
www.elsevier.com/locate/geomorph

Geomorphology 57 (2004) 331–351
Objective landslide detection and surface morphology mapping

using high-resolution airborne laser altimetry

J. McKeana,*, J. Roeringb

aDepartment of Geological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
bDepartment of Geological Sciences, University of Oregon, Eugene, OR 97403, USA
Received 16 August 2002; received in revised form 20 March 2003; accepted 22 March 2003
Abstract

A map of extant slope failures is the most basic element of any landslide assessment. Without an accurate inventory of slope

instability, it is not possible to analyze the controls on the spatial and temporal patterns of mass movement or the environmental,

human, or geomorphic consequences of slides. Landslide inventory maps are tedious to compile, difficult to make in vegetated

terrain using conventional techniques, and tend to be subjective. In addition, most landslide inventories simply outline landslide

boundaries and do not offer information about landslide mechanics as manifested by internal deformation features. In an

alternative approach, we constructed accurate, high-resolution DEMs from airborne laser altimetry (LIDAR) data to characterize

a large landslide complex and surrounding terrain near Christchurch, New Zealand. One-dimensional, circular (2-D) and

spherical (3-D) statistics are used to map the local topographic roughness in the DEMs over a spatial scale of 1.5 to 10 m. The

bedrock landslide is rougher than adjacent unfailed terrain and any of the statistics can be employed to automatically detect and

map the overall slide complex. Furthermore, statistics that include a measure of the local variability of aspect successfully

delineate four kinematic units within the gently sloping lower half of the slide. Features with a minimum size of surface folds

that have a wavelength of about 11 to 12 m and amplitude of about 1 m are readily mapped. Two adjacent earthflows within the

landslide complex are distinguished by a contrast in median roughness, and texture and continuity of roughness elements. The

less active of the earthflows has a surface morphology that presumably has been smoothed by surface processes. The Laplacian

operator also accurately maps the kinematic units and the folds and longitudinal levees within and at the margins of the units.

Finally, two-dimensional power spectra analyses are used to quantify how roughness varies with length scale. These results

indicate that no dominant length scale of roughness exists for smooth, unfailed terrain. In contrast, zones with different styles of

landslide deformation exhibit distinctive spectral peaks that correspond to the scale of deformation features, such as the

compression folds. The topographic-based analyses described here may be used to objectively delineate landslide features,

generate mechanical inferences about landslide behavior, and evaluate relatively the recent activity of slides.
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1. Introduction

Landsliding is a geologic process that occurs over a

wide variety of spatial and temporal scales in many

mountainous landscapes. Landslides have a corre-
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spondingly wide range of effects that depends

strongly on their spatial pattern of occurrence and

frequency and magnitude of movement (e.g. Palm-

quist and Bible, 1980; Densmore and Hovius, 2000).

Mass movements can be the dominant source of

erosion responsible for the long-term geomorphic

evolution of hillslope morphology (e.g. Anderson,

1994; Schmidt and Montgomery, 1995; Burbank et

al., 1996; Cendrero and Dramis, 1996; Hovius et al.,

1997; Densmore et al., 1998; Densmore and Hovius,

2000). Over shorter time periods, landslide erosion

may cause environmental damage (e.g. Kelsey, 1980;

Blaschke et al., 2000) and slides can be a significant

local geologic hazard to land use (e.g. Selby, 1993;

Schuster, 1996).

A variety of methods has been developed to assess

landslide hazards (e.g. Hutchinson, 1995; Aleotti and

Chowdhury, 1999) and the environmental and geo-

morphic consequences of slope failures (e.g. Hovius

et al., 1997; Densmore et al., 1998; Densmore and

Hovius, 2000). Regardless of the purpose of a land-

slide investigation or its spatial or temporal scale,

project goals normally include at least evaluation of

the location and size of slides and estimation of their

recent and future activity. Essentially all techniques

used at scales beyond very local site investigations

incorporate a landslide inventory map developed by

surface mapping of existing slides. This fundamental

database is compiled partly as a result of the maxim

that future landslides are most likely to occur in

conditions similar to those that have caused past

failures (Varnes et al., 1984). There is also a need to

calibrate models of future landslide hazard and risk

with the mapped population of existing landslides.

