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The intense magnetic field generated by the 20 megaampere Z machine at Sandia National Labo- 

ratories is being used as a pressure source for material science studies. An application we  have 

studied in great detail involves  using the intense magnetic field to accelerate flyer plates (small 

metal disks) to very  high velocities (> 20 km/s) for use in shock loading experiments. We  have 

used two-dimensional (2D) magneto-hydrodynamic (MHD) simulation to investigate the physics 

of accelerating flyer plates using  multi-megabar magnetic drive  pressures.  A typical shock physics 

load is comprised of conducting electrodes that are highly compressible at multi-megabar pres- 

sures. Electrode deformation that occurs during the rise time of the current pulse causes signifi- 

cant inductance increase, which  reduces the peak current (drive pressure) relative to a static 

geometry. This important dynamic effect is modeled self-consistently by driving the MHD simu- 

lation with  an accurate circuit model of Z. Self-consistent, 2D, MHD simulations are able to pro- 

duce and predict time  resolved  velocity interferometry measurements  when the drive circuit 

includes models  of current losses and short circuiting in Z. Simulation results elucidate the phe- 

nomena contributing to the flyer velocity history, and show  that electrical and hydrodynamic opti- 

mization of the load are necessary to minimize effects of time varying inductance. We have 

identified paths to producing  a  flyer  velocity  of -40 km/s and  peak isentropic pressure of -10 

Mbar. Details of the modeling, the physics and comparisons with experiment are presented. 



I. INTRODUCTION 

The intense magnetic field generated by the Z machine [I] at Sandia National Laboratories 

is being  used as a pressure source for material science studies [2-71. The machine can deliver up 

to 20 megaamperes  (MA) of current to a short-circuited load in  200  nanoseconds (ns), which gen- 

erates a peak magnetic field  in  the  megagauss (MG) range. An application we  have studied in 

great detail involves  using  the intense magnetic  field  to accelerate flyer  plates (small metal disks) 

to very  high velocities [8] for use in shock loading experiments. The flyer plate is allowed to col- 

lide with a target, which generates a shock  in  the  target material. Measurements of  the  flyer  veloc- 

ity and  the shock speed in the material are used in conjunction  with the Rankine-Hugoniot jump 

conditions [9] to obtain the density, pressure, and internal energy of the  material. Flyer plates  on Z 

have  been accelerated to peak velocities of up to 28 M s ,  and  have  been used in shock loading 

experiments to obtain state-of-the-art equation of state (EOS) data of deuterium for pressures  up 

to 1 megabar (Mbar) [5 ,6 ] .  

The characteristics of the shock generated in the  target, in addition to the  measurement 

error, are dependent on the condition of the  flyer plate at impact, which in turn depends on  the 

time history  of  the pressure drive. Indeed, the validity of the technique depends on the generation 

of a steady,  planar  shock  in  the  material sample. This requires that the flyer impact surface be 

coplanar with  the  target surface. In addition, the  flyer  density  behind the impact surface should be 

uniform  over a distance that  produces a steady  shock for a duration that yields the  desired  mea- 

surement accuracy. The analysis is  simplified considerably when the collision between  flyer and 

target is symmetric (i.e. flyer  and  target materials identical), which requires that some fraction of 

the flyer  remain  at solid density at impact. 

The flyer can become significantly deformed due to spatial nonuniformities in the  magnetic 
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drive  pressure. Deformation of  the electrodes causes the load inductance to increase, thereby 

affecting  the  drive current. In addition, the flyer material is significantly  modified  by Joule heating 

associated with the accelerating magnetic field.  At impact the  flyer  may be comprised of solid, 

liquid, boiling and plasma regions. Measurements yield the flyer  velocity  history, and provide 

information on the planarity of  the  flyer  at impact, but often can not provide unambiguous infor- 

mation pertaining to the state of the  flyer. The latter, in addition to many other unmeasurable 

quantities, can be obtained from accurate magnetohydrodynamic (MHD) simulations. 

We present results from self-consistent, two-dimensional (2D) MHD simulations of shock 

loading experiments that accurately produce and predict measured  flyer velocities, in addition to 

the  amount  of  bowing  in  the  flyer impact surface. The excellent agreement between simulated and 

measured quantities indicates that  the  flyer dynamics (including the state of the flyer) predicted by 

the calculations are physically realistic. Details of the modeling and comparisons with experiment 

are presented in the following section, and  in  the  Appendix. Conclusions and requirements for 

optimizing shock physics loads to yield maximum drive pressure for a  given current are discussed 

in Sec. 111. 

