleeiyeramp. In general, the
time scales in a calculation should obey the following rules

ts < td S tr S To (339)

There are limits on how well ultrafast velocity changes cardbtected, even with inverse
analysis. Very fast eventg.g.,7/100) correspond to only minor differences between the
measured rise time ar@, and at some point such differences will be indistinguishab
The precise limit depends upon the detection/acquisity@tesn, but roughly speaking,
changes faster thar /100 would be difficult (if not impossible) to extract.
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CHAPTER 4

Velocity corrections

In the preceding chapter, it was assumed a VISAR system mesathe actual velocity
of interest. However, a VISAR is only sensitive to changesptical phase difference,
and different types of motion can yield the same phase diffeg. Apparent velocity,
denoted here with a«” superscript, is the result obtained from the VISAR appnaiion
(Equation 3.28) or the more general inverse analysis (kou&t20). With knowledge of
the measurement configuration, it is possible to correcMiISAR result and obtain the
true object velocity. Note that the distinction betweenappt and true velocity is not
unique to the VISAR, but applies to any optical phase measent.

Recall that reflected optical phase is equivalent to thetioptical phase at an earlier time
(Section 3.1.1):

P(t) = @(t—2T") + m (4.1)
wereT* is the apparent transit time between the object and a fixederete plane. Mea-
surements where illumination and/or reflection is not ndrtim@ object’s motion, or when
light must pass through an optical window, may have a diffetensit time but yield the
same optical phase:

@(t) = @(t—T1—T2) + Om (4.2)
whereTy is the transit time from the input plane to the object apds the transit time from
the object to the output plane. Apparent and true motion earelated to one another by
equating the two expressions for optical phase, which iespiihat the total transit times

must be the same.
T+ T2

T*
2

(4.3)

This chapter derives two important classes of velocityexdion. First, the problem of non-
normal incidence and reflection is described. Next, cawastoriginating from optical
windows are treated.

4.1 Angular illumination and reflection

The optical relay in a velocity measurements rarely matthesdeal configuration (Fig-
ure 3.1), where all light paths are parallel to the objecttgion. Non-normal illumination
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and reflection usually lead to minor differences betweerafigarent and true velocity, but
there are situations where the correction is importanthAtery least, the correction pro-
vides an estimate of the limiting velocity precision. Fagkangles, the apparent velocity
correction can reveal both longitudinal and transverseanot

4.1.1 General problem

Consider the reflection geometry shown in Figure 4.1. At &itrary timet, a small area
element of a reflective surface, shown here as a point, isdd@horizontal distanceand
vertical distancey from its initial position att = tj. Light strikes this point at an angl&
(from the horizontal axis) and reflects at an an@eAll points on the surface are assumed
to undergo the same displacement; if this is not the casefotloeving results must be
averaged over all displacements that contribute to the uneasent.

For each location of the object point, the optical transitetiequals the difference between
the initial transit time (subscripi™®) and the change in the optical path length.

L1+L
Ti+Tr =Ty + Ty — LT=2

(4.4)

Assuming that the object moves slowly compared to the spklaght, the apparent transit
time may be approximated from Equation 3.3.

T = =T - (4.5)

Using Equation 4.3 and the fact thai2= Ty; + T leads to the following expression.

., L+l
X =
2

(4.6)

From the geometry shown in Figure 4.1

L1+ Ly =H(sin(n — 61) +sin(n + 62))
= H (sinn cosB;, — cosn sinb + sinn cosB, + cosn sinBy)
= X(cosB, + c0sH;) 4y (sinB2 —sinby)

so the apparent position of the mirror may be expressed as:

X' = )—2( (cosB, +cosby) + 3—2/ (sinB, — sinBy) 4.7)

which yields the following apparent velocity.

vV

5" (cosB, +cosby) + % (sinB, —sin6y) (4.8)
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Figure 4.1. Non-normal illumination and reflection geometry.
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4.1.2 Diffuse reflectors

Suppose that a diffuse surface is illuminated normafly=€ 0) and the reflected light is
collected over range of angles, as in many fiber coupled meamants [31]. For light
reflected at anglé,, the apparent velocity is given by:

1+ cosb,

\fk:Vx 2

(4.9)
where it is assumed (for now) that the mirror has a transweskxity of zero. 1f6, < 6y,
and 6y, is sufficiently small, one can estimate the apparent veldmjt substituting the
average angley,/2) in the above expression. Fé@y < 7°, the apparent velocity correction
is less than 0.1% [31].

For larger angle measurements, the apparent velocity neuavéraged over the reflected
radianceL. For a perfectly diffuseife. Lambertian [14]) surfacel, is a constant at all
angles, so apparent velocity is simply averaged over the anjle.

Wy=4—— (4.10)

For azimuthal symmetry, this can be reduced to a simple form.

Om
/ (1-+ c0s6,) sinG, d6;
Yy Jo :k<1+l+cosem) 4.11)

wy=%h
2 / sing, d6, 2 2
0

This correction is important when a fast lens is used to amed¢he amount of light reaching
the VISAR [32]. For example, & /1 collection lens @, ~ 26.6°) leads to a velocity
correction of 26%.

In general, the apparent velocity is a function of both Itundinal and transverse motion
of a surface. For normal illumination and reflection, velponeasurement is insensitive to
the transverse motion:

V] = Vi (4.12)
whereas reflection at an angle involves both velocity corepts
Vi vy
Vi = > (cosB,+1) + > (sinBy) (4.13)
This analysis has been applied to diffuse reflectors [33] el surfaces deposited with a
diffraction grating [34]; in the latter case, light collem is restricted to specific angles

determined by the grating density, but otherwise the amiysimilar.
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4.1.3 Specular reflectors

The apparent velocity relationship for a specular surfége= 6,) is quite simple.
V' = vy cosb; (4.14)

When a specular surface is illuminated over a range of angieegjration is performed on
either the illumination or the collection angle, whichei®more restrictive. For uniform
illumination over a maximum angl@, and azimuthal symmetry, the apparent velocity may
be written as follows.

6m
/ cosOsinB6 do v
(V) = vy 20 - :5"(1+c059m) (4.15)
/ sin6 do
0

In this case, the correction is less than 0.1%#6égr< 3.5°; this range is smaller than for a
diffuse reflector because angular corrections occur diratly illumination and collection.
Note that specular measurements are insensitive to tresgsweotion at all illumination
angles.

4.2 Window corrections

An important class of velocity corrections occur for measoents that involve optical
windows. Light passing through the window travels more $jawan it would in vacuum,

altering the optical transit time and leading to substamgétocity corrections. Window
corrections are typically much larger than angular coiest so the latter will be omitted
from the discussion.

4.2.1 General problem

Suppose that the light path in a velocity measurement amntaidielectric window as
shown in Figure 4.2. For normal incidence and reflection ditteal and apparent transit
times may be written as follows.

x;* RV
T*:/ dX _ % —x(t) (4.16)
x*(t) Co Co
xt)  dx X dx X dx
T T:—/ _ax /7z2/7 4.17
1+ 12 % cl(x’,t)+ x(t) C2(X, 1) x(t) C(X 1) (4.17)

Herec (i = 1,2) is the local speed of light during the-th transit; if all motion in the
measurement is much slower than the speed of light, thesgidus are essentially the
same. Substitution of these expressions into Equationiél8sythe apparent position in
terms of the real position and local refractive index cp/c:

X=X (1) = /X:) (X, t)dxX (4.18)
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reflecting free reference
surface surface plane

Figure 4.2. Velocity measurement through a window.

