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Abstract

The Velocity Interferometer System for Any Reflector (VISAR) is a widely used diag-
nostic at Sandia National Laboratories. Although the operating principles of the VISAR
are well established, recently deployed systems (such as the fast push-pull and air delay
VISAR) require more careful consideration, and many commonassumptions about VISAR
are coming into question. This report presents a comprehensive review of VISAR analysis
to address these issues. Detailed treatment of several interferometer configurations is given
to identify important aspects of the operation and characterization of VISAR systems. The
calculation of velocity from interferometer measurementsis also described. The goal is
to derive the standard VISAR analysis relationships, indicate when these relationships are
valid, and provide alternative methods when the standard analysis fails.
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CHAPTER 1

Introduction

Velocity measurements play a vital role in dynamic compression research. When combined
with mass and momentum conservation, material and wave velocity measurements yield
mechanical information for materials under extreme conditions [1]. Velocity is generally
easier to measure than other continuum properties (e.g.,stress or temperature), and in some
case, is the only information obtainable in highly compressed systems.

Numerous optical techniques exist for measuring velocity under extreme conditions. Active
shock breakout [2], where changes in the reflected lightintensitysignal the arrival of me-
chanical waves, is one example; inclined mirror measurements [3], which rely on changes
in reflected lightdirection, is another. The most versatile optical velocity measurements are
based on changes in the reflected opticalphase, a generalization of more familiar quantities
(such as wavelength). In practice, optical phase cannot be measured directly; instead, an
interferometer is used to measure the difference between the optical phase at two different
times.

Shock compression experiments using velocity interferometry date back to the 1960’s [4],
but such measurements were rare until the development of theVelocity Interferometer Sys-
tem for Any Reflector (VISAR) [5]. Since that time, VISAR systems have become a stan-
dard velocity diagnostic. Over the years, improvements andmodifications to the original
VISAR configuration have been made, including the development of multiple channel sys-
tems, increased tolerance to incoherent light, and better time resolution [6].

1.1 Overview of a VISAR measurement

The essential components of a VISAR measurement are illustrated in Figure 1.1. Coherent
light (typically from a 514.5 or 532 nm laser) is used to illuminate the object of interest. An
optical relay directs light toward the object and collects the reflected radiation. Reflected
light is sent to an interferometer, producing an output containing the input signal and a
time delayed version of the input signal. The output is sensed with fast optical detectors
and analyzed to infer the object’s motion.

VISAR analysis is comprised of two basic operations: determining the fringe shift and
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Figure 1.1.Overview of a VISAR measurement.
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the velocity calculation. Fringe shift is a normalized measure of how the optical phase
difference compares to a reference value. Velocity followsfrom the fringe shift, and in
many applications, is proportional to the fringe shift. Although the two operations are very
much related to one another, it is useful to separate them forconceptual clarity.

1.2 Purpose and scope of this work

This report serves three basic purposes. First, the widespread use of VISAR in dynamic
compression research has created the need for a comprehensive description of the principles
and limitations of this diagnostic. Next, recently deployed systems, such as the fast push-
pull VISAR [7] and air delay VISAR [8], challenge traditional assumptions about VISAR
and require more careful consideration. Finally, this report precedes the release of a new
analysis package, PointVISAR [9], which incorporates muchof the theory described here.

Throughout this work, there is an emphasis on the fundamental theory underlying VISAR
measurements. At various stages, general results are reduced to standard forms found in
most discussions of VISAR. Assumptions and approximationsare clearly noted to indicate
when the standard forms are valid, and what can be done when they are not. Much of the
theory presented here is not new, but has been collected froma variety of published papers
and personal discussions as noted in the references.

There are many things that this report does not cover. No attempt is made to follow the
history of the VISAR or its use in shock experiments; if this is of interest, the reader is
directed to Reference 6. The report focuses exclusively on VISAR measurements of a
single point (typically≪ 1 mm in diameter) because the vast majority of VISAR measure-
ments are performed at a point or collection of points. For the most part, detector speed
limitations are ignored. No attempt has been made to comparethe general performance
of VISAR with other interferometry methods [10, 11]. This isnot meant as a criticism of
alternate diagnostics, which may complement VISAR in some situations and supplant it in
others. However, VISAR remains the most common velocity diagnostic at Sandia, so such
comparisons must be postponed until the alternatives become more established.

1.3 Chapter organization

The organization of this report is intended to match the order of operations in VISAR
analysis. Interferometer theory, which forms the bulk of the fringe shift calculation, is
presented in Chapter 2. Remaining aspects of the fringe shift calculation and the conversion
to velocity are described in Chapter 3. Velocity corrections needed in various situations
are discussed in Chapter 4. Characterization and performance assessment of a VISAR
system is developed in Chapter 5. An overall summary of VISARanalysis is given in
Chapter 6. Appendix A compares the noise performance of two commonly used VISAR
configurations.
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CHAPTER 2

Interferometer theory

Interferometers are based on wave superposition, which maybe constructive or destructive.
VISAR systems utilize a specific type of interference, knownas division of amplitude [12],
where an optical signal is split into distinct paths and later recombined. The classical
example of such a system is the Michelson interferometer [13] illustrated in Figure 2.1.
Light entering the interferometer is directed along two paths by the beamsplitter (BS) and
travels different distances to mirrors M1 and M2. The recombined beams are measured
by detector D in the focal plane of lens L. Adjustment of the mirror positions controls the
interference of the recombined beams.

The Michelson interferometer provides a conceptual starting point for this discussion.
Next, the wide angle Michelson interferometer is describedto demonstrate a feasible,
though somewhat limited, interferometry system for velocity measurements. Results from
the wide angle Michelson interferometer are then applied tothe common VISAR configu-
rations (conventional and push-pull) used in dynamic compression research.

2.1 The Michelson interferometer

The basic utility of a Michelson interferometer is its sensitivity to optical phase changes.
Optical phaseφ(t) is the time varying quantity that describes oscillations ofa coherent
electric fieldE at a particular point in space (for a single light polarization).

E = A(t)cosφ(t) (2.1)

The functionA(t) describes field amplitude modulations, which are assumed tobe much
slower than cosφ(t). In this framework, incoherent light may be treated as a superposition
of many independent coherent sources, yielding a random optical phase.

For a monochromatic source, the optical phase is linear in time:

φ(t) = ω0t +φ0 (2.2)

whereω0 is the radial frequency (= 2πc0/λ0) andφ0 is the reference phase at the point of
interest.

13
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Figure 2.1. The Michelson interferometer.
For clarity, mirrors M1 and M2 are shown at an angle of 90◦; in
practice, different orientations are used to eliminate multiple re-
flections and minimize space requirements.
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2.1.1 Principles

Suppose that light entering a Michelson interferometer is polarized and collimated,i.e.
the input electric field is a plane wave with an electric field amplitudeE0(t). In general,
the input field is composed of a coherent (subscript “c”) and an incoherent (subscript “i”)
component.

E0(t) = Ec(t)+Ei(t) (2.3)

The total electric field at the detector is given by:

E(t) = a1E0(t− t1)+a2E0(t− t2) (2.4)

wherea j represents the coupling andt j represents the transit time of thej−th leg (j = 1,2).
The second path of the Michelson interferometer, which contains mirror M2, is physically
longer than the first path by a distanced. The difference in transit timeτ between the paths
is given by:

τ = t2− t1 =
2d
c0

(2.5)

wherec0 is the vacuum speed of light.

At visible wavelengths, optical phase oscillates near 1015 Hz, substantially faster than any
high speed detector (< 109−1012 Hz cutoff). As such, the optical intensity1 measured by
a detector is given by the time average of the total electric field squared [15]:

I(t) = η
〈
E2(t)

〉
(2.6)

whereη is a constant dictated by the electric field units [16]. The intensity of a monochro-
matic wave is proportional to half the square of its amplitude:

〈
E2(t)

〉
=
〈
A2cos2(ω0t +δ0)

〉
=

A2

2

so the output intensity of a Michelson interferometer is as follows.

I(t) = η
〈

(a1E0(t − t1)+a2E0(t − t2))
2
〉

= η
〈

a2
1 [Ec(t − t1)+Ei(t − t1)]

2+a2
2 [Ec(t− t2)+Ei(t− t2)]

2

+2a1a2 [Ec(t − t1)+Ei(t − t1)] [Ec(t− t2)+Ei(t− t2)]
〉

(2.7)

All terms in Equation 2.7 containing a single incoherent factor (at a specific time) average
to zero.

I(t) = η
〈

a2
1

[
E2

c(t − t1)+E2
i (t − t1)

]
+a2

2

[
E2

c(t − t2)+E2
i (t − t2)

]

+2a1a2Ec(t− t1)Ec(t− t2)
〉

(2.8)

1The symbolI formally denotes radiant intensity [14], the optical powerper unit solid angle. The quantity
in Equation 2.6 is actually the irradianceE (optical power per unit area), which is proportional to the Poynting
vector [15]. The symbolI is used to prevent confusion between irradiance and electric field.
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The first two terms can be expressed in terms of the input intensity.

I0(t) = η
〈
E2

0(t)
〉

= η
〈
E2

c (t)+E2
i (t)

〉

I(t) = a2
1 I0(t − t1)+a2

2 I0(t − t2)+2a1a2η 〈Ec(t − t1)Ec(t − t2)〉 (2.9)

The remaining bracketed term can be expanded by assuming that the interferometer input
contains a single coherent signal.

Ec(t) = A(t)cosφ(t)

〈Ec(t− t1)Ec(t − t2)〉 = A(t− t1)A(t− t2)〈cosφ(t − t1)cosφ(t − t2)〉 (2.10)

The time average can be reduced by recalling that 2cosAcosB = cos(A+B)+cos(A−B).
The first term averages to zero: if cosφ(t) averages to zero, a similar result would occur
for the sum of two phase functions. The second term, however,doesn’t necessarily average
to zero because the difference between two phases may be a slowly varying function. For
compactness, the phase difference will be denoted by the variableΦ(t).

Φ(t)≡ φ(t− t1)−φ(t− t2) (= ω0τ for monochromatic input) (2.11)

〈Ec(t − t1)Ec(t − t2)〉 =
A(t− t1)A(t− t2)

2
cosΦ(t) (2.12)

The value ofA(t) can be expressed in terms of the coherent input intensityIc.

Ic(t) = η
〈
A2cos2 φ(t)

〉
=

ηA2(t)
2

〈Ec(t− t1)Ec(t − t2)〉 =
1
η
√

Ic(t− t1)Ic(t− t2)cosΦ(t) (2.13)

Combining the results for〈Ec(t − t1)Ec(t− t2)〉 with Equation 2.9 yields the complete ex-
pression for the output intensity as a function of input intensity and phase difference.

I(t) = a2
1 I0(t− t1)+a2

2 I0(t − t2)+2a1a2

√

Ic(t− t1)Ic(t− t2)cosΦ(t) (2.14)

The output signalD(t) is proportional to the total power striking the detector andthe de-
tector responsivity, which is assumed to be constant over the detector’s active area and the
narrow wavelength range of interest. These proportionality factors can be merged into a
new set of coupling constants ˆa1 andâ2.

D(t) = â2
1 I0(t− t1)+ â2

2 I0(t − t2)+2â1â2

√

Ic(t− t1)Ic(t− t2)cosΦ(t) (2.15)

2.1.2 Limitations

In practice, the input of a Michelson interferometer cannotbe perfectly collimated, which
means that radiation is distributed over some angular range. To illustrate this point, it is
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helpful to think of a Michelson interferometer in terms of the equivalent optical system [15]
shown in Figure 2.2. From the detector’s point of view, the beamsplitter and mirrors create
two virtual images (I1 and I2) of the input. Since each interferometer path is traversed
twice in one round trip, the virtual sources are separated bya distance of 2d.

Collimating lens L transforms light traveling in a particular direction to a point on the
detector D. As shown in Figure 2.2, normal rays are imaged at the center of the detector,
while rays emitted at an angleθ are imaged to radiusr from the center. The mapping of
angle to detector location is controlled by the focal lengthf .

r = f θ (2.16)

In most situations,r (. 0.5 mm) is much smaller thanf (∼25 mm), so the relevant angular
range is quite small(. 1◦).

Light emitted by the virtual sources at a particular angle can be treated as a plane wave
passing through that angle; interference at each angle is then conceptually similar to the
preceding discussion. For simplicity, consider the input to be entirely coherent and as-
sume that interferometer coupling constants are equal(a1 = a2 = a). A spatially uniform
intensityI0 from the source in the directionθ results in an angular intensityI(θ) at the lens.

I(θ) = 2â2I0 [1+cosω0τ(θ)]

=
Imax

2
[1+cosω0τ(θ)]

(
Imax= 4â2I0

)
(2.17)

The angular dependence ofτ is evident in Figure 2.2 as the path between the virtual sources
varies with the angleθ .

τ(θ) =
2d

c0cosθ
(2.18)

Combining this result with Equations 2.16–2.17 yields the following intensity distribution.

I(r) =
Imax

2

[

1+cos

(
4πd
λ0

sec
r
f

)]

(2.19)

This intensity pattern corresponds to a series of circular fringes, also known as Haidinger
fringes or fringes of equal inclination [17], in the detector plane. If one mirror is tilted
with respect the other, the virtual images are no longer parallel and the interference pattern
changes to parallel fringes, also known as Fizeau fringes orfringes of equal thickness [17].
Michelson interferometers are generally constructed to eliminate Fizeau fringes, allowing
the circular fringe pattern to be seen.

The intensity at the central point of the detector(r = 0) is given by:

I(r = 0) =
Imax

2

[

1+cos
4πd
λ0

]

(2.20)

so the center is brightest whend is an even multiple ofλ0/8 and darkest whend is an
odd multiple ofλ0/8. However, the detector signal is proportional to an integral over the
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active area, not just the central intensity. The extent to which intensity variations affect the
measurement can be characterized by the spot sizers, defined here as the distance from a
central bright spot to the first intensity minimum.

rs

f
≈ arccos

(
4πd/λ0

1+4πd/λ0

)

≈







π
2

(d ≪ λ0)
√

λ0

2d
(d ≫ λ0)

(2.21)

For small mirror separations, the interferometer spot sizeis comparable tof , leading to
uniform detecter illumination. Large mirror separations,however, lead to small spot sizes
and appreciable intensity variations.

To illustrate the significance of intensity variations, consider an interferometer coupled to
a 1 mm diameter detector by a 25 mm focal length lens(r/ f ≤ 0.02). Figure 2.3 shows
the intensity distribution on the output detector for several values ofd/λ . Even at moder-
ate mirror separations (d = 1000λ0), the detector intensity is obviously not constant. The
problem is even more severe atd = 10000λ0, where the central spot lies entirely inside
the detector along with additional intensity cycles. Sincethe outer cycles carry a signifi-
cant fraction of the total power striking the detector, the fact that the central spot is bright
only weakly affects the output signal. The distinction between constructive and destructive
interference is thus quite subtle, and eventually disappears at very large mirror separations.

In principle, intensity distribution issues could be mitigated with the use of a sufficiently
small detector. However, this solution leads to low signal levels as little of the input power
can be collected by the detector. An alternate solution is tooperate the interferometer at
d = 0, which produces a flat intensity field. While this may seem anattractive solution,
it would eliminate the relative delay between the combined signals, rendering the system
useless for measuring phase difference. Instead, one must use a modified configuration or
carefully collimate light entering the system [8].

