

Data Formats

APRIL 2005

OFFICE OF RESPONSE AND RESTORATION HAZARDOUS MATERIALS RESPONSE DIVISION

Table of Contents

Introduction	1
Maps:	
BNA Format	3
Currents:	
ASCII Formats Finite Element - Velocities on Triangles, Steady State [CATS] Finite Element - Velocities on Nodes [ptCur] Rectangular Grid - Steady State [GridCur]2 Rectangular Grid - Time Dependent [GridCurTime]2 Data in a Single File2 Data in Multiple Files	5 8 1 3 3 4
NetCDF Formats NetCDF Rectangular	:6 :8 :0
Scaling Current Patterns Time Series File Formats	234468
Wind:	
Single Point, Time Series [OSSM]	0 1 2
GNOME Output File Formats	
MOSS Files for GIS Systems4	.4
GNOME and GNOME Analyst	F
	С

Introduction

In this document, we describe a number of files that can be used or generated by GNOME, the General NOAA Oil Modeling Environment. GNOME uses the following files:

Maps: GNOME uses maps to determine the shoreline where the oil beaches. Any area of the model domain not defined as "land" is viewed as "water" by GNOME.

Currents: Currents move the oil around, and are defined on a particular grid. GNOME recognizes finite element, rectangular, and curvilinear grid circulation models in both ASCII and netCDF file formats. Finite element models may have either the velocities on the triangles or on the nodes. Both steady state U(x,y)and time-dependent U(x,y,t) circulation models are supported. A steady state U(x,y) model "current pattern" may be adjusted ("scaled") and given time dependence through a time series T(t) (see the section, **Scaling Current Patterns**). If there is a gap between the circulation grid and the map, GNOME will assume the gap is water, and other movers, such as wind and diffusion, will be able to move the oil around.

Winds: Winds may be entered as a constant time series T(t) or as a regular grid time-dependent model Wind(x,y,t). Both netCDF and ASCII formats are supported for wind model data.

Model	Grid	GNOME Format
CATS	Triangle, velocities on triangles	CATS
POM	Curvilinear	netCDF
POM	Regular grid	GridCur; GridCurTime; netCDF
ADCIRC	Triangle, velocities on nodes	PtCur; netCDF
RMA2	Polygons – break down into triangles	PtCur
SWAFS	Regular grid	GridCur; GridCurTime; netCDF
ARPS	Regular grid	GridCur; GridCurTime; netCDF
HirLAM	Regular grid	GridCur; GridCurTime; netCDF
HF Radar	Rotated regular grid – use curvilinear	netCDF

Below is a table of circulation and wind models that we have converted into GNOME format, and our recommended format.

GNOME also outputs files. Maps, as well as standard MOSS Files for GIS systems, can be exported from GNOME.

The output from both GNOME and GNOME Analyst (a companion program to GNOME that displays oil concentration contours) may be customized by adding your own logo. Instructions for adding your logo are provided in the last section.

GNOME Input File Formats

MAPS

Currently, GNOME uses only the map file format known as "bna".

BNA Format

BNA format consists of a list of lines and polygons that are to be drawn on the screen. Each feature is preceded by a description line, such as the line shown below, from the example file *simple.bna*.

"2","1",18

The first number in quotes represents an identifier for the feature, and is usually unique.

The second number in quotes identifies the type of feature: "1" is a land feature; "2" is a water feature, or a polygon within another larger polygon.

The third number is the number of points in the feature, in order for drawing. A positive number indicates a polygon. Points are defined in a clockwise direction as you trace the land boundary (as though you are walking on an imaginary beach with your left foot on land and your right foot in the water). A negative number defines a line where the start and end points don't connect.

File Name: simple.bna

"2","1",18 -82.521416.27.278500 -82.552109,27.353674 -82.564636,27.383394 -82.600746,27.500633 -82.576721,27.581442 -82.541473,27.665442 -82.478104,27.725504 -82.443367,27.755222 -82.250000,27.730673 -82.250000,27.685675 -82.250000,27.640678 -82.250000.27.595680 -82.250000,27.505688 -82.250000,27.460690 -82.250000,27.415693 -82.250000,27.370695 -82.351616.27.278500 -82.453232,27.278500 "2"."1".10 -82.250000,27.865969 -82.333580,27.864744 -82.383003,27.879385 -82.479012.27.888107 -82.543144,27.952902 -82.456032,28.066999 -82.405220,28.066999 -82.354408,28.066999 -82.250000,27.977007 -82.250000,27.898989

Two special types of polygons are defined for GNOME maps: (1) a map boundary for nonrectangular maps and (2) a spillable area. These special polygons are most commonly used in Location Files to help users avoid setting spills in areas where the Location File has not been set up or well calibrated.

Map Bounds

The map bounds define a polygon with a format similar to that shown above. This polygon should be the first polygon in the map file.

"Map Bounds","1",7 -121.319176,35.199476 -121.319176,34.197944 -121.218496,34.0 -119.378944,34.0 -119.221448,34.152428 -119.221448,35.199476 -121.319176,35.199476

Spillable Area

The spillable area defines a polygon so that the user may not start spills outside the polygon, or over land areas within the polygon. Again, the format is similar to other polygons in the bna format. This polygon should be the last one defined in the map file.

"SpillableArea", "1", 15 -121.319176,35.199476 -121.319176,34.197944 -121.218496,34.0 -120.633640,34.0 -120.445584,34.088112 -120.381776,34.085196 -120.204512,34.026884 -120.066248,34.053124 -119.931528,34.061872 -119.729456,34.015220 -119.534464,34.047292 -119.378944.34.0-119.221448,34.152428 -119.221448,35.199476 -121.319176,35.199476

CURRENTS

GNOME supports steady-state circulation models that produce "current patterns," as well as time-dependent circulation models. GNOME uses both ASCII and netCDF files formats, though not all grid types are supported in both formats. Following are the types of circulation models that GNOME supports:

Finite Element – Velocities on Triangles, Steady State [CATS]

Finite Element – Velocities on Nodes, Steady State or Time Dependent [ptCur and netCDF]

Rectangular Grid – Steady State [GridCur and netCDF]

Rectangular Grid – Time Dependent [GridCurTime and netCDF]. In this circulation model, the data can be contained in a single file or broken into smaller files.

Curvilinear Grid - Time Dependent [netCDF only]

Current patterns can be adjusted, or "scaled," and time dependence can be added, connecting the patterns to a time series. Time series used for scaling currents can be of the following types:

- tidal currents
- tidal height (GNOME takes first derivative)
- wind and hydrological flow volume

Tidal current and tidal height time series can also be represented by the tidal harmonic series. In this case, GNOME calculates the necessary tidal information from the harmonic constants for the start time of the model run. For long simulations or Location Files, this results in using a smaller file size than the full time series.

ASCII Formats

Currents: Finite Element – Velocities on Triangles, Steady State [CATS]

For more information about file formats from the NOAA CATS (Current Analysis for Trajectory Simulation) hydrodynamic model, see the specific documentation for the application.

Note: Beginning with GNOME 1.2.2, we added the capability to generate a DAGTree within GNOME, so that a portion of the current file (the final section of the file, marked DAGTree) is now optional.

DAG 1.0 Vertices 8 -124.01 -124.04 -124.01 -123.99 -123.96 -123.92 -123.95 -123.99 Topolog	0 8 8 8048 4816 7968 2400 4264 9744 6592 1760 1V	46.6945 46.6684 46.6509 46.6647 46.6462 46.6737 46.6960 46.6838 6	592 188 184 172 112 188 168 168	1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000	0 0 0 0 0 0 0 0		
0	1	7	5	-1	-1	0 502367	-0 298270
1	2	3	-1	5	-1	0.000000	-0.000000
3	4	5	-1	4	-1	0.000000	-0.000000
5	6	7	-1	4	-1	0.588724	0.297317
7	3	5	2	3	5	0.978753	0.205045
7	1	3	1	4	0	0.971727	-0.100222
DAGTre	e	13					
32	1	7					
31	2	5					
30	-8	3					
2	4	-8					
0	-8	-8					
7	6	-8					
6	-8	-8					
26	8	11					
25	-8	9					
12	10	-8					
13	-8	-8					
18	12	-8					
19	-8	-8					

File Name: TinyWillapa SAC.CUR

Annotated Version of the File

DAG 1	.0								
Vertice	s 8	Number	of Vertice	es					
8	8	Number	of Vertice	es, Repe	ated				
Long	itude	Latitude		Depth					
-124.01	8048	46.6945	92	1.00000	0				
-124.04	4816	46.6684	88	1.00000	0				
-124.01	7968	46.6509	84	1.00000	0				
-123.99	92400	46.6647	72	1.00000	0				
-123.96	64264	46.6462	12	1.00000	0				
-123.92	29744	46.6737	88	1.00000	0				
-123.95	56592	46.6960	68	1.00000	0				
-123.99	91760	46.6838	68	1.00000	0				
Topolo	gy	6	Number	of Triang	les				
Po	ints in Tri		Adjacen	t Tri to Se	eg	Vel	ocity (u	,v)	Tri #
0	1	7	5	-1	-1	0.502367		-0.298270	0
1	2	3	-1	5	-1	0.000000		-0.000000	1
3	4	5	-1	4	-1	0.000000		-0.000000	2
5	6	7	-1	4	-1	0.588724		0.297317	3
7	3	5	2	3	5	0.978753		0.205045	4
7	1	3	1	4	0	0.971727		-0.100222	5
DAGTr	ee	13	Number	of Eleme	ents in DA	GTree			
Seg#	Bran	ch Left	Bran	ch Right		DAGTree	Branch	es	
32		1		7		0			
31		2		5		1			
30		-8		3		2			

2	4	-8	3
0	-8	-8	4
7	6	-8	5
6	-8	-8	6
26	8	11	7
25	-8	9	8
12	10	-8	9
13	-8	-8	10
18	12	-8	11
19	-8	-8	12

Currents: Finite Element – Velocities on Nodes [ptCur]

Most finite element circulation models calculate velocities on the triangular grid nodes. The ptCur format can be used to make a single time-step "current pattern" or include the full model run time series. The format can be divided into several portions: header block, point definition block, topology, and time-specific data blocks. The header block provides basic information about the file, and much of the information is optional. The point definition block includes all the points, organized with the boundary points first. The topology block defines the triangular topology and segment list, and the DAGtree defines how to search through the triangles quickly. (These blocks are <u>optional</u>, as GNOME can calculate all this information, although loading the file will take longer without it.) The time-specific data blocks make up the velocity data.

