
 
 
 
 
 

 

IBM® Crypto for C (ICC) 
Version 1.4.5 

FIPS 140-2 Non-Proprietary 
Security Policy, version 0.7 

October 04, 2006 
 

 

 



IBM® Crypto for C (ICC), Version 1.4.5 
FIPS 140-2 Non-Proprietary Security Policy, version  0.7 

October 04, 2006 
 

Non-Proprietary FIPS 140-2 Security Policy 
IBM Crypto for C (ICC) v1.4.5 

2 

Copyright Notice 
 
This document is the property of International Business Machines Corporation (IBM® 
Corp.).  This document may only be reproduced in its entirety without modifications.   
 

© Copyright 2006 IBM Corp. All Rights Reserved



IBM® Crypto for C (ICC), Version 1.4.5 
FIPS 140-2 Non-Proprietary Security Policy, version  0.7 

October 04, 2006 
 

Non-Proprietary FIPS 140-2 Security Policy 
IBM Crypto for C (ICC) v1.4.5 

3 

  

 
Table Of Contents 

 
Copyright Notice.............................................................................................................. 2 
2. References and Abbreviations .................................................................................... 5 

2.1References ............................................................................................................. 5 
2.2Abbreviations .......................................................................................................... 5 

3.Introduction .................................................................................................................. 8 
3.1Purpose of the Security Policy ................................................................................ 8 
3.2Target Audience ..................................................................................................... 8 

4.Cryptographic Module Definition ................................................................................ 10 
5.FIPS 140-2 Specifications .......................................................................................... 11 

5.1.Ports and Interfaces............................................................................................. 11 
5.2 Roles, Services and Authentication ..................................................................... 12 

5.2.1 Roles and Authentication .............................................................................. 12 
5.2.2 Authorized Services ...................................................................................... 13 
5.2.3 Access Rights Within Services...................................................................... 16 
5.2.4 Operational Rules and Assumptions ............................................................. 17 

5.3Operational Environment ...................................................................................... 19 
5.3.1 Assumptions.................................................................................................. 19 
5.3.2 Installation and Initialization .......................................................................... 19 

5.4Cryptographic Key Management .......................................................................... 20 
5.4.1 Implemented Algorithms ............................................................................... 20 
5.4.2 Supported Key Sizes for Asymmetric Algorithms .......................................... 20 
5.4.3 Key Storage .................................................................................................. 20 
5.4.4 Key Zeroization ............................................................................................. 20 
5.4.5 Random Number Generator.......................................................................... 21 

5.5 Self-Tests ............................................................................................................ 21 
5.5.1 Show Status .................................................................................................. 21 
5.5.2 Startup Tests ................................................................................................ 22 
5.5.3 Conditional Tests .......................................................................................... 23 
5.5.4 Severe Errors ................................................................................................ 23 

5.6 Design Assurance................................................................................................ 25 
5.7 Mitigation Of Other Attacks.................................................................................. 27 

6.API Functions............................................................................................................. 27



IBM® Crypto for C (ICC), Version 1.4.5 
FIPS 140-2 Non-Proprietary Security Policy, version  0.7 

October 04, 2006 
 

Non-Proprietary FIPS 140-2 Security Policy 
IBM Crypto for C (ICC) v1.4.5 

4 

2.2.2.2.     References and Abbreviations 

������������    References 
 

Author Title 
NIST FIPS PUB 140-2: Security Requirements For Cryptographic 

Modules, May 2001 
NIST [Derived Test Requirements for FIPS PUB 140-2, November 

2001 
NIST Implementation Guidance for FIPS PUB 140-2 and the 

Cryptographic Module Validation Program 
Ed Dobner IBM Crypto for C (ICC) Version 0.1 Design, Document Version 1 

- November 26, 2002 

2.22.22.22.2    Abbreviations 
 
AES The Advanced Encryption Standard. The AES is intended to be issued as a FIPS 

standard and will replace DES. In January 1997 the AES initiative was announced 
and in September 1997 the public was invited to propose suitable block ciphers as 
candidates for the AES. NIST is looking for a cipher that will remain secure well 
into the next century. NIST selected Rijndael as the AES algorithm. 

CMVP (The NIST) Cryptographic Module Validation Program; an integral part of the 
Computer Security Division at NIST, the CMVP encompasses validation testing for 
cryptographic modules and algorithms 

Crypto   Cryptographic capability/functionality 
CSE The (Canadian) Communications Security Establishment; An entity 

operating under the Canadian Department of National Defence, CSE 
provides technical advice, guidance and services to the Government of 
Canada to maintain the security of its information and information 
infrastructures. The CMV Program was established by NIST and CSE in 
July 1995. 

DER  Distinguished Encoding Rules 
DES The Data Encryption Standard, an encryption block cipher defined and endorsed 

by the U.S. government in 1977 as an official standard; the details can be found in 
the latest official FIPS (Federal Information Processing Standards) publication 
concerning DES. It was originally developed at IBM. DES has been extensively 
studied since its publication and is the most well-known and widely used 
cryptosystem in the world.  As specified in FIPS PUB 46-3, Single DES (i.e., DES) 
is currently permitted for legacy systems only. New procurements to support legacy 
systems should, where feasible, use Triple DES products running in the single DES 
configuration. 