2.2 The wide angle Michelson interferometer

The shortcomings of the Michelson interferometer can be overcome by creating a non-
zero mirror separation that has zero virtual separation. This is achieved by placing an
uncompensated dielectric slab or etalon in one leg of the interferometer, creating a wide
angle Michelson interferometer (WAMI) [18] as shown in Figure 2.4. The purpose of the
etalon is to create a virtual mirror image M2’ that is closer to the beam splitter than the
actual mirror M2, yielding a uniform detector illumination. Since the interferometer legs
have different physical lengths, there remains a relative time delay (and thus interference)
between the recombined light signals. This time delay is a function of the size and optical
properties of the etalon, and is derived in Section 5.1. For now, it will be assumed that the
delay time is known.
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2.2.1 Principles

From the discussion in Section 2.1, the detector output froma WAMI can be expressed as
follows.

D(t) = â2
1 I0(t− t1)+ â2

2 I0(t − t2)+2â1â2

√

Ic(t− t1)Ic(t− t2)cosΦ(t) (2.22)

The phase differenceΦ(t) describes the difference in phase between light passing through
each leg of the interferometer.

Φ(t) = φ(t − t1)−φ(t− t1− τ) (2.23)

In situations where the input is completely coherent (I0 = Ic) with a slowly varying ampli-
tude, the detector output can be reduced to a simpler form.

D(t) = I0(t)
[
â2

1+ â2
2 +2â1â2cosΦ(t)

]
(2.24)

To illustrate the sensitivity of a WAMI to phase changes, suppose that the input intensity
is constant. For convenience, the value ofI0 will be combined with the scaling factors as
follows.

D0 ≡ I0
(
â2

1+ â2
2

)
AD ≡ 2I0 â1â2

D(t) = D0+AD cosΦ(t) (2.25)

The detector output is thus a sinusoidal function ofΦ with an offsetD0 and an amplitude
AD. If the phase difference increases linearly in time, the detector signal for a WAMI
would appear as shown in Figure 2.5. When the input is monochromatic, the value ofΦ(t)
is simplyω0τ, so variations inD(t) correspond to changes in the product of input frequency
and the time delay. Once the time delay has been determined, aWAMI is capable of sensing
minute frequency changes, a capability that can be tied to the Doppler shift of light reflected
from a moving target.

The oscillation magnitude in a WAMI cannot exceed the signaloffset. Quantitatively, this
constraint can be formulated in terms of the interferometerscaling factors.

AD ≤ D0 ↔ 2â1â2 ≤ â2
1+ â2

2 (2.26)

The values of ˆai dictate the system contrast, a quantity that describes the ability of the inter-
ferometer to distinguish constructive and destructive interference. The numerical definition
of contrast [15], also called fringe visibility, is given by:

C =
Imax− Imin

Imax+ Imin
=

Dmax−Dmin

Dmax+Dmin
(2.27)

whereImax is the maximum intensity (corresponding to constructive interference) andImin

is the minimum intensity (corresponding to destructive interference). From this definition,
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contrast is always between zero and unity. For the WAMI, contrast can be expressed as
follows.

Dmax= D0+AD Dmin = D0−AD

C =
AD

D0
(2.28)

Maximum contrast occurs when the oscillation magnitude equals the signal offset, which
can only be achieved when ˆa1 = â2.

2.2.2 Limitations

Although the WAMI is capable of measuring phase changes, there are a number of practical
difficulties for this configuration. These problems fall into two general categories: input
sensitivity and phase uncertainty.

Input sensitivity describes the WAMI’s inability to separate variations of input intensity
from phase changes. When the input intensity is time dependent or contains incoherent
light, these variations are carried in the detector output along with optical phase changes.
As such, it can be difficult to interpret data from a WAMI unless optical phase is the only
time varying quantity.

Phase uncertainty occurs in the WAMI because of the cosine function in Equation 2.25.
The periodic nature of this function means that a particularvalue ofD corresponds to an
infinite number of values ofΦ, each differing by an integer multiple of 2π . Furthermore, the
symmetry of the cosine function atΦ = 0 andΦ = π creates sign ambiguities that obscure
whetherΦ is increasing or decreasing. Determining the phase angle near the symmetry
points, where light intensity is at a minimum or maximum, is also imprecise because of the
flatness of the detector signal.

2.3 The conventional VISAR

The conventional VISAR (Velocity Interferometer System for Any Reflector) [5] is a ro-
bust system that builds upon the strengths of the WAMI. Shownschematically in Figure
2.6, the conventional VISAR is essentially two WAMI systemsthat operate on different
polarizations of the input. Light entering the interferometer is intentionally unpolarized,
resulting in two output signals obtained with a polarizing beamsplitter (PBS) and a pair of
detectors (D1 and D2). The two polarizations are phase shifted with respect to one another
through the use of a 1/8 wave plate (WP) in one leg of the interferometer. Finally, abeam
intensity monitor (BIM) is located at the input of the interferometer for tracking changes in
the input intensity.
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2.3.1 Principles

The output of one VISAR detector is similar to a WAMI system with the addition of an
extra subscript to indicate which polarization is being measured.

D1(t) = â2
11 I0(t − t1)+ â2

21 I0(t− t2)+2â11â21

√

Ic(t− t1)Ic(t − t2)cosΦ(t) (2.29)

In this notation, ˆai j refers to the coupling factor for light of polarizationj passing through
leg i. The output of the second detector has a similar form:

D2(t) = â2
12 I0(t − t1)+ â2

22 I0(t − t2)+2â12â22

√

Ic(t − t1)Ic(t − t2)cosΦ2(t) (2.30)

whereΦ2 is a phase difference function that accounts for the round trip passage through the
1/8 wave plate. The wave plate time delays both polarizations by a certain amount, gener-
ating a small correction to the value ofτ, but of critical importance is the delay difference
between polarizations. This difference can be associated with a relative phase delayβ .

Φ2(t) = [φ(t − t2)−β ]−φ(t− t1) = Φ(t)−β (2.31)

The value ofβ is controlled by rotating the 1/8 wave plate about its axis; since light passes
through the plate twice, the phase shift ranges from zero to one quarter of a wave. When
β = π/2, the two detector signals are said to be in perfect quadrature. It is convenient to
expressβ in terms of a quadrature errorε, which describes how far off the system is from
perfect quadrature.

Φ2(t) = Φ(t)−π/2− ε (2.32)

Combining this definition with the above expression forD2 converts the cosine factor to a
sine.

D2(t) = â2
12 I0(t − t1)+ â2

22 I0(t − t2)+2â12â22

√

Ic(t − t1)Ic(t − t2)sin(Φ(t)− ε) (2.33)

Figure 2.7 shows a conceptual example of how theD1, D2 and BIM signals would appear
for a measurement of steadily increasingΦ(t) and decreasing input intensity.

The BIM is not exposed to any interference, and is thus directly proportional to total input
intensity.

DBIM(t) = â2
3 I0(t− t3) (2.34)

The time shiftt3 reflects the fact that light striking the BIM travels along a different path
than that reaching detectors D1 and D2; the constant ˆa2

3 originates from coupling factors
associated with that path. If it is assumed that the input intensity varies slowly with respect
to the time scalest1, t2, andt3, then the factorsI0(t − ti) (i = 1,2,3) can be replaced by
I0(t). Under such circumstances, it becomes advantageous to normalize the signalsD1 and
D2 with respect to the BIM:

Dx ≡
D1(t)

DBIM(t)
= ā2

11+ ā2
21

︸ ︷︷ ︸

x0

+2ā11ā21
Ic(t)
I0(t)

︸ ︷︷ ︸

Ax(t)

cosΦ(t) (2.35)

Dy ≡
D2(t)

DBIM(t)
= ā2

12+ ā2
22

︸ ︷︷ ︸

y0

+2ā12ā22
Ic(t)
I0(t)

︸ ︷︷ ︸

Ay(t)

sin(Φ(t)− ε) (2.36)
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where the barred variables indicate the ratio of an interferometer coupling factor to the BIM
coupling factor (e.g.,ā2

11 = â2
11/â2

3).

Each normalized signal is composed of two contributions—a constant offset and sinusoidal
function (with possibly a time dependent amplitude)—that parametrically define a family
of ellipses. For fixed values ofIc/I0, the output of the interferometer lies along a single
ellipse as shown in Figure 2.8. Ideally, the ellipse is a circle centered about the point(1,1)
with an amplitude of unity, but in generalIc≤ I0, so the amplitude is less than or equal to the
offset and the system contrast is less than or equal to unity.2. An additional complication is
imperfect quadrature (ε 6= 0), which leads to non-circular ellipses.

Conversion from a point(Dx,Dy) on the ellipse to the angleΦ is found by taking the ratio
of the sinusoidal terms in Equations 2.35 and 2.36.

cosΦ(t) =
Dx(t)−x0

Ax(t)

sin(Φ(t)− ε) =
Dy(t)−y0

Ay(t)
= sinΦ(t)cosε −cosΦ(t)sinε

tanΦ(t) = tanε +
Dy(t)−y0

Dx(t)−x0

Ax(t)
Ay(t)

secε (2.37)

Note thatAx(t)/Ay(t) is independent of input power fluctuations.

2.3.2 Limitations

Unlike the WAMI, the conventional VISAR is insensitive to variations of the input inten-
sity, a benefit gained through BIM normalization. After normalization, the center of a
conventional ellipse is essentially fixed; the ellipse sizemay vary with changes of the in-
put intensity ratio, but such effects cancel out in the calculation of phase difference. For
purely coherent input, normalized VISAR signals trace out asingle ellipse; changes in the
coherent/incoherent ratio move the data across a family ellipse of the same shape.

Since the calculation of phase difference in a conventionalVISAR involves a tangent rather
than a cosine function, many of the limitations of the WAMI are removed. Bycarefuleval-
uation of the inverse tangent, it is possible to remove the sign ambiguity fromΦ and deter-
mine if this quantity is increasing or decreasing. Also, theuse of quadrature signals avoids
the issues near maxima and minima—since these signals cannot simultaneously be zero,
the accuracy in calculatingΦ is dramatically improved. The conventional VISAR retains
the 2π phase ambiguity present in WAMI systems, but this ambiguityis not insurmountable
(Section 5.4.1).

2Strictly speaking, there are two contrast values in a conventional VISAR, but they are typically assumed
to be identical [19].
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2.4 The push-pull VISAR

A modification to the conventional VISAR was proposed by Hemsing [20] to improve the
efficiency of light usage. In a conventional VISAR, half of the light entering the system
does not reach the detectors, but is lost by reflection/transmission to the opposite side of the
primary beamsplitter. This light can be used to drive a second set of detectors as shown in
Figure 2.9, creating two conventional VISARs (one on each side of the beamsplitter) and
thus four optical signals. Subtraction between the appropriate signal pairs creates what is
known as a push-pull VISAR. Traditionally, subtraction is performed by electronic differ-
ential amplifiers prior to data acquisition. For maximum time resolution, all four detector
signals can be acquired separately, an approach becoming more common in current VISAR
systems [7].

2.4.1 Principles

For notational simplicity, it is assumed here that the second pair of detectors in a push-pull
VISAR are located precisely the same distance from the beamsplitter as the first pair; if
this is not true, a minor timing correction may be needed to align the two signal pairs.
Also, the polarizing beamsplitters are assumed to be aligned in a similar fashion so that the
same optical polarization is measured by detectors D1A/D1Band D2A/D2B. The second
pair of detectors in a push-pull VISAR operate in nearly the same fashion as the first pair
with the exception of a negative sign for one coupling constant. This change results from
different recombination of beams at the beamsplitter (e.g.,light from leg 1 is reflected rather
than transmitted). The results from the previous section can thus be applied to a push-pull
system with specific coupling constants for each signal.

D1A(t) = â2
11 I0(t− t1)+ â2

21 I0(t− t2)

+2â11â21

√

Ic(t− t1)Ic(t− t2)cosΦ(t) (2.38)

D2A(t) = â2
12 I0(t− t1)+ â2

22 I0(t− t2)

+2â12â22

√

Ic(t− t1)Ic(t− t2)sin(Φ(t)− ε) (2.39)

D1B(t) = b̂2
11 I0(t− t1)+ b̂2

21 I0(t− t2)

−2b̂11b̂21

√

Ic(t− t1)Ic(t− t2)cosΦ(t) (2.40)

D2B(t) = b̂2
12 I0(t− t1)+ b̂2

22 I0(t− t2)

−2b̂12b̂22

√

Ic(t− t1)Ic(t− t2)sin(Φ(t)− ε) (2.41)

In many cases, no BIM is available in push-pull VISAR systems—either no measurement
of input intensity is made, or if it is, the measurement is shared across multiple VISAR
channels. Hence, BIM normalization is not typically performed in a push-pull VISAR.
Figure 2.10 shows an example of how the four detector signalsof a push-pull VISAR
would appear for steadily increasingΦ(t) and decreasing input intensity.

As in a conventional VISAR, it is convenient to assume that the input intensity variations
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of a push-pull VISAR are slow compared to the interferometertransit times.

D1A(t) =
(
â2

11+ â2
21

)
I0(t)+2â11â21Ic(t)cosΦ(t) (2.42)

D2A(t) =
(
â2

12+ â2
22

)
I0(t)+2â12â22Ic(t)sin(Φ(t)− ε) (2.43)

D1B(t) =
(
b̂2

11+ b̂2
21

)
I0(t)−2b̂11b̂21Ic(t)cosΦ(t) (2.44)

D2B(t) =
(
b̂2

12+ b̂2
22

)
I0(t)−2b̂12b̂22Ic(t)sin(Φ(t)− ε) (2.45)

Pairwise subtraction of the signals from each side of the beamsplitter results in two signals:

Dx(t) ≡ η1AD1A(t)−η1BD1B(t) (2.46)

=
[
η1A

(
â2

11+ â2
21

)
−η1B

(
b̂2

11+ b̂2
21

)]
I0(t)

︸ ︷︷ ︸

x0(t)

+2
[
η1Aâ11â21+η1Bb̂11b̂21

]
Ic(t)

︸ ︷︷ ︸

Ax(t)

cosΦ(t)

Dy(t) ≡ η2AD2A(t)−η2BD2B(t) (2.47)

=
[
η2A

(
â2

12+ â2
22

)
−η2B

(
b̂2

12+ b̂2
22

)]
I0(t)

︸ ︷︷ ︸

y0(t)

+2
[
η2Aâ12â22+η2Bb̂12b̂22

]
Ic(t)

︸ ︷︷ ︸

Ay(t)

whereη is a scaling factor for each signal, which can be controlled by physical means (e.g.,
increasing the gain for a particular detector) or numerically. As in the case of a conventional
VISAR, these signals parametrically describe an ellipse, although now the ellipse center is
a function of the total input intensity, and can change during the measurement. To avoid
this complication, push-pull VISAR signals must be properly scaled to fix the ellipse center
at the origin (Section 5.2.2).

