
NSS Cryptographic Module

Version 3.11.4
FIPS 140-2 Non-Proprietary Security Policy

Level 1 and 2 Validation

Red Hat, Inc.

Sun Microsystems, Inc.

Document Version 1.19

July 18, 2007

Table of Contents

Introduction..3
Platform List...3
Note on Calling the API Functions..4
Security Rules..5
Authentication Policy...13

Specification of Roles..13
Role-Based Authentication..13
Strength of Authentication Mechanism...14
Multiple Concurrent Operators..14

Access Control Policy..15
Security-Relevant Information ...15

Non-NIST-Recommended Elliptic Curves...16
Specification of Services...17

Mitigation of Other Attacks ..25
Access to Audit Data..26

Access to syslog Log Files..27
Access to System Audit Log...27
Configure the Solaris Auditing..28
Viewing the Audit Trail..28

Sample Cryptographic Module Initialization Code..28
Acknowledgments..31
References ...31

Introduction

The NSS cryptographic module is an open-source, general-purpose cryptographic library,
with an API based on the industry standard PKCS #11 version 2.20 [1]. It is available for
free under the Mozilla Public License, the GNU General Public License, and the GNU
Lesser General Public License. The NSS cryptographic module is jointly developed by Red
Hat and Sun engineers and is used in Mozilla Firefox, Thunderbird, and many server
applications from Red Hat and Sun.

The NSS cryptographic module has two modes of operation: the FIPS Approved mode and
non-FIPS Approved mode. By default, the module operates in the non-FIPS Approved
mode. To operate the module in the FIPS Approved mode, an application must adhere to
the security rules in the Security Rules section and initialize the module properly. If an
application initializes the NSS cryptographic module by calling the standard PKCS #11
function C_GetFunctionList and calls the API functions via the function pointers in
that list, it selects the non-FIPS Approved mode. To operate the NSS cryptographic module
in the FIPS Approved mode, an application must call the API functions via an alternative
set of function pointers. Rule 7 of the Security Rules section specifies how to do this.

In addition, for Security Level 1, the operating system must be configured in a single
operator mode of operation by removing all other user accounts and turning off all remote
login and access services. If the module is operating at Security Level 2, the environment
variable NSS_ENABLE_AUDIT must be set to 1 before the application starts.

Platform List

FIPS 140-2 conformance testing of the NSS cryptographic module was performed on the
seven platforms listed below. The list also specifies the level of elliptic curve cryptography
(ECC) support tested on each platform. (The module is configured at compile time with
one of the two levels of ECC support: Basic ECC only supports the NIST-recommended
curves P-256, P-384, and P-521, whereas Extended ECC supports all the NIST-
recommended curves and has additional performance optimizations.)

• Security Level 1
• Compaq Evo with Pentium 4 CPU (x86), Red Hat Enterprise Linux 4, Basic

ECC.
• Dell Dimension 2400 with Pentium 4 CPU, Microsoft Windows XP SP 2,

Basic ECC.
• Sun W2100z workstation with dual AMD Opteron CPUs, 64-bit Solaris 10,

Extended ECC.
• HP Visualize J5000 Workstation with PA-RISC 2.0 CPU, HP-UX B.11.11

with the HP-UX Strong Random Number Generator (KRNG11i) bundle
installed, Extended ECC.

• Mac mini with PowerPC G4 CPU, Mac OS X 10.4, Basic ECC.

Page 3 of 31

• Security Level 2
• IBM xSeries 336 with Intel Xeon CPU (x86_64), Red Hat Enterprise Linux

Version 4 Update 1 AS, Extended ECC.
Common Criteria URL for EAL4 Certificate:
http://niap.bahialab.com/cc-scheme/st/ST_VID10133-CI.pdf
Redhat Common Criteria URL:
http://www.redhat.com/solutions/government/commoncriteria/

• Sun Blade 2500 Workstation with UltraSPARC IIIi CPU, Sun Trusted
Solaris Version 8 4/01, Extended ECC.
Common Criteria URL for EAL4 Certificate:
http://www.sun.com/software/security/securitycert/images/cesg.jpg
Solaris Common Criteria URL:
http://www.sun.com/software/security/securitycert/index.xml

The NSS cryptographic module supports many other platforms. If you would like to have
the module validated on other platforms, please contact us.

Note on Calling the API Functions

The NSS cryptographic module has two parallel sets of API functions, FC_xxx and
NSC_xxx, that implement the FIPS Approved and non-FIPS Approved modes of
operation, respectively. For example, FC_Initialize initializes the module's library for
the FIPS Approved mode of operation, whereas its counterpart NSC_Initialize
initializes the library for the non-FIPS Approved mode of operation. All the API functions
for the FIPS Approved mode of operation are listed in the Specification of Services
section.

Among the module's API functions, only FC_GetFunctionList and
NSC_GetFunctionList are exported and therefore callable by their names. (The
C_GetFunctionList function mentioned in the Introduction section is also exported
and is just a synonym of NSC_GetFunctionList.) All the other API functions must be
called via the function pointers returned by FC_GetFunctionList or
NSC_GetFunctionList. FC_GetFunctionList and NSC_GetFunctionList
each return a CK_FUNCTION_LIST structure containing function pointers named C_xxx
such as C_Initialize and C_Finalize. The C_xxx function pointers in the
CK_FUNCTION_LIST structure returned by FC_GetFunctionList point to the
FC_xxx functions, whereas the C_xxx function pointers in the CK_FUNCTION_LIST
structure returned by NSC_GetFunctionList point to the NSC_xxx functions.

For brevity, we use the following convention to describe API function calls. Again we use
FC_Initialize and NSC_Initialize as examples:

● When we say “call FC_Initialize,” we mean “call the FC_Initialize

Page 4 of 31

function via the C_Initialize function pointer in the CK_FUNCTION_LIST
structure returned by FC_GetFunctionList.”

● When we say “call NSC_Initialize,” we mean “call the NSC_Initialize
function via the C_Initialize function pointer in the CK_FUNCTION_LIST
structure returned by NSC_GetFunctionList.”

Security Rules

The following list specifies the security rules that the NSS cryptographic module and each
product using the module shall adhere to:

1. The NSS cryptographic module shall consist of software libraries compiled for each
supported platform.

2. The cryptographic module shall rely on the underlying operating system to ensure
the integrity of the cryptographic module loaded into memory.

