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Abstract

Sandia National Laboratories’ Z machine provides a good test bed for
conducting basic plasma research on the interaction of x-rays with matter. In
particular, recent experiments have been conducted that irradiate thin Al/MgF,
metal foils by the radiation pulse from the side-on emission of a fast z-pinch. In
these experiments, time-resolved and time-integrated spectra of K-shell
absorption lines, backlit by the high-energy tail of the z-pinch radiation, are the
primary diagnostic of the foil plasma conditions. The experiments are
simulated by 1-D radiation-hydrodynamics calculations using a time- and
frequency-dependent radiation boundary condition determined by 3-D view
factor simulations of the z-pinch diode region. The calculated plasma
conditions are then utilized in a detailed configuration accounting model of the
atomic level populations to determine the relative amplitude of absorption
features over the spectral range of interest. These calculations, and their
comparison to the experimental data, will be presented and discussed.
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Sandia’s Z machine provides a test-bed for basic
science experiments on the interaction of x-rays with matter.
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A planar AI/MgF, foil was fielded on Z shot 597 to
investigate the radiative heating of a heterogeneous plasma.
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Time-resolved and time-integrated convex crystal

spectrometers measured Al and Mg K- transitions in absorption.
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; I Calculating the plasma conditions in the
Al/MgF, foil requires coupling together a number of simulations
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3-D simulations using the VISRAD
view-factor code are utilized to calculate
time-dependent, non-thermal drive spectra on the sample surface.
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1-D simulations using the BUCKY
radiation-hydrodynamics code are utilized to

calculate the plasma temperature and density evolution.
Average Conditions In Spatial Profiles of the
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populations under the calculated plasma conditions yields
good agreement between the computations and the experimental data.

Average Calculated AVMgF, Calculated vs. Measured

Plasma Conditions
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' i Opacity Structure in the

100 eV to 1000 eV photon energy range makes the
plasma conditions in the Al/MgF, layer sensitive to the incident spectra.

Incident Radiation Spectra Comparison of Al K-a Absorption
at Peak Power at Peak Power Under Different Drive Spectra
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are also sensitive to non-LTE opacity effects
requiring a detailed calculation of atomic transition rate coefficients.

Comparison between LTE and Comparison of Time-Dependent
non-LTE absorption and emission opacities Al K-ot Absorption

— VisRad Spectrum
—— nonLTE  Planck Emission Opacities

— LTE

LTE opacities Non-LTE opacities

5 "L BeBCNOF

g
=
=

3 ; 5
£ F
o ‘n W o
23 -f :
= | 3 W
E = ¢ t ‘
—_t 1 10 160 1000 10000 4 :
273 3 (=
g« Rosseland Absorption Opacities 3 3! "‘"?‘W%. N"'
a 5 = £ M
o = 8 o
£ 0T a0ev T - i
L Bhyn=2¢10cm? \H"L ] & b : W
& \
10t} : . Ty
1024 ] 76 78 B0 &2 B¢ 76 78 80 82 B4
o0 Wavelength (A} Wovelerqgth (A}
Sandia
1 1o 100 1000 10000 National
Photon Energy (eV) Laboratories

Calculated Mg K-o spectra are also in fair
agreement with experimental data, but indicate that the
calculations may contain too large of a temperature gradient.

Calculated vs. Measured Calculated Temperature
Magnesium K-o Spectra Profiles in the AVMgF, Layer
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the time-integrated data can be analyzed by an
automatic chi-squared fitting program called SPECTROFIT.
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* Plotting the SPECTROFIT results of the time-integrated
-0t data versus the BUCKY calculated average Al/MgF, conditions
during the peak of the x-ray pulse shows relatively good agreement.
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Summary

* Time-resolved and time-integrated data of Aluminum and Magnesium K-o
absorption lines were measured in an Al/MgF, foil irradiated by z-pinch radiation
on Sandia’s Z machine.

+ The data has been successfully analyzed and computationally reproduced by
coupling together simulations of the radiation drive spectra, the sample radiation
hydrodynamics, and detailed configuration analysis of atomic energy level
transitions.

% Calculating the proper distribution of ionization states (and therefore the plasma
temperature and density conditions) requires detailed consideration of the time-
dependent non-thermal drive spectra and a thorough calculation of the atomic
transition rate coefficients in non-LTE multi-group opacities.

* Anew 2 spectral fitting code called SPECTROFIT has been applied to the time-

integrated K-o absorption data and shows the aluminum and magnesium to be in

near-equilibrium, and in good agreement with peak plasma conditions in 1-D

BUCKY radiation-hydrodynamics calculations. .
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