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The repeated testing of a null univariate hypothesis
in each of many sites (either regions of interest or
voxels) is a common approach to the statistical analy-
sis of brain functional images. Procedures, such as the
Bonferroni, are available to maintain the Type I error
of the set of tests at a specified level. An initial assump-
tion of these methods is a “global null hypothesis,” i.e.,
the statistics computed on each site are assumed to be
generated by null distributions. This framework may
be too conservative when a significant proportion of
the sites is affected by the experimental manipulation.
This report presents the development of a rigorous
statistical procedure for use with a previously re-
ported graphical method, the P plot, for estimation of
the number of “true” null hypotheses in the set. This
estimate can then be used to sharpen existing multiple
comparison procedures. Performance of the P plot

ethod in the multiple comparison problem is inves-
igated in simulation studies and in the analysis of
utoradiographic data. © 2001 Academic Press

Key Words: PET; autoradiography; multiple compar-
isons; P plot.

INTRODUCTION

Data derived from imaging modalities, such as auto-
radiography or positron emission tomography (PET),
are usually presented as measures of blood flow or
metabolic activity in a number of sites of interest in the
brain, where each site is either an anatomical region of
interest (ROI) or a voxel in the data-volume (Ford et
al., 1991). Statistical analysis of images acquired in
various experimental conditions is often performed by
collecting results of univariate tests (Student’s t tests
or their equivalent) computed on each site of the im-
ages and by retaining as significant those ROIs or
voxels in which the magnitude of the test statistic is
above a certain threshold (Ford et al., 1991; Friston et
al., 1991; Worsley et al., 1992). The choice of threshold
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is usually influenced by the goal of minimizing the
number of false positives that may be generated by the
whole set of tests; i.e., the larger the number of tests,
the higher is the expected number of false positives,
and so the threshold is raised accordingly. This frame-
work is often designated as the multiple comparison
problem (for a review see Hochberg and Tamhane,
1987). Unfortunately, such a procedure, although sim-
ple in principle, decreases the probability of detecting
“true” differences among experimental conditions as
the number of tests increases (Hochberg and Ben-
jamini, 1990). The present report describes an alterna-
tive approach to the multiple comparison problem that
introduces some additional modeling of the set of col-
lected statistics.

The report is organized as follows: Section 1.1 intro-
duces notation, defines the problem of multiple com-
parisons, and gives an overview of the available ap-
proaches to its solution; Section 1.2 briefly specifies the
problem for neuroimages; Section 1.3 gives some in-
sight on the limitation of these procedures; Section 1.4
introduces a graphical method for the estimation of the
number of “true” null hypotheses from the set of sta-
tistics; and Section 1.5 details its application in the
multiple comparison problem. Section 1.6 contains
technical details for the computation of the plot. Fi-
nally, the theoretical framework is applied to simula-
tion studies and to the analysis of ROI data obtained
from autoradiographic studies in rodents.

THEORETICAL FRAMEWORK

1.1. Problem and Notation

Consider a univariate statistic t and let f(t, u ) be its
probability density function (p.d.f.) with parameter
vector u. In the case of the normal distribution N(m, s2),
u is the two element vector u 5 [m, s2], where m and s2

are, respectively, the mean and variance of the density.
In the usual hypothesis-testing framework, it is of

interest to estimate the likelihood of the data’s having
been generated under a null hypothesis; this corre-
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921P-PLOT AND NEUROIMAGING DATA
sponds to determining the probability p that the test
statistic belongs to the null distribution. For a two-
tailed test,

p 5 1 2 E
2t

t

f~x, u0!dx, (1)

here t is the observed value of the test statistic, and u0

is the vector of parameters of the null p.d.f. Examples
of null distributions are the standard normal distribu-
tion N(0, 1) and Student’s t distribution, Tdf(0), where
df indicates the degrees of freedom. In a univariate
test, the observed value t allows rejection of the null
hypothesis if its corresponding P value is smaller than
a threshold value a; this threshold is usually arbi-
trarily set to some conventional value, e.g., 0.05, 0.01,
or 0.001. Small values of P provide strong evidence that
the null hypothesis is not true. a corresponds to the
Type I error or to the chosen probability risk of false
rejection of the null hypothesis.

Consider now the problem of simultaneously testing
N univariate null hypotheses on N sites of interest,
.g., on N ROIs or voxels. Let t1, t2, {, tN be the observed
alues of the test statistic and p1, p2, {, pN the corre-

sponding probabilities. In order to control the multi-
plicity effect when considering a family of comparisons
simultaneously, classical multiple comparison proce-
dures seek to control the probability of committing any
Type I error. The control of this Family-Wise Error
(FWE) implies that the probability of false rejection of
at least one null hypothesis should be less than the
error level a. This framework is common in neuroim-
aging data analysis (Ford et al., 1991). A simple proce-
dure that controls the FWE at level a is the Bonferroni

rocedure that allows the rejection of the ith null hy-
othesis in a set of N tests if

pi # a/N. (2)

The Bonferroni procedure can be improved by realizing
that once one of the N null hypotheses has been re-
jected it cannot be considered true anymore and the
number of possible true hypotheses remaining will be
now (N 2 1). Holm (1979) incorporated this concept
into a more powerful step-down procedure that main-
tains control of the FWE.