Table 4.1.Common window corrections

Material Correction &) Reference
z-axis quartz 1.083 (514.5 nm) 35
c-axis sapphire 1.76 (532 nm) 36
1.786 (532 nm) 37
1.783 (532 nm) 38
1.785 (532 nm) 39
a-axis sapphire | 1.844-1.896 (514.5nm) 40
(100 lithium fluoride 1.281 (514.5 nm) 41
1.280 (532 nm) 36
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which may be differentiated to determine the apparent wgloc

VA (t) = —% UX:) n(x’,t)dX} (4.19)

For the configuration in Figure 4.2, Equation 4.19 can bedéiinto two integrals, one
from the mirror to the window free surface locatedkgt) and the other fronxs(t) to the
reference plane [38,42,43].

Xs(t)
Vi (t) = —% Uxmt (X, t)dX + (% —xs(t))]

Xs(t)
-4 [ / . n()(’,t)d)(] vilt) (4.20)

Herevs is the window free surface velocity. Reduction of the renmgrintegral requires
some knowledge of the refractive index profile in the winddMave propagation simula-
tions can be used to validate a particular refractive indexdehfor a prescribed loading
history, but in practice, window corrections are obtainedlgtically from one of the spe-
cial cases described below.

4.2.2 Shocked windows

Equation 4.20 can be greatly simplified when the window is p@ssed by a single shock
wave. Shock waves are nearly discontinuous compressiptigflravel at a fixed velocity
D in the lab frame. Behind the shock front, material is comgedsto a constant state
that travels at the mirror velocity; ahead of the front, thatenial is at rest. Under these
conditions, Equation 4.20 can be written as follows:

d

\fk:—&

N(xp(t) —X(t)) +no(xs —Xp(t))] (4.21)
wheren is the refractive index behind the shock froxg(t) is the shock front positiomg

is the refractive index ahead of the shock front, ag the window free surface position
(assumed to be constant). The resulting time derivativeiges a simple relationship
between the real mirror and shock velocities and the appariror velocity [44].

vVi=n(v—-D)+npD
=nv—(n—ng) D (4.22)

The arrival of the shock front at the window free surface desnthe apparent velocity
correction, and provides a distinct timing fiducial that denused to calculate the shock
velocity [35]. If the compressed refractive index is knowhgn the true mirror velocity can
be determined.
v Vi+(n—ng) D
n

(4.23)
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Alternatively, the compressed refractive index can berdatesd if the true mirror velocity

is known. iy b
—No
= 4.24
n=—-75 (4.24)
When combined with the jump conditions [1], this result mayused to determine refrac-
tive index as a function of density.

Under strong shock compression, an initially transpareateneal may become conductive
and highly reflectived.g.,deuterium [45]). This changes the apparent velocity catcah
as light is reflected by the shock front rather than the oalgimterface. Reexamination of
Equation 4.20 shows that the correction is simply the réfradndex ahead of the shock
front.

D" = —% [No (Xs—Xp(t))] =no D (4.25)

4.2.3 Linear window materials

If the refractive index of the material is a function of locinsity only:
n=a+bp (4.26)
then the apparent velocity can be expressed as follows 23833

V= —% a(xs(t) —x(1)) +b/x(xjp(>d,t> dx] +ve(t) (4.27)

The density integral is proportional to the total mass ofwireow, and by mass conserva-
tion has a time derivative of zero (regardless of the winda¥ensity profile).

Vi(t) = —a(vs(t) —v(t)) +vs(t) =av(t) — (a—1) vs(t) (4.28)
The true mirror velocity is thus linearly related to the aggud velocity.

Vi) +(a—1) vs(t)
a

v(t) =

Several common window corrections are given in Table 4.1.

(4.29)

When the window free surface is stationary, velocity cdroes can be incorporated into
the fringe constant. For example, the “sapphire VPF” of VIRGA the actual fringe constant
(the “free surface VPF”) divided by the window correction &apphire. Although this

approach is convenient in many situations, caution is requf the free surface begins to
move during the experiment. When light passes through nmareane window, additional

care must be taken to use the proper correction during eagk sf the analysis.
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CHAPTER 5

VISAR characterization and performance

Beyond the underlying interferometer theory presentedhap@er 2, interpretation of a
VISAR measurement relies on interferometer characteoizeand performance assess-
ment. Characterization describes measurements of thdeirdmeter and its output sig-
nals needed in the analysis process, the most important@eaineing the delay time and
ellipse parameters. Performance assessment reveals Hba MKSAR operates during
a measurement, and can be described by dynamic contrashaniniting fringe shift
precision.

5.1 VISAR delay time

The delay time of a VISAR is defined by the condition of equaiual length (Section 2.2).
Although the interferometer contains distinct physicahdangthd_; andL, (correspond-
ing to interferometer legs containing M1 and M2 in Figure)2the virtual distance of the
second leg is shortened by the etalon. For maximum accutfaisyrelationship must be
corrected slightly to account for dispersion effects anidyein other components of the
VISAR.

5.1.1 Ideal case

The condition of equal virtual lengths may be expressed as:

L1:L2—h+2 (5.1)

whereh is the physical length andlis the refractive index of the etalon. The total transit
time of the first leg is simply the ratio of path length to thewam speed of light:

t1=2L1/Co (5.2)
while the total transit time for the second leg involves ttean'’s refractive index.
Lo—h nh)
th=2 +— 5.3
’ < o | 5.3)
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Combining these transit times with Equation 5.1 yields thkay time, which is purely a
function of the etalon’s size and refractive index.

2h 1

VISAR etalons are typically of order 0.1 m in length, yieldidelay times of less than 1
ns. With some effort, longer delay times are also possiljle [8

5.1.2 Dispersion correction

Systematic errors of several percent are often found wheVtBAR delay time is cal-

culated from Equation 5.4 [46]. These errors stem etalopedsson, a subtle effect over-
looked in the preceding analysis. To account for disperstas important to distinguish

the unshifted laser light in a VISAR (which is used duringiadisetup) from the Doppler
shifted light collected during a measurement.

For unshifted laser light, the condition of equal virtuatipkength (Equation 5.1) is given
in terms of the refractive indexat the laser operating wavelengtf

L1:L2—h+2 (5.5)

The first interferometer leg is assumed to be free of disperso the traversal time is
similar to the original derivation (Equation 5.2). The sedanterferometer path contains
the etalon, so the transit time depends on the refractivexing which may be different
from n due to Doppler shifting.

2
= (L2—h+n'h) (5.6)
B ~2h/, 1

T=t,—t1 = % (n n) (5.7)

Doppler shifted wavelengths (Equation 3.1) in a VISAR measient are not substantially
different from the laser operating wavelength, so it is opable to defina’ by a linear
expansion abouwg.

dn

(A —Ao) =N-— (2/\0—

n’~n+@
- dA

dA

V
A0> o (5.8)

The Doppler shifted interferometer delay can then be writis

\% \%
N %] =Tp <l+ 26%) (5.9)
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whereTtg is the unshifted delay time anilis a dimensionless parameter for a given etalon
material and operating wavelengtihg.,0 = 0.0339 for fused silica at 514.5 nm [46]).

n dn

°= 1M anl,

(5.10)

Note that in a dispersive VISAR, there is no single delay timstead, the interferometer
delay depends on the velocity at an earlier time. This stybtleops out of the VISAR
approximation (Section 3.3), leading to a simple correctbl+ & in the fringe constant.
Inverse VISAR analysis (Section 3.2) does not lead to sutiplgication, and dispersion
effects are much harder to deal with than in the VISAR appnation.