11.2D MHD  SIMULATIONS  AND  COMPARISON  WITH  EXPERIMENT 

A 2D cross section of  a typical flyer  configuration  (shock physics load) used  on Z is shown 

schematically  in Fig. 1 [5 ] .  The actual geometry is three-dimensional (3D), with a similar cross 

section in the plane perpendicular to the figure. The magnetic pressure (PB=B2/2p0) initiates 

stress waves in the electrode material which compress the anode (A)  and cathode (K). This causes 

the  ak-gap  [void (V) between anode  and cathode] to increase. The flyer (F) moves independently 

of the surrounding anode without losing electrical contact after the initial stress wave releases 

from the  front  [target (T)] side of the flyer,  and returns to the back (magnetic drive) side. The mag- 
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netic force (JxB) accelerates the flyer to peak  velocity  in  approximately 0.3 cm, after which  time 

it impacts the target. 

Measurements and 3D electromagnetic simulation show  that the magnetic field is uniform 

in  the vertical direction of Fig. 1. Therefore, the problem  geometry can be reduced to two dimen- 

sions without loss of generality. The relevant 2D cross section used  in simulations is perpendicu- 

lar to the plane of Fig. 1 , which is indicated by the  dashed line. The corresponding configuration 

used  in  2D simulations is shown  schematically  in Fig. 2. The symmetry  of  the  geometry permits 

simulations to be done using a quarter of  the structure. 

Two-dimensional Eulerian simulations were  performed  using the finite element, arbitrary 

Lagrangian-Eulerian, MHD code ALEGRA [ 101. MHD equations for a compressible material 

(e.g., see [l l])  with strength (e.g., see [12]) are solved. The yield strengths of materials used for 

electrodes ( e g ,  Al, Cu, W) are on  the order of kilobars (Kbar).  However, strength effects are not 

significant  in this problem because the pressures  involved  are  on  the order of megabars (Mbar); 

that is, the material behavior is fluid-like.  An  EOS  that  is  valid  over a wide range of pressures, 

densities and temperatures is used [ 131,  in addition to models for the thermal and electrical con- 

ductivities [ 141. Density  and internal energy are used in the  EOS to obtain pressure and tempera- 

ture. The density  and temperature are used  in  the conductivity model to obtain electrical and 

thermal conductivities. 

ALEGRA includes artificial  viscosity,  which broadens shock fronts. To ensure resolution of 

shocks, spatial cell sizes of 10-25 microns (pm) are used in the direction of  flyer motion, and 20- 

50 pm in the transverse direction (the y- and x-directions, respectively,  in Fig. 2). This resolution 

also ensures that energy is conserved to within a few percent. 

Power  flow into the shock physics load is affected  by the dynamics  of the electrodes caused 
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by  the magnetic pressure. Deformation of  the conductors, material motion and Joule heating 

increase the inductance and resistance of the load during the current pulse. Simulations must 

account for the coupling between machine and load in a self-consistent manner to accurately pro- 

duce the drive current, which determines the time dependent flyer  velocity. This is accomplished 

by coupling an accurate circuit model  of the Z machine [ 151 to the geometry shown  in Fig. 2.  A 

generic model  of the circuit is shown  in Fig. 3.  Power  flows from the circuit into the 2D MHD 

simulation through the 3rd dimension of Fig. 2; that is, the direction of current flow is perpendic- 

ular  to  the plane of the  figure.  Although  the simulation geometry is 2D, the coupling between 

MHD and circuit must account for the actual length of  the load in the 3rd dimension so that the 

total inductance of  the problem is calculated correctly. An outline of the coupling algorithm is 

provided  in the Appendix, which also includes some details of the MHD used in ALEGRA. 

The specific circuit was established by running simulations with different models and com- 

paring results with  measured currents and flyer  velocities. The model that produced measure- 

ments  most accurately includes a time dependent resistance (labeled R  in  Fig. 3) that emulates a 

short circuit in the machine; in addition to a  nonlinear,  time dependent model of current loss 

(labeled Zfl, in Fig. 3) that occurs upstream of the MHD load. These are plotted in Fig. 4(a), 

which also includes the time dependent machine  voltage. The latter is an  open circuit voltage 

derived  using measurements of  the forward traveling  wave at the beginning of the magnetically 

insulated transmission line (MITL)  that directs power to the load. The voltage across the loss 

impedance element [ 161 is given  by V ,  = ZflowdZ: - Z i  , where Z, and Zd are currents upstream 

and  downstream,  respectively, of the location in the  machine  where the loss is thought to occur. 