DH Diffie-Hellman key agreement. 
DSA  Digital Signature Algorithm -  US Federal Information Processing Standard FIPS 

186 (Digital Signature Standard, DSS), ANSI X9.30 
ICC  IBM Crypto for C-language is a general-purpose cryptographic provider module. 
Libcrypt   The cryptography engine of OpenSSL. 



IBM® Crypto for C (ICC), Version 1.4.5 
FIPS 140-2 Non-Proprietary Security Policy, version  0.7 

October 04, 2006 
 

Non-Proprietary FIPS 140-2 Security Policy 
IBM Crypto for C (ICC) v1.4.5 

5 

MD2 MD4 
MD5 

MD2, MD4, and MD5 are message-digest algorithms developed by Rivest. They 
are meant for digital signature applications where a large message has to be 
"compressed" in a secure manner before being signed with the private key. All 
three algorithms take a message of arbitrary length and produce a 128-bit 
message digest. While the structures of these algorithms are somewhat similar, the 
design of MD2 is quite different from that of MD4 and MD5 and MD2 was optimized 
for 8-bit machines, whereas MD4 and MD5 were aimed at 32-bit machines. 
Description and source code for the three algorithms can be found as Internet 
RFCs 1319 - 1321.  

NIST (The) National Institute of Standards and Technology; NIST is a non-regulatory 
federal agency within the U.S. Commerce Department's Technology 
Administration. NIST's mission is to develop and promote measurement, 
standards, and technology to enhance productivity, facilitate trade, and improve the 
quality of life. NIST oversees the Cryptographic Module Validation Program.  

OpenSSL   A collaborative effort to develop a robust, commercial-grade, full-featured and 
Open Source toolkit implementing the Secure Socket Layer (SSL V1/V3) and 
Transport Layer Security (TLS V1) protocols. 

RC2 A variable key-size block cipher designed by Rivest for RSA Data Security. "RC" 
stands for "Ron's Code" or "Rivest's Cipher." It is faster than DES and is designed 
as a "drop-in" replacement for DES. It can be made more secure or less secure 
than DES against exhaustive key search by using appropriate key sizes. It has a 
block size of 64 bits and is about two to three times faster than DES in software. 
The algorithm is confidential and proprietary to RSA Data Security. RC2 can be 
used in the same modes as DES. 

RC4 A stream cipher designed by Rivest for RSA Data Security. It is a variable key-size 
stream cipher with byte-oriented operations. 

RSA A public-key cryptosystem for both encryption and authentication; it was invented in 
1977 by Ron Rivest, Adi Shamir, and Leonard Adleman. 

SHA-1 The Secure Hash Algorithm, the algorithm specified in the Secure Hash Standard 
(SHS), was developed by NIST and published as a federal information processing 
standard. SHA-1 was a revision to SHA that was published in 1994. The revision 
corrected an unpublished flaw in SHA. 

Triple DES Based on the DES standard; the plaintext is, in effect, encrypted three times. Triple 
DES (TDEA), as specified in ANSI X9.52, is recognized as a FIPS approved 
algorithm. 

 

 



IBM® Crypto for C (ICC), Version 1.4.5 
FIPS 140-2 Non-Proprietary Security Policy, version  0.7 

October 04, 2006 
 

Non-Proprietary FIPS 140-2 Security Policy 
IBM Crypto for C (ICC) v1.4.5 

6 

3. Introduction 
 
This document is a non-proprietary FIPS 140-2 Security Policy for the IBM Crypto for C 
(ICC), Version 1.4.5 cryptographic module. It contains a specification of the rules under 
which the module must operate and describes how this module meets the requirements 
as specified in FIPS PUB 140-2 (Federal Information Processing Standards Publication 
140-2) for a Level 1 multi-chip standalone module. This Policy forms a part of the 
submission package to the testing lab. 
 
FIPS 140-2 specifies the security requirements for a cryptographic module protecting 
sensitive information. Based on four security levels for cryptographic modules this 
standard identifies requirements in eleven sections. For more information about the 
standard visit http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf. 
 
• For more information on the FIPS 140-2 standard and validation program please 
refer to the NIST website at http://csrc.nist.gov/cryptval/. 
• For more information about IBM software please visit http://www.ibm.com 

3.1 Purpose of the Security Policy 
There are three major reasons that a security policy is required: 
  

• It is required for FIPS 140-2 validation. 
• It allows individuals and organizations to determine whether the cryptographic 
module, as implemented, satisfies the stated security policy. 
• It describes the capabilities, protection, and access rights provided by the 
cryptographic module, allowing individuals and organizations to determine whether it 
will meet their security requirements. 