Dx(t) = Ax(t)cosΦ(t) (2.48)

Dy(t) = Ay(t)sin(Φ(t)− ε) (2.49)

Note thatDx andDy are symmetric about zero, which by Equation 2.27 corresponds to infi-
nite signal contrast. Since this is meaningless, one typically refers to the dynamic contrast
defined in Section 5.3.1.

Following the same logic leading to Equation 2.37, the phasedifference is related to the
reduced push-pull data signals through a tangent function.

tanΦ(t) = tanε +
y(t)
x(t)

Ax(t)
Ay(t)

secε (2.50)

Aside from the fact that the center of the ellipse is located at the origin, the analysis of
a push-pull VISAR is very similar to the analysis of a conventional VISAR. The overall
size of a push-pull ellipse is proportional to the coherent intensity, rather than the coherent
intensity fraction, but such variations do not affect the calculation of phase difference as
the ratioAx(t)/Ay(t) is independent ofIc(t).

2.4.2 Limitations

The push-pull VISAR shares many of the benefits and shortcomings of the conventional
VISAR. With the correct signal balancing, a push-pull VISARis insensitive to variations
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in the input intensity and incoherent light. Phase uncertainty is reduced by the use of
quadrature, although the 2π ambiguity remains and must be dealt with just as in a con-
ventional VISAR. The push-pull VISAR has largely supplanted conventional VISAR in
dynamic compression research, so it is worthwhile to consider the relative benefits of each
system. The relative advantages of each system will be considered in three areas: low light
sensitivity, analysis simplicity, and tolerance to rapid intensity changes.

For measurements with low coherent intensity, the push-pull configuration has some advan-
tages over a conventional VISAR. Certainly the push-pull system makes the most efficient
use of input intensity, although there is no more than 2− 4 times more light than in a
conventional VISAR. This additional light gives a push-pull VISAR approximately 40%
better noise performance (Appendix A) over a similar conventional VISAR. The push-pull
configuration also has an advantage when large amounts of incoherent light are present; if
pairwise subtraction is performed prior to signal acquisition, a larger dynamic range to the
coherent signal of interest. However, the gains of a push-pull VISAR come with certain
costs. In addition to the extra equipment needs and alignment, a push-pull VISARmustbe
properly balanced in order to achieve the same accuracy as a conventional VISAR. Hence,
one should not assume that measurements made with a push-pull VISAR are intrinsically
superior.

From an analysis perspective, a push-pull VISAR is easier todeal with than a conventional
VISAR. Conventional VISAR analysis requires an ellipse fit to determine the ellipse center,
a step that may be unnecessary (though certainly recommended) for a well configured push-
pull system. There is also an intuitive advantage to a push-pull VISAR because the ellipse
radius is a function of coherent light only—changes in incoherent intensity do not cause
the VISAR ellipse to contract as for a conventional VISAR.

When input intensity changes on time scales comparable toτ, the analysis described above
will yield a transient contrast loss. A revised analysis is straightforward for the conventional
VISAR configuration when an accurate BIM signal is present and all detectors are precisely
cross-timed.

D1(t) =
â2

11

â2
3

DBIM(t + t3− t1)+
â2

21

â2
3

DBIM(t + t3− t2)

+2â11â21

√

Ic(t − t1)Ic(t − t2)cosΦ(t) (2.51)

D2(t) =
â2

12

â2
3

DBIM(t + t3− t3)+
â2

22

â2
3

DBIM(t + t3− t2))

+2â12â22

√

Ic(t − t1)Ic(t − t2)sin(Φ(t)− ε) (2.52)

By isolating terms containingIc(t) and taking a ratio, it should be possible to extract phase
difference information from the three data signals. Rapid variations are harder to deal with
in a push-pull VISAR because there is often no direct measureof the input intensity. During
a rapid intensity variation, a push-pull VISAR becomes unbalanced and the center drifts
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away from the origin. To demonstrate this, consider just oneoptical polarization.

x0(t) = η1A
[
â2

11I0(t − t1)+ â2
21I0(t − t2)

]
−η1B

[
b̂2

11I0(t− t1)+ b̂2
21I0(t− t2)

]

=
[
η1Aâ2

11−η1Bb̂2
11

]
I0(t− t1)+

[
η1Aâ2

21−η1Bb̂2
21

]
I0(t− t2) (2.53)

Except in certain special cases, it is impossible to balancea push-pull for arbitrary input
intensity.
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CHAPTER 3

Optical velocimetry

Optical phase based velocimetry relies on the relativisticDoppler effect [21]. When a
moving object is illuminated with light of wavelengthλ0, the reflected wavelength is given
by:

λ
λ0

=
1−v/c0

1+v/c0
≈ 1−2 v/c0 (3.1)

wherev is the object velocity andc0 is the vacuum speed of light; the approximation follows
from the fact thatv/c0 is typically less than 0.001. Hence, measurements of reflected
wavelength (or more precisely, the reflected optical phase)can be used to track object
motion.

The theory behind optical velocimetry is developed here in three stages. First, the forward
problem is considered to show how known object motion can be used to predict the re-
sulting changes in optical phase. Next, the forward problemis inverted to demonstrate a
process for extracting velocity from measured optical phase changes. The general result is
then reduced to a simpler form, denoted here as the VISAR approximation, that relates the
velocity of an object directly to an interferometer measurement.

3.1 The forward problem

Suppose that an object of interest is a reflector1 of negligible thickness located at position
x(t) at timet. At an arbitrary reference positionxr , chosen to be always to the right of the
object, monochromatic light is emitted at timetA as shown in Figure 3.1. This light reaches
the object at timetB, is reflected, and returns to the reference plane at timetC.

Throughout this discussion, it will be assumed that the object velocity is always substan-
tially smaller than the speed of light. As such, terms containing powers of(v/c0)

2 or higher
will be neglected. Although the Doppler shift is often derived with assumption of constant
object velocity, this is not necessary when dealing with optical phase, which is frame in-
variant [16]. Hence, the general result derived here does not place any limits upon the

1Apart from practical details (e.g.,optical relay design and efficiency), the reflector may be specular or
diffuse. This is one advantage of the VISAR over a Michelson interferometer [22] for open beam optical
relays.
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magnitude of acceleration, although it is assumed that extremely large accelerations exist
for only brief intervals so thatv≪ c0.

3.1.1 Reflected optical phase

The output optical phase at timetC is equivalent to the input phase at timetA [23], aside from
a possible phase delayδm from the reflection (assumed to be constant). For monochromatic
input, this equivalence can be expressed as follows.

φ(tC) = φin(tA)−δm

= ω0tA+φ0−δm (3.2)

Events attA andtC are separated from the reflection attB by a durationT:

tA = tB−T tC = tB+T

T =
xr −x(tB)

c0
(3.3)

so the output phase is related to the object position at an earlier time.

φ(tC) = ω0(tC−2T)+φ0−δm

= ω0

[

tC− 2
c0

(xr −x(tC−T))

]

+φ0−δm (3.4)

A VISAR does not measure optical phase, but rather the phase difference (Chapter 2):

Φ(t) = φ(t− t1)−φ(t − t2) (3.5)

wheret1 andt2 are the interferometer transit times. Using Equation 3.4, phase difference
can be expressed as:

Φ(t) =
2ω0

c0

[c0

2
(t2− t1)+x(t − t1−T1)−x(t − t2−T2)

]

=
4π
λ0

[c0

2
(t2− t1)+x(t − t1−T1)−x(t − t2−T2)

]

(3.6)

whereTi represents the transit time of light from positionx(t − ti − Ti) to the reference
position, now located at the entrance plane of the interferometer.

The value ofTi can be determined from Equation 3.3.

Ti =
xr −x(t − ti −Ti)

c0
(3.7)

The actual transit times are rarely needed as changes inTi are bounded by the maximum
position change during an experiment of durationtexp.

∆Ti ≤
∆x
c0

≤ vmax

c0
texp (3.8)
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Variations inTi are generally small compared to diagnostic limitations. Throughout this
work, it is assumed thatTi can be treated as a constant; for higher timing precision, iterative
evaluation of Equation 3.7 must be performed.

The interferometer transit times are related by the interferometer delayτ:

t2 = t1+ τ (3.9)

wheret1 is usually constant. Ideallyτ is also constant, but this quantity can vary with
velocity if the interferometer contains dispersive components (Section 5.1.2).

τ = τ0

(

1+2δ
v(t − t1− τ −T)

c0

)

(3.10)

The dispersion free delay is given byτ0, the dispersion magnitude byδ , and the object
velocity by v(t). The Taylor series expansion ofx(t − τ) differs from x(t − τ0) only by
terms of order(v/c0)

2 or higher; also, dispersive variations inτ are of opposite sign from
the changes in the transit timeT and partially cancel.2 Thus, it is reasonable to replace
x(t − τ) with x(t − τ0) andv(t − τ) with v(t− τ0) in Equation 3.6.

Φ(t) =
4π
λ0

[
c0τ0

2

(

1+2δ
v(t − t1− τ0−T)

c0

)

+x(t − t1−T)

−x(t − t1− τ0−T)

]

(3.11)

For notational compactness, a new quantityx′ will be used to eliminate constant time shifts.

x′(t)≡ x(t − t1−T) (3.12)

Φ(t) =
4π
λ0

[
c0τ0

2

(

1+2δ
v′(t− τ0)

c0

)

+x′(t)−x(t− τ0)

]

(3.13)

In later chapters, the primes will be omitted, but they are retained here to remind the reader
of the fundamental time shift between object motion and the measured signals.

Given a known motion history, Equation 3.13 describes phasedifference at an operating
wavelengthλ0 and delay timeτ0. At any given time, phase difference is dictated by the
current position as well as the position at a timeτ0 earlier. Forward analysis can also
be used when object motion history is expressed by a known function with a finite num-
ber of adjustable parameters; these parameters would be adjusted to optimally match the
measured phase difference. However, such analysis is not generally used in velocimetry
measurements because it is relatively slow and does not guarantee a unique solution.

2Motion towards the interferometer corresponds to an increase ofτ (for δ > 0) but a decrease inT; similar
logic applies for motion away from the interferometer
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3.1.2 Physical interpretation

To develop some physical intuition, suppose that dispersion is negligible in a particular
VISAR measurement.

Φ(t) =
4π
λ0

[c0τ0

2
+x′(t)−x′(t− τ)

]

(3.14)

The first term is a constant that is independent of motion. Theprimary concern of this
discussion is value ofx′(t)−x′(t − τ).

When an object is at rest, Equation 3.14 indicates that the measured phase difference will
be a constant. Furthermore, measurements at constant velocity yield a different constant
phase.

Φ(t)∼ x′(t)−x′(t− τ) = vτ (constant velocity) (3.15)

A particular velocity corresponds to a certain phase difference, so it follows that changes
in velocity are linked to changes in phase difference. Sincethe phase difference scales
with product of velocity and interferometer delay, it is possible to configure a VISAR to
optimally track a particular velocity range (e.g.,choosing a large delay time for small ve-
locities).

The qualitative behavior of a VISAR make it a “velocity interferometer”. If the object under
study formed one leg of a Michelson interferometer [22], phase difference would change
with displacement, making it a “displacement interferometer”. Velocity interferometers
are better suited for the study of fast moving objects as rapidly changing phase differences
from a displacement interferometer may be difficult to track. However, the term “velocity
interferometer” may be misleading as VISAR data can be analyzed in terms of velocity or
displacement. Aside from numerical issues discussed lateron, the two analysis approaches
are identical.

3.2 The inverse problem

Velocimetry measurements are the inverse of the above discussion—given a measured
phase difference, the position [24–26] is determined; velocity may then derived by nu-
merical differentiation. Conceptually, there is little difficulty in inverting Equation 3.13.

x′(t) = x′(t − τ0)+
λ0

4π
Φ(t)− c0τ0

2

(

1+2δ
v′(t − τ0)

c0

)

(3.16)

The inverse problem is iterative because the result at timet depends on conditions at an
earlier timet − τ0. Before delving into the details of the iteration, one must first specify an
initial condition to begin the calculation.
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3.2.1 Initial conditions

Suppose that an object moves at a fixed velocityvi for t ≤ ti. The object’s position atti may
then be written as follows.

x′(ti) = x′(ti − τ0)+
λ0

4π
Φ(ti)−

c0τ0

2

(

1+2δ
v′(ti − τ0)

c0

)

= x′(ti − τ0)+viτ0

v′iτ0 =
λ0

4π
Φ(ti)−

c0τ0

2

(

1+2δ
v′i
c0

)

(3.17)

This expression can be used to write the initial phase difference in terms of the initial
velocity.

Φ(ti) =
4πτ0

λ0

[c0

2
+(1+δ )v′i

]

(3.18)

Note that the value ofΦ(ti) may drift due to the thermal/mechanical variations in the inter-
ferometer. Such variations are general slow compared to duration of a single measurement,
but may be significant between measurements. Hence, the numerical value ofΦ(ti) is al-
ways calculated from the initial quadrature signals in a VISAR measurement, not from
Equation 3.18.

By convention [27], interferometer measurements are expressed in terms of a fringe shift
F(t), which describes the change in phase difference at a particular time from the initial
phase difference (normalized by a complete phase revolution).

F(t)≡ Φ(t)−Φ(ti)
2π

(3.19)

Φ(t) = Φ(ti)+2πF(t) =
4πτ0

λ0

[c0

2
+(1+δ )v′i

]

+2πF(t)

Equation 3.16 can be rewritten in terms of the fringe shift.

x′(t) = x′(t − τ0)+(1+δ )τ0v′i +
λ0

2
F(t)−δτ0v′(t− τ0) (3.20)

To begin using Equation 3.20, the initial condition position x′(ti) must be specified. Since
x′(t) is usually differentiated to yieldv′(t), the value ofx′(ti) is arbitrary and typically set
to zero.

3.2.2 Iterative analysis

Inverse analysis relies on iterative analysis of the fringeshift data. Analysis begins att = ti,
and proceeds throughout the fringe shift record. At a particular timet, the current position
is determined from the current fringe shift, the position att − τ0, and the velocity att − τ0.
Interpolation may be required if the time base ofF(t) is not compatible withτ0, but in
principle, the calculation is straightforward.

Although inverse analysis provides a potentially exact description of the object’s motion,
there are practical difficulties that limit the utility of this method.
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1. Signal noise
Noise is a problem for numerical differentiation, which is needed to convert position
to velocity and to evaluatev′(t−τ0) in dispersive systems. Hence, velocity noise will
be substantially worse than signal noise.

2. Missing data
Intervals of missing fringe shift data, such as when contrast is completely lost (Sec-
tion 5.3), present problems for inverse analysis. If the interval is very short, posi-
tion change may be negligible, so it might be permissible to skip over the missing
data [26]. Extended periods of missing data, however, wouldbe more difficult to
handle.

Thus, it is often impractical to apply inverse analysis to a VISAR measurement.

3.3 The VISAR approximation

It is often is desirable to calculate velocity directly fromthe measured fringe shift. This can
be done using an approximate analysis for time scales much larger thanτ0. Such treatment
is known as the VISAR approximation, an approach used in mostdata reduction schemes.