Suppose, without loss of generality, that the P values
previously defined are ordered so that p1 , p2

,{,pN. Then, according to Holm’s procedure, the
ith null hypothesis, Hi, is rejected when, for all j 5
, {, i

p , a/~N 2 j 1 1!. (3)
j
Thus one starts from H1 and tests whether the inequal-
ity p1 , a/N holds; if so then H1 is rejected and H2 is
tested by examining whether the inequality p2 ,
a/(N 2 1) holds, and so on. The iterative procedure
nds whenever Inequality (3) is not satisfied, and all
emaining hypotheses are accepted.
More recently Hochberg (1988) introduced a step-up

ersion of Holm’s procedure that follows from the clo-
ure principle of Marcus et al. (1976). The procedure
xtends from highest to lower P value by accepting Hi,

if, for all j 5 i, {, N,

pj . a/~N 2 j 1 1!. (4)

Whenever Inequality (4) is not satisfied the hypothesis
Hi and all hypotheses with lower P values are rejected.

The Hochberg procedure controls the FWE and is
uniformly more powerful than the Holm procedure
since it rejects any hypothesis rejected by the latter
and applies the same correction quotient in a step-up
fashion (Dunnet and Tamhane, 1992).

These Bonferroni-type procedures require no as-
sumptions about the data and the measured variables.
Further developments have sharpened the step-down
and step-up approaches by incorporating the depen-
dence structure among variables either in the case of
normally distributed data with known covariance
(Dunnet and Tamhane, 1991, 1992, 1995) or in the case
of unknown covariance through randomization testing
(Westfall and Young, 1993, pp. 116–117; Troendle,
1996).

1.2. Analysis of Neuroimages and the Issue of Spatial
Correlation

In the analysis of neuroimages we focus on two ap-
proaches: ROI analysis and voxel-by-voxel analysis.
Both methods are intended to detect localized changes
in a physiological parameter of interest under con-
trolled FWE. Both analyses consist of a filtering step
and a thresholding procedure.

In ROI analysis there are expectations on the loca-
tion and extent of changes in the physiological param-
eter as the regions usually correspond to anatomically
defined areas. Therefore, the images are sampled with
a carefully placed template of ROIs. This is the filtering
operation; it is equivalent to the application of a mean
filter of a defined shape, i.e., the shape of the ROI,
placed in a specific location. Data are then used to
derive appropriate statistics and perform the tests,
e.g., t tests in the case of a group comparison. ROIs are
clearly spatially independent in autoradiographic data,
and in PET spatial correlation among ROIs should be
negligible unless the ROIs are very small and adjacent.
Therefore, Bonferroni or Bonferroni-like procedures
can be employed to control the FWE efficiently.
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In voxel-by-voxel analysis there is little information
on location and extent of the expected change in the
physiological parameter of interest. One may select a
smoothing filter of a particular resolution, e.g., 12 mm,
apply it to the entire volume, and compute statistics for
all sites of the volume. Since adjacent sites are spa-
tially correlated, efficient control of the FWE may be
achieved by using either parametric procedures de-
rived from Gaussian random field theory (Friston et al.,
1991; Worsley et al., 1992) or nonparametric proce-
dures when the underlying statistical distribution is
unknown (Holmes et al., 1996). The procedure can be
repeated for a number of different resolutions and the
error rate can be controlled accordingly in a parametric
(Worsley et al., 1996) or nonparametric fashion (Poline
and Mazoyer, 1994).

More recently a method that relies on the wavelet
transform, an orthogonal transform for nonstationary
signals, has been introduced for the multiscale analy-
sis of neuroimages (Turkheimer et al., 2000). In anal-
ogy with the ROI and voxel-by-voxel analyses, the im-
age is passed through a battery of mirror filters that
generate a new representation of the data wherein
each coefficient represents an object of a specific reso-
lution and position in the original image. In this ap-
proach statistical analysis is performed by threshold-
ing in wavelet space. It can be shown that in this
particular functional space, which has the same size as
the original volume, one can easily achieve complete
decorrelation among wavelet coefficients both between
and within resolutions (Turkheimer et al., 2000).
Therefore, for this method a simple Bonferroni proce-
dure suffices for the efficient control of FWE.

Given these considerations, this article concentrates
on the problem of efficient control of FWE in the case of
data that are not spatially correlated. Application to
neuroimages is then natural both in the case of ROI
analysis, and, though transformation to wavelet space,
to voxel-by-voxel analysis.