This model implies a physical picture in which  a short circuit occurs at the location of the current 

loss. 
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Values  of  the inductances LC and Lext (Fig. 3) are determined by the geometry of  the 

MITLs. Lext = 2.3 nanohenries (nH). LC is split into two inductances, with 7.43 nH  between the 

equivalent  machine resistance (Res = 0.12 a) and  short circuit switch (R), and 1.5 nH  between R 

and Zflow. The initial inductance of  the  MHD load is  2.7  nH,  and is calculated self-consistently in 

the simulation using  an  effective  transverse length of 3.6 cm. 

Two-dimensional simulations of  the  geometry  shown  in Fig. 2 using  the  aforementioned 

circuit model produce currents like those shown in Fig. 4(b), which is a plot  of I ,  and Id vs.  time. 

The upstream and  downstream currents would  be identical without the loss impedance and  short 

circuit switch. The decay  time  of the load current is determined by the total inductance in  the cir- 

cuit downstream of the short circuit, which includes the load inductance. The precise structure of 

the downstream (load) current waveform determines the time history  of the flyer  velocity. 

Self-consistent, 2D,  MHD simulations accurately  produce  and predict a variety of measured 

quantities including I ,  and Id, the  time dependent flyer surface velocity [ 5 ] ,  and interferometry 

measurements  that determine the planarity  of  the  flyer impact surface. Figure 5 is a comparison of 

measured and simulated  flyer  velocity  and load current for the Fig. 2 geometry,  in  which  an 850 

pm A1 flyer (density = 2.7  g/cm3) is accelerated  across a 0.33 cm long void  where it impacts  an A1 

target [ 5 ] .  The simulated load current is within  the  measurement  accuracy (-10%). 

In experiments the  velocity  of the flyer surface closest to the  target is measured [SI. This 

corresponds to the top surface of the flyer  in Fig. 2. Figure 5 shows that the simulated flyer  veloc- 

ity is in excellent agreement  with the measurement, the  accuracy  of  which is on the order of 1%. 

Analysis of simulation results (details can be found in [ 171) shows that the time dependent flyer 

velocity implicitly contains details pertaining to the current waveform, and other phenomena 

occurring within the  flyer such as  reverberations  and Joule heating induced ablation. The latter 
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accounts for approximately 15%  of  the total velocity  [17]. 

The initial step-up in  flyer  velocity  [at 2.54 microseconds (ps) in Fig. 51 is due to the shock- 

ing  up of the stress wave initiated by the magnetic drive pressure on the opposite side, and is pro- 

portional to the peak current. The shock must  reflect from the surface in a  way  that keeps the total 

pressure equal to 0 (the void pressure). This generates a rarefaction (release) wave that propagates 

through the compressed material toward  the back (drive side) of  the  flyer.  When the release wave 

reaches the drive side a  new stress wave  whose magnitude is determined by the value of the mag- 

netic field at that time is generated and propagates into the flyer. Thus, the initial pressure wave 

reverberates in the flyer.  When the rise time of the current waveform is on the order of the round 

trip transit time for the initial compression and release waves,  a  reverberation of significant ampli- 

tude occurs resulting in a  second step in  velocity and recompression of the flyer. This is evident in 

the  velocity histories shown  in Fig. 5. Results show  that  a  well  defined  and abrupt reverberation 

like that  shown  in Fig. 5 requires that the flyer  have a region of solid density, which implies that 

the accelerating magnetic field  has  not  diffused all the way through it [ 171. 

The flyer  becomes  bowed in the plane of  Fig. 2 due to spatial nonuniformities in the mag- 

netic field. The magnetic field circulates around  the cathode in Fig. 2 with x- and y-components. 

Consequently, the magnetic pressure decreases from the center of  the anode-cathode gap (where it 

changes by less than 0.5% over the central 0.6 cm) out to the edge. Thus, the outer edge of the 

flyer  moves slower than the center. 

