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Abstract

Available models of solute transport in heterogeneous formations lack in providing complete characterization of the predicted
concentration. This is a serious drawback especially in risk analysis where confidence intervals and probability of exceeding threshold
values are required. Our contribution to fill this gap of knowledge is a probability distribution model for the local concentration of
conservative tracers migrating in heterogeneous aquifers. Our model accounts for dilution, mechanical mixing within the sampling volume
and spreading due to formation heterogeneity. It is developed by modeling local concentration dynamics with an Ito Stochastic Ditferential
Equation (SDE) that under the hypothesis of statistical stationarity leads to the Beta probability distribution function (pdf) for the solute
concentration. This model shows large flexibility in capturing the smoothing effect of the sampling volume and the associated reduction of
the probability of exceeding large concentrations. Furthermore, it is fully characterized by the first two moments of the solute concentration,
and these are the same pieces of information required for standard geostatistical techniques employing Normal or Log-Normal
distributions. Additionally, we show that in the absence of pore-scale dispersion and for point concentrations the pdf model converges to the
binary distribution of [Dagan, G., 1982. Stochastic modeling of groundwater flow by unconditional and conditional probabilities, 2, The
solute transport. Water Resour. Res. 18 (4), 835—848.], while it approaches the Normal distribution for sampling volumes much larger than
the characteristic scale of the aquifer heterogeneity. Furthermore, we demonstrate that the same model with the spatial moments replacing
the statistical moments can be applied to estimate the proportion of the plume volume where solute concentrations are above or below
critical thresholds. Application of this model to point and vertically averaged bromide concentrations from the first Cape Cod tracer test and
to a set of numerical simulations confirms the above findings and for the first time it shows the superiority of the Beta model to both Normal
and Log-Normal models in interpreting field data. Furthermore, we show that assuming a-priori that local concentrations are normally or
log-normally distributed may result in a severe underestimate of the probability of exceeding large concentrations.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction concentrations over short distances. This complexity is due
to flow non-uniformity generated by spatial variability of

Densely monitored field-scale tracer tests and studies on the hydraulic conductivity K. Solute concentrations are
contaminated sites revealed large variations of solute attenuated by dilution associated with pore-scale dispersion
(PSD) and their measurements are further affected by

* Corresponding author. Tel.: +39 0461 882620; fax: +39 0461 882672. mixing within the sampling volume. In fact, solute
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in a unit volume of water: C Ax, 1)=M(x, t)/ (nAV), where
n is the formation porosity and M is the mass of solute that
at time ¢ is within the sampling volume AV centered at x,
such that the larger AV the more it acts as an attenuation
factor for the spatial variability of solute concentration.

Point concentrations are obtained operationally when
the size of the sampling volume is much smaller than the
characteristic scale of variability of K, such that one can
safely assume that AV — 0. In such a situation, the only
hydrodynamical process attenuating solute concentra-
tions is PSD. However, in all other cases, solute
concentration fluctuations that are perceived from
measurements — or that should be considered in risk
analysis, when exposures are evaluated at extraction
wells — are attenuated by the combined effect of PSD
and mixing within the sampling volume.

Since detailed mapping of hydraulic conductivity in
the subsurface is unfeasible, solute transport is typically
modeled within a stochastic framework by considering an
ensemble of realizations of the K field. Most of the
existing stochastic studies analyze the evolution of the
ensemble mean (C) and variance o of point concentra-
tion (e.g., Kapoor and Gelhar, 1994; Zhang and Neuman,
1996; Dagan and Fiori, 1997; Kapoor and Kitanidis,
1998; Pannone and Kitanidis, 1999; Fiori and Dagan,
2000; Fiori, 2002; Fiorotto and Caroni, 2002; Caroni and
Fiorotto, 2005). Others have specifically addressed the
combined effect of pore-scale dispersion and sampling
volume on solute concentration moments (Andricevic,
1998) and flux statistics at a compliance plane (Fiori etal.,
2002). These studies concur in concluding that ergodic
conditions are hardly obtained in applications, such that
(C) does not suffice to describe the concentration spatial
variability (Kitanidis, 1994; Fiori and Dagan, 1999), and a
more effective representation should be used, for example
the local probability distribution (Goovaerts, 1997, ch. 7).

Despite its importance in applications, the probability
density function (pdf) of solute concentrations in hetero-
geneous aquifers has been considered in few studies.
Dagan (1982) showed that in the absence of pore-scale
dispersion point concentration at a given (fixed) location
is at any time either the initial concentration Cy or zero,
and the resulting Cumulative Distribution Function (CDF)
is binary with probability P=(C)/C, of observing C, and
1 — P of observing zero concentration. Successively, Bellin
et al. (1994) showed that although the concentration CDF
is close to bimodality for small sampling volumes, it
approaches the Normal distribution as the sampling volume
grows large. However, all these studies neglected pore-
scale dispersion, which for point concentrations, has a
strong impact on ¢ (Kapoor and Kitanidis, 1998; Fiori
and Dagan, 2000), and thus on the concentration pdf.

More recently, Fiori (2001) argued that the Beta
distribution can be used to represent the variability of
local concentrations, because it is bounded between a
minimum and a maximum and is flexible enough to
comply with the above properties. Other evidence in
support of the Beta distribution, involving the relation-
ship between the kurtosis and the skewness, has been
discussed by Chatwin and Sullivan (1990) and Chatwin
et al. (1995) for atmospheric turbulent transport.

The effect of pore-scale dispersion on point concen-
tration CDF was investigated numerically by Fiorotto
and Caroni (2002). They showed a good fit of the Beta
distribution with data obtained numerically by simulat-
ing a tracer test in a two-dimensional heterogeneous
formation. In a companion paper, Caroni and Fiorotto
(2005) proposed an integral expression of the concen-
tration pdf, whose validity is limited to weakly
heterogeneous formations, and showed numerically
that the Beta distribution fits the experimental concen-
tration CDF well for values of the log-conductivity
variance up to o3=2.

Our work differs from that of Caroni and Fiorotto
(2005) in the following two aspects: (1) In Caroni and
Fiorotto’s work the Beta distribution is assumed a-
priori, while we look for a physical interpretation
leading to a theoretical justification of this choice; (2)
they considered only concentration data obtained from
numerical simulations, whereas in addition to that we
confronted our model to field data.

In this work, we seek to answer the following
questions: Why is the Beta distribution a better model of
local uncertainty obtained from Monte Carlo numerical
experiments than the Normal and Log-Normal distribu-
tions? Is it an artifact of numerical simulations, and in
particular of the geostatistical model of the spatial
variability of K, or a property of solute concentrations of
passive tracers? And furthermore, is the Beta distribu-
tion also a good model for the global probability
distribution, which describes the probability of exceed-
ing a given concentration threshold irrespective of the
location within the plume? We address these questions
first developing a theoretical model for the concentra-
tion CDF and then applying it to concentration data
from the Cape Cod tracer test (Leblanc et al., 1991) and
from two-dimensional numerical simulations.