5.1.3 Precision considerations

Fringe constant precision is dictated by the charactéoizaif the VISAR delay time. In
principle, the delay could be measured directly by timing ffassage of a laser pulse
through the interferometer. However, such a measuremeunldwequire extremely fast
pulses and detector systems to achieve the precisionatttaiwith physical measurements
of the etalon. For a well characterized etalon, the fringestant can be determined to
within 0.1% [31].

For maximum precision, the delay time calculation mustudel all unbalanced elements
of the VISAR system. The /B wave plate and primary beamsplitter are key examples of
unbalanced elements. The total delay time is given by thensation of the individual
delay times of each element, which are assumed to all beioedtan the second leg of the
interferometer.

\ \ \Y
T=Te <l+ 26(:_\%) + Twp <l+ Zd/vp%) + Tps <l+ 26035) + Tm (511)

The unshifted delay times for the etalory) and wave plat¢t,p) are given by Equation
5.4; for the beam splitter, the unshifted delay time is h&Equation 5.4. The final term,
dm = 2AL/cp, represents the time delay arising from mirror misplaceme€@ontributions

from each element can be collected into a total unshifteaydrl and effective dispersion
0 to match Equation 5.9.

To = Te+ Twp+ Tps+ Tm (5.12)
T T T

5— OeTe+ OwpTwp + OpsTbs ~ & (5.13)
Te+ Twp+ Ths+ Im

Since the etalon tends to be substantially larger than ther @iements, the effective dis-
persion is approximately equal to the etalon dispersion.

As an example, consider the error created by a mirror mispt@ntAL in a VISAR system
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with an intended fringe constalp.

Ko— =20 k- Ao

07 21+ 9)te T 2(1+ 0)(Te+ Tm)
K 1 Ko AL
ST 141+ 8)2 5.14
Ko 14 1Tm/Te (+ )Co)\o 514

The correction scales witk /co, so large fringe constants require precise mirror pregisio
to maintain reasonable uncertainty. For a 1 km/s fringe taonisthe interferometer must
be constructed to better than 75 wavelengths (about 0.04 aniyf= 532 nm) to attain
0.1% precision.

5.2 Ellipse parameters

The basic function of a VISAR system is to determine the pliference®(t) from the
quadrature signalSx andDy.

D (t) _yOAx
tan®d(t) = tane + 2" "X sece 5.15
®) Dyx(t) —Xo Ay ( )

Obviously, this calculation requires knowledge of ellipsgameters-, Yo, Ax, Ay, and
e—for a particular interferometer configuration. Idealhg VISAR ellipse should be made
to be a perfect circle, but this is not always possible forréeta of reasonsd.g.,a shared
wave plate in a multi-channel VISAR cannot optimisimultaneously on all channels).

In principle, each ellipse parameter could be determineddsgbining the power losses
and/or phase shifts for each optical component in a VISARteBeesults are obtained
through characterization measurements that directlygtbb coupling parameters. Two
types of ellipse characterization will be discussed hellgse fitting and parameter con-
straints. The first method is a general approach used to wsinadusly determine all five
ellipse parameters. The second method constrains spdtpjsegarameters to some de-
sired value €.g., ¥ = 0). At the end of this section, the two methods will be comdite
show how the ellipse parameters can be obtained with maxipremsion.

5.2.1 Ellipse fitting

Ellipses are a type of conic sectiare. curves described by:

F(X,y) = ax’ + bxy+cy’ +dx+ey+ f =0 (5.16)
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where the value df® — 4ac must be negative [28]. The six conic section parameters ean b
expressed in terms of the five VISAR ellipse parameters &aisl

a=A (5.17)
b = 2AAysine (5.18)
c=A; (5.19)
d = —2A2% — 2AAYoSine (5.20)
e= —2AZ%yo — 2AAXoSINg (5.21)
f = ABE 1 2AMA Xoyosine + AZY3 — AZAZcod e (5.22)

The reverse calculation is possible but requires somearautsince Equation 5.16 may
be multiplied by an arbitrary factor, it is important thatrpaeter ratios be used in the
conversion process.

. b
€ = arcsin—— 5.23
v4ac ( )
eb—2cd
= Jac_ b2 (5-24)
bd — 2ae
Yo = Tac—12 (5.25)
A—sece\/2+EJ ot (5.26)
X = X5 aXOYO aYo a .
a b f
Ay:SGCE\/EX(Z)—f— EXOy0+yg—E (527)

The goal of an ellipse fit is to identify parameters that beptesent a set @k, y) data. A
common approach for determining the best fit is to minimjze¢he root mean square of
Equation 5.16 oveN data points.

X2=5 Y F26m) (5.28)

Ellipse fits are often performed on the quadrature signagioéd in a particular VISAR
measurement. Ellipse data may also be obtained prior to aureraent by illuminating
a VISAR with purely coherent light (of fixed amplitude) whieoving one mirror of the
interferometer over half an optical wavelength or more. ithex case, ellipse fitting may
be performed as a direct or an iterative process.

Direct ellipse fitting

Direct ellipse fitting utilizes the fact thd(x,y) is linear with respect to the six conic
section parameters (Equation 5.16). Hence, the parameliees/that minimize(? may

Alternate definitions ofy, which rely on residual functions other th&rx;,y;) or use the median of
F(x,yi), may also be used [47]. Although more computationally espen such alternatives can reduce
certain biases in the fitting process. More comprehensseudsion of this topic may be found in Ref. 48.
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be found by linear least squares methods, which reduce tiraiagtion problem to matrix
manipulation [49]. In its most basic form, this approachsloet guarantee that the result is
an ellipse as the value bf — 4accan be positive. Ellipse specific fitting was first achieved
by Fitzgibbonet al. [50], who found that adding the constraist — 4ac < 0 transforms
the optimization into an eigenvalue problem. A numericatligust version of Fitzgibbon’s
algorithm proposed by Halif and Flusser [51] is used inftlewing examples.

A number of fits are shown in Figure 5.1 to demonstrate thaytf direct ellipse fitting,.
The left column contains three noise free ellipses withetiéht parameter choices: a per-
fect circle (A), a skewed ellipse with = 11/16 (D), and a skewed ellipse with an aspect
ratio of 4/3 ande = 11/8 (G). The center (B, E, and H) and right (C, F, and I) columns
contain similar ellipses with different noise levels (5%ad0%, respectively). The direct
fit captures the general shape of each data set, and in the fneéscases, reproduces the
original ellipse parameters within numerical precisiorh&h noise is added, the fit param-
eters vary from the original values by several percentciby, the variations are less than
or comparable to the noise level. Rigorous characterizagquires broader study over a
wide array of parameter sets, noise levels, and noise slassethese results suggest that
the direct fitting method is sound.

One consideration in using the direct fitting method is howeaals with partial ellipse
data, a common situation in VISAR measurements. Figure rofvs the ellipses from
the preceding discussion (noise levels set to 5%) with scate @mitted. When the data
spans half of the ellipse (A, D, and G), the direct fitting inatcaptures the general shape
but does not precisely reproduce the correct ellipse. Wininhaquarter of the ellipse is
present (B, E, and H), the direct fit is substantially différisom the original ellipse. The
fraction of an ellipse needed for reasonable behavior dégpen the noise level [51], but
there is a systematic problem with the direct fitting methdamwdata is clustered along
one portion of the ellipse. Data clusters on opposite siflésecellipse (C, F, and I) lead to
more reasonable results, although there is a reductionrafrpegier accuracy.