3.3.1 Derivation

Suppose that the positionx(t) is an analytic function [28], so that the function at timet can
be represented in terms of a Taylor series expansion fromt − τ0.

x(t) = x(t − τ0)+v′(t− τ0)τ0+a′(t − τ0)
τ2

0

2!
+

da′(t− τ0)

dt

τ3
0

3!
+ · · · (3.21)

Herea′(t) is the objects’s acceleration. Substitution of this expansion into Equation 3.20
eliminates the termx(t − τ0).

v′(t − τ0)τ0+a′(t− τ0)
τ2

0

2!
+

da′(t − τ0)

dt

τ3
0

3!
+ · · · = (1+δ )τ0v′i +

λ0

2
F(t)−δτ0v(t− τ0)

(3.22)

This leads to the following expression forv′(t − τ0):

v′(t − τ0) = v′i +
λ0

2(1+δ )τ0
︸ ︷︷ ︸

K

F(t)−a′(t− τ0)
τ0

2!(1+δ )

− da′(t− τ0)

dt

τ2
0

3!(1+δ )
−·· · (3.23)

whereK is the fringe constant or VPF (Velocity Per Fringe) of the interferometer.
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Truncation of Equation 3.23 yields the most basic form of theVISAR approximation.

v′(t− τ0) ≈ v′i +KF(t)+O(τ0) (3.24)

The reasoning behind this truncation is thatτ0 is typically a small number, so terms that
scale withτ0 are negligible, especially in comparison with 1/τ0. In many cases, the time
shift is omitted, leading to another form of the VISAR approximation.

v′(t)≈ v′i +KF(t)+O(τ0) (3.25)

Higher accuracy is possible if one considers a Taylor seriesexpansion of velocity from time
t − τ0 to t− γτ0, whereγ is a constant.

v′(t − γτ0) = v′(t− τ0)+a′(t − τ0)(1− γ)τ0+
da′(t− τ0)

dt

(1− γ)2τ2
0

2!
+ · · · (3.26)

Combining this expansion with Equation 3.23 yields the following series.

v′(t− γτ0) = v′i +KF(t)+

(

1− γ − 1
2!(1+δ )

)

a′(t− τ0)τ0

+

(
(1− γ)2

2!
− 1

3!(1+δ )

)
da′(t− τ0)

dt
τ2

0 + · · · (3.27)

Choosingγ = (1/2+ δ )/(1+ δ ) ≈ (1+ δ )/2 forces the acceleration term to zero, so a
truncation of the series has an error of orderτ2.

v′(t− γτ0) ≈ vi +KF(t)+O(τ2
0) (3.28)

This is the standard form of the VISAR approximation [27], although in practice Equation
3.25 is commonly used in data reduction. Examples in the nextsubsection demonstrate
when the distinction between approximations is important.

The VISAR approximation has many practical advantages overinverse analysis. Foremost
among these is the fact that velocity is directly proportional to fringe shift. This simple
relation avoids iteration and makes the calculation far more robust. Noise amplification is
no longer an issue as signal noise translates directly to velocity noise. Missing data is also
not an issue in the VISAR approximation—picking up the calculation after momentary or
extended periods of contrast loss is trivial.

The disadvantage of the VISAR approximation lies in its inability to track motion changes
on time scales comparable toτ0. This is not an issue when the interferometer delay is
shorter than the diagnostic time resolution, but is becoming an issue in modern VISAR
systems [8]. Truncation of the Taylor series leading to Equation 3.28 assumes that next
term in the series is substantially smaller than the VISAR resolution (Section 5.4.2).

da′(t− τ0)

dt

τ2
0

24
≪ K (δF) .

K
100−200

(no dispersion)

da′(t − τ0)

dt
≪ λ0

10τ3
0

(3.29)
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For sufficiently small values ofda′/dt, the VISAR approximation is reliable. Although it
is tempting to generate higher accuracy by consideringv(t − τ/4) (i.e. Richardson extrap-
olation [29]), refinements achieved by this process are lostwhen the motion history is not
analytic.

3.3.2 Examples

To illustrate the performance of the VISAR approximation atdifferent time scales, consider
an ideal case where an object moves with a linearly increasing velocity that terminates at a
maximum valuevm at timetr .

v′(t) =







0 t ≤ 0

vm
t
tr

0 < t ≤r

vm t > tr

(3.30)

Suppose that this motion is tracked by a dispersion free VISAR with delay timeτ0 and
fringe constantK. To eliminate the use of specific values forK andvm, the problem can be
formulated in terms of normalized quantities:

ṽ =
v

vm
x̃ =

x
vmτ0

t̃ =
t

τ0
F̃ =

KF
vm

g =
tr
τ0

which lead to normalized expressions for the inverse analysis and VISAR approximation.

x̃(t̃) = x̃(t̃ −1)+ F̃(t̃) (3.31)

ṽ(t̃ −1/2) ≈ F̃(t̃) (3.32)

The normalized motion history is given by the following expressions.

ṽ(t̃) =







0 t̃ ≤ 0
t̃/g 0 < t̃ ≤ g
1 t̃ > g

(3.33)

For this specified velocity, the displacement may be determined analytically:

x̃(t̃) =







0 t̃ ≤ 0
t̃2/2g 0 < t̃ ≤ g

t̃ −g/2 t̃ > g
(3.34)

and used with Equation 3.31 to determine the resulting fringe shift. The calculated fringe
shift may be then be inserted into Equation 3.32 to determinevelocity given by the VISAR
approximation.

When the rise time is substantially slower than the interferometer delay, as shown in Figure
3.2(a) fortr = 10 τ0, the standard VISAR approximation (shifted byτ0/2) is a very good

41



0 5 10
0

0.2

0.4

0.6

0.8

1

Normalized time

N
or

m
al

iz
ed

 v
el

oc
ity

(a)

−0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Normalized time
N

or
m

al
iz

ed
 v

el
oc

ity

(b)

−0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Normalized time

N
or

m
al

iz
ed

 v
el

oc
ity

(c)

Figure 3.2. VISAR approximation examples.
(a) Slow velocity rise (tr = 10 τ0)
(b) Moderate velocity rise (tr = τ0)
(c) Fast velocity rise (tr = τ0/10)
Thin black lines show the standard VISAR approximation (shifted
by τ0/2), while thin gray lines show the unshifted approximation.
Heavy lines indicate the specified velocity histories.
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match to the actual velocity. The unshifted form of the approximation lies to the right of the
input history but has a similar shape; the remaining form of the approximation, where ve-
locity is time shifted byτ0, would lie to the left of the input history by the same amount (not
shown). Whenτ0 is smaller than the measurement time resolution, the difference between
the different forms of the approximation can be neglected. However, if precise timing is
required (e.g.,traversal time measurements), it may be important to use themore accurate
version of the VISAR approximation. Otherwise, all three forms of the approximation are
largely interchangeable.

As the velocity rise time approaches the interferometer delay time, differences between
the actual and calculated velocity begin to appear. The critical casetr = τ0 is shown in
Figure 3.2(b) to illustrate this point. The midpoint of the VISAR approximation crosses the
midpoint of the input history, and at this intersection the slopes are equal.3 However, there
are significant deviations during the initial and final portions of the ramp. For rise times
faster than the interferometer delay, the VISAR approximation is a poor representation of
the true velocity history. Figure 3.2(c) demonstrates thisfor the casetr = τ0/10. Once
again, the VISAR approximation crosses the original history at the midpoint, but that is the
extent of their agreement. The slope of the VISAR approximation is substantially different
than the original history, and the approximation indicatesconsiderable velocity prior to
actual motion.

For situations where the VISAR approximation does not work well, velocity can be cal-
culated using inverse analysis. In the absence of noise, inverse analysis reproduces the
specified velocity history within numerical precision. In real measurements, the fringe
signal is a combination of actual motion and random fluctuations (e.g.,detector noise).

F̃(t̃) = F̃input(t̃)+Aσ(t) (3.35)

HereA represents the noise amplitude andσ(t) is a random function with a mean value of
zero and variance of unity. Combining the forward calculation (Equation 3.33) with this
random function produces a noisy fringe shift, which can be used in the inverse analysis
to calculate the position history. This result can then be numerically differentiated for a
meaningful comparison of the inverse analysis and input history.

Based on the examples shown in Figure 3.2, there is little point in applying inverse analysis
to situations wheretr ≫ τ0 as the VISAR approximation does an excellent job with little
effort. To illustrate when the inverse analysis might outperform the VISAR approximation,
consider the casetr = τ0 with a relatively low noise amplitude (0.1%). Several examples
of this case are shown in Figure 3.3(a-c). In plot (a), velocity is calculated from a central
finite difference method [29]:

v(t) =
x(t + ts)−x(t − ts)

2ts
(3.36)

wherets is the time interval between data points (ts = τ0/10 in this example). Inverse
analysis provides a reasonable reconstruction of the inputhistory, with minor deviations

3This agreement results from the fact the VISAR approximation is accurate toτ2
0 . It is large values of jerk

(da/dt)—such as the velocity ramp corners—that cause problems, not the acceleration itself.
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Figure 3.3. Inverse analysis examples.
(a-c) Moderate rise times (tr = τ0) and low noise (A = 0.1%)
(d-f) Moderate rise times (tr = τ0) and moderate noise (A = 1%)
(g-i) Fast rise times (tr = τ0/10) and moderate noise (A = 1%)
Thin black lines show the inverse analysis for a given input history
(heavy black lines) and noise level. Thin gray lines indicate the
unshiftedVISAR approximation, which is proportional to fringe
shift, for comparison.
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at the beginning and ending of the ramp and some oscillationsin the steady state. These
oscillations are of order 1-2%, and represent a considerable (10−20×) amplification of the
fringe shift noise. This shortcoming of numerical differentiation is a fundamental concern
in any inverse analysis of VISAR data.

The difficulties in performing an inverse analysis are shownmore dramatically in Figure
3.3(b). In this case, the sampling interval is decreased from τ0/10 toτ0/100 with the same
rise time and noise levels as Figure 3.3(a). This change in the sampling rate corresponds
to substantially larger steady state noise (≈ 20%) because the finite difference algorithm
is sensitive to small variations in neighboring sample points (similar effects can be seen in
Ref. 26). One solution for this problem is to perform the derivative over time scales larger
thants, reducing the effect of point to point noise in the derivative calculation. A convenient
way of implementing a derivative time scale is to perform a series of polynomial fits4 at
each point of the calculated displacement:

xf it (t) =
N

∑
i=1

ai(t) t i−1 (3.37)

whereai(t) is determined by a least squares fit ofx(t) over the ranget − td/2 ≤ t ≤ t +
td/2. In addition to smoothing, the use of local polynomial fitting provides an analytic
representation of the velocity.

v =
dxf it

dt
=

N

∑
i=2

ai(t)(i −1) t i−2 (3.38)

The refined derivative, shown in Figure 3.3(c), is substantially better than Equation 3.36 at
dealing with noise. In fact, the refined derivative works even better at higher sampling rates
(for fixed values oftd), although there are practical limits as to how smallts can be made.

To illustrate the process of selecting a proper value oftd, consider a moderately noisy signal
(A = 1%) as shown in Figure 3.3(d-f); apart from larger noise level, the input history for
these plots is identical to Figure 3.3(c). In Figure 3.3(d),a small derivative time (td = τ0/10)
is used to allow filtering over approximately ten points (recall that the sampling interval is
τ0/100). Although the calculated velocity follows the generalpath of the input history, the
noisy result (≈ 20%) is hardly a worthwhile gain over the VISAR approximation. Larger
derivative time scales, such astd = τ0/2 (Figure 3.3(e)), lead to more reasonable results,
but it is imperative thattd not be too large. In Figure 3.3(f), the derivative time is setequal
to τ0, yielding a result that is quite similar to the VISAR approximation. Similar results
can be obtained for faster velocity changes as shown in Figure 3.3(g-i), where a velocity
history fortr = τ0/10 (A= 1% andts = τ0/100) is analyzed with derivative times ofτ0/10,
τ0/5, andτ0 respectively (1% noise levels andτ0/100 sampling).

The tradeoff between accurate rise times and smoothness is clear: by makingtd large, the
results are typically smooth but have a slower rise time. Thegoal would be to choosetd

4This process is similar to a Savitsky-Golay filter [30], but can be implemented in a different fashion to
avoid redundant calculations. Linear fits were used to yieldthe results shown in Figure 3.3.
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such that it is no smaller than it needs to be. Obviously, thisdiscussion uses an advantage
unavailable in most experiments—the input history is already known—but there are con-
straints for choosing a reasonable rise time. For a linear velocity ramp (Equation 3.33), the
fringe shift rise time equals the sum of the true rise time andthe interferometer delay, so an
estimate oftr can be made by subtractingτ0 from the measured rise time ofF(t). Further
refinement is possible by performing the calculation for different values oftd to determine
the maximum value that does not substantially broaden the velocity ramp. In general, the
time scales in a calculation should obey the following rules.

ts≪ td ≤ tr . τ0 (3.39)

There are limits on how well ultrafast velocity changes can be detected, even with inverse
analysis. Very fast events (e.g.,τ/100) correspond to only minor differences between the
measured rise time andτ0, and at some point such differences will be indistinguishable.
The precise limit depends upon the detection/acquisition system, but roughly speaking,
changes faster thanτ0/100 would be difficult (if not impossible) to extract.
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CHAPTER 4

Velocity corrections

In the preceding chapter, it was assumed a VISAR system measures the actual velocity
of interest. However, a VISAR is only sensitive to changes inoptical phase difference,
and different types of motion can yield the same phase difference. Apparent velocity,
denoted here with a “∗” superscript, is the result obtained from the VISAR approximation
(Equation 3.28) or the more general inverse analysis (Equation 3.20). With knowledge of
the measurement configuration, it is possible to correct theVISAR result and obtain the
true object velocity. Note that the distinction between apparent and true velocity is not
unique to the VISAR, but applies to any optical phase measurement.

Recall that reflected optical phase is equivalent to the input optical phase at an earlier time
(Section 3.1.1):

φ(t) = φ0(t−2T∗)+δm (4.1)

wereT∗ is the apparent transit time between the object and a fixed reference plane. Mea-
surements where illumination and/or reflection is not normal the object’s motion, or when
light must pass through an optical window, may have a different transit time but yield the
same optical phase:

φ(t) = φ0(t −T1−T2)+δm (4.2)

whereT1 is the transit time from the input plane to the object andT2 is the transit time from
the object to the output plane. Apparent and true motion can be related to one another by
equating the two expressions for optical phase, which implies that the total transit times
must be the same.

T∗ =
T1+T2

2
(4.3)

This chapter derives two important classes of velocity correction. First, the problem of non-
normal incidence and reflection is described. Next, corrections originating from optical
windows are treated.

4.1 Angular illumination and reflection

The optical relay in a velocity measurements rarely matchesthe ideal configuration (Fig-
ure 3.1), where all light paths are parallel to the object’s motion. Non-normal illumination
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and reflection usually lead to minor differences between theapparent and true velocity, but
there are situations where the correction is important. At the very least, the correction pro-
vides an estimate of the limiting velocity precision. For large angles, the apparent velocity
correction can reveal both longitudinal and transverse motion.

4.1.1 General problem

Consider the reflection geometry shown in Figure 4.1. At an arbitrary timet, a small area
element of a reflective surface, shown here as a point, is located a horizontal distancex and
vertical distancey from its initial position att = ti . Light strikes this point at an angleθ1

(from the horizontal axis) and reflects at an angleθ2. All points on the surface are assumed
to undergo the same displacement; if this is not the case, thefollowing results must be
averaged over all displacements that contribute to the measurement.