2. Mathematical statement of the problem
2.1. The general expression of the concentration pdf

Let us consider the instantaneous release of a
conservative tracer with concentration C, within the source
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volume ¥} in a heterogeneous aquifer of spatially variable
K and constant porosity n. The evolution of the solute
concentration can be described by the following Stochastic
Differential Equation (SDE) (Cassiani et al., 2005):

dCay = F(Cay)dt + G(Cap)dW (1) (1)

where W(f) is the Wiener process with zero mean and
dispersion coefficient equal to 1/2 (Gardiner, 1985, p. 66),
and F and G are functions of the concentration, but not
explicitly of time (autonomous SDE). Hereafter to simplify
notation we omit the indication that C - varies in time and
space, which is therefore considered as implicit. More
specifically, ' is the expected rate of change of Caj-and is
referred to in genetics as drift function, whereas G, called
the diffusion function, defines the disturbance to the
expected rate of change caused by formation heterogeneity.
Eq. (1), which has been shown consistent with the transport
equation, was extensively applied to model solute transport
in atmospheric turbulent flow and turbulent combustion
processes (see e.g. Wandel et al., 2003; Cassiani et al.,
2005).

One important result of stochastic theories is that solute
concentrations evolve toward a maximum entropy state,
corresponding to a well mixed Gaussian plume, spontane-
ously in heterogeneous aquifers (Kitanidis, 1994; Kapoor
and Kitanidis, 1998). The rate of convergence of C toward
(C) increases with pore-scale dispersion and sampling
volume. A simple model describing such a behavior as-
sumes that the expected rate of change of local concentra-
tions is proportional to its “distance” from equilibrium:

F = 1[{C) — Cay] (2)

where k>0 is the rate of convergence of Ca - to (C) due to
dilution and mixing. The parameter x is influenced by
pore-scale dispersion and mixing in such a way that an
increase in pore-scale dispersion coefficients or AV causes
a faster convergence of Cay to {C). This approach, which
supposes that mixing and pore scale dispersion homoge-
nize the concentration field, corresponds to the Interaction
by Exchange with the Mean (IEM) (Villermaux and
Devillon, 1972) also known as Linear Mean Square
Estimation model (Dopazo and O’Brian, 1974) utilized in
combustion turbulence and chemical engineering (Cassiani
et al., 2005).

The otherwise smooth transition of Cp, to (C)
described by the first right hand term of Eq. (1) is
perturbed by flow non-uniformity, which introduces
randomness into the system. This disturbance is described
by the function G in the second right hand term of Eq. (1),

and is not uniform within the plume. In fact, Bellin et al.
(1994) observed that for a fixed time the coefficient of
variation of the solute concentration CV[Cy ] is small at
locations close to the center of mass, and increases sharply
as one approaches the fringes of the plume. This behavior
of CV[Cay] can be explained by observing that in a
Monte Carlo framework randomness is reflected in
variations of plume position and shape between indepen-
dent realizations of the velocity field, and that the
expected variations between any two independent
realizations are larger at the fringes of the plume than
close to the center of mass (e.g. Fisher et al., 1979;
Kitanidis, 1988; Dagan, 1991; Gelhar, 1993).

These differences in randomness can be modeled by
assigning the following form to the function G in the
second right hand term of Eq. (1):

G = /e Cap(Co — Cay) (3)

where €>0 is a coefficient proportional to the formation
heterogeneity. In Eq. (3), the location with respect to the
center of mass is epitomized by Cay, with Cap=C
and Ca -~ 0 representing locations close to the center of
mass and outside the ensemble plume, respectively.
Consistently with the above reasoning, in Eq. (1) G is
small compared to F when C,y is either high, i.e. close
to Cy, or small, and it is maximum for Cx=Cy/2.

After these preparatory steps the SDE (1) assumes the
following form:

dCay = k[(C) — Cap]dt + /€ Cap(Co — Cap)dW(2),
(4)

which can be written in a more convenient form for
mathematical treatment by dividing both sides of the
equation by Cj, to obtain:

dZ = «[(Z) — Z)dt + /e Z(1 — Z)dW (1) (5)

where Z=C,y/Cy and (Z)=(C)/C, are dimensionless
solute concentrations, which vary between 0 and 1. Note
that to simplify the notation we omitted to indicate the
dependence of Z on AV, which therefore is considered as
implicit.

The pdf of the normalized concentration described by
Eq. (5) satisfies the following Kolmogorov forward
equation (see e.g. Gardiner, 1985, ch. 4.3.6):

f (z,1)
Jat

e 0] 35 66 3 66 o)
(©
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Under stationary conditions, when the SDE (1) reaches
equilibrium and 6f/ 0t— 0, which is possible for auton-
omous diffusion processes (Pope, 1965), the solution of
the Eq. (6) is given by (Cobb, 1981, p. 51):

_ F[p + q] Zfl+p —z —l+q
16 = Forrg? 0 =2) )

where I'[x]=]3 7" 'e”"dr is the Euler gamma function (x
stands for p, ¢, or p+¢q and 7 is the integral dummy
variable), p=(Z)k/e=(Z)/B, and q=(1—Z))k/e=
(1—<Z»)/B. In these last two expressions, the parameter 3
assumes the following form:

2
0z

€
N (V7 )

Note that the model (7) is the familiar Beta density
function, with the polarization ratio 8 controlling the
shape of the pdf.

The stationary hypothesis introduced in order to
solve Eq. (6) does not imply that the solute concentra-
tion should reach a steady state condition, but rather that
at each time step the population ensemble of the
concentration has reached statistical equilibrium. In
other words, the concentration pdf depends on time
though the solute concentration, but not directly.

In the Eq. (8), B varies between zero and infinity
conferring to the Beta density function a large flexibility.
For example, Fig. 1 shows that when f is larger than both
(Z) and 1—<2Z) the pdf is U-shaped with polarization to
z=0 and z=1. On the other hand, when f is smaller than
both (Z) and 1 — (Z) the pdf is unimodal, and when S is
between (Z) and 1—(Z) the pdf has a J-shape with a

f(z)

Fig. 1. Typical shapes of the beta distribution model for f larger than
both (Z) and 1 —(2) (i.e. p, g<1; solid line), smaller than both (Z) and
1-(2) (i.e. p, g>1; dotted line), and for f>(Z) but f<1-(2) (i.e.
p<1, g>1; dashed-dot line).

singular point at z— 0 (see also Fig. 3 of (Cobb, 1981,
p. 49)). Note that o2 plays a fundamental role in controlling
the shape of the pdf.

In the next section, we discuss two known cases for
the pdf model: point solute concentration in the absence
of pore-scale dispersion and the purely diffusive case in
a uniform flow field, showing that our model (7)
resembles these cases when PSD is set to zero and when
03— 0 (homogeneous formation), respectively.

2.2. Two known cases of the concentration pdf

In an early work, Dagan (1982) showed that in the
absence of pore-scale dispersion the point concentration
of a conservative tracer is either C=Cy (Z=1) or C=0
(Z=0), depending on whether the sampler is internal or
external to the solute body, and the plume does not
dilute. In this idealized situation o%=(Z) [1—(2)]
and the pdf of Z assumes the following form:

f(2) =(2)o[1 -2 +[1 - (2)]d[2] ©)

where 6 is the Dirac delta function. Hence, in this case
knowing (Z) suffices to fully characterize the spatial
random function Z regardless of the model of spatial
variability. In Appendix A, we show that for f— oo,
which results from setting o5=(Z)[1—(2)] into Eq. (8),
the Beta model (7) reduces to the binary distribution (9)
as required. Notice that the first right hand term of the
SDE (5) vanishes for f— oo, thereby validating the
assumption introduced in Section 2.1 that the second
right hand term mimics solute spreading due to flow
non-uniformities associated to formation heterogeneity.