1.3. Limitations of Classical Multiple Comparisons
Procedures

The use of procedures for the control of the FWE
preserves the significance level a for the set of compar-
isons but decreases substantially the power of detect-
ing a true effect, i.e., it preserves the significance level
at the expense of increasing the Type II error (Hoch-
berg and Benjamini, 1990; Benjamini and Hochberg,
1995). The concern for this issue has raised a number
of approaches that divert attention from the control of
the FWE and, instead, deal with different philosophies
that range from the control of some function of Type I
and Type II errors (Spiøtvoll, 1972; Soric, 1989; Ben-
jamini and Hochberg, 1995) to the total avoidance of
correction for multiple comparisons (Rothman, 1990;
Saville, 1990).
In the following section an alternative approach to
the multiple comparison problem will be introduced
that is motivated by the following observations. First,
it is important to note that all the procedures described
above are designed to control the number of false re-
jections in a set of N null hypotheses supposing that all
are true. In other words, these methods control the
number of statistics over a certain threshold generated
by N independent sites (Bonferroni-type procedures)
with the assumption that they are all generated by null
distributions. This is a result of the extension to the
multivariate problem of the univariate hypothesis test-
ing framework that has the premise of a separate ex-
periment for each inference assumed to be stated prior
to the experiment (Hochberg and Benjamini, 1990).

The assumption of all the univariate hypotheses be-
ing null can result in a test’s being too conservative
when, for example, there is measurable evidence of a
treatment effect from a global test such as the Hotell-
ing T2 or others. This argument had been incorporated
into the approach of Duncan (1965) where the signifi-
cance level of the pair-wise testing among means de-
pends in a inverse way on the analysis of variance F
statistic. The same issue arises when most of the sig-
nificance levels computed in a multiple testing experi-
mental design cluster around low P values, such as 0.1
or 0.05, which suggests that the assumption that all
the Hi are true is quite unrealistic.

Let now N0 be the number of true null hypotheses or,
equivalently, the number of statistics generated by
null distributions in the set. Consequently (N 2 N0) is
the number of sites in which statistics are generated by
non-null distributions. Of course N0 is usually un-
known, but it can be observed that if an estimate of it
were available, less conservative corrections could be
used (Schweder and Spjøtvoll, 1982; Hochberg and
Benjamini, 1990).

1.4. The P Plot Graphical Method

An interesting approach to the multiple comparison
problem considers the estimation of the number of true
null hypotheses N0 from the N tested and uses this
estimate to sharpen the Bonferroni-type procedures
previously described (Hochberg and Benjamini, 1990;
Schweder and SpjØtvoll, 1982).

Suppose that N hypotheses are tested and that the
orresponding P values are calculated. It is known that
he P value is uniformly distributed over [0, 1] when
he hypothesis under test is true. The P plot graphical
ethod consists of plotting the ordered values qi 5 1 2

pi, sorted in ascending order, versus their rank. On this
plot the points corresponding to the true hypotheses
(large values of pi) should roughly fall along a straight
line passing through the origin and the points corre-
sponding to the false hypotheses (small values of p)
should deviate rightward. The slope of the straight line
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923P-PLOT AND NEUROIMAGING DATA
fitted to the points with large values of p should give an
estimate of N0, say N̂0, that is computed as

N̂0 5 ~1/b̂! 2 1 (5)

here b̂ is the estimate of the slope. This procedure is
alid and the estimate unaltered also if the p are cor-

related (Schweder and SpjØtvoll, 1982). Some exam-
ples of the plot are illustrated in Fig. 1.

1.5. The P Plot and Multiple Comparison Procedures

A number of different applications of the P plot have
been suggested. The technique can be applied for in-
formal inference to give an overall view of the collection
of univariate tests as a valuable indicator of the num-
ber of variables affected by the treatment (Schweder
and SpjØtvoll, 1982).

However, the estimate of N0, by itself, does not allow
direct inferences on each hypothesis; in fact, knowing
the number of true and false hypotheses in a collection
of tests does not ascertain which hypotheses are true
and which are false. Thus, the practice of rejecting the
null hypotheses with the (N 2 N̂0) smallest P values
can cause an uncontrolled number of false rejections.
In order to make formal probabilistic statements on
each hypothesis, the estimate N̂0 can be used with one
of the Bonferroni-type procedures with a consequent
increase in its power. For example, in the case of the
Bonferroni method, if the FWE has to be controlled at
the overall level a then the level a/N̂0 will be used for
the individual tests instead of a/N with a significant

ecrease of Type II errors, particularly when N̂0 ,, N
(Schweder and SpjØtvoll, 1982).

Similar modifications apply to the stepwise methods
(Hochberg and Benjamini, 1990). The Hochberg proce-
dure, for example, can be modified as follows. Given the
set of ordered P values and corresponding hypotheses

reviously defined, start the procedure by accepting
hose hypotheses for which pi . a, and let N1 be their

number. Consider then the inequality:

p~N2N1! ,
a

min~N0, N1 1 1!
(6)

f (6) is satisfied then H(N2N1 ), and all the ordered hy-
otheses with smaller P values, are rejected. If the
nequality is not satisfied then H(N2N1 ) is accepted, N1 is
ncreased by 1 and the inequality (6) is reapplied to the
ollowing hypotheses (Hochberg and Benjamini, 1990).

