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ABSTRACT 

Bed load transport is a fundamental physical process in alluvial rivers, building 

and maintaining a channel geometry that reflects both the quantity and timing of water 

and the volume and caliber of sediment delivered from the watershed.  A variety of 

formulae have been developed to predict bed load transport in gravel-bed rivers, but 

testing of the equations in natural channels has been fairly limited.  Here, I assess the 

performance of 4 common bed load transport equations (the Meyer-Peter and Müller 

[1948], Ackers and White [1973], Bagnold [1980], and Parker [1990] equations) using 

data from a wide range of gravel-bed rivers in Idaho.  Substantial differences were found 

in equation performance, with the transport data best described by a simple power 

function of discharge.  From this, a new bed load transport equation is proposed in which 

the coefficient and exponent of the power function are parameterized in terms of channel 

and watershed characteristics.  The accuracy of this new equation was evaluated at 17 

independent test sites, with results showing that it performs as well or better than the 

other equations examined.    

However, because transport measurements are typically taken during lower flows 

it is unclear whether this and other previous assessments of equation performance apply 

to higher, geomorphically significant flows.  To address this issue, the above transport 

equations were evaluated in terms of their ability to predict the effective discharge, an 

index flow used in stream restoration projects.  It was found that accurate effective 

discharge predictions are not particularly sensitive to the choice of bed load transport 

equation.  A framework is presented for standardizing the transport equations to explain 
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observed differences in performance and to explore sensitivity of effective 

discharge predictions. 

Finally, a piecewise regression was used to identify transitions between phases of 

bed load transport that are commonly observed in gravel-bed rivers.  Transitions from 

one phase of motion to another are found to vary by size class, and equal mobility 

(defined as pi/fi ≈ 1, the proportion of a size class in the bed load relative to that of the 

subsurface) was not consistently associated with any specific phase of transport.  The 

identification of phase transitions provides a physical basis for defining size-specific 

reference transport rates (W*
ri).  In particular, the transition from Phase I to II transport 

may be an alternative to Parker’s [1990] constant value of W*
ri =0.0025, and the 

transition from Phase II to III transport could be used for defining flushing flows or 

channel maintenance flows.  
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Introduction 
Bed load transport in alluvial rivers is the principle link between river hydraulics 

and river form [Parker, 1978; Leopold, 1994; Gomez, 2006] and is responsible for 

building and maintaining the channel geometry [Parker, 1978; Leopold, 1994].  

Furthermore, the reproductive success of salmonids and other riverine communities are 

influenced by the size of sediment eroded from and deposited on the channel bed and 

banks [Montgomery et al., 1996; Reiser, 1998].  Projects aimed at restoring the physical 

processes and ecological function of rivers increasingly recognize the importance of a 

quasi-stable channel geometry and the role of bed load transport in forming and 

maintaining it [Goodwin, 2004].   

However, because the collection of good quality bed load transport data is 

expensive and time consuming, we frequently must rely on predicted bed load transport 

rates determined from existing equations [Gomez, 2006].  But the evaluation of equation 

performance in coarse gravel-bed rivers has been limited due to the small number of 

available data sets, and those assessments that have been made are discouraging, 

commonly reporting orders of magnitude error [Gomez and Church, 1989; Yang and 

Huang, 2001].  It appears that despite over a century of effort, we are unable to 

consistently and reliably predict bed load transport rates [Gomez, 2006].  This is 

particularly difficult in gravel-bed rivers where the presence of a coarse surface layer acts 

to constrain the availability and mobility of the finer subsuface bed material [Parker et 

al., 1982; Gomez, 2006]. 

An extensive set of over 2,000 bed load transport data obtained by King et al. 

[2004] from 24 mountain gravel-bed rivers in central Idaho present a unique opportunity 
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to assess the performance of different bed load transport equations across a wide range of 

gravel-bed rivers and to further examine the effects of armoring on bed load transport..  

Based on this work I present a new bed load transport equation which explicitly accounts 

for channel armoring, and I evaluate the accuracy of this new equation at 17 independent 

test sites. 

However, the data collected by King et al. [2004] were typically taken during 

lower flows and, therefore, it is unclear whether my assessment of equation performance 

applies to higher, geomorphically significant flows.  This is a problem common to most 

previous assessments of equation performance [e.g., Gomez and Church, 1989; Yang and 

Huang, 2001; Bravo-Espinosa et al., 2003; Barry et al., 2004].  To address this issue, I 

evaluate a number of common transport equations (including my own) in terms of their 

ability to predict the effective discharge, a geomorphically important flow often used to 

size stream channels in restoration projects.   

I also explore in greater detail the effect of the armor layer on controlling bed load 

transport rates over a wide range of flows in two channels representing very different 

geomorphic conditions.   
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Chapter 1.  A General Power Equation for Predicting Bed 

Load Transport Rates in Gravel-Bed Rivers1 

1.1  Abstract 

A variety of formulae have been developed to predict bed load transport in gravel-

bed rivers, ranging from simple regressions to complex multi-parameter formulations.  

The ability to test these formulae across numerous field sites has, until recently, been 

hampered by a paucity of bed load transport data for gravel-bed rivers.  We use 2104 bed 

load transport observations in 24 gravel-bed rivers in Idaho to assess the performance of 

8 different formulations of 4 bed load transport equations.  Results show substantial 

differences in performance, but no consistent relationship between formula performance 

and degree of calibration or complexity.  However, formulae containing a transport 

threshold typically exhibit poor performance.  Furthermore, we find that the transport 

data are best described by a simple power function of discharge.  From this we propose a 

new bed load transport equation and identify channel and watershed characteristics that 

control the exponent and coefficient of the proposed power function.  We find that the 

exponent is principally a factor of supply-related channel armoring (transport capacity in 

excess of sediment supply), whereas the coefficient is related to drainage area (a 

surrogate for absolute sediment supply).  We evaluate the accuracy of the proposed 

power function at 17 independent test sites. 

                                                 
1 Co-authored paper with John M. Buffington and John G. King published in Water Resources Research, 
2004. 
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1.2  Introduction 

Fang [1998] remarked on the need for a critical evaluation and comparison of the 

plethora of sediment transport formulae currently available.  In response, Yang and 

Huang [2001] evaluated the performance of 13 sediment transport formulae in terms of 

their ability to describe the observed sediment transport from 39 datasets (a total of 3391 

transport observations).  They concluded that sediment transport formulae based on 

energy dissipation rates or stream power concepts more accurately described the 

observed transport data and that the degree of formula complexity did not necessarily 

translate into increased model accuracy.  Although the work of Yang and Huang [2001] 

is helpful in evaluating the applicability and accuracy of many popular sediment transport 

equations, it is necessary to extend their analysis to coarse-grained natural rivers.  Of the 

39 datasets used by Yang and Huang [2001] only 5 included observations from natural 

channels (166 transport observations) and these were limited to sites with a fairly uniform 

grain-size distribution (gradation coefficient ≤ 2). 

Prior to the extensive work of Yang and Huang [2001], Gomez and Church 

[1989] performed a similar analysis of 12 bed load transport formulae using 88 bed load 

transport observations from 4 natural gravel-bed rivers and 45 bed load transport 

observations from 3 flumes.  The authors concluded that none of the selected formulae 

performed consistently well, but they did find that formula calibration increases 

prediction accuracy.  However, similar to Yang and Huang [2001], Gomez and Church 

[1989] had limited transport observations from natural gravel-bed rivers.  

Reid et al. [1996] assessed the performance of several popular bed load formulae 

in the Negev Desert, Israel, and found that the Meyer-Peter and Müller [1948] and 
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Parker [1990] equations performed best, but their analysis considered only one gravel-

bed river.  Due to small sample sizes, these prior investigations leave the question 

unresolved as to the performance of bed load transport formulae in coarse-grained natural 

channels. 

Recent work by Martin [2003], Bravo-Espinosa et al. [2003] and Almedeij and 

Diplas [2003] has begun to address this deficiency.  Martin [2003] took advantage of 10 

years of sediment transport and morphologic surveys on the Vedder River, British 

Columbia, to test the performance of the Meyer-Peter and Müller [1948] equation and 

two variants of the Bagnold [1980] equation.  The author concluded that the formulae 

generally under-predict gravel transport rates and suggested that this may be due to 

loosened bed structure or other disequilibria resulting from channel alterations associated 

with dredge mining within the watershed. 

Bravo-Espinosa et al. [2003] considered the performance of seven bed load 

transport formulae on 22 alluvial streams (including a sub-set of the data examined here) 

in relation to a site-specific “transport category” (i.e., transport limited, partially transport 

limited and supply limited).  The authors found that certain formulae perform better 

under certain categories of transport and that, overall, the Schoklitsch [1962] equation 

performed well at eight of the 22 sites, while the Bagnold [1980] equation performed 

well at seven of the 22 sites. 

Almedeij and Diplas [2003] considered the performance of the Meyer-Peter and 

Müller [1948], Einstein and Brown [Brown, 1950], Parker [1979] and Parker et al. 

[1982] bed load transport equations on three natural gravel-bed streams, using a total of 

174 transport observations.  The authors found that formula performance varied between 
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sites, in some cases over-predicting observed bed load transport rates by one to three 

orders of magnitude, while at others under-predicting by up to two orders of magnitude. 

Continuing these recent studies of bed load transport in gravel-bed rivers, we 

examine 2104 bed load transport observations from 24 study sites in mountain basins of 

Idaho to assess the performance of four bed load transport equations.  We also assess 

accuracy in relation to the degree of formula calibration and complexity. 

Unlike Gomez and Church [1989] and Yang and Huang [2001], we find no 

consistent relationship between formula performance and the degree of formula 

calibration and complexity.  However, we find that the observed transport data are best fit 

by a simple power function of total discharge.  We propose this power function as a new 

bed load transport equation and explore channel and watershed characteristics that 

control the exponent and coefficient of the observed bed load power functions.  We 

hypothesize that the exponent is principally a function of supply-related channel 

armoring, such that mobilization of the surface material in a well armored channel is 

followed by a relatively larger increase in bed load transport rate (i.e., steeper rating 

curve) than that of a similar channel with less surface armoring.  We use Dietrich et al.’s 

[1989] dimensionless bed load transport ratio (q*) to quantify channel armoring in terms 

of upstream sediment supply relative to transport capacity, and relate q* values to the 

exponents of the observed bed load transport functions.  We hypothesize that the power-

function coefficient depends on absolute sediment supply, which we parameterize in 

terms of drainage area. 

The purpose of this paper is four-fold:  1) assess the performance of four bed load 

transport formulae in mountain gravel-bed rivers, 2) use channel and watershed 
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characteristics to parameterize the coefficient and exponent of our bed load power 

function to make it a predictive equation, 3) test the parameterization equations, and 4) 

compare the performance of our proposed bed load transport function to that of the other 

equations in item (1). 

1.3.  Bed Load Transport Formulae 

We compare predicted total bed load transport rates to observed values at each 

study site using four common transport equations, and we examine how differences in 

formula complexity and calibration influence performance.  In each equation we use the 

characteristic grain size as originally specified by the author(s) to avoid introducing error 

or bias.  We also examine several alternative definitions to investigate the effects of 

grain-size calibration on formula performance.  Variants of other parameters in the bed 

load equations are not examined, but could also influence performance. 

Eight variants of four formulae were considered: the Meyer-Peter and Müller 

[1948] equation (calculated both by median subsurface grain size, d50ss, and by size class, 

di), the Ackers and White [1973] equation as modified by Day [1980] (calculated by di), 

the Bagnold [1980] equation (calculated by the modal grain size of each bed load event, 

dmqb, and by the mode of the subsurface material, dmss), and the Parker et al. [1982] 

equation as revised by Parker [1990] (calculated by d50ss and two variants of di).  We use 

the subsurface-based version of the Parker [1990] equation because the surface-based 

one requires site-specific knowledge of how the surface size distribution evolves with 

discharge and bed load transport (information that was not available to us and that we did 

not feel confident predicting).  The formulae are further described in Appendix 1.1 and 
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are written in terms of specific bed load transport rate, defined as dry mass per unit width 

and time (qb, kg/m•s). 

Two variants of the size-specific (di) Parker et al. [1982] equation are considered, 

one using a site-specific hiding function following Parker et al.’s [1982] method, and the 

other using Andrews’ [1983] hiding function.  These two variants allow comparison of 

site-specific calibration versus use of an “off-the-shelf” hiding function for cases where 

bed load transport data are not available.  We selected the Andrews [1983] hiding 

function because it was derived from channel types and physiographic environments 

similar to those examined in this study.  We also use single grain size (d50ss) and size-

specific (di) variants of the Meyer-Peter and Müller [1948] and Parker et al. [1982] 

equations to further examine effects of grain-size calibration.  In this case, we compare 

predictions based on a single grain size (d50ss) versus those summed over the full range of 

size classes available for transport (di).  We also consider two variants of the Bagnold 

[1980] equation, one where the representative grain size is defined as the mode of the 

observed bed load data (dmqb, as specified by Bagnold [1980]) and one based on the mode 

of the subsurface material (dmss, an approach that might be used where bed load transport 

observations are unavailable).  The latter variant of the Bagnold [1980] equation is 

expected to be less accurate because it uses a static grain size (the subsurface mode), 

rather than the discharge-specific mode of the bed load. 

The transport equations were solved for flow and channel conditions present 

during bed load measurements and are calibrated to differing degrees to site-specific 

conditions.  For example, the Meyer-Peter and Müller [1948] formula includes a shear 

stress correction based on the ratio of particle roughness to total roughness, where 
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particle roughness is determined from surface grain size and the Strickler [1923] 

equation, and total roughness is determined from the Manning [1891] equation for 

observed values of hydraulic radius and water-surface slope (Appendix 1.1). 

Except for the Parker et al. [1982] equation, each of the formulae used in our 

analysis are similar in that they contain a threshold for initiating bed load transport.  The 

Meyer-Peter and Müller [1948] equation is a power function of the difference between 

applied and critical shear stresses, the Ackers and White [1973] equation is a power 

function of the ratio of applied to critical shear stress minus 1, and the Bagnold [1980] 

equation is a power function of the difference between applied and critical unit stream 

power (Appendix 1.1).  In contrast, the Parker et al. [1982] equation lacks a transport 

threshold and predicts some degree of transport at all discharges, similar to Einstein’s 

[1950] equation. 

1.4.  Study Sites and Methods 

Data obtained by King et al. [2004] from 24 mountain gravel-bed rivers in central 

Idaho were used to assess the performance of different bed load transport equations and 

to develop our proposed power-function for bed load transport (Figure 1.1).  The 24 study 

sites are single-thread channels with pool-riffle or plane-bed morphology [as defined by 

Montgomery and Buffington, 1997].  Banks are typically composed of sand, gravel and 

cobbles with occasional boulders, are densely vegetated and appear stable.  An additional 

17 study sites in Oregon, Wyoming and Colorado were used to test our new bed load 

transport equation (Figure 1.1).  Selected site characteristics are given in Table 1.1. 
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Figure 1.1. Location of bed load transport study sites.  Table 1.1 lists river names 

abbreviated here.  Inset box shows the location of test sites outside of Idaho.  Parentheses 

next to test site names indicate number of data sets at each site. 

 

Whiting and King [2003] describes the field methods at 11 of our 24 Idaho sites 

(also see Moog and Whiting [1998], Whiting et al. [1999] and King et al. [2004] for 

further information on the sites).  Bed load samples were obtained using a 3-inch Helley-

Smith [Helley and Smith, 1971] sampler, which limits the sampled bed load material to 

particle sizes less than about 76 mm.  Multiple lines of evidence, including movement of 

painted rocks and bed load captured in large basket samplers at a number of the 24 Idaho 
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Table 1.1.  Study-and test site characteristics. 

Study Site (abbreviation) 

Drainage 
Area 
(km2) 

Average 
Slope 
(m/m) 

Subsurface 
d50ss 

(mm) 

Surface 
d50s 

(mm) 

2-yr 
flood 
(cms) 

Little Buckhorn Creek (LBC) 16 0.0509 15 74 2.79 
Trapper Creek (TPC) 21 0.0414 17 75 2.21 
Dollar Creek (DC) 43 0.0146 22 83 11.8 
Blackmare Creek (BC) 46 0.0299 25 101 6.95 
Thompson Creek (TC) 56 0.0153 44 62 3.10 
SF Red River (SFR) 99 0.0146 25 95 8.7 
Lolo Creek (LC) 106 0.0097 19 85 16.9 
MF Red River (MFR) 129 0.0059 18 57 12.8 
Little Slate Creek (LSC) 162 0.0268 24 134 16.0 
Squaw Creek (SQC) 185 0.0100 29 46 6.62 
Salmon R. near Obsidian (SRO) 243 0.0066 26 61 14.8 
Rapid River (RR) 280 0.0108 16 75 20.3 
Johns Creek (JC) 293 0.0207 36 204 36.8 
Big Wood River (BWR) 356 0.0091 25 119 26.2 
Valley Creek (VC) 386 0.0040 21 50 28.3 
Johnson Creek (JNC) 560 0.0040 14 62 83.3 
SF Salmon River (SFS) 853 0.0025 14 38 96.3 
SF Payette River (SFPR) 1164 0.0040 20 95 120 
Salmon R. blw Yankee Fk (SRY) 2101 0.0034 25 104 142 
Boise River (BR) 2154 0.0038 21 60 188 
MF Salmon R. at Lodge (MFSL) 2694 0.0041 36 146 258 
Lochsa River (LR) 3055 0.0023 27 132 532 
Selway River (SWR) 4955 0.0021 24 185 731 
Salmon River at Shoup (SRS) 16154 0.0019 28 96 385 
Test Sites      
Fool Cr. (St. Louis Cr Test Site) 2.9 0.0440 14.7 38.2 0.320 
Oak Creek 6.7 0.0095 19.5 53.0 2.98 
East St. Louis Creek 8.0 0.0500 13.4 51.1 0.945 
St. Louis Creek Site 5 21.3 0.0480 14.4 146 2.52 
Cache Creek 27.5 0.0210 20.2 45.6 2.2 
St. Louis Creek Site 4a 33.5 0.0190 12.9 71.7 3.96 
St. Louis Creek Site 4 33.8 0.0190 12.8 90.5 3.99 
Little Beaver Creek 34 0.2300 9.88 46.7 2.24 
Hayden Creek 46.5 0.0250 19.7 68 2.28 
St. Louis Creek Site 3 54 0.0160 16.4 81.9 5.07 
St. Louis Creek Site 2 54.2 0.0170 14.8 76.2 5.08 
Little Granite Creek 54.6 0.0190 17.8 55.0 8.41 
St. Louis Creek Site 1 55.6 0.0390 16.5 129.3 5.21 
Halfmoon Creek 61.1 0.0150 18.4 61.5 7.3 
Middle Boulder Creek 83.0 0.0128 24.7 74.5 12.6 
SF Cache la Poudre 231 0.0070 12.3 68.5 13.79 
East Fork River 466.0 0.0007 1.0 5.00 36.0 
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sites, indicate that during the largest flows almost all sizes found on the streambed are 

mobilized, including sizes larger than the orifice of the Helley-Smith sampler.  However, 

transport-weighted composite samples across all study sites indicate that only a very 

small percentage of the observed particles in motion approached the size limit of the 

Helley-Smith sampler.  Therefore, though larger particles are in motion during flood 

flows, the motion of these particles is infrequent and the likelihood of sampling these 

larger particles is small. 

Each bed load observation is a composite of all sediment collected over a 30 to 60 

second sample period, depending on flow conditions, at typically 20 equally-spaced 

positions across the width of the wetted channel [Edwards and Glysson, 1999].  Between 

43 and 192 non-zero bed load transport measurements were collected over a 1 to 7 year 

period and over a range of discharges from low flows to those well in excess of the 

bankfull flood at each of the 24 Idaho sites. 

Channel geometry and water surface profiles were surveyed following standard 

field procedures [Williams et al., 1988].  Surveyed reaches were typically 20 channel 

widths in length.  At eight sites water surface slopes were measured over a range of 

discharges and did not vary significantly.  Hydraulic geometry relations for channel 

width, average depth and flow velocity were determined from repeat measurements over 

a wide range of discharges. 

Surface and subsurface particle size distributions were measured at a minimum of 

three locations at each of the study sites during low flows between 1994 and 2000.  

Where surface textures were fairly uniform throughout the study reach, three locations 

were systematically selected for sampling surface and subsurface material.  If major 
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textural differences were observed, two sample sites were located within each textural 

patch, and measurements were weighted by patch area [e.g., Buffington and Montgomery, 

1999a].  Wolman [1954] pebble counts of 100+ surface grains were conducted at each 

sample site.  Subsurface samples were obtained after removing the surface material to a 

depth equal to the d90 of surface grains and were sieved by weight.  The Church et al. 

[1987] sampling criterion was generally met, such that the largest particle in the sample 

comprised, on average, about 5% of the total sample weight.  However, at three sites 

(Johns Creek, Big Wood River and Middle Fork Salmon River) the largest particle 

comprised 13%-14% of the total sample weight; the Middle Fork Salmon River is later 

excluded for other reasons.   

Estimates of flood frequency were calculated using a Log Pearson III analysis 

[USGS, 1982] at all study sites that had at least a 10 year record of instantaneous stream 

flow.  Only five years of flow data were available at Dollar and Blackmare creeks and, 

therefore, estimates of flood frequency were calculated using a two-station comparison 

[USGS, 1982] based on nearby, long-term USGS stream gages.  A regional relationship 

between drainage area and flood frequency was used at Little Buckhorn Creek due to a 

lack instantaneous peak flow data. 