While mapping may define spatial patterns of

landslides, the temporal component of slide activity

is more problematic (Lang et al., 1999). Lacking

absolute age control from tephras, 14C, etc., mapped

landslide surface morphology can sometimes be used

as a surrogate for age and/or recent activity. Simply

put, more recently active slides are generally rougher

with better-developed local morphologic features,

such as cracks and interior scarps, etc. (Wieczorek,

1984; Gonzalez-Diez et al., 1999).

Maps of spatial and temporal patterns of the sur-

face deformation of landslides can also be used to

investigate individual slide kinematics and mechanics.

Fleming and Johnson (1989) used detailed maps of
cracks and other surface features at two landslides to

define internal elements within the slides, estimate the

rheologic properties of the slide materials, and inves-

tigate the shapes of the failure surfaces. Hutchinson

(1995) observed that the surface morphology of

existing slope failures can reveal the type of landslide,

which in turn may help predict future behavior, such

as velocity, pattern of response to rainfall, likely travel

distance, etc. Baum and Fleming (1991) monitored

changes over time in zones of longitudinal extension

and compression in landslides and used those mapped

patterns to predict driving and resisting elements in

the slides and constrain the interslice forces employed

in limit equilibrium analyses. Baum et al. (1993) also

used 3 years of surface deformation monitoring and

mapping to investigate a variety of kinematic aspects

of a slide, including patterns and homogeneity of

longitudinal strain, surface deformation styles caused

by extension and contraction and the effects of failure

surface geometry on surface deformation.

Methods of landslide mapping have changed little,

in principle, over the past few decades even when

newer data sources are used. In sparsely vegetated

terrain, landslides are routinely detected and mapped

by a combination of interpretation of airphotos or

multispectral digital imagery and selective ground

verification. However, it is quite difficult to use these

methods in rugged terrain covered with dense vege-

tation. In particular, vegetated older dormant slides

with subdued topographic expression may be unrec-

ognizable on airphotos or multispectral digital

imagery (e.g. Wills and McCrink, 2002). Also, land-

slide inventory mapping studies typically focus on

outlining slide boundaries and neglect the wealth of

information revealed by internal deformation features.

We report results of a new approach that exploits

measurements of local topographic roughness to

detect and map deep-seated landslides. The surface

morphology of a landslide complex near Christ-

church, New Zealand is characterized with high

resolution DEMs produced from LIDAR data. Stat-

istical, Laplacian, and spectral analyses of the DEM

are used to quantify the local surface roughness.

Spatial patterns of roughness are then employed to

distinguish slide from non-slide, identify individual

morphologic domains within the landslide complex

and estimate the relative recent activity of two adja-

cent domains.
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2. Coringa Landslide

The LIDAR test site is a landslide complex, known

as the Coringa Landslide, located 65 km north of

Christchurch, New Zealand (Figs. 1, 2 and 3). This 50

ha landslide occurs in the Loburn and Ashley Mud-

stones, both of which are smectitic, and the Waipara

Greensand. These three Paleocene age units have been

faulted and folded into position, although the details

of the fault relationships are obscured by the slide

(Barrell, 1989; Justice, 1994). The Oligocene age

Amuri Limestone overlies the mudstones and the
Fig. 1. Location map and shaded relief image of the Coringa Landslide st

density of 1 m.
greensand. Barrell (1989) and Justice (1994) both

suggest that the landslide was probably ultimately

caused by hillslope base level lowering during inci-

sion of the Motunau River at the foot of the slope.

Progressive slide movement has deflected the river to

the south and the long profile of the channel shows a

pronounced knickpoint at the landslide.

The local mean annual precipitation is about 700

mm (Moar, 1971). Vegetation on the landslide is

predominantly grass with occasional trees and isolated

areas of dense shrubs. During the Holocene, the study

area was covered with a coastal podocarp forest until
udy area. The image was generated from LIDAR data gridded to a
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about 600 years before present when it was converted

to grass (Molloy et al., 1963). To focus this project on

the development of an objective method to detect and

map landslides from a high-resolution DEM, this

currently unforested test landslide was used. However,

LIDAR has a demonstrated ability to provide topo-

graphic data through some vegetation, including some

forest canopies (e.g. Kraus and Pfeifer, 1998; Baltsa-

vias, 1999). Thus, the techniques developed here are

applicable to forested slides and brief mention is made

later of results from smaller forested landslides just

northwest of the Coringa Landslide complex.