.6. A Procedure for the Application of the P Plot

Two problems hamper the use of the graphical tech-
ique. The first concerns the number of qi 5 1 2 pi used

in the estimation of the slope b̂, the choice of which
affects both the bias and the uncertainty of the esti-
mate. Often the plot will not show a clear-cut break
between the aligned qi belonging to the “true” null
hypotheses and those deviating from the straight line
that presumably belong to “false” null hypotheses, but
a rather gradual bend will be observable. The trade-off
then is between considering a large number of qi,
which lowers the variance of the estimate, or comput-
ing the slope from only the initial points close to the

FIG. 1. P Plots of the contrasts among the groups of rats in which
local rates of cerebral glucose utilization were measured with the
quantitative autoradiographic [14C]deoxyglucose method. Data are
from the study of Entrei et al. (1999) and are shown in Table 1. In
each contrast, a P value, pi, was computed by use of a Student’s t test
n each of the 43 regions of interest, and the complementary proba-
ilities, qi 5 1 2 pi, were rank ordered so that q1 # q2 # . . . # q43.
he qi values were then plotted on the ordinate and their ranks on

he abscissa. The estimated slope of the linear portion of the curve,
ˆ , was used to derive the estimated number of “true” null hypothe-
es, N̂0, as N̂0 5 (1/b̂) 2 1. (A) For the contrast of the control group

with the group of rats administered diazepam, N̂0 5 8; (B) Control
versus ketamine, N̂0 5 24; (C) Control versus ketamine plus diaze-

am, N̂0 5 17.
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origin, which reduces the bias that would result from
the inclusion of P values, corresponding to “false” null
hypotheses (Schweder and SpjØtvoll, 1982). Note that
the issue of variance reduction is relevant in this con-
text, i.e., an unbiased estimator with high variance
would produce, with large probability, estimates N̂0 ,,

0 and therefore alter the ability to control the FWE at
the desired level. In fact, the consideration of variance
reduction is the second problem and drives the need for
a method for the calculation of the regression line that
takes into account the statistical attributes of the or-
dered statistics.

Both problems are addressed here in a new approach
that departs from previous practices that were based
on “ad hoc” least squares methods (Hochberg and Ben-
jamini, 1990; Brown and Russel, 1997).

The problem of selection of K identically distributed
scores from the N observed p1, p2, {, pN, is a traditional
change-point problem (for a review see, for example,
Csörgo and Horváth, 1997). The typical solution con-
sists of applying a test of uniformity to iteratively
reduced sets of ordered P scores. If the test is rejected,
he smallest P value is discarded and the test reap-

plied. If the test is accepted, the surviving set is se-
lected for estimation of the slope of the P plot. For this
type of application, tests for uniformity are usually
based on the residuals vi 5 pi 2 i/(K 1 1), where pi are
the ordered P values and i/(K 2 i 1 1) their expected
values. A suitable statistic is then C1 5 max(vi) (see
D’Agostino and Stephens, 1986, pp. 336–337, for back-
ground and tabulated percentiles). The scores p1,
p2, . . . , pK selected in the above step can then be used
for estimation of the slope of the plot, from which the
estimated number of true null hypotheses is then de-
termined by Eq. (5). Each pi is a beta random variable
with parameters (i, K 2 i 1 1), mean i/(K 1 1) and
variance [i(K 2 i 1 1)]/[(K 1 1)2(K 1 2)] (Quesenberry
and Hales, 1980). For the slope estimation we can
adopt the normal approximation to the beta distribu-
tion and use a weighted least squares (WLS) procedure
with variances [i(K 2 i 1 1)]/[(K 1 1)2(K 1 2)] to weight
the residuals.

MATERIALS AND METHODS

The following sections describe two experiments
with simulated and measured data sets. In the first
experiment we applied the P plot graphical method to
simulated data sets in order to validate the numerical
procedure and to investigate its properties. The second
experiment illustrates a real-case application by con-
sidering the analysis of a set of ROI autoradiographic
data.

In all instances, the P plot was computed according
o the method described in Section 1.6. The significance
alue for the C1 test for uniformity was set at a 5 0.01.

All algorithms were implemented in MATLAB (The
Mathworks Inc., Natick, MA) and run on a Ultra-Sparc
10 Sun Workstation (SunSystems, Mountain View,
CA).

1. Monte-Carlo Simulations

Simulated data sets were designed to resemble ex-
perimental conditions usually met in neuroimaging
studies, particularly autoradiography and PET, in
terms of sample sizes, treatment effects, and number of
variables (regions of interest) tested.