For each location of the object point, the optical transit time equals the difference between
the initial transit time (subscript “i”) and the change in the optical path length.

T1 +T2 = T1i +T2i −
L1+L2

c0
(4.4)

Assuming that the object moves slowly compared to the speed of light, the apparent transit
time may be approximated from Equation 3.3.

T∗ ≈ x∗r −x∗

c0
= T∗

i − x∗

c0
(4.5)

Using Equation 4.3 and the fact that 2T∗
i = T1i +T2i leads to the following expression.

x∗ =
L1 +L2

2
(4.6)

From the geometry shown in Figure 4.1:

L1 +L2 = H (sin(η −θ1)+sin(η +θ2))

= H (sinη cosθ1−cosη sinθ1 +sinη cosθ2+cosη sinθ2)

= x(cosθ2+cosθ1)+y(sinθ2−sinθ1)

so the apparent position of the mirror may be expressed as:

x∗ =
x
2

(cosθ2 +cosθ1)+
y
2

(sinθ2−sinθ1) (4.7)

which yields the following apparent velocity.

v∗ =
vx

2
(cosθ2 +cosθ1)+

vy

2
(sinθ2−sinθ1) (4.8)

48



sinη =
x
H

cos(π/2−η +θ1) =
L1

H
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Figure 4.1. Non-normal illumination and reflection geometry.
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4.1.2 Diffuse reflectors

Suppose that a diffuse surface is illuminated normally (θ1 = 0) and the reflected light is
collected over range of angles, as in many fiber coupled measurements [31]. For light
reflected at angleθ2, the apparent velocity is given by:

v∗ = vx
1+cosθ2

2
(4.9)

where it is assumed (for now) that the mirror has a transversevelocity of zero. Ifθ2 ≤ θm

and θm is sufficiently small, one can estimate the apparent velocity by substituting the
average angle (θm/2) in the above expression. Forθm < 7◦, the apparent velocity correction
is less than 0.1% [31].

For larger angle measurements, the apparent velocity must be averaged over the reflected
radianceL. For a perfectly diffuse (i.e. Lambertian [14]) surface,L is a constant at all
angles, so apparent velocity is simply averaged over the solid angle.

〈v∗〉 =

∫

v∗ L dΩ
∫

L dΩ
(4.10)

For azimuthal symmetry, this can be reduced to a simple form.

〈v∗〉 =
vx

2

∫ θm

0
(1+cosθ2)sinθ2 dθ2

∫ θm

0
sinθ2 dθ2

=
vx

2

(

1+
1+cosθm

2

)

(4.11)

This correction is important when a fast lens is used to increase the amount of light reaching
the VISAR [32]. For example, aF/1 collection lens (θm ≈ 26.6◦) leads to a velocity
correction of 2.6%.

In general, the apparent velocity is a function of both longitudinal and transverse motion
of a surface. For normal illumination and reflection, velocity measurement is insensitive to
the transverse motion:

v∗1 = vx (4.12)

whereas reflection at an angle involves both velocity components.

v∗2 =
vx

2
(cosθ2+1)+

vy

2
(sinθ2) (4.13)

This analysis has been applied to diffuse reflectors [33] as well surfaces deposited with a
diffraction grating [34]; in the latter case, light collection is restricted to specific angles
determined by the grating density, but otherwise the analysis is similar.
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4.1.3 Specular reflectors

The apparent velocity relationship for a specular surface(θ1 = θ2) is quite simple.

v∗ = vx cosθ1 (4.14)

When a specular surface is illuminated over a range of angles, integration is performed on
either the illumination or the collection angle, whicheveris more restrictive. For uniform
illumination over a maximum angleθm and azimuthal symmetry, the apparent velocity may
be written as follows.

〈v∗〉 = vx

∫ θm

0
cosθ sinθ dθ

∫ θm

0
sinθ dθ

=
vx

2
(1+cosθm) (4.15)

In this case, the correction is less than 0.1% forθm < 3.5◦; this range is smaller than for a
diffuse reflector because angular corrections occur duringboth illumination and collection.
Note that specular measurements are insensitive to transverse motion at all illumination
angles.

4.2 Window corrections

An important class of velocity corrections occur for measurements that involve optical
windows. Light passing through the window travels more slowly than it would in vacuum,
altering the optical transit time and leading to substantial velocity corrections. Window
corrections are typically much larger than angular corrections, so the latter will be omitted
from the discussion.

4.2.1 General problem

Suppose that the light path in a velocity measurement contains a dielectric window as
shown in Figure 4.2. For normal incidence and reflection, theactual and apparent transit
times may be written as follows.

T∗ =

∫ x∗r

x∗(t)

dx′

c0
=

xr −x∗(t)
c0

(4.16)

T1 +T2 = −
∫ x(t)

xr

dx′

c1(x′, t)
+

∫ xr

x(t)

dx′

c2(x′, t)
≈ 2

∫ xr

x(t)

dx′

c(x′, t)
(4.17)

Hereci (i = 1,2) is the local speed of light during thei−th transit; if all motion in the
measurement is much slower than the speed of light, these functions are essentially the
same. Substitution of these expressions into Equation 4.3 yields the apparent position in
terms of the real position and local refractive indexn = c0/c:

x∗r −x∗(t) =

∫ xr

x(t)
n(x′, t)dx′ (4.18)
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reflecting!
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free!
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Figure 4.2.Velocity measurement through a window.

Table 4.1.Common window corrections

Material Correction (a) Reference
z-axis quartz 1.083 (514.5 nm) 35

c-axis sapphire 1.76 (532 nm) 36
1.786 (532 nm) 37
1.783 (532 nm) 38
1.785 (532 nm) 39

a-axis sapphire 1.844-1.896 (514.5 nm) 40
〈100〉 lithium fluoride 1.281 (514.5 nm) 41

1.280 (532 nm) 36

52



which may be differentiated to determine the apparent velocity.

v∗(t) = − d
dt

[∫ xr

x(t)
n(x′, t)dx′

]

(4.19)

For the configuration in Figure 4.2, Equation 4.19 can be divided into two integrals, one
from the mirror to the window free surface located atxs(t) and the other fromxs(t) to the
reference plane [38,42,43].

v∗(t) = − d
dt

[∫ xs(t)

x(t)
n(x′, t)dx′+(xr −xs(t))

]

= − d
dt

[∫ xs(t)

x(t)
n(x′, t)dx′

]

+vs(t) (4.20)

Herevs is the window free surface velocity. Reduction of the remaining integral requires
some knowledge of the refractive index profile in the window.Wave propagation simula-
tions can be used to validate a particular refractive index model for a prescribed loading
history, but in practice, window corrections are obtained analytically from one of the spe-
cial cases described below.

4.2.2 Shocked windows

Equation 4.20 can be greatly simplified when the window is compressed by a single shock
wave. Shock waves are nearly discontinuous compressions [1] that travel at a fixed velocity
D in the lab frame. Behind the shock front, material is compressed to a constant state
that travels at the mirror velocity; ahead of the front, the material is at rest. Under these
conditions, Equation 4.20 can be written as follows:

v∗ = − d
dt

[n(xD(t)−x(t))+n0(xs−xD(t))] (4.21)

wheren is the refractive index behind the shock front,xD(t) is the shock front position,n0

is the refractive index ahead of the shock front, andxs is the window free surface position
(assumed to be constant). The resulting time derivative provides a simple relationship
between the real mirror and shock velocities and the apparent mirror velocity [44].

v∗ = n (v−D)+n0 D

= n v− (n−n0) D (4.22)

The arrival of the shock front at the window free surface changes the apparent velocity
correction, and provides a distinct timing fiducial that canbe used to calculate the shock
velocity [35]. If the compressed refractive index is known,then the true mirror velocity can
be determined.

v =
v∗ +(n−n0) D

n
(4.23)
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Alternatively, the compressed refractive index can be determined if the true mirror velocity
is known.

n =
v∗−n0 D

v−D
(4.24)

When combined with the jump conditions [1], this result may be used to determine refrac-
tive index as a function of density.

Under strong shock compression, an initially transparent material may become conductive
and highly reflective (e.g.,deuterium [45]). This changes the apparent velocity calculation
as light is reflected by the shock front rather than the original interface. Reexamination of
Equation 4.20 shows that the correction is simply the refractive index ahead of the shock
front.

D∗ = − d
dt

[n0 (xs−xD(t))] = n0 D (4.25)

4.2.3 Linear window materials

If the refractive index of the material is a function of localdensity only:

n = a+bρ (4.26)

then the apparent velocity can be expressed as follows [38,42,43].

v∗ = − d
dt

[

a(xs(t)−x(t))+b
∫ xS

x(t)
ρ(x′, t) dx′

]

+vs(t) (4.27)

The density integral is proportional to the total mass of thewindow, and by mass conserva-
tion has a time derivative of zero (regardless of the window’s density profile).

v∗(t) = −a(vs(t)−v(t))+vs(t) = a v(t)− (a−1) vs(t) (4.28)

The true mirror velocity is thus linearly related to the apparent velocity.

v(t) =
v∗(t)+(a−1) vs(t)

a
(4.29)

Several common window corrections are given in Table 4.1.

When the window free surface is stationary, velocity corrections can be incorporated into
the fringe constant. For example, the “sapphire VPF” of VISAR is the actual fringe constant
(the “free surface VPF”) divided by the window correction for sapphire. Although this
approach is convenient in many situations, caution is required if the free surface begins to
move during the experiment. When light passes through more than one window, additional
care must be taken to use the proper correction during each stage of the analysis.
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CHAPTER 5

VISAR characterization and performance

Beyond the underlying interferometer theory presented in Chapter 2, interpretation of a
VISAR measurement relies on interferometer characterization and performance assess-
ment. Characterization describes measurements of the interferometer and its output sig-
nals needed in the analysis process, the most important examples being the delay time and
ellipse parameters. Performance assessment reveals how well a VISAR operates during
a measurement, and can be described by dynamic contrast and the limiting fringe shift
precision.

5.1 VISAR delay time

The delay time of a VISAR is defined by the condition of equal virtual length (Section 2.2).
Although the interferometer contains distinct physical path lengthsL1 andL2 (correspond-
ing to interferometer legs containing M1 and M2 in Figure 2.4), the virtual distance of the
second leg is shortened by the etalon. For maximum accuracy,this relationship must be
corrected slightly to account for dispersion effects and delays in other components of the
VISAR.

5.1.1 Ideal case

The condition of equal virtual lengths may be expressed as:

L1 = L2−h+
h
n

(5.1)

whereh is the physical length andn is the refractive index of the etalon. The total transit
time of the first leg is simply the ratio of path length to the vacuum speed of light:

t1 = 2L1/c0 (5.2)

while the total transit time for the second leg involves the etalon’s refractive index.

t2 = 2

(
L2−h

c0
+

nh
c0

)

(5.3)
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Combining these transit times with Equation 5.1 yields the delay time, which is purely a
function of the etalon’s size and refractive index.

τ ≡ t2− t1 =
2h
c0

(

n− 1
n

)

(5.4)

VISAR etalons are typically of order 0.1 m in length, yielding delay times of less than 1
ns. With some effort, longer delay times are also possible [8].

5.1.2 Dispersion correction

Systematic errors of several percent are often found when the VISAR delay time is cal-
culated from Equation 5.4 [46]. These errors stem etalon dispersion, a subtle effect over-
looked in the preceding analysis. To account for dispersion, it is important to distinguish
the unshifted laser light in a VISAR (which is used during initial setup) from the Doppler
shifted light collected during a measurement.

For unshifted laser light, the condition of equal virtual path length (Equation 5.1) is given
in terms of the refractive indexn at the laser operating wavelengthλ0.

L1 = L2−h+
h
n

(5.5)

The first interferometer leg is assumed to be free of dispersion, so the traversal time is
similar to the original derivation (Equation 5.2). The second interferometer path contains
the etalon, so the transit time depends on the refractive index n′, which may be different
from n due to Doppler shifting.

t2 =
2
c0

(
L2−h+n′h

)
(5.6)

τ = t2− t1 =
2h
c0

(

n′− 1
n

)

(5.7)

Doppler shifted wavelengths (Equation 3.1) in a VISAR measurement are not substantially
different from the laser operating wavelength, so it is reasonable to definen′ by a linear
expansion aboutλ0.

n′ ≈ n+
dn
dλ

∣
∣
∣
∣
λ0

(λ −λ0) = n−
(

2λ0
dn
dλ

∣
∣
∣
∣
λ0

)

v
c0

(5.8)

The Doppler shifted interferometer delay can then be written as:

τ =
2h
c0

[

n− 1
n
−2λ0

dn
dλ

∣
∣
∣
∣
λ0

v
c0

]

= τ0

(

1+2δ
v
c0

)

(5.9)
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whereτ0 is the unshifted delay time andδ is a dimensionless parameter for a given etalon
material and operating wavelength (e.g.,δ = 0.0339 for fused silica at 514.5 nm [46]).

δ = − n
n2−1

λ0
dn
dλ

∣
∣
∣
∣
λ0

(5.10)

Note that in a dispersive VISAR, there is no single delay time; instead, the interferometer
delay depends on the velocity at an earlier time. This subtlety drops out of the VISAR
approximation (Section 3.3), leading to a simple correction of 1+δ in the fringe constant.
Inverse VISAR analysis (Section 3.2) does not lead to such simplification, and dispersion
effects are much harder to deal with than in the VISAR approximation.

5.1.3 Precision considerations

Fringe constant precision is dictated by the characterization of the VISAR delay time. In
principle, the delay could be measured directly by timing the passage of a laser pulse
through the interferometer. However, such a measurement would require extremely fast
pulses and detector systems to achieve the precision attainable with physical measurements
of the etalon. For a well characterized etalon, the fringe constant can be determined to
within 0.1% [31].

For maximum precision, the delay time calculation must include all unbalanced elements
of the VISAR system. The 1/8 wave plate and primary beamsplitter are key examples of
unbalanced elements. The total delay time is given by the summation of the individual
delay times of each element, which are assumed to all be contained in the second leg of the
interferometer.

τ = τe

(

1+2δe
v
c0

)

+ τwp

(

1+2δwp
v
c0

)

+ τbs

(

1+2δbs
v
c0

)

+ τm (5.11)

The unshifted delay times for the etalon(τe) and wave plate(τwp) are given by Equation
5.4; for the beam splitter, the unshifted delay time is half of Equation 5.4. The final term,
δm = 2∆L/c0, represents the time delay arising from mirror misplacement. Contributions
from each element can be collected into a total unshifted delay τ0 and effective dispersion
δ to match Equation 5.9.

τ0 = τe+ τwp+ τbs+ τm (5.12)

δ =
δeτe+δwpτwp+δbsτbs

τe+ τwp+ τbs+ τm
≈ δe (5.13)

Since the etalon tends to be substantially larger than the other elements, the effective dis-
persion is approximately equal to the etalon dispersion.

As an example, consider the error created by a mirror misplacement∆L in a VISAR system

57



with an intended fringe constantK0.