The planarity of the  flyer is measured  using time and space resolved interferometry to detect 

motion of the back surface of the target (top of Fig. 2). In simulations Lagrangian tracers that 

monitor material motion are placed  at the corresponding location in the target, in  a plane that is 

coplanar with the impact surface. If the flyer impact surface is coplanar with respect to the target 



each tracer detects motion  at the same  time.  If the flyer  is  bowed,  tracers  at  the center of the 

impact plane detect motion before the  outer tracers. A comparison of the simulated and  measured 

bowing for the 850 pm flyer discussed above  is  shown  qualitatively  in Fig. 6, and  quantitatively  in 

Fig. 7. 

In Fig. 6 a snapshot of  the  simulated shock physics load is compared with  the  time and 

space resolved interferometry image for target surfaces at 300 pm and 900 pm. The simulated 

image is at a time (-2.8 ps in Fig. 5 )  when the shock  generated by the impact has  reached a point 

300 pm from the target surface. The simulated shock front is evidently curved. The curvature is 

reflected in the interferometry measurement  which  shows  that  points  in  the plane at 300 pm move 

later the farther they are from the  center. This is shown  quantitatively  in Fig. 7, which compares 

the  measured  and simulated time that material  motion occurs vs. distance from the center of the 

impact plane. The simulation accurately  produces  the  measured  bowing. Figure 7 shows  that  the 

shock front is planar over a diameter of - 1.5 mm, which  allows jump conditions for planar shocks 

[9] to be  used  in  the analysis of EOS measurements. 

111. DISCUSSION AND CONCLUSIONS 

The maximum flyer  velocity  that can be  achieved for a given load configuration  and  drive 

current depends on  the square of the peak magnetic field  that is generated. The latter is deter- 

mined by the  peak current and geometry,  which are coupled through  the load inductance. Power 

flowing into the load is divided  between magnetic, kinetic  and internal energy.  Significant con- 

ductor motion during the rise of the current pulse results in kinetic energy generation  at  the 

expense of magnetic energy,  thereby  reducing the peak magnetic pressure. Hence, producing the 

maximum pressure at the drive surface of  the  material sample (e.g., the flyer surface) requires: (1) 

a current waveform  that minimizes electrode motion during the rise time, and (2) a geometry in 
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which magnetic flux is initially concentrated at  the sample. 

Magnetic flux  at the sample is maximized  by reducing alternative current paths in the load, 

which is accomplished by making the inductance of the current path that includes the sample 

much smaller than  the inductances of all other paths [ 181. Conductor motion during the current 

rise  time  is  minimized  by shaping the drive  voltage  waveform to produce isentropic compression; 

that is, the rise time of the voltage pulse is shaped so that the electrode materials are compressed 

along  an isentrope of the EOS [ 181. Self-consistent, 2D, circuit driven, MHD simulations of 

experiments designed for the refurbished Z machine [ 191 in which these ideas are incorporated 

predict isentropic compression of tungsten to a peak pressure of - 10 mar, and shockless acceler- 

ation  of  an aluminum flyer to a peak velocity of -40 km/s [ 181. 

Time  resolved measurements of load current and flyer  velocity  taken in shock physics 

experiments on Z (exemplified  by Fig. 5 )  were  used to validate and improve physics models in the 

ALEGRA MHD code. This work led to improvements  in the electrical conductivity model [ 14, 

171, and determined possible models for machine dependent phenomena such as loss impedance 

and short circuiting. The resulting 2D, circuit driven,  MHD  model provides a fully self-consistent 

simulation that accurately produces and predicts time dependent shock physics measurements on 

Z. This provides evidence for the  validity of the physics models used in ALEGRA, and implies 

that the ensemble of simulation results is realistic. Simulations of numerous flyer experiments 

have  shown  that the time dependent flyer  velocity implicitly contains information pertaining to 

details of the drive current waveform, peak current, reverberations, state of the flyer, and the  rela- 

tive degree that ablation is affecting the velocity [ 171. Thus, simulations that accurately produce 

measured quantities also yield physically realistic information pertaining to nonobservable quan- 

tities. This information has been useful for analyzing EOS measurements on Z, and for develop- 



ing shock physics loads that  yield  higher  drive  pressures. 
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APPENDIX: MATHEMATICAL MODEL FOR COUPLING A CIRCUIT TO 