Note: There are two different forms of the ptCur data format. The first has velocity values at all of the points, including the boundaries. In some cases, the original circulation model does not specifically define the boundary points, and defining these points may be too time-consuming for the user. In that case, fake boundary points may be defined that have zero velocity at these nodes. A keyword in the VERTICES line notifies GNOME that the first *NumLandPts* have zero velocities, and these points do not show up in the velocity data (i.e., the velocity data start with point *NumLandPts*+1).

The Header Block

The header block is made up of lines that are initiated with a reserve word, which is enclosed in square brackets and is all caps, followed by a tab and the corresponding value. Each of these lines provides some global information about the file, and all but the first two are optional. The other lines have default values that GNOME provides. Except for the first line, the order of header lines is not important; however, if the keyword is in the file, a value must follow it, even if it matches the default value. The following list is supported:

[FILETYPE]	"PTCUR"	text	required
[NAME]	"user name for file"	text	optional
[CURSCALE]	multiplicative_scale	float	optional
[UNCERTALONG]	along_axis	float	optional
[UNCERTCROSS]	cross_axis	float	optional
[UNCERTMIN]	min_current_resolution	float	optional
[GRIDTYPE]	vertical model used, bottom bc	text	optional
[MAXNUMDEPTHS]	max depth values	int	optional
[USERDATA]	"non GNOME user info"	text	optional

[FILETYPE] is an identifier for GNOME that identifies the following data as a PTCUR file. This is a mandatory first line for all PTCUR files.

[NAME] is used to identify the type of file for GNOME and allows the user to supply a name for the resulting current mover that will appear in the GNOME Summary List, in the left section of the window.

[CURSCALE] is used to set a global multiplicative scale for all of the current data in the file. In general, GNOME assumes that all of the current data it receives is

in units of m/sec, but the PTCUR mover will allow for a change of units through this global scaling term. If this term is not provided in the file, a value of 1.0 will be assumed. In GNOME's Diagnostic Mode, the associated dialog box allows the user to set or override this value.

[UNCERTALONG] and [UNCERTCROSS] are terms whereby the user can specify a pair of coefficients that GNOME will use to set the uncertainty associated with the PTCUR mover. The first coefficient will set the bound on the MonteCarlo uncertainty components added/subtracted to the along-axis component of the current vector, and the second coefficient will be used to MonteCarlo the cross-axis uncertainty of the current vectors. If this term is not provided in the file, values of 0.5 and 0.25 will be assumed. In GNOME's Diagnostic Mode, the associated dialog box allows the user to override these values.

[UNCERTMIN] is currently not implemented, and a value of 0.0 is assumed. When implemented, the Uncertainty Minimum is intended to be used to set a minimum speed resolution that is expected from the model, and is used to MonteCarlo an uncertainty for cases where the predicted currents are very small. If this term is not provided in the file, a value of 0.05 will be assumed. In GNOME's Diagnostic Mode, the associated dialog box allows the user to override these values.

[GRIDTYPE] is an identifier of how the vertical depth data were modeled. If there are no depth data, the keyword "2D" is used. If there is information about the depth of the area being modeled, but the currents are the same at every depth, the keyword "BAROTROPIC" is used (see Figure 1a, below). If the depth is modeled using a sigma coordinate model, the keyword "SIGMA" is used (see Figure 1b). If the depth is modeled using a layered system, the keyword "MULTILAYER" is used (see Figure 1c). These last two options also require a boundary keyword, either "NOSLIP" or "FREESLIP", where "NOSLIP" also requires a distance in meters to define the boundary layer. This distance is constant throughout the domain. The default is "2D", in which case any depth information will be ignored.

Figure 1a Barotropic model – single velocity top to bottom

Figure 1b Sigma model – uniform number of layers, thickness scales to total depth

[MAXNUMDEPTHS] gives the maximum number of depth points where horizontal currents are available. In some cases, points within the model may have fewer defined depth points than this number. The sigma model, however, must have data for MAXNUMDEPTHS in the water column at every horizontal point. The layered model has data at a maximum of MAXNUMDEPTHS in the water column for any horizontal point. The default is 1, which corresponds to surface data only and is the case for both the 2D and barotropic gridtypes. (Though the latter has depth, it only has one unique current value per horizontal point.)

The Point Definition Block

The point definition block describes the area covered by the model, including all of the horizontal points where data are available and at which depths the information is specified. This part of the model description also completely defines the topological characteristics of the model domain by giving the boundary segments that divide the region into "inside" and "outside" portions.

The first line in the POINT DEFINITION BLOCK is made up of the keyword "Vertices", followed by the total number of horizontal points and the number of land points, separated by white space.

[USERDATA] is a reserved word that can be used (repeatedly, if necessary) by the developer of the PTCUR data to record any type of text documentation or metadata that they want to keep associated with the file. This is optional and can be thought of as a comment area in the file format.

Vertices NPTs NumLandPts

The fields are defined as follows:

NPTs - Gives the total number of horizontal data points (boundary and inside vertices).

NumLandPts - If data are available at all the horizontal points, this is zero. If there is a separate outer boundary from a land map where current data are not available (assumed to be zero there), the number of these boundary points is given.

The next NPTs lines of the POINT DEFINITION BLOCK define the individual horizontal points where data are available. Each line describes a single data point with the following fields, separated by white space.

Pt# Longitude Latitude depth d1 d2 ... dNdepths

Each of the fields is defined as follows:

Pt# - A sequence number, or line number, assigned to each point 1...NPts.

Longitude - The latitude of the point, given in decimal degrees ranging from -180 to 180. The Western hemisphere is by convention negative latitude.

Latitude - The longitude of the point, given in decimal degrees ranging from -90 to 90. The Northern hemisphere is by convention positive longitude.

depth - The depth in meters of the modeled ocean at the point. If the gridtype is 2D, this field and the rest of the line will not be read.

d1 d2 ... dNdepths - Each of the d1 through dNdepths values will be interpreted as a depth within the water column where current information will be defined. If the gridtype is barotropic, these points will not be read and the currents that are given will be assumed to represent the entire water column. For any point where data are available at fewer than the maximum number of depths, the user should enter, in order, all the valid depths and end the line with -1 to mark the end of data.

The lines that represent data points have two restrictions on the order in which they are entered into the file:

1. All boundary segments must be at the beginning of the file.

2. All boundary segments must have their points entered sequentially in "counter-clockwise" order. Counter-clockwise (cc) order is defined as follows: If an observer were to travel along the boundary of the model in a direction such that his/her left hand always pointed to the inside of the model, then they would encounter the boundary points in cc order. To build a PTCUR file, the user would first enter all of the points in cc order around the outer boundary of the model and follow those by the points in cc order around all the islands (in this case, only one). After the boundary segments are entered in the point list, all other points (the interior ones) can be entered in any order that is convenient.

After a line is entered for each of the model's horizontal data points, the next line contains a single integer value:

Number_of_Boundary_Segments

This is the total number of boundary segments that are needed to define the inside/outside of the model. The first boundary listed is the main outer edge of the model, then each of the islands represented by the model is added. For example, a domain with no islands will have a value of "1", while a domain with two islands will have a value of "3".

Following the line that tells GNOME how many boundary segments there are in the model domain will be one line for each of the boundary segments, with the number of the last boundary point on the corresponding segment.

```
Last_point_in_segment1
Last_point_in_segment2
```

You may want to define the land/water map from the vertices of your domain. This may be preferable using a high resolution shoreline if your model and the shoreline have significant mismatch. In order to define the map, you need to specify if any of the segments are open water.

```
WaterBoundaries 2 5
3
4
```

The numbers in the header line are the number of water boundaries and the total number of boundaries. The listed points are the indices of the end points of the water boundary segments.

The Topology Block - Optional

From the POINT DEFINITION BLOCK, GNOME will be able to completely reconstruct the topology and geometry of the model domain and develop an interpolation procedure to estimate data between the specified data points. GNOME will also be able to calculate when a pollutant particle has encountered a boundary of the model domain.

Alternatively, the CATS program can be used to determine the topology. The POINT DEFINITION BLOCK is in similar form to a verdat file and can easily be transformed to one. To do this, create a separate file with a header line DOGS, then all the points, comma delimited, followed by a line of zeros, and finally the boundary information. Any depth information should be removed and a single z value included for each point (>=1.0). The order of the points in the PTCUR file must be the same as those in the verdat file used in CATS. You can then create a fake current pattern, and export the .cur file. Select the Topology and DagTree blocks from a CATS .CUR file and paste them into your PTCUR file. (The DagTree is optional. If GNOME doesn't find a DagTree, it will create it from the topology.) Then GNOME won't have to perform triangularization, which saves time if the same topology will be used repeatedly with different data sets. GNOME will ignore the velocity information given at the end of each topology line from the CATS .CUR file. For more information on using CATS to transform a POINT DEFINITION BLOCK to a verdat file, see the CATS-specific documentation.

The Time-Specific Data Blocks

The Time-Specific Data Block contains the actual current velocity data for a fixed current pattern. If the input data represent a time-stepping pattern, then the block will be repeated as many times as necessary to step through the input information.