Another interesting result is obtained when dilution,
or mixing associated with AV, dominates over solute
spreading caused by flow non-uniformities. Increases in
pore-scale dispersion coefficients, or in AV, lead to
reductions of 6% (see the works by Kapoor and Kitanidis
(1998) and Fiori and Dagan (2000)) and f, which
converges linearly to zero as o3— 0.

The limit of the model (7) for small  values is
conveniently analyzed by examining the behavior of the
central moments of Z:

p ] ptq
=|—-————| L,F |-v,p,p+q— 10
{p+J 21{ ppH+a— (10)
where v>1 is the order of the moment and ,F is the
hypergeometric function (Gradshteyn and Ryzhik,
1980, p. 1045). In view of the ensuing analysis, it is
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convenient to write the moments (10) in the following
dimensionless form:

v v/2
o :{_ P } rq
()" p+al (p+9*(1+p+9q)
p+q
XZFi [_VJ?’P"‘(];T]' (11)

The careful inspection of Eq. (11) for f— 0 conducted
in Appendix B shows that ©1;,=0 when v is odd, and u, =
1-3-5-(v—1)=(v—1)!, that is the double factorial of
v—1 (Arfken, 1985, p. 548), when v is even. This
property characterizes a Normal distribution with mean
(Z) and variance ¢%. Furthermore, the convergence of
the moments Eq. (11) to those of the Normal distribution
is proportional to B and /B for v even and odd,
respectively. Note that small § values are obtained for
k> € in the SDE (5) such that Z converges rapidly to
(Z), leading to an ergodic plume. Furthermore, the
condition f— 0 is obtained for 65— 0, such that the
Normal distribution degenerates to the Dirac Delta
distribution f{z)=0[z—(Z)], a solution consistent with
the fact that for an ergodic plume C(x, £)={C(x, ?)).

We emphasize that the concentration pdf can be seen
as a measure of the uncertainty associated to the
estimation of the local concentration by the ensemble
mean, and most importantly it can be used to assess the
probability that the actual (measurable) concentration
exceeds a given threshold at a given location as required
in risk assessment. As in Normal and Log-Normal
distributions, note that the Beta model is fully
characterized by the ensemble mean and variance of
the concentration, which in the last decades have been
the object of several investigations leading to a number
of closed form solutions (see e.g. Dagan, 1982; Kapoor
and Gelhar, 1994; Kapoor and Kitanidis, 1998; Fiori and
Dagan, 2000), but at the same time enjoying a much
larger flexibility with respect to these models.

3. Numerical validation of the concentration pdf model

In Section 2 we showed, by using a physically based
stochastic model, that the concentration pdf of a passive
solute is the Beta model (7). This result was anticipated
heuristically by Fiorotto and Caroni (2002) and Caroni
and Fiorotto (2005), who observed that the model (7)
provides a good fit of the sample Cumulative Frequency
Distribution (CFD) of concentrations obtained by means
of a numerical Monte Carlo experiment (see e.g. Figs.
8 and 9 of Caroni and Fiorotto (2005)). In the ensuing
section we validate the model (7) against numerical

simulations for both small and large sampling volumes
and for different levels of formation heterogeneity.

3.1. Numerical experiment

We considered a two-dimensional isotropic forma-
tion with spatial variability of the log-transmissivity
field, Y=1In(T), described by the isotropic exponential
covariance model:

Cy(r) = aiexp[—r/ly], (12)

where Tx(x, x2)=f8K(x1, X, X3)dx3 is the hydraulic
transmissivity, 7 is the two-point separation distance and
Iy is the log-transmissivity integral scale.

A single realization of the transmissivity field was
generated using HYDRO_GEN (Bellin and Rubin, 1996;
Rubin and Bellin, 1998), and the flow equation was
solved using the Galerkin finite element code developed
by Bellin et al. (1992). Simulations were conducted in a
domain 100/y long and 70/y wide with the average flow,
U, in the x; direction. A unitary mean head gradient was
imposed by assigning constant piezometric heads along
the short sides of the domain and impervious boundaries
along the remaining two sides.

Transport was solved by forward or backward
particle tracking with pore-scale dispersion modeled as
a Brownian motion with constant longitudinal and
transverse dispersion coefficients D, ;=Uly/200 and
D, 7=Uly/2000, respectively. The resulting Peclet
numbers are P,; =200 and P.;y=2000 in longitudinal
and transverse directions, respectively.

In the forward particle tracking scheme (FPT), which
we adopted in estimating the spatial distribution of the
solute concentration, a total mass My=nCyV, of solute
was instantaneously released within the initial volume ¥
with a square horizontal projection area A, of side L=1.5
Iy, and thickness equal to the aquifer depth b. The mass
of solute was divided into N,=90,000 non-interacting
particles of volume v,=nVy/N,=2.5 107°n I3 b. The
particles were tracked forward in time by utilizing the
following tracking algorithm:

X (t + At) =X (t) + 7 [X] (l),Xz(t)]At + v 2Dd7LAt€1
(13)
Xz(t + Al) :Xz(l) + Vz[Xl (t),Xz(l)]Af +\/2Dd’TA1‘62
(14)

where V=(V, V) is the Eulerian velocity, X= (X}, X5) is
the particle’s trajectory, and €, €, are two independent
random numbers both normally distributed with zero
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mean and unitary variance. The time step Az is selected
such that the maximum step resulting from the application
of Egs. (13) and (14) to the computed velocity field is
smaller than the grid’s size.
Consistent with particle tracking the solute concentra-
tion was computed as follows:
MAV(X, l) . np(x, t) Vo

Carlt®) ==Xy~ = "Nar (15)
P

where M, is the solute mass that at time ¢ is within the
sampling volume AV with horizontal square projection
area A4 of side A and thickness b centered at x=(x1, x).
Note that M -is obtained by counting the number ,(t, x)
of particles, whose centers of mass are within A}V at time
t. Simulations were conducted with A=0.2 Iyand /Iy, such
that Cxp mimics the vertically averaged concentration
measured in a monitoring well fully penetrating the
aquifer, in the first case, and a larger sampling volume in
the second.

Numerical errors in the above forward particle tracking
scheme (FPT) arise from neglecting particle deformation
and assuming that the contribution of each particle to My
is either Am=v,Co=M,/N,, or zero, depending on whether
its center of mass is within or outside AV. The latter
assumption leads to the following lower detection limit for
the simulated concentration: Cy ymin=CoVo/(N,AV),
which is obtained when only one particle is found within
AV, At this point, we introduce the relative sensitivity of
the FPT as the ratio between the solute concentration
obtained when only one particle is within AV and Cy:

CAV.min VO
S, = —&fmn _ . 16
Co  NAV (16)

Simulations were conducted with S.=6.25 104,
meaning that concentrations lower than S, C, cannot be
detected.