3.2 Target Audience 
 
This document is intended to be part of the package of documents that are submitted 
for FIPS validation. It is intended for the following people: 
 

• Developers working on the release 
• Product Verification 
• Documentation 
• Product and Development Managers



IBM® Crypto for C (ICC), Version 1.4.5 
FIPS 140-2 Non-Proprietary Security Policy, version  0.7 

October 04, 2006 
 

Non-Proprietary FIPS 140-2 Security Policy 
IBM Crypto for C (ICC) v1.4.5 

7 

4.4.4.4.    Cryptographic Module Definition 
 
This section defines the cryptographic module that is being submitted for validation to 
FIPS PUB 140-2, level 1.   
 
The IBM Crypto for C v1.4.5 (ICC) cryptographic module is implemented in the C 
programming language. It is packaged as dynamic (shared) libraries usable by 
applications written in a language that supports C language linking conventions (e.g. C, 
C++, Java, Assembler, etc.) for use on commercially available operating systems. The 
ICC allows these applications to access cryptographic functions using an Application 
Programming Interface (API) provided through an ICC import library and based on the 
API defined by the OpenSSL group. The cryptographic boundary is defined to be the 
enclosure of the computer that runs the ICC software.  

As outlined in G.5 of the Implementation Guidance for FIPS 140-2 (May 5, 2006 
Update), the module maintains its compliance on other operating systems, provided: 

• The operating system meets the operational environment requirements at the 
module’s level of validation 
• The module does not require modification to run in the new environment 

ICC was  tested and validated on a machine running the Microsoft Windows Server 
2003 operating system (AMD64 and IA-32).  The software module maintains 
compliance when running on other versions of Microsoft Windows. 

ICC was  tested and validated on a machine running the AIX  5.2 operating system 
(PowerPC).  The software module maintains compliance when running on other 
versions of AIX.   

ICC was  tested and validated on a machine running the Solaris 9 operating system 
(UltraSparc).  The software module maintains compliance when running on other 
versions of Solaris. 

ICC was tested and validated on a machine running the SuSE Linux Enterprise 
Server 9.0 operating system (AMD64) and the SuSE Linux Enterprise Server 9.1 
operating system (IA-32, zSeries, and PowerPC).  The software module maintains 
compliance when running on other Linux based operating systems. 
 
ICC was tested and validated on a machine running the RedHat Linux Advanced Server 
4 operating system (IA-32, AMD64, zSeries, and PowerPC).  The software module 
maintains compliance when running on other Linux based operating systems. 
 



IBM® Crypto for C (ICC), Version 1.4.5 
FIPS 140-2 Non-Proprietary Security Policy, version  0.7 

October 04, 2006 
 

Non-Proprietary FIPS 140-2 Security Policy 
IBM Crypto for C (ICC) v1.4.5 

8 

ICC was tested and validated on a machine running the HPUX 11i operating system 
(PA-RISC 2.0).  The software module maintains compliance when running on other 
HPUX based operating systems. 

 

5. FIPS 140-2 Specifications 
 

5.1. Ports and Interfaces 
The ICC meets the requirements of a multi-chip standalone module. Since the ICC is a 
software module, its interfaces are defined in terms of the API that it provides. Data 
Input Interface is defined as those API calls that accept, as their arguments, data to be 
used or processed by the module. The API calls that return, by means of return value or 
arguments of appropriate types, data generated or otherwise processed by the module 
to the caller constitute Data Output Interface. Control Input Interface is comprised of the 
call used to initiate the module and the API calls used to control the operation of the 
module.  
 
Status Output Interface is defined as the API calls that provide information about the 
status of the module. The function ICC_GetStatus, when called, will indicate the status 
of the ICC module.  This may be called anytime after ICC_Init . 

5.2 Roles, Services and Authentication 

5.2.1 Roles and Authentication 
The ICC implements the following two roles: Crypto-Officer role and User role (there is 
no  Maintenance Role). The Operating System (OS) provides functionality to require any 
user to be successfully authenticated prior to using any system services. However, the 
Module does not support user identification or authentication that would allow for 
distinguishing users between the two supported roles. Only a single operator assuming 
a particular role may operate the Module at any particular moment in time. The OS 
authentication mechanism must be enabled to ensure that none of the Module’s 
services are available to users who do not assume an authorized role. 
 
An operator is implicitly in the User or Crypto Officer role based upon the service(s) 
chosen. If any of the User specific services are called, then the operator is in the User 
role; otherwise the operator is in the Crypto Officer role. 
 
The Module does not identify nor authenticate any user (in any role) that is accessing 
the Module. This is only acceptable for a FIPS 140-2, Security Level 1 validation.  
 
The two roles are defined per the FIPS140-2 standard as follows: 



IBM® Crypto for C (ICC), Version 1.4.5 
FIPS 140-2 Non-Proprietary Security Policy, version  0.7 

October 04, 2006 
 

Non-Proprietary FIPS 140-2 Security Policy 
IBM Crypto for C (ICC) v1.4.5 

9 

1. Crypto Officer - any entity that can access services implemented in the Module 
and, install and initialize the Module 
2. User  - any entity that can access services implemented in the Module. 