3. The cryptographic module shall support the NSS User role and the Crypto Officer
role.

4. A cryptographic module user shall have access to all the services provided by the
cryptographic module.

5. Cryptographic module services shall consist of public services, which require no
user authentication, and private services, which require user authentication. Public
services do not require access to the secret and private keys and other critical
security parameters (CSPs) associated with the user. Note: CSPs are security-
related information (e.g., secret and private keys, and authentication data such as
passwords) whose disclosure or modification can compromise the security of a
cryptographic module. Message digesting services are public only when CSPs are
not accessed. Services which access CSPs (e.g., FC_GenerateKey,
FC_GenerateKeyPair) require authentication.

6. Public key certificates shall be stored in plaintext form because of their public
nature.

7. Applications running in the FIPS Approved mode shall call
FC_GetFunctionList for the list of function pointers and shall call the API
functions via the function pointers in that list for all cryptographic operations. (See
the Note on Calling the API functions section.) The module changes from FIPS
Approved mode to non-FIPS Approved mode when a
FC_Finalize/NSC_Initialize sequence is executed; it changes from non-
FIPS Approved mode to FIPS Approved mode when a
NSC_Finalize/FC_Initialize sequence is executed.

8. In the FIPS Approved mode of operation, the cryptographic module shall enforce

Page 5 of 31

rules specific to FIPS 140-2 requirements.

9. The cryptographic module shall not allow critical errors to compromise security.
Whenever a critical error (e.g., a self-test failure) is encountered, the cryptographic
module shall enter an error state and the library shall need to be reinitialized to
resume normal operation. Reinitialization is accomplished by calling
FC_Finalize followed by FC_Initialize.

10. Upon initialization of the cryptographic module library for the FIPS Approved
mode of operation, the following power-up self-tests shall be performed:

a) Triple DES-ECB encrypt/decrypt,
b) Triple DES-CBC encrypt/decrypt,
c) AES-ECB encrypt/decrypt (128-bit, 192-bit, and 256-bit keys),
d) AES-CBC encrypt/decrypt (128-bit, 192-bit, and 256-bit keys),
e) SHA-1 hash,
f) SHA-256 hash,
g) SHA-384 hash,
h) SHA-512 hash,
i) HMAC-SHA-1/-SHA-256/-SHA-384/-SHA-512 keyed hash (296-bit key),
j) RSA encrypt/decrypt (1024-bit modulus n),
k) RSA-SHA-1/-SHA-256/-SHA-384/-SHA-512 signature generation (1024-

bit modulus n),
l) RSA-SHA-1/-SHA-256/-SHA-384/-SHA-512 signature verification (1024-

bit modulus n),
m) DSA key pair generation (1024-bit prime modulus p),
n) DSA signature generation (1024-bit prime modulus p),
o) DSA signature verification (1024-bit prime modulus p),
p) ECDSA signature generation (Curve P-256; the Extended ECC version of

the module also tests Curve K-283),
q) ECDSA signature verification (Curve P-256; the Extended ECC version of

the module also tests Curve K-283),
r) random number generation, and
s) software/firmware integrity test (the authentication technique is DSA with

1024-bit prime modulus p).

11. Shutting down and restarting the NSS cryptographic module with the
FC_Finalize and FC_Initialize functions shall execute the same power-
up self-tests detailed above when initializing the module library for the FIPS
Approved mode. This allows a user to execute these power-up self-tests on demand
as defined in Section 4.9.1 of FIPS 140-2.

12. The NSS cryptographic module shall require the user to establish a password (for
the NSS User and Crypto Officer roles) with the FC_InitPIN function in order
for subsequent authentications to be enforced. See the Sample Cryptographic
Module Initialization Code section below for the sample code to establish the
initial user password.

13. A known password check string, encrypted with a Triple-DES key derived from the

Page 6 of 31

password, shall be stored in the private key database (key3.db) in secondary
storage. Note: this database lies outside the cryptographic boundary. See #16
below.

14. Once a password has been established for the NSS cryptographic module, the
module shall allow the user to use the private services if and only if the user
successfully authenticates to the module. Password establishment and
authentication are required for the operation of the module at both Levels 1 and 2
even though level 1 does not require such authentication method. Password
authentication in the Level 1 module does not imply that any of the roles are
considered to be authorized for the purposes of Level 2 FIPS 140-2 validation.

15. In order to authenticate to the cryptographic module, the user shall enter the
password, and the cryptographic module shall verify that the password is correct by

• deriving a Triple-DES key from the password, using an extension of the
PKCS #5 PBKDF1 key derivation function with an 16-octet salt, an iteration
count of 1, and SHA-1 as the underlying hash function,

• decrypting the stored encrypted password check string with the Triple-DES
key, and

• comparing the decrypted string with the known password check string.

16. The user's password shall act as the key material to encrypt/decrypt secret and
private keys. Note: Since password-based encryption such as PKCS #5 is not FIPS
Approved, password-encrypted secret and private keys should be considered to be
in plaintext form in the FIPS Approved mode.

17. Secret and private keys, plaintext passwords, and other security-relevant data items
shall be maintained under the control of the cryptographic module. Secret and
private keys shall only be passed to higher-level callers in encrypted (wrapped)
form with FC_WrapKey using Triple DES or AES (symmetric key algorithms) or
RSA (asymmetric key algorithm). Note: If the secret and private keys passed to
higher-level callers are encrypted using a symmetric key algorithm, the encryption
key may be derived from a password. In such a case, they should be considered to
be in plaintext form in the FIPS Approved mode.

18. Secret and private keys shall only be stored in encrypted form (using a Triple-DES
key derived from the password) in the private key database (key3.db) in secondary
storage. Note: password-encrypted secret and private keys in the private key
database should be considered to be in plaintext form in the FIPS Approved mode.

19. Once the FIPS Approved mode of operation has been selected, the user shall only
use the FIPS 140-2 cipher suite.

20. The FIPS 140-2 cipher suite shall consist solely of

• Triple DES (FIPS 46-3) or AES (FIPS 197) for symmetric key encryption
and decryption.

• Secure Hash Standard (SHA-1, SHA-256, SHA-384, and SHA-512) (FIPS
180-2) for hashing.