Each sediment transport observation at the 24 Idaho sites was reviewed for 

quality.  At nine of the sites all observations were included.  Of the remaining 15 sites, a 

total of 284 transport observations (out of 2,388) were removed (between 2 and 51 

observations per site).  The primary reasons for removal were differences in sampling 

method prior to 1994, or because the transport observations were taken at a different, or 

unknown, location compared to the majority of bed load transport samples.  Only 41 
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transport observations (out of 284) from nine sites were removed due to concerns 

regarding sample quality (i.e., significant amounts of measured transport at extremely 

low discharges indicative of “scooping” during field sampling). 

Methods of data collection varied greatly among the additional 17 test sites 

outside of Idaho and are described in detail elsewhere (see Ryan and Emmett [2002] for 

Little Granite Creek, Wyoming; Leopold and Emmett [1997] for the East Fork River, 

Wyoming; Milhous [1973] for Oak Creek, Oregon; Ryan et al. [2002] for the eight sites 

on the St. Louis River, Colorado; and Gordon [1995] for both Little Beaver and Middle 

Boulder creeks, Colorado).  Data collection methods at Halfmoon Creek, Hayden Creek 

and South Fork Cache la Poudre Creek, Colorado and Cache Creek, Wyoming were 

similar to the 8 test sites from St. Louis Creek.  Both the East Fork River and Oak Creek 

sites used channel-spanning slot traps to catch the entire bed load, while the remaining 15 

test sites used a 3-inch Helley-Smith bed load sampler spanning multiple years (typically 

1 to 5 years, with a maximum of 14 years at Little Granite Creek).  Estimates of flood 

frequency were determined using either standard flood-frequency analyses [USGS, 1982] 

or from drainage area – discharge relationships derived from nearby stream gages. 

1.5.  Results and Discussion 

1.5.1. Performance of the Bed load Transport Formulae 

1.5.1.1. Log-Log Plots 

Predicted total bed load transport rates for each formula were compared to 

observed values, with a log10-transformation applied to both.  A logarithmic 

transformation is commonly applied in bed load studies because transport rates typically 

span a large range of values (6+ orders of magnitude on a log10 scale), and the data tend to 
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be skewed toward small transport rates without this transformation.  To provide more 

rigorous support for the transformation we used the ARC program [Cook and Weisberg, 

1999] to find the optimal Box-Cox transformation [Neter et al., 1974] (i.e., one that 

produces a near-normal distribution of the data).  Results indicate that a log10 

transformation is appropriate, and conforms with the traditional approach for analyzing 

bed load transport data. 

Figure 1.2 provides an example of observed versus predicted transport rates from 

the Rapid River study site and indicates that some formulae produced fairly accurate, but 

biased, predictions of total transport.  That is, predicted values were generally tightly 

clustered and sub-parallel to the 1:1 line of perfect agreement, but were typically larger 

than the observed values (e.g., Figure 1.2c).  Other formulae exhibited either curvilinear 

bias (e.g., Figures 1.2b, f and g) or rotational bias (constantly trending departure from 

accuracy) (e.g., Figures 1.2a, d, e and h).  Based on visual inspection of similar plots 

from all 24 sites, the Parker et al. [1982] equations (di and d50ss) best describe the 

observed transport rates, typically within an order of magnitude of the observed values.  

In contrast, the Parker et al. [1982] (di via Andrews [1983]), Meyer-Peter and Müller 

[1948] (di and d50ss) and Bagnold [1980] (dmss and dmqb) equations did not perform as 

well, usually over two orders of magnitude from the observed values.  The Ackers and 

White [1973] equation was typically one to three orders of magnitude from the observed 

values. 

1.5.1.2. Transport Thresholds 

The above assessment of performance can be misleading for those formulae that 

contain a transport threshold (i.e., the Meyer-Peter and Müller [1948], Ackers and White 
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[1973] and Bagnold [1980] equations).  Formulae of this sort often erroneously predict 

zero transport at low to moderate flows that are below the predicted threshold for 

transport.  These incorrect zero-transport predictions cannot be shown in the log-log plots 

of observed versus predicted transport rates (Figure 1.2).  However, frequency 

distributions of the erroneous zero-transport predictions reveal substantial error for both 

variants of the Meyer-Peter and Müller [1948] equation and the Bagnold [1980] (dmss) 

equation (Figure 1.3).  These formulae incorrectly predict zero transport for about 50% of 

all observations at our study sites.  In contrast, the Bagnold [1980] (dmqb) and Ackers and 

White [1973] equations incorrectly predict zero transport for only 2% and 4% of the 

observations, respectively, at only one of the 24 study sites.  Formulae that lack transport 

thresholds (i.e., the Parker et al. [1982] equation) do not predict zero transport rates. 

The significance of the erroneous zero-transport predictions depends on the 

magnitude of the threshold discharge and the portion of the total bed load that is excluded 

by the prediction threshold.  To examine this issue we calculated the maximum discharge 

at which each threshold-based transport formula predicted zero transport (Qmax) 

normalized by the 2-year flood discharge (Q2).  Many authors report that significant bed 

load movement begins at discharges that are 60% to 100% of bankfull flow [Leopold et 

al., 1964; Carling, 1988; Andrews and Nankervis, 1995; Ryan and Emmett, 2002; Ryan et 

al., 2002].  Bankfull discharge at the Idaho sites has a recurrence interval of 1-4.8 years, 

with an average of 2 years [Whiting et al., 1999], hence Q2 is a bankfull-like flow.  We 

use Q2 rather than the bankfull discharge because it can be determined objectively from 

flood frequency analyses (Section 1.4) without the uncertainty inherent in field 

identification of bankfull stage.  As Qmax/Q2 increases the significance of incorrectly  
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Figure 1.2.  Comparison of measured versus computed total bed load transport rates for 

Rapid River (typical of the Idaho study sites): a) Meyer-Peter and Müller [1948] equation 

by d50ss, b) Meyer-Peter and Müller equation by di c) Ackers and White [1973] equation 

by di, d) Bagnold equation by dmss, e) Bagnold equation by dmqb, f) Parker et al. [1982] 

equation by d50ss, g) Parker et al. [1982] equation by di (hiding function defined by 

Parker et al. [1982] and h) Parker et al. [1982] equation by di (hiding function defined 

by Andrews [1983]). 
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Figure 1.2, continued.  Comparison of measured versus computed total bed load 

transport rates for Rapid River (typical of the Idaho study sites): a) Meyer-Peter and 

Müller [1948] equation by d50ss, b) Meyer-Peter and Müller equation by di c) Ackers and 

White [1973] equation by di, d) Bagnold equation by dmss, e) Bagnold equation by dmqb, f) 

Parker et al. [1982] equation by d50ss, g) Parker et al. [1982] equation by di (hiding 

function defined by Parker et al. [1982] and h) Parker et al. [1982] equation by di 

(hiding function defined by Andrews [1983]). 
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predicting zero transport increases as well.  For instance, at the Boise River study site, 

both variants of the Meyer-Peter and Müller [1948] equation incorrectly predicted zero 

transport rates for approximately 10% of the transport observations.  However, because 

this error occurred for flows approaching only 19% of Q2, only 2% of the cumulative 

total transport is lost due to this prediction error.  The significance of incorrectly 

predicting zero transport is greater at Valley Creek where, again, both variants of the 

Meyer-Peter and Müller [1948] equation incorrectly predict zero transport rates for 

approximately 90% of the transport observations and at flows approaching 75% of Q2.  

This prediction error translates into a loss of 48% of the cumulative bed load transport. 
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Figure 1.3.  Box plots of the distribution of incorrect predictions of zero transport for the 

24 Idaho sites.  Median values are specified.  MPM stands for Meyer-Peter and Müller. 
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Box plots of Qmax/Q2 values show that incorrect zero predictions are most 

significant for the Meyer-Peter and Müller [1948] equations and the Bagnold [1980] 

(dmss) equation, while the Bagnold [1980] (dmqb) and Ackers and White [1973] equations 

have few incorrect zero predictions and less significant error (lower Qmax/Q2 ratios) 

(Figure 1.4). 
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Figure 1.4.  Box plots of the distribution of Qmax/Q2 (maximum discharge at which each 

threshold-based transport formula predicted zero transport normalized by the 2-year flood 

discharge) for the 24 Idaho sites.  Median values are specified.  MPM stands for Meyer-

Peter and Müller. 
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Because coarse-grained rivers typically transport most of their bed load at near-

bankfull discharges [e.g., Andrews and Nankervis, 1995], failure of the threshold 

equations at low flows may not be significant in terms of the annual bed load transport.  

However, our analysis indicates that in some instances the threshold equations fail at 

moderate to high discharges (Qmax/Q2 > 0.8), potentially excluding a significant portion of 

the annual bed load transport (e.g., Valley Creek as discussed above).  Moreover, the 

frequency of incorrect zero predictions varies widely by transport formula (Figure 1.4).  

To better understand the performance of these equations it is useful to examine the nature 

of their threshold formulations. 

As discussed in Section 1.3, the Meyer-Peter and Müller [1948] equation is a 

power function of the difference between applied and critical shear stresses.  A shear 

stress correction is used to account for channel roughness and to determine that portion of 

the total stress applied to the bed (Appendix 1.1).  However, the Meyer-Peter and Müller 

[1948] stress correction may be too severe, causing the high number of zero-transport 

predictions.  Bed stresses predicted from the Meyer-Peter and Müller [1948] method are 

typically only 60-70% of the total stress at our sites.  Moreover, because armored gravel-

bed rivers tend to exhibit a near-bankfull threshold for significant bed load transport 

[Leopold et al., 1964; Parker 1978; Carling, 1988; Andrews and Nankervis, 1995], the 

range of transporting shear stresses may be narrow, causing transport predictions to be 

particularly sensitive to the accuracy of stress corrections. 

The Bagnold [1980] equation is a power function of the difference between 

applied and critical unit stream powers.  The modal grain size of the subsurface material 

(dmss) is typically 32 mm to 64 mm (geometric mean of 45 mm) at our study sites, 
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whereas the modal grain size of the bed load observations varied widely with discharge 

and was typically between 1.5 mm at low flows and 64 mm during flood flows.  Not 

surprisingly the Bagnold [1980] equation performs well when critical stream power is 

based on the modal grain size of each measured bed load event (dmqb), but not when it is 

defined from the mode of the subsurface material (dmss) (Figures 1.3 and 1.4).  When 

calibrated to the observed bed load data, the critical unit stream power scales with 

discharge such that at low flows when the measured bed load is fine (small dmqb) the 

critical stream power is reduced.  Conversely, as discharge increase and the measured bed 

load data coarsens (larger dmqb) the critical unit stream power increases.  However, the 

mode of the subsurface material (dmss) does not scale with discharge and consequently the 

critical unit discharge is held constant for all flow conditions when based on dmss.  

Consequently, threshold conditions for transport based on dmss are often not exceeded, 

while those of dmqb were exceeded over 90% of the time. 

In contrast, the Ackers and White [1973] equation is a power function of the ratio 

of applied to critical shear stress minus 1, where the critical shear stress is, in part, a 

function of d50ss, rather than dmss.  At the Idaho sites, d50ss is typically about 20 mm and, 

therefore, the critical shear stress is exceeded at most flows, resulting in a low number of 

incorrect zero predictions (Figure 1.3). 

1.5.1.3. Statistical Assessment 

The performance of each formula was also assessed statistically using the log10-

difference between predicted and observed total bed load transport.  To include the 

incorrect zero predictions in this analysis we added a constant value, ε, to all observed 
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and predicted transport rates prior to taking the logarithm.  The lowest non-zero transport 

rate predicted for the study sites (1•10-15 kg/m·s) was chosen for this constant. 

Formula performance changes significantly compared to that of Section 1.5.1.1 

when we include the incorrect zero-transport predictions.  The distribution of log10 

differences across all 24 study sites from each formula is shown in Figure 1.5.  Both 

versions of the Meyer-Peter and Müller [1948] equation and the Bagnold [1980] (dmss) 

equation typically underpredict total transport due to the large number of incorrect zero 

predictions, with the magnitude of this underprediction set by ε.  All other equations 

included in this analysis have few, if any, incorrect zero predictions and tend to predict 

total transport values within 2 to 3 orders of magnitude of the observed values. 

To further examine formula performance, we conducted paired-sample χ2 tests to 

compare observed versus predicted transport rates for each equation across the 24 study 

sites.  We use Freese’s [1960] approach, which differs slightly from the traditional 

paired-sample χ2 analysis in that the χ2 statistic is calculated as 
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where xi is the ith predicted value, μi is the ith observed value, n is the number of 

observations, and σ2 is the required accuracy defined as 
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Figure 1.5.  Box plots of the distribution of log10 differences between observed and 

predicted bed load transport rates for the 24 Idaho study sites.  Median values are 

specified.  MPM stands for Meyer-Peter and Müller.  Power function is discussed in 

Section 1.5.3. 

 

where E is the user-specified acceptable error, and 1.96 is the value of the standard 

normal deviate corresponding to a two-tailed probability of 0.05.  We evaluate χ2 using 

log-transformed values of bed load transport, with ε added to both xi and μi prior to 

taking the logarithm, and E defined as one log unit (i.e., ± an order of magnitude error). 

Freese’s [1960] χ2 test shows that none of the equations perform within the 

specified accuracy (± an order of magnitude error, α = 0.05).  Nevertheless, some 
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equations are clearly better than others (Figure 1.5).  To further quantify equation 

performance, we calculated the critical error, e*, at each of the 24 study sites (Figure 1.6), 

where e* is the smallest value of E that will lead to adequate model performance (i.e., 

acceptance of  the null hypothesis of equal distributions of observed and predicted bed 

load transport rates assessed via Freese’s [1960] χ2 test).  Hence, we are asking how 

much error would have to be tolerated to accept a given model (bed load transport 

equation) [Reynolds, 1984]. 

 

M
PM

 (d
50

ss
)

M
PM

 (d
i)

Ba
gn

ol
d 

(d
m

ss
)

Ba
gn

ol
d 

(d
m

qb
)

A
ck

er
s a

nd
 W

hi
te

 (d
i)

Pa
rk

er
 (d

i)

Pa
rk

er
 (d

50
ss

)

Pa
rk

er
 (d

i, 
An

dr
ew

s, 
19

83
)

Po
w

er
 fu

nc
tio

n 
(3

)

Transport Formulae

0

5

10

15

20

25

cr
iti

ca
l e

rro
r, 

e*

14.55

0.65

4.39
3.09

1.621.93

5.66

18.01

13.08

 Median  25%-75%  Min-Max 

 

Figure 1.6.  Box plots of the distribution of critical error, e*, for the 24 Idaho sites.  

Median values are specified.  MPM stands for Meyer-Peter and Müller.  Power function 

is discussed in Section 1.5.3. 
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Results show that at best, median errors of less than 2 orders of magnitude would 

have to be tolerated for acceptance of the best-performing equations (Ackers and White 

[1973] and Parker et al. [1982] (di) equations), while at worst, median errors of more 

than 13 orders of magnitude would have to be tolerated for acceptance of the poorest-

performing equations (Figure 1.6).  In detail, we find that the Parker et al. [1982] (di) 

equation outperformed all others except for the Ackers and White [1973] formula (paired 

χ2 test of e* values, α = 0.05).  However, the median critical errors of these two 

equations were quite poor (1.62 and 1.93, respectively).  The Bagnold [1980] (dmss) 

equation and both variants of the Meyer-Peter and Müller [1948] equation had the largest 

critical errors, with the latter not statistically different from one another (paired χ2 test, α 

= 0.05).  The Parker et al. [1982] (d50ss) and the Parker et al. [1982] (di via Andrews 

[1983]) equations were statistically similar to each other and performed better than the 

Bagnold [1980] (dmqb) equation (paired χ2 test, α = 0.05). 

Although the χ2 statistic is sensitive to the magnitude of ε, specific choice of 

ε between 1•10-15 and 1•10-7 kg/m·s does not change the relative performance of the 

equations or the significance of the differences in performance between them.  Nor does 

it alter the finding that none of the median critical errors, e*, are less than or equal to E; 

the formulae with the lowest critical errors have little to no incorrect zero transport 

predictions and are, thus, least affected by ε (c.f. Figures 1.3 and 1.6). 

It should be noted that our analysis of performance does not weight transport 

events by their proportion of the annual bed load transport [sensu Wolman and Miller, 

1960], but by the number of transport observations.  Because there are more low-flow 
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transport events than high-flow ones during a given period of record, the impact of the 

low-flow events (and any error associated with them) is emphasized.  This analysis 

artifact is common to all previous studies that have examined the performance of bed 

load transport equations.  Hence, geomorphic performance [sensu Wolman and Miller, 

1960] remains to be tested in future studies. 

1.5.2. Effects of Formula Calibration and Complexity 

Accuracy was also considered in relation to degree of formula calibration and 

complexity.  The number and nature of calibrated parameters determines the degree of 

formula calibration which, in turn, determines equation complexity.  In general, formulae 

computed by grain size fraction (di), using site-specific particle-size distributions, are 

more calibrated and more complex than those determined from a single characteristic 

particle size.  Moreover, formulae that are fit to observed bed load transport rates and that 

use site-specific hiding functions (e.g., Parker et al. [1982] (di) equation) are more 

calibrated and complex than those that that use a hiding function derived from another 

site (e.g., our use of the Andrews [1983] function in variants of the Parker et al. [1982] 

and Meyer-Peter and Müller [1948] equations).  The Bagnold [1980] formula does not 

contain a hiding function, is based on a single grain size, has a limited number of user-

calibrated parameters and is, therefore, ranked lowest in terms of both calibration and 

complexity.  However, we have ranked the Bagnold [1980] (dmqb) variant higher in terms 

of calibration because the modal grain size varied with discharge and was calculated from 

the observed bed load transport data.  We consider the Ackers and White [1973] equation 

equal in terms of calibration and complexity to both the Meyer-Peter and Müller [1948] 

(di) equation and the Parker et al. [1982] (di via Andrews [1983]) equation because all 
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three are calculated by di, have a similar number of calibrated parameters and contain 

“off the shelf” particle-hiding functions that are calibrated to other sites, rather than to 

site-specific conditions. 

Results from our prior analyses (Figures 1.5 and 1.6) indicate that the most 

complex and calibrated equation (i.e., Parker et al. [1982] (di)) outperforms all other 

formulae except for the Ackers and White [1973] equation.  However, we find no 

consistent relationship between formula performance and degree of calibration and 

complexity.  Size-specific formulae (those calculated by di) do not consistently 

outperform those based on a single characteristic particle size (d50ss, dmqb or dmss), nor 

does a site-specific hiding function (i.e., Parker et al. [1982] (d50ss)) guarantee better 

performance than an “off the shelf” hiding function (i.e., Parker et al. [1982] (di) via 

Andrews [1983]).   

1.5.3. A New Bed load Transport Equation 

The bed load equations examined in Sections 1.5.1-2 are some of the most 

common and popular equations used for gravel-bed rivers.  However, their performance 

is disconcerting and makes us ask whether there is a better alternative? 

We find that bed load transport at our sites is generally well described in log10 

space (0.50 < r2 < 0.90) by a simple power function of total discharge (Q)  

βαQqb =          (1.3) 

where qb is bed load transport per unit width, and α and β are empirical values (Leopold 

et al., 1964, Smith and Bretherton, 1972; Vanoni, 1975).  Figure 1.7 shows a sample fit of 

this function at the Boise River study site.  Moreover, we find that (1.3) performs within 

the accuracy specified in Section 1.5.1.3 (Freese’s χ2 [1960], α = 0.05) and is superior to 



 

 

31

 

the other bed load equations examined in terms of describing the observed transport 

(Figures 1.5 and 1.6).  In particular, the median critical error, e*, for (1.3) is significantly 

lower than that of the other equations (paired χ2 test, α = 0.05) and is within the specified 

accuracy (E = 1 log10 unit).  We expect this result because (1.3) is empirically fit to the 

data and, thus, fully calibrated.  Nevertheless, the results demonstrate that a power 

function of discharge may be a viable alternative to the other equations examined in 

Sections 1.5.1-2.  To generalize (1.3) and make it predictive, we next parameterize α and 

β in terms of channel and watershed characteristics. 
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Figure 1.7.  Example bed load rating curve from the Boise River study site (qb=4.1 x 

108 Q2.81, r2=0.90). 
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1.5.4. Parameterization of the Bed Load Transport Equation 

We hypothesize that the exponent of (3) is principally a factor of supply-related 

channel armoring.  Emmett and Wolman [2001] discuss two types of supply limitation in 

gravel-bed rivers.  First, the supply of fine material present on the streambed determines, 

in part, the magnitude of Phase I transport (motion of finer particles over an immobile 

armor) [Jackson and Beschta, 1982].  Second, supply limitation occurs when the coarse 

armor layer limits the rate of gravel transport until the larger particles that make up the 

armor layer are mobilized, thus exposing the finer subsurface material to the flow (Phase 

II transport [Jackson and Beschta, 1982]).  Mobilization of the surface material in a well 

armored channel is followed by a relatively larger increase in bed load transport rate 

compared to a similar channel with less surface armoring.  Consequently, we expect that 

a greater degree of channel armoring, or supply-limitation, will delay mobilization of the 

armor layer and result in a steeper bed load rating curve (larger exponent of the bed load 

function (1.3)) compared to a less armored channel. 

Dietrich et al. [1989] proposed that the degree of channel armoring is related to 

the upstream sediment supply relative to the local transport capacity, and presented a 

dimensionless bed load transport ratio, q*, to represent this relationship.  Here, we use q* 

as an index of supply-related channel armoring and examine its effect on the exponent (β) 

of the observed bed load rating curves (1.3).   