The first line in the TIME SPECIFIC DATA BLOCK is the keyword [TIME], followed by the time at which the block of current data was taken.

[TIME] StartDay StartMo StartYr StartHr StartMin

The last five fields on this line define the time when the data in the following data block were taken. If these fields have the default value -1 in them, it will indicate that the model data represent a steady state and that only one TIME SPECIFIC DATA BLOCK will be present.

The next NPTs lines of data in the POINT DEFINITION BLOCK give the current data for each of the points described in the POINT DEFINITION BLOCK. The line of data contains:

Pt# Ud1 Vd1 Ud2 Vd2 ... UdNdepths VdNdepths

The number of U V pairs that are given on each line will need to correspond to the data given in the POINT DEFINITION BLOCK. For example, if four different depth data points are specified for a particular point, then four U V pairs will be expected. This means that different lines of data may be of different lengths, but they will all end with a return sequence, and the actual number of fields for a particular point will be given by the line defining that point in the POINT DEFINITION BLOCK.

If the TIME SPECIFIC DATA BLOCK does not start with a constant time flag, then it may be followed by another TIME SPECIFIC DATA BLOCK, which is in

the same format, but will have a different time. Each succeeding time block must have a time value that is larger than the one from the previous block. The offsets can vary in size, though.

For very large data sets, where having all the currents in one file would be unwieldy (for example, small time steps or extended time runs, as in TAP), there is an alternative format. The [TIME] blocks can be put in separate files, with any number of blocks in each file. In place of these blocks in the header file, the full file path names (or partial paths, relative to the GNOME folder), and the start time and end time contained in each file should be listed. The keywords for this are [FILE], [STARTTIME], and [ENDTIME]. If there is a single time in a file, the start time and end time are the same. A constant current can also be done this way; start time and end time are both a series of -1s.

Three annotated example files follow, each starting at the top of a page for easier reading. At this time, only 2D time-dependent (x,y,t) data are shown in the examples.

Filename: skipptcur.cur

[FILETYPE] PTCUR [NAME] skip_ps_ptcur2D [CURSCALE] 2.0 .3052 [UNCERTALONG] [UNCERTCROSS] .127 [UNCERTMIN] .01 [MAXNUMDEPTHS] 1 [GRIDTYPE] 2D [USERDATA] hi fred [USERDATA]how are you ? VERTICES 5056 3150 1 -122.548000 47.588500 1.000 2 -122.547000 47.585500 1.000 3 -122.548000 47.581300 1.000 4 -122.547000 47.578700 1.000 5 -122.543000 47.578200 1.000 6 -122.544000 47.576000 1.000 7 -122.546000 47.574000 1.000 8 -122.549000 47.572400 1.000 9 -122.550000 47.570600 1.000 10 -122.545000 47.568500 1.000 . . . 5054 -122.447000 47.582600 1.000 5055 -122.437000 47.583300 1.000 5056 -122.427000 47.583600 1.000 Topology 6986 5045 5046 4162 2613 2612 -2.536220 3.269671 4 2 0.724430 3 4 -1 2 -1 0.662334 4 1 2 -1 1 2612 1.187206 0.244548 5 10 5045 8 2613 7 -0.668295 1.037525 6 7 9 10 -1 6 -0.174680 -0.246778 7 8 9 6 -0.130291 -0.090753 -1 -1 4958 4942 4959 6981 6975 6960 -0.899112 5.741174 6985 0.580789 4442 4441 4419 6922 6966 0.818613 4420 4421 4442 6969 6966 6967 0.626956 0.418461 4442 4461 4441 6980 6983 6970 0.641757 0.720018 15270 DAGTree 34236 7758 1 10448 2 3922 32803 3 1906 23762 4 1005 13772 5 492 34118 6 260 . . . 2448 -8 -8 2455 15268 15269 2454 -8 -8 -8 2466 -8 [TIME] 14 2 00 10 00 Day Month Year Hour Minute 0.737729 0.889853 2.14009 1.90379 2.84519 2.40390 2.84138 2.89028 2.33662 3.00912 0.0381742 1.07280 1.23144 2.63017 1.02648 2.13573

-1.961549.09004 1.30358 -7.58093 0.697695 -6.05114 [TIME] 14 2 00 11 00 0.605738 0.502185 1.38961 1.23618 0.982804 0.830371 -0.529060 -0.538164 -1.72646-2.22335 0.403527 -0.554565 -1.38999-2.69251

Day Month Year Hour Minute

... 2.66105 -11.2783 -0.714619 3.31164 2.13874 -12.4378 -0.351095 3.04506

Velocity information ends the file

Filename: ptCurMap.cur

[FILETYPE] PTCUR								
[NAME]	PtCur : I	Vegative	currents					
[CURSCALE] 2.0								
[UNCERTALONG] .3052								
[UNCERTCROSS] .127								
[UNCER	TMIN]	.01						
[MAXNU	IMDEPTI	HS]	1					
GRIDT	(PE] 2D) -						
JUSERD	ATA	commer	nts here					
IUSERD	ATA							
Vertices	9	0						
1	-124.360	0000	48.5747	44	1.00000	0		
2	-124.959	9368	48.5638	96	1.00000	0		
3	-125.104	4952	48.1828	96	1.00000	0		
4	-124 534	4720	48 2101	48	1 00000	0		
5	-124.360	0000	48 2889	96	1 00000	0		
6	-124 702	2840	48 4527	32	97 0000	00		
7	-124.702	2320	48 3833	72	60 0000	00		
8	-124.000	2872	18 2006	56	102 000	000		
q	-124.700	5448	48 4001	00	75 0000	000		
Boundar		nte	1	00	10.0000	00		
5	yoeymei	115	I					
WatorB	oundaria	. 2	5	(optional		to gonorate land w	(ator map)	
vvaler Du	Junuarie	5 Z	5	(optiona	Section	to generate land w	ater map)	
3								
	11	2 00 10	00					
[TIIVI⊏]	14	2 00 10	00	~	4	0.044007	0.001107	
-1	1	5	0	5	-1	0.041327	0.001107	
-1	1	6	/	6	-1	0.079485	-0.004495	
-1	1	1	8	1	-1	0.036132	0.002556	
-1	1	8	4	8	-1	0.053070	0.035451	
-1	1	8	5	3	-1	0.086580	0.005730	
-1	1	8	9	4	0	0.045369	0.012076	
-1	1	6	1	10	0	0.031629	-0.002985	
-1	1	7	2	10	1	0.039163	0.009258	
-1	1	8	3	9	2	0.023545	-0.000079	
[TIME]	14 2 00	11 00						
5	.5	5	6	5	-1	0.041327	0.001107	
5	.5	6	7	6	-1	0.079485	-0.004495	
5	.5	7	8	7	-1	0.036132	0.002556	
5	.5	8	4	8	-1	0.053070	0.035451	
5	.5	8	5	3	-1	0.086580	0.005730	
5	.5	8	9	4	0	0.045369	0.012076	
5	.5	6	1	10	0	0.031629	-0.002985	
5	.5	7	2	10	1	0.039163	0.009258	
5	.5	8	3	9	2	0.023545	-0.000079	
[TIME]	14 2 00	12 00						
1	.1	5	6	5	-1	0.041327	0.001107	
1	.1	6	7	6	-1	0.079485	-0.004495	
1	.1	7	8	7	-1	0.036132	0.002556	
1	.1	8	4	8	-1	0.053070	0.035451	
1	.1	8	5	3	-1	0.086580	0.005730	
1	.1	8	9	4	0	0.045369	0.012076	
1	.1	6	1	10	0	0.031629	-0.002985	
1	.1	7	2	10	1	0.039163	0.009258	
1	.1	8	3	9	2	0.023545	-0.000079	
ITIME1	14 2 00	13 00	•	-				
-1	1	5	6	5	-1	0.041327	0.001107	
-1	1	6	7	6	-1	0.079485	-0.004495	
-1	1	7	8	7	-1	0.036132	0.002556	
-1	1	8	4	8	-1	0.053070	0.035451	
-1	1	8	5	3	-1	0.086580	0.005730	
-1	1	8	ğ	4	0	0.045369	0.012076	
-1	1	6	1	10	Õ	0.031629	-0.002985	
		-		-	-			

-1	1	7	2	10	1	0.039163	0.009258
	1	8	3	9	2	0.023545	-0.000079
	14 2 0	0 14 00	6	F	4	0.044007	0 001107
-5	5	5	0	5	-1	0.041327	0.001107
-5	5	0	1	0	-1	0.079485	-0.004495
-5	5	1	8	/	-1	0.036132	0.002556
-5	5	8	4	8	-1	0.053070	0.035451
-5	5	8	5	3	-1	0.086580	0.005730
-5	5	8	9	4	0	0.045369	0.012076
-5	5	6	1	10	0	0.031629	-0.002985
-5	5	7	2	10	1	0.039163	0.009258
-5	5	8	3	9	2	0.023545	-0.000079
[TIME]	14 2 0	0 15 00					
0	1	5	6	5	-1	0.041327	0.001107
0	1	6	7	6	-1	0.079485	-0.004495
0	1	7	8	7	-1	0.036132	0.002556
0	1	8	4	8	-1	0.053070	0.035451
0	1	8	5	3	-1	0.086580	0.005730
0	1	8	9	4	0	0.045369	0.012076
0	1	6	1	10	0	0.031629	-0.002985
0	1	7	2	10	1	0.039163	0.009258
0	1	8	3	9	2	0.023545	-0.000079
ITIME1	14 2 0	0 16 00					
1	.1	5	6	5	-1	0.041327	0.001107
1	.1	6	7	6	-1	0.079485	-0.004495
1	.1	7	8	7	-1	0.036132	0.002556
1	.1	8	4	8	-1	0.053070	0.035451
1	.1	8	5	3	-1	0.086580	0.005730
- 1	1	8	9	4	0	0.045369	0.012076
- 1	1	6	1	10	õ	0.031629	-0.002985
- 1	1	7	2	10	1	0.001020	0.002000
. 1	1	8	2	a	2	0.000100	-0.000200
	1/ 2 0		5	3	2	0.020040	-0.000073
_100	1420	5	6	5	_1	0 0/1327	0 001107
1	100	6	7	5	-1	0.041327	0.001107
-1	1	7	0	7	-1	0.079400	-0.004495
-1	1	0	0	0	-1	0.050152	0.002000
-1	1	0	4	0	-1	0.053070	0.035451
-1	1	8	5	3	-1	0.086580	0.005730
-1	1	8	9	4	0	0.045369	0.012076
-1	1	6	1	10	U	0.031629	-0.002985
-1	1	8	3	9	2	0.023545	-0.000079
-5	6	7	7	9	6	0.027216	0.003247