 
Table 1, below, lists the Roles and their associated authentication:  
 
 
 
 
 
 

Role Authentication 
Type 

Authentication 
Data 

Authentication 
Mechanism 

Authentication 
Strength 

Crypto Officer Not required  Not required Not required Not required  

User Not required  Not required Not required Not required  

Table 1: Roles and associated authentication. 

5.2.2 Authorized Services 
 
An operator is explicitly in the User or Cryptographic Officer role based upon the 
services chosen.  If any of the User specific services are called, then the operator is in 
the User role; otherwise the operator is in the Cryptographic Officer role. 
 
The API’s will provide basic encryption and decryption services as follows: 

••••    Hash function 
••••    Symmetric key generation 
••••    Asymmetric key generation 
••••    Random number generation 
••••    Encryption/Decryption with a symmetric key 
••••    Encryption/Decryption with a private asymmetric key  
••••    Encryption/Decryption with a public asymmetric key  
••••    Signing with a private asymmetric key 
••••    Verify signature with a public asymmetric key 
••••    Error reporting 
• Random Number Seed 
• Diffie-Hellman key agreement 

 
When operating in FIPS approved mode no unapproved algorithms may be used. There 
is an allowance for key establishment and exchange to use any algorithm when 
operating in FIPS approved mode (under the phrase “commercially available methods 
may be used”).  The ICC will not limit the algorithms but in the ICC policy it will list the 



IBM® Crypto for C (ICC), Version 1.4.5 
FIPS 140-2 Non-Proprietary Security Policy, version  0.7 

October 04, 2006 
 

Non-Proprietary FIPS 140-2 Security Policy 
IBM Crypto for C (ICC) v1.4.5 

1
0 

FIPS approved algorithms, the allowances/exceptions (e.g. SSL key exchange and 
establishment) and the algorithms that are not FIPS approved. 
 
A list of Authorized Services for each role is provided in table 2 , below. 
 
Role Authorized Service 
Crypto Officer Initialization of the Module 

• Key Input/Output 
• CSP Input/Output 

- State of Cryptographic module 
Symmetric Data Encryption/Decryption 

� FIPS Approved: 
o  
o Triple DES - ECB, CFB,  CBC & OFB modes 
o AES-ECB, CFB,  CBC & OFB modes; 128, 192 & 256 Bits 
� Non FIPS: 
o RC2-CBC 
o RC2-ECB 
o RC2-CFB 
o RC2-OFB 
o RC4-40 
o RC2-40-CBC 
o RC2-64-CBC 
o Blowfish 
o CAST 
o DES - ECB, CFB,  CBC & OFB modes 

 
Asymmetric Data Encryption/Decryption 

� Non-FIPS: 
o RSA 
o RSA-NP-MD5 
o RSA-SHA1-2 

 
Digest Algorithms 

� FIPS Approved: 
o SHA1 
����    Non-FIPS Approved: 
o MD2 
o MD4 
o MD5 
o RIPEMD 

 
Key Agreement 

����    FIPS Allowed: 
o Diffie-Hellman 

 



IBM® Crypto for C (ICC), Version 1.4.5 
FIPS 140-2 Non-Proprietary Security Policy, version  0.7 

October 04, 2006 
 

Non-Proprietary FIPS 140-2 Security Policy 
IBM Crypto for C (ICC) v1.4.5 

1
1 

Role Authorized Service 
Digital Signature 

����    FIPS Approved: 
o DSA  

 
Data Authentication 

� FIPS Approved: 
o RSA  
o HMAC SHA-1 
����    Non-FIPS Approved: 
o HMAC MD5 
 

User Symmetric Data Encryption/Decryption 
� FIPS Approved: 
o  
o Triple DES - ECB, CFB,  CBC & OFB modes 
o AES-ECB, CFB,  CBC & OFB modes; 128, 192 & 256 Bits 
� Non FIPS: 
o RC2-CBC 
o RC2-ECB 
o RC2-CFB 
o RC2-OFB 
o RC4-40 
o RC2-40-CBC 
o RC2-64-CBC 
o Blowfish 
o CAST 
o DES - ECB, CFB,  CBC & OFB modes 

 
Asymmetric Data Encryption/Decryption 

� Non-FIPS: 
o RSA 
o RSA-NP-MD5 
o RSA-SHA1-2 

 
Digest Algorithms 

� FIPS Approved: 
o SHA1 
����    Non-FIPS Approved: 
o MD2 
o MD4 
o MD5 
o RIPEMD 

 
Key Agreement 

����    FIPS Allowed: 



IBM® Crypto for C (ICC), Version 1.4.5 
FIPS 140-2 Non-Proprietary Security Policy, version  0.7 

October 04, 2006 
 

Non-Proprietary FIPS 140-2 Security Policy 
IBM Crypto for C (ICC) v1.4.5 

1
2 

Role Authorized Service 
o Diffie-Hellman 

 
Digital Signature 

����    FIPS Approved: 
o DSA  

 
Data Authentication 

� FIPS Approved: 
o RSA  
o HMAC SHA-1 
����    Non-FIPS Approved: 
o HMAC MD5 

 

Table 2: Roles and authorized services. 