K0 =
λ0

2(1+δ )τe
K =

λ0

2(1+δ )(τe+ τm)

K
K0

=
1

1+ τm/τe
≈ 1−4(1+δ )

K0

c0

∆L
λ0

(5.14)

The correction scales withK/c0, so large fringe constants require precise mirror precision
to maintain reasonable uncertainty. For a 1 km/s fringe constant, the interferometer must
be constructed to better than 75 wavelengths (about 0.04 mm for λ0 = 532 nm) to attain
0.1% precision.

5.2 Ellipse parameters

The basic function of a VISAR system is to determine the phasedifferenceΦ(t) from the
quadrature signalsDx andDy.

tanΦ(t) = tanε +
Dy(t)−y0

Dx(t)−x0

Ax

Ay
secε (5.15)

Obviously, this calculation requires knowledge of ellipseparameters—x0, y0, Ax, Ay, and
ε—for a particular interferometer configuration. Ideally, the VISAR ellipse should be made
to be a perfect circle, but this is not always possible for a variety of reasons (e.g.,a shared
wave plate in a multi-channel VISAR cannot optimizeε simultaneously on all channels).

In principle, each ellipse parameter could be determined bycombining the power losses
and/or phase shifts for each optical component in a VISAR. Better results are obtained
through characterization measurements that directly probe the coupling parameters. Two
types of ellipse characterization will be discussed here: ellipse fitting and parameter con-
straints. The first method is a general approach used to simultaneously determine all five
ellipse parameters. The second method constrains specific ellipse parameters to some de-
sired value (e.g., x0 = 0). At the end of this section, the two methods will be combined to
show how the ellipse parameters can be obtained with maximumprecision.

5.2.1 Ellipse fitting

Ellipses are a type of conic section,i.e. curves described by:

F(x,y) = ax2 +bxy+cy2 +dx+ey+ f = 0 (5.16)
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where the value ofb2−4acmust be negative [28]. The six conic section parameters can be
expressed in terms of the five VISAR ellipse parameters as follows.

a = A2
y (5.17)

b = 2AxAysinε (5.18)

c = A2
x (5.19)

d = −2A2
yx0−2AxAyy0sinε (5.20)

e= −2A2
xy0−2AxAyx0sinε (5.21)

f = A2
yx2

0 +2AxAyx0y0sinε +A2
xy2

0−A2
xA2

y cos2ε (5.22)

The reverse calculation is possible but requires some caution. Since Equation 5.16 may
be multiplied by an arbitrary factor, it is important that parameter ratios be used in the
conversion process.

ε = arcsin
b√
4ac

(5.23)

x0 =
eb−2cd
4ac−b2 (5.24)

y0 =
bd−2ae
4ac−b2 (5.25)

Ax = secε
√

x2
0 +

b
a

x0y0 +
c
a

y2
0−

f
a

(5.26)

Ay = secε
√

a
c

x2
0 +

b
c

x0y0+y2
0−

f
c

(5.27)

The goal of an ellipse fit is to identify parameters that best represent a set of(x,y) data. A
common approach for determining the best fit is to minimizeχ , the root mean square of
Equation 5.16 overN data points.1

χ2 =
1

N2

N

∑
i=1

F2(xi,yi) (5.28)

Ellipse fits are often performed on the quadrature signals obtained in a particular VISAR
measurement. Ellipse data may also be obtained prior to a measurement by illuminating
a VISAR with purely coherent light (of fixed amplitude) whilemoving one mirror of the
interferometer over half an optical wavelength or more. In either case, ellipse fitting may
be performed as a direct or an iterative process.

Direct ellipse fitting

Direct ellipse fitting utilizes the fact thatF(x,y) is linear with respect to the six conic
section parameters (Equation 5.16). Hence, the parameter values that minimizeχ2 may

1Alternate definitions ofχ , which rely on residual functions other thanF(xi ,yi) or use the median of
F(xi ,yi), may also be used [47]. Although more computationally expensive, such alternatives can reduce
certain biases in the fitting process. More comprehensive discussion of this topic may be found in Ref. 48.
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be found by linear least squares methods, which reduce the optimization problem to matrix
manipulation [49]. In its most basic form, this approach does not guarantee that the result is
an ellipse as the value ofb2−4accan be positive. Ellipse specific fitting was first achieved
by Fitzgibbonet al. [50], who found that adding the constraintb2− 4ac < 0 transforms
the optimization into an eigenvalue problem. A numericallyrobust version of Fitzgibbon’s
algorithm proposed by Halı́ř and Flusser [51] is used in thefollowing examples.

A number of fits are shown in Figure 5.1 to demonstrate the utility of direct ellipse fitting,.
The left column contains three noise free ellipses with different parameter choices: a per-
fect circle (A), a skewed ellipse withε = π/16 (D), and a skewed ellipse with an aspect
ratio of 4/3 andε = π/8 (G). The center (B, E, and H) and right (C, F, and I) columns
contain similar ellipses with different noise levels (5% and 10%, respectively). The direct
fit captures the general shape of each data set, and in the noise free cases, reproduces the
original ellipse parameters within numerical precision. When noise is added, the fit param-
eters vary from the original values by several percent; typically, the variations are less than
or comparable to the noise level. Rigorous characterization requires broader study over a
wide array of parameter sets, noise levels, and noise classes, but these results suggest that
the direct fitting method is sound.

One consideration in using the direct fitting method is how itdeals with partial ellipse
data, a common situation in VISAR measurements. Figure 5.2 shows the ellipses from
the preceding discussion (noise levels set to 5%) with some data omitted. When the data
spans half of the ellipse (A, D, and G), the direct fitting routine captures the general shape
but does not precisely reproduce the correct ellipse. When only a quarter of the ellipse is
present (B, E, and H), the direct fit is substantially different from the original ellipse. The
fraction of an ellipse needed for reasonable behavior depends on the noise level [51], but
there is a systematic problem with the direct fitting method when data is clustered along
one portion of the ellipse. Data clusters on opposite sides of the ellipse (C, F, and I) lead to
more reasonable results, although there is a reduction of parameter accuracy.

Iterative ellipse fitting

Iterative ellipse fitting is a repetitive process used to optimize the ellipse parameters. Each
iteration involves the following tasks.

1. Choose a set of ellipse parameters (x0, y0, Ax, Ay, andε).

2. Calculate the corresponding conic section parameters (a, b, c, d, e, and f ).

3. Evaluate the functionF(x,y) (Equation 5.16) at each data point.

4. Evaluate the residual errorχ2.

5. Choose a new set of ellipse parameters that will hopefullymakeχ2 smaller and repeat
steps 2−4 until some convergence criterion is met.
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Figure 5.1.Direct ellipse fitting with noisy
signals.
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Figure 5.2.Direct ellipse fitting with missing

data.
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Figure 5.3. Iterative ellipse fitting with noisy
signals.
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Figure 5.4. Iterative ellipse fitting with missing
data
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Unlike direct ellipse fitting, iterative ellipse fitting maynever reach a final conclusion. The
process could iterate around a local minimum ofχ2 forever without reaching the best fit
curve of interest. The probability of reaching the true minimum (and the number of itera-
tions required to get to that minimum) is related to the starting conditions. The difficulties
of the iterative method can be mitigated through the use of different optimization schemes,
the details of which are beyond the scope of this work; the interested reader is directed to
Ref. 49. Despite the practical challenges of iterative optimization, it is straightforward to
fix specific ellipse parameters in the process and implement different residual functions,
features that are difficult (perhaps impossible) to achievewith the direct ellipse fit.

For complete or nearly complete ellipse data, the direct anditerative methods yield quite
similar results. Figure 5.3 shows iterative ellipse fits to noise-free data using a direct ellipse
as the initial guess; the resulting parameters from these two approaches differ by a negli-
gible amount. As noise is added, the two methods diverge slightly, though the discrepancy
tends to be much smaller than the noise level. The actual difference between the two meth-
ods depends the specific optimization routine and the nature/magnitude of the signal noise
and is beyond this scope of this work.

To illustrate situations when iterative fitting is superiorto the direct method, consider the
partial ellipse fits shown in Figure 5.4. The ellipses in thisfigure are identical to the previ-
ous discussion for Figure 5.4 using an iterative ellipse fit rather than the direct method. In
the iterative fits, the ellipse center was fixed at the precisevalue for each data set. Although
the plots in Figure 5.2 do not represent an exhaustive comparison between the two fitting
methods, they suggest that iterative fitting is better suited to partial ellipse data because
of the ability to constrain specific ellipse parameters. Note that in spite of this advantage,
iterative fitting requires more work on the part of the user toprovide a good initial guess.
In many cases, it would be advisable to perform a direct fit initially, then use that result as
the guess for an iterative method. When this is not possible,one should generate a guess by
visual inspection,i.e. plot ellipses with different parameter sets to find a reasonable match
with the data. This process may require some trial and error as certain guesses converge
to a proper result easily, while slightly different guessesperform very badly. The human
eye and good judgment are often needed to determine which ellipse comprises the best fit
curve.

5.2.2 Parameter constraints

Parameter constraints represent a means of forcing an ellipse parameter to some desired
value, rather than determining that parameter from a best fitellipse. A push-pull VISAR
system (Section 2.4) is the primary example when ellipse parameters must be enforced.
Specifically, the center of the ellipse must be fixed at the origin, regardless of the input
intensity. By inspection of Equations 2.46–2.47, this condition is met by the following

62



scaling factor ratios.

η1B

η1A
=

â2
11+ â2

21

b̂2
11+ b̂2

21

(5.29)

η2B

η2A
=

â2
12+ â2

22

b̂2
12+ b̂2

22

(5.30)

Furthermore, the aspect ratio(Ax/Ay) can be set to unity by the following choice of scaling
factors.

η2A

η1A
=

â11â21+
η1B

η1A
b̂11b̂21

â12â22+
η2B

η2A
b̂12b̂22

(5.31)

One approach for determining the coupling constants is expose a VISAR to incoherent
light, which eliminates interference. Measurements made under such conditions (denoted
here by a bar):

D̄1A =
(
â2

11+ â2
21

)
Ī0 (5.32)

D̄2A =
(
â2

12+ â2
22

)
Ī0 (5.33)

D̄1B =
(
b̂2

11+ b̂2
21

)
Ī0 (5.34)

D̄2B =
(
b̂2

12+ b̂2
22

)
Ī0 (5.35)

can be used to yield two scaling ratios.

η1B

η1A
=

D̄1A

D̄1B
(5.36)

η2B

η2A
=

D̄2A

D̄2B
(5.37)

Unfortunately, the third constraint (unity aspect ratio) cannot be applied exactly because
each incoherent light measurement contains several coupling parameters.

An alternate method for determining the coupling constantsis to operate a VISAR with
completely coherent input while blocking one leg of the interferometer [20]; obviously,
this method requires consistent input intensity when the alternate leg is blocked. This
process yields eight signals, each of which is proportionalto the square of a single coupling
constant, as shown in the following example.

D̄(1)
1A = â2

21Ī0 (5.38)

The superscript “(1)” indicates that the measurement is performed with the first path blocked;
the corresponding measurement for the same detector with the other leg blocked would be
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D̄(2)
1A . These eight measurements provide sufficient information for all three constraints.

η1B

η1A
=

D̄(1)
1A + D̄(2)

1A

D̄(1)
1B + D̄(2)

1B

(5.39)

η2B

η2A
=

D̄(1)
2A + D̄(2)

2A

D̄(1)
2B + D̄(2)

2B

(5.40)

η2A

η1A
=

√

D̄(1)
1A D̄(2)

1A +
η1B

η1A

√

D̄(1)
1B D̄(2)

1B
√

D̄(1)
2A D̄(2)

2A +
η2B

η2A

√

D̄(1)
1B D̄(2)

1B

(5.41)

There are alternative ways of enforcing the correct scalingin a push-pull VISAR in certain
types of measurements. For example, if a portion of a VISAR measurement contains a
continuously varying phase difference, with no incoherentlight and minimal variations
variations in coherent intensity, it may be possible to visually scale the detector signals so
that all oscillations are consistent. However, the beam blocking method is recommended
for greatest accuracy.

5.2.3 Combined characterization

Ellipse fitting can determine all the ellipse parameters, but there is a resolution compromise
because the fit has five degrees of freedom. At the same time, parameter constraints are pre-
cise but only apply to certain quantities—x0, y0, andAy/Ax—and thus cannot completely
characterize the ellipse. Hence, one must always perform some type of ellipse fit, but
the use of parameter constraints can significantly improve the resolution of the remaining
quantities.

A push-pull VISAR characterized with beam blocking is an important special case where
ellipse constraints reduce the degrees of freedom considerably. In such a system, the
quadrature signals are perfectly centered about the originand have an aspect ratio of unity.
Under these conditions, the mathematical description of the ellipse (Equation 5.16) be-
comes quite simple:

x2 +2sinε xy+y2−A2cosε = 0 (5.42)

whereA = Ax = Ay. With some minor manipulation, this can be expressed as a linear fit.

x2 +y2
︸ ︷︷ ︸

Y

= −2sinε xy
︸︷︷︸

X

+A2cos2 ε (5.43)

The slope ofY versusX yields the value ofε, while the intercept can be used to determine
A. Hence, it possible to use a set of quadrature signals to directly determine the size and
quadrature error. The uncertainty in these parameters can also be determined quantitatively
[52].
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5.3 Dynamic contrast

Contrast was introduced in Chapter 2 to characterize the degree of interference in a VISAR
system. The system contrastC0 of a VISAR is related to its construction, and may be
calculated from the signal outputs extremes.

C0 =
Dmax−Dmin

Dmax+Dmin
(5.44)

However, contrast may change during a VISAR measurement, such as when rapid changes
exceed the detector bandwidth [20]. To quantify such behavior, the concept of contrast must
be broadened to provide a time dependent characterization of the interferometer. A new
quantity, the dynamic contrast, is defined to fulfill that role. Examples of dynamic contrast
loss will then be described to indicate when this quantity isused to identify problems in a
VISAR measurement.

5.3.1 Definitions

The difficulty with the basic definition of contrast (Equation 2.27) is the fact that one does
not generally know the minimum and maximum detector signalsat each moment in time.
To get around this problem, recall that contrast in a WAMI (Section 2.2) is related to the
ratio of oscillation amplitude to the offset. For a conventional VISAR, this suggests the
following definition of dynamic contrast (assumed to be the same for both optical polariza-
tions [19]).

Dx(t) = x0(1+C(t)cosΦ(t)) (5.45)

Dy(t) = y0(1+C(t)sin(Φ(t)− ε)) (5.46)

Elimination of Φ yields an expression for dynamic contrast in terms of the quadrature
signals and the VISAR ellipse parameters.

C2(t)
sec2 ε

=

(
Dx(t)−x0

x0

)2

+2

(
Dx(t)−x0

x0

)(
Dy(t)−y0

y0

)

sinε +

(
Dy(t)−y0

y0

)2

(5.47)

Note that the dynamic contrast issimilar to the radius of the VISAR ellipse:

r2 = (Dx(t)−x0)
2 +(Dy(t)−y0)

2 (5.48)

but the two quantities are not proportional unlessε = 0 andx0 = y0. Although not imme-
diately obvious from Equation 5.47, dynamic contrast is equivalent to the product of the
system contrast and the coherent-total input intensity ratio (Section 2.3).