Filename: ptCurNoMap.cur

[FILETY [NAME] [CURSC [UNCER [UNCER [UNCER [MAXNU [GRIDT ^V [USERD Vertices	PE] PtC CALE] RTALONG RTCROSS RTMIN] JMDEPTI YPE] 2D PATA] 9	PTCUR 2.0 2.0 3] .3052 5] .127 .01 HS] commer 0	ative curre 1 nts here	ents			
1	-124.360	0000	48.5747	44	1.00000	00	
2	-124.95	4952	48.1828	90 96	1.00000	0	
4	-124.534	4720	48.2101	48	1.00000	0	
5	-124.360	0000	48.2889	96	1.00000	0	
6 7	-124.702	2840 3320	48.4527	32 72	97.0000	000	
8	-124.739	9872	48.2996	56	102.000	0000	
9	-124.54	5448	48.4001	08	75.0000	000	
Boundar	rySegmei	nts	1	(Noto th	at the Mr	ator Roundarios co	otion is missing)
5 [TIME]	14	2 00 10	00	(NOLE LI		ater Doundaries se	cuon is missing)
-1	1	5	6	5	-1	0.041327	0.001107
-1	1	6	7	6	-1	0.079485	-0.004495
-1 _1	1 1	/ 8	8	/ 8	-1 -1	0.036132	0.002556
-1	1	8	5	3	-1	0.086580	0.005730
-1	1	8	9	4	0	0.045369	0.012076
-1	1	6	1	10	0	0.031629	-0.002985
-1 _1	1 1	/ 8	2	10 9	1	0.039163	0.009258
[TIME]	14 2 00	11 00	5	5	2	0.023343	-0.000079
5	.5	5	6	5	-1	0.041327	0.001107
5	.5	6	7	6	-1	0.079485	-0.004495
5 5	.5 5	/ 0	8	/ 0	-1	0.036132	0.002556
5	.5	8	4 5	3	-1 -1	0.086580	0.005730
5	.5	8	9	4	0	0.045369	0.012076
5	.5	6	1	10	0	0.031629	-0.002985
5	.5 5	7	2	10	1	0.039163	0.009258
5 [TIME]	.5	。 12 00	3	9	2	0.023343	-0.000079
1	.1	5	6	5	-1	0.041327	0.001107
1	.1	6	7	6	-1	0.079485	-0.004495
1	.1	7	8	7	-1	0.036132	0.002556
1 1	.1	o 8	4 5	° 3	-1 -1	0.086580	0.005730
1	.1	8	9	4	0	0.045369	0.012076
1	.1	6	1	10	0	0.031629	-0.002985
1	.1	7	2	10	1	0.039163	0.009258
TIME1	14 2 00	13 00	3	9	2	0.023343	-0.000079
-1	1	5	6	5	-1	0.041327	0.001107
-1	1	6	7	6	-1	0.079485	-0.004495
-1	1	7	8	7	-1	0.036132	0.002556
-1 -1	1	8	4 5	3	-1 -1	0.086580	0.005730
-1	1	8	9	4	0	0.045369	0.012076
-1	1	6	1	10	0	0.031629	-0.002985
-1 -1	1 1	/ 8	2	1U 9	1 2	0.039163	0.009258
[TIME]	14 2 00	14 00	0	5	4	0.020070	5.000013

-5	5	5	6	5	-1	0.041327	0.001107
-5	5	6	7	6	-1	0.079485	-0.004495
-5	5	7	8	7	-1	0.036132	0.002556
-5	5	8	4	8	-1	0.053070	0.035451
-5	5	8	5	3	-1	0.086580	0.005730
-5	5	8	9	4	0	0.045369	0.012076
-5	5	6	1	10	0	0.031629	-0.002985
-5	5	7	2	10	1	0.039163	0.009258
-5	5	8	3	9	2	0.023545	-0.000079
[TIME]	14 2 00	15 00					
0	1	5	6	5	-1	0.041327	0.001107
0	1	6	7	6	-1	0.079485	-0.004495
0	1	7	8	7	-1	0.036132	0.002556
0	1	8	4	8	-1	0.053070	0.035451
0	1	8	5	3	-1	0.086580	0.005730
0	1	8	9	4	0	0.045369	0.012076
0	1	6	1	10	0	0.031629	-0.002985
0	1	7	2	10	1	0.039163	0.009258
0	1	8	3	9	2	0.023545	-0.000079
[TIME]	14 2 00	16 00					
1	.1	5	6	5	-1	0.041327	0.001107
1	.1	6	7	6	-1	0.079485	-0.004495
1	.1	7	8	7	-1	0.036132	0.002556
1	.1	8	4	8	-1	0.053070	0.035451
1	.1	8	5	3	-1	0.086580	0.005730
1	.1	8	9	4	0	0.045369	0.012076
1	.1	6	1	10	0	0.031629	-0.002985
1	.1	7	2	10	1	0.039163	0.009258
1	.1	8	3	9	2	0.023545	-0.000079
[TIME]	14 2 00	17 00					
-100	100	5	6	5	-1	0.041327	0.001107
-1	1	6	7	6	-1	0.079485	-0.004495
-1	1	7	8	7	-1	0.036132	0.002556
-1	1	8	4	8	-1	0.053070	0.035451
-1	1	8	5	3	-1	0.086580	0.005730
-1	1	8	9	4	0	0.045369	0.012076
-1	1	6	1	10	0	0.031629	-0.002985
-1	1	8	3	9	2	0.023545	-0.000079
-5	6	7	7	9	6	0.027216	0.003247

Currents: Rectangular Grid – Steady State [GridCur]

The GridCur file should contain velocity information in the x and y directions on a rectangular grid. The first 8 lines contain header information that defines the file type, grid size, and grid location. The remaining lines contain the current data. The keywords are the words shown in capital letters below. They must appear exactly as shown. This documentation consists of two example files followed by an explanation of each of the file components. You can set the range of the data by providing (a) the upper left corner position and the increment size of delta_x and delta_y, or (b) the bounding latitude and longitude box. If you would like to try either of these current patterns, you will also need the *GridCur.bna* file.

Note: If you have missing values, you may simply skip those grid points in the data file.

In the first example, *GridCurExA.cur*, position information is given from a starting latitude and longitude and an increment.

Filename: GridCurExA.cur

[GRIDCUR] NUMROWS 100 NUMCOLS 100 STARTLAT 33.8 STARTLONG -120.4 DLAT .008 DLONG .01 row col u v 1 1 .10 .10 1 2 .10 .10 1 3 .10 .10 1 4 .10 .10 1 5 .10 .10 1 6 .10 .10

. . .

In the second example, *GridCurExB.cur*, the grid location is given by bounding latitudes and longitudes.

Filename: GridCurExB.cur

[GRIDCUR] NUMROWS 100 NUMCOLS 100 LOLAT 33.4 HILAT 35 LOLONG -120.4 HILONG -119 row col u v 1 1 .10 .10 1 2 .10 .10 1 3 .10 .10 1 4 .10 .10 1 5 .10 .10

. . .

Explanation of File Components:

The first line of the file is a flag identifying the file as an outside current file:

[GRIDCUR]

Lines 2 and 3 specify the grid size by number of rows and number of columns:

NUMROWS nrows NUMCOLS ncols

Lines 4 through 7 give the grid bounds and can be specified in either of two ways:

(1) By the latitude and longitude of the grid origin (assumed to be the upper left corner) and the increment size:

STARTLAT lat STARTLONG long DLAT dlat DLONG dlong

(2) By low and high latitude and longitude ranges:

LOLAT lolat HILAT hilat LOLONG lolong HILONG hilong

In the former case, the velocities are assumed to be given at the grid points, and in the latter case, the velocities are assumed to be in the center of grid rectangles.

Line 8 is designed to be a header, identifying the columns of data. It is read, but not used.

row col u v

This header information is followed by NROWS * NCOLS lines of current data. Each line consists of 4 elements, corresponding to the items in Line 8. These are the point's location in the grid, given by a row and column, and its velocity components in the x and y directions, assumed to be in meters/second. The file must contain a line for each of the NROWS * NCOLS grid points.

Currents: Rectangular Grid – Time Dependent [GridCurTime]

If you have a rectangular grid, time dependent model, you can use this data format to create the time series of currents for GNOME. Large models and/or long time series can produce large files of output fields. You have the option to store all your data in one file, or in a series of files. We have been successful in obtaining daily forecasts in separate files, archiving them, and then "stringing" them together to create a time series for a single incident.

Data in a Single File

GNOME accepts rectangular grid models in a simple file format, similar to the single current pattern described above. The header now indicates that time has been added [GRIDCURTIME] and the time of the first time-step has been added in the [TIME] line. The file *gridcurTime.cur* is shown below as an example.

Note: As in the rectangular GridCur data format, if you have missing values, you may simply skip those grid points in the data file. You may also create a constant current pattern by setting all the time references to -1.