The first set of simulated data modeled a control and
a treatment group, each consisting of 10 experimental
subjects, with 50 ROIs. Data were normally distributed
with standard deviation equal to unity; a treatment
effect d equal to one standard deviation was added to
the mean of the treatment group in 47, 45, 40, 35, 30,
20, 10, or 0 ROIs so that the number of true null
hypotheses, N0, was 3, 5, 10, 15, 20, 30, 40, or 50,
respectively. In each ROI the difference in means be-
tween the control and treatment group was tested with
the two-tailed Student’s t test. The P plot method was
applied to each set of 50 P values resulting from the
Student’s t tests. The process was repeated 5000 times,
and the mean and standard deviation of the estimates
N̂0 were calculated. For each simulated data-set, P
values were then fed into a Hochberg step-up proce-
dure that used either N or N̂0 as number of true null
hypotheses; FWE was controlled at a 5 0.05. This
enabled the evaluation of the performance of the com-
bined use of the plot and a multiple comparisons pro-
cedure both in terms of control of FWE and power.

Three other simulations were performed, each one
preserving the parameters of the first, except changing
in turn the sample size (from 10 to 20 subjects), the
treatment effect (d from 1 to 1.5 units), or the total

umber of regions of interest (from 50 to 20 ROIs).

. Autoradiographic Data Set

The P plot was applied to data from a study of the
effects of ketamine and diazepam anaesthesia on local
cerebral glucose utilization (lCMRglc) in rats (Entrei et
al., 1999). lCMRglc was measured with the quantitative
[14C]deoxyglucose method (Sokoloff et al., 1977) in 43
egions of interest in four groups of rats: a control
roup (n 5 6); a group treated with ketamine (10 mg/
g) (n 5 5); a group treated with diazepam (0.5 mg/kg)
n 5 6); and a group treated with both ketamine (5
g/kg) and diazepam (0.25 mg/kg) (n 5 6). The data

are shown in Table 1. For the purposes of the current
analysis, it was assumed that the contrasts of the
control group against each of the three treatment
groups are of interest. Homogeneity of variances
among the four groups was determined by use of Bar-
tlett’s test (Snedecor and Cochran, 1980, pp. 252–253),
t statistics were computed, and P values were deter-
mined from a t distribution with the appropriate de-
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TABLE 1

Local Rates of Cerebral Glucose Utilization (lCMRglc) in Control Rats and Rats Treated with Diazepam,
Ketamine, or Ketamine Plus Diazepama

lCMRglc (mmol/100 g/min)

Control (n 5 6)

Diazepam
(0.5 mg/kg)

(n 5 6)

Ketamine
(10 mg/kg)

(n 5 5)

Ketamine
(5 mg/kg) plus

Diazepam
(0.25 mg/kg)

(n 5 6)

Auditory system
Auditory cortex 139 6 12 105 6 18 101 6 11 96 6 14
Medial geniculate 115 6 11 92 6 16 80 6 6 75 6 12
Inferior colliculus 173 6 18 152 6 25 112 6 18 117 6 7
Superior olivary nucleus 119 6 9 134 6 30 123 6 18 151 6 23
Ventral cochlear nucleus 136 6 18 154 6 31 131 6 14 138 6 13
Lateral lemniscus 67 6 8 59 6 15 65 6 5 53 6 10

Visual system
Visual cortex 93 6 10 85 6 17 110 6 14 77 6 15
Lateral geniculate 82 6 8 62 6 9 76 6 3 68 6 12
Superior colliculus 75 6 9 70 6 6 81 6 14 63 6 12

Sensorimotor system
Sensorimotor cortex 101 6 7 72 6 7 90 6 11 72 6 11
Ventrolateral thalamic nucleus 95 6 12 70 6 13 89 6 5 76 6 15
Red nucleus 74 6 3 58 6 8 79 6 8 61 6 11
Medial vestibular nucleus 110 6 15 96 6 18 102 6 8 98 6 17
Hypoglossal nucleus 63 6 6 52 6 11 56 6 3 55 6 12
Cerebellar grey matter 58 6 3 45 6 10 53 6 5 47 6 4

Olfactory system
Olfactory tubercle 110 6 12 81 6 16 151 6 30 100 6 13

Limbic system
Fornix 58 6 14 52 6 7 81 6 7 48 6 8
Presubiculum 95 6 7 61 6 14 172 6 11 97 6 21
Cingulum 42 6 5 34 6 3 54 6 5 38 6 6
Retrosplenial agranular cortex 106 6 14 69 6 7 140 6 12 84 6 13
Cingulate cortex 119 6 11 83 6 11 156 6 29 98 6 16
Anteroventral thalamic nucleus 126 6 23 73 6 10 183 6 23 100 6 17
Mamillary body 109 6 6 44 6 11 173 6 16 54 6 9
Hippocampus: CA3 87 6 8 64 6 9 137 6 18 93 6 19
Entorhinal cortex 61 6 7 45 6 7 78 6 9 53 6 10
Amygdala 57 6 8 58 6 7 75 6 9 61 6 8
Nucleus accumbens 72 6 10 58 6 16 74 6 20 76 6 22
Interpeduncular nucleus 96 6 12 87 6 15 117 6 16 96 6 10
Medial Habenula 66 6 8 58 6 10 63 6 2 57 6 5
Lateral Habenula 95 6 10 66 6 7 76 6 6 65 6 9