We define q* as 

5.1

502

502*
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
=

ss

s

dQ

dQq
ττ

ττ
       (1.4) 



 

 

33

 

where 
2Qτ  is the total shear stress at Q2 calculated from the depth-slope product (ρgDS, 

where ρ is fluid density, g is gravitational acceleration, D is flow depth at Q2 calculated 

from hydraulic geometry relationships, and S is channel slope) and 
sd50

τ and 
ssd50

τ are 

the critical shear stresses necessary to mobilize the surface and subsurface median grain 

sizes, respectively.  Channel morphology and bed load transport are adjusted to bankfull 

flows in many gravel-bed rivers [e.g., Leopold et al., 1964; Parker, 1978; Andrews and 

Nankervis, 1995], hence bankfull is the relevant flow for determining q* in natural rivers 

[Dietrich et al., 1989].  However, we use Q2 because it is a bankfull-like flow that can be 

determined objectively from flood frequency analyses without the uncertainty inherent in 

field identification of bankfull stage (Section 1.5.1.2).  The critical shear stresses are 

calculated as 

    τd50s = τ *c50 ρs − ρ( )gd50s        (1.5a) 

    τd50ss = τ *c50 ρs − ρ( )gd50ss       (1.5b) 

where τ*
c50 is the dimensionless critical Shields stress for mobilization of the median 

grain size.  We set this value equal to 0.03, corresponding with the lower limit of 

dimensionless critical Shield stress values for visually-based determination of incipient 

motion in coarse-grained channels [Buffington and Montgomery, 1997]. 

Values for q* range from 0 for low bed load supply and well-armored surfaces 

(d50s >> d50ss and 
250 Qd s

ττ ≈ ) to 1 for high bed load supply and unarmored surfaces 

( sss dd 5050 ≈  and 
sss dd 5050

ττ ≈ ).  As demonstrated by Dietrich et al. [1989], q* does 

not measure absolute armoring (i.e., it is not uniquely related to d50s/d50ss), but rather 

relative armoring (a function of transport capacity relative to bed load supply).  The 
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denominator of (1.4) is the equilibrium transport capacity of the unarmored bed and is a 

reference transport rate (theoretical end-member) that quantifies the maximum bed load 

transport capacity for the imposed boundary shear stress and the size of supplied bed load 

material.  The numerator is the equilibrium transport rate for the actual bed load supply 

(equilibrium excess shear stress), with equilibrium transport achieved by textural 

adjustment of the bed (fining or coarsening in response to bed load supply) [e.g., Dietrich 

et al., 1989; Buffington and Montgomery, 1999b].  Hence, q* is a relative index of 

armoring (textural adjustment as a function of excess shear stress that provides 

equilibrium bed load transport).  It describes armoring as a function of bed load supply 

relative to boundary shear stress and transport capacity.  Consequently, q* is not a 

measure of absolute armoring (d50s/d50ss).  For the same degree of armoring, one can have 

different values of q*, depending on the bed load supply and the corresponding 

equilibrium excess shear stress [Dietrich et al., 1989; Lisle et al., 2000].  Similarly, for a 

given q*, a lower degree of armoring will occur for lower values of equilibrium excess 

shear stress [Dietrich et al., 1989; Lisle et al., 2000]. 

We determined values of q* at 21 of the 24 study sites.  Values of q* could not be 

determined for three of the study sites because their median grain sizes were calculated to 

be immobile during Q2 (Salmon River at Shoup, Middle Fork Salmon River at Lodge and 

Selway River).  Results show an inverse relationship between q* and the exponent of our 

bed load power function (Figure 1.8)  supporting the hypothesis that supply-related 

changes in armoring relative to the local transport capacity influence the delay in bed 

load transport and the slope of the bed load rating curve.  We parameterize q* in terms of 

low-flow bed material for practical reasons (safety during grain-size measurement and 
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feasibility of future application of our approach).  However, surface grain size can change 

with discharge and transport rate [Parker and Klingeman, 1982; Parker et al., 2003], 

thereby potentially making β discharge dependent.  Nevertheless, β is an average value 

across the range of observed discharges (including channel-forming flows) and any 

textural changes are empirically incorporated into our relationship between β and q*. 

Two sites (Thompson Creek and Little Buckhorn) appear to be outliers and, 

therefore, were removed from the analysis (shown as open diamonds in Figure 1.8).  The 

anomalous Thompson Creek q* value may be due to an extensive network of upstream 

beaver dams.  The availability of sediment at all but the greatest flows is likely influenced 

by dam storage, delaying transport and increasing β by compressing the effective flows 

into a smaller portion of the hydrograph.  In contrast, the large q* value for Little 

Buckhorn may be due to a lack of peak flow information.  The Q2 at this site was 

calculated from a drainage area versus Q2 relationship developed from the other 23 Idaho 

study sites where peak flow information was available.  This relationship may over-

predict Q2 at Little Buckhorn, resulting in an anomalously high q* value. 

Because q* is a relative measure of armoring (i.e., relative to bed load supply and 

transport capacity), it is unlikely to be biased by site-specific conditions (climate, 

geology, channel type, etc.).  For example, the relative nature of q* implies that channels 

occurring in different physiographic settings and possessing different particle size 

distributions (e.g., a fine gravel-bed stream versus a coarse cobble-bed one) may have 

identical values of q*, indicating identical armoring conditions relative to transport 

capacity and bed load sediment supply and, thus, identical bed load rating-curve slopes.  

Although, q* is not uniquely related to absolute armoring (d50s/d50ss), we examined its 
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effect on the exponent of our transport function (1.3), and found that the relationship was 

not significant (F-test , α = 0.05).  Hence, relative armoring (q*) is more important than 

absolute armoring (d50s/d50ss).  Because q* is a relative index of armoring, it should be a 

robust predictor of the exponent of our bed load power function and unbiased by 

changing physiography and channel morphology. 

In contrast, the coefficient of the bed load power function (α) describes the 

absolute magnitude of bed load transport, which is a function of basin-specific sediment 

supply and discharge.  In general, sediment transport rate (qb) and discharge (Q) both 

increase with drainage area (A) [Leopold et al., 1964], however discharge increases 

faster, such that the coefficient of the bed load power function is inversely related to 

drainage area (a surrogate for transport rate relative to discharge, α ∝ 1/A ∝ qb/Q) (Figure 

1.8).  The rate of downstream increase in unit bed load transport rate (qb) also depends on 

1) downstream changes in channel width (a function of discharge, riparian vegetation, 

geology and land use) and 2) loss of bed load material to the suspended fraction due to 

particle abrasion [Cui and Parker, in press].  Factors that affect channel width also 

influence flow depth, boundary shear stress, and surface grain size and, thus, may 

influence, and be partially compensated by, β.  We hypothesize that the Figure 1.8 

relationship is a region-specific function of land use and physiography (i.e., topography, 

geology, and climate).  Consequently, care should be taken in applying this function to 

other regions.  In contrast, prediction of the exponent of our bed load transport equation 

may be less restrictive, as discussed above. 
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exponent = -2.33 x q *  + 3.541
r2 = 0.61
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Figure 1.8.  Relationships between a) q* and the exponent of the bed load rating curves 

(1.3) and b) drainage area and the coefficient of the bed load rating curves (1.3) for the 

Idaho sites.  Dashed line indicates 95% confidence interval about the mean regression 

line.  Solid line indicates 95% prediction interval (observed values) [Neter et al., 1974; 

Zar, 1974]. 

a) 

b) 
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Based on the relationships shown in Figure 1.8 we propose the following 

empirically derived total bed load transport function with units of dry mass per unit width 

and time (kg/m•s). 

( )56.345.241.3 *

257 +−−= q
b QAq        (1.6) 

where the coefficient and exponent are parameterized in terms of channel and watershed 

characteristics.  The coefficient is a power function of drainage area (a surrogate for the 

magnitude of basin-specific bed load supply) and the exponent is a linear function of q* 

(an index of channel armoring as a function of transport capacity relative to bed load 

supply). 

The 17 independent test sites (Table 1.1) allow us to consider two questions 

concerning our bed load formula (1.6).  First, how well can we predict the coefficient and 

exponent of the bed load power function at other sites?  Second, how does our bed load 

formula perform relative to those examined in Section 1.5.1?  These questions are 

addressed in the next two sections. 

1.5.5. Test of Equation Parameters 

We test our parameterization of (1.6) by comparing predicted values of the 

formula coefficient (α) and exponent (β) to observed values at 17 independent test sites 

in Wyoming, Colorado and Oregon (Figure 1.1).  The independent test sites cover a 

generally similar range of slopes and particle sizes as the 24 Idaho sites used to develop 

(1.6) (Table 1.1).  However, the East Fork River test site occurs at the gravel/sand 

transition [e.g., Sambrook Smith and Ferguson, 1995; Ferguson et al., 1998; Parker and 

Cui, 1998] and is significantly finer than the coarse-grained Idaho study sites.  The Idaho 

study sites and the supplemental test sites are all snowmelt-dominated streams, except for 
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Oak Creek which is a rainfall-dominated channel.  The geology is also similar across the 

study and test sites.  The channels are predominantly underlain by granitics, with some 

metamorphic and sedimentary geologies, except for Oak Creek which is underlain by 

basalt.  Bed load transport was measured with Helley-Smith samplers at all sites, with the 

exception of the East Fork and Oak Creek sites, where slot traps were used [Milhous, 

1973; Leopold and Emmett, 1997]. 

As expected, the exponent of our bed load function is better predicted on average 

at the 17 test sites than the coefficient (Figure 1.9).  The observed exponents are 

reasonably well predicted by (1.6) with a median error of less than 3%.  This suggests 

that q*, determined in part through measurements of the surface and subsurface material 

during low flow, is able to accurately predict the rating-curve exponent over a range of 

observed discharges (including channel-forming flows) despite any stage-dependent 

changes in surface grain size [Parker and Klingeman, 1982; Parker et al., 2003].  

Moreover, the rating-curve exponents are accurately predicted across different climatic 

regimes (snowmelt- and rainfall-dominated), different lithologies (basalt and granite), 

and different bed load sampling methods (Helley-Smith and slot samplers), despite the 

fact that the predictive equation is derived from a subset of these conditions (i.e., 

snowmelt rivers in granitic basins, sampled via Helley-Smith).  In particular, β is 

reasonably well predicted at the two test sites that are most different from the Idaho study 

sites (Oak Creek and East Fork; observed β values of 2.55 and 2.19 versus predicted 

values of 2.43 and 1.82, respectively).  We suspect that the success of our exponent 

function is due to the robust nature of q* to describe supply-related channel armoring 

regardless of differences in physiography and channel conditions (Section 1.5.4). 
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In contrast, the predicted coefficients are considerably less accurate and were over 

3 times larger than the observed values at many of the 17 test sites (Figure 1.9).  

Prediction errors, however, can be significant for both parameters, which is expected 

given the spread of the 95% prediction intervals shown in Figure 1.8.  The largest errors 

in predicting the coefficient occurred at the Oak Creek and East Fork sites (3 orders of 

magnitude overprediction, and 2 orders of magnitude under-prediction, respectively).  

The cause of the error at these sites is examined below. 
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Figure 1.9.  Box plots of predicted versus observed values of a) coefficient and b) 

exponent of our bed load transport function (1.6).  Median values are specified. 

 

The Oak Creek watershed is unique relative to the 24 Idaho study sites in that it is 

composed primarily of basalt, rather than granite, and has a climatic regime dominated by 
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rainfall, rather than snowmelt.  Because (1.6) accurately predicts the exponent of the Oak 

Creek bed load rating curve, as discussed above, the over-prediction of total bed load 

transport at this site is principally due to prediction error of the transport coefficient 

(observed α of 1.9•10-4 versus predicted α of 0.39), which may be due to differences in 

basin geology and sediment production rates.  Basalt is typically less erosive and 

produces less sediment per unit area than the highly decomposed granites found in the 

Idaho batholith [e.g., Lisle and Hilton, 1999].  Consequently, one would expect (1.6) to 

over-predict the transport coefficient at Oak Creek, as observed.  Alternatively, the bed 

load supply and transport coefficient may be influenced by climate and runoff regime; 

however the relationship between these two variables is not well documented.  Previous 

studies suggest that in temperate climates bed load supplies may be higher in rainfall 

regimes than snowmelt-dominated ones [Lisle et al., 2000].  Therefore, our α prediction, 

which is derived from snowmelt streams, would be expected to underpredict transport 

rates in the rainfall-dominated Oak Creek, contrary to what we observe.  Consequently, 

differences in runoff regime do not appear to explain the observed error at Oak Creek.  

Regardless of the exact physical cause, the prediction error highlights the site-specific 

nature of our coefficient function (α) (discussed further in Section 1.5.7). 

In contrast, the under-prediction of the transport coefficient at East Fork may be 

due to a difference in channel type.  The East Fork site occurs at the gravel/sand 

transition and has a finer, more mobile bed than the coarser-grained Idaho sites.  The 

gravel/sand transition represents a shift in the abundance of sand-sized material that 

likely increases the magnitude of Phase I transport and total sediment load compared to 
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gravel-bed channels.  Consequently, one might expect (1.6) to under-predict the 

coefficient at East Fork, as observed. 

The Oak Creek and East Fork sites also differ from the others in that bed load 

samples were obtained from channel-spanning slot traps, rather than Helley-Smith 

samplers.  Recent work by Bunte et al. [in press] shows that differences in sampling 

method can dramatically affect bed load transport results, although Emmett [1980] 

demonstrates reasonably good agreement between slot and Helley-Smith samples at the 

East Fork site.  Consequently, differences in sampling method do not explain the 

observed prediction error of the transport coefficient, at least at the East Fork site. 

Differences in climate and runoff regime may also influence the rating-curve 

exponent (β).  This is not a source of error in our analysis (β is accurately predicted by 

(1.6), even at Oak Creek), but rather a source of systematic variation in β.  A rainfall-

dominated climate produces greater short-term variability in the annual hydrograph (i.e., 

flashier hydrograph) than one dominated by snowmelt [Swanston, 1991; Lisle et al., 

2000] and typically generates multiple peak flows throughout the year versus the single, 

sustained peak associated with spring snowmelt.  Consequently, the frequency and 

magnitude of bed load events differs between rainfall- and snowmelt-dominated 

hydrographs.  The magnitude of flow associated with a given return period is typically 

greater in a rainfall-dominated watershed than in a similarly sized snowmelt-dominated 

watershed [Pitlick, 1994].  This is seen at our study sites in that the highest Q2 unit 

discharge (0.44 m3 km-2) occurs at the rainfall-dominated Oak Creek test site and is 

almost twice the second highest Q2 unit discharge (0.27 m3 km-2) at the snowmelt-

dominated Dollar Creek study site.  Furthermore, due to the greater short-term variability 
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of rainfall-dominated hydrographs, the duration of intermediate flows is reduced, which 

can lead to fining of the bed surface and a decrease in the degree of the channel armoring 

[Laronne and Reid 1993; Lisle et al., 2000; Parker et al., 2003].  Consequently, one 

might expect less armoring and lower bed load rating-curve exponents (β) in rainfall-

dominated environments compared to snowmelt ones.  However, β and the degree of 

armoring are also influenced by bed load supply and boundary shear stress (Section 

1.5.4), so those parameters must be factored into any comparison of runoff regimes.  

Lack of data (only one rainfall-dominated site in our data set) precludes further 

examination of this issue here. 

1.5.6. Comparison with Other Equations 

To compare the accuracy of our bed load transport formula (1.6) to those 

presented in Section 1.5.1, we performed a test of six formulae (including (1.6)) at the 17 

test sites.  The test procedure was similar to that used in Section 1.5.1.3; however, we 

assume no transport observations are available for formula calibration (i.e., blind test) 

and, therefore, we do not include the two variants of the Parker et al. [1982] (di and d50ss) 

equation or the Bagnold [1980] (dmqb) equation which require measured bed load 

transport data.  Consequently, only five of the eight variants of the formulae from Section 

1.5.1 are included here, plus our power-law equation (1.6). 

Similar to Section 1.5.1, incorrect zero-transport predictions are a problem for 

threshold-based equations, but the number of zero predictions is significantly less at the 

test sites (about 50% less compared to those shown in Figure 1.3 for the Idaho study 

sites).  For both variants of the Meyer-Peter and Müller [1948] equation the median 

percentage of incorrect zero transport predictions is about 22%, while the median 
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percentage of incorrect zero predictions for the Bagnold [1980] (dmss) equation is 28%.  

In contrast, the Ackers and White [1973] equation incorrectly predicted zero transport at 

only one test site (Oak Creek) for 35% of the observations.  The significance of incorrect 

zero-transport predictions is similar at the 17 test sites as at the 24 Idaho sites.  The 

Qmax/Q2 ratio for both variants of the Meyer-Peter and Müller [1948] (d50ss and di) 

equation had a median value of 32% and 28%, respectively, at the Idaho sites and about 

30% at the test sites.  The Qmax/Q2 ratio for the Bagnold [1980] (dmss) equation decreased 

slightly from a median value of 35% at the Idaho sites to 27% at the test sites. 

Figure 1.10 shows the distribution of log10 differences across the 17 test sites and 

demonstrates a significant improvement in the performance of both versions of the 

Meyer-Peter and Müller [1948] equation and the Bagnold [1980] (dmss) equation due to 

fewer incorrect zero transport predictions; median log10 differences improve from an 

under-prediction of almost 10 orders of magnitude at the 24 Idaho sites to an over-

prediction of only 1.3 to 2.2 orders of magnitude at the test sites.  The performance of 

both the Parker et al. [1982] (di via Andrews [1983]) equation and the Ackers and White 

[1973] equation decreased slightly at the test sites with median log10 differences 

increasing from 2.73 and 0.25, respectively, at the Idaho sites to 3.27 and 0.80, 

respectively, at the test sites.  Our bed load equation (1.6) had the lowest median log10 

difference (0.62) at the 17 test sites. 

As in Section 1.5.1.3, the performance of each formula was evaluated using 

Freese’s [1960] χ2 test, with results similar to those of the Idaho sites;  all formulae 

perform significantly worse than the specified accuracy (E = 1 log10 unit, α = 0.05), 

including (1.6).  We also evaluated the critical error, e* [Reynolds, 1984], at each test site 
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and, like the Idaho study sites, we found that a given formula may occasionally provide 

the required accuracy, but generally no equation performs within the specified accuracy 

(Figure 1.11, all median e*-values > E). 
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Figure 1.10.  Box plots of the distribution of log10 differences between observed and 

predicted bed load transport rates at the 17 test sites.  Median values are specified.  MPM 

stands for Meyer-Peter and Müller. 

 

Nevertheless, our bed load transport formula (1.6) outperformed all others at the 

17 test sites, except for the Ackers and White [1973] equation which was statistically 

similar to ours (paired χ2 test of e* values, α = 0.05) (Figure 1.11).  As with the Idaho 
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sites, the worst performers were the Bagnold [1980] (dmss) equation and both variants of 

the Meyer-Peter and Müller [1948] equation, both of which were similar to one another, 

but different from the Bagnold [1980] (dmss) equation (paired χ2 test, α = 0.05).  Critical 

errors for the Parker et al. [1982] (di via Andrews [1983]) equation were between these 

two groups of best and worst performers and statistically different from them (paired χ2 

test, α = 0.05).  Overall, the patterns of formula performance were similar to those of the 

Idaho study sites, but the 17 test sites tended to have lower values of critical error (cf. 

Figures 1.6 and 1.11). 
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Figure 1.11.  Box plots of the distribution of critical error, e*, for the 17 test sites.  

Median values are specified.  MPM stands for Meyer-Peter and Müller. 
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1.5.7. Formula Calibration 

A principle drawback of our proposed bed load transport equation (1.6) appears to 

be the site-specific nature of the coefficient function (α).  However, it may be possible to 

back-calculate a local coefficient from one or more low-flow bed load transport 

measurements coupled with prediction of the rating curve exponent as specified in (1.6), 

thus significantly reducing the cost and time required to develop a bed load rating curve 

from traditional bed load sampling procedures [e.g., Emmett, 1980].  A similar approach 

of formula calibration from a limited number of transport observations was proposed by 

Wilcock [2001].  Our suggested procedure for back-calculating the coefficient assumes 

that the exponent can be predicted with confidence (as demonstrated by our preceding 

analyses). 

By way of example, we used (1.6) to calculate the exponent of the bed load rating 

curve at Oak Creek and then randomly selected 20 low-flow bed load transport 

observations to determine 20 possible rating curve coefficients.  Low flows are defined as 

those less than the average annual value.  The average predicted coefficient using this 

calibration method is 0.00032, which is much closer to the observed value (0.00019) than 

our original prediction (0.39) from (1.6).  Thus, our calibration method better 

approximates the observed coefficient.  Using the exponent predicted from (1.6) and the 

calibrated coefficient of 0.00032, we predict total transport for each observation made at 

Oak Creek.  Results show that the critical error, e*, improves from 6.17 to 1.53.  Figure 

1.12 illustrates the improved accuracy of our bed load formula with calibration to a 

limited number of low-flow transport observations.  
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Figure 1.12.  Observed versus predicted bed load transport rates at Oak Creek, 

illustrating improved performance by calibrating the coefficient of our equation (1.6) to a 

limited number of observed, low-flow, transport values. 

 

1.6.  Summary and Conclusions 

The bed load transport datasets obtained from 24 study sites in central Idaho, 

USA, provide an opportunity to extend the analyses of Gomez and Church [1989] and 
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Yang and Huang [2001] into coarse-grained mountain rivers and to continue recent 

studies of those environments [Almedeij and Diplas, 2003; Bravo-Espinosa et al., 2003; 

Martin, 2003].  We evaluated the performance of eight different formulations of four 

common bed load transport equations, each of which are calibrated to some degree with 

site-specific data and vary in their complexity and difficulty of use.  Although we find 

considerable differences in formula performance, there is no consistent relationship 

between performance and degree of formula calibration or complexity at the 24 Idaho 

sites.  However, formulae containing a threshold for bed load transport commonly predict 

a substantial number of incorrect zero-transport rates and typically perform worse than 

non-threshold formulae.  Moreover, we find that a simple power function of discharge 

best describes the observed transport at the Idaho sites (Freese’s [1960] χ2, α = 0.05).  