Iterative ellipse fitting

Iterative ellipse fitting is a repetitive process used taroe the ellipse parameters. Each
iteration involves the following tasks.

1. Choose a set of ellipse parametes Yo, Ax, Ay, ande).

2. Calculate the corresponding conic section paramedels ¢, d, e, andf).
3. Evaluate the functioR (x,y) (Equation 5.16) at each data point.

4. Evaluate the residual errgr.

5. Choose a new set of ellipse parameters that will hoperfiudligex 2 smaller and repeat
steps 2- 4 until some convergence criterion is met.
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Unlike direct ellipse fitting, iterative ellipse fitting manever reach a final conclusion. The
process could iterate around a local minimunydfforever without reaching the best fit
curve of interest. The probability of reaching the true mmam (and the number of itera-
tions required to get to that minimum) is related to the stgrtonditions. The difficulties
of the iterative method can be mitigated through the useftd#réint optimization schemes,
the details of which are beyond the scope of this work; theredted reader is directed to
Ref. 49. Despite the practical challenges of iterativerofation, it is straightforward to
fix specific ellipse parameters in the process and implemiffieteht residual functions,
features that are difficult (perhaps impossible) to achweitde the direct ellipse fit.

For complete or nearly complete ellipse data, the directiandtive methods yield quite

similar results. Figure 5.3 shows iterative ellipse fitsagse-free data using a direct ellipse
as the initial guess; the resulting parameters from theseapproaches differ by a negli-
gible amount. As noise is added, the two methods diverghtsfighough the discrepancy
tends to be much smaller than the noise level. The actuairdiite between the two meth-
ods depends the specific optimization routine and the natagnitude of the signal noise
and is beyond this scope of this work.

To illustrate situations when iterative fitting is superiorthe direct method, consider the
partial ellipse fits shown in Figure 5.4. The ellipses in figsire are identical to the previ-
ous discussion for Figure 5.4 using an iterative ellipseatiter than the direct method. In
the iterative fits, the ellipse center was fixed at the predge for each data set. Although
the plots in Figure 5.2 do not represent an exhaustive cdsgrabetween the two fitting
methods, they suggest that iterative fitting is better duitepartial ellipse data because
of the ability to constrain specific ellipse parameters. eNtbiat in spite of this advantage,
iterative fitting requires more work on the part of the useprtovide a good initial guess.
In many cases, it would be advisable to perform a direct fitaly, then use that result as
the guess for an iterative method. When this is not posibie should generate a guess by
visual inspectioni.e. plot ellipses with different parameter sets to find a reastenaatch
with the data. This process may require some trial and eg@edain guesses converge
to a proper result easily, while slightly different guespesform very badly. The human
eye and good judgment are often needed to determine whipselkomprises the best fit
curve.

5.2.2 Parameter constraints

Parameter constraints represent a means of forcing asesliprameter to some desired
value, rather than determining that parameter from a besliifise. A push-pull VISAR
system (Section 2.4) is the primary example when ellipsarpaters must be enforced.
Specifically, the center of the ellipse must be fixed at thgioyiregardless of the input
intensity. By inspection of Equations 2.46—2.47, this abod is met by the following
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scaling factor ratios.

N1B _ é%l—i_é%l (5 29)
ma b2, +Db2 '
11T 021
A2 A2
a a
Mg _ 15T % (5.30)

Noa b2, + 6%2

Furthermore, the aspect rati8,/Ay) can be set to unity by the following choice of scaling
factors.
a118o1 + @611621
Noa Mna
Nia MB: - (5.31)
MA  &158p0+ —=byobyy
Naa

One approach for determining the coupling constants is ®@oVISAR to incoherent
light, which eliminates interference. Measurements mautkeusuch conditions (denoted
here by a bar):

Dia = (82, +83,) | (5.32)
Doa = (82,+85,) lo (5.33)
Dig = (b2, +03,) lo (5.34)
28 = (blp+b3,) | (5.35)
can be used to yield two scaling ratios.
Me Dia
—— = 5.36
Nia Dig (5.36)
Nz Doa
== 5.37
na  Das (5:37)

Unfortunately, the third constraint (unity aspect ratiaphnot be applied exactly because
each incoherent light measurement contains several caupéirameters.

An alternate method for determining the coupling const@nte operate a VISAR with
completely coherent input while blocking one leg of the ifeeometer [20]; obviously,
this method requires consistent input intensity when thermédte leg is blocked. This
process yields eight signals, each of which is proportitmtie square of a single coupling
constant, as shown in the following example.

DY = a2l (5.38)

The superscript “(1)” indicates that the measurement ipmed with the first path blocked;
the corresponding measurement for the same detector vetbtlier leg blocked would be
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5(12A). These eight measurements provide sufficient informatorlf three constraints.

@_6&2—1—6&?

St - (5.39)
540
Nz _ Dyd +D3 (5.40)
50
NiB
- P52 12 /5B
‘A (5.41)

n N28
" () () ’7 \/ 1B 1B

There are alternative ways of enforcing the correct scatiregpush-pull VISAR in certain
types of measurements. For example, if a portion of a VISARSueement contains a
continuously varying phase difference, with no incohelegiit and minimal variations
variations in coherent intensity, it may be possible to @iuscale the detector signals so
that all oscillations are consistent. However, the beanskihg method is recommended
for greatest accuracy.

5.2.3 Combined characterization

Ellipse fitting can determine all the ellipse parametersihere is a resolution compromise
because the fit has five degrees of freedom. At the same timanpter constraints are pre-
cise but only apply to certain quantitiesrYo, andAy/Ac—and thus cannot completely
characterize the ellipse. Hence, one must always performedgpe of ellipse fit, but
the use of parameter constraints can significantly imprbeeesolution of the remaining
guantities.

A push-pull VISAR characterized with beam blocking is an ortant special case where
ellipse constraints reduce the degrees of freedom comdilyer In such a system, the
guadrature signals are perfectly centered about the aaigirhave an aspect ratio of unity.
Under these conditions, the mathematical description efellipse (Equation 5.16) be-
comes quite simple:

X% 4 2sine xy+y? — A%coss =0 (5.42)

whereA = Ay = Ay. With some minor manipulation, this can be expressed asarifit.

X2 +y° = —2sing xy +A’coSe (5.43)
v X

The slope oY versusX yields the value o€, while the intercept can be used to determine
A. Hence, it possible to use a set of quadrature signals totljirgetermine the size and
quadrature error. The uncertainty in these parametersisaib@ determined quantitatively
[52].
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5.3 Dynamic contrast

Contrast was introduced in Chapter 2 to characterize theeday interference in a VISAR
system. The system contrdS$ of a VISAR is related to its construction, and may be
calculated from the signal outputs extremes.

Dmax— Dmin
Co Dmax+ Dmin (5.:44)

However, contrast may change during a VISAR measuremettt,asiwhen rapid changes
exceed the detector bandwidth [20]. To quantify such beatkie concept of contrast must
be broadened to provide a time dependent characterizatithre onterferometer. A new
guantity, the dynamic contrast, is defined to fulfill thaerdExamples of dynamic contrast
loss will then be described to indicate when this quantitysed to identify problems in a
VISAR measurement.