Eq. (16) shows that in order to maintain the same
detection limit and accuracy, a reduction of the sampling
volume requires an increase in the number of particles.
This would lead to an exceedingly large computational
burden when AV < V. To alleviate the computational
burden and increase accuracy, we shifted from FTP to the
backward particle tracking (BPT) approach when
calculating the local concentration over many Monte
Carlo realizations. This methodology consists in releas-
ing nyparticles within A}V and tracking them back in time
towards the source (V) (Vanderborght, 2001). Similarly
to FPT, the particle’s movement is split into two steps: a
Brownian jump, modeled as:

Xi(t—Atx) =X, j(t,x) = Xy j=1,2 (17)

where X, ; and X}, , assume the expression in the last right
hand term of Egs. (13) and (14), respectively and X, (#; x)
is the j-th component of the particle’s position at time 7.
At the second step, the particle is advected back in time
according to the Eulerian velocity V at the position
x=X"(t—At; x):

X,(t — At,x) = Xj*(t — At; x)

— Vi X*(t — At,x)]Ar j=1,2.

(18)

where V;is the j-th component of V. Eqs. (17) and (18) are
applied repeatedly until /=0, when the concentration is
computed as follows:

Car ) = 2000 (19)

ny

where n,(Vy, 7) is the number of particles found within the
source volume. In this case, the minimum detectable
concentration is given by: ACa ymin=Co/ 1y, corresponding
to the case of only one particle reaching the source at time
t=0. In our simulation we used 7,~64,000 and 80,000
for the control volume with size AV=0.2 Iy and Iy,
respectively.

3.2. Analysis of the numerical results

The need to quantify the probability of exceeding a
given concentration for regulatory limitations justifies
the interest in studying the CDF of solute concentra-
tions. More specifically, because of its importance in
environmental analysis where samplers of different
dimensions are used, we extended our analysis to the
effects of sampling dimensions and distance from or
time since injection on the CDF of Cx ¢/ Cy. Simulations
were conducted in weakly (i.e. ¢3=0.2) and moderately
(i.e., 63=1.2) heterogeneous two-dimensional forma-
tions with a square source area of side L=1.5 /y.

Fig. 2a, and b show the CFDs of Z=Cyy /C, for
o3=1.2 at the center of mass of the mean plume at times
t=4 Iy/U and 55 Iy/U, respectively. The CFDs are
obtained numerically with 2000 Monte Carlo simula-
tions for several AV and are assumed to resemble the
corresponding CDFs. In the same figures the CFDs —
note that according to the Bernoulli statistical theorem
the sample CFD converges to the CDF of the population
as the sample’s size grows to infinity — are compared to
the CDF of our Beta model, which is obtained by
replacing the first two statistical moments of Z in the Eq.
(A.1) with the sample mean and variance obtained from
the Monte Carlo simulation. We utilized this procedure
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Fig. 2. Comparison between Beta model and the CDF of the solute
concentration obtained numerically by Monte Carlo simulations for
A=0.2]y and Iy at a) x=4[y and t=41,/U and b) at x=55Iy and
t=55I,/U. In all cases o+=1.2, Pe;=200 and Pe;=2000, and the
source area is a square of side L=1.5 Iy.

rather than the least-square fitting or maximum
likelihood estimation, because they require measured
concentration data, which are often rare or absent in
applications. Whereas the first two concentration
moments, which are the only pieces of information
required by the moment method, can be obtained from
transport models.

Examination of Fig. 2a reveals that Cay/Cy is
adequately described by the Beta model, which shows a
great flexibility in capturing modifications of the CFD
induced by variations of the sampling volume. More-
over, numerical results of Fig. 2b show a declining
sensitivity of CFD to the sampling volume at large times
since injection, and this is accurately captured by the
Beta model. On the other hand, Normal and Log-
Normal models, often used in geostatistical studies,

resulted in a poor adaptation to the same set of data (not
shown in the figures).

In Fig. 3, we report the results of simulations
conducted to compute the concentration CDF at
positions other than the center of mass of the mean
plume. In all cases the Beta model (obtained as before
by replacing in Eq. (A.1) the statistical moments with
the sample’s moments) matches the numerical CDF and
performs much better than Normal and Log-normal
models. A first comparison is between the CDFs at the
position x=(4 Iy, 0) for t=4 Iy/ U and t=8 I/ U, when
the center of mass of the mean plume is on the sampling
point and ahead of it, respectively. Besides the good
match of the Beta model with numerical simulations, we
observe that the probability of exceeding moderate and
high concentrations is greater at the center of mass of the
mean plume, and this is consistent with the structure we
assumed for the “noise” term G (Eq. (3)) in Eq. (1).

At a larger distance from the solute source, for
example x=(551y, 0) and time =45 Iy/U (i.e., when
concentrations are measured at a location ahead of the
center of mass of the mean plume), the effect is more
evident. However at large distances, because of solute
spreading, the zone around the center of mass with small
variations of the solute concentration increases in size
and the sampling within this zone provides similar CDF
regardless of the position. This effect is the same that
reduces the importance of sampling dimension at large
distances from the source or at greater time since
injection (see Figs. 2b and 3).

Simulations conducted with 0320.2, and not shown
here, produced similar results. Notice that since our
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Fig. 3. Comparison between Beta model and the CDF of the solute
concentration obtained numerically by Monte Carlo simulations at
x=4ly for t=41y/U and 8ly/U and at x=55Iy for t=451y/U.
Furthermore, A=0.2Iy, o2=1.2, Pe; =200 and Pe;=2000, and the
source area is a square of side L=1.51y.
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model (7) is not limited to weakly heterogeneous
formations it comes as no surprise that it performs
well also in moderately heterogeneous formations and it
can be expected to perform well at higher heterogeneity
of the flow field. Therefore, the model provides good
predictions of the solute concentration CDFs for
different heterogeneity of the formation, at different
locations within the plume, and for different sampling
dimensions.

4. Applications

The above model can be used in risk analysis and in
all the applications requiring the probability that a
threshold concentration is exceeded. In envisioning
possible applications, one should consider that this
model requires reliable estimates of {Cy ;) and O'CMZ by
either theoretical closed form solutions (see e.g., Kapoor
and Gelhar, 1994; Zhang and Neuman, 1996; Dagan and
Fiori, 1997; Kapoor and Kitanidis, 1999; Fiori and
Dagan, 2000; Fiori, 2002), or numerical Monte Carlo
simulations, which may be conditional to available
measurements, thus alleviating the computational bur-
den associated with the alternative approach of comput-
ing the concentration CDF directly from a large sample
of Monte Carlo realizations. In fact, when the first two
concentration moments are computed through Monte
Carlo simulations the gain is in the smaller number of
realizations needed to stabilize them with respect to the
sample CFD.

In geostatistics several strategies have been elaborat-
ed in order to cope with the limited information provided
by the measurements. For example, in the Simple
Indicator Kriging (SIK) approach the prior information
provided by the sample CFD is updated by a linear
combination of indicators obtained from the measure-
ments (see e.g. Goovaerts, 1997, p. 293). In doing that
one assumes implicitly that the prior concentration CDF
is statistically stationary with the consequence that the
probability of exceeding a given threshold is assumed
the same within the plume (Goovaerts, 1997; Goovaerts
et al., 2005). Substituting the sample CFD with the Beta
model of the concentration CDF may alleviate this
problem providing more consistent prior information.