Basal ganglia
Caudate putamen 111 6 10 84 6 11 125 6 15 108 6 24
Substantia nigra, pars compacta 85 6 10 65 6 15 102 6 15 86 6 14
Substantia nigra, pars reticulata 45 6 12 34 6 7 54 6 9 40 6 7
Globus pallidus 52 6 5 51 6 9 65 6 9 49 6 11

Association areas
Prefrontal cortex 90 6 9 69 6 7 94 6 7 78 6 14
Frontal cortex 94 6 7 69 6 9 95 6 9 76 6 10

Hypothalamus
Paraventricular nucleus 52 6 8 45 6 7 50 6 7 42 6 4
Supraoptic nucleus 64 6 6 40 6 8 57 6 4 41 6 9

Myelinated fiber tracts
Corpus callosum 37 6 2 30 6 4 49 6 3 30 6 5
Anterior commissure 43 6 4 35 6 7 50 6 10 36 6 3
Hippocampal fimbria 27 6 3 20 6 2 26 6 2 21 6 4
Cerebellar white matter 36 6 4 29 6 5 37 6 4 30 6 4

Whole brain weighted average 69 6 8 52 6 6 73 6 6 57 6 7

a Values are Means 6 SD for the number of animals indicated in parentheses. From Eintrei et al. (1999).
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TABLE 2

Number of True Null Hypotheses Estimated by Graphical P-Plot Method in Simulated Data Setsa

Graphical p-plot method: Simulation 1

Number of regions (N) 50 Regions of interest
Subjects per group 10 Subjects
Treatment effect (d) 1.0 Unit

Number of true
null hypotheses

Estimated number of
true null hypotheses

(N̂0)
Hochberg step-up procedure

(N0 5 N)
Hochberg step-up procedure

(N0 5 N̂0)

N0 Mean S.D. FWE (a 5 0.05) Power FWE (a 5 0.05) Power

3 13.2 3.79 0.005 0.089 0.017 0.189
5 15.3 3.80 0.007 0.090 0.021 0.175

10 20.0 3.79 0.009 0.089 0.029 0.148
15 24.6 3.83 0.019 0.088 0.035 0.130
20 29.0 3.69 0.019 0.088 0.033 0.119
30 37.3 3.46 0.030 0.086 0.040 0.102
40 44.7 2.83 0.040 0.086 0.046 0.092
50 50.5 2.20 0.049 N/A 0.048 N/A

Graphical p-plot method: Simulation 2

Number of regions (N) 50 Regions of interest
Subjects per group 10 Subjects
Treatment effect (d) 1.5 Unit

Number of true
null hypothesis

Estimated number of
true null hypotheses

(N̂0)
Hochberg step-up procedure

(N0 5 N)
Hochberg step-up procedure

(N0 5 N0)

N0 Mean S.D. FWE (a 5 0.05) Power FWE (a 5 0.05) Power

3 5.50 1.76 0.005 0.427 0.038 0.668
5 7.70 1.98 0.008 0.423 0.038 0.617

10 13.1 2.29 0.012 0.411 0.039 0.540
15 18.2 2.45 0.022 0.401 0.047 0.492
20 23.2 2.53 0.028 0.398 0.047 0.463
30 33.1 2.67 0.033 0.380 0.044 0.412
40 42.6 2.68 0.039 0.371 0.042 0.382
50 50.4 2.17 0.053 N/A 0.054 N/A

Graphical p-plot method: Simulation 3

Number of regions (N) 50 Regions of interest
Subjects per group 20 Subjects
Treatment effect (d) 1.0 Unit

Number of true
null hypotheses

Estimated number of
true null hypotheses

(N̂0)
Hochberg step-up procedure

(N0 5 N)
Hochberg step-up procedure

(N 0 5 N̂ 0)

N0 Mean S.D. FWE (a 5 0.05) Power FWE (a 5 0.05) Power

3 5.06 1.53 0.004 0.398 0.039 0.684
5 7.22 1.85 0.007 0.395 0.043 0.629

10 12.6 2.18 0.015 0.386 0.043 0.539
15 17.8 2.37 0.021 0.377 0.046 0.482
20 22.9 2.40 0.028 0.369 0.046 0.445
30 32.8 2.61 0.031 0.356 0.040 0.394
40 42.5 2.62 0.038 0.341 0.042 0.341
50 50.3 2.18 0.051 N/A 0.051 N/A
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grees of freedom. FWE was controlled at a 5 0.05 for
each of the 3 sets of 43 comparisons.

RESULTS

1. Simulation Studies

The means and standard deviations of the number of
true null hypotheses estimated by the P plot method in
the simulation studies are displayed in Table 2. In-
cluded also are the experimental FWE (frequency of at
least one true null hypothesis rejected) and power
(fraction of non-null distributions rejected) of the Hoch-
berg step-up procedure that used either the total num-
ber of hypotheses tested (N0 5 N) or the number of true
null hypotheses estimated by the graphical P plot
method (N0 5 N̂0). Consistent with previous work
(Schweder and SpjØtvoll, 1982) the estimator was
found to be biased. Although bias is usually an unde-
sirable feature of an estimation procedure, in this case
it is not problematic because the shift is in the conser-
vative direction (N̂0 . N0). Note that bias is reduced
when the statistical analysis gains power with a
greater number of subjects (n 5 20) or with an in-
reased treatment effect (d 5 1.5 units). Remarkably,

the procedure is effective also with a smaller number of
P values (N 5 20 ROIs). The resulting increase of
power of the Hochberg procedure is evident with gain
up to 100% for N0 ,, N.