At present the Coringa Landslide is confined

between two well-defined lateral scarps. The eastern

scarp is near vertical and exposes up to 30 m of the

Amuri Limestone (Fig. 2). The western scarp is also

quite distinct but much smaller, and occurs within the

Waipara Greensand. East and northeast of the slide

intact limestone dips 10j to 25j to the east–southeast,
in agreement with the regional structural setting.

The Coringa Landslide has a rich diversity of

surficial features. Airphoto interpretation, field map-

ping and some limited movement monitoring (Barrell,

1989; Justice, 1994) suggest that the majority of the

body of the slide is separated into four kinematic

units, each of which has a unique morphology (Fig.

3). The eastern side of the landslide is an area of very

large slumped blocks (up to 150 m in dimension) of

Amuri Limestone and Ashley Mudstone that have

become incorporated in the slide and moved slowly

south and southwestward from the eastern scarp
Fig. 2. Ground oblique photo of the Coringa Landslide looking north acro

large compression ridge at the toe of the slide. The Amuri Limestone cr

concentrated in the earthflow E2 that lies along the true right margin of t

covered with small compression folds generally oriented east-to-west acro
(Blocky Area in Fig. 3). Immediately southwest of

the Blocky Area are three kinematic units E1, E2 and

U1 (Fig. 3). In the field and on airphotos, E1 and E2

appear to be earthflows that are contained within the

landslide complex. E1 is visually much smoother than

E2, implying less modern activity and some diffusive-

like smoothing of the small-scale topographic rough-

ness of this area. Barrell (1989) included a single

surface monument in E1 in a monitoring program

conducted over a 5-month period. During this time,

the movement of the point in E1 was approximately

50% of that recorded in E2.

Earthflow E2 is currently the most active portion of

the Coringa Landslide. E2 is about 800 m long with a

relatively small modern source area that feeds material

into a narrow track along the right margin of the slide

complex (Fig. 3). In the past, E2 may have had

multiple source areas in the northern portion of the

slide complex. The narrow transportation track is only

about 20 m wide and falls toward the south at an

inclination of about 11%. As material from the source

area converges into the narrow track, the velocity

increases and the surface of the track is quite smooth.

Justice (1994) reports a movement rate of about 2 m/

year over a 24-year period in the track zone. Monitor-

ing during a 12-month period showed a close corre-

lation between rainfall and movement rate in the track

and there was about 1.6 m of total movement over that

time interval (Justice, 1994). After passing through

the track, debris spreads out to a cross-slope width of

about 150 m as it accumulates in a lobe of material
ss the Motunau River. The pond in the foreground is just north of a

ops out in the cliff on the true left scarp. Modern slide activity is

he slide and terminates just north of the pond. The surface of E2 is

ss the earthflow.



Fig. 3. Shaded relief image of the Coringa Landslide and immediate surroundings. The primary kinematic units within the slide are earthflows

E1 and E2, the area of compression U1 and the Blocky area with incorporated limestone blocks.
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that extends downslope to near the toe of the slide.

Over the same 12-month monitoring period, the

average movement in the accumulation zone was

about 0.7 m (Justice, 1994). The debris is in com-

pression (N–S) as it collects on the gentler slope

(about 8%) of the accumulation lobe, which is but-
tressed against a large transverse compression ridge at

the toe of the slide (Fig. 3). In the southeastern corner

of the slide, this ridge has begun to fail into the river

channel in a series of localized rotational failures. The

surface of the active depositional lobe in E2 is covered

with small folds that are generally oriented transverse
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to the slide movement (Fig. 2). The wavelength of the

folds is 10 to 15 m and their amplitude is 0.5 to 1.5 m.

The boundaries of E2 are very distinct with multiple

sets of longitudinal levees on both lateral margins.

These levees are approximately the same size as the

transverse folds and typically are quite straight for

distances up to 100 m. The levees are often separated

along their margins, and occasionally in their interior,

by quite straight tear faults and lateral shears.