Apart from these applications sometimes it is useful to
know the proportion of the plume volume where solute
concentrations are above a given threshold, for example
the solute concentration above which a remedial action
should be taken. The Cumulative Frequency Distribution
(CFD) obtained from concentration measurements is the
simplest way of obtaining such information. However, a
set of coarse measurements is typically available in

applications, such that the CFD is poorly characterized,
in particular when the threshold is higher than the mean
concentration. In order to gain confidence in the
concentration CFD a suitable probability distribution is
often adapted to the experimental data.

Furthermore, in the Bayesian approach to inverse
problems one seeks for a set of model parameters m that
maximizes their conditional distribution p(m|d) given the
data d. According to the Bayes’ theorem p(m|d) depends
on the marginal distribution of the data A(d), through the
following expression: p(m|d) = IT(d|m)p(m)/h(d),
where T is the conditional distribution of the data given
the parameters and p is the marginal prior distribution of
the parameters. For example, one may want to infer the
most likely distribution of hydraulic conductivity from the
information provided by concentration measurements, in
which case A(d) can be estimated by our model by placing
ha)=f (2.

In the remainder of this Section we show how the
Beta model can be used to obtain the probability
distribution of a sample of concentration measurements
taken from the plume at a given time, i.e. a snapshot,
that is used in both applications described above. In
order to do that, we assume that the sample made of
concentrations taken from the plume at a given time
obeys the following SDE:

dCAV = K[CAV(t) — CAV]dt
ECAV(CO — CAV)dW(l‘), (20)

which is similar to the SDE (4) utilized for modeling the
local concentration with the difference that the spatial
average C,y (1) of the solute concentration replaces the
ensemble average. We consider now that by definition
Cap(t) = M(2)/V(z), where M(?) is the total mass of
solute and M(¢) is the volume occupied by the plume.
For a plume larger than the scale of spatial variability of
K, V(f) varies slightly between independent realizations
of K, and if, in addition to that, the plume is also well
mixed the following approximation can be applied:

Car (1) = / (Cay (3, 1)) dx 21)

Va(t)

Vol(t)

and V(f) is the volume occupied by a Gaussian plume
with the same spatial moments of the actual plume. An
indirect confirmation that the approximation introduced
in Eq. (21) holds can be found in the paper by Fitts
(1996), who showed that the spatial average of point
concentrations above background concentration at both
Cape Cod and Border tracer experiments is well
approximated by the spatial mean of the solute
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concentration obtained by solving the ADE with the
mean velocity and macrodispersion coefficients inferred
from concentration data (see the column “Mean” in
Tables 3 and 4 of Fitts (1996)).

As in Eq. (4) the first right hand term of the SDE (20)
epitomizes the effects of PSD and mechanical mixing
within the sampling volume, which act to reduce spatial
gradients of the concentration and thus drive the system
toward a spatially constant concentration. It should be
noted, however, that this is an approximation since strictly
speaking the system evolves toward a uniform concen-
tration only in a bounded domain, i.e. when the solute
disperses within a constant volume (Kitanidis, 1994).

Under statistically stationary conditions the solution of
the SDE (20) is given by the model (7) with the statistical
moments replaced by the corresponding spatial moments,
ie. (Cap (x, 1)) with Cap (=Y Cay (x;, £)/n, and
Tanx, ) with SA D=3 [Cantxi )= Cap (O /(24— 1),
where n, is the number of measurements.

4.1. Analysis of the Cape Cod solute concentration data

The Cape Cod tracer experiment (Leblanc et al., 1991;
Hess et al., 1992) provides a data set of solute concen-
trations, which is large enough for an experimental
validation of the theoretical results presented in the
previous section. A controlled amount of non-reactive
solute, bromide, was released for 17 hours within a
volume with dimensions of 1.2 x4 x4 m, resulting in an
initial concentration of Cy=640 mg/l. The thickness of
the injection volume does not exceed 30 vertical integral
scale of the hydraulic log-conductivity, Iy, which has
been estimated by Hess et al. (1992) in the range between
13 and 39 cm, such that ergodic conditions are only
partially satisfied (Quinodoz and Valocchi, 1990; Dagan,
1991). Furthermore, Fitts (1996) showed that concentra-
tions predicted by solving the classic ADE were
inaccurate, although the plume thickness spans several
vertical integral scales and the macrodispersion coeffi-
cients were obtained with high accuracy from the
concentration measurements at a dense monitoring
network of 656 multilevel samplers (MLS) (Leblanc et
al., 1991, Figs. 8 and 9).

At Cape Cod, the background concentration of
Bromide was estimated less than C;,,=0.1 mg/l (Leblanc
et al., 1991), such that concentrations smaller than this
limit are removed from the sample because of the
impossibility to distinguish between the two sources of
solute mass when concentrations fall below this limit.
With the lower limit of the population larger than zero, the
variable Z should be redefined as follows: Z=(C— Cy;n)/
(Co— Ciim), such that Z varies between 0 and 1 with zero

probability of observing solute concentrations smaller
than Clim-

4.1.1. Vertically averaged concentrations

First we analyze the vertically averaged concentra-
tion because it represents the type of information that
most commonly is available in applications where
sampling is performed in wells screened over the entire
plume depth rather than in multilevel samplers as in the
Cape Cod experiment.

Fig. 4a—e show the CFD of Z(x;, x5)=(C,,(x1, x)—
Ciim)/ (Co— Ciim) at 33, 83, 237, 426, and 511 days since
injection, where C,(x;, x,) is the vertically averaged
Bromide concentration at the monitoring well location x=
(v1, x2). In all figures, the solid line shows the Beta CDF of
Eq. (A.1) with the parameter 8 computed through Eq. (8),
where (Z) and o7 are approximated by the sample mean
and variance, respectively. In each figure, the inset depicts
the results in a semi-logarithmic scale that better evidences
the discrepancy between the models and the experimental
data for small concentrations. Furthermore, the dashed line
shows the Log-Normal CDF,

P = | é : ;Fp [— (e ‘Zgﬂ & ()
where £=InZ. In Eq. (22)

(&) = exp[(2) + 07/2] (23)
and

0% = exp[2(Z) + o5 |{exploz] — 1} (24)

are the expected value and variance of the transformed
variable written as a function of the first two statistical
moments of Z. Likewise the Beta model, the Log-Normal
CDF has been obtained by replacing the first two statistical
moments of Z in Egs. (23) and (24) with the sample mean
and variance. Although unbounded, the Log-Normal
distribution has been selected as a possible alternative to
the Beta distribution because it is widely used in
geostatistics for skewed random functions. Here, we do
not consider the Normal distribution as a possible
alternative to the Beta model because it resulted in a
much poorer fit with the sample than the Log-Normal
distribution.