5.2.3 Access Rights Within Services 
An operator performing a service within any role can read/write cryptographic keys and 
critical security parameters (CSP) only through the invocation of a service by use of the 
Cryptographic Module API. Table 3, below, lists the services corresponding to each 
role. 
 
Each service within each role can only access the cryptographic keys and CSPs that 
the service’s API defines.  The following cases exist: 
   

• A cryptographic key or CSP is provided to an API as an input parameter; this 
indicates read/write access to that cryptographic key or CSP. 
• A cryptographic key or CSP is returned from an API as a return value; this 
indicates read access to that cryptographic key or CSP. 

 
Service Cryptographic 

Keys and CSPs 
Types of Access 

Symmetric 
Encryption/Decryption 

Symmetric Key Read/Write 

Asymmetric 
Encryption/Decryption 

Asymmetric Key 
Pair 

Read/Write 

Digital Signature 
Generation/Verification 

Asymmetric Key 
Pair 

Read/Write 

Hash Generation None N/A 
MAC Generation Symmetric Key Read/Write 
Key Agreement Asymmetric Key 

Pair 
Read/Write 

Random Number Generation Seed N/A 
Initialization of the None N/A 



IBM® Crypto for C (ICC), Version 1.4.5 
FIPS 140-2 Non-Proprietary Security Policy, version  0.7 

October 04, 2006 
 

Non-Proprietary FIPS 140-2 Security Policy 
IBM Crypto for C (ICC) v1.4.5 

1
3 

Cryptographic Module 
Key Input/Output Key Read/Write 
CSP Input/Output CSP Read/Write 

Table 3: Access rights within services. 

 

5.2.4 Operational Rules and Assumptions 
The following operational rules must be followed by any user of the Module:  
 

1. The Module is to be used by a single human operator at a time and may not be 
actively shared among operators at any period of time. 
2. The OS authentication mechanism must be enabled in order to prevent 
unauthorized users from being able to access system services.  
3. All keys entered into the module must be verified as being legitimate and 
belonging to the correct entity by software running on the same machine as the 
module. 
4. Since the ICC runs on a general-purpose processor all main data paths of the 
computer system will contain cryptographic material.  The following items need to 
apply relative to where the ICC will execute: 

• Virtual (paged) memory must be secure (local disk or a secure network). 
• The system bus must be secure. 
• The disk drive that ICC is installed on must be in a secure environment. 

5. The above rules must be upheld at all times in order to ensure continued system 
security and FIPS 140-2 mode compliance after initial setup of the validated 
configuration. If the module is removed from the above environment, it is assumed to 
not be operational in the validated mode until such time as it has been returned to 
the above environment and re-initialized by the user to the validated condition. 

 
NOTE: It is the responsibility of the Crypto-Officer to configure the operating system to 
operate securely and ensure that only a single operator may operate the Module at any 
particular moment in time. 
 
The services provided by the Module to a User are effectively delivered through the use 
of appropriate API calls. In this respect, the same set of services is available to both the 
User and the Crypto-Officer. 
 
When a client process attempts to load an instance of the Module into memory, the 
Module runs an integrity test and a number of cryptographic functionality self-tests. If all 
the tests pass successfully, the Module makes a transition to “FIPS Operation” state, 
where the API calls can be used by the client to obtain desired cryptographic services. 
Otherwise, the Module returns to “Error” state and returns an error to the calling 
application. 



IBM® Crypto for C (ICC), Version 1.4.5 
FIPS 140-2 Non-Proprietary Security Policy, version  0.7 

October 04, 2006 
 

Non-Proprietary FIPS 140-2 Security Policy 
IBM Crypto for C (ICC) v1.4.5 

1
4 

������������    Operational Environment 
Along with the conditions stated above in paragraph 5.2.4 (“Operational Rules and 
Assumptions”), the criteria below must be followed in order to achieve, and maintain, a 
FIPS 140-2 mode of operation: 

5.3.1 Assumptions 
The following assumptions are made about the operating environment of the 
cryptographic module: 
 

1. The prevention of unauthorized reading, writing, or modification of the module's 
memory space (code and data) by an intruder (human or machine) is assured. 
2. The prevention of Replacement or modification of the legitimate cryptographic 
module code by an intruder (human or machine) is assured. 
3. The module is initialized to the FIPS 140-2 mode of operation    

5.3.2 Installation and Initialization 
The following steps must be performed to install and initialize the module for operating 
in a FIPS 140-2 compliant manner: 
 

1. The operating system must be configured to operate securely and to prevent 
remote login.  This is accomplished by disabling all services (within the 
Administrative tools) that provide remote access (e.g. – ftp, telnet, ssh, and server) 
and disallowing multiple operators to log in at once. 
2. The operating system must be configured to allow only a single user.  This is 
accomplished by disabling all user accounts except the administrator.  This can be 
done through the Computer Management window of the operating system. 
3. The module must be initialized to operate in FIPS 140-2 mode; this is done by 
calling ICC_SetValue with parameter FIPS_APPROVED_MODE and a value of 
"on"" (Reference ICC design document paragraph 5.3.3).  