5.3.1 Definitions

The difficulty with the basic definition of contrast (Equatid.27) is the fact that one does
not generally know the minimum and maximum detector sigaakach moment in time.

To get around this problem, recall that contrast in a WAMIaigm 2.2) is related to the

ratio of oscillation amplitude to the offset. For a convenal VISAR, this suggests the
following definition of dynamic contrast (assumed to be thms for both optical polariza-

tions [19]).

Dx(t) = Xo (14 C(t) cosd(t)) (5.45)
Dy(t) =yo (14 C(t)sin(®(t) —¢)) (5.46)

Elimination of ®@ yields an expression for dynamic contrast in terms of thedrptare
signals and the VISAR ellipse parameters.

c2(t) (Dx(t)—xo)erz(Dx(t)zo—Xo) <Dy(t)_YO) sine 4+ <w>2 (5.47)

se@e X0 Yo
Note that the dynamic contrastsanilar to the radius of the VISAR ellipse:
r? = (Dx(t) —%0)* + (Dy(t) —yo)* (5.48)

but the two quantities are not proportional unless 0 andxg = yp. Although not imme-
diately obvious from Equation 5.47, dynamic contrast isiegjant to the product of the
system contrast and the coherent-total input intensity (&ection 2.3).

C(t)=Co :28 (5.49)

Dynamic contrast must be modified somewhat for use in a puh/fSAR as Equation
5.47 involves division byg andyp, both of which should be zero. A similar quanti(t),
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or pseudo-contrast, is used instead.
(C'(t))? = sec e [DZ(t) + 2Dx(t)Dy(t) sine + D3 (t)] (5.50)

Pseudo-contrast is proportional to the coherent intensdythe total input intensity. For
convenienceC'(t) can be normalized by an arbitrary reference value.

5.3.2 Dynamic contrast loss

Since contrast is a measure of the coherent light availabbntinterferometer, any ef-
fect that decreases coherence will correspond to a reduatidynamic contrast. Contrast
may be lost through coherent signal decreasg. input power loss), incoherent signal in-
creased.g.,blackbody emission), or multiphase interference [20]. Tits two situations
are relatively straightforward; the latter is more subthel avill be elaborated in the next
subsection.

Contrast loss is commonly associated with rapid changesMlBAR measurement, and

may occur for several reasons. At extremely short timesescgdhotodetectors may be
unable to follow the optical signals, resulting in signarisients that are convolution of
the phase difference changes and the detector response&C@3fast loss may also occur
due to transient unbalancing of light in each leg of the VISMRere changes of the input
power occur on time scales comparable to the interferondgetery. The latter example of

contrast loss results from a shortcoming in standard VISA&yeis, not the measurement
itself; refined analysis (Section 2.4.2) should eliminais problem.

5.3.3 Multiphase interference

By its very construction, a VISAR system is ill-equipped mldle multiple coherent light
sources. Measurements of a velocity distribution [54] r@vbroad angular range [32], or
containing multiple light reflectionge(g.,a diffuse target mirror behind a shocked window
[55]) may contain multiple coherent sources that reduceriatometer contrast. Narrow
angle illumination and careful collection systems can bedus isolate specific coherent
sources and maximize contrast. However, multiple coheseatce measurements are not
an optimal application of the VISAR, and are better suitedtber diagnostics [10, 11].

To illustrate why multiple coherent sources yield low VISABntrast, one must return to
the basic operation of a Michelson interferometer. The wiuth the Michelson interfer-
ometer is given by Equation 2.9.

I(t) =& lo(t —ta) + a5 lo(t —tp) + 28N (Ec(t —t)Ec(t—t2))  (5.51)
eIIipsgcenter eIIipge size

The first two terms contribute to the offset of a VISAR sigrihk(ellipse center), while the
third contributes to the signals oscillation amplituddisk size).
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Suppose tha; is a discrete sum of multiple coherent contributions

ZAn COS(h(t (5.52)

The time average coherent electric field now becomes:

(Bt —t1)Ec(t —1t2)) <ZAn t —1t1) cosgn(t —ty) ZAm t—tp) COSfRn(t—tz)>
= ZAn t —1t1)An(t —t2) (cosgn(t —t1) cosgn(t —t2))
+2 ; An(t —t1)Am(t —t2) (cosgn(t —t1) cosgm(t —t2))  (5.53)

where the first summation contains the product of each cahsoeirce with a time shifted
version of itself and the second summation contains crossstbetween different coherent
contributions. Although each functiog(t) is itself coherent, these functions originate
from different sources and are mutually incoherent [12]Idvdng the same logic leading
to Equation 2.12 and assuming tigtchanges slowly over leads to the following result.

t—t1)An(t —t 2(t
(Eelt—t)Ec(t—t)) = 5 An 1>2A”( 2) cosPy(t) ~ ¥ A”Tmcosdbn(t) (5.54)
n n
The total coherent power can be expressed as the sum of thez pawied by each coherent
term: ,
_ _ NAR(Y)
t) = ;Icn =" (5.55)
which can be compared to the time averaged field product.

The final inequality expresses a very basic fact: @dies between -1 and 1, resulting in
a summation of coherent power contributions that is sméli@n the total coherent power
input.

Following the logic leading to Equation 5.47 yields a geheasion for the dynamic con-
trast.

C2(1)

Zsede = <ancosq>n( )2 <ancos¢n ) (ZWnsm P (t) — )) sine
+ <ansin(¢n(t) —e))2 (5.57)

2|f a continuous phase distribution is present, the sum wbel@éxpressed as an integral akgwould
become a weighting functiof(n).
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Herew, represent the relative weight of each coherent contributio

Wh(t) = —(; (ZWn = 1) (5.58)

For simplicity, suppose that the VISAR is configured withfpet quadratureg = 0).

C2(t) 2

c2 = < n Wn(t>COS¢n(t>)2+ (zwn(t)sin(cbn(t)))

= sz )+2 ; Wn(t) Wim(t) [cosPn(t) cosPm(t) + Sindn(t) Pmy(t)]

n

n

= > wh(t +2;% ) Win(t) COS[®n(t) — Py(t)] (5.59)

Since weights are non-negative, the maximum value of cehtvecurs when all cosine
terms equal unity.

g < Y WA +2 3 Wat) Win(t) = Y Wn(t) 3 win(t)
2(t)

Cs

Q,
IN

1 (5.60)

The upper bound may only be reached when all phase differeglces are the same,
i.e. there is only one coherent contribution to the VISAR sigivehen multiple coherent
contributions are present, the dynamic contrast is legstti@instrument contrast.

5.4 Precision limits

Recall that fringe shift is the normalized difference of tugrent and initial phase differ-
ence functions (Equation 3.19):
_ P(t) —o(t)
F(t) = o (5.61)
and phase difference is calculated from the inverse tarajehé quadrature signals (Equa-
tion 2.37).

Dy — Yo Ax

tan® = tane +
—Xo Ay

sece (5.62)

Two factors limit the precision with which fringe shift mag lnetermined. First, the pe-
riodic nature of the tangent function creates an ambiguntyringe shift. Second, the
guadrature signal quality and ellipse parameter chaiaatemn limit the accuracy with

which fringe shift can be calculated. The importance of eacior is tied to the fringe

constantk: fringe ambiguity dominates for small values Kfwhile fringe uncertainty

dominates for large values &f.
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5.4.1 Fringe ambiguity

Since the addition of & to the phase difference yields the same quadrature sighals,
fringe shift is only specified within some integer offset.