Page 7 of 31

• HMAC (FIPS 198) for keyed hash.
• random number generator (FIPS 186-2 with Change Notice 1).
• Diffie-Hellman, EC Diffie-Hellman, or Key Wrapping using RSA keys for

key establishment.
• DSA (FIPS 186-2 with Change Notice 1), RSA (PKCS #1 v2.1), or ECDSA

(ANSI X9.62) for signature generation and verification.

Algorithm validation certificates:

Algorithm Cert# Description

Triple DES 410 (x86 CPUs)

469 (non-x86
CPUs)

TECB(e/d; KO 1,2,3); TCBC(e/d;
KO 1,2,3)

AES 352 ECB(e/d; 128,192,256); CBC(e/d;
128,192,256)

SHS 426 SHA-1 (BYTE-only)
SHA-256 (BYTE-only)
SHA-384 (BYTE-only)
SHA-512 (BYTE-only)

HMAC 152 HMAC-SHA1 (Key Sizes Ranges
Tested: KS<BS KS=BS KS>BS)

HMAC-SHA256 (Key Size Ranges
Tested: KS<BS KS=BS KS>BS)

HMAC-SHA348 (Key Size Ranges
Tested: KS<BS KS=BS KS>BS)

HMAC-SHA512 (Key Size Ranges
Tested: KS<BS KS=BS KS>BS)

RNG 208 FIPS 186-2
[(x-Change Notice); (SHA-1)]

FIPS 186-2 General Purpose
[(x-Change Notice); (SHA-1)]]

RSA 152 ALG[RSASSA-PKCS1_V1_5];
SIG(gen); SIG(ver); 1024 , 1536 ,
2048 , 3072 , 4096 , SHS: SHA-1 ,
SHA-256 , SHA-384 , SHA-512

Page 8 of 31

Algorithm Cert# Description

DSA 172 PQG(gen) MOD(ALL);

PQG(ver) MOD(ALL);

KEYGEN(Y) MOD(ALL);

SIG(gen) MOD(ALL , 960);

SIG(ver) MOD(ALL);

ECDSA

(Extended ECC)

30 PKG: CURVES(ALL-P ALL-K
ALL-B)

PKV: CURVES(ALL-P ALL-K
ALL-B)

SIG(gen): CURVES(ALL-P ALL-
K ALL-B)

SIG(ver): CURVES(ALL-P ALL-
K ALL-B)

ECDSA

(Basic ECC)

37 PKG: CURVES(ALL-P P-256 P-
384 P-521)

PKV: CURVES(ALL-P P-256 P-
384 P-521)

SIG(gen): CURVES(ALL-P P-256
P-384 P-521)

SIG(ver): CURVES(P-256 P-384
P-521)

Caveats:

• Diffie-Hellman (key agreement, key establishment methodology provides
between 80 bits and 112 bits of encryption strength)

• EC Diffie-Hellman (key agreement, key establishment methodology
provides between 80 bits and 256 bits of encryption strength)

• RSA (PKCS #1, key wrapping, key establishment methodology provides
between 80 bits and 192 bits of encryption strength)

The NSS cryptographic module implements the following non-Approved
algorithms, which shall not be used in the FIPS Approved mode of operation:

• RC2 , RC4, or DES for symmetric key encryption and decryption.
• MD2 or MD5 for hashing.

21. Once the FIPS Approved mode of operation has been selected, Triple DES and

Page 9 of 31

AES shall be limited in their use to performing encryption and decryption using
either ECB or CBC mode.

22. Once the FIPS Approved mode of operation has been selected, SHA-1, SHA-256,
SHA-386, and SHA-512 shall be the only algorithms used to perform one-way
hashes of data.

23. Once the FIPS Approved mode of operation has been selected, RSA shall be limited
in its use to generating and verifying PKCS #1 signatures, and to encrypting and
decrypting key material for key exchange.

24. Once the FIPS Approved mode of operation has been selected, DSA and ECDSA
shall be used in addition to RSA to generate and verify signatures.

25. In the FIPS Approved mode of operation, the cryptographic module shall perform a
pair-wise consistency test upon each invocation of RSA, DSA, and ECDSA key
pair generation as defined in Section 4.9.2 of FIPS 140-2.

26. The cryptographic module shall generate the primes p and q used in the DSA and
perform primality test using the algorithms described in Appendix 2 of FIPS 186-2.

27. The cryptographic module shall perform pseudorandom number generation using
Algorithm 1 of FIPS 186-2 Change Notice 1, with the one-way function G
constructed using SHA-1 and b equal to 256 bits.

28. The cryptographic module shall initialize its pseudorandom number generator by
obtaining 1024 bytes of random data from the operating system. The data obtained
shall contain at least 256 bits of entropy. Extra entropy input is added by invoking a
noise generator. Both initialization and noise generation are specific to the platform
on which it was implemented (e.g., Macintosh, UNIX, or Windows). The
pseudorandom number generator shall be seeded with noise derived from the
execution environment such that the noise is not predictable. The source of noise is
considered to be outside the logical boundary of the cryptographic module.

29. A product using the cryptographic module should periodically reseed the module's
pseudorandom number generator with unpredictable noise by calling
FC_SeedRandom.

30. In the FIPS Approved mode of operation, the cryptographic module shall perform a
continuous random number generator test upon each invocation of the
pseudorandom number generator as defined in Section 4.9.2 of FIPS 140-2.

31. At level 2 in the FIPS Approved mode of operation the operator shall authenticate
successfully before utilizing random number generation services provided by the
module. Using random number generation services without authentication will
automatically transition the module to the non-Approved mode of operation. The
module shall not share CSPs between an Approved mode of operation and a non-
Approved mode of operation.

32. All cryptographic keys used in the FIPS Approved mode of operation shall be
generated in the FIPS Approved mode or imported while running in the FIPS

Page 10 of 31

Approved mode.

33. The cryptographic module shall perform explicit zeroization steps to clear the
memory region previously occupied by a plaintext secret key, private key, or
password. A plaintext secret or private key shall be zeroized when it is passed to a
FC_DestroyObject call. All plaintext secret and private keys shall be zeroized
when the NSS cryptographic module is shut down (with a FC_Finalize call) or
reinitialized (with a FC_InitToken call), or when the state changes between the
FIPS Approved mode and non-FIPS Approved mode (with a
NSC_Finalize/FC_Initialize or FC_Finalize/NSC_Initialize
sequence).