This result is expected because the power function is empirically fit to the observed data.  

Nevertheless, the simplicity of the equation is attractive, and we develop it into a 

predictive transport equation by parameterizing its coefficient and exponent in terms of 

channel and watershed conditions at the 24 Idaho study sites. 

We find that the exponent of the bed load rating curve is inversely related to q* 

which describes the degree of channel armoring relative to transport capacity and 

sediment supply [Dietrich et al., 1989].  Because q* is a relative index of supply-limited 

channel armoring we expect our exponent equation to be transferable to other 

physiographies and channel types.  In contrast, we find that the coefficient of our bed 

load power function is inversely related to drainage area and is likely a function of site-

specific sediment supply and channel type.  As such, the coefficient equation may not be 
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as transferable to other locations, but can be locally calibrated (Section 1.5.7).  We use an 

additional 17 independent data sets to test the accuracy of our bed load power function. 

As expected, the exponent is better predicted than the coefficient at the 17 

independent test data sets, with typical errors of less than 3% and almost 300%, 

respectively.  We find that our coefficient function is sensitive to local geology and 

channel type.  In particular, our bed load formula was developed from watersheds 

composed principally of granitics and coarse-grained channel types, and when applied to 

a less erosive lithology, such as basalt (Oak Creek), we tend to over-predict bed load 

transport.  This is due to the site-specific nature of our coefficient function rather than 

errors associated with our exponent function (at Oak Creek the observed α = 1.9•10-4, 

predicted α = 0.39; observed β = 2.55, predicted β = 2.43).  Conversely, when we apply 

our formula to a channel at the gravel/sand transition (East Fork River) we under-predict 

the amount of bed load transport for a given drainage area, again, due to the site-specific 

nature of our coefficient function (observed α = 8.26•10-5, predicted α = 2.06•10-7; 

observed β = 2.19, predicted β = 1.82). 

Despite these concerns, we find that our bed load formula significantly 

outperformed three of the four transport formulae examined and was statistically similar 

to the Ackers and White [1973] equation at the 17 independent test sites. 

Although our exponent function appears to be robust, a more thorough test of both 

the coefficient and exponent functions, covering a wider range of geologies and climatic 

regimes, is warranted.  Moreover, our definition of q* requires stage–discharge data to 

determine Q2 from flood-frequency analyses and to determine the Q2 flow depth from 

hydraulic geometry relationships.  Because the cost and time involved in stream gaging 
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may be prohibitive, an alternative and simpler approach might be to define q* based on 

field measurements of bankfull parameters.  Bankfull depth can be determined from 

cross-sectional surveys, and bankfull discharge can be estimated from the Manning 

[1891] equation combined with channel surveys of slope, bankfull radius, and an 

appropriate estimate of channel roughness [e.g., Barnes, 1967]. 

Our proposed transport equation also has applications for channel maintenance 

flows [Whiting, 2002] which are often based on identifying discharges that transport the 

most sediment over the long term (i.e., effective flows [Wolman and Miller, 1960]).  This 

type of analysis does not require knowledge of the actual amount of sediment in 

transport, but rather requires only an understanding of how bed load transport changes 

with discharge (i.e., quantifying the bed load rating-curve exponent).  Consequently, our 

bed load formula offers a means to determine the exponent of the rating curve without the 

time or expense of a full bed load measurement campaign.  For example, with the 

exponent of the bed load rating curve predicted from (1.6), the “effective discharge” can 

be calculated following the procedure outlined by Emmett and Wolman [2001] and does 

not depend on the coefficient of the bed load rating curve. 

The bed load formulae examined here are all one-dimensional equations 

parameterized by reach-average hydrologic and sedimentologic variables.  However, 

most natural channels exhibit patchy surface textures [e.g., Kinerson, 1990; Paola and 

Seal, 1995; Buffington and Montgomery, 1999a; Laronne et al., 2000] and spatially 

variable hydraulics.  Moreover, because transport rate is a nonlinear function of excess 

boundary shear stress, whole-channel transport rates based on reach-average conditions 

tend to under predict transport rates unless empirically adjusted [Lisle et al., 2000; 
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Ferguson, 2003].  Thus, predictions of bed load transport rates ultimately would be more 

accurate and true to processes in natural channels if they were integrated over the 

distribution of excess shear stress for a given flow [Gomez and Church, 1989]. 

Nor does our analysis consider the short-term variability of the flux–discharge 

relationship.  We relate the available bed load transport record of each site to channel and 

sediment-supply conditions at the time of field measurement.  Hence, our analysis 

examines record-average transport phenomena, but does not consider annual, seasonal or 

flood-event variability (i.e., hysteresis).  Nevertheless, the same computational procedure 

outlined here could be used to develop shorter-term values of α and β for use in (1.6). 
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Appendix 1.1:  Bed Load Transport Equations 

1) Meyer-Peter and Müller [1948] (by d50ss): 

The Meyer-Peter and Müller [1948] formula is written as 
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  (A1.1) 

where qb is the total specific bed load transport rate (dry mass per unit width and time), ρ 

and ρs are water and sediment densities, respectively (assumed equal to 1000 and 2650 

kg/m3 throughout), n'/nt is the ratio of particle roughness to total roughness which 

corrects the total boundary shear stress to the skin friction stress (that portion applied to 

the bed and responsible for sediment transport), S is channel slope, D is average flow 

depth, 0.047 is the critical Shields stress, g denotes gravitational acceleration, and d50ss is 

the subsurface particle size for which 50% of the sediment sample is finer.  The original 

Meyer-Peter and Müller [1948] equation specifies the characteristic grain size as the 

mean particle size of the unworked laboratory sediment mixture, which is reasonably 

approximated by d50ss. 

The total roughness (nt) is determined from the Manning [1891] equation as 

V
RSnt

3/22/1

=         (A1.2) 

where V is average velocity and R is hydraulic radius.  The grain roughness (n') is 

determined from the Strickler [1923] equation as 

26
’

6/1
90sdn =          (A1.3) 

where d90s is the surface particle size for which 90% of the sediment sample is finer. 
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2) Meyer-Peter and Müller [1948] (by di): 

Here, we modify the Meyer-Peter and Müller [1948] formula for transport by size 

class  
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where qbi is the size-specific bed load transport rate, fi is the proportion of subsurface 

material in the ith size class, τci
* is the size-specific critical Shields stress, and di denotes 

mean particle diameter for the ith size class.  τci
*  is determined from the Andrews [1983] 

hiding function as 

    τ *ci = 0.0834 di / d50ss( )−0.872
      (A1.5) 

We choose the Andrews [1983] function because it was derived from channel 

types and physiographic environments similar to those examined in this study. 

3) Ackers and White [1973] (by di): 

The Ackers and White [1973] equation as modified by Day [1980] for size-

specific transport is 

n

isigribi u
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⎛= *ρ        (A1.6) 

where u* denotes shear velocity  

gDSu =*          (A1.7) 

and Ggri is the dimensionless transport rate of the ith size class, defined as 
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Fgri is the dimensionless particle mobility parameter (analogous to a non-critical 

Shields stress), Ai is a dimensionless hiding function analogous to a critical Shields stress, 

and C and m are empirical values.  Fgri is defined as 
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where n is an empirical parameter that accounts for mobility differences between the fine 

and coarse components of the bed load [Ackers and White, 1973].  Ai, C, m, and n are 

functions of dimensionless particle size (Dgri) 
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where v denotes kinematic viscosity (water temperature assumed 15ºC throughout). 

 For 1 < Dgri ≤ 60 
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and d84ss and d16ss are, respectively, the subsurface particle sizes for which 84% and 16% 

of the sediment sample is finer.  Day [1980] defines (A1.15) in terms of grain-size 

percentiles of the unworked laboratory sediment mixture, which we approximate here by 

the subsurface grain-size distribution. 

For Dgri > 60 
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where 

17.0=A                    (A1.21) 

4) Bagnold [1980] (by dmqb): 

The Bagnold [1980] formula is 
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where *bq  denotes the reference transport rate (0.1 kg s-1 m-1), ω and ω0 are the applied 

and critical values of unit stream power, respectively, ( )*0ωω −  denotes the reference 

excess stream power (0.5 kg s-1 m-1), *D  is a reference stream depth (0.1 m), *d  denotes 

the reference particle size (0.0011 m), and dmqb is the modal grain size of a given bed load 

transport observation.   
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Unit stream power is defined as 

DSVρω =                    (A1.23) 

Note that this definition of stream power lacks a gravity term, which Bagnold [1980] 

factors out of all of his equations. 

Critical unit stream power for unimodal sediments is defined as  
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For bimodal sediments, Bagnold [1980] replaces ω0 with 0ϖ , the geometric mean of the 

critical stream power for the two modes 

( ) ( )[ ] 2/1
20100 ωωϖ =                   (A1.25) 

where (ω0)1 and (ω0)2 are solved individually from (A1.24), but with dmqb replaced by the 

modes of the bed load size distribution (dm1 and dm2, respectively).  Separate 

computations of (A1.22) were made under bimodal conditions, replacing dmqb with dm1 

for one set of computations and dm2 for the second set of computations [Bagnold, 1980], 

which were then summed to determine the total bed load transport of each event. 

5) Bagnold [1980] (by dmss): 

We use the same approach as above, but with the modal grain size defined from 

the subsurface material (dmss) (a proxy for the high-flow bed load distribution). 

6) Parker et al. [1982] (by d50ss): 

The Parker et al. [1982] formula is 
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where *
rW  is the reference dimensionless transport rate (equal to 0.0025), R is the 

submerged specific gravity of sediment (ρs/ρ-1), and   G φ50ss( ) is a three-part bed load 

transport function [as revised by Parker 1990] that depends on the excess Shields stress 

of the median subsurface grain size (φ50ss) 
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The excess Shields stress is defined as the ratio of the applied Shields stress 

( *
50ssτ ) to that of the reference value (τ*

50r, that capable of producing the reference 

dimensionless transport rate, *
rW =0.0025)  
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The applied Shields stress is given by 

ss
ss dg 50

0*
50  

=
R ρ
ττ                   (A1.29) 

where τ0 is the total boundary shear stress calculated from the depth-slope product 

(ρgRS).  The reference Shields stress (τ*
50r) is empirically determined from site-specific 

bed load transport data following the procedure described by Parker et al. [1982].  Their 

approach involves regressing size-specific dimensionless transport rates (W*
i)  

( ) 2/3
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i

 
=
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against corresponding Shields stress values (τ*
i)  
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i
i dg  

=
R ρ
ττ 0*                    (A1.31) 

and collapsing the size-specific curves into a single function  

  Wi
* = α iτ *i

M                    (A1.32) 

where M is the weighted mean exponent of the size-specific functions of W*
i versus τ*

i, 

and αi is the size-specific coefficient of regression [Parker et al., 1982].  Finally, τ*
50r is 

determined from (A1.32) for the reference transport rate (W*
i=W*

r=0.0025) and the site-

specific value of α50. 

7) Parker et al. [1982] (by di): 

The Parker et al. [1982] equation by size class (di) is 

( ) ( )
 

=
R 

s
riibi WGDSgfq ρφ *2/3                 (A1.33) 

where φi denotes the size-specific excess Shields stress 
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τ *i
τ *ri
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which replaces φ50ss in (A1.27) for solution of G(φi).  τ*
ri values are determined from site-

specific bed load transport data as described above for Parker et al. [1982] by d50ss. 

8) Parker et al. [1982] (by di via Andrews [1983]): 

Here we use the same approach as above, but τ*
ri values are determined from the 

Andrews [1983] hiding function (A1.5). 
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Appendix 1.2.  Reply to Comment By C. Michel On “A General Power 

Equation for Predicting Bed Load Transport Rates In Gravel Bed 

Rivers”2 

A1.2.1.  Introduction 

We thank Michel [2005] for the opportunity to improve our bed load transport 

equation (equation (6) of Barry et al. [2004]) and to resolve the dimensional complexity 

that he identified.  However, we do not believe that the alternative bed load transport 

equation proposed by Michel [2005] provides either the mechanistic insight or predictive 

power of our transport equation. 

A1.2.2.  Results and Discussion 

Although some bed load transport data exhibit non-linear trends in log-log plots 

of transport rate versus discharge, a simple linear function is sufficient to describe our 

data (Barry et al. [2004], paragraph 43).  The Figure 7 data of Barry et al. [2004] could 

be fit by a non-linear function as suggested by Michel [2005], but we believe this to be an 

unnecessary complication, particularly given how well our simple equation predicts 

observed transport rates compared to other more complex equations, such as Parker's 

[1991] three-part bed load transport function (Barry et al. [2004], Figure 11).  

Furthermore, an important aspect of our equation, that is not preserved in Michel’s 

alternative, is the between-site variation in the exponent of the transport function that 

results from supply-related channel armoring (i.e., transport capacity in excess of bed 

load sediment supply) which provides a mechanistic understanding of the bed load 

                                                 
2 Co-authored paper with John M. Buffington and John G. King published in Water Resources Research, 
2005. 
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transport process [Barry et al., 2004].  Michel [2005] proposes a bed load transport 

equation that mimics our equation in terms of the range of exponents that we observe 

(i.e., 1.5-4, Figure 8a of Barry et al. [2004]), but lacks the mechanistic insight and 

consequent predictive power.  Moreover, Michel’s equation requires a sufficient number 

of bed load transport observations across a broad range of discharges to empirically 

calibrate his α and β values. 

Michel [2005] correctly points out a dimensional complexity of our transport 

equation that we resolve here by scaling discharge by the two-year flood (Q2) 
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giving the coefficient of the equation constant dimensions of kg m-1 s-1.  In our revised 

equation, the relationship between β and q* remains the same as that of Barry et al. 

[2004], however the relationship between α and drainage area (A) changed substantially.  

The coefficient α represents the magnitude of bed load transport, which is a function of 

basin-specific sediment supply and discharge, both of which can be expressed as 

functions of drainage area.  In Barry et al. [2004], we proposed an inverse relationship 

between α and drainage area because discharge increases faster then sediment transport 

rate (Barry et al. [2004], paragraph 51).  However, we hypothesize here that a direct 

relationship exists between α and drainage area when we scale discharge by the two-year 

flow (Figure B1.1).  This scaling incorporates basin-specific differences in water yield, 

causing the relationship between α and drainage area to be solely a function of how 

sediment yield increases with drainage area.  We also find that equation (B1.1) performs 

better than the original equation in terms of predicting the observed bed load transport 



 

 

70

 

rates at the 17 independent test sites (Figure B1.2).  However, the performance of (B1.1) 

is not statistically different from equation (6) of Barry et al. [2004], nor is it statistically 

different from the performance of the Ackers and White [1973] equation.  Consequently, 

our original assessments of formula performance remain unchanged. 

coefficient = 0.0008 x Drainage Area0.4982

r2 = 0.3
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Figure B1.1.  Revised relationship between drainage area and the coefficient of equation 

(B1.1) for the Idaho sites.  Dashed lines indicate 95% confidence interval about the mean 

regression line.  Solid lines indicate 95% prediction interval (observed values).  Sites 

indicated by open diamonds are discussed by Barry et al. [2004].   
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Figure B1.2.  Box plots of the distribution of critical error, e* [Barry et al., 2004], for the 

17 test sites.  Median values are specified, box end represent the 75th and 25th percentiles, 

and whiskers denote maximum and minimum values.  See Barry et al. [2004] for 

formulae citations. 



 

 

72

 

A1.2.3.  References 

Ackers, P., and W.R. White (1973), Sediment transport: New approach and analysis, J. 

Hydraul. Div., Am. Soc. Civ. Eng., 99, 2041-2060. 

Barry, J. J., J. M. Buffington, and J. G. King (2004), A general power equation for 

predicting bed load transport rates in gravel bed rivers, Water Resour. Res., 40, 

W10401, doi:10.1029/2004WR003190. 



 

 

73

 

Appendix 1.3.  Correction to “A general power equation for predicting 

bed load transport rates in gravel bed rivers” by Jeffrey J. Barry, John 

M. Buffington, and John G. King 3 

A1.3.1.  Typographical Errors 

In the paper “A general power equation for predicting bed load transport rates in 

gravel bed rivers” by Jeffrey J. Barry, John M. Buffington, and John G. King (Chapter 1) 

[Water Resources Research, 40, W10401, 2004], the y-axis for Figures 5 and 10 was 

incorrectly labeled and should have read "log10 (predicted transport) - log10 (observed 

transport)."  In addition, flow depth (D) is incorrectly shown in the denominator of 

equation (A9) of Barry et al. [2004] and should be replaced by di, the mean particle 

diameter for the ith size class as shown below 

n

i

s
i

n*

gri
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V
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⎥
⎥
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⎥
⎥
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⎢

⎣
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⎠

⎞
⎜⎜
⎝

⎛ −
=

1

2/1 10log32
ρ
ρρ

     (C1.1) 

Similarly, equation (A24) of Barry et al. [2004] incorrectly includes the modal 

grain size from the subsurface material (dmss) which should be replaced with dmqb, the 

modal grain size of a given bed load transport observation.  The correct equation is 

( )[ ] ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=ω

mqb
mqbs d

Ddg 12log
ρ

04.0ρρ75.5 2/3
2/1

2/3
0    (C1.2) 

                                                 
3 Co-authored paper with John M. Buffington and John G. King submitted to Water Resources Research, 
2007. 
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A1.3.2.  Dimensions 

We also correct two dimensional inconsistencies in equation (6) of Barry et al. 

[2004], 1) with drainage area (A) expressed in units of m2 rather than km2, and 2) by 

scaling discharge by the two-year flood (Q2), which gives α constant units of kg m-1 sec-1 

and improves the overall performance of our bed load transport equation [Barry et al., 

2005] 

qb = α(Q/Q2)β = 8.13•10-7 A0.49 (Q/Q2)(-2.45q*+3.56)    (C1.3) 

The units of the drainage area coefficient (8.13•10
-7

) depend on the site-specific 

regression between α and A; in our case, the units are kg m
 -1.98

 s
-1

. 

A1.3.3.  Sensitivity of Equation Performance 

We have also further tested the sensitivity of our results to selection of ε, the 

value that was added to bed load transport rates in order to include incorrect zero 

transport predictions in our log-transformed assessment of formula performance 

(log10(P+ε) – log10(O+ε), where P and O are predicted and observed transport rates, 

respectively) [Barry et al., 2004, section 4.1.3.].  Incorrect zero predictions can occur at 

low to moderate flows for transport equations that contain a threshold for the onset of bed 

load transport (i.e., the Meyer-Peter and Müller [1948],  Ackers and White [1973], and 

Bagnold [1980] equations) [Gomez and Church 1989; Habersack and Laronne 2002; 

Barry et al. 2004].  We originally suggested that ε should be set equal to the lowest non-

zero predicted transport rate at a given study site (1•10-15 kg m-1 s-1 for our analysis), 

recognizing that equation performance and degree of under-prediction for threshold 

equations would be influenced by the selected ε value when those equations erroneously 

predict zero transport [Barry et al., 2004, paragraph 34].  Initial sensitivity analyses 
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showed that ε influenced absolute performance in terms of the magnitude of under-

prediction reported for threshold equations when they predicted large numbers of 

incorrect zero transport rates [Barry et al., 2004, Figure 5], but ε did not affect relative 

performance amongst the transport equations [Barry et al., 2004, paragraph 38].   

Further analyses demonstrate that significant numbers of incorrect zero 

predictions make the critical error, e*, a function of ε, rather than an indicator of actual 

formula performance (Figure C1.1; see caption for e* definition).  This is particularly 

evident for the Meyer-Peter and Müller [1948] and Bagnold [1980] equations (Figure 

C1.1) due to their high number of incorrect zero predictions at our study sites [Barry et 

al. 2004, paragraph 62].  In contrast, the Ackers and White [1973], Parker [1990] and 

Barry et al. [2004] equations predict some degree of transport at most discharges, which 

makes their e* values less susceptible to choice of ε (at least up to values of 1•10-5 kg m-1 

s-1; Figure C1.2).  The decline in prediction error toward zero as ε increases beyond 1•10-

5 kg m-1 s-1 is an artifact of ε becoming larger than the majority of the observed and 

predicted transport rates at our test sites.  As ε becomes large, it masks the actual 

prediction error, with our assessment of formula performance effectively comparing the 

logarithmic difference of two very large numbers set by the magnitude of ε, resulting in 

vanishingly small differences and correspondingly small critical errors (log10(P+ε) – 

log10(O+ε) ⇒ 0 when ε>>P and O).  In summary, Figure C1.1 shows that the median 

critical errors, e*, of the Meyer-Peter and Müller [1948] and Bagnold [1980] equations 

are influenced by ε regardless of its magnitude, while the selected value of ε only begins 

to influence the critical errors of the other equations when ε is greater than 1•10-5 kg m-1 

s-1.   
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To avoid the analytical artifacts introduced by use of ε, we suggest that e* values 

be determined from non-zero predictions (obviating the need for ε), but with results 

qualified by the proportion of incorrect zero predictions (Figure C1.2; see caption for e* 

definition).  Because equation performance varies with discharge [Barry et al., 2004, 

their Figure 2], we show results binned by discharge as a percentage of Q2.  Furthermore, 

in this analysis we use the improved version of our bed load transport equation given in 

section A1.3.2 above.  Results show that the Ackers and White [1973] and Barry et al. 

(C1.3) still outperform the others, with median critical errors near 1 across most 

discharge bins (Figure C1.2a).  The performance of both the Meyer-Peter and Müller 

[1948] and Bagnold [1980] equations improves compared to that reported by Barry et al. 