������������    Cryptographic Key Management 

5.4.1 Implemented Algorithms 
The IBM Crypto for C (ICC) version 1.4.5 supports the algorithms (and modes, as 
applicable) listed above in table 2 in paragraph 5.2.2. 
 
When operating in FIPS approved mode no unapproved algorithms may be used. There 
is an allowance for key establishment and exchange to use any algorithm when 
operating in FIPS approved mode (under the phrase “commercially available methods 
may be used”).  The ICC will not limit the algorithms but in the ICC policy it will list the 
FIPS approved algorithms, the allowances/exceptions (e.g. SSL key exchange and 
establishment) and the algorithms that are not FIPS approved. 



IBM® Crypto for C (ICC), Version 1.4.5 
FIPS 140-2 Non-Proprietary Security Policy, version  0.7 

October 04, 2006 
 

Non-Proprietary FIPS 140-2 Security Policy 
IBM Crypto for C (ICC) v1.4.5 

1
5 

5.4.2 Supported Key Sizes for Asymmetric Algorithms  
                  
DSA                   512-3072 bits 
RSA 512-16384 bits (Note 1) 
Diffie-Hellman 
The DH key establishment methodology provides a minimum of 56 bits of encryption 
strength. The underlying OpenSSL implementation has no functional upper limit to the 
DH key size, and there is no upper bound on the encryption strength this algorithm 
provides.  
Note 1: The maximum modulus supported by RSA public encrypt, decrypt and RSA 
signature verification has been limited to 16384 bits to reduce the possibility of denial of 
service attacks via externally presented certificates and keys.   
 

5.4.3 Key Storage 
The module does not provide any long-term key storage and no keys are ever stored on 
the hard disk.  
 

5.4.4 Key Zeroization 
Key zeroization is performed via the following API calls: 

• ICC_EVP_MD_CTX_cleanup: clears all information from a digest context. It 
should be called after all operations using a digest are complete so sensitive 
information does not remain in memory. 
• ICC_EVP_CIPHER_CTX_cleanup: clears all information from a cipher context 
(symmetric keys). It should be called after all operations using a cipher are complete 
so sensitive information does not remain in memory. 
• ICC_RSA_free: frees the structure and its components. The key is erased before 
the memory is returned to the system.  Once this instance has been used with the 
PKEY functions, it has to be freed with the ICC_EVP_PKEY_free function. 
• The random number generator state is cleared automatically when the module is 
removed from memory. 
• ICC_BN_clear_free() 
• ICC_DH_free()  
• ICC_DSA_free()  
• ICC_HMAC_CTX_free()  
• ICC_BN_CTX_free() 

5.4.5 Random Number Generator 
The Random Number Generator (RNG) implemented by the module meet the 
requirements of FIPS PUB 186-2,  General Purpose PRNG in Appendix 3.1 . The RNG 
Seed has an incremental element/quality (time stamp). 
 



IBM® Crypto for C (ICC), Version 1.4.5 
FIPS 140-2 Non-Proprietary Security Policy, version  0.7 

October 04, 2006 
 

Non-Proprietary FIPS 140-2 Security Policy 
IBM Crypto for C (ICC) v1.4.5 

1
6 

5.5 Self-Tests 
The ICC implements a number of self-tests to check proper functioning of the module. 
This includes power-up self-tests (which are also callable on demand) and conditional 
self-tests. The self-test can be initiated by calling the function ICC_SelfTest, which 
returns the operational status of the module (after the self-tests are run) and an error 
code with description of the error (if applicable). 

5.5.1 Show Status 
A status function (ICC_GetStatus) when called will indicate the status of the ICC 
module. This may be called anytime after ICC_Init.  

• Get the ICC version 
• Inform of FIPS/non FIPS mode 
• Error state 

5.5.2 Startup Tests   
The module performs self-tests automatically when the API function ICC_Attach is 
called or on demand when the API function ICC_SelfTest is called.  
 
Whenever the startup tests are initiated the module performs the following; if any  of 
these tests fail, the module enters the error state. 
 