F(t) = Fo(t) + N(t) (5.63)

HereFp(t) is a number between zero and unity calculated directly fraqaefions 5.61—
5.62 andN(t) is an integer-valued function. Non-integer valuesNgf) can be used to
create gradual transitions over a specified rise time. Vhitdn smoothing leads to visually
appealing results, there is no definitive criteria for whse time should be used.

The value ofN(t) can be often resolved by logical means if contrast is maieththrough-

out the measurement. For example, data that wraps compéetaind the ellipse requires
the addition of a fringe wheR (t) decreases by a factor of more than 0.5; such an addition
merely reflects the limited output range of the inverse tahfenction. Difficulties arise,
however, if contrast is lost during portion of the measumrem€ontrast loss is an indica-
tion that fringe addition (or subtraction) may be necesdauyit does not reveal how many
fringes need to be added.

When dealing with fringe ambiguity, it is generally assurtteat the VISAR approximation
(Section 3.3) applies to the measurement.

V(t) = vi + K [Fp(t) + N(t)] (5.64)

This relation provides some insight on how to add or subfraages. For example, suppose
that the maximum possible velocity in a measurement is kndfthis velocity is smaller
than the fringe constant, then one can be certain that ngefsican be added. By the same
token, maximum velocity estimates larger than the fringestant provide an indication of
the number of fringes that could be added to the measuremgg¥/K). A clear way to
minimize ambiguity is to use fringe constants that exceedtlximum expected velocity
in a measurement, but this may not be possible with a giveiARISystem. Even when
possible, the use of large fringe constants is not alwaysal#s for reasons described in
the next subsection.

Another method for dealing with fringe uncertainty is to @@ velocity with two VISAR
systems, each having a different fringe constant. Sincéwbheneasurements must yield
the same result, there is a constraint on the number of &itiget can be added to either
record.

V(t) = Vi + Ky [Fp, () + N1 (t)] = Vi + Kz [Fp, (t) + Nz(t)]

Np(t) = E—; Fou(6) 4+ Na(t)] — Foy (1 (5.65)

The integerN; must chosen such théb is also an integer, so the above expression is
more limiting than it might first appear. For best results, filnge constants should chosen
such thaK; /K3 is not close to being an integer. Fringe addition/subtosatising multiple
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VISAR measurements is typically performed by iterativauaisinspection: velocities are
calculated for both records in the absence of fringes, andds then added to each record
to obtain consistency.

5.4.2 Fringe uncertainty

Once fringe ambiguity has been resolved, the limiting faaioVISAR resolution is the
precision ofFp(t), which is essentially a question of angular resolution an WMSAR
ellipse. Visual fringe estimates better than 0.0 (= 211/16) are easily achievable, and
the limiting uncertainty is generally quoted as 0.0(= 2711/50) or better [5].

Fringe shift uncertainty is dictated by quadrature sigmal ellipse parameter uncertainty.
These uncertainties affect both the current and the irptase difference, so the fringe
shift uncertainty is approximated by quadrature combamatf the two phase difference
uncertainties [52].

(8F (1))% ~ <5§7(T>) + <5c;(;‘>>2 <2 <5:;7(Tt>)2 (5.66)

The inequality stems from the fact tha®(t;) < dP(t) because signal averaging can be
performed on the initial state without sacrificing time resion. The uncertainty in phase
difference can be approximated by a second quadrature stiomma

L) 2 L 2 P 2 /o 2
X y

oD 2 /00 2 /00
hing = 67
(aAX5AX) +<6Ay5Ay) +<a 58) (5.67)

which leads to the following fringe shift uncertainty.

oD 2 /o AP 2 oD 2
4n2(5F(t))Zz<aDX5DX) +<0Dy6Dy) +2<%6x0) +2<d—y05y0)

oD 2 oD 2 0P _ \?
+2(0—AX5AX) +2( 5 Ay5Ay) +2<E(58> (5.68)

The factors of two indicate that ellipse parameter uncetyaaffects both the initial and
the current phase difference, whereas signal uncertaifetyts primarily the current phase
difference.
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With some manipulation, the partial derivativesidtan be expressed as follows.

o

dP| |sin® — cosPtang|
5.69
9x '0x0 Ay ( )
|cos¢seoe\
_— 5.70
‘ ayo A, (5.70)
_|sin2b — cos 2btane — tang|
A = A 5.71
XdAx ydAy 2 (5.71)
) in2dt 2 +1
(39—5 _sin ane;—cos + (5.72)

Each derivative is a function ab, so fringe uncertainty depends on where a particular
measurement falls on the VISAR ellipse. For example, uaggit in the vertical center
(Yo) has no impact on the calculated angledat= 17/2 but considerable effect & = 0.
Note that each expression has the form:

Q(z) = asinz+bcosz+c (5.73)

which averages to zero over the domaid @ < 27, but has a non-zero square average.

(Q(2)) = %T/()zn(asinz+ bcosz+ c)%dz

_¥+W+&
a 2

(5.74)

By replacing the partial derivatives in Equation 5.68 wthile appropriate square average,
the fringe uncertainty simplifies to an expression that ddpeonly on signal/ellipse pa-
rameter uncertainties, ellipse size/aspect ratio, andubdrature error.

> [178D\2 1/8Dy\? (%) (OY¥0\?
47'[2(5F(t)) ~ §<Ax) +§ Ty + Tx + Ty SE(?S
[ (6AN\2 [ 6A)\?]| 3seRe—2 5 Se&e+2
+ (Tx) +<Ay) 4 +(5$) 74 (575)

To illustrate the relative importance of each uncertairtgtabution, suppose that the un-
certainty ratios€.g.,0Dx/Ay) are the same for each optical polarization.

4712(5F(t))2%§s&2—§<5Dx)2+28e88 <5x0)2+ 3sede—2 <5AX)2

Ay ——\ A 2 Ay
Fi(e) Fa(e) —
Fa(e)
+L°2; T2 (56)? (5.76)
—_—
Fa(e)

71



The functiongF(€), F(€), Rs(€), andF4(€) determine the sensitivity of the fringe uncer-
tainty to each uncertainty contribution and are shown imfag.5. From the plots, itis evi-
dent that fringe uncertainty is most sensitive to the edlipanter §xp). Fore < /4 (45°),
guadrature error uncertaintp£) is next in importance, followed by signal uncertainty
(0Dy) and ellipse sizedAx); for large quadrature errors, ellipse size and quadradune
uncertainty swap in their importance. All sensitivity faxt diverge at = 11/2 (90°), when
guadrature is completely lost and the ellipse collapsesstoagght line.

The limiting resolution of a VISAR measurement can be calediédy considering a system
with perfect quadrature and a perfectly characterizegsali Most VISAR signals are
acquired with eight bit digitizers, so the smallest possilalue ofdDy /Ay is 1/256.

oF ~ 0.0006 (8-bit acquisition) (5.77)

1
>
— 256-2m
In practice, only six or seven bits effect bits are obtairsedthe limiting resolution is more
like 0.001-0.002. Fringe precision is further degraded lipse parameter uncertainty,
the magnitude of which depends on the care with which a VISp&tesn is constructed
and characterized. For a visually optimized VISAR ellipiactional ellipse parameter
uncertainties€.g.,0%p/Ax) are of order 0.01 ande is of order 0.0175 (), which leads to
a limiting fringe uncertainty of order 0.004.