In all simulations the FWE was controlled at 0.05 as
he experimentally observed frequencies of rejection of
t least one true null hypothesis fell below the upper
imit of the 90% confidence interval surrounding the
ejection frequency of a 5 0.05, in this case the interval
.05 6 0.005. This interval can be computed by noting
hat the rejection of the null hypothesis is a binomial

TABLE 2

Graphical p-plot m

Number of regions (N) 20 Regions of interest
Subjects per group 10 Subjects
Treatment effect (d) 1.0 Unit

Number of true
null hypotheses

Estimated number of
true null hypotheses

(N̂0)
Hochb

N0 Mean S.D. FWE (a

3 7.43 2.3 0.0
5 9.27 2.4 0.0
8 11.9 2.3 0.0

10 13.6 2.3 0.0
12 15.2 2.1 0.0
15 17.3 1.9 0.0
17 18.6 1.6 0.0
20 20.5 1.9 0.0

a Values are Means 6 SD of 5000 simulated data sets. N/A, Not a
event. The number of events (5000 in each simulation)
allows the use of the Normal approximation to the
binomial distribution and therefore the approximate
90% confidence interval surrounding the rejection fre-
quency a 5 0.05 is given by the formula a 6
1.645[(a)(1 2 a)/5000]1/2 (Noreen, 1989, pp. 34–35).

2. Autoradiographic Study

The P plots for the three contrasts and the best-
fitting lines through the linear part of the data are
shown in Fig. 1. The estimated numbers of true hy-
potheses, N̂0, were 8, 24, and 17 for the contrasts of
control vs diazepam, control vs ketamine, and control
vs ketamine-diazepam, respectively. The correspond-
ing estimates of the number of non-null distributions,
N 2 N̂0, were, therefore, 35, 19, and 26, respectively,
for the 43 regions of interest. These values indicate
that the effects of diazepam are found throughout the
brain whereas effects of ketamine, and ketamine and
diazepam given in combination, are more regionally
selective. The P values obtained by Student’s t tests,
before correction for multiple comparisons, are shown
in Table 3. By application of the Hochberg procedure,
lCMRglc was found to be statistically significantly dif-
ferent (FWE set at a 5 0.05) from control in 13 brain
regions in the diazepam-treated animals, 13 regions in
the ketamine-treated animals, and seven regions in
the animals treated with both drugs in combination.
Use of N̂0 instead of N in the Hochberg procedure
esulted in an additional 7 regions in which lCMRglc

was statistically significantly altered by diazepam and
only one more by ketamine and the combination of
ketamine and diazepam. These values reinforce the
finding of a generalized effect of diazepam to decrease
lCMR throughout the brain (Kelly et al., 1986). Ket-

ontinued

od: Simulation 4

step-up procedure
(N0 5 N)

Hochberg step-up procedure
(N0 5 N̂0)

.05) Power FWE (a 5 0.05) Power

0.157 0.029 0.255
0.152 0.031 0.224
0.155 0.039 0.199
0.154 0.043 0.183
0.150 0.045 0.171
0.147 0.051 0.159
0.143 0.043 0.150
N/A 0.052 N/A

icable (there were no false null hypotheses in these simulations).
—C

eth

erg

5 0

10
12
23
27
37
43
37
50

ppl
glc
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TABLE 3

Significance Levela for Comparison of Local Rates of Cerebral Glucose Utilization in Control Rats versus Rats
Treated with Diazepam, Ketamine, or Ketamine Plus Diazepam

Control versus
Diazepam (0.5 mg/kg)

Control versus
Ketamine (10 mg/kg)

Control versus
Ketamine (5 mg/kg) plus
Diazepam (0.25 mg/kg)

uditory system
Auditory cortex 0.0004b 0.0002b ,0.0001b

Medial geniculate 0.0029c 0.0001b ,0.0001b

Inferior colliculus 0.0547 ,0.0001b ,0.0001b

Superior olivary nucleus 0.2491 0.7735 0.0182
Ventral cochlear nucleus 0.1428 0.7290 0.8534
Lateral lemniscus 0.1766 0.6783 0.0264

Visual system
Visual cortex 0.3679 0.0544 0.0725
Lateral geniculate 0.0010b 0.2734 0.0122
Superior colliculus 0.4176 0.3984 0.0552

ensorimotor system
Sensorimotor cortex ,0.0001b 0.0428 ,0.0001b

Ventrolateral thalamic nucleus 0.0021c 0.4454 0.0126
Red nucleus 0.0021c 0.3199 0.0088
Medial vestibular nucleus 0.1397 0.4311 0.2178
Hypoglossal nucleus 0.0380 0.1837 0.1084
Cerebellar grey matter 0.0013b 0.2082 0.0074
lfactory system
Olfactory tubercle 0.0140 0.0015b 0.3830