[2004], with median e* values typically between 3 and 4 for the Meyer-Peter and Müller 

[1948] equation and between 2 and 4 for the Bagnold [1980] equation.  However, the 

frequency of incorrect zero predictions should be considered when evaluating the 

performance of those equations; both the Meyer-Peter and Müller [1948] and the 

Bagnold [1980] equations incorrectly predicted zero transport approximately 40% of the 

time at flows as large as 40-50% of Q2 (Figure C1.2b).  The performance of the Parker 

[1990] equation is essentially unchanged.  The principal drawback of the approach shown 

in Figure C1.2 is that the user must select both an acceptable e* value and an acceptable 

percentage of incorrect zero predictions.  Nevertheless, having to do so highlights the 

frequently neglected error of threshold equations at low and moderate discharges.   

An alternative method for evaluating equation performance that includes incorrect 

zero predictions is to compare ratios of untransformed values of predicted versus 

observed transport rates (P/O) [Gomez and Church, 1989; Reid et al., 1996; Habersack 
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and Laronne, 2002].  However, this method skews the results to those equations that 

under-predict bed load transport.  In terms of percentages, the maximum under-prediction 

is 100% (incorrect zero prediction), while the percentage of over-prediction can be 

infinite.  Consequently, this approach creates a skewed error distribution that tends to 

favor equations that under predict.     

Another method for evaluating equation performance that does not bias results is 

presented by Bravo-Espinosa et al. [2003].  They use an inequality coefficient, U, which 

can vary from 0 to 1, for evaluating equation performance based on untransformed values 

of predicted and observed transport rates.  U = 0 corresponds with perfect agreement 

between observed and predicted values, while U = 1 indicates a complete lack of 

predictive power.  The authors assume that equation performance is acceptable when U ≤ 

0.5, however the basis for this value is not given and the relative significance of different 

U values is uncertain.  For example, how much better is U = 0.4 versus 0.5?   

To our knowledge, there is no ideal method for assessing equation performance 

that allows for inclusion of incorrect zero predictions without either biasing results (i.e., 

creating a skewed error distribution) or requiring subjective qualification of results (i.e., 

determination of acceptable U values or acceptable percentages of incorrect zero 

predictions).   
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Figure C1.1.  Sensitivity of median critical error, e*, to changes in ε (constant added to 

preclude taking the logarithm of 0 when predicted transport rates are zero) at the 17 test 

sites.  Sites described elsewhere [Barry et al., 2004, section 3].  e* is the amount of error 

that one would have to accept for equivalence between observed and predicted transport 

rates using Freese’s [1960] χ2 test as modified by Reynolds [1984], 

[ ]∑ ε+−ε+
χ

=
=

n

i
ii OPe

1

2
2

2
* )log()log(96.1 ,  

where Pi and Oi are the ith predicted and observed transport rates, respectively, n is the 

number of observations, 1.96 is the value of the standard normal deviate corresponding to 

a two-tailed probability of 0.05, and χ2 is the two-tailed chi-squared statistic with n 

degrees of freedom. 
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as a function of discharge scaled by Q2, and b) frequency of incorrect zero predictions for 

same. Here, ( )∑ −
χ
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=

n

i
ii OPe

1

2
2

2
* loglog96.1 , with parameters defined in the caption for 

Figure 5.1. Whiskers in (a) indicate 95% confidence intervals around e*. The Meyer-

Peter and Müller [1948] equation predicted zero transport for all but one observation 

during flows < 10% of Q2, consequently no median e* value is shown in (a) for those 

flows.
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Chapter 2.  Performance of Bed Load Transport Equations 

Relative to Geomorphic Significance: Predicting Effective 

Discharge and Its Transport Rate4 

2.1.  Abstract 

Previous studies assessing the accuracy of bed load transport equations have 

considered equation performance statistically based on paired observations of measured 

and predicted bed load transport rates.  However, transport measurements were typically 

taken during low flows, biasing the assessment of equation performance toward low 

discharges, and because equation performance can vary with discharge, it is unclear 

whether previous assessments of performance apply to higher, geomorphically significant 

flows (e.g., the bankfull or effective discharges).  Nor is it clear whether these equations 

can predict the effective discharge, which depends on the accuracy of the bed load 

transport equation across a range of flows.  Prediction of the effective discharge is 

particularly important in stream restoration projects, as it is frequently used as an index 

value for scaling channel dimensions and for designing dynamically stable channels.  In 

this study, we consider the geomorphic performance of 5 bed load transport equations at 

22 gravel-bed rivers in mountain basins of the western United States.  Performance is 

assessed in terms of the accuracy with which the equations are able to predict the 

effective discharge and its bed load transport rate.  We find that the median error in 

predicting effective discharge is near zero for all equations, indicating that effective 

                                                 
4 Co-authored paper with John M. Buffington, Peter Goodwin, John G. King and William W. Emmett 
submitted to Journal of Hydraulic Engineering, 2007. 
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discharge predictions may not be particularly sensitive to one’s choice of bed load 

transport equation.  However, the standard deviation of the prediction error differs 

between equations (ranging from 10-60%), as does their ability to predict the transport 

rate at the effective discharge (median errors of less than 1 to almost 2.5 orders of 

magnitude).  A framework is presented for standardizing the transport equations to 

explain observed differences in performance and to explore sensitivity of effective 

discharge predictions.   

2.2.  Introduction 

Bed load transport is a fundamental physical process in alluvial rivers, building 

and maintaining a dynamically stable channel geometry that reflects both the quantity and 

timing of water and the volume and caliber of sediment delivered from the watershed 

[Leopold et al., 1964; Emmett and Wolman, 2001].  Accordingly, Leopold [1994] 

describes alluvial rivers as the architects of their own geometry (also see Parker [1978]).  

Projects aimed at restoring the form and function of river ecosystems increasingly 

recognize the importance of channel geometry for dynamic equilibrium and the role of 

bed load transport in forming and maintaining it [Goodwin, 2004].   

In these projects, the effective discharge is frequently used as an index value for 

scaling channel dimensions [Goodwin, 2004].  The effective discharge is defined as that 

which transports the greatest mass of sediment over time and is believed to control 

channel form in many alluvial rivers [Wolman and Miller, 1960].  The effective discharge 

is a fairly frequent event in sand- and gravel-bed rivers and is equivalent to the bankfull 

flow for channels in dynamic equilibrium [Andrews, 1980; Carling, 1988; Andrews and 

Nankervis, 1995; Knighton, 1998; Emmett and Wolman, 2001], which in temperate 
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climates tends to have a return period of 1-2 years [Wolman and Leopold, 1957; Leopold 

et al., 1964; Williams, 1978].   

Although the effective discharge is commonly used in restoration design, the 

accuracy of effective discharge predictions has not been widely examined.  For a given 

flow record, effective discharge predictions depend on the performance of the chosen bed 

load transport equation across a range of flows.  However, previous assessments of bed 

load transport equations [e.g., Gomez and Church, 1989; Yang and Huang, 2001; Bravo-

Espinosa et al., 2003; Barry et al., 2004] have largely been based on low flow 

observations.  For example, bed load datasets from these studies show that more than 

80% of the observations at each site typically occur at flows less than the 2-year flood 

(Q2, a bankfull-like flow [Whiting et al., 1999; Barry et al., 2004] similar to the effective 

discharge [Emmett and Wolman, 2001]) (Figure 2.1).  Consequently, these previous 

assessments of equation performance are weighted toward low discharges that do not 

play a significant role in either building or maintaining the stable channel form, and thus 

have little geomorphic significance.   

Because equation performance can vary with discharge (Figure 2 of Barry et al. [2004]; 

Figures 3-5 of Bravo-Espinosa et al. [2003]; Figure 5 of Habersack and Laronne [2002]), 

prior studies of performance, which are biased toward low flows, may not be 

representative of higher, geomorphically significant flows, such as the effective 

discharge.  In addition, previous assessments of equation performance focus on 

comparing observed versus predicted magnitudes of bed load transport.  However, 

accurate prediction of the effective discharge depends on how well a given transport 

equation predicts the rate of change in transport with discharge, rather than the absolute  
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value of transport at a given discharge [Emmett and Wolman, 2001; Goodwin, 2004].  

Hence, the ability of bed load transport equations to accurately predict the effective 

discharge and its transport rate remains to be tested. 

A recent study by Goodwin [2004] developed analytical solutions for predicting 

effective discharge using generic forms of sediment transport equations and theoretical 

flow frequency distributions (normal, lognormal, and gamma).  This study differs from 

his in that we examine the performance of specific transport equations, and we use 

observed flow frequency distributions because theoretical ones did not fit the data well. 

Here, we consider the geomorphic performance of 5 different bed load transport 

equations at 22 gravel-bed rivers in mountain basins of the western United States.  

Performance is assessed in terms of the accuracy with which the equations are able to 

predict the effective discharge and its bed load transport rate.  We also present a 

framework for standardizing the transport equations to explain observed differences in 

performance and to explore sensitivity of effective discharge predictions and their 

transport rates.   

2.3.  Effective Discharge 

It is possible to directly compute the effective discharge at a site using the 

Wolman and Miller [1960] model if both the distribution of observed flows (from a 

nearby stream gauging station) and the sediment transport relationship (from direct 

measurements of bed load transport and stream discharge) are known and representative 

of current conditions (Figure 2.2).  The product of discharge frequency (curve i) and bed 

load transport rate (curve ii) over the range of discharges in the flow record describes the 

work done by the channel during that period (curve iii).  The discharge where this 
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product is maximized is termed the effective discharge [Wolman and Miller, 1960] 

(Figure 2.2).  Controls on the prediction of effective discharge are examined below by 

parameterizing the Figure 2.2 curves of the Wolman and Miller [1960] model. 
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Figure 2.2.  Wolman and Miller [1960] model for the magnitude and frequency of 

sediment transporting events (adapted from Wolman and Miller [1960]).  Curve (i) is the 

flow frequency, curve (ii) is the sediment transport rate as a function of discharge, and 

curve (iii) is the distribution of sediment transported during the period of record (product 

of curves i and ii).  The 26 arithmetic discharge bins used to describe the observed flow 

frequency distribution are shown as vertical boxes.  The effective discharge is the flow 

rate which transports the most sediment over time, defined by the maximum value of 

curve (iii). 
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The bed load transport rate (curve ii) can be represented by a power function of 

discharge [e.g., Gilbert, 1914; Vanoni, 1975; Emmett, 1984; Smith et al., 1993; Whiting et 

al., 1999; Emmett and Wolman, 2001; Bunte et al., 2004] 

βα= QQb          (2.1) 

where Qb is the total bed load transport rate (kg sec-1), Q is discharge (m3 sec-1), and α 

and β are empirical values.  The total amount of bed load that is transported at a given 

discharge over the period of record (curve iii) can be represented by the parameter Ф, 

which is the bed load rating curve (2.1) multiplied by the frequency of occurrence of a 

given discharge, f(Q), (curve i) 

 Ф = αQβ f(Q)         (2.2) 

The effective discharge (Qe) occurs where Ф is at its maximum, such that ∂Ф/∂Q 

= 0 [Nash, 1994; Goodwin, 2004].  Upon setting the partial derivative of (2.2) to zero, the 

coefficient of the bed load rating curve, α, cancels out, with the effective discharge 

depending only on the exponent of the rating curve, β, and the characteristics of the flow 

distribution, f(Q), [Nash, 1994; Soar and Thorne, 2001; Goodwin, 2004].  In addition to 

the overall shape of the flow frequency distribution, results can be particularly sensitive 

to adequate quantification of the frequency distribution in the range of flows close to the 

effective discharge [Goodwin, 2004]. 

The sensitivity of effective discharge predictions to the rating-curve slope (β) is 

shown in Figure 2.3.  Larger values of β increase the predicted value of effective 

discharge for a given value of α (Figure 2.3a).  In contrast, changes in α have no effect 

on the predicted value of effective discharge for a given value of β (Figure 2.3b); rather,  
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Figure 2.3.  Effect of a) changing the exponent of the bed load rating curve, β, and b) 

changing the coefficient of the rating curve, α, on predictions of the effective discharge 

and bed load transport rate.  Curve (i) is identical in both figures, α is constant in Figure 

2.3a, and β is constant in Figure 2.3b. 

b) 

a) 
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as α increases, both the amount of transport at a given discharge and the bed load yield 

over the period of record increase.  The exponent of the bed load rating curve is a 

function of supply-related channel armoring (transport capacity relative to sediment 

supply) [Barry et al., 2004; 2005].  Poorly-armored, fine-grained channels exhibit lower 

thresholds for bed load transport and, thus, lower rating-curve exponents compared to 

well-armored, coarse-grained channels; consequently, poorly-armored channels tend to 

have lower predicted values of effective discharge [Emmett and Wolman, 2001; 

Goodwin, 2004]. 

In this study, we are interested in assessing the ability of commonly used bed load 

transport equations to accurately predict effective discharges.  However, the conceptual 

framework presented in Figure 2.3 for examining prediction sensitivity is complicated by 

that fact that most bed load transport equations are not written in terms of simple rating 

curves (2.1), but rather are expressed in complex terms of excess shear stress or excess 

stream power (e.g., Appendix A of Barry et al., 2004).  Therefore, in our analysis we 

predict total bed load transport rates and consequent effective discharges in terms of the 

original formulations specified for each transport equation examined here.  We then 

determine the equivalent bed load rating curves (2.1) for transport rates predicted from 

each of these equations to examine their performance in terms of the Figure 2.3 

framework.  Use of equivalent rating curves standardizes the diverse transport 

formulations to a common form that can be used in the Figure 2.3 framework to explain 

observed differences in performance. 
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2.4.  Study Sites and Methods 

2.4.1  Bed load Transport Equations and Study Site Selection 

The equations examined in this analysis are: 1) the Meyer-Peter and Müller 

[1948] equation (calculated by median subsurface grain size, d50ss), 2) the Ackers and 

White [1973] equation as modified by Day [1980] (calculated by individual size class, di), 

3) the Bagnold [1980] equation (calculated by the mode of the subsurface material, dmss), 

4) the Parker [1990] equation (calculated by di), with site-specific hiding functions 

(paragraph 89 of Barry et al., [2004]) and 5) the Barry et al. [2004] equation as corrected 

in Barry et al. [in press] (summarized in Appendix 2.1).  In each equation, we used the 

characteristic grain size as originally specified by the author(s) to avoid introducing error 

or bias.  See Barry et al. [2004] for further detail of the equations used here. 

We examined the performance of these equations in mountain gravel-bed rivers of 

the western United States studied by Barry et al. [2004].  Local discharge records were 

combined with the above equations to predict the effective discharge and its associated 

transport rate at each site, and then compared to observed values determined from site-

specific rating curves (2.1).  The analytical methods are described in detail later in the 

paper.  To improve the accuracy of our analysis, we have only included those sites from 

Barry et al. [2004] where: 1) the observed record of daily mean discharge covers at least 

10 years [Biedenharn et al., 2001]; 2) the bed load transport observations were made over 

a wide range of low to high flows; and 3) the observed bed load transport data were 

adequately described by equation (2.1) (i.e., where the correlation coefficient (r2) of the 

rating curve is greater than 0.70 and there is no obvious non-linearity to the observed 

transport data in log10 space) [Nash, 1994].  Only 22 of the 41 sites examined by Barry et 
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al. [2004] met these criteria and were used in the present analysis.  The length of 

discharge observations at the study sites varies from 10-90 years, and the period of bed 

load transport observations ranges from 1-13 years (Table 2.1).   

Bed load transport rates at these sites were observed across a range of flows from 

less than 10% to 180% of the 2-year flood (Q2) (Figure 2.4).  However, the maximum 

discharge for which bed load transport was measured at each site (Figure 2.4, square 

symbols) is typically less than the maximum discharge of record (Figure 2.4, diamond 

symbols).  Consequently, in calculating the effective discharge, the observed bed load 

rating curves were extrapolated to flows 2-80% larger (30% on average) than the largest 

flow for which bed load observations were made.  This extrapolation is unavoidable 

because few high-flow observations of transport are available due to unsafe field 

conditions during these events.  Extrapolation error is likely reduced by our criteria for 

choosing sites with transport observations made over a broad range of discharges and 

with rating curves that have strong correlation coefficients (r2 > 0.7). 

2.4.2. Site Characteristics 

The 22 sites are gravel-bed rivers located in mountain basins of Idaho, Colorado 

and Wyoming, with hydrographs dominated by snowmelt runoff (see Table 2.1 for a list 

of the sites and Figure 1 of Barry et al. [2004] for site locations).  They are single-thread 

channels with pool-riffle or plane-bed morphology (as defined by Montgomery and 

Buffington [1997]).  The stream banks of the study sites are typically composed of sand, 

gravel and cobbles with occasional boulders and are well vegetated.  Median surface 

grain sizes and channel slopes vary between 38 and 185 mm and 0.0021 and 0.0108, 
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respectively.  See Barry et al. [2004] for complete details of site characteristics and field 

methods. 

2.4.3. Calculating Effective Discharge and Bed Load Transport Rates 

Flow frequency distributions at each of the 22 sites were discretized following the 

tabulation method of Biedenharn et al. [2001].  The observed discharges were divided 

into 25, equal-width, arithmetic discharge bins, with a 26th bin for infrequent extreme 

events corresponding with the far right-hand tail of the flow distribution (Figure 2.2, 

curve i).  The representative discharge for each interval is taken as the arithmetic mean of 

each discharge class (Figure 2.2). 

The observed total bed load transport rates for each discharge bin (Qbi) is 

estimated by applying the site-specific rating curve (2.1) developed from the measured 

total bed load transport data to the arithmetic mean of each discharge bin (Figure 2.2).  

The product of the total bed load transport rate and flow frequency within each discharge 

bin (Qbi • f(Qi)) is the total bed load transport estimated for that bin (Φi).  The effective 

discharge occurs where this product is maximized, and is taken as the arithmetic mean of 

that discharge bin.  We assume that the transport rate for the average discharge of each 

bin is representative of the average transport rate across that bin, recognizing that this is 

an approximation that may not hold if bin sizes are too large, such that β
αQ  departs 

significantly from βαQ .   

Predicted values of effective discharge are determined in the same fashion, except 

with unit bed load transport rates within each discharge bin (qbi) predicted in terms of the 

original formulations of each of the 5 transport equations [Barry et al., 2004; in press] 

multiplied by flow width (w) to estimate Qbi, rather than in terms of rating-curve 
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functions.  Flow width was determined from site-specific hydraulic geometry 

relationships.  Shear stress and other necessary equation parameters for making these 

predictions were determined for each discharge following an approach similar to that 

used by Barry et al. [2004].   

Other methods of estimating the effective discharge exist that do not require use 

of discharge bins, such as those presented by Goodwin [2004] and Emmett and Wolman 

[2001].  In addition, Soar and Thorne [2001] discuss various types of binning methods 

(e.g., logarithmic discharge intervals).  Discharge binning is probably the most common 

approach used by practioners to estimate effective discharge [e.g., Biedenharn et al., 

2001; Soar and Thorne, 2001], and so is used in this analysis.  We have chosen to use 

arithmetic discharge intervals, rather than logarithmic ones, based on Soar and Thorne’s 

[2001] finding that logarithmic binning tends to over-predict the effective discharge. 

2.5.  Results and Discussion 

2.5.1. Estimating Effective Discharge 

Figure 2.5 shows box plots of the percent difference between predicted and 

observed values of effective discharge across the 22 sites using the 5 equations discussed 

above, with site-specific values reported in Table 2.1.  The median prediction error is 0% 

for all equations (Figure 2.5), indicating that effective discharge predictions may not 

depend on one’s choice of bed load transport equation.  However, the standard deviation 

of the prediction error differs across the equations, ranging from 10% error for the Barry 

et al. [2004; in press] equation to 60% for the Bagnold [1980] equation.  The prediction 

errors for the Ackers and White [1973], Meyer-Peter and Müller [1948] and Parker 

[1990] equations have standard deviations of 40%, 44% and 49%, respectively. 
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Figure 2.5.  Box plots of the percent difference between predicted and observed effective 

discharge for each transport equation.  Median values are specified by “X”.  Upper and 

lower ends of each box indicate the inter-quartile range (25th and 75th percentiles).  Extent 

of whiskers indicates 10th and 90th percentiles.  Maximum outliers are shown by open 

squares. 

 

The performance of each equation was also assessed statistically using the 

methods of Freese [1960] and Reynolds [1984] to calculate the critical error, e*, defined 

here as the percent difference between the predicted and observed effective discharge that 

one would have to tolerate to accept a given equation at a significance level of 0.05.  The 

critical error is defined as 
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where Pi and Oi are, respectively, the predicted and observed values of effective 

discharge at a given site, n is the number of observations, here equal to 22 (the number of 

sites), 196 is the value of the standard normal deviate corresponding to a two-tailed 

probability of 0.05 multiplied by 100, and χ2 is the two-tailed chi-squared statistic with n 

degrees of freedom at a significance level of 0.05. 

Values of the critical error, e*, range from a low of 14% for the Barry et al. [2004; 

in press] equation to between 61% and 85% for the Ackers and White [1973] and 

Bagnold [1980] equations, respectively.  Critical errors associated with the Meyer-Peter 

and Müller [1948] and Parker [1990] equations are 72% and 71%, respectively.  These 

values of e* differ from the median values of percent error shown in Figure 5 because e* 

is more representative of the overall prediction error. 

We find that all of the equations examined here provide good estimates of the 

effective discharge (Figure 2.5, median values), but performance can be quite variable 

across sites, with some equations performing better than others (Figure 2.5, whisker 

ranges; and e* analysis).  