All zeroization shall be performed by storing the value 0 into every byte of the
memory region previously occupied by a plaintext secret key, private key, or
password.

34. The NSS cryptographic module consists of the following shared libraries/DLLs and
the associated .chk files:

• Windows XP Service Pack 2
• softokn3.dll
• softokn3.chk
• freebl3.dll
• freebl3.chk

• 32-bit HP-UX B.11.11 PA-RISC 2.0
• libsoftokn3.sl
• libsoftokn3.chk
• libfreebl_32fpu_3.sl
• libfreebl_32fpu_3.chk

• Mac OS X 10.4
• libsoftokn3.dylib
• libsoftokn3.chk
• libfreebl3.dylib
• libfreebl3.chk

• 64-bit Trusted Solaris 8 UltraSPARC IIIi
• libsoftokn3.so
• libsoftokn3.chk
• libfreebl_64fpu_3.so
• libfreebl_64fpu_3.chk

• 64-bit Solaris 10 AMD64, Red Hat Enterprise Linux 4 x86, and Red Hat Enterprise
Linux 4 x86_64

• libsoftokn3.so
• libsoftokn3.chk
• libfreebl3.so
• libfreebl3.chk

The NSS cryptographic module requires the Netscape Portable Runtime (NSPR)

Page 11 of 31

libraries. NSPR provides a cross-platform API for non-GUI operating system
facilities, such as threads, thread synchronization, normal file and network I/O,
interval timing and calendar time, atomic operations, and shared library linking.
NSPR also provides utility functions for strings, hash tables, and memory pools.
NSPR is outside the cryptographic boundary because none of the NSPR functions
are security-relevant. NSPR consists of the following shared libraries/DLLs:

• Windows XP Service Pack 2
• plc4.dll
• plds4.dll
• nspr4.dll

• HP-UX B.11.11 PA-RISC 2.0
• libplc4.sl
• libplds4.sl
• libnspr4.sl

• Mac OS X 10.4
• libplc4.dylib
• libplds4.dylib
• libnspr4.dylib

• 64-bit Solaris 10 AMD64, 64-bit Trusted Solaris 8 UltraSPARC IIIi, Red Hat
Enterprise Linux 4 x86, and Red Hat Enterprise Linux 4 x86_64

• libplc4.so
• libplds4.so
• libnspr4.so

The installation instructions are:

Step 1: Install the shared libraries/DLLs and the associated .chk files in a
directory on the shared library/DLL search path, which could be a system library
directory (/usr/lib on Unix/Linux or C:\WINDOWS\system32 on Windows)
or a directory specified in the following environment variable:

• Windows XP Service Pack 2: PATH
• HP-UX B.11.11: SHLIB_PATH
• Mac OS X 10.4: DYLD_LIBRARY_PATH
• Solaris and Linux: LD_LIBRARY_PATH

Step 2: Use the chmod utility to set the file mode bits of the shared libraries/DLLs
to 0755 so that all users can execute the library files, but only the files' owner can
modify (i.e., write, replace, and delete) the files. For example, on most Unix and
Linux platforms,

 $ chmod 0755 libsoftokn3.so libfreebl*3.so libplc4.so libplds4.so
libnspr4.so

The discretionary access control protects the binaries stored on disk from being
tampered with.

Page 12 of 31

Step 3: Use the chmod utility to set the file mode bits of the associated .chk files
to 0644. For example, on most Unix and Linux platforms,

 $ chmod 0644 libsoftokn3.chk libfreebl*3.chk

Step 4: As specified in Rule 7, to operate the NSS cryptographic module in the
FIPS Approved mode, an application must call the alternative PKCS #11 function
FC_GetFunctionList and call the API functions via the function pointers in
that list. The user shall initialize the password when using the module for the first
time. Before the user password is initialized, access to the module shall be
controlled. See the Sample Cryptographic Module Initialization Code section
below for sample code.

(End of Security Rules)

Authentication Policy

Specification of Roles

The NSS cryptographic module supports two authorized roles for operators.

● The NSS User role provides access to all cryptographic and general-purpose
services (except those that perform an initialization function) and all keys stored in
the private key database. An NSS User utilizes secure services and is also
responsible for the retrieval, updating, and deletion of keys from the private key
database.

● The Crypto Officer role is supported for the installation and initialization of the
module. The Crypto Officer must control the access to the module both before and
after installation. Control consists of management of physical access to the
computer executing the NSS cryptographic module code as well as management of
the security facilities provided by the operating system.

The NSS cryptographic module uses a combined role approach -- by authenticating to the
module, an operator assumes both the NSS User role and the Crypto Officer role at the
same time.

The NSS cryptographic module does not have a maintenance role.

Role-Based Authentication

The NSS cryptographic module uses role-based authentication to control access to the
module. To perform sensitive services using the cryptographic module, an operator must

Page 13 of 31

explicitly request to assume the NSS User role by logging into the module and performing
an authentication procedure using information unique to that operator (password). The
password is initialized by the Crypto Officer as part of module initialization. Role-based
authentication is used to safeguard a user's private key information. However,
discretionary access control is used to safeguard all other information (e.g., the public key
certificate database).

Authentication shall always be required upon initializing the NSS cryptographic module
library in the FIPS Approved mode. If a function that requires authentication is called
before the operator is authenticated, it returns the CKR_USER_NOT_LOGGED_IN error
code. Call the FC_Login function to provide the required authentication. The only
exception to this is the random number generator function. The Level 2 module cannot be
used in FIPS mode if the NSS User role is not authenticated and the random number
generator is called from this role.

Strength of Authentication Mechanism

In the FIPS Approved mode, the NSS cryptographic module imposes the following
requirements on the password. These requirements are enforced by the module on
password initialization or change.

• The password must be at least seven characters long.
• The password must consist of characters from three or more character classes.

We define five character classes: digits (0-9), ASCII lowercase letters, ASCII
uppercase letters, ASCII non-alphanumeric characters (such as space and
punctuation marks), and non-ASCII characters. If an ASCII uppercase letter is the
first character of the password, the uppercase letter is not counted toward its
character class. Similarly, if a digit is the last character of the password, the digit is
not counted toward its character class.