Filename: gridcurTime.cur

[GRIDCURTIME] NUMROWS 100 NUMCOLS 100 LOLAT 34.0 HILAT 34.4 LOLONG -120.8 HILONG -119.2 [TIME] 14 2 00 10 00 day month year hour minute 1 1 .10 .10 1 2 .10 .10 1 3 .10 .10 ...

Each succeeding timestep is simply appended onto the bottom:

... 100 97 .10 .10 100 98 .10 .10 100 99 .10 .10 100 100 .10 .10 [TIME] 14 2 00 11 00 next timestep information 1 1 .20 .20 1 2 .20 .20 1 3 .20 .20 1 4 .20 .20 1 5 .20 .20 1 6 .20 .20

Data In Multiple Files

With larger time series of current data, it may be useful to break the current time series into separate files that make up a long time series all together. In that case, GNOME supports multi-file data with a header file that indicates data and hard drive location information, and the subsequent files. The format is similar to the header on the regular *GridCurTime* format; however, rather than including the time information and the data, this header includes the file name and location, and the start and end times for each of the files. GNOME uses linear interpolation between timesteps within and across files. The references to the locations of the different current files on the computer's hard drive can be given two ways: a full path description of the directory or a relative description of the directory.

Note: A constant current can be created using a single record with all the time indicators set to -1. A single timestep is acceptable in a file with the start and end times listed as the same time in the header file.

The following four files are provided as examples with full path descriptions:

gridcurtime_hdr.cur gridcurtime_hdrA.cur gridcurtime_hdrB.cur gridcurtime_hdrC.cur

The first file, *gridcurtime_hdr.cur*, contains the header information, and the three subsequent files comprise the data.

Filename: gridcurtime_hdr.cur

[GRIDCURTIME] NUMROWS 78 NUMCOLS 92 LOLAT 34. HILAT 34.4 LOLONG -120.8 HILONG -119.2 C:\GridCurTime\gridcurtime_hdrA.cur [FILE] [STARTTIME] 30 1 2002 1 0 [ENDTIME] 30 1 2002 2 0 C:\GridCurTime\gridcurtime_hdrB.cur [FILE] [STARTTIME] 30 1 2002 3 0 [ENDTIME] 30 1 2002 5 0 C:\GridCurTime\gridcurtime_hdrC.cur [FILE] [STARTTIME] 30 1 2002 6 0 [ENDTIME] 30 1 2002 8 0

In the next example, the paths start with a colon (:), to indicate that they are relative paths.

[GRIDCURTIME] NUMROWS 78 NUMCOLS 92 LOLAT 34 HILAT 34.4 LOLONG -120.8 HILONG -119.2 [FILE] :gridcurtime_hdrA.cur [STARTTIME] 30 1 2002 1 0 [ENDTIME] 30 1 2002 2 0 [FILE] :gridcurtime_hdrB.cur [STARTTIME] 30 1 2002 3 0 [ENDTIME] 30 1 2002 5 0 [FILE] :gridcurtime_hdrC.cur [STARTTIME] 30 1 2002 6 0 [ENDTIME] 30 1 2002 8 0

Each subsequent file contains only the data, with no header information:

 [TIME]
 30 1 2002 1 0

 1
 1
 0.00000
 0.00000

 1
 2
 0.00000
 0.00000

 1
 3
 0.00000
 0.00000

 1
 3
 0.00000
 0.00000

 1
 4
 0.00000
 0.00000

 1
 5
 0.00000
 0.00000

 1
 6
 0.00000
 0.00000

 1
 7
 0.00000
 0.00000

 1
 8
 0.00000
 0.00000

 1
 9
 0.00000
 0.00000

 1
 10
 0.00000
 0.00000

NetCDF Formats

Currently, GNOME can read in netCDF files for rectangular, curvilinear, and triangular grids. This section includes examples of the three formats and some descriptions of the required information.

NetCDF Rectangular Grid

Below is an example of the regular grid format for netCDF files. The global attribute grid_type = REGULAR is required (the default is CURVILINEAR). Time units can be hours, minutes, seconds, or days. A separate map will be needed in order to set a spill.

```
netCDF MacintoshHD:Desktop Folder:test {
dimensions:
         lat = 16;
         lon = 20;
        time = UNLIMITED ;
                                   (85 currently)
variables:
         double lat(lat);
                  lat:long_name = "Latitude";
                  lat:units = "degrees_north";
                  lat:point_spacing = "even";
         double lon(lon);
                  lon:long_name = "Longitude" ;
                  lon:units = "degrees_east";
                  lon:point_spacing = "even";
         double time(time);
                  time:long_name = "Valid Time";
                  time:units = "minutes since 1999-11-25 00:00:00";
        float water_u(time, lat, lon);
                  water_u:long_name = "Eastward Water Velocity";
                  water_u:units = "m/s";
                  water_u:_FillValue = -9.9999e+32f;
                  water_u:scale_factor = 1.f;
                  water_u:add_offset = 0.f;
        float water_v(time, lat, lon);
                  water_v:long_name = "Northward Water Velocitv" :
                  water_v:units = "m/s" ;
                  water_v:_FillValue = -9.9999e+32f;
                  water_v:scale_factor = 1.f ;
                  water_v:add_offset = 0.f;
global attributes:
                  :grid_type = "REGULAR";
data:
```

 $lat = 51.144606, 51.234386, 51.324167, 51.413944, 51.503722, 51.5935, \\ 51.683275, 51.77305, 51.862825, 51.952594, 52.042364, 52.132133, 52.2219, \\ 52.311664, 52.401425, 52.491186 ; \end{cases}$

```
lon = 2.3155722, 2.4583139, 2.6010833, 2.743875, 2.8866917, 3.0295306, 3.1723917, 3.3152694, 3.4581667, 3.6010833, 3.7440139, 3.8869583, 4.0299167, 4.1728861, 4.3158667, 4.4588583, 4.6018583, 4.7448639, 4.887875, 5.0308917;
```

time = 7020, 7080, 7140, 7200, 7260, 7320, 7380, 7440, 7500, 7560, 7620, 7680, 7740, 7800, 7860, 7920, 7980, 8040, 8100, 8160, 8220, 8280, 8340, 8400, 8460, 8520, 8580, 8640, 8700, 8760, 8820, 8880, 8940, 9000, 9060, 9120, 9180, 9240, 9300, 9360, 9420, 9480, 9540, 9600, 9660, 9720, 9780,

9840, 9900, 9960, 10020, 10080, 10140, 10200, 10260, 10320, 10380, 10440, 10500, 10560, 10620, 10680, 10740, 10800, 10860, 10920, 10980, 11040, 11100, 11160, 11220, 11280, 11340, 11400, 11460, 11520, 11580, 11640, 11700, 11760, 11820, 11880, 11940, 12000, 12060 ;

NetCDF Curvilinear Grid

Below is an example of the curvilinear format for netCDF files. In addition to x and y, there are several other dimension name options for latitude and longitude. The dimension names only need to start with X, Y or LAT, LON to be recognized. The variable names must appear as shown. The velocities can be shorts, floats, or doubles. Time units can be hours, minutes, seconds, or days. The land mask is required: 0 is land, 1 is water. If no map is available, the mask is used to identify land points (land 0, water 1) and a boundary map is created. The first sigma value is used, though currently GNOME is being extended to handle 3D currents. The topology can be saved out the first time and reloaded.

```
netcdf 20040726 11z hazmat {
dimensions:
        x = 73:
        y = 163;
        sigma = 3;
                                   optional
        time = UNLIMITED ;
                                   (12 currently)
variables:
        float time(time);
                 time:long_name = "Time";
                 time:base_date = 2004, 1, 1, 0;
                 time:units = "days since 2004-01-01 0:00:00 00:00";
                 time:standard_name = "time";
        float lon(y, x);
                 lon:long_name = "Longitude";
                 lon:units = "degrees_east" ;
                 lon:standard_name = "longitude";
        float lat(y, x);
                 lat:long_name = "Latitude";
                 lat:units = "degrees_north"
                 lat:standard_name = "latitude";
        float mask(y, x);
                 mask:long_name = "Land Mask";
                 mask:units = "nondimensional";
        float depth(y, x);
                                   optional
                 depth:long_name = "Bathymetry";
                 depth:units = "meters";
                 depth:positive = "down";
                 depth:standard_name = "depth";
        float sigma(sigma);
                                   optional
                 sigma:long_name = "Sigma Stretched Vertical Coordinate at Nodes";
                 sigma:units = "sigma_level";
                 sigma:positive = "down";
                 sigma:standard name = "ocean sigma coordinate";
                 sigma:formula_terms = "sigma: sigma eta: zeta depth: depth";
        float u(time, sigma, y, x);
                 u:long_name = "Eastward Water Velocity";
                 u:units = "m/s" ;
                 u:missing value = -99999.f;
                 u: FillValue = -99999.f :
                 u:standard_name = "eastward_sea_water_velocity";
        float v(time, sigma, y, x) ;
v:long_name = "Northward Water Velocity" ;
                 v:units = m/s;
                 v:missing value = -99999.f;
                 v: FillValue = -99999.f;
                 v:standard_name = "northward_sea_water_velocity";
```

global attributes:

:file_type = "Full_Grid" ;

```
:Conventions = "COARDS";
:grid_type = "curvilinear";
:z_type = "sigma";
:model = "POM";
:title = "Forecast: wind+tide+river";
```

data:

time = 208.4688, 208.4792, 208.4896, 208.5, 208.5104, 208.5208, 208.5312, 208.5417, 208.5521, 208.5625, 208.5729, 208.5833,,;

sigma = 0, .5, 1.; }

NetCDF Triangular Grid

Below is an example of the triangular grid format for netCDF files. The global attribute grid_type = TRIANGULAR is required (the default is CURVILINEAR). The first depth value is used. Time units can be hours, minutes, seconds, or days. A map will be created using the boundary data. The topology can be saved out the first time and reloaded.

```
The netCDF header description for finite element model:
netCDF MacintoshHD:Desktop Folder:testFile {
dimensions:
        node = 7258 :
        nele = 13044 :
                                   not currently used
        nbnd = 1476 ;
        nbi = 4 ;
        sigma = 11 ;
                                   optional
        time = UNLIMITED ;
                                   (12 currently)
variables:
        short bnd(nbnd, nbi);
                 bnd:long_name = "Boundary Segment Node List" ;
                 bnd:units = "index_start_1";
        float time(time);
                 time:long_name = "Time";
                 time:units = "days since 2003-01-00 0:00:00 00:00";
                 time:base_date = 2003, 1, 0, 0;
        float lon(node);
                 lon:long_name = "Longitude" ;
                 lon:units = "degrees_east" ;
        float lat(node) :
                 lat:long_name = "Latitude";
                 lat:units = "degrees_north";
        float sigma(sigma);
                                  optional
                 sigma:long_name = "Stretched Vertical Coordinate";
                 sigma:units = "sigma_level";
                 sigma:positive = "down" ;
        float u(time, sigma, node);
                 u:long_name = "Eastward Water Velocity";
                 u:units = m/s;
                 u:missing_value = -99999.f;
                 u: FillValue = -99999.f;
        float v(time, sigma, node);
                 v:long_name = "Northward Water Velocity";
                 v:units = m/s;
                 v:missing_value = -99999.f;
                 v:_FillValue = -99999.f;
global attributes:
                 :file_type = "FEM";
                 :Conventions = "COARDS" ;
                 :grid_type = "Triangular";
data:
time = 26.95833, 27, 27.04167, 27.08333, 27.125, 27.16667, 27.20833, 27.25,
  27.29167, 27.33333, 27.375, 27.41667;
sigma = 1, 0.9807215, 0.9306101, 0.83061, 0.6807215, 0.5, 0.3192785,
```

```
0.1693899, 0.06938996, 0.01927857, 0;
```

```
}
```

Notes:

1. The boundary list is an array of dimension bnd(nbnd, 4). It is node numbers of the line segments, with a digit to indicate which land or island the segment is a part of, and a digit to indicate whether a boundary is land or water:

node1	node2	island	land/water (0/1)
1	2	0	0	1 is usually the continent and outer water BC
2	5	0	0	
5	23	0	1	
3568	1	0	1	The last segment joins up with the first.
551	552	1	0	next island
552	567	1	0	
677	551	1	0	
789	388	2	0	
				next island, etc.

2. Only the first sigma level is used, although GNOME is currently being extended to handle 3D currents.

Scaling Current Patterns

Since the current patterns created in GNOME only indicate the direction of the current and the relative speeds, the current patterns need to be scaled in order to be useful with the trajectory model. For example, consider a fictitious current pattern with only two triangles, A and B. The velocity in triangle A is 1.2 to the east and the velocity in triangle B is 1.8 to the north. Observations indicate that the velocity in triangle A should be 3.0 knots to the east, so we must scale the current pattern by the ratio of these velocities in triangle A, or (3.0 knots/1.2 = 2.5 knots). That is, multiplying the velocity in triangle A in the current pattern (1.2) by the scale factor (2.5 knots) yields the observed velocity (3.0 knots). The direction did not change. To find the velocity in triangle B, we multiply the velocity in triangle B in the current pattern (1.8) by the scale factor (2.5 knots) to get a velocity of 4.5 knots. The velocity in triangle B is still to the north, since the direction does not change in the current pattern.

GNOME is quite helpful in scaling current patterns. At a given reference point in the current pattern, GNOME tells you what the flow is. You then input into GNOME what you would like the velocity to be at the reference point, and GNOME calculates the scaling coefficient for the pattern for you!

The direction of the flow in the current fields in GNOME can reverse by multiplying the pattern by a negative scaling coefficient. The ebb and flow of tides are simulated this way, through a time series of positive and negative scaling values. You can scale currents with either a constant value or a time series. The acceptable file formats for time series are outlined below.

Time Series File Formats

Current patterns in GNOME can be scaled to be time dependent with two different file types: (1) a time series of current magnitude or (2) a "SHIO mover" that contains data for GNOME to use in calculating tidal current magnitudes. All data in this section were created by the NOAA SHIO application ("shio" is Japanese for "tide").

The South Bend, Washington station on the Willapa River was chosen for all the examples in this section. Below is the information found in the *SouthBend.text* file to acquaint you with the information GNOME needs in order to calculate the tidal currents at this station. This particular file is not a data file for GNOME. Those data are represented in data files presented later in this discussion.

File Name: SouthBend.text

Tidal currents at South Bend, Willapa River, WASHINGTON COAST Station No. CP1009 Meter Depth: n/a

Latitude: 46°0' N Longitude: 123°47' W

Maximum Flood Direction: 90° Maximum Ebb Direction: 270° Time offsets Hour:Min Min Before Flood 0:19am Flood 0:20am Min Before Ebb 0:24am -0:06am Ebb Flood Speed Ratio: 0.6 Ebb Speed Ratio: 0.5 Direction(deg.) Speed(kt) Min Before Flood 00.0 n/a Flood 01.2 090 Min Before Ebb 00.0 n/a 01.4 270 Ebb Based on Grays Harbor Ent. Local Standard Time _____ Mon, Aug 24, 1998 Sunrise -- 6:09am Sunset -- 7:55pm 0:38am +01.2 Max Flood Min Before Ebb 3:31am +00.06:29am -01.6 Max Ebb 9:59am +00.0 Min Before Flood 1:08pm +01.4 Max Flood

4:12pm +00.0 Min Before Ebb 6:56pm -01.4 Max Ebb 10:17pm +00.0 Min Before Flood

(1) Time Series of Current Magnitude

Time series file for currents have the format

dd,mm,yy,hr,min,|U|,0.0

where *dd* is the day, *mm* is the month, *yy* is the year, *hr* is the hour, *min* is the minute, |U| is the magnitude of the velocity, and 0.0 is a number to indicate that the file is in a magnitude format rather than a *u*,*v* format. The direction is left blank because the current pattern supplies the individual current vectors. For example, the *SouthBend.ossm* file contains one day of tidal information for South Bend, WA.

File Name: SouthBend.ossm

24, 8, 98, 0, 37, 1.2, 0.0 24, 8, 98, 3, 30, 0.0, 0.0 24, 8, 98, 6, 28, -1.6, 0.0 24, 8, 98, 9, 58, 0.0, 0.0 24, 8, 98, 13, 7, 1.4, 0.0 24, 8, 98, 16, 11, 0.0, 0.0 24, 8, 98, 18, 55, -1.4, 0.0 24, 8, 98, 22, 16, 0.0, 0.0

Day,	Month,	Year,	Hour,	Min.,	Speed,	Direction (Dummy Value)
24,	8,	98,	0,	37,	1.2,	0.0
24,	8,	98,	З,	30,	0.0,	0.0
24,	8,	98,	6,	28,	-1.6,	0.0
24,	8,	98,	9,	58,	0.0,	0.0
24,	8,	98,	13,	7,	1.4,	0.0
24,	8,	98,	16,	11,	0.0,	0.0
24,	8,	98,	18,	55,	-1.4,	0.0
24,	8,	98,	22,	16,	0.0,	0.0

Annotated Version of the File

(2) SHIO Movers: Using Tidal Constituents

GNOME can use both **tidal height** and **tidal current constituent data** to scale current patterns. In the case of tidal height station data (2a, below), GNOME will take the time derivative of the tidal heights, and request the user to scale that derivative to calculate the tidal currents. For the tidal current station data (2b, below), GNOME will use the calculated currents directly. The constituent record data are rather complex, so we have provided information about the data fields and then provided an example file.

If you are unfamiliar with tidal constituent data, we suggest that you review the NOAA/COEB Tide Terminology Glossary at http://www.baysail.com/tide terms/gloss m.html.

Wherever possible, we have kept the variable names (in italics) the same as in the NOAA tidal constituent data. See "Tidal Current Analysis Procedure and Associated Computer Programs" (NOAA Technical Memo NOS CO-OPS 0021).

(2a) Tidal heights constituent record:

Line 1	[StationInfo]	
Line 2	Type=H	s
Line 3	staName	S
Line 4	Latitude=latStr	d
Line 5	Longitude=longStr	d
Line 6	[Constituents]	
Line 7	DatumControls.datum=datum	n
Line 8	DatumControls.FDir=0	b
Line 9	DatumControls.EDir=0	b
Line 10	DatumControls.L2Flag=0	b
Line 11	DatumControls.HFlag=0	b
Line 12	DatumControls.RotFlag=0	b
Lines 13-17	constituent amplitudes in order ¹	N

station type for heights is "H" station name decimal degrees decimal degrees mean sea level bug. Type as seen. Will be fixed in 1.2.7 bug. Type as seen. Will be fixed in 1.2.7 bug. Type as seen. Will be fixed in 1.2.7 bug. Type as seen. Will be fixed in 1.2.7 bug. Type as seen. Will be fixed in 1.2.7 bug. Type as seen. Will be fixed in 1.2.7 M2, S2, N2, K1, M4, O1, M6, MK3, S4, MN4, NU2, S6, MU2, 2N2, OO1, LAM2, S1, M1, J1, MM, SSA, SA, MSF, MF, RHO, Q1, T2,

¹ Exceptions: For the cases of ANCHORAGE, CALETA PERCY, DAEHUKSAN DO, LISBON, MUKHO HANG, and SOKCHO HANG, there are more than 37 constituents.