••••    Integrity Test  of Digital Signature: The ICC uses an Integrity test, which is a 
SHA-1 hash, signed with RSA encryption.  At build time a SHA-1 hash is calculated 
for the ICC dynamic and the libcrypt modules and is included with the static part of the 
ICC.  When the ICC is initialized at run time, the hash values will be given to the ICC 
dynamic component in order for it to check the two modules. 
••••    Cryptographic algorithm tests:   

At startup, a Known Answer Test (encryption & decryption) is performed for the 
following FIPS approved and non-approved algorithms: 

- DES - CBC 
- Triple DES - CBC 
- AES – CBC 
- RSA 

One way known answer tests are performed for the following FIPS approved 
algorithms: 

- SHA-1 
- SHA-1 HMAC 
- RSA signature 
- PRNG  

Sign-verify tests with known keys and data are performed on the following 
algorithms:  

- RSA 
- DSA 
 



IBM® Crypto for C (ICC), Version 1.4.5 
FIPS 140-2 Non-Proprietary Security Policy, version  0.7 

October 04, 2006 
 

Non-Proprietary FIPS 140-2 Security Policy 
IBM Crypto for C (ICC) v1.4.5 

1
7 

5.5.3 Conditional Tests 
• Pair wise consistency test for public and private k ey generation.  

- The consistency of the keys is tested by the calculation and verification of a 
digital signature.  If the digital signature cannot be verified, the test fails. 

• Continuous RNG tests – The module implements a continuous RNG test as 
follows: 

- If the call to the RNG produces blocks of n bits (where n > 15), the 
first n-bit block generated after power-up, initialization, or reset is 
saved for comparison with the next n-bit block to be generated.  Each 
subsequent generation of an n-bit block is compared with the 
previously generated block. The test fails if any two compared n-bit 
blocks are equal. 
- If each call to a RNG produces fewer than 16 bits, the first n bits 
generated after power-up, initialization, or reset (for some n > 15) is 
saved for comparison with the next n generated bits.  Each subsequent 
generation of n bits is compared with the previously generated n bits.  
The test fails if any two compared n-bit sequences are equal. 

5.5.4 Severe Errors 
When severe errors are detected (e.g. self-test failure or a conditional test failure) then 
all security related functions shall be disabled and no partial data is exposed through 
the data output interface. The only way to transition from the error state to an 
operational state is to reinitialize the cryptographic module (from an uninitialized state). 
The error state can be retrieved via the status interface (see paragraph 5.7.1 above). 
The following is the list of the API functions supported.  
 

• ICC_GetStatus 
• ICC_Init (CO) 
• ICC_SetValue (CO) 
• ICC_GetValue 
• ICC_Attach (CO) 
• ICC_Cleanup 
• ICC_SelfTest 
• ICC_GenerateRandomSeed 
• ICC_MemCheck_start 
• ICC_MemCheck_stop 
• ICC_OBJ_nid2sn 
 
• ICC_EVP_get_digestbyname 
• ICC_EVP_get_cipherbyname 
• ICC_EVP_MD_CTX_new 
• ICC_EVP_MD_CTX_free 
• ICC_EVP_MD_CTX_init 
• ICC_EVP_MD_CTX_cleanup 
• ICC_EVP_MD_CTX_copy 

• ICC_RAND_bytes 
• ICC_RAND_seed 
 
• ICC_EVP_PKEY_decrypt 
• ICC_EVP_PKEY_encrypt 
• ICC_EVP_PKEY_bits 
• ICC_EVP_PKEY_size 
• ICC_EVP_PKEY_new 
• ICC_EVP_PKEY_free 
 
• ICC_RSA_new 
• ICC_RSA_generate_key 
• ICC_RSA_check_key 
• ICC_EVP_PKEY_set1_RSA 
• ICC_EVP_PKEY_get1_RSA 
• ICC_RSA_free 

 
• ICC_RSA_private_encrypt 
• ICC_RSA_private_decrypt 



IBM® Crypto for C (ICC), Version 1.4.5 
FIPS 140-2 Non-Proprietary Security Policy, version  0.7 

October 04, 2006 
 

Non-Proprietary FIPS 140-2 Security Policy 
IBM Crypto for C (ICC) v1.4.5 

1
8 

• ICC_EVP_MD_type 
• ICC_EVP_MD_size 
• ICC_EVP_MD_block_size 
• ICC_EVP_MD_CTX_md 
• ICC_EVP_DigestInit 
• ICC_EVP_DigestUpdate 
• ICC_EVP_DigestFinal 
 
• ICC_EVP_CIPHER_CTX_new 
• ICC_EVP_CIPHER_CTX_free 
• ICC_EVP_CIPHER_CTX_init 
• ICC_EVP_CIPHER_CTX_cleanup 
• ICC_EVP_CIPHER_CTX_set_key_length 
• ICC_EVP_CIPHER_CTX_set_padding 
• ICC_EVP_CIPHER_block_size 
• ICC_EVP_CIPHER_key_length 
• ICC_EVP_CIPHER_iv_length 
• ICC_EVP_CIPHER_type 
• ICC_EVP_CIPHER_CTX_cipher 

 
• ICC_DES_random_key 
• ICC_DES_set_odd_parity 
 
• ICC_EVP_EncryptInit 
• ICC_EVP_EncryptUpdate 
• ICC_EVP_EncryptFinal 
• ICC_EVP_DecryptInit 
• ICC_EVP_DecryptUpdate 
• ICC_EVP_DecryptFinal 
 