C(t) = C0
Ic(t)
I0(t)

(5.49)

Dynamic contrast must be modified somewhat for use in a push-pull VISAR as Equation
5.47 involves division byx0 andy0, both of which should be zero. A similar quantityC′(t),
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or pseudo-contrast, is used instead.

(C′(t))2 = sec2ε
[
D2

x(t)+2Dx(t)Dy(t)sinε +D2
y(t)
]

(5.50)

Pseudo-contrast is proportional to the coherent intensity, not the total input intensity. For
convenience,C′(t) can be normalized by an arbitrary reference value.

5.3.2 Dynamic contrast loss

Since contrast is a measure of the coherent light available to an interferometer, any ef-
fect that decreases coherence will correspond to a reduction of dynamic contrast. Contrast
may be lost through coherent signal decrease (e.g.,input power loss), incoherent signal in-
crease (e.g.,blackbody emission), or multiphase interference [20]. Thefirst two situations
are relatively straightforward; the latter is more subtle and will be elaborated in the next
subsection.

Contrast loss is commonly associated with rapid changes in aVISAR measurement, and
may occur for several reasons. At extremely short times scales, photodetectors may be
unable to follow the optical signals, resulting in signal transients that are convolution of
the phase difference changes and the detector response [53]. Contrast loss may also occur
due to transient unbalancing of light in each leg of the VISAR, where changes of the input
power occur on time scales comparable to the interferometerdelay. The latter example of
contrast loss results from a shortcoming in standard VISAR analysis, not the measurement
itself; refined analysis (Section 2.4.2) should eliminate this problem.

5.3.3 Multiphase interference

By its very construction, a VISAR system is ill-equipped to handle multiple coherent light
sources. Measurements of a velocity distribution [54], over a broad angular range [32], or
containing multiple light reflections (e.g.,a diffuse target mirror behind a shocked window
[55]) may contain multiple coherent sources that reduce interferometer contrast. Narrow
angle illumination and careful collection systems can be used to isolate specific coherent
sources and maximize contrast. However, multiple coherentsource measurements are not
an optimal application of the VISAR, and are better suited for other diagnostics [10,11].

To illustrate why multiple coherent sources yield low VISARcontrast, one must return to
the basic operation of a Michelson interferometer. The output of the Michelson interfer-
ometer is given by Equation 2.9.

I(t) = a2
1 I0(t − t1)+a2

2 I0(t− t2)
︸ ︷︷ ︸

ellipse center

+2a1a2η 〈Ec(t − t1)Ec(t− t2)〉
︸ ︷︷ ︸

ellipse size

(5.51)

The first two terms contribute to the offset of a VISAR signal (the ellipse center), while the
third contributes to the signals oscillation amplitude (ellipse size).
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Suppose thatEc is a discrete sum of multiple coherent contributions2.

Ec(t) = ∑
n

An(t)cosφn(t) (5.52)

The time average coherent electric field now becomes:

〈Ec(t − t1)Ec(t− t2)〉 =

〈

∑
n

An(t − t1)cosφn(t− t1)∑
m

Am(t − t2)cosφm(t − t2)

〉

= ∑
n

An(t− t1)An(t − t2)〈cosφn(t − t1)cosφn(t− t2)〉

+2 ∑
n6=m

An(t− t1)Am(t − t2)〈cosφn(t − t1)cosφm(t − t2)〉 (5.53)

where the first summation contains the product of each coherent source with a time shifted
version of itself and the second summation contains cross terms between different coherent
contributions. Although each functionφn(t) is itself coherent, these functions originate
from different sources and are mutually incoherent [12]. Following the same logic leading
to Equation 2.12 and assuming thatAn changes slowly overτ leads to the following result.

〈Ec(t− t1)Ec(t− t2)〉 = ∑
n

An(t− t1)An(t − t2)
2

cosΦn(t)≈ ∑
n

A2
n(t)
2

cosΦn(t) (5.54)

The total coherent power can be expressed as the sum of the power carried by each coherent
term:

Ic(t) = ∑
n

Icn =
ηA2

n(t)
2

(5.55)

which can be compared to the time averaged field product.

η 〈Ec(t− t1)Ec(t− t2)〉 ≈ ∑
n

Icn(t)cosΦn(t)≤ Ic(t) (5.56)

The final inequality expresses a very basic fact: cosΦ lies between -1 and 1, resulting in
a summation of coherent power contributions that is smallerthan the total coherent power
input.

Following the logic leading to Equation 5.47 yields a generalization for the dynamic con-
trast.

C2(t)

C2
0 sec2 ε

=

(

∑
n

wncosΦn(t)

)2

+

(

∑
n

wncosΦn(t)

)(

∑
n

wnsin(Φn(t)− ε)

)

sinε

+

(

∑
n

wnsin(Φn(t)− ε)

)2

(5.57)

2If a continuous phase distribution is present, the sum wouldbe expressed as an integral andAn would
become a weighting functionA(n).
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Herewn represent the relative weight of each coherent contribution

wn(t)≡
Icn(t)
I0(t)

(

∑
n

wn(t) = 1

)

(5.58)

For simplicity, suppose that the VISAR is configured with perfect quadrature (ε = 0).

C2(t)

C2
0

=

(

∑
n

wn(t)cosΦn(t)

)2

+

(

∑
n

wn(t)sin(Φn(t))

)2

= ∑
n

w2
n(t)+2 ∑

n6=m

wn(t) wm(t) [cosΦn(t)cosΦm(t)+sinΦn(t)Φm(t)]

= ∑
n

w2
n(t)+2 ∑

n6=m

wn(t) wm(t)cos[Φn(t)−Φm(t)] (5.59)

Since weights are non-negative, the maximum value of contrast occurs when all cosine
terms equal unity.

C2(t)

C2
0

≤ ∑
n

w2
n(t)+2 ∑

n6=m

wn(t) wm(t) = ∑
n

wn(t)∑
m

wm(t)

C2(t)

C2
0

≤ 1 (5.60)

The upper bound may only be reached when all phase differencevalues are the same,
i.e. there is only one coherent contribution to the VISAR signal.When multiple coherent
contributions are present, the dynamic contrast is less than the instrument contrast.

5.4 Precision limits

Recall that fringe shift is the normalized difference of thecurrent and initial phase differ-
ence functions (Equation 3.19):

F(t) =
Φ(t)−Φ(ti)

2π
(5.61)

and phase difference is calculated from the inverse tangentof the quadrature signals (Equa-
tion 2.37).

tanΦ = tanε +
Dy−y0

Dx−x0

Ax

Ay
secε (5.62)

Two factors limit the precision with which fringe shift may be determined. First, the pe-
riodic nature of the tangent function creates an ambiguity in fringe shift. Second, the
quadrature signal quality and ellipse parameter characterization limit the accuracy with
which fringe shift can be calculated. The importance of eachfactor is tied to the fringe
constantK: fringe ambiguity dominates for small values ofK while fringe uncertainty
dominates for large values ofK.
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5.4.1 Fringe ambiguity

Since the addition of 2π to the phase difference yields the same quadrature signals,the
fringe shift is only specified within some integer offset.

F(t) = Fp(t)+N(t) (5.63)

HereFp(t) is a number between zero and unity calculated directly from Equations 5.61–
5.62 andN(t) is an integer-valued function. Non-integer values ofN(t) can be used to
create gradual transitions over a specified rise time. Whilesuch smoothing leads to visually
appealing results, there is no definitive criteria for what rise time should be used.

The value ofN(t) can be often resolved by logical means if contrast is maintained through-
out the measurement. For example, data that wraps completely around the ellipse requires
the addition of a fringe whenF(t) decreases by a factor of more than 0.5; such an addition
merely reflects the limited output range of the inverse tangent function. Difficulties arise,
however, if contrast is lost during portion of the measurement. Contrast loss is an indica-
tion that fringe addition (or subtraction) may be necessary, but it does not reveal how many
fringes need to be added.

When dealing with fringe ambiguity, it is generally assumedthat the VISAR approximation
(Section 3.3) applies to the measurement.

v(t) = vi +K [Fp(t)+N(t)] (5.64)

This relation provides some insight on how to add or subtractfringes. For example, suppose
that the maximum possible velocity in a measurement is known. If this velocity is smaller
than the fringe constant, then one can be certain that no fringes can be added. By the same
token, maximum velocity estimates larger than the fringe constant provide an indication of
the number of fringes that could be added to the measurement (vmax/K). A clear way to
minimize ambiguity is to use fringe constants that exceed the maximum expected velocity
in a measurement, but this may not be possible with a given VISAR system. Even when
possible, the use of large fringe constants is not always desirable for reasons described in
the next subsection.

Another method for dealing with fringe uncertainty is to measure velocity with two VISAR
systems, each having a different fringe constant. Since thetwo measurements must yield
the same result, there is a constraint on the number of fringes that can be added to either
record.

v(t) = vi +K1 [Fp1(t)+N1(t)] = vi +K2 [Fp2(t)+N2(t)]

N2(t) =
K1

K2
[Fp1(t)+N1(t)]−Fp2(t) (5.65)

The integerN1 must chosen such thatN2 is also an integer, so the above expression is
more limiting than it might first appear. For best results, the fringe constants should chosen
such thatK1/K2 is not close to being an integer. Fringe addition/subtraction using multiple
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VISAR measurements is typically performed by iterative visual inspection: velocities are
calculated for both records in the absence of fringes, and fringes then added to each record
to obtain consistency.

5.4.2 Fringe uncertainty

Once fringe ambiguity has been resolved, the limiting factor in VISAR resolution is the
precision ofFp(t), which is essentially a question of angular resolution on the VISAR
ellipse. Visual fringe estimates better than 0.06 (∆Φ = 2π/16) are easily achievable, and
the limiting uncertainty is generally quoted as 0.02 (∆Φ = 2π/50) or better [5].

Fringe shift uncertainty is dictated by quadrature signal and ellipse parameter uncertainty.
These uncertainties affect both the current and the initialphase difference, so the fringe
shift uncertainty is approximated by quadrature combination of the two phase difference
uncertainties [52].

(δF(t))2 ≈
(

δΦ(t)
2π

)2

+

(
δΦ(ti)

2π

)2

≤ 2

(
δΦ(t)

2π

)2

(5.66)

The inequality stems from the fact thatδΦ(ti) ≤ δΦ(t) because signal averaging can be
performed on the initial state without sacrificing time resolution. The uncertainty in phase
difference can be approximated by a second quadrature summation:

(δΦ)2 ≈
(

∂Φ
∂Dx

δDx

)2

+

(
∂Φ
∂Dy

δDy

)2

+

(
∂Φ
∂x0

δx0

)2

+

(
∂Φ
∂y0

δy0

)2

+

(
∂Φ
∂Ax

δAx

)2

+

(
∂Φ
∂Ay

δAy

)2

+

(
∂Φ
∂ε

δε
)2

(5.67)

which leads to the following fringe shift uncertainty.

4π2(δF(t))2 ≈
(

∂Φ
∂Dx

δDx

)2

+

(
∂Φ
∂Dy

δDy

)2

+2

(
∂Φ
∂x0

δx0

)2

+2

(
∂Φ
∂y0

δy0

)2

+2

(
∂Φ
∂Ax

δAx

)2

+2

(
∂Φ
∂Ay

δAy

)2

+2

(
∂Φ
∂ε

δε
)2

(5.68)

The factors of two indicate that ellipse parameter uncertainty affects both the initial and
the current phase difference, whereas signal uncertainty affects primarily the current phase
difference.
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With some manipulation, the partial derivatives ofΦ can be expressed as follows.
∣
∣
∣
∣

∂Φ
∂x

∣
∣
∣
∣
=

∣
∣
∣
∣

∂Φ
∂x0

∣
∣
∣
∣
=

|sinΦ−cosΦ tanε|
Ax

(5.69)
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∂y0

∣
∣
∣
∣
=
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(5.70)
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∂Φ
∂Ay

∣
∣
∣
∣
=

|sin2Φ−cos2Φ tanε − tanε|
2

(5.71)

∂Φ
∂ε

=
sin2Φ tanε +cos2Φ+1

2
(5.72)

Each derivative is a function ofΦ, so fringe uncertainty depends on where a particular
measurement falls on the VISAR ellipse. For example, uncertainty in the vertical center
(y0) has no impact on the calculated angle atΦ = π/2 but considerable effect atΦ = 0.
Note that each expression has the form:

Q(z) = asinz+bcosz+c (5.73)

which averages to zero over the domain 0≤ Φ < 2π , but has a non-zero square average.

〈
Q2(z)

〉
=

1
2π

∫ 2π

0
(asinz+bcosz+c)2dz

=
a2+b2

2
+c2 (5.74)

By replacing the partial derivatives in Equation 5.68 with the appropriate square average,
the fringe uncertainty simplifies to an expression that depends only on signal/ellipse pa-
rameter uncertainties, ellipse size/aspect ratio, and thequadrature error.

4π2(δF(t))2 ≈
[

1
2

(
δDx

Ax

)2

+
1
2

(
δDy

Ay

)2

+

(
δx0

Ax

)2

+

(
δy0

Ay

)2
]

sec2 ε

+

[(
δAx

Ax

)2

+

(
δAy

Ay

)2
]

3sec2ε −2
4

+(δε)2 sec2ε +2
4

(5.75)

To illustrate the relative importance of each uncertainty contribution, suppose that the un-
certainty ratios (e.g.,δDx/Ax) are the same for each optical polarization.

4π2(δF(t))2 ≈sec2ε
︸ ︷︷ ︸

F1(ε)

(
δDx

Ax

)2

+2sec2ε
︸ ︷︷ ︸

F2(ε)

(
δx0

Ax

)2

+
3sec2ε −2

2
︸ ︷︷ ︸

F3(ε)

(
δAx

Ax

)2

+
sec2ε +2

2
︸ ︷︷ ︸

F4(ε)

(δε)2 (5.76)
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The functionsF1(ε), F2(ε), F3(ε), andF4(ε) determine the sensitivity of the fringe uncer-
tainty to each uncertainty contribution and are shown in Figure 5.5. From the plots, it is evi-
dent that fringe uncertainty is most sensitive to the ellipse center (δx0). Forε < π/4 (45◦),
quadrature error uncertainty (δε) is next in importance, followed by signal uncertainty
(δDx) and ellipse size (δAx); for large quadrature errors, ellipse size and quadratureerror
uncertainty swap in their importance. All sensitivity factors diverge atε = π/2 (90◦), when
quadrature is completely lost and the ellipse collapses to astraight line.

The limiting resolution of a VISAR measurement can be calcuated by considering a system
with perfect quadrature and a perfectly characterized ellipse. Most VISAR signals are
acquired with eight bit digitizers, so the smallest possible value ofδDx/Ax is 1/256.

δF ≥ 1
256·2π

≈ 0.0006 (8-bit acquisition) (5.77)

In practice, only six or seven bits effect bits are obtained,so the limiting resolution is more
like 0.001-0.002. Fringe precision is further degraded by ellipse parameter uncertainty,
the magnitude of which depends on the care with which a VISAR system is constructed
and characterized. For a visually optimized VISAR ellipse,fractional ellipse parameter
uncertainties (e.g.,δx0/Ax) are of order 0.01 andδε is of order 0.0175 (1◦), which leads to
a limiting fringe uncertainty of order 0.004.