2.5.2. Sensitivity of Effective Discharge Prediction to Rating Curve Slope 

As shown in Figure 2.3, when using a simple bed load transport rating curve (2.1) 

to calculate the effective discharge for a given flow record, the predicted value is solely a 

function of β.  As such, we would expect that transport equations with β values larger 

than the observed value will over-predict the effective discharge (i.e., differences greater 

than zero in Figure 2.5).  Although only the Barry et al. [2004; in press] equation is 
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presented in the form of a rating curve (1) with specified values of β, equivalent rating-

curve functions can be developed for the other transport equations examined here if a 

two-part fit of β is used.  A weighted average exponent (β ) of the two-part fit can then 

be compared to observed β values and equation performance can be evaluated within the 

framework presented in Figure 2.3. 

At each of the 22 sites, a weighted-average exponent, β , was calculated for the 

Meyer-Peter and Müller [1948], Ackers and White [1973], Bagnold [1980] and Parker 

[1990] equations (Table 2.2).  To do this, predicted bed load transport rates were plotted 

as a function of discharge and fitted by (2.1) using a two-part fit of β, one fit to low flows 

and a second to higher flows.  A weighted-average exponent ( β ) was then calculated as 

the sum of the two fitted slopes weighted by the proportion of the total bed load 

transported in each discharge class.  To check the accuracy of our weighting procedure, 

we compared the effective discharge predicted from the original formulation to that 

predicted from (2.1) with β .  The resultant average error is just under 5%, with a 

standard deviation of 12%. Observed and predicted rating-curve exponents are shown in 

Table 2.2.  Differences between predicted and observed values show that the Meyer-Peter 

and Müller [1948], Bagnold [1980], and Barry et al. [2004; in press] equations typically 

under-predict the observed exponent by about 7-12% (Figure2.6, median values).  In 

contrast, both the Ackers and White [1973] and Parker [1990] equations tend to over-

predict the observed exponent by about 16-29% (Figure 2.6, median values). 
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Figure 2.6.  Box plots of the percent difference between predicted and observed bed load 

rating curve exponents for each transport equation.  Median values are specified by “X”.  

Upper and lower ends of each box indicate the inter-quartile range (25th and 75th 

percentiles).  Extent of whiskers indicates 10th and 90th percentiles.  Maximum outliers 

are shown by open squares. 

 

As hypothesized, we see a generally increasing linear relationship between errors 

in the rating-curve slope and errors in the prediction of the effective discharge (Figure 

2.7).  However, many of the data are insensitive to errors in the rating-curve exponent 

and cluster along a line of zero error for prediction of effective discharge.  This result is 

due to the characteristics of the underlying flow frequency distribution, which is explored 

further in Appendix 2.2. 
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Figure 2.7.  Relationship between errors in the predicted rating-curve exponent (Table 

2.1) and errors in the predicted effective discharge, both expressed as a percent 

difference. 

 

2.5.3. Bed load Transport Rate at the Effective Discharge 

At each of the 22 sites we compared the predicted bed load transport rates from 

each equation, as originally formulated, to the observed transport rates at the observed 

effective discharge.  We find that the performance of all 5 equations differs substantially 

in the accuracy with which they predict bed load transport rate at the observed effective 

discharge (Figure 2.8).  Similar to previous studies [Gomez and Church, 1989; Reid et 

al., 1996; Yang and Huang, 2001; Habersack and Laronne, 2002; Bravo-Espinosa et al., 
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2003; Barry et al., 2004], we find that most equations tend to over-predict.  However, 

performance of a particular equation seems to be site-specific.  For example, Reid et al. 

[1996] show the Bagnold [1980] equation under-predicting at the Nahal Yatir in Israel, 

while Habersack and Laronne [2002] show it over-predicting at the Drau River in 

Austria, and Gomez and Church [1989] show it having roughly equal probability of over- 

or under-predicting at their study sites in North America.  Similarly, we find that the 

Parker [1990] equation over-predicts bed load transport at our study sites, while it was 

found to under-predict at study sites in both Austria [Habersack and Laronne, 2002] and 

Israel [Reid et al., 1996], but to have equal probability of over- or under-prediction at 

North American sites examined by Gomez and Church [1989; their Figure 2.4].  

Consequently, equation performance varies across studies and sites.  Furthermore, as 

discussed earlier, performance can vary with discharge.  Our analysis focuses on 

performance at the effective discharge (a bankfull-like flow), while previous studies 

report average results across all observed flows, which are numerically biased toward a 

preponderance of low-flow observations.  Hence, some of the discrepancy between 

studies may be due to the range of discharges used for assessing equation performance. 

We also examined the critical error, e*, in terms of log10 differences between 

predicted and observed transport rates [Freese, 1960; Reynolds, 1984] 

[ ]∑ −
χ

=
=

n

i
ii OPe

1

2
1010

2

2
* loglog96.1      (2.4) 

where Pi and Oi are, respectively, the predicted and observed bed load transport rates for 

the observed effective discharge at a given site, n is the number of observations (i.e., 

number of sites), 1.96 is the value of the standard normal deviate corresponding to a two-



 

 

105

 

tailed probability of 0.05, and χ2 is the two-tailed chi-squared statistic with n degrees of 

freedom at a significance level of 0.05.  Only non-zero predictions are considered here, 

resulting in the exclusion of one predicted value (Table 2.1, Dollar Creek, Bagnold 

equation).  Results show substantial differences in the amount of error one would have to 

tolerate to accept a given prediction of the bed load transport rate at the effective 

discharge.  The Ackers and White [1973] and Parker [1990] equations have e* values 

close to 1.75 orders-of-magnitude of error whereas the Barry et al. [2004; in press] 

equation has an e* value less than 0.8 orders-of-magnitude of error (when discussing 

orders-of-magnitude, we use log10 units throughout).  The e* values for the Bagnold 

[1980] and the Meyer-Peter and Müller [1948] equations are equal to 2.1 and 3.2 orders-

of-magnitude of error, respectively. 

Accurate prediction of the total bed load transport rate at a given discharge 

depends on the overall performance of the transport equation and may be sensitive to a 

variety of factors, including performance of transport threshold functions embedded 

within the equation, inclusion and accuracy of roughness correction parameters, and 

degree of equation calibration to site-specific conditions [Gomez and Church, 1989; 

Barry et al., 2004].  In terms of bed load rating curves, this performance depends on the 

accuracy with which a given transport equation is able to reproduce the observed values 

of both α and β.  We used the equivalent bed load rating curves (both α  and β ) fit to the 

transport values predicted for each equation (Table 2.2) to standardize the various 

equations and to compare performance in terms of these rating curve values and the 

Figure 2.3 framework.  The Bagnold [1980] and Barry et al. [2004; in press] equations 

both have predicted rating-curve slopes similar to the observed value (median errors in 
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predicted β values of less than -0.056 and -0.032 orders of magnitude (or -12% and -7%), 

respectively; Figure 2.6, Table 2.2).  However, the Bagnold [1980] equation over-

estimates α with a median prediction error of 2.4 orders-of-magnitude, whereas the Barry 

et al. [2004; in press] equation has a median prediction error of less than -0.13 orders-of-

magnitude (Table 2.2).  As a result, the Bagnold [1980] equation over-predicts bed load 

transport with a median error of almost 1.3 orders-of-magnitude, whereas the Barry et al. 

[2004; in press] equation has a median prediction error of only -0.3 orders-of-magnitude 

(Figure 2.8).  We also find that the Ackers and White [1973] and Parker [1990] equations 

predict β with similar degrees of accuracy (median prediction errors of 0.07 and 0.11 

orders of magnitude (or 16% and 29%), respectively; Figure 2.6), however, the Parker 

[1990] equation predicts α more accurately than the Ackers and White [1973] equation 

(median prediction errors of 0.3 and almost 1.0 orders-of-magnitude, respectively).  

These differences in the relative accuracy of predicted α and β appear to be offsetting, in 

that both equations tend to over-predict bed load transport at the effective discharge by 

similar amounts; almost an order-of-magnitude (Figure 2.8). 

2.5.4. Potential Error in the Observed Transport Data 

The observed bed load rating curves at each site (2.1) are based on measured bed 

load transport data from either a channel-spanning bed load trap (East Fork River) or 

Helley-Smith samplers (all other sites).  The channel-spanning trap captures essentially 

all of the bed load in motion, whereas the Helley-Smith samples collect only a subset of 

the sediment in motion up to the width of the sampler orifice (3 or 6 inches).  Because 

Helley-Smith samples are collected as a series of point measurements of limited duration 

along a cross section, while bed load transport is a stochastic process in space and time, 
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Helley-Smith measurements may not accurately sample the bed load population, 

particularly the coarser sizes that move infrequently [Wilcock, 2001].  We assume that 

there is little error associated with the bed load trap, but we are unable to quantify the 

 

2.28

1.27
1.02 0.86

-0.30

-4

-3

-2

-1

0

1

2

3

4
M

ey
er

-P
et

er
 a

nd
M
űl

le
r

B
ag

no
ld

A
ck

er
s a

nd
W

hi
te

Pa
rk

er

B
ar

ry
 e

t a
l.

transport formula

pr
ed

ic
te

d 
m

in
us

 o
bs

er
ve

d 
lo

g 1
0 

to
ta

l b
ed

lo
ad

tr
an

sp
or

t a
t t

he
 o

bs
er

ve
d 

ef
fe

ct
iv

e 
di

sc
ha

rg
e

[k
g 

s-1
]

 

Figure 2.8.  Box plots of the difference between predicted and observed log10 bed load 

transport rates at the observed effective discharge for each transport equation.  Median 

values are specified by “X”.  Upper and lower ends of each box indicate the inter-quartile 

range (25th and 75th percentiles).  Extent of whiskers indicates 10th and 90th percentiles.  

Maximum outliers are shown by open squares. 

 

error associated with the Helley-Smith measurements at our study sites (this would 

require having both bed load trap and Helley-Smith samples at each site, which was not 

the case).   
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Habersack and Laronne [2002] did collect paired observations using a 6-inch 

Helley-Smith sampler and a pit-trap and found that the Helley-Smith sampler gave 

comparable results.  Similarly, Emmett [1980] found that the Helley-Smith sampler has 

near-perfect sediment trapping efficiency for particles between 0.5 mm and 16 mm in 

size.  However, based on a number of simplifying assumptions, Hubbell and Stevens 

[1986] suggest a maximum probable error of 40% when using a Helley-Smith sampler to 

measure bed load transport.  Field studies by Bunte et al. [2004] indicate that Helley-

Smith samples may overestimate transport rates by 3-4 orders of magnitude at lower 

flows (< 50% bankfull), but with transport rates converging toward those measured by 

fixed traps at higher flows.  Hence, the two methods should yield comparable estimates 

of bed load transport at higher flows, which are the focus of this study.  However, Bunte 

et al. [2004] show that bed load rating curves for Helley-Smith samples tend to have 

lower slopes than those of traps.  Because effective discharge calculations are sensitive to 

rating-curve slopes, differences in sampling methods may yield different estimates of the 

“observed” effective discharge, and thus different results of equation performance when 

comparing observed versus predicted effective discharges. 

Table 2.2 also reports the 95% confidence intervals for observed α and β values 

determined from (2.1), providing some sense of the uncertainty in the estimates of these 

values.  The uncertainty in the observed rating-curve exponents varies from ±7-17%, 

while the uncertainty of the coefficient varies from ±2-14%.  In contrast, between 70-

90% of the predicted β  values and 70-100% of the predicted α  values fall outside the 

95% confidence intervals (Table 2.2 values marked with an asterisk).  Despite the error in 

predicting rating-curve exponents, the predicted values of effective discharge are similar 
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to the observed effective discharge (Figure 2.5).  Conversely, the tendency for predicted 

α  values to over-estimate observed rating-curve coefficients results in over-prediction of 

bed load transport at the observed effective discharge (Figure 2.8). 

The length of bed load transport sampling records may introduce an additional 

source of uncertainty or error in the observed rating curves.  For example, bed load 

transport observations made over a single year will not include any year to year changes 

in sediment loads [Nordin, 1980] and, depending upon when the samples were taken, 

may not incorporate the effect of annual hysteresis in bed load transport [Moog and 

Whiting, 1998].  At the 22 sites included in this analysis, bed load transport observations 

were collected over a 1 to 13 year period, with two sites having only a single year of 

record, and six sites having only two years of record (Table 2.1).  However, there is no 

systematic relationship between length of record and uncertainty in observed β values at 

our study sites (Table 2.2).  Furthermore, because transport observations were collected 

over a range of flows on both the rising and falling limbs of the spring hydrographs in 

these snowmelt rivers, any effects of hysteresis are likely included. 

2.5.5. Potential Bias with the Barry et al. [2004, in press] Equation 

Thirteen of the 22 sites included in this analysis were part of the data from which 

the Barry et al. [2004; in press] equation was derived.  As a result, the portrayal of the 

Barry et al. [2004; in press] equation as “best”, compared to the other transport equations 

considered here, may be an artifact of having included a number of the calibration data 

sets in this analysis of equation performance.  If we restrict the analysis to the 9 sites not 

included in the development of the Barry et al. [2004; in press] equation, the relative 

performance of the 5 bed load transport equations shows only slight changes, with the 
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exception of the Bagnold [1980] equation, whose median percent error in predicting the 

effective discharge decreases from 0% to -17%.  However, equation-specific critical 

errors (e*) for prediction of the effective discharge do change, with critical errors for both 

the Meyer-Peter and Müller [1948] and the Bagnold [1980] equations changing from 

72% and 85% to 81% and 57%, respectively.  Similarly, the e* values associated with the 

Ackers and White [1973] and Parker [1990] equations change from 61% and 71% to 71% 

and 82%, respectively.  The e* value associated with the Barry et al. [2004; in press] 

equation changes from 14% to 3%.  Similar results are found when only the 9 

independent test sites are included in predicting the total transport at the effective 

discharge.  Regardless of whether we use all 22 sites, or the subset of 9 independent sites, 

the Barry et al. [2004] equation performs best for the rivers examined in this study.  

However, it remains to be seen how this equation performs in other gravel-bed rivers. 

The superior performance of the Barry et al. [2004; in press] equation also may 

be due, in part, to the fact that it is expressed as a rating-curve function, similar to that 

used to describe the observed transport data (2.1).  In particular, our estimates of the 

observed effective discharge and its transport rate may be influenced by the type of 

transport function fit to the observed data, which in turn could influence differences 

between observed and predicted values, and thus assessments of equation performance.  

In addition, the above 9 sites are from physiographic and hydrologic environments 

similar to those used to develop the Barry et al. [2004; in press] equation.  Hence, they 

may not be geomorphically independent and further testing of our equation in different 

environments is warranted.   

2.6.  Conclusion 
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We find that prediction of the effective discharge is not particularly sensitive to 

the choice of bed load transport equation (at least for those equations and study sites 

examined here) and that all equations predict the observed effective discharge reasonably 

well (with median errors of 0%, Figure 2.5).  However, equation performance differs 

both in terms of the range of effective discharge errors (Figure 2.5) and in calculated 

values of critical error, e*.  Similarly, the accuracy of predicted bed load transport rates at 

the effective discharge varies with equation selection with most equations over-predicting 

transport rates by almost 1 to over 2 orders-of-magnitude (Figure 2.8).  Only the Barry et 

al. [2004; in press] equation under-predicts bed load transport (by -0.3 orders-of-

magnitude) at the effective discharge. 

Our finding that the prediction of effective discharge is insensitive to choice of 

bed load transport equation corroborates the analytical results of Goodwin [2004], and 

suggests that even when the absolute value of sediment transport cannot be predicted 

accurately, it is possible to determine the channel-forming or effective discharge.  

Consequently, the selection of an appropriate sediment transport equation depends on the 

intended application.  For example, if the objective is modeling landscape evolution or 

the effective storage life of a dam, accurate prediction of the magnitude of sediment 

transport is critical, and therefore more care may be needed in selecting an appropriate 

transport equation.  However, in channel restoration work, estimates of the requisite 

channel geometry and planform are sometimes obtained from empirical relations based 

on the effective discharge, rather than the magnitude of sediment transport at different 

flow conditions.  For this case, our analysis suggests that any of the 5 equations examined 

here would provide a good estimate of the effective discharge on average, for the types of 
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streams analyzed.  The insensitivity of effective discharge predictions to variability of the 

flow frequency distribution is further discussed in Appendix 2.2, where a relationship is 

derived that explains stability of effective discharge predictions as a function of discharge 

bin size, flow frequency, and β.   

Although the effective discharge can be used as an index for restoration design, 

we emphasize that a suite of flows should be considered for successful restoration of 

physical processes and ecological function of rivers [Kondolf et al., 2001; Buffington and 

Parker, 2005; Doyle et al., 2005; Smith and Prestegaard, 2005; Wohl et al., 2005]. 
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Appendix 2.1.  Barry et al. [2004; in press] Equation 

The Barry et al. [2004] equation as modified by Barry et al. [in press] is 

qb = α(Q/Q2)β = 8.13•10-7 A0.49 (Q/Q2)(-2.45q*+3.56)    (A2.1) 

where qb is the total bed load transport rate per unit width (kg m-1 sec-1), α is 

parameterized as a power function of drainage area (A, m2, a surrogate for the magnitude 

of basin-specific bed load supply), with the units of the drainage area coefficient 

(8.13•10-7) dependent on the site-specific regression between α and A (in our case, the 

units are kg m
 -1.98

 s
-1

), and β is expressed as a linear function of q* (a dimensionless 

index of channel armoring as a function of transport capacity relative to bed load supply 

[Dietrich et al., 1989; Barry et al. 2004]). 

Barry et al. [2004] define q* as, 
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where 
2Qτ  is the total shear stress at Q2 calculated from the depth-slope product (ρgDS, 

where ρ is fluid density, g is gravitational acceleration, D is flow depth at Q2 calculated 

from site-specific hydraulic geometry relationships, and S is channel slope) and 
sd50

τ and 

ssd50
τ are the critical shear stresses necessary to mobilize the surface and subsurface 

median grain sizes, respectively, calculated from the Shields equation (τd50 = τ*c50(ρs-

ρ)gd50) where the dimensionless critical Shields stress for mobilization of the median 

grain size (τ*c50) is set equal to 0.03, the lower limit for visually-based determination of 

incipient motion in coarse-grained channels [Buffington and Montgomery, 1997]. 
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Appendix 2.2.  Sensitivity of Effective Discharge to Flow Frequency Distribution 

and Number of Discharge Bins 

The sensitivity of effective discharge predictions to changes in β (Figure 2.7) is 

largely determined by the variability of the flow frequency distribution surrounding the 

effective discharge bin.  Moreover, the degree to which the effective discharge (Qe) shifts 

to the left or right with changes in β depends on the flow frequency distribution that is 

used.  When Qe shifts to the left or right, it will move to the next largest Φi value of the 

work distribution (2.2).  Work distributions derived from theoretical flow distributions 

[Goodwin, 2004] are smoothly varying, such that the next largest Φi values are adjacent 

to the Qe bin, causing Qe to shift one bin to the left or right as β changes.  In contrast, 

observed flow and work distributions are irregular [e.g., Goodwin, 2004; his Figures 3 

and 4], with the next largest Φi value sometimes occurring several bins to the left or right 

of Qe, causing Qe to jump multiple bins with altered β.  For example, at our sites we find 

that the effective discharge typically jumps 4 discharge bins with changes in β when 

observed flow frequency distributions are used (divided into 26 bins).     

It is possible to develop an analytical solution to further explore the sensitivity of 

effective discharge estimates to changes or errors in the rating-curve slope, β.  The total 

bed load transport rate, Φ, is expressed as 

)( ,,,,,, ReLReLReL QfQβα=Φ       (B2.1) 

where the subscripts e, L, and R respectively indicate values for the effective discharge 

and those to the left and right of the effective discharge bin.  The largest value of β before 

Qe shifts to the right (i.e., to a larger discharge bin) occurs when Φe = ΦR, 
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( ) ( )RRee QfQQfQ ββ α=α        (B2.2) 

Similarly, the smallest value of β before Qe shifts to the left (i.e., to a smaller 

discharge bin) occurs when ΦL = Φe, 

( ) ( )eeLL QfQQfQ ββ αα =        (B2.3) 

To allow for the possibility of Qe shifting more than one discharge bin with 

changing β, QL and QR are generalized to QnL and QnR, where n is the number of 

discharge intervals, or bins ΔQ, that Qe moves, with QnL = Qe - nΔQ, and QnR = Qe + 

nΔQ.  Combining (B2.2) and (B2.3) and solving for β yields an expression describing the 

minimum and maximum β values before a change in the predicted effective discharge 

occurs (i.e., shifting Qe to a neighboring discharge bin) 
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This equation describes the sensitivity, or robustness, of the predicted effective 

discharge to changes or errors in the rating-curve slope (β) for a given flow frequency 

distribution (f(Qi)) and discharge interval (ΔQ).  In particular, the minimum and 

maximum values which β can take before a change in Qe occurs depend on the flow 

frequency of the effective discharge relative to that of its neighboring discharge bins 

(f(Qe)/ f(QnL) and f(Qe)/ f(QnR)) and on the dimensionless size of the discharge bins 

(nΔQ/Qe).  Figure B2.1 shows example plots of the upper and lower limits of β as a 

function of these parameters for n = 1 (i.e., for shifting Qe to an adjacent discharge bin).  