THE  2D  MHD PROBLEM 

The magnetic behavior of  the dynamic shock physics load must  be coupled self-consistently 

to the electrical behavior of the Z accelerator. This requires that a 2D, time-dependent partial dif- 

ferential equation describing the  evolution of the  magnetic  field and current in  the deforming con- 

ductors be  solved simultaneously with a system of differential-algebraic equations describing the 

time-dependent lumped circuit model  of  the Z accelerator. The coupling must be accomplished so 

that  the current and voltage characteristics as well as energy transfers computed by  the  mesh  and 

circuit are  equivalent.  In this appendix we outline a robust and accurate coupling algorithm that 

was  developed  by one of the authors (A. C. Robinson). 

We start with  Maxwell’s equations in  the  MHD limit, which  assumes  that the displacement 

a 3  3 3 

at  
current - is negligible. This requires a neutral plasma, p4 = 0,  and V . J = 0 where J is the 

current density. Then, Faraday’s  law,  Ampere’s  law,  and  Ohm’s  law are respectively 

+ a2 1 +  3 3 + + +  V X E  = -- V X - B  = J ,  J = o ( E + V x B ) ,  
at P 
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where CT is the electrical conductivity and p is the  permeability. These comprise three equations 

+ +  + + + ’ 
for three unknowns, B , J , and E .  The zero divergence  law for B implies B = VXA . Substituting 

this into Faraday’s  law yields 

Here -V@ is an  additive scalar potential representation for a portion of the electric field. For 
+ 

uniqueness  we can specify the gauge condition V A = 0. The vector potential form of Fara- 

day’s  law is combined with  Ohm’s  law and Ampere’s  law to obtain, 

where the dot represents a total convective  time  derivative appropriate for a closed line integral. 

Boundary conditions on A and $ are required to specify  the  system. 
+ 

Figure 8 is a schematic representation of the full 3D geometry. The shaded region represents 

the 2D plane of  the  MHD simulation with current in and out of the plane. The reduction of the 3D 

problem to an equivalent 2D problem with effective length L leaves A, as the only non-zero vec- 

tor potential component, which depends only  on the x and y coordinates. Then 

a$/& = a@/ax = 0 and a$/az = -E is constant in each disconnected region  of non-zero CT . 

In  the  void region where CY = 0 ,  @ = ( @ ( x ,  y )  - $o)E + $o with @ = @ K  on aSZ, and 

@ = @A on aQA, and <p satisfies a 2D Laplacian (knowledge of @ is not required). In the con- 

ducting regions 

z 
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Boundary conditions on Ts imply zero normal gradients of A,.  In ALEGRA Eq. (4) is operator 

split into an  "ideal" MHD step in  which the nodes  of  the  finite element mesh  move  at  the material 

velocity while holding A, constant on each node. This is followed  by a diffusion  solve  on the new 

grid  with the total derivative  replaced  by a partial derivative.  Energy transfer with  the  external cir- 

cuit happens  only during the solution of 

A circuit representation that  accurately represents the response of this linear equation for the  next 

time step is required. It will  be  used in a separate circuit solve to obtain the actual current flowing 

through the mesh. 

The first step is  to decompose the  vector potential into two parts, A,  = A ,  + PA,, where 

Q = QK - QA is the  unknown  voltage drop across the mesh at the end of  the  time step. A ,  is 

called the particular solution. Its initial condition for any  given  time step is the  vector potential 

from the preceding time step and a zero voltage  difference. A ,  is called the  homogeneous solu- 

tion. Its initial condition is a zero vector potential with a unit  voltage difference. The solution is 

thus  parameterized  by V. 

The simulations presented  herein  model both the anode and cathode conductors as  well  as 

the intervening void space. Each conducting region  has its own  value for E .  The applied anode 

- ( $ A  - $0) and cathode electric fields are EA = L 
and E ,  = -(" - "I. These scalar potential 

L 

contributions represent the steady state solution. Current conservation between  the anode and 

cathode steady state solutions, E ,  odsZ + EA odi2 = 0, is required since all the current in 
Q* 

the cathode is required to return  through  the anode. Eliminating $o from the previous  three equa- 

tions yields the following expressions for EA and EK, 
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which are proportional to v .  
Equation ( 5 )  is solved  using linear finite elements and a  backward Euler time integration for 

the particular and homogeneous solutions. Once this is accomplished an exact representation for 

the current can be  recovered  by integrating over the 2D volume of the anode (or cathode) to obtain 

a linear relation between current and  voltage  at  the end of the time step. The result is 

where u l  and u2 are integral expressions involving the particular and homogenous solutions. 