R2, 2Q1, P1, 2SM2, M3, L2, 2MK3, K2, M8, MS4 [feet]

Lines 18-23	constituent phases in order	see above, lines 13-17 [degrees]
Line 24	[Offset]	
Note: Lines 25	5-30 use a second integer to indicate to G	SNOME whether there is valid data in the field. "0"
indicates no da	ta, so GNOME can skip the calculation.	"1" indicates valid data exists (that may be zero).
Line 25	HighTime= <i>highTime 1</i>	high water time adjustment (minutes)
Line 26	LowTime=lowTime 1	low water time adjustment
Line 27	HighHeight_Mult= <i>highHeightScalar 1</i>	high water height multiplier
Line 28	HighHeight_Add= <i>highHeightAdd 1</i>	high water height addend
Line 29	LowHeight_Mult= <i>lowHeightScalar</i> 1	low water height multiplier
Line 30	LowHeight_Add=lowHeightAdd 1	low water height addend

Example File: HornIslandPass.shio.txt

[StationInfo] Type=H Name=Horn Island Pass Latitude=30.2167 Longitude=-88.483333 [Constituents] DatumControls.datum=0.620000 DatumControls.FDir=0 DatumControls.EDir=0 DatumControls.L2Flag=0 DatumControls.HFlag=0 DatumControls.RotFlag=0 0.000000 0.000000 0.000000 0.000000 0.020000 0.000000 0.000000 0.033000 0.036000 0.000000 0.120000 0.299000 0.000000 0.000000 0.018000 0.099000 0.000000 0.000000 0.012000 0.139000 0.000000 0.000000 kPrime=358.500000 355.700012 0.000000 327.000000 0.000000 324.200012 0.000000 0.000000 0.000000 0.000000 32.099998 151.800003 0.000000 0.000000 323.000000 314.100006 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 [Offset] HighTime=-0.516667 1 LowTime=-0.883333 1 HighHeight_Mult=1.300000 1 HighHeight_Add=0.000000 1 LowHeight_Mult=1.300000 1 LowHeight_Add=0.000000 1

(2b) Tidal currents constituent record:

Line 1	[StationInfo]	
Line 2	Type=C	station type for currents is "C"
Line 3	staName	station name
Line 4	Latitude=latStr	decimal degrees
Line 5	Longitude=longStr	decimal degrees
Line 6	[Constituents]	·
Line 7	DatumControls.datum=datum	datum
Line 8	DatumControls.FDir=floodDirection	flood direction
Line 9	DatumControls.EDir=ebbDirection	ebb direction
Line 10	DatumControls.L2Flag=L2Flag	L2Flag
Line 11	DatumControls.HFlag=hydraulicFlag	hydraulic flag
Line 12	DatumControls.RotFlag=0	For nonrotary tides, use "0". For rotary tides
	C C	defined relative to North or East, use "1".
		For rotary tides defined by major and minor
		axes, use "2".
Lines 13-17	constituent amplitudes in order ²	M2, S2, N2, K1, M4, O1, M6, MK3, S4, MN4,
		NU2, S6, MU2, 2N2, OO1, LAM2, S1, M1,
		J1, MM, SSA, SA, MSF, MF, RHO, Q1, T2,
		R2, 2Q1, P1, 2SM2, M3, L2, 2MK3, K2, M8,
		MS4 [knots]
Lines 18-23	constituent phases in order	see above, lines 13-17 [degrees]
Line 24	[Offset]	
Note: Lines 25	5-38 use a second integer to indicate to GN	OME whether there is valid data in the field. "0"
indicates no da	ta, so GNOME can skip the calculation. "1	" indicates valid data exists (that may be zero).
Line 25	MinBefFloodTime= <i>minBefFloodTime</i> 1	minimum before flood time adjustment
Line 26	FloodTime= floodTime 1	flood time adjustment
Line 27	MinBefEbbTime= <i>minBefEbbTime</i> 1	minimum before ebb time adjustment
Line 28	EbbTime= <i>ebbTime 1</i>	ebb time adjustment
Line 29	FloodSpdRatio=floodSpeedRatio 1	flood speed ratio
Line 30	EbbSpdRatio=ebbSpeedRatio 1	ebb speed ratio
Line 31	MinBFloodSpd= <i>minBefFloodAvgSpeed</i> 0	average speed - minimum before flood
Line 32	MinBFloodDir= <i>minBefFloodAvgDir</i> 0	average direction - minimum before flood
Line 33	MaxFloodSpd= <i>maxFloodAvgSpeed</i> 0	average speed - flood
Line 34	MaxFloodDir= <i>maxFloodAvgDir 0</i>	average direction - flood
Line 35	MinBEbbSpd= <i>minBefEbbAvgSpeed</i> 0	average speed - minimum before ebb
Line 36	MinBEbbDir= <i>minBefEbbAvgDir 0</i>	average direction - minimum before ebb
Line 37	MaxEbbSpd= <i>maxEbbAvgSpeed</i> 0	average speed - ebb
Line 38	MaxEbbDir= <i>maxEbbAvgDir 0</i>	average direction - ebb

Example File I: StJohnsRiver.shio.txt

[StationInfo] Type=C Name=ST. JOHNS RIVER ENT. (between jetties) Latitude=30.400000 Longitude=-81.383333 [Constituents] DatumControls.datum=-0.350000 DatumControls.FDir=275 DatumControls.EDir=100 DatumControls.L2Flag=0 DatumControls.HFlag=0 DatumControls.RotFlag=0

² Exceptions: For the cases of ANCHORAGE, CALETA PERCY, DAEHUKSAN DO, LISBON, MUKHO HANG, and SOKCHO HANG, there are more than 37 constituents.

FloodSpdRatio=1.000000 1 EbbSpdRatio=1.000000 1 MinBFloodSpd=0.000000 0 MinBFloodSpd=0.000000 0 MaxFloodSpd=0.000000 0 MinBEbbSpd=0.000000 0 MinBEbbDir=0.000000 0 MaxEbbSpd=0.000000 0 MaxEbbSpd=0.000000 0

Example File II: Edmonds.shio.txt

[StationInfo] -Tvpe=C Name=Edmonds, 2.7 miles WSW of Latitude=47.800000 Longitude=-122.450000 [Constituents] DatumControls.datum=-0.500000 DatumControls.FDir=180 DatumControls.EDir=5 DatumControls.L2Flag=0 DatumControls.HFlag=0 DatumControls.RotFlag=0 H=1.954000 0.460000 0.402000 0.847000 0.000000 0.421000 0.000000 0.000000 0.000000 0.000000 0.078000 0.000000 0.000000 0.054000 0.018000 0.013000 0.000000 0.030000 0.033000 0.000000 0.000000 0.000000 0.000000 0.016000 0.081000 0.028000 0.000000 0.000000 0.280000 0.000000 0.000000 kPrime=66.400002 84.099998 39.400002 72.500000 0.000000 66.199997 0.000000 0.000000 0.000000 0.000000 43.000000 0.000000 0.000000 12.300000 78.800003 74.599998 0.000000 69.300003 75.800003 73.199997 0.000000 0.000000 93.400002 0.000000 83.400002 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 [Offset] MinBefFloodTime=0.733333 1 FloodTime=0.100000 1 MinBefEbbTime=0.216667 1 EbbTime=0.316667 1 FloodSpdRatio=0.100000 1 EbbSpdRatio=0.200000 1 MinBFloodSpd=0.000000 1 MinBFloodDir=0.000000 0 MaxFloodSpd=0.200000 1 MaxFloodDir=170.000000 1 MinBEbbSpd=0.000000 1 MinBEbbDir=0.000000 0

MaxEbbSpd=0.500000 1 MaxEbbDir=0.000000 1

Hydrology Time Series

Hydrology time series files for currents have the format listed below. An example hydrology time series file, *Hillsbourgh.HYD*, is also provided.

The first line lists the station name.

- The second line contains the reference point position for scaling the current pattern with the hydrology volume transport time series.
- The third line provides the units for the volume transport (CFS, KCFS, CMS, KCMS).
- The data are given in the same time series format as the currents, except that the magnitude of the current is changed to the volume transport.

Filename: Hillsbourgh.HYD

HILLSBOURGH STATION 28.029534,-82.688080 CMS 01,10,2002,0,0,432,0 02,10,2002,0,0,309,0 03,10,2002,0,0,310,0 04,10,2002,0,0,311,0 06,10,2002,0,0,287,0 07,10,2002,0,0,234,0 08,10,2002,0,0,235,0 09,10,2002,0,0,232,0 10,10,2002,0,0,177,0

Annotated Version of the File

HILLS	BOURGH	STATION	Stati	ion Name) uda langituda)	
20.023 CMS	9554,-62.00	00000	FUSI Unite	uon (iauu	ude, longitude)	
Day	Month	Vear	Hour	Min	Transport	Direction (Dummy Value)
01	10	2002	0	0	432	
02.	10,	2002,	0.	0.	309.	õ
03.	10,	2002.	0.	0.	310.	0
04,	10,	2002,	0,	0,	312,	0
05,	10,	2002,	0,	0,	311,	0

WINDS

GNOME uses winds, in addition to the currents and diffusion, to move the oil. For small-scale uses, a single point forecast is sufficient for trajectories [OSSM]. In this case, the time series can be created in GNOME using the variable or constant wind dialog boxes, or loaded as a file. You will find it useful to load winds as a file if you are downloading archived wind observations, or if you are creating a blended time series, with archived observations combined with a wind forecast.

For large-scale areas, you may use winds generated by atmospheric circulation model data. Be careful in mapping latitude and longitude of the grid points with the proper projection of the model.

GNOME supports both ASCII and netCDF formats for wind. The rectangular grid wind model in a time series format is [GridWindTime]. The gridded output time series format is the same as for currents, except the starting keyword is different. This is to prevent the user from accidentally loading a wind as a current, and vice versa. The Finite Element ASCII Format (for winds at the model nodes) is [ptWind]. GNOME also supports a netCDF file structure for rectangular grid models. If your particular atmospheric model is not supported, please let the GNOME Wizard know (ORR.GNOME@noaa.gov), as we are always interested in adding new grids to our collection.