Absolute values of β increase with dimensionless bin size (ΔQ/Qe), but the predicted 

range of values which β can take before a shift in Qe occurs depends on the flow 
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frequency ratios (both in terms of their magnitude and asymmetry).  For example, for a 

given value of ΔQ/Qe, the range in β values is smallest when f(QL)/ f(Qe) = f(Qe)/ f(QR), 

and broader when f(QL)/ f(Qe) < f(Qe)/ f(QR) (Figure B2.1).  As such, the variability of the 

flow frequency distribution about the effective discharge has a strong influence on the 

allowable range of β values before Qe shifts to a neighboring discharge bin and, thus, the 

sensitivity of effective discharge predictions to changes or errors in β (Figure 2.7).  As 

expected, Figure B2.1 also shows that larger flow frequency ratios (f(QL)/ f(Qe),  f(Qe)/ 

f(QR)) are required to move the effective discharge to an adjacent bin as values of β 

increase for a given dimensionless bin size (ΔQ/Qe).  However, smaller dimensionless bin 

sizes require smaller relative changes in flow frequency about the effective discharge to 

shift Qe to a neighboring bin.  This suggests that results may be sensitive to the number of 

discharge bins used.  We examined this issue for both observed and theoretical flow 

frequency distributions.   

At our study sites, we find that the number of discharge bins typically has little 

effect on the effective discharge predictions (at least for the range of bin sizes examined, 

6-50) (Figure B2.2a).  However, results vary depending on the type of flow distribution 

used, with fitted theoretical distributions (normal, lognormal, or gamma) typically under-

predicting the effective discharge.  A gamma distribution results in effective discharge 

estimates that are most similar to the observed values.  We also find that the range of 

allowable β (difference between maximum and minimum β values before a shift in Qe 

occurs, (B2.4)) depends on the number of discharge bins when theoretical frequency 

distributions are used, but is not a factor for observed flow distributions (Figure B2.2b).  

Furthermore, the observed flow distributions generally result in broader ranges of 
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allowable β, explaining the insensitivity of Qe predictions to errors in β (Figure 2.7).  

These differences in behavior between observed and fitted theoretical flow distributions 

likely reflect differences in how the flow frequency ratios (f(QL)/ f(Qe) or f(Qe)/ f(QR)) 

change with bin size and the irregular nature of observed flow frequency distributions 

compared to theoretical ones.   
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Figure B2.1. Predicted ranges of the bedload rating-curve slope (minimum/maximum β) 

before the effective discharge (Qe) shifts to a neighboring discharge bin, expressed as a 

function of the relative change in flow frequency about the effective discharge (f(QL)/ 

f(Qe) and f(Qe)/ f(QR), where L and R indicate values for discharge bins to the left and 

right of the Qe bin). For plotting convenience we inverted f(Qe)/ f(QL) ratio in (B2.4). 

Results are stratified by dimensionless bin size used for discretizing the flow frequency 

distribution (ΔQ/Qe). Each pair of curves represents maximum and minimum β values 

determined from solution of the left and right sides of (B2.4), respectively, with n=1. 
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Figure B2.2.  Box plots of a) effective discharge and b) the range of allowable β 

(difference between maximum and minimum values of β before Qe shifts discharge bins, 

(B2.4)) at the 22 field sites as a function of the number of discharge bins (6-50) and flow 

frequency type (observed, normal, log normal, gamma).  Median values are specified by 

“X”.  Upper and lower ends of each box indicate the inter-quartile range (25th and 75th 

percentiles).  Extent of whiskers indicates 10th and 90th percentiles.  Maximum outliers 

are shown by open squares.

a) 

b) 
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Chapter 3.  Identifying Phases of Bed Load Transport:  An 

Objective Approach for Defining Reference Bed Load 

Transport Rates in Gravel-Bed Rivers 5 

3.1.  Abstract 

Previous studies have described three phases of bed load transport in armored 

gravel-bed rivers, though any given river might not demonstrate all three phases.  Phase I 

motion is typically characterized by a low-sloped transport function, representing supply-

limited movement of the most easily mobilized grains over a largely immobile armor 

layer during low flows.  Phase II motion exhibits a steeper-sloped function characterized 

by transport-limited movement of surface and subsurface material during low to 

moderate flows (depending upon the degree of channel armoring) and is limited by the 

spatial and temporal variation of excess shear stress (a function of both boundary shear 

stress and grain size).  Phase III motion is characterized by a decline in the slope of the 

transport function at moderate to high flows, which has several possible interpretations: 

1) the channel is nearing transport capacity, 2) the channel has reached bank-full stage, 

such that additional flow spills onto the floodplain, increasing width rather than depth and 

transport rate, and 3) all available sediment sources have been accessed by the flow, such 

that further increases in discharge do not result in large increases in transport. 

Here, we use a piecewise regression similar to that of Ryan et al. [2002] for 

objectively identifying transitions between phases of bed load transport observable within 

plots of dimensionless transport rate (W*) versus Shields stress (τ*) [Parker et al., 1982].  

                                                 
5 Co-authored paper with John M. Buffington, Peter Goodwin, and John G. King. 



 

 

126

 

The approach is applied to data sets from Oak Creek, Oregon, and the East Fork River, 

Wyoming, providing contrasting physical conditions and transport processes.  Oak Creek 

is a well-armored gravel channel that exhibits Phase I and II transport, while the East 

Fork River is a poorly-armored, sand-gravel channel that exhibits Phase II and III 

transport.  We find that phase transitions vary by size class and that equal mobility for 

any given size class (defined as pi/fi ≈ 1, the proportion of a size class in the bed load 

relative to that of the subsurface [Wilcock and McArdell, 1993; Church and Hassan, 

2002]) can occur during any phase of transport.  The identification of phase transitions 

provides a physical basis for defining size-specific reference transport rates (W*
ri).  In 

particular, the transition from Phase I to II transport may be an alternative to Parker's 

[1990] constant value of W*
ri =0.0025, and the transition from Phase II to III transport 

could be used for defining flushing flows or channel maintenance flows. 

3.2.  Introduction 

The surface sediment of many gravel-bed streams is often significantly larger than 

the subsurface material.  This coarse surface material, referred to as the armor layer 

[Leopold et al., 1964; Parker et al., 1982], acts as a physical barrier limiting the transport 

of the finer subsurface material [Emmett, 1976; Jackson and Beschta, 1982; Ryan et al., 

2002; Barry et al., 2004].  Previous studies indicate that bed load transport in gravel-bed 

rivers can exhibit up to three phases of transport as a result of the coarse armor layer and 

the spatial and temporal variability in excess boundary shear stress (Figure 3.1) [Emmett, 

1976; Jackson and Beschta, 1982; Ashworth and Ferguson, 1989; Andrews and Smith, 

1992; Warburton, 1992; Wilcock and McArdell, 1993, 1997; Hassan and Church, 2001; 

Church and Hassan, 2002].  Each phase is briefly introduced here, followed by more 
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detailed discussion in subsequent paragraphs.  Phase I transport is typically characterized 

by a low-sloped transport curve, consisting of fine sediments traveling over a largely 

immobile armor layer during low flow [Jackson and Beschta, 1982] and may be akin to 

Andrews and Smith’s [1992] marginal transport.  Phase II transport exhibits a steeper-

sloped function, characterized by partial transport of the surface material (i.e., a portion 

of the surface grains are immobile while others are in motion [Wilcock, 1997; Wilcock 

and McArdell, 1997]) and occurs at low to moderate flows, depending on the size of the 

surface sediment and the degree of channel armoring [Jackson and Beschta, 1982; 

Wilcock, 1997; Wilcock and McArdell, 1997]; however, an armor layer is not required for 

Phase II transport, as discussed below.  Phase III motion shows a decline in the slope of 

the transport function at moderate to high flows.  The cause for the Phase II/III transition 

is uncertain, but may indicate that 1) the flow is transporting sediment near capacity, 2) 

the flow has reached bankfull stage, with additional discharge spreading across the 

floodplain, rather than continuing to increase depth and transport rate, and 3) all available 

sediment sources have been accessed by the flow, such that further increases in discharge 

do not result in large increases in transport. 

In armored channels where the supply of sediment is predominantly controlled by 

in-stream sources, Phase I transport is limited to the transport of the most easily 

mobilized grains over a largely immobile armor layer during low flows.  In gravel-bed 

rivers, the Phase I load is often dominated by fine sediment [Jackson and Beschta, 1982; 

Ryan et al., 2002].  However, transport of medium-sized particles of high protrusion and 

low friction angle [Buffington et al., 1992; Johnston et al., 1998] may also be observed  
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Figure 3.1.  Schematic illustration of the phases of bed load transport possible in well-

armored (solid lines) and poorly-armored (dashed lines) channels, where W* is the 

dimensionless bed load transport rate [Parker et al., 1982] and τ* is the Shields stress. 

 

during Phase I transport [Andrews and Smith, 1992; Ryan et al., 2002].  In such channels, 

the Phase I curve generally has a low slope typical of supply-limited transport (i.e., 

dimensionless transport rate, W*, does not vary strongly with Shields stress, τ*) (Figure 

3.1) [Wilcock 1997; Hassan and Church, 2001].  The slope of the Phase I curve depends 

on the supply of fine material, with steeper slopes expected for higher supplies or poorly 

armored channels (Figure 3.1).  For example, under conditions of extreme sediment 

loading, the coarse armor layer may be partially buried by finer material [Borden, 2001], 

which should result in transport-limited motion of the surface fines and a Phase I curve 

that is steeper than that of Phase II.  In this case, the steep Phase I transport will continue 
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until the supply of fine material has been exhausted, or until the armor layer is mobilized, 

exposing the subsurface supply and altering the size distribution and mobility of the load.  

In contrast, Phase I transport should be absent from unarmored channels that, instead, 

will exhibit initiation of Phase II transport at low discharges, as typically observed for 

sand-bed channels (Figure 3.1).  In unarmored sand-bed channels, the onset of motion 

typically occurs at lower Shields stresses than in well-armored channels [Leopold et al., 

1964; Milhous, 1972; Buffington and Montgomery, 1997], and the dimensionless 

transport rates are expected to be orders of magnitude larger than in similarly-sized 

gravel-bed rivers (Figure 3.1) [Reid and Laronne, 1995].  

In contrast, Phase II motion is characterized by size-selective movement of bed 

material limited by the spatial and temporal variation of excess shear stress (τ*/τ*
c > 1, 

where τ∗ is the applied Shields stress and τ∗
ci is the critical value for motion of a given 

particle size).  In coarse gravel-bed streams, the surface particles are large enough that the 

applied Shields stress will not exceed the critical Shields stress until moderate flows 

[Parker et al., 1982; Wilcock and Kenworthy, 2002].  Conversely, in unarmored, sand-

bed streams, the applied Shields stress will typically exceed the critical Shields stress of 

the surface material even during low flows [Wilcock and Kenworthy, 2002] (Figure 3.1).  

The spatial and temporal variation in excess shear stress is a function of both boundary 

shear stress and grain size.  Spatial variability in grain size may be expressed in terms of 

textural patches [Paola and Seal, 1995; Buffington and Montgomery, 1999; Dietrich et 

al., 2005] that can cause spatial variability in excess shear stress [Lisle et al. 2000], as 

finer sediment patches are mobilized before coarser ones.  The presence of channel 

armoring may also reduce the areal extent of excess shear stress (τ*/τ*
c > 1) and alter the 
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timing of bed mobility [Paola and Seal, 1995; Barry et al. 2004] as discharge increases 

relative to an unarmored channel, but neither surface patches nor channel armoring are 

required for Phase II and III transport.  Rather, as the discharge increases, the portion of 

the bed area experiencing excess shear stress expands, mobilizing more of the surface 

grains [Wilcock and McArdell, 1997] and exposing more of the subsurface material to the 

flow, providing additional sources of sediment for transport.  However, the steepness of 

the Phase II transport relationship is a function of the degree of channel armoring as it 

regulates the supply of subsurface material [Emmett, 1976; Barry et al., 2004].  As such, 

poorly-armored channels are expected to have lower-sloped Phase II curves than well-

armored ones (Figure 3.1). 

In well-armored channels, mobilization of the coarse armor layer is delayed 

(armor breakup occurs at larger flows) relative to a poorly armored channel (armor 

breakup occurs at smaller flows) and, consequently, is followed by a relatively larger 

increase in bed load transport rate compared to a similar channel with less surface 

armoring (Figure 3.1) [Emmett and Wolman, 2001; Barry et al., 2004].  Movement of the 

armor layer exposes the subsurface supply, causing a rapid increase in transport rate and 

the steep Phase II transport relationship (Figure 3.1) typical of many gravel-bed streams 

[Emmett, 1976; Jackson and Beschta, 1982; Hassan and Church, 2001; Church and 

Hassan, 2002].  The relative change in slope of the transport function at the Phase I/II 

transition depends on both the degree of armoring (well-armored channels will produce 

steeper Phase II curves and a potentially larger contrast in slope between Phase I and II) 

and the amount of fine surface sediment available for transport (limited supplies of fine 

sediment will cause relatively shallow Phase I curves, with a potentially larger contrast in 
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slope) (Figure 3.1).  In the case of an unarmored channel, the onset of Phase II transport 

begins at exceedingly small flows due to the low critical Shields stress required to 

mobilize the relatively finer surface sediment.  The slope of the Phase II curve in 

unarmored channels is controlled by the supply of sediment and the spatial extent and 

variability of excess shear stress, such that steeper Phase II curves will occur when there 

is a readily available source of easily mobilized surface sediment and/or rapid expansion 

in the areal extent of excess shear stress with increasing discharge. 

As suggested by Hassan and Church [2001], the relatively rapid increase in 

sediment transport rate associated with Phase II transport is likely to continue in both 

armored and unarmored channels as existing sources of sediment are further accessed and 

as new sources of sediment are mobilized with increasing discharge (i.e., sediment 

sources higher up on the channel banks or from new areas of the channel bed as the 

spatial extent of excess shear stress expands).  However, once all available sediment 

sources have been accessed by the flow and conditions of general motion become 

established across the channel bed, no additional sources of in-channel sediment will be 

available for transport.  We hypothesize that at this point the relatively rapid increase in 

transport rate seen during Phase II will slow, yielding the lower-sloped Phase III curve 

(Figure 3.1).  The transition from Phase II to III transport is likely to occur sooner in an 

unarmored channel, as compared to an armored channel, due to more rapid expansion of 

the areal extent of excess shear (Figure 3.1). 

An alternative (or perhaps complementary) explanation for the decrease in slope 

associated with Phase III transport may be that the channel is nearing transport capacity.  

Consequently, increasing discharge is no longer accompanied by rapid increases in the 
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transport rate.  The decrease in slope at the Phase II/III transition may also be due to 

over-bank flooding.  That is, once a channel reaches bankfull conditions, additional 

discharge tends to flow onto the floodplain increasing the width rather than the flow 

depth and transport rate. 

Observed kinks in transport functions have been used by many authors to define 

phases of bed load transport [Paintal, 1971; Wilcock, 1997; Wilcock and McArdell, 1997; 

Hassan and Church, 2001; Ryan et al., 2002].  However, identifying the transition from 

one phase of motion to another is imprecise and often occurs over a range of flows 

[Wilcock, 1997; Wilcock and McArdell, 1997; Ryan et al., 2002].  The purpose of this 

paper is threefold: (1) to present an objective method for defining phases of bed load 

transport, (2) to apply this method to two contrasting field sites, and (3) to test the 

performance of the Parker [1990] equation using the identified Phase I/II transition as an 

alternative definition of the reference dimensionless transport rate, W*
r. 

3.3.  Study Sites 

We use bed load transport data from Oak Creek, Oregon [Milhous, 1973] and East 

Fork River, Wyoming [Emmett, 1980; Leopold and Emmett, 1997] for our analysis 

because they represent two well known data sets collected using channel-spanning traps, 

avoiding potential errors associated with point samples of sediment transport that are of 

limited spatial and temporal extent [Wilcock, 1992; Hassan and Church, 2001].  We have 

limited the Oak Creek data to those collected during the winter of 1971 based on 

Milhous’ [1973] observation that these were the highest quality data collected at this site.  

These two channels also provide contrasting physical conditions that are expected to lead 

to differences in the phases of bed load transport observed at each site.  Oak Creek is a 
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coarse gravel-bed stream (median surface grain size, d50s, of 53 mm) with a wide range of 

particle sizes (sand to large cobble) and an armoring ratio (d50s/d50ss) of 2.65 (where d50ss 

is the median subsurface particle), while the East Fork River site is located at the 

sand/gravel transition with a bed material made up primarily of sand (d50s ≈ 1.3 mm) and 

is essentially unarmored.  The channel slopes of the Oak Creek and East Fork River sites 

also differ (0.0095 and 0.0007, respectively), as do their respective drainage areas (7 km2 

and 466 km2).  However, the bed load transport observations were made over similar 

ranges of flow at the two sites (about 1-110% of the 2-year flood (Q2), which is typically 

a bankfull-like flow [e.g., Barry et al., 2004]). 

3.4.  Methods 

3.4.1. Identifying the Transition from Phase I to Phase II Transport 

We identify grain size-specific phase shifts in bed load transport within Parker et 

al.’s [1982] framework of dimensionless transport rate (W*
i) versus Shields stress (τ*

i) 

and test the performance of the Parker [1990] equation using the identified Phase I/II 

shifts as an alternative definition of the reference dimensionless transport rate, W*
r 

i
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where g is gravitational acceleration; S is the channel slope; di denotes the mean particle 

size for a given size range; q*
bi represents the Einstein bed load parameter for the ith 

grain size range; qbi is the volumetric bed load rate per unit width for the ith grain size 
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range; fi denotes the fraction of the subsurface material for the ith size class; τ0 is the 

boundary shear stress determined from the depth-slope product; D is the mean flow 

depth; and R denotes the submerged specific gravity of sediment ((ρs/ρ)-1, where ρs and 

ρ represent the density of sediment and water, respectively). 

Parker et al. [1982] used Milhous’ [1973] bed load measurements to describe the 

relationship between Shields stress (τ*
i) and dimensionless transport rate (W*

i) by size 

class.  They limited their analysis to data collected during the winter of 1971 and at 

discharges greater then 1 m3 s-1, corresponding with the break up of the armor layer at 

Oak Creek [Milhous, 1973].  Figure 3.2 shows both the truncated data set (solid symbols, 

Q > 1 m3 s-1) and the full data set (solid and open symbols) for the winter of 1971.   

From these relationships, Parker et al. [1982] identified a low reference 

dimensionless transport rate, arbitrarily chosen as W*
r = 0.0025, for all grain sizes on the 

channel bed.  They identified the corresponding reference Shields stress for each size 

class, τ*
ri, at W*

r = 0.0025 and developed the hiding function 

982.0

ss50

* 0876.0
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=τ

d
di

ri        (3.4) 

and a bed load transport function, G(φi), modified by Parker [1990] as 
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Figure 3.2.  Dimensionless bed load transport rate (W*
i) versus Shields stress (τ*

i) for six 

grain-size classes, showing the truncated (solid points) and complete dataset for the 

winter of 1971 (solid and open points) at Oak Creek [Milhous, 1973].  Also shown, is 

Parker’s [1990]  reference dimensionless transport value W*
r = 0.0025 (horizontal line) 

and his bed load function for φi > 1 (angled lines, equation (3.5b)). 

 

where d50ss is the median subsurface grain size, φi is the ratio of the applied Shields stress 

(τ*
i) to the reference Shields stress (τ*

ri).  We interpret the three-part equation in (3.5) as 

representing Phase III, II and I transport, respectively.  The second part of (3.5) was fit by 

Parker et al. [1982] to the observed Oak Creek data collected at discharges greater than 1 

m3 s-1, but the first and third parts are assumed extensions of other transport equations 

[Parker et al.,  1982; Parker, 1990].  Because no transport observations were collected at 

φi > 1.59 the first part of (3.5) is based on an extension of the Parker [1979] equation, 
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derived from experimental and field data from Peterson and Howells [1973], and 

matched to the second part of (3.5) at φi = 1.59.  The choice of a power law for the third 

part of (3.5) (φi < 1) was based on work of Proffitt and Sutherland [1983] and Paintal 

[1971].  The exponent of 14.2 was selected such that the second and third parts of (3.5) 

match continuously at φi = 1 and is very similar to the value obtained by Paintal [1971] at 

very low transport rates. 

When the complete Oak Creek data set is considered, transitions, or kinks, in the 

transport relationships are observed at much lower dimensionless transport values (W* 

near 0.00001) than Parker et al.’s [1982] value of W*
r = 0.0025 (Figure 3.2).  In addition, 

the kinks appear to vary by particle size.  We propose that identifying the kinks in these 

plots of τ*
i versus W*

i provides an objective and physically-based method for selecting 

the reference dimensionless transport rate associated with the Phase I/II transition, W*
riII, 

and, therefore, an alternative method for defining the corresponding reference Shields 

stress, τ*
riII. 

Similar to the approaches used by Paintal [1971], Hassan and Church [2001] and 

Ryan et al. [2002], we use a two-piece model to describe the segmented τ*
i - W*

i 

relationship observed in Figure 3.2.  We assume that the τ*
i - W*

i relationship is a 

continuous power function across the full range of observed τ*
i values.  The location of 

the transition between Phase I and II transport was selected to maximize the correlation 

coefficient (r2) [Ryan et al., 2002; Ryan and Porth, 2007].  Other methods for identifying 

the location of the phase shifts are available, such as fitting the regression lines by eye or 

using the method described by Mark and Church [1977] for optimizing regressions, and 

might produce different results. 
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3.4.2. Identifying the Transition from Phase II to Phase III Transport 

Similar to the identification of the Phase I/II transition, we identify the reference 

dimensionless transport rate at the transition from Phase II to III transport, W*
riIII, and the 

associated reference dimensionless Shields stress, τ*
riIII, by identifying the upper kink in 

the τ*
i - W*

i relationship (Figure 3.1).  Identification of this flow could assist in selecting 

those discharges necessary for channel maintenance or flushing flows [Reiser et al., 

1989; Whiting, 1998; Ryan et al., 2002] since it potentially represents a discharge that 

mobilizes the entire channel bed. 

