Where is Nano Going?

Explorations in Research and Innovation Systems Assessment: Where is Nano Going?[©]

Philip Shapira, Alan Porter, Jan Youtie

Presented by Nils Newman

IISC, Atlanta, GA, USA

Program in Science, Technology and Innovation Policy Georgia Tech School of Public Policy and Georgia Tech Enterprise Innovation Institute Georgia Institute of Technology Atlanta, GA USA

NSF/SRS WORKSHOP Advancing Measures of Innovation: Knowledge Flows, Business Metrics, and Measurement Strategies June 6-7, 2006

Overview

Approach to Research and Innovation Systems Assessment

 Emerging technology focus; micro-based; multi-measure; realtime

Nanotechnology Examples

- Mapping the Nanotechnology Enterprise: Recent Work in the US South
- Early Evidence on US Regional Nano Trends
- o Current Work: Center for Nanotechnology and Society
- Broader Conclusions about Measuring Innovation

What is Nanotechnology?

- Science, engineering and technology of understanding and controlling matter at c. 1-100 nm scale
- To develop materials, devices, and systems that have novel properties and functions due to Nanoscale
- Argued to be a transformative general technology with fundamental technological, economic and societal consequences

*1 nm = 1 billionth of a meter

Mapping the Nanotechnology Enterprise: Recent Work in the US South

Early Evidence on US Regional Nano Trends Future Work: Center for Nanotechnology and Society

Nanotechnology in the US South

Study sponsor: Southern Technology Council (STC)

o 13 states in US South + Puerto Rico

□ Study aims:

- o Identify and map US South's nano "assets"
- o Assess US South's strengths and weaknesses in nano.
- o Provide basis for policy dialogue and action steps.
- Undertaken Fall 2005 at Georgia Tech
 - o Illustrates emerging state and local policy demand in nano

Publication "Connecting the Dots: Creating a Southern Nanotechnology Network" (published by STC, April 2006)

Nanotechnology in the US South

Measures

Category	Indicator		
Knowledge Generation	 Nanotechnology publications based on author location Institutions with clusters of primary researchers in nanotechnology Co-authorship linkages in nanotechnology 		
Human Capital	 Highly cited researchers in nanotechnology Editors of nanotechnology-related journals Doctoral dissertations in the nanotechnology field Prize winners in the nanotechnology field 		
Research and Development Funding	 Nanotechnology-related National Science Foundation Awards Nanotechnology-related Small Businesses Innovation Research awards 		
Patenting	10. Patenting in the field, including both individual inventors and companies		
Early Commercialization Trends	11. Interviews with 10 nanotechnology companies with an office located in the South		

Publication and Patent Data Nano definition (CREA / STC)

	Search Filter	Number of	Number of
		Records	Records
		Identified in	Identified
		SCI	in USPTO
1	nano* NOT (nanomet* OR nano2 OR nano3 OR nano4 OR nano5 OR nanosecon* OR (nano secon*))	>100,000	3,092
2	(nanomet* scale*) OR nanometerscale* OR (nanometer length) OR (nano meter length) or nanot* OR	25,451	1,172
	nanou* OR nanov [*] OR nanow* OR nanox* OR nanoy* OR nanoz [*]		·
3	nanoa* OR nanob* OR nanoc* OR nanod* OR nanoe OR nanof* OR nanog* OR nanoh* OR nanoi OR nanoj*	69,974	3,627
	OR nanok* OR nanol* OR nanon* OR nanoo* OR nanop* OR nanoq* OR nanor*		
4	(atom* force microscop*) or (tunnel* microscop*) or (scanning probe microscop*) or (scanning force	43,441	1,639
	microscop*) or (semiconductor quantum dot)		
5	(silicon quantum dot) or (quantum dot array) or (coulomb blockade) or (self-organized growth) or (drug	5,807	0
	carriers) or (positional assembly) or (modified virus) or (molecular templates) or (supramolecular		
	chemistry)		
6	(drug delivery OR drug targeting OR gene therapy OR gene delivery) AND (po-lymer OR particles OR	3,226	1,123
	encapsulation OR conjugate)		
7	immobilized AND (DNA OR template OR primer OR oligonucleotide OR poly-nucleotide)	2,093	726
8	polymer AND (protein OR antibody OR enzyme OR DNA OR RNA OR poly-nucleotide OR virus)	10,320	2,208
9	(surface modification) AND ((self assembling) OR (molecular layers) OR multi-layer OR (layer-by-layer))	64	40
10	(self assembling) AND (biocompatibility OR bloodcompatibility OR (blood compatibility) OR cellseeding	32	9
	OR (cell seeding) OR (cell therapy) OR (tissue repair) OR (extracellular matrix) OR (tissue engineering))		
11	(self assembling) AND (biosensors OR immunosensor OR biochip OR nano-particles OR (cell adhesion))	43	0
12	Site-specific AND ((gene therapy) OR (drug delivery) OR (gene delivery))	563	496
13	encapsulation AND virus	146	132
14	(Patterns OR patterning) AND ((organized assemblies) OR biocompatibility OR bloodcompatibility OR	147	398
	(blood compatibility) OR cellseeding OR (cell seeding) OR (cell therapy) OR (tissue repair))		
15	(Patterns or patterning) AND ((extra-cellular matrix) OR (tissue engineering) OR biosensors OR	1,519	328
	immunosensor OR biochip OR (cell adhesion))		
16	(single molecule) or (molecular motor) or (molecular beacon) or (biosensor)	12,494	2,030
	1 OR 2 OR 3 OR 4 OR 5 OR 6 OR 7 OR 8 OR 9 OR 10 OR 11 OR 12 OR 13 OR 14 OR 15 OR 16	126,122*	11,996