General estimates of the fringe shift resolution can be nhgdessuming that all fractional
uncertainties in a VISAR measurement are the roughly thees@Dy/Ax = dXo/Ax =
0Ax/Ax). In this case, the fringe shift uncertainty can be plottedviarious quadrature
error uncertainties as shown in Figure 5.6. Three valués ¢0, 25°, and 5) are shown to
provide an estimate of the quadrature error uncertaintg@mered in a real measurement.
From these curves, it is reasonable to quote the workingédrghift resolution as 0.01-0.02
as originally quoted by Barker and Hollenback [5]. Furthefimement is possible, but only
if the fractional uncertainties are less than 0.02 and ttalcaiure error is known to better
than 2.

5.4.3 Velocity precision

Assuming that fringe ambiguity has been dealt with and thigalnvelocity (v;) is zero,
velocity uncertainty can be expressed as:

(8v)? = (K 8F)? 4 (F 8K)?
V\% (K _ \? [3K\?
(7) = (véF) + (?) (5.78)
wheredF is of order 0.01 andK /K is of order 0.001 (05— 0.01 if window corrections
are included [31]). FoK = v, velocity uncertainty is approximately equal to fringe enc

tainty, whereas velocity uncertainty is magnified Kor- v because the quadrature signals
traverse a smaller portion of the VISAR ellipse.
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From an uncertainty perspective, the ideal situation i&féo be much smaller thawny so
that the quadrature data undergoes many rotations abot84R ellipse. There are lim-
itations to doing this, however, as smaller valueafequire larger interferometer delay
times, which are difficult to attain in practical interfereter systems and can jeopardize
the VISAR approximation (Section 3.3) in the extreme casearddver, minimizing the
fringe constant to enhance velocity resolution is exadteydpposite action needed to re-
duce fringe ambiguity, so some compromise must be mabrethe dual fringe constant
measurements described in the previous subsection, famdeguities are resolved with
the larger fringe constant system, while maximal velocégalution is attained with the
smaller fringe constant system.

3Another consideration in a single VPF measurement iskhiaé chosen such that the velocity history
maps out the VISAR ellipse [38].
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CHAPTER 6

Summary

VISAR analysis is comprised of two basic operations—thewdation of fringe shift from
measured quadrature signals and the calculation of migiocity. In addition to the theo-
retical basis for these operations, interpreting VISAR soeements also depends on prac-
tical issues, such as the characterization and perfornafrec® ISAR system.

6.1 Fringe shift

The essential function of a Michelson interferometer isupesimpose light with a time
delayed version of itself, so that the output intensity & ilterferometer is related to the
phase difference(t).

O(t) = o(t) —ot-1) (6.1)

Optical phasep(t) describes the harmonic electric field variations of the trgnd is re-
lated to familiar quantities such as wavelength. Michelsdarferometers are generally
ill-suited for use velocity measurements because they wphtially varying intensityi .
interference patterns) for imperfectly collimated inpuistead, the wide-angle Michelson
interferometer (WAMI), which contains an uncompensatededitric in one leg, is used to
ensure uniform illumination of the output detectors.

Despite the basic utility of the WAMI, it can be difficult tojz@rate optical phase changes
from other variationsd.g.,input intensity fluctuations); even in a perfect measurdien
can be difficult to unambiguously extra®i(t) from the detector signal. These shortcom-
ings are largely addressed in the conventional and pudh/p®RAR systems, which are
constructed from multiple WAMI systems operating on diéier optical polarizations. In
the former, a beam intensity monitor (BIM) is used to norzelhe interferometer output
signals, whereas the latter utilizes pairs of output sigtizdt are subtracted from one an-
other. In either case, the 2-4 detector signals are reducadotir of quadrature signals
(Dx andDy), which by virtue of a 1/8 wave plate in the interferometer aearly 90 out of
phase with one another. Unlike the WAMI, the quadratureagof a VISAR system are
largely insensitive to input intensity variations and ihecent light.

When plotted against one another, the quadrature sigmasdrVISAR map out an ellipse,
where the angular position on the ellipse corresponds taticpkar value ofd(t). The
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conversion of quadrature signals to phase difference endoy:

Dy — Yo Ax

tan® = tane +
Dy — X0 Ay

sece (6.2)

wherexo, Yo, Ax, Ay, ande are the ellipse parameters for a particular VISAR systenm-Co
parison of the phase difference at each moment in the expetiwith an initial reference
value yields the fringe shift (t).

F(t)= ——" (6.3)

Since the tangent function is periodic, it is possibleFdt) to be ambiguous within some
integer shift.

6.2 Velocity calculation

The basic interpretation of a VISAR measurement is thatgeaim velocity correspond to
changes in fringe shift. Fringe shift may be converted taoniposition by inverse analysis:

X(t) =x(t—10)+ (1+ ) Tovi + A—ZOF(t) — OToV(t — Tp) (6.4)

where 1g is the delay time of the interferometer at the operating ‘emgth Ag, 0 is a
dispersion correction for the VISAR etalon, awmdis the initial velocity of the mirror.
This iterative calculation is conceptually straightfordiabut the process is fraught with
numerical difficulties and is only practical for low noise aserements.

In most situations, the VISAR approximation:
v(t) =~ vi +K F(t) (6.5)

is more useful than inverse analysis. The parami€ter Ao/2(1+ d)1p is known as the
fringe constant, and is controlled by the size/constractb the VISAR system. The
VISAR approximation neglects changes comparable to oerfaktan the interferometer
delay time, which for many applications is reasonable. éeattsults, particularly for fast
phenomena, are obtained from a time shifted version of tI8AR approximation:

V(t—y10) = vi + K F(t) (6.6)

wherey ~ (1+ d)/2. Events that occur faster thag are poorly resolved by the VISAR
approximation and require inverse analysis.

6.3 Velocity corrections

Velocity corrections are required to account for condisidimat alter the apparent velocity
sensed by a VISAR. One class of velocity correction is the cdson-normal illumination
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and/or reflection. Angular corrections are typically sngall0.1%) but may be important at
extreme angles. In some cases, apparent velocity contaihsdngitudinal and transverse
velocity information.

Another important class of velocity corrections occur wéneer the VISAR measurement
contains a compressed dielectric. In general, the calonlagquires a great deal of in-
formation, but there are several special cases where tinection is straightforward. One
special case involves materials compressed by a singlé steee, where the correction
is a function of the refractive index ahead of and behind tbetfas well as the shock ve-
locity. Another special case applies to materials wheraefractive index is linear with
density, leading to simple corrections regardless of tifactve index profile. Even in
these simple cases, caution is required to deal with frdacimotion.

6.4 Characterization and performance

The VISAR delay time is determined primarily by the physitaigth h and refractive

indexn of the etalon. o L
T=— <n— —) (6.7)
Co n

With careful interferometer construction and precise aeasents of the etalon length,
can be determined within 0.1%.