Limbic system
Fornix 0.3016 0.0008b 0.0913
Presubiculum 0.0004b ,0.0001b 0.8002
Cingulum 0.0063 0.0010b 0.1036
Retrosplenial agranular cortex ,0.0001b 0.0002b 0.0059
Cingulate cortex 0.0024c 0.0024 0.0544
Anteroventral thalamic nucleus 0.0001b 0.0001b 0.0300
Mamillary body ,0.0001b ,0.0001b ,0.0001b

Hippocampus: CA3 0.0103 ,0.0001b 0.4645
Entorhinal cortex 0.0031c 0.0028 0.1336
Amygdala 0.7901 0.0020c 0.3727
Nucleus accumbens 0.1734 0.8655 0.7009
Interpeduncular nucleus 0.2808 0.0172 0.9784
Medial Habenula 0.0828 0.6182 0.0503
Lateral Habenula ,0.0001b 0.0009b ,0.0001b

Basal ganglia
Caudate putamen 0.0089 0.1440 0.7792
Substantia nigra, pars compacta 0.0231 0.0472 0.8507
Substantia nigra, pars reticulata 0.0527 0.1297 0.3464
Globus pallidus 0.8311 0.0291 0.5119

Association areas
Prefrontal cortex 0.0018c 0.4943 0.0526
Frontal cortex 0.0001b 0.8544 0.0021c

Hypothalamus
Paraventricular nucleus 0.0960 0.7197 0.0190
Supraoptic nucleus ,0.0001b 0.1393 ,0.0001b

Myelinated fiber tracts
Corpus callosum 0.0045c 0.0001b 0.0084
Anterior commissure 0.0398 0.0965 0.0640
Hippocampal fimbria 0.0007b 0.7157 0.0037
Cerebellar white matter 0.0149 0.7525 0.0313
hole brain weighted average 0.0006b 0.2777 0.0105

a Determined by Student’s t test for difference of means. P values are not corrected for multiple comparisons. (Values reported in Entrei
et al. (1999) were corrected for the number of groups compared.)

b Hypothesis rejected by the Hochberg procedure with FWE set at a 5 0.05.
c Additional hypotheses rejected by the modified Hochberg procedure with the number of true null distributions estimated by the graphical

P plot method. FWE set at a 5 0.05.
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amine effects were most dramatic in the limbic system
in which lCMRglc was increased in 9 of 14 regions
xamined and in the auditory system in which lCMRglc

was decreased. These results agree with the proposal
that limbic seizures occur in response to ketamine
(Winters et al., 1972) and the reported depressant ef-
ects of ketamine on auditory function (Crowther et al.,
990; Dodd and Capranica, 1992). When the two drugs
ere administered together the dramatic increases in

CMRglc found with ketamine alone were reversed, and
n mamillary bodies and the lateral habenula rates
ere even statistically significantly below those found

n controls. These results are consistent with the clin-
cal observation that diazepam given in conjunction
ith ketamine reduces the hallucinations and vivid
reams seen in emergence from ketamine anesthesia
hile maintaining the anesthetic effect.

DISCUSSION

Functional imaging methods have become wide-
spread investigative tools because they can examine
activity simultaneously in all areas of the brain, but
the large numbers of regions or voxels in a functional
imaging data set present a continuing challenge to
develop statistical procedures that are sufficiently
powerful yet control the number of false positive find-
ings. In the present study we focused on the problem of
analysis of multiple independent statistics obtained by
neuroimaging sampling techniques; these techniques
may include, for example, ROI analysis or voxel-by-
voxel methods in wavelet space. A method from the
statistical literature for analysis of a collection of uni-
variate statistical tests, the P plot, was introduced. The
P plot is a graphical method that allows the estimation
of the number of sites of the image that are likely to be
generated by a null distribution; this estimate can be
used for general inference or for sharpening Bonfer-
roni-type corrections.

In this report the application of the method was
refined by use of a more rigorous statistical framework
than the one previously available. The technique was
tested through simulations that showed its ability to
control the overall error rate while enhancing the
power of the analysis especially when the number of
“true” null distribution is small. Clearly this will be the
case in those experimental settings where the mea-
sured treatment effect is expressed widely over the
brain, encompassing many voxels or anatomical re-
gions.

An autoradiographic data set was selected to illus-
trate the effect of such increase in power in the limiting
conditions of a small sample size and a large number of
testing sites. Application of the P plot resulted in find-
ing statistically significant changes in brain metabo-
lism due to anesthetic agents in a wider range of struc-
tures, a finding that is more congruent with published
literature.

Finally, we remark that although the algorithms
developed here are limited to the case of multiple in-
dependent statistics, the P plot is not and its extension
to the dependent case represents an interesting topic
for future work.
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