Both Barrell (1989) and Justice (1994) argue that

U1 is another inactive earthflow lobe that has been

separated from its source by southwestward move-

ment of the Blocky Area of the slide. The roughness

analysis presented below suggests that U1 is instead a

compression ridge in front of large limestone blocks

that are converging in this area as they approach from

the north and east. A more extensive monitoring

system has recently been established to document

the absolute and relative movement patterns of U1,

E1 and E2. Preliminary monitoring results indicate

that both U1 and E1 are moving one to two orders of

magnitude slower than E2. The monitoring network

has not been established long enough to conclusively

document the directions of movement in U1 and E1.
3. Laser altimetry

LIDAR data were obtained with an average density

of one laser strike per 2.6 m in six flight lines over the

landslide and surrounding area. There was about 20%

overlap between the data swaths and all data were

georeferenced to the New Zealand Map Grid projec-

tion using a global geoid model. There were slight

systematic vertical offsets in the data of about F 15

cm between flight lines as normally occurs in LIDAR

surveys. The source of this inaccuracy is uncertain but

has generally been ascribed to errors in data from the

aircraft GPS and inertial navigation systems or mis-

alignments in the laser optics (Latypov, 2002). For

example, as Latypov (2002) states, with a LIDAR

system that uses a 1 Hz GPS and 20 kHz laser, a

single random GPS error will cause a systematic shift

in 20,000 LIDAR data points.

The systematic errors were reduced using the

following manual procedure. For each separate flight

line, a data grid with constant grid spacing was

constructed from the LIDAR data. The gridded data
were then contoured, again in separate flight lines.

Then the elevations of the data in the flight line most

centered on the landslide were adjusted vertically until

there were minimal errors relative to ground control

profiles and spot elevations. Next, the original data in

the two flight lines adjacent to the central line were

adjusted vertically until they matched the center flight

line. These adjustments were done both by matching

elevation contours in the 20% overlap zones and

matching ground control data. No horizontal adjust-

ments were made. This process was then repeated

with the remaining three flight lines. The original x, y,

z data of the now vertically corrected flight lines were

then combined and gridded (Fig. 1).

Such systematic relative swath errors can be more

easily removed during routine data processing if some

flight lines are flown perpendicular to the main group

of flight swaths and the orthogonal lines of data are

used to remove the relative errors in data from the

other flight lines. Latypov (2002) discusses an auto-

mated procedure for this purpose that minimizes the

offsets of small surfaces in areas of overlap between

adjacent and orthogonal flight lines. Cross lines of

data were not available in this project.

The ground control data used to reduce systematic

errors included one NE–SW profile surveyed by

GPS down the middle of the slide complex and three

NW–SE profiles, surveyed using an EDM, across the

slide and into the smooth terrain adjacent to both

sides of the slide. Data were collected about every 10

m in all four profiles. A stratified random sampling

scheme was used to also evaluate the spot accuracy

of LIDAR data in the smooth terrain outside the

landslide and all of the kinematic units within the

slide. These random individual control points in-

cluded 250 measured with GPS and 150 obtained

with an EDM. A formal accuracy assessment of the

data (raw and processed as just described) is being

conducted using these control data (McKean and

Roering, in preparation).
4. Statistical measures of surface roughness

The surface of most landslides is rougher, on a

local scale of a few meters, than adjacent unfailed

slopes. This characteristic can be exploited to auto-

matically detect and map landslides in landscapes
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depicted by high resolution DEMs. One technique to

quantify local topographic surface roughness is to

measure the variability in slope and aspect in local

patches of the DEM (Fig. 4). In this approach, unit

vectors are constructed perpendicular to each cell in

the DEM. The vectors are defined in three dimen-

sions (using polar coordinates) by their direction

cosines: xi= sinhicos/i, yi = sinhisin/i and zi= coshi,
where hi is the colatitude and /i is the longitude of a