A response equation for the shock physics load on Z is required over the entire time inter- 

val. A conservation of energy principle is used  to  derive the necessary additional information. The 

magnetic energy conservation equation [which can be derived from Eq. (3)] is 

Terms  on the left-hand side of Eq. (8) represent the change in magnetic energy,  and the Joule heat- 

ing rate. There is no magnetic work term here because it occurs in the ideal MHD step before the 

diffusion solve. The right-hand side represents the Poynting flux through the boundary,  which is 

equal to the power dissipated in the shock physics load (VI ). The finite element formalism for 

solving the discrete equations permits the representation of this energy integral in a precise way. 
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The discrete volumetric  energy changes can be exactly  matched  with the discrete Poynting flux 

integral, which can be  shown to be equal to VjAt.  Combining this with Eq. (7) yields 

To ensure energy conservation, it is essential for the response function V to reflect  both  the cur- 

rent and the rate of change of current. Thus, we  assume  that the response function for the shock 

physics load can be represented as 

where L and R are  an effective inductance and resistance valid for one time step. Failure to repre- 

sent the response in this way  may result in  energy  mismatches  between the circuit solver  and  the 

finite element solution. Insert i = I ,  + ZoAt = I ,  + 61 in the discrete form on the left hand side 

of Eq. (9), and compute the energy  using Z = I, + Zot and Eq. (10) in the integrand. Then  assume 

61 << I ,  , equate powers of 61, and compare equal order terms to obtain 

bl 
IO 

R = - + b 2  and L = b2At, 

which is sufficient except at zero current crossing. This problem can  be  resolved  by  keeping  the 

above  definition  of L , and defining R as follows 

( b , j  + b2j2) - b,61(Z0 + (61) /2)  

(Zt + Z,(6Z) + (61)2 /3)  
R =  9 

which  has the proper limiting behavior for 61 << I, . Equation (12) is  obtained  by demanding that 
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energy  be conserved exactly,  and  by assuming that io is constant throughout the interval. The 

value of Zo at  the beginning of the interval is  used for computing R . 

Equations (lo)-( 12) are the circuit representation of the shock physics load in  the ensemble 

of circuit equations. The circuit equation solver is integrated over  a  time  interval A t ,  which yields 

8 at the end of the interval. Thus, A, = A, + 8 A h  solves the field equations and conserves 

energy exactly between the MHD mesh and circuit for linear current profiles. This algorithm is  an 

accurate and robust procedure for solving 2D, flyer plate problems coupled to an external circuit. 
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FIGURE CAPTIONS 

FIG. 1. Cross section of 3D flyer  configuration  used  in shock loading experiments. Anode (A) and 

cathode (K) are attached  in  a  short circuit at  the top of the figure. The flyer (F) is formed by  boring 

out anode material to obtain a desired thickness. The flyer is accelerated across the  void  (V) and 

impacts  a target (T). The directions of  the surface current density (J) and  magnetic  field (B) are 

indicated by  arrows. The region simulated is a 2D cross section perpendicular to the plane of the 

figure, which is indicated by the dashed line. 

FIG. 2. Schematic of symmetric slab configuration  used in 2D, circuit driven, MHD simulations. 

K=cathode=red, A=anode=green, F=flyer, T=target, V=void=black. There are two  flyers,  which 

are also part  of  the anode. The direction of current flow is perpendicular to the  figure. The mag- 

netic field  generated  by the cathode current fills the void  region  between cathode and anode, and 

has  x-  and  y-components. The magnetic pressure accelerates the  flyers  in  the  vertical direction 

toward the target. Problem dimensions are:  (1) cathode width  and  height are respectively 1.1 cm 

and 0.4 cm, (2) vacuum  gaps  between  anode  and cathode = 0.2 cm, (3) flyer thickness = 0.085 cm, 

and (4) height  of  void  region  through  which  flyer is accelerated is 0.33 cm. 