*This total represents all records downloaded for researchers worldwide. However, only 27,777 of the records had U.S. first authors.

Source: Science Citation Index 1995-2004 SCI record counts based on search performed in January 2005. Nano definition from ISI (2002)

Program in Science, Technology and Innovation Policy

Nano Publication Clusters in the US South

Number of publications at institutions with three or more different first authors (1995-2004).

Source: Analysis of SCI publications, 1995-2004, by firstauthor location. CREA (ISI, 2002) nano definition. Institutions with 200 or more first authored publications are labeled.

Highly-Cited Nano Researchers in the US South

Analysis of SCI publications, 1995-2004, by primary (first authors). 1,000 most cited scientists, worldwide. CREA (ISI, 2002) nano definition.

SIP Program in Science, Technology and Innovation Policy

Georgia Tech School of Public Policy and Georgia Tech Enterprise Innovation Institute

		Number of	
	Number of	Highly Cited	
Stata	Highly Cited	Primary	
Siale	Primary	Researchers	
	Researchers	per Million	
		People	
North Carolina	30	3.51	
Georgia	24	2.72	
Tennessee	14	2.37	
Virginia	11	1.47	
South Carolina	10	2.38	
Louisiana	8	1.77	
Kentucky	8	1.93	
Alabama	8	1.77	
Missouri	7	1.22	
Oklahoma	6	1.70	
Arkansas	4	1.45	
West Virginia	1	0.55	
Mississippi	1	0.34	
Puerto Rico	0	0.00	
SGPB Region	111	1.61	
United States	611	2.08	

9

Southern Nano Strengths and Weaknesses

Southern (STC) Strengths

- Twenty percent of all nanotechnology research publications in the U.S.
 - Four of the top 25 national nanotechnology institutions.
- Nearly 20 percent of all highly cited nanotechnology researchers in the U.S.
- Ten percent of all nanotechnology journals editors in the U.S.
- Fifteen percent of all nanotechnology doctoral dissertations in the U.S.

Southern (STC) Weaknesses

- The region's institutions lack strong linkages to critical U.S. centers in California and the Northeast
- Private R&D effort in nano is weak
- The South is significantly weak in patenting
 - 14.8 nanotechnology patents per million in the Southern Growth region compared with 40.9 for the nation.
 - A large proportion of the South's patents are assigned to organizations outside the region.
- The South lags behind the nation in commercialization funding

Two Propositions

Public policy can foster <u>nano research</u> clusters

- Commercialization is significantly regional path dependent
 - Regional structure of existing private firms (incumbents) and private R&D
 - o Regional capabilities and experience in start-ups
 - o Knowledge bases, human capital, institutional links
 - o Regional capital pools
 - o "Accumulation" of prior policies

Mapping the Nanotechnology Enterprise: Current Work in the US South

Early Evidence on US Regional Nano Trends (Commercial)

Future Work: Center for Nanotechnology and Society

Corporate Nano Publications

SCI publications, 1995-2004, by CMSA first-author location. CREA (ISI, 2002) nano definition.