unit orientation vector. Local variability of vector

orientations is then evaluated statistically. Orientation

statistics were calculated in small sampling windows

of a fixed size that were moved over the DEM

produced from laser altimetry data. By calculating,

at each DEM grid cell, the statistical variability of

orientation of the unit vectors of all cells in the

sampling window, the elevation matrix was replaced

with a map of local topographic roughness. Both

circular and square sampling windows were eval-

uated with no apparent difference in results. The

effect of the size of sampling window was also tested

by varying the window width between 3 and 11 cells

and varying the grid cell dimensions between 0.5 and

5 m.
Fig. 4. Topographic surface roughness in a DEM as revealed by unit

direction vectors. In smooth topography (top drawing) the local

vectors have similar orientations. In rough terrain, as commonly

occurs in bedrock landslides, the local vector orientations are highly

variable. Modified from Hobson (1972).
4.1. Direction cosine eigenvalue ratios

A variety of statistical measures were investigated

to evaluate the local variability of unit vector orienta-

tions. The most generally useful of these is the method

of eigenvalue ratios. If (x1, y1, z1). . .(xn, yn, zn) is a

collection of n unit vectors (perpendicular to n topo-

graphic pixels), then the orientation matrix, T, of the

vectors may be formed from the sums of cross

products of the direction cosines of the vectors (Fara

and Scheiddegger, 1963; Scheidegger, 1965; Watson,

1966; Fisher et al.,1987):

T ¼

X
x2i

X
xiyi

X
xizi

X
yixi

X
y2i

X
yizi

X
zixi

X
ziyi

X
z2i

0
BBBBBB@

1
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: ð1Þ

The eigenvalues (k1, k2, k3) of the matrix describe

the amount and nature of clustering of vector orienta-

tions (Woodcock, 1977; Woodcock and Naylor,

1983). If the three eigenvalues are normalized with

respect to n, then Si= ki/n and S1 + S2 + S3 = 1. Because
there are only two independently varying Si, the ratio

of S2/S3 can be plotted against S1/S2 to describe the

pattern of vector orientations, ranging from clusters to

girdles (Fig. 5). The logarithms of the ratios of

normalized eigenvalues are calculated and plotted

because the ratio values are often not normally dis-

tributed. When S1>S2iS3, the orientation data are

clustered and alternatively if the data form a girdle,

S1iS2>S3. The ratio ln(S1/S3) can also be plotted in

the same graph to describe the strength of any

orientation without specifying the orientation pattern.

If the data have a perfectly uniform distribution, then

S1 = S2 = S3 = 1/3 and the data would plot at the origin

of the graph. Samples with widely dispersed vector

orientations may approach this condition.

Fig. 6 shows the eigenvalue ratio of ln(S1/S2)

calculated in a three cells-by-three cells sampling

window on a DEM with a grid spacing of 3 m. As

discussed, this ratio describes the tendency for the

vector data to be clustered. Fig. 6 illustrates that over a

length scale of 9 m the local orientations of topo-

graphic pixels inside the Coringa Landslide are much

less clustered than those in the surrounding terrain



Fig. 5. Normalized eigenvalue ratios of directional data. The ratio

ln(S1/S2) predicts the degree of data clustering and ln(S2/S3)

describes the tendency of data to plot in a girdle pattern. The ratio

ln(S1/S3) expresses how strongly the orientation vectors are grouped

without specifying any pattern of assemblage. Modified from

Woodcock (1977).
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outside the slide. Using this statistic, essentially the

entire landslide is classified as ‘‘rough’’ relative to the

surrounding terrain, except the surface of some of the

large limestone blocks floating in the eastern portion

of the slide. The boundary of the slide is sharply

defined by the topographic roughness along the head

and lateral scarps.

Another slope failure, the Quarry Landslide on the

south side of the Motunau River, has been correctly

identified on the basis of its roughness (Fig. 6). Rough

topography has also been mapped adjacent to three

tributary drainages in the northwestern portion of the

study area. The roughness detected along the eastern-

most tributary is the site of an earthflow, again in the

greensands, that is a smaller version of the Coringa

Landslide. The flow style of movement of this land-

slide is evident from the elongated pattern of rough-

ness elements that are oriented down the local slope.

Smaller dip slope failures have also been correctly

identified on the northwest sides of the middle and

western tributaries. These slides are covered with an

approximately 20-year-old pine plantation forest. This

demonstrates the ability of the LIDAR to produce
high resolution DEMs beneath some forest canopies,

and thus the usefulness of this technique on forested

hillslopes where conventional landslide inventory

mapping from airphotos is very difficult.

Other rough landscape elements in Fig. 6 include

roads, channels and prominent bedrock outcrops. All

of these are thin linear elements that would not be

confused with a landslide. However, stream terraces in

the southwest and a pond at the northern end of the

study area are also mapped as rough. In fact, these two

areas are unique in that they are mapped as nearly

completely rough over a 9-m length scale. They

appear rough in our analysis because on very flat

terrain, even small topographic variations can cause

local changes in pixel aspect of up to 180j between

neighboring pixels. Therefore, any statistic that

includes pixel aspect direction, as do the eigenvalue

ratios, will predict high roughness on flat terrain. As

discussed later, this confusion can be avoided by

instead evaluating variability only in the third direc-

tion cosine, which measures local variations in just

topographic steepness.