FIG. 3. Equivalent circuit model of the Z  machine  used to drive 2D MHD simulations of shock 

physics loads. The load impedance for the circuit is the MHD simulation [see Eq. (10)  in  the 

Appendix].  V(t) = time dependent open circuit voltage, Re, = equivalent  machine resistance, LC = 

MITL inductance, Zflow = time dependent flow impedance current loss element, V, = voltage 

across Zflow,  Lex, = inner MITL inductance, I, = current upstream of  Zflow, Id = current down- 

stream of Zflow, and R = time dependent resistive  switch  that emulates a short circuit. In simula- 

tions a fraction of LC is placed  upstream of R. 

FIG. 4. (a) Time dependent open circuit voltage  used to drive 2D MHD  simulations.  Also  plotted 
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in the figure are the short circuit switch resistance (crowbar impedance), which has  been scaled by 

0.01, and  the  flow impedance (Z,,,) scaled by 1.7 1.  (b) Simulated currents upstream (I, = mitl) 

and downstream (Id = load) of Zflow Without the loss element I, = Id. The precise shape of the 1, 

waveform is needed to produce and predict the measured time dependent flyer  velocity. 

FIG. 5. Comparison of simulated (red curves) and measured (black curves) flyer  velocity  (solid 

lines) and load currents (dashed lines) for an 850 pm A1 flyer plate in the configuration  shown  in 

Fig. 2. The abrupt step in velocity at 2.54 p s  is caused by a shock that reaches the front surface of 

the  flyer. The sudden drop in flyer  velocity  at 2.76 ps marks the instant when the flyer collides 

with the target.  In the experiment the flyer is wider  than the target. The measurement does not 

show  the collision event because it is taken from a point on the flyer that is outside of the target 

dimension. 

FIG. 6. (a) Snapshot of material density from simulation of  Fig. 2 geometry at a time after the 

front surface of the A1 flyer  (F) has collided with the A1 target (T). The configuration is shown in 

quarter-symmetry. Full symmetry is obtained  by  reflecting the figure about the x- and y-axes. The 

cathode is denoted by K. The collision generates a shock in the target, the front of  which is 

marked  in the figure. The shock front is evidently curved, which is caused by a drive pressure that 

decreases with increasing x. The target  material remains stationary until the shock front arrives. 

Measuring the  time  at which material begins to move  in a horizontal plane at a given location is 

used to determine the exact curvature of the flyer  at impact. (b) Time and space resolved laser 

interferometry measurement that detects motion  in  target surfaces located 300 pm and 900 pm 

from the impact surface. The result for 300 pm  is enclosed by  the dashed rectangle, which corre- 

sponds to the location of the shock front in (a). The right-hand boundary of the rectangle (i.e., the 

horizontal center of the figure) corresponds to x=O in (a). The fringes are steady until the shock 



arrives, after which  time the reflectivity of the surface drops and  the image turns black. The image 

shows  that  material  motion occurs later with increasing distance from the impact center, which 

requires that the flyer be bowed  as  shown  in (a). 

FIG. 7. Comparison of the simulated and  measured  time  of  material  motion  vs. distance from the 

center of a horizontal plane located at y=300 pm from the impact surface [see Fig. 6(a)] in  the tar- 

get. The excellent agreement  between the simulated and  measured results indicates that  the  flyer 

bowing and resulting shock front in the target are as  shown  in Fig. 6(a). The data show  that  the 

shock front is planar over a central diameter  of -1.5 mm,  which  allows analysis of EOS measure- 

ments  using jump conditions for planar shocks. 

FIG. 8. 3D schematic of the problem domain. Although  the  geometry  shown is cylindrical, the 

mathematical analysis applies to a general 2D Cartesian  geometry  with disjoint conducting 

regions. The shaded  regions  and the void space between them comprise the 2D simulation 

domain. The outer and inner regions are the anode and cathode, respectively,  which are connected 

with a common potential Qo (i.e., short circuited) at  the  top  of  the  figure. Current is assumed to 

enter through f i K  at potential q K ,  and  return  through f i A  at potential Q A  . On the vertical sides 

( Ts ), -VxA x n = 0 and J n = 0. On the top and bottom surfaces ( rA and rK , respectively) 1 + +  + +  
P 

A x n = 0 with spatially constant values of QK , QA and Qo . Poynting  energy enters and  leaves + +  

the system through the TV surfaces where A x h = 0 and J . n = 0. The actual length, L, of the 
+ + +  

3D configuration is used  in the 2D simulation to ensure that  the  voltage and inductance are calcu- 

lated accurately. 
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