• ICC_EVP_OpenInit 
• ICC_EVP_OpenUpdate 
• ICC_EVP_OpenFinal 
 
• ICC_EVP_SealInit  
• ICC_EVP_SealUpdate 
• ICC_EVP_SealFinal 
 
• ICC_EVP_SignInit 
• ICC_EVP_SignUpdate 
• ICC_EVP_SignFinal 
• ICC_EVP_VerifyInit 
• ICC_EVP_VerifyUpdate 
• ICC_EVP_VerifyFinal 
 

• ICC_RSA_public_encrypt 
• ICC_RSA_public_decrypt 
 
• ICC_i2d_RSAPrivateKey 
• ICC_i2d_RSAPublicKey 
• ICC_d2i_PrivateKey 
• ICC_d2i_PublicKey 
 
• ICC_EVP_PKEY_set1_DH 
• ICC_EVP_PKEY_get1_DH 
• ICC_DH_new 
• ICC_DH_generate_key 
• ICC_DH_check 
• ICC_DH_compute_key 
• ICC_DH_generate_parameters 
• ICC_i2d_Dhparams 
• ICC_d2i_Dhparams 
 
• ICC_EVP_PKEY_set1_DSA 
• ICC_EVP_PKEY_get1_DSA 
• ICC_DSA_dup_DH 
• ICC_DSA_sign 
• ICC_DSA_verify 
• ICC_DSA_new 
• ICC_DSA_generate_key 
• ICC_DSA_generate_parameters 
• ICC_i2d_DSAPrivateKey 
• ICC_d2i_DSAPrivateKet 
• ICC_i2d_DSAPublicKey 
• ICC_d2i_DSAPublicKey 
• ICC_i2d_DSAparams 
• ICC_d2i_DSAparams 
 
• ICC_ERR_get_error 
• ICC_ERR_peek_error 
• ICC_ERR_peek_last_error 
• ICC_ERR_error_string 
• ICC_ERR_error_string_n 
• ICC_ERR_lib_error_string 
• ICC_ERR_func_error_string 
• ICC_ERR_reason_error_string 
• ICC_ERR_clear_error 
• ICC_ERR_remove_state 
 
 



IBM® Crypto for C (ICC), Version 1.4.5 
FIPS 140-2 Non-Proprietary Security Policy, version  0.7 

October 04, 2006 
 

Non-Proprietary FIPS 140-2 Security Policy 
IBM Crypto for C (ICC) v1.4.5 

1
9 

• ICC_EVP_ENCODE_CTX_new 
• ICC_EVP_ENCODE_CTX_free 
• ICC_EVP_EncodeInit 
• ICC_EVP_EncodeUpdate 
• ICC_EVP_EncodeFinal 
• ICC_EVP_DecodeInit 
• ICC_EVP_DecodeUpdate 
• ICC_EVP_DecodeFinal 

 
 

The functions marked with (CO) are crypto officer functions  

5.6 Design Assurance 
The ICC module design team utilizes IBM’s Configuration Management Version Control 
(CMVC) system.  

CMVC integrates four facets of the software development process in a distributed 
development environment to facilitate project-wide coordination of development 
activities across all phases of the product development life cycle:  

1. Configuration Management – the process of identifying, managing and controlling 
software modules as they change over time.  
2. Version Control – the storage of multiple versions of a single file along with 
information about each version.  
3. Change Control – centralizes the storage of files and controls changes to files 
through the process of checking files in and out.  
4. Problem Tracking – the process of effectively tracking all reported defects and 
proposed design changes through to their resolution and implementation. 
 

Files are stored in a file system on the server by means of a version control system. All 
other development data is stored in a relational database on the CMVC server. A CMVC 
client is a workstation that runs the CMVC client software (or browser for the web 
interface) to access the information and files stored on a CMVC server.  
CMVC is used o perform the following tasks: 

1. Organizing Development Data  
2. Configuring CMVC Processes  
3. Reporting Problems and Design Changes  
4. Tracking Features and Defects  

 
All source code is tracked using CMVC; documents are available in Lotus Notes 
database “Team Rooms” with version numbers assigned by document owner. 
 
CMVC monitors changes with defects, features, and integrated problem tracking. Each 
of these restricts file changes so that they are made in a systematic manner. CMVC can 



IBM® Crypto for C (ICC), Version 1.4.5 
FIPS 140-2 Non-Proprietary Security Policy, version  0.7 

October 04, 2006 
 

Non-Proprietary FIPS 140-2 Security Policy 
IBM Crypto for C (ICC) v1.4.5 

2
0 

require users to analyze the time and resources required to make changes, verify 
changes, and select files to be changed, approve work to be done, and test the 
changes. The requirements for changes are controlled by processes. Family 
administrators can create processes for components and releases to use, configuring 
them from CMVC sub processes. 
 
Finally, the CMVC administrator policy mandates a regular audit of access check of all 
user accounts.     

5.7 Mitigation Of Other Attacks 
The cryptographic module is not designed to mitigate any specific attacks. 

6. API Functions 
The module API functions are fully described in the IBM Crypto for C (ICC) Design 
Document. 