The separability of the Coringa Landslide and the

smaller earthflow to the north from the rest of the

landscape north of the Motunau River using ln(S1/S2)

is described statistically in Fig. 7. The river terraces

and the pond have been excluded in this analysis. The

histograms and box plots both illustrate the unique-

ness of the earthflows. There are few very smooth

areas within the slides where ln(S1/S2) exceeds a value

of about 2.5. In contrast, much more of the landslide

terrain is extremely rough, with ln(S1/S2) less than 1.0,

relative to the surrounding topography.

The laser data can also be explored to investigate

the morphologic definition of the kinematic units

within a large slide. Fig. 8 shows the ln(S1/S2)

calculated for the domains U1, E1 and E2 and a

portion of the Blocky unit in the mid to southern

portion of the Coringa Landslide. In this image the

laser data have been gridded to a spacing of 1 m and

then linearly interpolated to a 0.5-m spacing to

enhance small and subtle topographic features. This

grid spacing is less than would normally be used

because the average original laser data spacing is

2.6 m. However, the subset covers only the area of

the most regular topography within the slide and

careful visual examination of imagery derived from

the detailed grid data did not show any obvious



Fig. 6. Eigenvalue ratio ln(S1/S2) calculated in a three cells-by-three cells window on a DEM with a grid spacing of 3 m. Higher eigenvalue

ratios indicate smoother topography. The very high values at the pond in the north and the terraces in the southwestern corner are caused by

large pixel-to-pixel aspect variations on flat surfaces. The geographic coordinates are in the New Zealand Map Grid system.
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Fig. 7. Histograms and box plots of ln(S1/S2) calculated in a three

cells-by-three cells window on a DEM with a grid spacing of 3 m.

The top, middle and bottom of each box define the 75, 50 and 25

percentiles, respectively. The rougher topography inside the Coringa

Landslide and a smaller unnamed earthflow is distinct from the

smoother unfailed portions of the landscape.
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gridding artifacts. Experimentation with coarser grids

indicated that this amount of detail is necessary to

accurately define the small compression folds in E1

and E2, although they can still be detected and

approximately mapped using a grid spacing of 1 m.

Within the slide complex, kinematic unit U1 has a

median value of ln(S1/S2) of 2.16 and standard devia-

tion (1r) of 0.74, so this component of the slide is

generally quite smooth but with high variability. For

comparison, consistently the smoothest terrain in Fig.

8 is the area immediately west of the landslide com-

plex where each DEM pixel is quite similar to its local

neighbors. Here the median value of ln(S1/S2) is 2.66

with a standard deviation of 0.67. The earthflow E1 is

considerably rougher with a median eigenvalue ratio

of 1.86 and 1r of 0.74 and earthflow E2 is still rougher

with a median of 1.76 and 1r of 0.75. The portion of

the Blocky unit that is just east of U1 in Fig. 8 has a

roughness comparable to U1 (median eigenvalue ratio

2.17 with 1r of 0.77). The explanation is that this area

of the Blocky unit is composed of very large limestone
Fig. 8. Eigenvalue ratio ln(S1/S2) calculated in a three cells-by-three cells w

southwestern portion of the Coringa Landslide. The DEM was produced by

the grid to a spacing of 0.5 m. Higher eigenvalue ratios indicate smoothe

crests of small compression folds and the troughs between fold crests. Th

2512620E is a pond on the landslide. The white line in the center of the ima

shown in Fig. 11a). An intermittently visible farm track traverses the slide f

coordinates are in the New Zealand Map Grid system.
blocks whose sides are quite smooth, so the overall

surface roughness is low. In other parts of the Blocky

unit, particularly near the head and left lateral scarps

where limestone blocks have fallen from the scarps,

the rock has disintegrated into pieces with dimensions

on the order of meters and the local surface roughness

is extremely high. In these areas, the existing LIDAR

data could not be processed to a grid spacing of 0.5 m

without large errors.

