NASA Logo - Web Link to NASA.gov

+ Text Only Site
+ Non-Flash Version
+ Contact Glenn

Go
ABOUT NASA NEWS AND EVENTS MULTIMEDIA MISSIONS MyNASA WORK FOR NASA
Computer drawing of the Wright 1902 glider in descending flight.
 The tangent of the glide angle between the flight path and the ground equals
 the change in height divided by the distance traveled.

A glider is a special kind of aircraft that has no engine. Paper airplanes are the most obvious example, but gliders come in a wide range of sizes. Toy gliders, made of balsa wood or styrofoam, are an excellent way for students to study the basics of aerodynamics. Hang-gliders are piloted aircraft that are launched by leaping off the side of a hill. The Wright brothers perfected the design of the first airplane and gained piloting experience through a series of glider flights from 1900 to 1903.More sophisticated gliders are launched by ground based catapults, or are towed aloft by a powered aircraft then cut free to glide for hours over many miles.

If a glider is in a steady (constant velocity and no acceleration) descent, it loses altitude as it travels. The glider's flight path is a simple straight line, shown as the inclined red line in the figure. The flight path intersects the ground at an angle a called the glide angle. If we know the distance flown d and the altitude change h, we can calculate the glide angle using trigonometry:

tan(a) = h / d

where tan is the trigonometric tangent function. The ratio of the change in altitude h to the change in distance d is often called the glide ratio.

If the glider is flown at a specified glide angle, the trigonometric equation can be solved to determine how far the glider can fly for a given change in altitude.

d = h / tan(a)

Notice that if the glide angle is small, the tan(a) is a small number, and the aircraft can fly a long distance for a small change in altitude. Conversely, if the glide is large, the tan(a) is a large number, and the aircraft can travel only a short distance for a given change in altitude. We can think of the glide angle as a measure of the flying efficiency of the glider. On another page, we will show that the glide angle is inversely related to the lift to drag ratio. The higher the lift to drag ratio, the smaller the glide angle, and the farther an aircraft can fly.


Activities:
Button to Display Grade 6-8 Activity Button to Display Grade 6-8 Activity Button to Display Grade 9-12 Activity Button to Display Grade 11-12 Activity
Guided Tours
  • Button to Display Previous Page Gliding Flight: Button to Display Next Page


Navigation ..

Button to Display Aerodynamics Index
Beginner's Guide Home Page

 

     First Gov Image


+ Inspector General Hotline
+ Equal Employment Opportunity Data Posted Pursuant to the No Fear Act
+ Budgets, Strategic Plans and Accountability Reports
+ Freedom of Information Act
+ The President's Management Agenda
+ NASA Privacy Statement, Disclaimer,
and Accessibility Certification

 

NASA Logo   
Editor: Tom Benson
NASA Official: Tom Benson
Last Updated: Jul 11 2008

+ Contact Glenn