Corporate Nano Patents

USPTO patents granted, 1995-2004, by CMSA assignee location. CREA (ISI, 2002) nano definition.

Nano Metros

Publications: SCI, 1995-2004, by first author affiliation and location. **Patents**: Granted USPTO patents, 1995-2004. CREA (ISI, 2002) nano definition.

US Census Bureau definitions of CMSAs and MSAs. Location by assignee. Biometro class: BC = Major Biotech Center; RC = Bio Research Center (Cortright and Mayer, Signs of Life, 2002).

Patenting		Corporate		Biometro
Rank	Metro	Publications	Patents	Class
1	San Francisco, CA	15.6%	20.4%	BC
2	New York, NY	19.3%	13.9%	BC
3	Boston, MA	6.7%	9.6%	BC
4	San Diego, CA	5.0%	5.9%	BC
5	Chicago, IL	3.3%	4.1%	RC
6	Minneapolis, MN	2.3%	3.9%	
7	Los Angeles, CA	3.0%	3.6%	BC
8	Philadelphia, PA	6.6%	3.2%	BC
9	Rochester, NY	2.6%	2.7%	
	Top 9 Metros	64.5%	67.1%	
10	Boise, ID	0.2%	2.4%	
11	Seattle, WA	1.2%	2.3%	BC
12	Denver, CO	1.1%	2.1%	
13	Washington, DC	3.0%	1.9%	BC
14	Houston, TX	1.4%	1.5%	RC
15	Dallas, TX	1.2%	1.2%	
20	Raleigh, NC	1.5%	0.8%	BC
24	Atlanta, GA	0.7%	0.7%	
	N (US Totals)	2,361	5,929	

SIIP Program in Science, Technology and Innovation Policy

Future Directions for Regional Analysis

Probe characteristics and specializations of leading regional nano centers

- Role of accumulated assets from prior / concurrent rounds of institutional, corporate, and technology development
- Opportunities for "regional breakthroughs" new areas to enter the nano "round"

Mapping the Nanotechnology Enterprise: Current Work in the US South

Early Evidence on US Regional Nano Trends

Future Work: Center for Nanotechnology and Society

21st Century Nanotechnology R&D Act of 2003 (PL 108-153)

- Framework for integrated and interdisciplinary approach to nano R&D
- Encourages applications of nano for productivity, industrial competitiveness
- Provides for nano education and training
- Requires ethical, legal, environmental, and other societal concerns to be addressed

□ Sec 2(b)(10):

- Establishes societal implications research program
- Requires nano research centers (NSECs) to address societal implications
- Integrates societal concerns with nano R&D
- Ensure advances in nanotech lead to quality of life improvements for all
- o Provides for public input

NSF Nano and Society Initiatives

[Ongoing and new major projects]

Nanoscale Science and Engineering Center (NSEC) CNS-ASU Goals

- Conduct fundamental and problem-oriented research on the societal implications of nanotechnologies;
- Expand -- through undergraduate, graduate, and post-doctoral training -- the community of scholars with the skills to create new insight into these societal dimensions of NSE;
- Engage publics, policy makers, business leaders, and NSE researchers in dialogues about the goals and implications of NSE, and use this process to build a network committed to making NSE socially beneficial and addressing NSE-related societal conflicts; and
- Build partnerships with NSE laboratories to introduce greater reflexiveness in the R&D process, so that problems may be addressed as ideas are being generated, evaluated, and developed, rather than after products enter society and the marketplace.

CNS-ASU Research Programs

Real-Time Technology Assessment

- 1. Research and Innovation Systems Analysis (RISA)
- 2. Public Opinion and Values (POV)
- 3. Deliberation and Participation (D&P)
- 4. Reflexivity Assessment and Evaluation (RAE)

Thematic Research Clusters

- 1. Freedom, Privacy, & Security (FPS)
- 2. Human Identity, Enhancement, & Biology (HIEB)

RTTA Program 1 Research & Innovation Systems Analysis (RISA)

RISA 1: Research Program Assessment Key Questions

What?