General estimates of the fringe shift resolution can be madeby assuming that all fractional
uncertainties in a VISAR measurement are the roughly the same (δDx/Ax = δx0/Ax =
δAx/Ax). In this case, the fringe shift uncertainty can be plotted for various quadrature
error uncertainties as shown in Figure 5.6. Three values ofδε (0, 2.5◦, and 5◦) are shown to
provide an estimate of the quadrature error uncertainty encountered in a real measurement.
From these curves, it is reasonable to quote the working fringe shift resolution as 0.01-0.02
as originally quoted by Barker and Hollenback [5]. Further refinement is possible, but only
if the fractional uncertainties are less than 0.02 and the quadrature error is known to better
than 2◦.

5.4.3 Velocity precision

Assuming that fringe ambiguity has been dealt with and the initial velocity (vi) is zero,
velocity uncertainty can be expressed as:

(δv)2 = (K δF)2+(F δK)2

(
δv
v

)2

=

(
K
v

δF

)2

+

(
δK
K

)2

(5.78)

whereδF is of order 0.01 andδK/K is of order 0.001 (0.005−0.01 if window corrections
are included [31]). ForK ≈ v, velocity uncertainty is approximately equal to fringe uncer-
tainty, whereas velocity uncertainty is magnified forK > v because the quadrature signals
traverse a smaller portion of the VISAR ellipse.
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From an uncertainty perspective, the ideal situation is forK to be much smaller thanv, so
that the quadrature data undergoes many rotations about theVISAR ellipse. There are lim-
itations to doing this, however, as smaller values ofK require larger interferometer delay
times, which are difficult to attain in practical interferometer systems and can jeopardize
the VISAR approximation (Section 3.3) in the extreme case. Moreover, minimizing the
fringe constant to enhance velocity resolution is exactly the opposite action needed to re-
duce fringe ambiguity, so some compromise must be made.3 In the dual fringe constant
measurements described in the previous subsection, fringeambiguities are resolved with
the larger fringe constant system, while maximal velocity resolution is attained with the
smaller fringe constant system.

3Another consideration in a single VPF measurement is thatK be chosen such that the velocity history
maps out the VISAR ellipse [38].
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CHAPTER 6

Summary

VISAR analysis is comprised of two basic operations—the calculation of fringe shift from
measured quadrature signals and the calculation of mirror velocity. In addition to the theo-
retical basis for these operations, interpreting VISAR measurements also depends on prac-
tical issues, such as the characterization and performanceof a VISAR system.

6.1 Fringe shift

The essential function of a Michelson interferometer is to superimpose light with a time
delayed version of itself, so that the output intensity of the interferometer is related to the
phase differenceΦ(t).

Φ(t) = φ(t)−φ(t− τ) (6.1)

Optical phaseφ(t) describes the harmonic electric field variations of the input and is re-
lated to familiar quantities such as wavelength. Michelsoninterferometers are generally
ill-suited for use velocity measurements because they yield spatially varying intensity (i.e.
interference patterns) for imperfectly collimated input.Instead, the wide-angle Michelson
interferometer (WAMI), which contains an uncompensated dielectric in one leg, is used to
ensure uniform illumination of the output detectors.

Despite the basic utility of the WAMI, it can be difficult to separate optical phase changes
from other variations (e.g.,input intensity fluctuations); even in a perfect measurement, it
can be difficult to unambiguously extractΦ(t) from the detector signal. These shortcom-
ings are largely addressed in the conventional and push-pull VISAR systems, which are
constructed from multiple WAMI systems operating on different optical polarizations. In
the former, a beam intensity monitor (BIM) is used to normalize the interferometer output
signals, whereas the latter utilizes pairs of output signals that are subtracted from one an-
other. In either case, the 2-4 detector signals are reduced to a pair of quadrature signals
(Dx andDy), which by virtue of a 1/8 wave plate in the interferometer are nearly 90◦ out of
phase with one another. Unlike the WAMI, the quadrature signals of a VISAR system are
largely insensitive to input intensity variations and incoherent light.

When plotted against one another, the quadrature signals from a VISAR map out an ellipse,
where the angular position on the ellipse corresponds to a particular value ofΦ(t). The
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conversion of quadrature signals to phase difference is given by:

tanΦ = tanε +
Dy−y0

Dx−x0

Ax

Ay
secε (6.2)

wherex0, y0, Ax, Ay, andε are the ellipse parameters for a particular VISAR system. Com-
parison of the phase difference at each moment in the experiment with an initial reference
value yields the fringe shiftF(t).

F(t) =
Φ(t)−Φ(ti)

2π
(6.3)

Since the tangent function is periodic, it is possible forF(t) to be ambiguous within some
integer shift.

6.2 Velocity calculation

The basic interpretation of a VISAR measurement is that changes in velocity correspond to
changes in fringe shift. Fringe shift may be converted to mirror position by inverse analysis:

x(t) = x(t − τ0)+(1+δ )τ0vi +
λ0

2
F(t)−δτ0v(t − τ0) (6.4)

whereτ0 is the delay time of the interferometer at the operating wavelength λ0, δ is a
dispersion correction for the VISAR etalon, andvi is the initial velocity of the mirror.
This iterative calculation is conceptually straightforward, but the process is fraught with
numerical difficulties and is only practical for low noise measurements.

In most situations, the VISAR approximation:

v(t)≈ vi +K F(t) (6.5)

is more useful than inverse analysis. The parameterK = λ0/2(1+ δ )τ0 is known as the
fringe constant, and is controlled by the size/construction of the VISAR system. The
VISAR approximation neglects changes comparable to or faster than the interferometer
delay time, which for many applications is reasonable. Better results, particularly for fast
phenomena, are obtained from a time shifted version of the VISAR approximation:

v(t − γτ0) ≈ vi +K F(t) (6.6)

whereγ ≈ (1+ δ )/2. Events that occur faster thanτ0 are poorly resolved by the VISAR
approximation and require inverse analysis.

6.3 Velocity corrections

Velocity corrections are required to account for conditions that alter the apparent velocity
sensed by a VISAR. One class of velocity correction is the case of non-normal illumination
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and/or reflection. Angular corrections are typically small(∼ 0.1%) but may be important at
extreme angles. In some cases, apparent velocity contains both longitudinal and transverse
velocity information.

Another important class of velocity corrections occur whenever the VISAR measurement
contains a compressed dielectric. In general, the calculation requires a great deal of in-
formation, but there are several special cases where the correction is straightforward. One
special case involves materials compressed by a single shock wave, where the correction
is a function of the refractive index ahead of and behind the front as well as the shock ve-
locity. Another special case applies to materials where therefractive index is linear with
density, leading to simple corrections regardless of the refractive index profile. Even in
these simple cases, caution is required to deal with free surface motion.

6.4 Characterization and performance

The VISAR delay time is determined primarily by the physicallength h and refractive
indexn of the etalon.

τ =
2h
c0

(

n− 1
n

)

(6.7)

With careful interferometer construction and precise measurements of the etalon length,τ
can be determined within 0.1%.

Etalon dispersion leads to a velocity dependent delay time:

τ =
2h
c0

[

n− 1
n
−2λ0

dn
dλ

∣
∣
∣
∣
λ0

v
c0

]

= τ0

(

1+2δ
v
c0

)

(6.8)

whereδ is on the order of several percent. In the VISAR approximation, the velocity
dependence ofτ cancels with other terms and leads to a constant correction to the fringe
constant. For maximum precision, other components in the VISAR (e.g.,the beamsplitter)
may be considered in the calculation ofτ.

The five VISAR ellipse parametersx0, y0, Ax, Ay, andε are required to accurately transform
the measured quadrature signals into phase difference. Ideally, these parameters can be
controlled during VISAR setup to achieve a circular ellipse, but the precise values must
often be determined from ellipse fitting, parameter constraints, or some combination of the
two techniques. Ellipse fitting uses quadrature signals (obtained either prior to or during a
measurement) that map out the VISAR ellipse. The fitting process may be direct (which
is fast, but has problems with incomplete data) or indirect (which is slow and may not
converge, but can easily deal with constraints). Some ellipse parameters can be constrained
to a desired value (e.g., x0 = 0) from characterization experiments prior to the VISAR
experiment; this is particularly important for the push-pull VISAR configuration.

Contrast is a useful way to assess the performance of a VISAR system during a measure-
ment. The dynamic contrast of a VISAR is a combination of the system contrast and the
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optical signal that enters the interferometer, and is similar to the ellipse radius. Contrast
loss is an indication of non-ideal behavior in a measurement. Sources of contrast loss in-
clude decreasing coherent light, increasing incoherent light, limited detector bandwidth,
and multiphase interference.

The precision of a VISAR is limited by fringe ambiguity and fringe uncertainty. Fringe
ambiguity arises from the periodicity in the tangent function—adding integer multiples of
2π to any phase difference yields the same quadrature signals.Such ambiguity can be
eliminated by setting the fringe constant larger than the maximum expected velocity in a
measurement. Physical insight and/or multiple VISAR measurements are alternative meth-
ods for dealing with fringe ambiguity. Fringe uncertainty arises from quadrature signal
noise and imperfect characterization of the VISAR ellipse.The limiting resolution of a
fringe shift measurement is approximately 0.001, and the practical resolution is 0.01-0.02.
Fringe uncertainty can be mitigated by using small fringe constants where possible, al-
though doing so may lead to fringe ambiguity.
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APPENDIX A

VISAR noise performance

The noise performance of a VISAR system can be quantified in terms of the noise impact
Q, which is defined by the ratio of signal oscillation amplitude to noise amplitude.

Q≡ δD
AD

(A.1)

Since a push-pull VISAR [1] utilizes nearly twice as much of the coherent light as a com-
parable conventional VISAR [2], one expects the former to have half the noise impact of
the latter. However, the precise noise benefit depends on thedominant noise mechanism.
Two types of noise are considered here: photon limited and constant noise measurements.

Photon noise

Photon noise is the result of statistical fluctuations in photon flux [3]. These variations scale
with the square root of the flux, and for a linear detector translate to the following signal
noise:

δD = γ
√

D (A.2)

whereγ is a detector specific scaling factor.

For fixed input intensity, the signal output from one polarization of a conventional VISAR
is simply a sinusoid centered onx0 with an amplitude ofCx0, whereC is the system contrast
(Section 2.3).

D1 = x0(1+CcosΦ) (A.3)

The signal undergoes random signal fluctuationsδD1, which can be determined from Equa-
tion A.2.

δD1 = γ
√

x0(1+CcosΦ) (A.4)

The noise impact of a conventional VISAR is thus as follows.

Qc =
γ
C

√
1+CcosΦ

x0
(A.5)
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The same analysis can be applied a signal pair of a push-pull VISAR, which are assumed
here to have the same mean and contrast.

D1A = x0(1+CcosΦ) D1B = x0(1−CcosΦ)

D1 = D1A−D1B = 2Cx0cosΦ (A.6)

If no additional noise is generated during signal subtraction, the total signal noise is simply
the quadrature sum [4] of the signal noise from each detector.

(δD1)
2 = (δD1A)2+(δD1B)2 = 2γ2x0 (A.7)

The noise impact of a push-pull VISAR is thus a constant.

Qpp =
γ
√

2x0

2Cx0
=

γ
C

√
1

2x0
(A.8)

The relative noise impact of each VISAR configuration can nowbe assessed by the ratio of
Equation A.5 and Equation A.8.

q≡ Qc

Qpp
=
√

2(1+CcosΦ) (A.9)

Whenq > 1, the conventional configuration suffers from noise more than a comparable
push-pull VISAR would; forq < 1, the push-pull configuration experiences greater noise
problems. The limiting values ofq are determined from the case of ideal contrast (C = 1).

√

2(1−C) ≤ q≤
√

2(1+C) (A.10)

The value ofq is not always greater than unity—there are conditions wherethe conventional
configuration outperforms the push-pull configuration.

One way of determining the better configuration is to calculate whetherq is more likely to
be above or below unity. From the symmetry of Equation A.9, the probability thatq > 1 is
given by:

Pq>1 =
ΦC

π
where 2(1+cosΦC) = 1 (ΦC ≤ π) (A.11)

which reduces to the following result.

Pq>1 =







arccos(−1/2C)

π
C > 1/2

1 otherwise
(A.12)

SincePq>1 ≥ 2/3, one can conclude that the noise performance of a push-pullVISAR is
generally better than a comparable conventional VISAR.

The next consideration is to quantify the average noise impact ratio over all possible phase
differences (again using the symmetry ofq).

〈q〉 =
1
π

∫ π

0

√

2(1+CcosΦ) dΦ (A.13)
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The limiting values of〈q〉 may be determined analytically forC = 0 andC = 1.

4
π
≤ 〈q〉 ≤

√
2 (A.14)

For intermediate contrast values, Equation A.13 is an elliptic integral [5] that can be ex-
pressed as a (slowly converging) infinite sum:

〈q〉 =
√

2

[

1−
(

1
2 ·4

)(
1
2

)

C2−
(

1 ·3 ·5
2 ·4 ·6 ·8

)(
1 ·3
2 ·4

)

C4− . . .

]

(A.15)

or evaluated numerically. The results shown in Figure A.1 indicate that noise in a conven-
tional VISAR will have roughly 40% higher impact than in a push-pull VISAR.

An additional consideration in comparing the two VISAR configurations is the fact that sig-
nal noise does not directly couple to phase difference uncertainty—some ellipse positions
are more sensitive than others to signals noise (Section 5.4.2). Strictly speaking, Equation
A.13 should be weighted by∂Φ/∂x. As a quick approximation, consider the noise perfor-
mance ratio where it matters most (Φ = π/2 and 3π/2). At those locations,q=

√
2, which

is consistent with the value of〈q〉.

Fixed amplitude noise

Signal noise may not be dominated by statistical variationsof photon flux. For example,
thermal noise will be present in all detectors not operatingat absolute zero; digitizing
systems also add to the signal noise. Unlike photon noise, these fluctuations need not scale
with the intensity striking the detector, but are instead related to the detection/acquisition
system. For simplicity, all non-photon noise will be combined into a constant total signal
noiseδD.

In a conventional VISAR, constant signal noise leads to a constant noise impact.

Qc =
δD1

Cx0
(A.16)

Similar noise would occur in each detector pair of a push-pull VISAR.

(δD1)
2 = (δD1A)2+(δD1B)2 ≈ 2(δD1A)2 (A.17)

Qpp =

√
2δD1A

2Cx0
(A.18)

The noise impact ratio is thus constant:

q =
ρc

ρpp
=

√
2 (A.19)

indicating once again that noise has approximately 40% greater impact in a conventional
VISAR than a push-pull VISAR.
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Figure A.1. Noise impact ratio as a function of contrast
The average noise impact ratio (conventional/push-pull VISAR)
varies between

√
2 and 4/π, depending on contrast. For refer-

ence, the upper and lower limits of this ratio are also shown (heavy
lines).
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Summary

Regardless of the type of limiting noise in a VISAR measurement, a push-pull VISAR
shouldprovide a lower noise impact than a conventional VISAR. However, the theoreti-
cal enhancement is of order

√
2, not 2. Note that the actual performance of a push-pull

VISAR will be reduced when noise is generated during the subtraction process,i.e. in the
differential amplifier (if present).
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