To estimate the probability that a random guess of the password will succeed, we assume
that

• the characters of the password are independent with each other, and
• the probability of guessing an individual character of the password is less than 1/10.

Since the password is at least 7 characters long, the probability that a random guess of the
password will succeed is less than (1/10)^7 = 1/10,000,000.

After each failed authentication attempt in the FIPS Approved mode, the NSS
cryptographic module inserts a one-second delay before returning to the caller, allowing at
most 60 authentication attempts during a one-minute period. Therefore, the probability of a
successful random guess of the password during a one-minute period is less than 60 *
1/10,000,000 = 0.6 * (1/100,000).

Page 14 of 31

Multiple Concurrent Operators

The NSS cryptographic module doesn't allow concurrent operators.

• For Security Level 1, the operating system has been restricted to a single operator
mode of operation, so concurrent operators are explicitly excluded (FIPS 140-2
Section 4.6.1).

• On a multi-user operating system, this is enforced by making the NSS certificate
and private key databases readable and writable by the owner of the files only.

Note: FIPS 140-2 Implementation Guidance Section 6.1 clarifies the use of a cryptographic
module on a server.

When a cryptographic module is implemented in a server environment, the server
application is the user of the cryptographic module. The server application makes the calls
to the cryptographic module. Therefore, the server application is the single user of the
cryptographic module, even when the server application is serving multiple clients.

Access Control Policy

This section identifies the cryptographic keys and CSPs that the user has access to while
performing a service, and the type of access the user has to the CSPs.

Security-Relevant Information

The NSS cryptographic module employs the following cryptographic keys and CSPs in the
FIPS Approved mode of operation. Note that the private key database (key3.db) mentioned
below is outside the cryptographic boundary.

• AES secret keys: The module supports 128-bit, 192-bit, and 256-bit AES keys. The
keys may be stored in memory or in the private key database (key3.db).

• Triple-DES secret keys: 168-bit. The keys may be stored in memory or in the
private key database (key3.db).

• HMAC secret keys: HMAC key size must be greater than or equal to half the size
of the hash function output. The keys may be stored in memory or in the private key
database (key3.db).

• DSA public keys and private keys: The module supports DSA key sizes of 512-
1024 bits. DSA keys of 1024 bits shall be used in the FIPS Approved mode of
operation. The keys may be stored in memory or in the private key database
(key3.db).

• RSA public keys and private keys (used for digital signatures and key transport):
The module supports RSA key sizes of 1024-8192 bits. The keys may be stored in
memory or in the private key database (key3.db).

Page 15 of 31

• EC public keys and private keys (used for ECDSA digital signatures and EC Diffie-
Hellman key agreement): The module supports elliptic curve key sizes of 256-521
bits in the Basic ECC version and 163-571 bits in the Extended ECC version. EC
keys of 160 bits or higher shall be used in the FIPS Approved mode of operation.
(See the Non-NIST-Recommended Elliptic Curves section below.) The keys may
be stored in memory or in the private key database (key3.db).

• Diffie-Hellman public keys and private keys (used for key agreement): The module
supports Diffie-Hellman public key sizes of 1024-2236 bits. The keys may be
stored in memory or in the private key database (key3.db).

• TLS premaster secret (used in deriving the TLS master secret): 48-byte. Stored in
memory.

• TLS master secret (a secret shared between the peers in TLS connections, used in
the generation of symmetric cipher keys, IVs, and MAC secrets for TLS): 48-byte.
Stored in memory.

• seed-key of the Approved random number generator: 256-bit. Stored in memory.
• authentication data (passwords): Stored in the private key database (key3.db).
• audited events and audit data (Security Level 2 only): Stored in the system audit

logs.

Note: The NSS cryptographic module does not implement the TLS protocol. The NSS
cryptographic module implements the cryptographic operations, including TLS-specific
key generation and derivation operations, that can be used to implement the TLS protocol.

Non-NIST-Recommended Elliptic Curves

The Basic ECC version of the NSS cryptographic module only implements the NIST-
recommended elliptic curves P-256, P-384, and P-521 specified in FIPS 186-2.

The Extended ECC version of the NSS cryptographic module implements all the NIST-
recommended elliptic curves and the following non-NIST-recommended curves:

Curve family Curve names

ANSI X9.62-1998 prime curves prime192v2, prime192v3, prime239v1, prime239v2,
and prime239v3

ANSI X9.62-1998 binary curves c2pnb163v1, c2pnb163v2, c2pnb163v3, c2tnb191v1,
c2tnb191v2, c2tnb191v3, c2tnb239v1, c2tnb239v2,
c2tnb239v3,c2tnb359v1, and c2tnb431r1

SEC 2 prime curves secp160k1, secp160r1, secp160r2, secp192k1,
secp224k1, and secp256k1

SEC 2 binary curves sect163r1, sect193r1, sect193r2, and sect239k1

Page 16 of 31

Although FIPS 140-2 Implementation Guidance Section 1.6 allows the use of non-NIST-
recommended curves in the FIPS Approved mode of operation, we recommend that the
non-NIST-recommended curves not be used in the the FIPS Approved mode.

The Extended ECC version of the NSS cryptographic module also implements the
following non-NIST-recommended curves, which shall not be used in the FIPS Approved
mode.

Curve family Curve names Reason

ANSI X9.62-1998 binary
curves

c2pnb176w1, c2pnb208w1,
c2pnb272w1, c2pnb304w1,
and c2pnb368w1

disallowed in ANSI X9.62-
2005

SEC 2 prime curves secp112r1, secp112r2,
secp128r1, and secp128r2

key sizes smaller than 160 bits

SEC 2 binary curves sect113r1, sect113r2,
sect131r1, and sect131r2

key sizes smaller than 160 bits

Specification of Services

Some services require the user to assume the Crypto Officer or NSS User role. In the table
below, the role is specified for each service. If the Role column is blank, no role needs to
be assumed for that service; such a service (e.g., random number generation and hashing)
does not affect the security of the module because it does not require access to the secret
and private keys and other CSPs associated with the user. The table lists each service as an
API function and correlates role, service type, and type of access to the cryptographic keys
and CSPs. Access types R, W, and Z stand for Read, Write, and Zeroize, respectively.