3.5.  Results and Discussion 

3.5.1. Phase I to II Transport 

Results show that the reference dimensionless transport rate for the onset of Phase 

II transport, W*
riII, varies by size class and is significantly less than the value proposed by 

Parker et al. [1982] (W*
r = 0.0025) (Figure 3.3).  We find that the onset of Phase II 

transport at Oak Creek occurs at flows between 0.27 and 0.51 m3 s-1, depending upon the 

grain size.  These results suggest that breakup of the armor layer begins at discharges 

between 10 - 20% of Q2.  By comparison, Milhous [1973] observed the breakup of the 

surface layer did not begin until flows over 1 m3 s-1, or about 35% of Q2.  Both values are 

substantially less than observations made by Ryan et al. [2002] who identified the onset 

of Phase II transport around 60-100% of the bankfull discharge at 12 coarse-grained 

rivers in Colorado and Wyoming using an approach similar to ours.  Mueller et al. 

[2005], using a different method, found that the discharge associated with the reference 

Shields stress, Qr, at 35 gravel-bed rivers averaged 67% of the bankfull discharge (Qb) 

(varied from 21% to 123% of Qb).   
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Figure 3.3.  Dimensionless bed load transport rate (W*
i) versus Shields stress (τ*

i) for 

example size ranges at Oak Creek, showing our two-part regression of the data for 

identifying phases of bedload transport.  Symbols highlighted with red indicate transport 

ratios (pi/fi) [Wilcock and McArdell, 1993] < 0.8; symbols highlighted with green indicate 

0.8 ≤ pi/fi ≤ 1.2; symbols highlighted with blue indicate pi/fi > 1.2.  For clarity, not all of 

the smaller size classes are shown; however, their behavior is similar to those size classes 

that are shown. 

 

The fact that Oak Creek exhibits a Phase I/II transition at lower flows than other 

gravel-bed rivers may indicate that the site is anomalous, as has been suggested in other 

investigations [Buffington and Montgomery, 1997; Wilcock and Kenworthy, 2002].  
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Therefore, caution should be used when applying results from these data to other gravel-

bed rivers.   However, the Oak Creek site is also relatively unique in that the bed load 

data were collected using a channel-spanning trap that avoids many of the potential 

sampling errors associated with point measurements (i.e., Helley-Smith samples) 

commonly used in bed load transport studies.  Sampling errors may arise because bed 

load transport is a stochastic process in space and time, but Helley-Smith samples are 

collected as a series of point measurements of limited duration along a cross section.  As 

a result, point measurements may not accurately sample the bed load population, 

particularly the coarser sizes that move infrequently [Wilcock, 2001].   

The Oak Creek data also show a systematic decline in the slope of the Phase I 

curves with increasing grain size as one moves from right to left across Figure 3.3.  As 

discussed in Section 3.2, the slope of the Phase I curve depends on the supply of bed load 

material, with steeper slopes expected for higher supplies.  Hence, Figure 3.3 suggests a 

higher supply of fine grains than coarse ones during Phase I transport, as is commonly 

observed in bed load studies.   

Because the data do not show a transition to Phase III transport, we conclude that 

either complete mobilization of the channel bed did not occur over the range of observed 

flows or that the channel did not reach transport capacity.  The first possibility cannot be 

evaluated because data regarding the areal extent of bed mobilization are not available at 

Oak Creek.  However, work by Haschenburger and Wilcock [2003] in Carnation Creek 

suggest that complete mobilization of the channel bed in coarse gravel-bed rivers may 

require flows >120% Q2; in comparison, flows at Oak Creek only reached 110% Q2.    
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The second possibility (flows below transport capacity) can be assessed using 

plots of unit total bed load transport rate versus unit stream power (Figure 3.4).  An 

increase in unit total bed load transport rate with unit stream power indicates increasing 

transport efficiency [Bagnold, 1973; Leopold and Emmett, 1976; Reid and Laronne, 

1995; Gomez, 2006] and this increase in efficiency is likely to continue until the flow 

approaches capacity and/or is transporting near its maximum potential efficiency Gomez 

[2006].  The maximum potential efficiency, as defined by Gomez [2006], is a function of 

sediment size and represents the maximum transport rate for a given unit stream power in 

the absence of constraints on the availability and supply of sediment and is likely 

synonymous with transport capacity.  The maximum potential efficiency is always less 

than 100% given the losses and inefficiencies inherent in the transfer of energy and 

momentum from the fluid to the solid bed material [Gomez, 2006].  Once the flow is at 

capacity and/or transporting at maximum efficiency, we expect the bed load transport 

rates to level off [Leopold and Emmett, 1976] which is an alternative explanation for the 

Phase II/III transition.   

At Oak Creek, we observe a rapid increase in transport efficiency with unit stream 

power to a maximum transport efficiency of less than 1% (Figure 3.4).  However, we do 

not see a leveling off in efficiency.  Furthermore, even at flows greater than Q2, Oak 

Creek is still transporting sediment with an efficiency much less that the maximum 

potential efficiency of approximately 10%, as defined by Gomez [2006].  This suggests 

that the observed sediment transport rates in Oak Creek were not at capacity nor were the 

flows transporting sediment near their potential efficiency even at flows above Q2 

[Gomez, 2006].   
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A third explanation for the lack of Phase III transport at Oak Creek is that flows 

did not reach bankfull.  However, since the bankfull stage at Oak Creek has not been 

reported, the influence of over-bank flows on transport capacity and the shape of the τ*
i - 

W*
i relationship is unknown. 

A final issue is the relationship between phases of transport and equal mobility.  

There are numerous definitions of equal mobility, including (1) all particle sizes sharing 

the same critical shear stress for motion [Parker et al., 1982], and (2) particle sizes 

moving in proportion to their availability [Parker et al., 1982; Wilcock and McArdell, 

1993].  We examine the latter, defining size-specific mobility in terms of the transport 

ratio, pi/fi, (where pi and fi are the proportions of a given size class within the bed load 

and subsurface material, respectively) [Wilcock and McArdell, 1993; Church and 

Hassan, 2002].  Values of pi/fi equal to one indicate equal mobility, while values less than 

one indicate under-representation (deposition) of a given size class, and values greater 

than one indicate over-representation (erosion).  We find no systematic relationship 

between transport ratio and transport phase at Oak Creek (Figure 3.3).  Furthermore, we 

find that transport ratios indicative of equal mobility (defined here as pi/fi, = 0.8-1.2) can 

occur during any phase of transport (Figure 3.3), with no indication that the transport 

ratios tend toward 1 with increasing Shields stress, nor that equal mobility is more likely 

during initial motion, as has been previously suggested [Buffington et al., 1992].   

3.5.2. Phase II to III Transport 

Similar analyses for the East Fork site show an absence of Phase I transport 

(Figure 3.5), which is expected because the channel is unarmored and the fine-grained 
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Figure 3.4.  Unit total bed load transport rate versus unit stream power at Oak Creek 

(solid diamonds) and East Fork River (open diamonds).  Selected levels of percent bed 

load transport efficiency are also shown [Bagnold, 1973; Leopold and Emmett, 1976; 

Reid and Laronne, 1995; Gomez, 2006].  Thick solid and dashed lines are the maximum 

transport efficiencies likely to occur at Oak Creek and East Fork, respectively [Gomez, 

2006]. 

 

nature of the streambed provides a ready source of mobile sediment during all flows.  In 

such fine-grained streams, partial transport is the general state of motion during low to 

moderate flows, with transport rates controlled solely by the aerial extent of excess shear 

stress, rather than a limiting armor layer.  We interpret the observed kinks in the τ*
i - W*

i 

relationship at the East Fork site as representing the transition from Phase II to III 

transport.  This transition to Phase III transport occurs at a flow near 9.0 m3 s-1, or 25% of 
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Q2.  This is a marked contrast to Oak Creek, which did not exhibit Phase III transport 

even at flows > 110% of Q2.  A series of marked sand particles placed across the channel 

bed at the East Fork site indicate that complete mobilization of the channel bed occurred 

at a flow that was approximately 80% of Q2 [Leopold and Emmett, 1997].  However, 

because similar observations of bed mobilization were not made at lower flows, we are 

unable to determine it complete mobilization of the channel bed also occurred at the 

Phase II/III transition (9.0 m3 s-1, or 25% Q2).  Furthermore, because the observed Phase 

II/III transition occurs at flows significantly less than Q2 we conclude it is un-related to 

over-bank flooding. 

We also consider the effect of transport capacity as an alternative explanation for 

the Phase II/III transition.  As at Oak Creek, the East Fork River data exhibit an initially 

rapid increase in transport efficiency with unit stream power (Figure 3.4).  However, the 

East Fork River is much more efficient at transporting sediment, with an average 

efficiency of 4% compared to 0.05% at Oak Creek, and with much higher unit bed load 

transport rates.  Unlike the Oak Creek data, the East Fork River observations begin to 

level off at values of unit stream power near 0.5 kg m-1 s-1, corresponding with a 

discharge of approximately 11 m3 s-1 (slightly larger then the Phase II/III transition at 9.0 

m3 s-1), which suggests that the Phase III curve at East Fork may be a transport capacity 

phenomenon.   

The East Fork data also show a systematic decrease in the slopes of the Phase II 

transport curves with increasing grain size (moving from right to left in Figure 3.5), 

suggesting a lower supply of coarser particle sizes.  This result seems to contrast with the 

Oak Creek findings, where the Phase II transport curves appear sub-parallel to one 
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another and indicate similar supplies of different particle sizes (Figure 3.3).  The 

difference in behavior may reflect differences in armoring between the two sites and the 

effect of the armor layer in regulating the supply of particles, but further investigation of 

this issue is needed.     
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Figure 3.5.  Dimensionless bed load transport rate (W*
i) versus Shields stress (τ*

i) for 

example size ranges at East Fork River, showing our two-part regression of the data for 

identifying phases of bedload transport.  Symbols highlighted with red indicate transport 

ratios (pi/fi) [Wilcock and McArdell, 1993] < 0.8; symbols highlighted with green indicate 

0.8 ≤ pi/fi ≤ 1.2; symbols highlighted with blue indicate pi/fi > 1.2.  For clarity, not all of 

the smaller size classes are shown; however, their behavior is similar to those size classes 

that are presented. 
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Again we find that transport ratios indicative of equal mobility (pi/fi = 0.8-1.2) 

occur across both phases of transport observed at the East Fork site and show no 

systematic trend with transport phase (Figure 3.5). 

3.5.3. Dimensionless Transport Rates (W*
ri) at Oak Creek and East Fork 

We find that the sand-bed East Fork River exhibits dimensionless transport rates 

1-5 orders of magnitude larger than Oak Creek for given grain size percentiles and 

comparable Shield stresses (τ*
i) (Figure 3.6).  Fine sediments (i.e., sand sizes and 

smaller) make up approximately 50% of the surface material at the East Fork River 

[Emmett, 1980] and 10% at Oak Creek [Milhous 1973; Parker et al., 1982].  This 40% 

difference in surface sand content could result in a 50% decrease in the dimensionless 

shear stress required to mobilize sand and gravel sized material [Wilcock and Kenworthy, 

2002] at the East Fork River and may explain the significantly larger transport rates 

observed at this site.  The grain-size specific transport rates shown in Figure 3.6 are given 

in terms of the subsurface size distribution because that distribution approximates the bed 

load size distribution over time, particularly at Oak Creek [Parker et al., 1982].   

3.5.4. Estimating Reference Transport Rates For All Sizes 

A drawback of our approach for determining size-specific reference transport 

rates (W*
ri) is that particle sizes larger than the d20 do not exhibit Phase I motion at Oak 

Creek (Figure 3.3, di > 22.2 mm, or di/d50s = 0.40).  It is unclear whether Phase I motion 

simply does not occur for large particles, or whether it is a rare occurrence that could not 

be detected with the sampling approach used.  The long sampling times during low flows 

at Oak Creek (often over 24 hours) suggest that the later is unlikely.  In any event, the 

lack of a Phase I/II transition for large particles means that reference dimensionless  
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Figure 3.6.  Dimensionless bed load transport rate (W*
i) versus Shields stress (τ*

i) for 

three different subsurface grain size percentiles at the East Fork River (solid symbols) 

and Oak Creek (open symbols). 

 

transport rates (W*
riII) cannot be determined for those sizes.  However, these values are 

needed to test our proposed revision of the Parker [1990] equation (Section 3.5.5).  To 

address this issue, we developed a relationship between dimensionless particle size 

(di/d50s) and W*
riII (Figure 3.7), allowing prediction of reference dimensionless transport 

rates (W*
riII) and associated Shields stresses (τ*

riII) for all size classes.  A similar 

relationship was developed for the East Fork River to estimate W*
riIII values (Figure 3.7) 

and associated τ*
riIII values for purposes of estimating channel maintenance or flushing 

flows [Reiser et al., 1989; Whiting, 1998; Ryan et al., 2002].  Although these empirical 
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equations allow prediction of references dimensionless transport rates for all size classes, 

further work is needed to determine whether all grain sizes actually exhibit Phase I/II and 

II/III transitions.   
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Figure 3.7.  Reference dimensionless bed load transport rate for the Phase I/II (W*
riII) and 

Phase II/III (W*
riIII) boundaries, as a function of particle size normalized by the surface 

median grain size, di/d50s, at Oak Creek (solid diamonds) and the East Fork River (open 

squares). 

 

3.5.5. Alternative Formulations of the Parker [1990] Transport Equation 

Here we assess the performance of two alternative formulations of the Parker 

[1990] bed load transport equation using the observed kinks in the τ*
i - W*

i diagrams to 
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provide a physically-based definition of W*
riII.  Both formulations include a hiding 

function developed using predicted values of W*
riII (Figure 3.7) and corresponding values 

of τ*
riII (Figure 3.8).  There is only a 1% difference between the slope of our hiding 

function (Figure 3.8) and that developed by Parker et al. [1982] (-0.994 versus -0.982, 

respectively), but a 40% difference in the hiding function coefficient (0.0529 versus 

0.0876, respectively).  In both cases, the near -1 value of the exponent indicates equal 

mobility in terms of all sizes being mobilized at similar critical shear stresses, but the 

lower value of the coefficient in our approach implies a lower critical shear stress for 

mobilization of the armor layer than that predicted by Parker et al. [1982].   

The first alternative formulation assumes Parker’s [1990] transport function (3.5), 

but with our hiding function (Figure 3.8).  By predicting the reference Shields stress 

using our hiding function rather than Parker’s [1990], we are changing the distribution of 

φi values for the observed bed load data compared to that obtained by Parker [1990].  

Consequently, we are also changing the distribution of flow conditions where equations 

3.5a-c are applied.  The first alternative formulation applies (3.5c) up to a flow of 0.4 m3 

s-1, while use of the Parker [1990] equation with a constant W*
r value results in 

application of (3.5c) up to flows of about 1.5 m3 s-1.  Equation (3.5b) is used for flows 

between 0.4 m3 s-1 and approximately 1.5 m3 s-1 for the first alternative formulation, and 

between 1.5 m3 s-1 and 5.5 m3 s-1 for Parker’s [1990] equation.  Equation (3.5a) was not 

used by Parker [1990] at Oak Creek because the largest φi value using his hiding function 

was < 1.59.  But in our case, we use (3.5a) to predict transport for about 30% of the 

observations.   
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Figure 3.8.  Oak Creek hiding function for reference Shields stress at the Phase I/II 

boundary (Figure 3.4).  d50ss represents the median particle size of the subsurface 

material. 

 

The second alternative formulation also uses our hiding function (Figure 3.8), but 

includes a revised transport function based on a similarity collapse using our size-specific 

values of W*
riII (rather than W*

r = 0.0025) (Figure 3.9).  Our similarity collapse analysis 

followed the procedure described by Parker et al. [1982].  From this analysis, we 

developed a site-specific transport relationship at Oak Creek across both Phase I and II 

transport (Figure 3.9), eliminating the need to assume a power law (φi
14.2) for φi < 1.0 

(Equation 3.5c).  Recall that Parker’s [1990] transport function was fit only to the Phase 

II transport at Oak Creek, with the Phase I relationship (3.5c) assumed from Paintal 

[1971] such that the two relations match continuously at φi = 1.  The revised transport 
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function shows a significantly different slope for Phase I transport than that assumed 

from Paintal [1971] (3.2 vs. 14.2, respectively) (Figure 3.9).    
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Figure 3.9.  Alternative similarity transformation at Oak Creek and revised transport 

function. 

 

Comparison of observed versus predicted transport rates shows that at low flows 

(i.e., φi < 1.0) both the Parker [1990] transport equation and the first alternative 

formulation significantly under-predict the observed Oak Creek data by an average of -

1.0 and -0.8 orders of magnitude, respectively (with standard deviations 0.83 and 0.63 

orders of magnitude, respectively) (Figure 3.10).  This occurs because both predictions 

employ equation (3.5c) at low flows, which significantly over-predicts the exponent of 

the transport function (14.2 vs. an observed value of 3.2, Figure 3.9) and can also be seen 
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in plots of predicted and observed transport rates as a function of discharge (Figure 3.11).  

In contrast, the second alternative transport formulation performs better at low flows, 

with an average error of approximately 0.2 orders of magnitude (standard deviation 0.40 

orders of magnitude).  The improved performance is expected because the second 

alternative equation is fit to all transport observations at Oak Creek (including the low-

flow observations removed from Parker’s [1990] analysis). 
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Figure 3.10.  Observed versus predicted total unit bed load transport at Oak Creek using 

the Parker [1990] equation by size fraction as originally defined (W*r=0.0025) and the 

two alternative formulations discussed in the text. 

 

The performance of all three equations is significantly improved during high 

flows (Figures 3.10 and 3.11), with the Parker [1990] equation out-performing both 

alternative formulations; average errors of 0.03 orders of magnitude for the Parker 
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[1990] equation (standard deviation of 0.31 orders of magnitude), compared to -0.34 and 

-0.05 orders of magnitude for the first and second alternative formulations, respectively 

(standard deviations of 0.70 and 0.41 orders of magnitude, respectively).  Unlike the first 

alternative formulation, that has increasing prediction errors with discharge (Figure 3.11), 

neither the second alternative formulation nor the Parker [1990] equation show a trend 

toward positive or negative prediction errors at high discharges (Figure 3.11).  The 

superior performance of the second alternative formulation and the Parker [1990] 

equation occurs because these formulations were fit to transport observations collected 

during high flow (φi > 1) at Oak Creek, whereas the first alternative formulation applies 

equation (3.5a) which is based on data collected at sites other than Oak Creek.  
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Figure 3.11.  Observed and predicted unit bed load transport as a function of discharge at 

Oak Creek. 
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The superior performance of the first and second alternative formulations 

compared to the performance of the Parker [1990] equation only occurs during low 

flows.  In fact, at higher flows the Parker [1990] equation performs best, suggesting that 

it is not particularly sensitive to the choice of W*
riII, at least for the range of high flows 

examined here.  Furthermore, it appears that application of our first alternative 

formulation may result in systematic prediction errors during both low and high flows 

(Figure 3.11).  Nevertheless, our approach provides a more rationale definition of W*
ri 

based on observed changes in transport processes.    

3.6.  Conclusion 

Our analysis considers transitions between phases of bed load transport and uses a 

two-part regression to objectively identify changes in the slope of the transport functions, 

which we interpret as representing phase shifts (fundamental changes in boundary 

conditions for bed load transport).  We use the observed kinks in plots of Shields stress 

versus dimensionless transport rate as a physical basis for defining reference transport 

rates by size class.  We apply our method at Oak Creek to identify the transition from 

Phase I to II transport and to objectively define size-specific W*
ri.  Using these values, we 

offer two alternatives to the Parker [1990] bed load transport equation that improve 

performance at low flows (Phase I), but not at higher ones (Phase II). 

We use the data set collected at the East Fork River site to identify the transition 

from Phase II to III transport.  We limited our analysis to these two data sets because the 

data were collected using channel-spanning bed load traps which likely give best 

estimates of the actual bed load transport.  In addition, these two sites provide contrasting 
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physical conditions (armored gravel-bed river vs. a poorly-armored, predominately sand-

bed river) that allow us to investigate differences in the phases of bed load transport 

related to channel type and degree of armoring. 

We find that the phase transitions at both sites vary by size class and that our 

identified values of W*
riII at the Oak Creek site occur at much lower dimensionless 

transport values (W* near 0.00001) than Parker’s [1990] W*
r = 0.0025.  In addition, we 

find that the onset of Phase II transport using our approach occurs at flows equal to 10 - 

20% of Q2.  This is substantially less than observations made in other gravel-bed rivers 

by Ryan et al. [2002] who identified the onset of Phase II transport around 60-100% of 

the bankfull discharge.  We also find that Phase III transport does not occur at Oak Creek 

even at flows larger than Q2.  At the East Fork River site, we observe that Phase I 

transport does not occur.  Rather, in sand-bed channels such as the East Fork River, Phase 

II transport is the general state of motion until the spatial variability of excess shear stress 

has mobilized a majority of the channel bed and/or the flow approaches transport 

capacity.  The transition to Phase III transport occurred at approximately 25% of Q2.  

Objectively identifying the Phase II/III transition can assist in selecting the flow regime 

necessary for flushing of fine material from the surface sediment or for determining those 

flows necessary for channel maintenance purposes [Reiser et al., 1989; Whiting, 1998; 

Ryan et al., 2002; Schmidt and Potyondy, 2004].  We suggest that the method presented 

here be applied at other locations to test the applicability and generality of our functions 

for predicting dimensionless reference transport rates (both W*
riII and W*

riIII) (Figures 3.7) 

and the Phase I/II and Phase II/III transitions.  We also find that transport ratios (i.e., pi/fi) 
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indicative of equal mobility can occur during any phase of transport and there is no 

systematic trend in transport ratio with transport phase. 
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