- Core nano thrusts (in theme domains): emergent sub-topics & interconnections
- Frontier activity assessment: 1) "hot" topics those with high rates of increase; 2) "new" topics concepts/tools first identified in the past year
- Emerging "applications" (esp. in privacy, human identity)

Who?

- Leading research institutions
- Leading researchers
- Leading industrial companies
- Emergence of knowledge networks and clusters

Where?

- Regional concentrations in the US
- International comparisons [US vs. China, Japan, EU] publishing & patenting

When?

Assessments and projections: topical emphases, networks, clusters, industrial outcomes as take-offs for discussion and scenario-building

How?

- Datamining (e.g. bibliometric and patent analyses) using VantagePoint
- Other secondary data sources (national, regional, industrial, corporate)
- Selected primary sources (interviews, expert consultation)
- RISA analysis, networking and linkages, clusters, modeling, discontinuities

RISA 1: Research Program Assessment Data Sources

SITP Program in Science, Technology and Innovation Policy

Georgia Tech nano team(s)

RISA – Senior Team Members

- Philip Shapira
- Alan Porter
- Barry Bozeman
- Jan Youtie
- Maurizio liacopetta

Junior Team Members

- Dave Schoeneck
- Dirk Libaers
- Li Tang
- Jue Wang
- 2 undergrads + 1 new GRA

GT Participation & Deliberation

Susan Cozzens

GT Nano Scientists

- Z.L. Wang
- 🗖 R. Tannebaum
- W. DeHeer

GT / UCLA/Harvard/NBER

- 🗅 Stu Graham
 - o Chien-Chun Liu
- Marie Thursby

Nano Search-Terms: Re-tuning

Search	Terms	RESULT -SCI 2005 as of 4/22
Moderators - Inclusive (<i>Mod-I)</i>	(monolayer* or (mono-layer*) or film* or quantum* or multilayer* or (multi-layer*) or array* or molecul* or polymer* or (co-polymer*) or copolymer* or mater* or biolog* or supramolecul*)	>100000
Moderators - Restrictive (Mod-R)	(monolayer* or (mono-layer*) or film* or quantum* or multilayer* or (multi-layer*) or array*)	78390
nano*	nano*	39101
Quantum	(quantum dot* OR quantum well* OR quantum wire*) NOT nano*	3633
Self-Assembly	(((SELF ASSEMBL*) or (SELF ORGANIZ*) or (DIRECTED ASSEMBL*)) AND MolEnv-I) NOT nano*	3532
Bio and Molecular	((molecul* motor*) or (molecul* ruler*) or (molecul* wir*) or (molecul* devic*) or (molecular engineering) or (molecular electronic*) or (single molecul*) or (fullerene*) or (coulomb blockad*) or (bionano*) or (langmuir-blodgett) or (Coulomb-staircase*) or (PDMS stamp*)) NOT nano*	3550
Microscopy	((TEM or STM or EDX or AFM or HRTEM or SEM or EELS) or (atom* force microscop*) or (tunnel* microscop*) or (scanning probe microscop*) or (transmission electron microscop*) or (scanning electron microscop*) or (energy dispersive X-ray) or (X- ray photoelectron*) or (electron energy loss spectroscop*)) AND MolEnv-I) NOT nano*	11665
Futurist Terms	(pebbles OR NEMS OR Quasicrystal* OR (quasi-crystal*)) AND MolEnv-I) NOT nano*	128
Nano-Related	(biosensor* or (sol gel* or solgel*) or dendrimer* or soft lithograph* or molecular simul* or quantum effect* or molecular sieve* or mesoporous material*) AND (MolEnv-R)) NOT nano*	2104
	1 or 2 or 3 or 4 or 5 or 6 or 7	61173
Journals	fullerene* or ieee transactions on nano* or journal of nano* or nano* or materials science & engineering C - biomimetic and supramolecular systems (in JOURNAL title field) NOT nano*	506
Total	1 or 2 or 3 or 4 or 5 or 6 or 7 or 8	61479

STIP Program in Science, Technology and Innovation Policy

In conclusion

Measurement of Emergence of New Technology

- o Moving target
- o Definition of the target is apt to change

Multi-measure approach

- o Quantitative
- o Qualitative
- o Flexible
- o Fast

Disaggregated methods built from micro records

- o Timeliness requires using "first level" data
- Link to real time policy making