Page 17 of 31

Service
Category

Role Function Name Description Cryptographic
Keys and

CSPs
Accessed

Acces
s

type,
RWZ

FIPS 140-2
specific

FC_GetFunctionList returns the list of
function pointers for
the FIPS Approved
mode of operation

none -

Module
Initialization

Crypto
Officer

FC_InitToken initializes or
reinitializes a token

password and
all keys

Z

Crypto
Officer

FC_InitPIN initializes the user's
password, i.e., sets
the user's initial
password

password W

General
purpose

FC_Initialize initializes the module
library for the FIPS
Approved mode of
operation. This
function provides the
power-up self-test
service.

none -

FC_Finalize finalizes (shuts
down) the module
library

all keys Z

FC_GetInfo obtains general
information about
the module library

none -

Page 18 of 31

Service
Category

Role Function Name Description Cryptographic
Keys and

CSPs
Accessed

Acces
s

type,
RWZ

Slot and
token
management

FC_GetSlotList obtains a list of slots
in the system

none -

FC_GetSlotInfo obtains information
about a particular
slot

none -

FC_GetTokenInfo obtains information
about the token. This
function provides the
Show Status service.

none -

FC_WaitForSlotEvent This function is not
supported by the
NSS cryptographic
module.

none -

FC_GetMechanismList obtains a list of
mechanisms
(cryptographic
algorithms)
supported by a token

none -

FC_GetMechanismInfo obtains information
about a particular
mechanism

none -

NSS
User

FC_SetPIN changes the user's
password

password RW

Page 19 of 31

Service
Category

Role Function Name Description Cryptographic
Keys and

CSPs
Accessed

Acces
s

type,
RWZ

Session
management

FC_OpenSession opens a connection
("session") between
an application and a
particular token

none -

FC_CloseSession closes a session keys of the
session

Z

FC_CloseAllSessions closes all sessions
with a token

all keys Z

FC_GetSessionInfo obtains information
about the session.
This function
provides the Show
Status service.

none -

FC_GetOperationState saves the state of the
cryptographic
operation in a
session. This function
is only implemented
for message digest
operations.

none -

FC_SetOperationState restores the state of
the cryptographic
operation in a
session. This function
is only implemented
for message digest
operations.

none -

FC_Login logs into a token password R

NSS
User

FC_Logout logs out from a token none -

Page 20 of 31

Service
Category

Role Function Name Description Cryptographic
Keys and

CSPs
Accessed

Acces
s

type,
RWZ

Object
management

NSS
User

FC_CreateObject creates an object key W

NSS
User

FC_CopyObject creates a copy of an
object

original key

new key

R

W

NSS
User

FC_DestroyObject destroys an object key Z

NSS
User

FC_GetObjectSize obtains the size of an
object in bytes

key R

NSS
User

FC_GetAttributeValue obtains an attribute
value of an object

key R

NSS
User

FC_SetAttributeValue modifies an attribute
value of an object

key W

NSS
User

FC_FindObjectsInit initializes an object
search operation

none -

NSS
User

FC_FindObjects continues an object
search operation

keys matching
the search
criteria

R

NSS
User

FC_FindObjectsFinal finishes an object
search operation

none -

Page 21 of 31

Service
Category

Role Function Name Description Cryptographic
Keys and

CSPs
Accessed

Acces
s

type,
RWZ

Encryption
and
decryption

NSS
User

FC_EncryptInit initializes an
encryption operation

encryption key R

NSS
User

FC_Encrypt encrypts single-part
data

encryption key R

NSS
User

FC_EncryptUpdate continues a multiple-
part encryption
operation

encryption key R

NSS
User

FC_EncryptFinal finishes a multiple-
part encryption
operation

encryption key R

NSS
User

FC_DecryptInit initializes a
decryption operation

decryption key R

NSS
User

FC_Decrypt decrypts single-part
encrypted data

decryption key R

NSS
User

FC_DecryptUpdate continues a multiple-
part decryption
operation

decryption key R

NSS
User

FC_DecryptFinal finishes a multiple-
part decryption
operation

decryption key R

Message
digesting

FC_DigestInit initializes a message-
digesting operation

none -

FC_Digest digests single-part
data

none -

FC_DigestUpdate continues a multiple-
part digesting
operation

none -

NSS
User
(see
the
note at
the
end of
the
table)

FC_DigestKey continues a multi-
part message-
digesting operation
by digesting the
value of a secret key
as part of the data
already digested

key R

FC_DigestFinal finishes a multiple-
part digesting
operation

none -

Page 22 of 31

Service
Category

Role Function Name Description Cryptographic
Keys and

CSPs
Accessed

Acces
s

type,
RWZ

Signature and
verification

NSS
User

FC_SignInit initializes a signature
operation

signing/HMA
C key

R

NSS
User

FC_Sign signs single-part data signing/HMA
C key

R

NSS
User

FC_SignUpdate continues a multiple-
part signature
operation

signing/HMA
C key

R

NSS
User

FC_SignFinal finishes a multiple-
part signature
operation

signing/HMA
C key

R

NSS
User

FC_SignRecoverInit initializes a signature
operation, where the
data can be recovered
from the signature

RSA signing
key

R

NSS
User

FC_SignRecover signs single-part
data, where the data
can be recovered
from the signature

RSA signing
key

R

NSS
User

FC_VerifyInit initializes a
verification operation

Verification/
HMAC key

R

NSS
User

FC_Verify verifies a signature
on single-part data

verification/
HMAC key

R

NSS
User

FC_VerifyUpdate continues a multiple-
part verification
operation

verification/
HMAC key

R

NSS
User

FC_VerifyFinal finishes a multiple-
part verification
operation

verification/
HMAC key

R

NSS
User

FC_VerifyRecoverInit initializes a
verification operation
where the data is
recovered from the
signature

RSA
verification
key

R

NSS
User

FC_VerifyRecover verifies a signature
on single-part data,
where the data is
recovered from the
signature