In addition, we performed the best fitting of Beta
CDF model (A.1) with the least-square method to the
sample CFD obtaining the dot-dashed curve shown in
Fig. 4a—e. With respect to matching the moments
(moments method) the adaptation is better at low



118 A. Bellin, D. Tonina / Journal of Contaminant Hydrology 94 (2007) 109—125
a) b)
119 ¢ Frequency 113 o Frequency
104—Beta 104~ "
— - - Beta (best fitting) —--Bela (bestfiting) _____eggeisfr=mre
0.94- - - Log-normal T bl 09 o
0.8 0.8
0.7 0.7
N s
& 064 = 064
& 059 Q05
w w
0.4 0.4
0.39 0.34
024 024
0.14 0.19
0.0 T T T T ] 0.0 T T T T T |
0.00 0.05 0.10 7 0.15 0.20 0.25 0.00 0.02 0.04 0.08 0.08 0.10 0.12
z
c) d)
113 & Frequency 117 6 Freguency
104 —Beta 1.0]—Beta
—--Beta (best fiting) ~__ g—e—— T —H =2 — - =Beta (best fitting) o -
0.9 - - -Log-normal 2 094- - -Lognormal & _ _---"7""7
08 9 08 -
074
g
T 064 1.
& 059 o
N os;
[ o.r-
04 Tos
i = s
034 N pa.
b
024 w
o1
0.14 o
i 1E6
00 T T T T 1 0.04¥ T T T T 1
0.000 0.005 0.010 0.015 0.020 0.025 0.000 0.004 0.008 0.012 0.016 0.020
z z
e)
3 o Frequency
0000 0002 0004 0006 0008 0010 0012 0014

z

Fig. 4. Cumulative Frequency Distribution of the vertically averaged Bromide concentrations reported from the first Cape Cod tracer test at a) 1=33,
b) t=83, ¢) t=237, d) t=426, and e) t=511 days since injection. The Cumulative Frequency Distribution is compared with the Beta and Log-Normal
CDF models. The dot-dashed line shows the best fitting of the Beta model with the sample CFD.

concentrations and poorer at large concentrations. The
difference may be attributed to the more weight given
by the least-square method to low concentration
measurements, which outnumber large concentration
measurements.

We applied the chi-square goodness-of-fit test to both
Beta and Log-Normal distributions by using nine
equiprobable classes and level of significance set at

0.05 (Conover, 1999, pg. 239), resulting in an upper
limit of %*=12.59 for the test statistic:

nc
(0; — E)
r=>
= J

where nc=9 is the number of classes, O; is the number
of observations within class j, and E; is the expected

2
(25)
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number of observations within the same class. The
results of the test are shown in columns three and seven
of Table 1 for the Beta and Log-Normal distributions,
respectively, and Cj;,=0.1 mg/l. At 203 days, none of
the observations falls within the fourth class, which is
then merged with the fifth class, reducing the total
number of classes to 8, and % to 11.07. We found that
the null hypothesis that Z is Log-Normally distributed
is accepted at day 384, and rejected in all the other
cases. On the other hand, the null hypothesis that Z is
distributed according to the Beta model of Eq. (A.1) is
accepted at day 33, 203, 273, 384, 426 and 511, and
rejected in the remaining cases. With the only
exception of day 461, note that when the null
hypothesis is rejected for both distributions, the
smallest 7 is obtained with the Beta distribution,
which shows a better adaptation to the experimental
data with respect to the Log-Normal model. The same
test applied to the best fitting curve produced similar
results with the only difference that the null hypothesis
is accepted at the same days of the previous case plus
day 111. This slightly better performance of the best
fitting in term of test statistic is counterbalanced by a
loss of accuracy in the probability of exceeding large
concentrations, as shown in Fig. 4a—e. Therefore,
subsequently we focus on the results obtained by

Table 1

matching the first two moments of the probability
model and the sample.

A closer inspection of Fig. 4b and c reveals that when
the null hypothesis is rejected for the Beta model the
mismatch between the model and the data is mostly
concentrated at low Z values (see the inset of the
figures). Consistently with our finding there are
evidences that small concentration measurements may
be inaccurate at Cape Cod. In a recent analysis of the
Cape Cod data set, Fitts (1993) eliminated Bromide
concentrations less than 0.3 mg/l with the justification
that they were “substantially inaccurate due to chemical
analysis method limitations”, while Thierrin and
Kitanidis (1994) eliminated all the concentrations
smaller than 0.5 mg/l in their analysis of dilution.

By eliminating from the sample concentration
measurements lower than Cj;,,=0.3 mg/l because unre-
liable, as Fitts (1996) and Fiori and Dagan (1999) did in
their studies, the null hypothesis that Z is Beta
distributed is accepted in all cases it was accepted for
Ciim=0.1 mg/1 plus days 83, 111, 139, 315, and 461 (the
T'statistic are reported in columns 6 and 10 of Table 1 for
Beta and Log-Normal distributions, respectively).
Increasing Cj;,, had a beneficial effect also on the
Log-Normal distribution, but the null hypothesis was
verified for a smaller number of days with respect to the

Chi-square goodness-of-fit test for the beta and Log-Normal probability distribution models of the vertically averaged bromide concentration at Cape

Cod

Test statistic, T’

Day F(C=< Beta distribution Log-Normal distribution
0.3 mg/l) T T, Tir Tor T Ty Tir Tor

33 0.15 11.45 6.06 0.53 9.25 19.64 0.97 0.05 12.79
55 0.20 15.42 3.29 0.21 14.63 16.26 1.51 0.09 13.79
83 0.35 33.63 25.15 0.75 7.97 26.00 15.61 0.60 12.41
111 0.31 21.75 12.62 0.58 8.68 19.75 2.50 0.13 14.08
139 0.50 57.37 32.63 0.57 12.46 56.33 22.31 0.40 20.42
174 0.27 27.56 14.44 0.52 21.64 40.53 5.59 0.14 23.08
203 0.18 10.78 4.08 0.38 9.95 14.63 0.04 0.00 18.05
237 0.48 37.20 25.39 0.68 13.55 33.70 17.84 0.53 15.8
273 0.12 5.39 2.29 0.43 7.02 15.68 0.01 0.00 13.63
315 0.37 28.90 13.89 0.48 10.48 37.45 5.14 0.14 18.76
349 0.16 12.62 4.02 0.32 12.73 26.79 0.73 0.03 27.96
384 0.13 5.48 1.45 0.26 7.61 8.09 0.23 0.03 7.9
426 0.17 2.84 0.44 0.15 3.36 16.42 0.30 0.02 7.96
461 0.20 14.36 2.32 0.16 12.46 12.16 3.38 0.28 6.46
511 0.31 9.59 6.03 0.63 8.88 11.43 1.58 0.14 10.47

Ty is the contribution to the 7 statistic of concentrations smaller than 0.3 mg/l for Cy;,=0.1 mg/l, and T}, is the T statistic for Cyj,=0.3 mg/l.
Furthermore, 77,g =T71/T is the relative contribution of concentrations smaller than 0.3 mg/1 to the T'statistic, and /' (C < 0.3 mg/l) is the sample CFD

for C=0.3 mg/L

* Obtained by merging the classes number 4 and 5 in one class, such that the number of classes reduces to 8 and consequently %>=11.07.
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Beta distribution and, however, in cases when it was
accepted for both distributions the smallest T statistic
was that of the Beta model (see Table 1). In none of the
days the null hypothesis was accepted for Log-Normal
distribution and rejected for the Beta distribution.