Etalon dispersion leads to a velocity dependent delay time:

\'% \'%
N %] =To <l+ 26&) (6.8)

where d is on the order of several percent. In the VISAR approxinmtibie velocity
dependence of cancels with other terms and leads to a constant corredaitimetfringe
constant. For maximum precision, other components in tI&A¥R (e.g.,the beamsplitter)
may be considered in the calculationtof

T=—|n—=—

2h 1 @
Co n 0 dA

The five VISAR ellipse parametexs, yo, Ax, Ay, ande are required to accurately transform
the measured quadrature signals into phase differenceallyidthese parameters can be
controlled during VISAR setup to achieve a circular ellipbat the precise values must
often be determined from ellipse fitting, parameter comstisaor some combination of the
two techniques. Ellipse fitting uses quadrature signalta{oed either prior to or during a
measurement) that map out the VISAR ellipse. The fitting @ssanay be direct (which
is fast, but has problems with incomplete data) or indirgdti¢h is slow and may not
converge, but can easily deal with constraints). Somesalgarameters can be constrained
to a desired valuee(g., ¥ = 0) from characterization experiments prior to the VISAR
experiment; this is particularly important for the pusHtMISAR configuration.

Contrast is a useful way to assess the performance of a VI§aRm during a measure-
ment. The dynamic contrast of a VISAR is a combination of §ye&tesn contrast and the
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optical signal that enters the interferometer, and is sint the ellipse radius. Contrast
loss is an indication of non-ideal behavior in a measurem®aurces of contrast loss in-
clude decreasing coherent light, increasing incoherght,lilimited detector bandwidth,
and multiphase interference.

The precision of a VISAR is limited by fringe ambiguity andnfye uncertainty. Fringe
ambiguity arises from the periodicity in the tangent fuaotiadding integer multiples of
21 to any phase difference yields the same quadrature sigisalsh ambiguity can be
eliminated by setting the fringe constant larger than th&mam expected velocity in a
measurement. Physical insight and/or multiple VISAR measnts are alternative meth-
ods for dealing with fringe ambiguity. Fringe uncertaintysas from quadrature signal
noise and imperfect characterization of the VISAR ellip3ée limiting resolution of a
fringe shift measurement is approximately 0.001, and thetpral resolution is 0.01-0.02.
Fringe uncertainty can be mitigated by using small fringastants where possible, al-
though doing so may lead to fringe ambiguity.
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APPENDIX A

VISAR noise performance

The noise performance of a VISAR system can be quantifieding®f the noise impact
Q, which is defined by the ratio of signal oscillation ampliéud noise amplitude.

= —— (A.1)

Since a push-pull VISAR [1] utilizes nearly twice as muchlod toherent light as a com-
parable conventional VISAR [2], one expects the former teehaalf the noise impact of
the latter. However, the precise noise benefit depends oddimenant noise mechanism.
Two types of noise are considered here: photon limited andtant noise measurements.

Photon noise

Photon noise is the result of statistical fluctuations intphdlux [3]. These variations scale
with the square root of the flux, and for a linear detectordiate to the following signal
noise:

5D =yvD (A.2)
wherey is a detector specific scaling factor.

For fixed input intensity, the signal output from one polatian of a conventional VISAR
is simply a sinusoid centered ggwith an amplitude o€xy, whereC is the system contrast
(Section 2.3).

D1 =Xo(1+Ccosd) (A.3)

The signal undergoes random signal fluctuatidbg, which can be determined from Equa-
tion A.2.

8D1 = y\/Xo(1+Ccosd) (A.4)

The noise impact of a conventional VISAR is thus as follows.

1+Ccosd
Q.= %/4 /7)(0 (A.5)
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The same analysis can be applied a signal pair of a push-paAR, which are assumed
here to have the same mean and contrast.

Dia =Xo(1+Ccos®) Dig = xo(1—CcosP)
D1 =Dja—D1g = 2Cxycosd (A.6)

If no additional noise is generated during signal subtoactihe total signal noise is simply
the quadrature sum [4] of the signal noise from each detector

(8D1)? = (8D1a)*+ (8D18)* = 2y*Xo (A7)
The noise impact of a push-pull VISAR is thus a constant.
_W2o_y j 1

The relative noise impact of each VISAR configuration can bevassessed by the ratio of
Equation A.5 and Equation A.8.

= Qe _ 2(1+Ccos®) (A.9)
Qpp

Whenq > 1, the conventional configuration suffers from noise moanth comparable
push-pull VISAR would; forg < 1, the push-pull configuration experiences greater noise
problems. The limiting values af are determined from the case of ideal contr@s(1).

V2(1-C) <q</2(1+C) (A.10)

The value ofyis not always greater than unity—there are conditions wtkereonventional
configuration outperforms the push-pull configuration.

q

One way of determining the better configuration is to calenehetheiqis more likely to
be above or below unity. From the symmetry of Equation A.8,globability thag > 1 is
given by:

P,
Pi>1= ?C where 21+ cosPc) =1 (dc < m) (A.11)
which reduces to the following result.
arccog—1/2C) C>1/2

Ppo1= T (A.12)
1 otherwise

SincePy~1 > 2/3, one can conclude that the noise performance of a push/BlR is
generally better than a comparable conventional VISAR.

The next consideration is to quantify the average noise @tmadio over all possible phase
differences (again using the symmetryogpf

(q) = 711 /0 " /2(1+Ccosd) do (A.13)
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The limiting values of q) may be determined analytically f@= 0 andC = 1.

Pteve (A12)

For intermediate contrast values, Equation A.13 is antalliptegral [5] that can be ex-
pressed as a (slowly converging) infinite sum:

(0)=v2 {1— (2%1) @) c?— (;f:S) <;j) c4—...} (A.15)

or evaluated numerically. The results shown in Figure Adidate that noise in a conven-
tional VISAR will have roughly 40% higher impact than in a pysull VISAR.

An additional consideration in comparing the two VISAR cgofiations is the fact that sig-
nal noise does not directly couple to phase difference tmicgy—some ellipse positions
are more sensitive than others to signals noise (SectioR)5 &trictly speaking, Equation
A.13 should be weighted bg®/dx. As a quick approximation, consider the noise perfor-
mance ratio where it matters mosdt & 11/2 and 31/2). At those locationsg = +/2, which

is consistent with the value @§).

Fixed amplitude noise

Signal noise may not be dominated by statistical variatafighoton flux. For example,
thermal noise will be present in all detectors not operatih@bsolute zero; digitizing
systems also add to the signal noise. Unlike photon noissetfiuctuations need not scale
with the intensity striking the detector, but are insteddtesl to the detection/acquisition
system. For simplicity, all non-photon noise will be condinnto a constant total signal
noisedD.

In a conventional VISAR, constant signal noise leads to &tzort noise impact.

0Dq

Q= (A-16)

Similar noise would occur in each detector pair of a pushP3AR.
(6D1)? = (8D1a)? + (8D1p)% ~ 2(6D1a)? (A.17)

V23D1a
Qpp= “2Cx (A.18)
The noise impact ratio is thus constant:
q= Pec _ V2 (A.19)
Ppp

indicating once again that noise has approximately 40%tgréapact in a conventional
VISAR than a push-pull VISAR.
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Figure A.1. Noise impact ratio as a function of contrast

The average noise impact ratio (conventional/push-puAR)
varies between/2 and 4, depending on contrast. For refer-
ence, the upper and lower limits of this ratio are also shdveayy
lines).
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Summary

Regardless of the type of limiting noise in a VISAR measuneitna push-pull VISAR
shouldprovide a lower noise impact than a conventional VISAR. Hasvethe theoreti-
cal enhancement is of ordef2, not 2. Note that the actual performance of a push-pull
VISAR will be reduced when noise is generated during thersghbn procesg,e. in the
differential amplifier (if present).
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