RSA
verification
key

R

Page 23 of 31

Service
Category

Role Function Name Description Cryptographic
Keys and

CSPs
Accessed

Acces
s

type,
RWZ

Dual-function
cryptographic
operations

NSS
User

FC_DigestEncryptUpdat
e

continues a multiple-
part digesting and
encryption operation

encryption key R

NSS
User

FC_DecryptDigestUpdat
e

continues a multiple-
part decryption and
digesting operation

decryption key R

NSS
User

FC_SignEncryptUpdate continues a multiple-
part signing and
encryption operation

signing/HMA
C key

encryption key

R

R

NSS
User

FC_DecryptVerifyUpdat
e

continues a multiple-
part decryption and
verify operation

decryption key

verification/
HMAC key

R

R

Key
management

NSS
User

FC_GenerateKey generates a secret key
(used by TLS to
generate premaster
secrets)

key W

NSS
User

FC_GenerateKeyPair generates a
public/private key
pair. This function
performs the pair-
wise consistency
tests.

key pair W

NSS
User

FC_WrapKey wraps (encrypts) a
key

wrapping key

key to be
wrapped

R

R

NSS
User

FC_UnwrapKey unwraps (decrypts) a
key

unwrapping
key

unwrapped
key

R

W

NSS
User

FC_DeriveKey derives a key from a
base key (used by
TLS to derive keys
from the master
secret)

base key

derived key

 R

W

Page 24 of 31

Service
Category

Role Function Name Description Cryptographic
Keys and

CSPs
Accessed

Acces
s

type,
RWZ

Random
number
generation

NSS
User

FC_SeedRandom mixes in additional
seed material to the
random number
generator

RNG seed-key RW

NSS
User

FC_GenerateRandom generates random
data. This function
performs the
continuous random
number generator
test.

RNG seed-key RW

Parallel
function
management

FC_GetFunctionStatus a legacy function,
which simply returns
the value 0x00000051
(function not
parallel)

none -

FC_CancelFunction a legacy function,
which simply returns
the value 0x00000051
(function not
parallel)

none -

Note: The message digesting functions (except FC_DigestKey) don't require the user to
assume an authorized role because they don't use any keys. FC_DigestKey computes the
message digest (hash) of the value of a secret key, therefore the user needs to assume the
NSS User role for this service.

Mitigation of Other Attacks

The NSS cryptographic module is designed to mitigate the following attacks.

Page 25 of 31

Other Attacks Mitigation Mechanism
Specific

Limitations

Timing attacks on RSA

RSA blinding

Timing attack on RSA was
first demonstrated by Paul
Kocher in 1996 [2], who
contributed the mitigation
code to our module. Most
recently Boneh and Brumley
[3] showed that RSA
blinding is an effective
defense against timing
attacks on RSA.

None

Cache-timing attacks on the modular
exponentiation operation used in RSA
and DSA

Cache invariant modular
exponentiation

This is a variant of a modular
exponentiation
implementation that Colin
Percival [4] showed to
defend against cache-timing
attacks.

This mechanism
requires intimate
knowledge of the
cache line sizes of
the processor. The
mechanism may be
ineffective when
the module is
running on a
processor whose
cache line sizes are
unknown.

Arithmetic errors in RSA signatures

Double-checking RSA
signatures

Arithmetic errors in RSA
signatures might leak the
private key. Ferguson and
Schneier [5] recommend that
every RSA signature
generation should verify the
signature just generated.

None

Access to Audit Data

The NSS cryptographic module may use the Unix syslog function and the audit
mechanism provided by the operating system to audit events. (Auditing is not yet
implemented on Windows.) Auditing is turned off by default. To turn on the auditing

Page 26 of 31

capability, you need to set the environment variable NSS_ENABLE_AUDIT to 1. You also
need to configure the operating system's audit mechanism.

Access to the audit data is described in the next two subsections.

Access to syslog Log Files

On Unix (including Linux and Mac OS X), the NSS cryptographic module uses the
syslog function to audit events, so the audit data are stored in the system log. Only the
root user can modify the system log. On some platforms, only the root user can read the
system log; on other platforms, all users can read the system log.

The system log is usually under the /var/adm or /var/log directory. The exact
location of the system log is specified in the /etc/syslog.conf file. The NSS
cryptographic module uses the default user facility and the info, warning, and err severity
levels for its log messages. We give two examples below.

Red Hat Enterprise Linux 4: The /etc/syslog.conf file on Red Hat Enterprise
Linux 4 has:

*.info;mail.none;authpriv.none;cron.none /var/log/messages

which specifies that /var/log/messages is the system log.

Solaris 10: The /etc/syslog.conf file on Solaris 10 has:

*.err;kern.debug;daemon.notice;mail.crit /var/adm/messages

which specifies that /var/adm/messages is the system log.

Access to System Audit Log

To meet the audit requirements of FIPS 140-2 at Security Level 2, on Red Hat Enterprise
Linux 4 and Trusted Solaris 8, the NSS cryptographic module also uses the audit
mechanism provided by the operating system to audit events. The audit data are stored in
the system audit log. Only the root user can read or modify the system audit log.

On Red Hat Enterprise Linux 4, the system audit log is in the /var/log/audit
directory. On Solaris, default audit records are stored in /var/audit/.

Page 27 of 31

Configure the Solaris Auditing

To configure the system audit mechanism on Solaris, the following administration tasks
need to be completed. Create the audit class 'fp', then create the audit event
'AUE_FIPS_AUDIT ' and add the class 'fp' to the audit_control file.

Edit /etc/security/audit_class add line: 0x99000000:fp:NSS FIPS Security Msgs

Edit /etc/security/audit_event add line: 34444:AUE_FIPS_AUDIT:fp

Edit /etc/security/audit_control add 'fp' to the "flags:" as in: flags:lo,ap,fp

On Trusted Solaris 8, auditing is enabled by default; for non-trusted Solaris run: /
etc/security/bsmconv (either as root or a user that has been given the Audit Control RBAC
profile in Solaris 8) and reboot your system. After the system has rebooted, ensure auditd is
running: ps -ecf | grep auditd

Viewing the Audit Trail

By default, the audit logs are stored in /var/audit. To view the active audit trail, ensure
there is only one *not_terminated* audit file. If there are others, delete the older ones
before executing this command.

1. cd /var/audit

2. tail -0f *not_terminated* | praudit

Note: On Trusted Solaris 8 you need to assume a role with the tail and praudit commands
with the proc_audit_appl and proc_audit_tcb privileges.

You can also view the existing audit files using auditreduce.