In order to evaluate the impact of measurement errors
further on the concentration pdf, we have set the
threshold between doubtful and reliable concentrations
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at C;=0.3 mg/l, and computed the relative contribution
to T of classes below C;:

T,

T

1 ne (Oj*E}')z
Tj:] E./

Tig= (26)

where nc; is the number of classes with the upper bound
smaller than Z;=(C;— Cjjn)/(Co— Clim)=0.0003125,
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Fig. 5. Cumulative frequency distribution of the point concentration of Bromide from the first Cape Cod tracer test at a) /=33, b) /=83, ¢) t=237, d)
t=426 and, ) =511 days since injection. The Cumulative Frequency Distribution is compared with the Beta and Log-Normal CDF models. The dot-
dashed line shows the best fitting of the Beta model with the sample CFD.
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incremented by one if Z; is located in the upper half of
the class containing it.

The results of this analysis are shown in columns five
and nine of Table 1 for the Beta and Log-Normal
models, respectively. Additionally, columns four and
eight show the corresponding values of 7;. With the
exception of day 461, when both models are rejected
and the smallest 7 is that of the Log-Normal model, the
largest contribution to 7 of classes Z<Z, is that of the
Beta model, and in 7 out of 15 cases this contribution
exceeds 50% of T. In other words, when the null
hypothesis is rejected for the Beta model, it is because of
the poor adaptation to concentrations smaller than
0.3 mg/l, which are negatively impacted by measure-
ment and analytical errors. A treatment of the measure-
ment error, although theoretically possible, is beyond
the scope of this work, suffice here to know that it
impacts concentrations smaller than 0.3 mg/l negatively
as evidenced in other studies.

We conclude that the Beta model of Eq. (A.1) is
superior to the Log-Normal model of Eq. (22) in
describing the probability distribution of vertically
averaged Bromide concentrations at Cape Cod, and
that its performance improves significantly at high
concentrations. On the other hand, small concentrations
are described better by the Log-Normal distribution, but
this may be a consequence of the larger relative impact
of measurement errors, which obscure the underlying
probability distribution.

4.1.2. Point concentration

We repeated the analysis of the previous section for
Bromide concentrations measured at the ports of the
multilevel samplers. Each sampling port consists of a
polyethylene tube with internal diameter of 0.47 cm
(Leblanc et al., 1991). Since the sampler’s size is one
order of magnitude smaller than /Iy, concentration
measurements at the sampling ports can be thought as
point concentrations.

Fig. 5a—e show the CFD of Z (x;, x5, x3)=(C (x1, X2,
X3)— Ciim)/ (Co— Ciim), Where C (x1, x5, x3) is the Bromide
concentration at the port’s location (x1, x5, x3) and Cj;,=
0.1 mg/l. Although, both Beta and Log-Normal models
fail the x> goodness-of-fit test with % exceeding the 95th
percentile, the Beta distribution follows the CFD closely
at moderate to large concentrations, while as in the
vertically averaged concentrations the Log-Normal
distribution seems preferable, yet not ideal, at small
concentrations (see the inset of Fig. Sa—e).

By assuming Cj;,,=0.3 mg/l, the null hypothesis that
point concentrations are distributed as the Beta model
was accepted for days 203,237,273, 384 and 511, while

in all other cases the T statistic was much smaller than
that obtained with Cj;,,=0.1 mg/l. Contrarily, the null
hypothesis that the concentration is Log-Normally
distributed was accepted only for day 111.

In the light of these results, we conclude that the Beta
distribution is a good model of the spatial variability for
the Bromide concentration observed at the first Cape
Cod tracer test. In particular, the Beta distribution
models the experimental CFD accurately at high
concentrations, but it is less satisfactory at low
concentrations. However, chemical analysis errors
have been reported by Hess et al. (1992) and Fitts
(1996) to influence low concentration measurements
negatively, such that the mismatch between CFD and
Beta distribution function (Eq. (A.1)) should not be
entirely attributed to our model’s limitations. Converse-
ly, the Log-Normal model performs better, yet not
satisfyingly, at low concentrations, but poorly at high
concentrations. The Normal model performs poorly in
all cases. Overall, the Beta model is then preferable over
the alternative Log-Normal model.

4.2. Numerical validation of the spatial CDF

Simulations are performed in a two-dimensional
formation by using a single realization of the transmis-
sivity field, which we assumed as the “real” field. The
resulting concentration distributions at selected times
since injection (snapshots), obtained by solving solute
transport with the FPT scheme of Egs. (13) and (14), are
compared with the Beta model (7). Concentration
measurements composing the sample are taken at the
center of a grid with horizontal dimension equal to the
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Fig. 6. Cumulative frequency distribution of solute concentrations
obtained from numerical simulations of a field-scale tracer test, at
t=41y/ U since injection. The Cumulative Frequency Distribution is
compared with the following three CDF models: Beta, Normal and
Log-Normal.
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horizontal projection of AV. We considered two snap-
shots: one at an early time since injection, and the other
at a later time.

Fig. 6 compares the experimental CFD of Z=(Cxp—
Caymin)/ (Co—Caymin) at time t=41,/U, obtained from
the numerical simulation of the tracer experiment with
sampling size A=0.2[y, with the Beta model (A.1) and
two additional models widely used in the theory of random
functions: the Log-Normal model (22) and the Gaussian
(Normal) model. Fig. 7 repeats Fig. 6 for t=55Iy/U. For
each model the parameters are computed by matching the
first two statistical moments with the corresponding
moments of the sample. For the Beta model the parameter
B is computed by substituting the sample mean and
variance of Z into Eq. (8).

Likewise the Cape Cod data analysis presented in
Section 3, the Beta model (A.1) performs much better
than the other two models. Capitalizing on the informa-
tion provided by the first two moments of the solute
concentration, the model (A.1) provides an accurate
description of the concentration CFD. At low concentra-
tions, the Beta model performs much better with the data
produced by the simulated tracer experiment than with
those obtained in the field, suggesting that the latter may
be negatively affected by the chemical analysis error
reported by Hess et al. (1992) and Fitts (1996), as we
argued in the previous section. Furthermore, both Normal
and Log-Normal models underestimate the probability of
exceeding high concentrations, which may impact risk
assessment negatively.

We performed the chi-square and Kolmogorov—
Smirnov goodness-of-fit tests (Conover, 1999, pg.428)
for the three models shown in Figs. 6 and 7, and for the
snapshot at /=28/y/ U not shown in the figures.
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Fig. 7. Cumulative Frequency Distribution of solute concentrations ob-
tained from numerical simulations of a field-scale tracer test, at 1=55Iy/ U
since injection. The Cumulative Frequency Distribution is compared with
the following three models: Beta, Normal and Log-Normal.

Although, strictly speaking all the above models are
rejected by the chi-square goodness of fit test at 0.05 level
of significance, the Beta model performs much better than
both Log-Normal and Normal models, confirming what
was already evident from the visual inspection of Figs. 6
and 7. Similar considerations are suggested by the
Kolmogorov—Smirnov test with the only difference that
the null hypothesis that the concentration CDF follows the
Beta model is in this case accepted for t=4[y/U and
rejected for both Normal and Log-Normal models.

