#### Prediction of Field Germination Using a Wet Thermal Accumulation Model

Jennifer Coleman, Bruce Roundy and Brad Jessop

Brigham Young University Department of Plant and Animal Science Provo, Utah

## Disturbance

## Germination







#### Forbs







Eagle yarrow





Hycrest crested wheatgrass Anatone Bluebunch wheatgrass

Bottlebrush squirreltail

Cheatgrass

#### Wet Thermal Accumulation

Germination requirements

1) Water

Above base water potential (MPa)

2) Temperature

Above base temperature for some time (degree days)

#### Wet Degree Days

Crested wheatgrass requires 62.9 wet degree days for 50% germination

➢Base water potential: -1.5 MPa

➢Base temperature: 0° C

Time to germination:

>62.9 days at 1° C
>0.0417 degree days/1hour at 1°C
>6.3 days at 10 ° C
>0.417 degree days/1hour at 10°C
>3.5 days at 20° C
>0.833 degree days/1hour at 3° C

#### Methods

1. Constant temperature germination trials

2. Seed bag burial and retrievals

3. Small plot seeding

- Density
- Survival

#### **Germination Trials**

- Constant Temperatures: – 5,10,15,20,25,30,35 °C
- What we measured:
   Days to 25% germination
   Days to 50% germination
- What we needed to know:
   Hourly germination rate

#### **Germination Rate**



#### **Crested wheatgrass**



#### **Germination Rate**



Appar Blue flax



## Thermal accumulation: 2 methods Cold

1) The main setting accumulation begins again
 2) Thermal accumulation begins again

Ungerminated



#### **Skull Valley**

#### Lookout Pass





#### Seedbed Monitoring

#### Temperature

- Depths:
  - 2-3 cm
  - 15-16 cm
  - 28-30 cm

#### Moisture

- Depths:
  - 2-3 cm
  - 15-16 cm
  - 28-30 cm



## Study Sites







| 4 | 1 | Small Plots |
|---|---|-------------|
|   |   | Seedbags    |
|   | 2 | Small Plots |
|   |   | Seedbags    |



## Seedbags

#### Fall 2005-Spring 2006

| Planted:         | Retrieved:  |  |  |  |
|------------------|-------------|--|--|--|
| 10.95/SEC 020520 |             |  |  |  |
| retrie 1/12/18   |             |  |  |  |
| 2/27/06          | 3/16        |  |  |  |
|                  | 3/28        |  |  |  |
|                  | 4/11        |  |  |  |
|                  | 4/25        |  |  |  |
|                  | 5/10 & 5/11 |  |  |  |
| 3/28/06          | 4/11/06     |  |  |  |
| 4/11/06          | 4/11/06     |  |  |  |



#### Seedbag germination: Skull Valley



#### Seedbag germination: Lookout Pass



## Seedbag Retrievals

- 1) Thermal accumulation starting over at individual wet periods
  - >25% germination?
  - >50% germination?
- 2) Continuous thermal accumulation during all wet periods
  - >25% germination?
  - >50% germination?

#### Wet Thermal Accumulation Model Accuracy: Lookout Pass



■ individual wet periods ■ ∑wet periods

#### Wet Thermal Accumulation Model Accuracy: Skull Valley



#### Wet Thermal Accumulation Model Accuracy: Skull Valley



#### Seedbag Retrieval 4 2/27-3/28/06



#### Wet Thermal Accumulation Model Accuracy: Skull Valley



■ individual wet periods ■ ∑wet periods

#### Seedbed Conditions: Lookout Pass



## Small Plots





| 3 | 1 | Small Plots |
|---|---|-------------|
|   |   | Seedbags    |
|   | 2 | Small Plots |
|   |   | Seedbags    |

| 4 | 1 | Small Plots |
|---|---|-------------|
|   |   | Seedbags    |
|   | 2 | Small Plots |
|   |   | Seedbags    |



#### Treatments

#### **Crested wheatgrass**



#### Seedling Density and Survival 2006 Lookout Pass



# Skull Valley



#### Seedling Mortality



#### Seedbag Conditions



#### Seedbag Conditions



#### Conclusions

Can a wet thermal accumulation model be used to predict germination? -Yes, if no special requirements are needed for germination Ex: light for yarrow Precautions: - Cold conditions - High temperature and moisture fluctuations

#### **Further Research**

#### Fall 2006 and Spring 2007 seedbag retrievals

#### Spring and Summer 2007 small plot readings

Modelling emergence and survival: Root growth

#### Questions?