Winds: Single Point, Time Series [OSSM]

If you input an OSSM format wind file into GNOME, you will have to specify the units when the file is loaded.

File name: OSSM Format.WND

8,4,99,01,00,10,S 8,4,99,05,00,10,S 8,4,99,09,00,10,S 8,4,99,11,00,10,S 8,4,99,15,00,10,SW 8,4,99,21,00,10,SW 9,4,99,01,00,10,SW 9,4,99,05,00,10,SW 9,4,99,09,00,10,SW 9,4,99,11,00,10,SW 9,4,99,15,00,10,SW 9,4,99,21,00,10,SW 10,4,99,01,00,10,SW 10,4,99,05,00,05,S 10,4,99,09,00,05,S 10,4,99,11,00,05,S 10,4,99,15,00,05,S 10,4,99,21,00,05,S 11,4,99,01,00,10,SW 11,4,99,05,00,10,SW 11,4,99,09,00,10,SW 11,4,99,11,00,10,W 11,4,99,15,00,10,W 11,4,99,21,00,10,W 12,4,99,01,00,25,NW 12,4,99,05,00,25,NW 12,4,99,09,00,25,NW 12,4,99,11,00,25,NW 12,4,99,15,00,25,NW 12,4,99,21,00,25,NW

Annotated Version of the File

Day,	Month,	Year,	Hour,	Min.,	Speed,	Direction
8,	4,	99,	01,	00,	0,	S
8,	4,	99,	05,	00,	10,	S
8,	4,	99,	09,	00,	10,	S
8,	4,	99,	11,	00,	10,	S
8,	4,	99,	15,	00,	10,	SW

• • •

Winds: Rectangular Grid, Time Series [GridWindTime]

The rectangular grid surface wind model formats are very similar to the *GridCurTime* formats for rectangular grid time-dependent currents. The only difference is that the first line of the file changes from [GRIDCURTIME] to [GRIDWINDTIME].

File name: GridWindTime.wnd

[GRIDWINDTIME] NUMROWS 19 NUMCOLS 26 LOLAT 36.6 HILAT 47.8 LOLONG -15.4 HILONG -4.3 [TIME] 19 11 02 1 00 1 1 0.15 -.16 1 2 0.16 -.17 1 3 0.17 -.19 1 4 0.19 -.21

. . .

Winds: NetCDF Rectangular Grid, Time Series

The netCDF rectangular grid surface wind model formats are very similar to the netCDF rectangular grid current. The only difference is that air_U and air_V are used instead of water_U and water_V for the U and V velocity components.

```
netcdf pwsWind2004080904 {
dimensions:
         lon = 155 ;
         lat = 150 ;
         time = UNLIMITED ;
                                    (49 currently)
variables:
         float time(time);
                  time:long_name = "Time in AST";
                  time:units = "hours since 2004-08-09 00:00:00";
         float lon(lon);
                  lon:long_name = "Longitude";
                  lon:units = "degrees_East";
                  lon:point_spacing = "even";
         float lat(lat);
                  lat:long_name = "Latitude";
                  lat:units = "degrees_North";
                  lat:point_spacing = "even";
         float air_u(time, lat, lon);
                  air_u:valid_range = -30.f, 30.f;
                  air_u:long_name = "Eastward Air Velocity" ;
                  air_u:units = "m/s"
                  air_u:_FillValue = -9.9999e+32f;
                  air_u:scale_factor = 1.f;
                  air_u:add_offset = 0.f;
         float air_v(time, lat, lon);
                  air v:valid range = -30.f. 30.f:
                  air_v:long_name = "Northward Air Velocity";
                  air_v:units = "m/s" ;
                  air_v:_FillValue = -9.9999e+32f;
                  air_v:scale_factor = 1.f;
                  air_v:add_offset = 0.f;
global attributes:
                  :experiment = "PWS-NFS" ;
                  :grid_type = "REGULAR" ;
                  :base_date = 2004, 8, 9;
data:
time = 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
  23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
  41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52;
lon = -148.72, -148.7, -148.68, -148.66, -148.64, -148.62, -148.6, -148.58,
  -148.56, -148.54, -148.52, -148.5, -148.48, -148.46, -148.44, -148.42,
  -148.4, -148.38, -148.36, -148.34, -148.32, -148.3, -148.28, -148.26,
  -148.24, -148.22, -148.2, -148.18, -148.16, -148.14, -148.12, -148.1,
  -148.08, -148.06, -148.04, -148.02, -148, -147.98, -147.96, -147.94,
  -147.92, -147.9, -147.88, -147.86, -147.84, -147.82, -147.8, -147.78,
  -147.76, -147.74, -147.72, -147.7, -147.68, -147.66, -147.64, -147.62,
  -147.6, -147.58, -147.56, -147.54, -147.52, -147.5, -147.48, -147.46,
  -147.44, -147.42, -147.4, -147.38, -147.36, -147.34, -147.32, -147.3,
  -147.28, -147.26, -147.24, -147.22, -147.2, -147.18, -147.16, -147.14,
  -147.12, -147.1, -147.08, -147.06, -147.04, -147.02, -147, -146.98,
  -146.96, -146.94, -146.92, -146.9, -146.88, -146.86, -146.84, -146.82,
  -146.8, -146.78, -146.76, -146.74, -146.72, -146.7, -146.68, -146.66,
```

 $\begin{array}{l} -146.64, -146.62, -146.6, -146.58, -146.56, -146.54, -146.52, -146.5, \\ -146.48, -146.46, -146.44, -146.42, -146.4, -146.38, -146.36, -146.34, \\ -146.32, -146.3, -146.28, -146.26, -146.24, -146.22, -146.2, -146.18, \\ -146.16, -146.14, -146.12, -146.1, -146.08, -146.06, -146.04, -146.02, \\ -146, -145.98, -145.96, -145.94, -145.92, -145.9, -145.88, -145.86, \\ -145.84, -145.82, -145.8, -145.78, -145.76, -145.74, -145.72, -145.7, \\ -145.68, -145.66, -145.64; \end{array}$

lat = 59.79, 59.8, 59.81, 59.82, 59.83, 59.84, 59.85, 59.86, 59.87, 59.88, 59.89, 59.9, 59.91, 59.92, 59.93, 59.94, 59.95, 59.96, 59.97, 59.98, 59.99, 60, 60.01, 60.02, 60.03, 60.04, 60.05, 60.06, 60.07, 60.08, 60.09, 60.1, 60.11, 60.12, 60.13, 60.14, 60.15, 60.16, 60.17, 60.18, 60.19, $60.2,\,60.21,\,60.22,\,60.23,\,60.24,\,60.25,\,60.26,\,60.27,\,60.28,\,60.29,$ 60.3, 60.31, 60.32, 60.33, 60.34, 60.35, 60.36, 60.37, 60.38, 60.39, 60.4, 60.41, 60.42, 60.43, 60.44, 60.45, 60.46, 60.47, 60.48, 60.49, 60.5, 60.51, 60.52, 60.53, 60.54, 60.55, 60.56, 60.57, 60.58, 60.59, 60.6, 60.61, 60.62, 60.63, 60.64, 60.65, 60.66, 60.67, 60.68, 60.69, 60.7, 60.71, 60.72, 60.73, 60.74, 60.75, 60.76, 60.77, 60.78, 60.79, 60.8, 60.81, 60.82, 60.83, 60.84, 60.85, 60.86, 60.87, 60.88, 60.89, 60.9, 60.91, 60.92, 60.93, 60.94, 60.95, 60.96, 60.97, 60.98, 60.99, 61, 61.01, 61.02, 61.03, 61.04, 61.05, 61.06, 61.07, 61.08, 61.09, 61.1, 61.11, 61.12, 61.13, 61.14, 61.15, 61.16, 61.17, 61.18, 61.19, 61.2, 61.21, 61.22, 61.23, 61.24, 61.25, 61.26, 61.27, 61.28; }

GNOME Output File Formats

MOSS Files for GIS Systems

GNOME outputs MOSS files 3 through 7:

- File 3: Header information, such as scenario information and any caveats.
- File 4: Positions for Best Guess (Forecast) lagrangian elements.
- File 5: Attributes of each of the lagrangian elements in File 4.
- File 6: Same as File 4 for the Minimum Regret (Uncertainty) lagrangian elements.
- File 7: Same as File 5 for the Minimum Regret (Uncertainty) lagrangian elements.

The file formats are documented extensively in HAZMAT Report 96-4, "Digital Distribution Standard for NOAA Trajectory Analysis Information," January 1996, J. A. Galt, D. L. Payton, H. Norris, and C. Friel. We have not provided example files since you can easily export your own examples from GNOME's GIS or Diagnostic Modes with a Location File.

GNOME and GNOME Analyst: Custom Logo on Output

Both GNOME and GNOME Analyst can have a custom logo added to their output products. If no custom logo is added, MOSS files will include the GNOME logo, and GNOME Analyst output will include only the GNOME logo in the upper right corner. (The custom logo is added to the upper left corner).

Here are some brief instructions for adding a custom logo to your output:

- 1. Create a bitmap called *logo.bmp* that contains the desired graphic.
- 2. Place *logo.bmp* into the application folder.
 - If you are writing MOSS files, then *logo.bmp* is written into the .MS3 file and *logo.bmp* is copied into the directory where the .MS* files are being saved. ArcView uses a 150 x 150 pixel file.
 - If you are working with GNOME Analyst, the file *logo.bmp* will be used to draw the logo on the upper left of the output materials (printed page, bitmap). GNOME Analyst uses a 48 x 48 pixel file.