Simulations with a larger sampling volume of side
A=11Iy have similar results with the Beta distribution
outperforming the Normal and Log-Normal models.
However, in this case the chi-square goodness of fit test
is met by the Beta model at both =4 I,/ U and t=551/
U and rejected at 1=281y/U, whereas Kolmogorov—
Smirnov test is always satisfied by the Beta, but not by
the Normal and Log-Normal distributions with the
exception of the Normal model at time =417,/ U.

5. Conclusions

We developed a new model for the concentration pdf
of a conservative tracer migrating in a heterogeneous
aquifer. The model is based on a Stochastic Differential
Equation describing the evolution of the plume subjected
to spreading, pore-scale dispersion, and mechanical
mixing associated with the sampler volume. Under
statistical stationarity, we show that the local solute
concentration is distributed according to the Beta
distribution, whose parameters depend on the first two
statistical moments of the concentration. Similarly, the
probability distribution of the solute concentration in a
single realization is well described by the Beta distribution
with the first two statistical moments replaced by the
corresponding spatial moments. The former is a model of
local uncertainty, i.e. it describes the variability of the
solute concentration at a given location, the latter can be
seen as a model of global uncertainty describing the
probability of exceeding a given concentration irrespec-
tive of the location within the plume.

Analysis of the Bromide concentration measurements
from the first Cape Cod tracer experiment confirmed that
our model is a valuable tool for interpreting concentration
data, as well as to quantify the uncertainty resulting from
modeling solute transport with a limited amount of
information on the spatial distribution of the hydraulic
conductivity. In particular, our model captures the
smoothing effect of the sampling volume accurately
predicting the reduction of the probability of exceeding
high concentrations, when larger sampling volumes are
adopted. The relatively poorer accuracy in modeling the
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spatial distribution of small concentrations may be either a
model limitation, or a direct consequence of chemical
analysis errors in the concentration data. The Log-Normal
model performs slightly better than the Beta model for
low concentrations for Cape Cod data, but at price of
much poorer performance at high concentration levels
with a significant negative impact on risk assessment.

Numerical simulations confirmed that our model is
superior to both Log-Normal and Normal models in
representing local and global uncertainty arising from the
incomplete knowledge of spatial variability of the
permeability. Similarly to Cape Cod data, the probability
of exceeding high concentrations is well predicted, while
the accuracy deteriorates slightly at low concentrations,
with the limit between high and low concentrations at (C—
Ciim)/(Co— Cyim)=0.01 and 0.03 for r=41y/U and 551/
U, respectively. Thus, the range of concentrations for
which our model shows high accuracy in predicting the
probability of exceeding a given threshold reduces with
the elapsed time since injection.
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Appendix A. Solution of the concentration pdf for
B—x

Let us consider the limit of the concentration pdf (7)

for f— oo. To handle this case properly, it is convenient
to consider the CDF of the solute concentration:

F(z) = Prob[z=7] — /0 e

(A.1)

where B.[a, b]=]5“"'(1—#)"'dt is the incomplete Beta
function (Abramowitz and Stegun, 1972, p. 258), and
w=1/p.

For w— 0 the function Eq. (A.1) is discontinuous at
z—0 and z—1. The behavior of the CDF (A.1) in
proximity of these discontinuities can be studied by means
of Taylor expansion. For z=0 we obtain:

F(e) = 8(U<Z>Y{(U<IZ) + _lcj-(lszéZ» o O<i> }

(A.2)

where y=1"[w]/('[{Z)] (1 —{Z))]), in which I'[x]=
[$7 e "dr is the Euler gamma function, and z=¢ < 1. By
taking the limit of the expansion (Eq. (A.2)) for  — 0 we
obtain:
lim F(e) =1 —(Z) (A3)
w0

Thus, F(¢)=1-(Z) no matter how small ¢>0 is,

whereas it jumps to zero for z=0.
Expanding now the Eq. (A.1) around z=1 we obtain:

F(1—g) =1 —ye?0=@) fy(1 — (2))e?0=ED+1

(A4)

which for w— 0 converges to
lin%F(l —¢)=1-(2) (A.5)

The discontinuity in z=1 is then similar to that
observed in z=0, with F(1—¢)=1-(Z) regardless how
small ¢ is, while ' (z=1)=1. Whereas, F(z) is constant
and equal to 1—(Z) between z=0 and z=1. Thus, for
w—0 (B— ) the concentration CDF assumes the
following form:
1in})F(z) =[1—(D)H(z)+ (Z)H(z— 1) (A.6)
w—
where H is the Heaviside step function (Abramowitz and
Stegun, 1972), and the concentration pdf (Eq. (7))
reduces to the expression (9) obtained by Dagan (1982)
with a different reasoning.

Appendix B. Moments of the RF Z for small 3 values

The normalized statistical moments of order v>2,
given by the expression (11), can be rewritten by means
of the definition of hypergeometric function (Gradsh-
teyn and Ryzhik, 1980, p. 1045):

ﬁ —v/2
=1 |@ - @)
, (B.1)
XZ (=) (2)/B); 1
— (1/B)  k(z)*

where (a),=I[a+k]/I'[a] is the rising factorial and
I'[a]=]g1" e 'dt is the Euler gamma function.

By expanding the rising factorials in Eq. (B.1) in
Taylor series around =0, we obtain:

ﬁ -v/2
L= (-2 {(Z)1 - (Z2))——
W= @@ - @t
- viv—1)..(v—k+1)¥((Z),p)

1+ —1)*

;; =y k! (2)*

(B.2)

X
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with

[(Z) + (k= DA[Z) + (k —2)]... [(Z) + BI{Z)
[T+ (k—=1)p)L+ (k=2)p]....[1 + f]
(B.3)

¥e((2), B) =

In order to study the structure of Eq. (B.2) it is
convenient to treat separately the odd and even moments.
When v is odd, let say v=2j+1, Eq. (B.2) assumes the
following form:

11 = B2 hy10(2), B) + B 11 ((Z), B) + ...

+BFIRL L (2),B), J=1,2,...  (B.A)

and the functions f51 4, k=0, 1,..., j, which depend on
both B and (Z), share the important property that for
B— 0 they are function of (Z) only. A direct consequence
of this property is that ;. — 0 for f—0.

When v is even, let say v=2j, Eq. (B.2) assumes the
following form:

, (2j — N

B T 2B+ 36 (1 + (2 — Df]
+ By ((Z), B) + B g2 ((Z), B) + ...
+ B g2 ((2), B), j=1,2,....

(B.5)

Similarly to the previous case, the functions g,
k=1, 2, ..., 2j—2 depend on both (Z) and S, but reduce
to a polynomial in (Z) for B—0. This leads us to
conclude that limg 0= (2j— 1)!!.

The Egs. (B.4) and (B.5) show that for f<1 the
difference between the moments of Z and those of a
Normal distribution with the same first two moments
reduces to zero as f— 0 with /e and € as leading term
for the odd and even moments, respectively.
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