1. cd /var/audit

2. auditreduce -m 34444 *not_terminated* | praudit -l

Sample Cryptographic Module Initialization Code

The following sample code uses NSPR functions (declared in the header file
"prlink.h") for dynamic library loading and function symbol lookup.

#include "prlink.h"
#include "cryptoki.h"
#include <assert.h>

Page 28 of 31

#include <stdio.h>
#include <string.h>

/*
 * An extension of the CK_C_INITIALIZE_ARGS structure for the
 * NSS cryptographic module. The 'LibraryParameters' field is
 * used to pass instance-specific information to the library
 * (like where to find its config files, etc).
 */
typedef struct CK_C_INITIALIZE_ARGS_NSS {
 CK_CREATEMUTEX CreateMutex;
 CK_DESTROYMUTEX DestroyMutex;
 CK_LOCKMUTEX LockMutex;
 CK_UNLOCKMUTEX UnlockMutex;
 CK_FLAGS flags;
 CK_CHAR_PTR *LibraryParameters;
 CK_VOID_PTR pReserved;
} CK_C_INITIALIZE_ARGS_NSS;

int main()
{
 char *libname;
 PRLibrary *lib;
 CK_C_GetFunctionList pFC_GetFunctionList;
 CK_FUNCTION_LIST_PTR pFunctionList;
 CK_RV rv;
 CK_C_INITIALIZE_ARGS_NSS initArgs;
 CK_SLOT_ID slotList[2], slotID;
 CK_ULONG ulSlotCount;
 CK_TOKEN_INFO tokenInfo;
 CK_SESSION_HANDLE hSession;
 CK_UTF8CHAR password[] = "1Mozilla";
 PRStatus status;

 /*
 * Get the platform-dependent library name of the NSS
 * cryptographic module.
 */
 libname = PR_GetLibraryName(NULL, "softokn3");
 assert(libname!= NULL);
 lib = PR_LoadLibrary(libname);
 assert(lib!= NULL);
 PR_FreeLibraryName(libname);

 pFC_GetFunctionList = (CK_C_GetFunctionList)
 PR_FindFunctionSymbol(lib, "FC_GetFunctionList");
 assert(pFC_GetFunctionList!= NULL);
 rv = (*pFC_GetFunctionList)(&pFunctionList);
 assert(rv == CKR_OK);

 /* Call FC_xxx via the function pointer pFunctionList->C_xxx */

 initArgs.CreateMutex = NULL;
 initArgs.DestroyMutex = NULL;

Page 29 of 31

 initArgs.LockMutex = NULL;
 initArgs.UnlockMutex = NULL;
 initArgs.flags = CKF_OS_LOCKING_OK;
 initArgs.LibraryParameters = (CK_CHAR_PTR *)
 "configdir='.' certPrefix='' keyPrefix='' "
 "secmod='secmod.db' flags= ";
 initArgs.pReserved = NULL;
 rv = pFunctionList->C_Initialize(&initArgs);
 assert(rv == CKR_OK);

 ulSlotCount = sizeof(slotList)/sizeof(slotList[0]);
 rv = pFunctionList->C_GetSlotList(CK_TRUE, slotList, &ulSlotCount);
 assert(rv == CKR_OK);
 slotID = slotList[0];

 rv = pFunctionList->C_OpenSession(slotID,
 CKF_RW_SESSION | CKF_SERIAL_SESSION, NULL, NULL, &hSession);
 assert(rv == CKR_OK);

 /* set the operator's initial password, if necessary */

 rv = pFunctionList->C_GetTokenInfo(slotID, &tokenInfo);
 assert(rv == CKR_OK);

 if (!(tokenInfo.flags & CKF_USER_PIN_INITIALIZED)) {
 /*
 * As a formality required by the PKCS #11 standard, the
 * operator must log in as the PKCS #11 Security Officer (SO),
 * with the predefined empty string password, to set the
 * operator's initial password.
 */
 rv = pFunctionList->C_Login(hSession, CKU_SO, NULL, 0);
 assert(rv == CKR_OK);

 rv = pFunctionList->C_InitPIN(hSession,
 password, strlen(password));
 assert(rv == CKR_OK);

 /* log out as the PKCS #11 SO */
 rv = pFunctionList->C_Logout(hSession);
 assert(rv == CKR_OK);
 }

 /* the module is now ready for use */

 /* authenticate the operator using a password */
 rv = pFunctionList->C_Login(hSession, CKU_USER,
 password, strlen(password));
 assert(rv == CKR_OK);

 /* use the module's services ... */

 rv = pFunctionList->C_CloseSession(hSession);
 assert(rv == CKR_OK);

Page 30 of 31

 rv = pFunctionList->C_Finalize(NULL);
 assert(rv == CKR_OK);

 status = PR_UnloadLibrary(lib);
 assert(status == PR_SUCCESS);
 return 0;
}

The mode of operation of the NSS cryptographic module is determined by the second
argument passed to the PR_FindFunctionSymbol function.

• For the non-FIPS Approved mode of operation, look up the standard PKCS #11
function C_GetFunctionList.

• For the FIPS Approved mode of operation, look up the alternative function
FC_GetFunctionList.

Acknowledgments

Matthew Harmsen, John Hines, Ian McGreer, and Bishakha Banerjee wrote previous
versions of this document. Julien Pierre and Steve Parkinson's review comments improved
the presentation and accuracy of the information. The current version was written by Wan-
Teh Chang, Glen Beasley and Neil Williams.

References

[1] RSA Laboratories, “PKCS #11 v2.20: Cryptographic Token Interface Standard”, 2004.
(http://www.rsasecurity.com/rsalabs/node.asp?id=2133)

[2] P. Kocher, "Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems," CRYPTO '96, Lecture Notes In Computer Science, Vol. 1109, pp. 104-
113, Springer-Verlag, 1996. (http://www.cryptography.com/timingattack/)

[3] D. Boneh and D. Brumley, "Remote Timing Attacks are Practical,"
http://crypto.stanford.edu/~dabo/abstracts/ssl-timing.html.

[4] C. Percival, "Cache Missing for Fun and Profit,"
http://www.daemonology.net/papers/htt.pdf.

[5] N. Ferguson and B. Schneier, Practical Cryptography, Sec. 16.1.4 "Checking RSA
Signatures", p. 286, Wiley Publishing, Inc., 2003.

Page 31 of 31