In addition to changes in the overall roughness

between units in the landslide complex, the spatial

patterns or texture of roughness also vary. The interior

of E2 is dominated by the many small folds that are

generally oriented NW–SE, approximately perpen-

dicular to the direction of slide movement. The

eigenvalue ratio ln(S1/S2), as colored in Fig. 8, does

not distinguish between convex upward or concave

upward topographic forms; i.e. both fold crests and

the troughs between adjacent folds are evaluated as

extremely rough with low values of ln(S1/S2) (V 0.7).

The true left and right margins of E2 are marked by

multiple generations of longitudinal levees whose

positions can be mapped to within 1 to 2 m in Fig.

8. The toe of unit E2 is sharply defined by a curved

line of topographic roughness that passes just north of

the pond on the landslide (see Figs. 2 and 3 for the

location of the pond).

The pattern of roughness is much more disorgan-

ized in E1 and the dominant NW–SE trend of folding

in E2 is missing. The folds in the interior of E1 are

also shorter and less continuous. In Fig. 8, the left

margin of E1 is slightly less distinct than is the right

margin, which borders unit E2. The few roughness

elements in U1 appear to trend predominately N–S.

This could be explained by compression of this area

from the westward movement of the Blocky area of

the slide to the east of U1. The eastern contact

between U1 and the Blocky area is a quite distinct

thin arcuate pattern of high roughness where the

Blocky debris appears to be overriding the material

in U1 (Figs. 3 and 8).
indow on a DEM with a grid spacing of 0.5 m. The image is of the

gridding the laser data with a spacing of 1 m and then interpolating

r topography. The thin linear elements throughout the image are the

e extremely rough area centered on the coordinates 5797070N and

ge is the location of a profile through four compression folds (profile

rom 5797215N, 2512550E to 5797060N, 2512800E. The geographic
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4.2. Other statistics

Several other statistics were also tested, although

no roughness maps derived from these are presented.

A general discussion of the results from these statis-

tics is included later.

A simple one-dimensional measure of roughness is

the local variability of the steepness, or dip, of each

digital terrain pixel. This was evaluated using the

standard deviation of the gradient of unit vectors in

the sampling window. The gradient is expressed as the

third direction cosine: zi = coshi, where hi is the vector
dip angle.

Circular statistics can be used to define roughness

as two-dimensional variations in topographic aspect.

Three related circular statistical measures were eval-

uated. The magnitude of the mean resultant sum of

orientation unit vectors in a local area is calculated as:

R ¼ R

n
: ð2Þ

Here R is the resultant length or the sum of vectors

that are normal to n pixels in a sampling window

(Fisher, 1993):

R ¼
Xn
i¼1

coshi

 !2
þ
Xn
i¼1

sinhi

 !20
@

1
A
1=2

;

where coshi and sinhi are the components of the pixel

aspect direction. R lies in the range 0 <R < 1, where

R = 1 defines a condition in which all vector orienta-

tions are coincident. R = 0 describes greater variability

but does not necessarily indicate a uniform distribu-

tion of vector orientations. In fact, clustered and

poorly distributed orientation vectors can give R = 0.

Analogous to the standard deviation for linear data

is the circular standard deviation that is derived from

the mean resultant as (Fisher, 1993):

m ¼ ð�2logðRÞÞ1=2: ð3Þ
Like its linear counterpart, the circular standard devi-

ation varies from 0 to infinity.

The circular dispersion is another two-dimensional

measure of data spread that is calculated from the first

and second trigonometric moments as (Fisher, 1993):

d̂ ¼ ð1� q̂2Þ
ð2R̄2Þ

: ð4Þ
Here q̂2 is the second trigonometric moment:

q̂2 ¼
1

n

Xn
i¼1

cos2hi

 !2
þ 1

n

Xn
i¼1

sin2hi

 !20
@

1
A
1=2

:

The circular dispersion is sometimes used to establish

confidence intervals about mean and median values for

large samples with n>25 (Fisher, 1993). The circular

standard error is related to the circular dispersion by:

r̂2 ¼ d̂
n
:

The mean resultant length of orientation vectors

can also be computed in three dimensions (Fisher et

al., 1987):

R ¼
X

xi


 �2
þ
X

yi


 �2
þ
X

zi


 �2� 
1=2

: ð5Þ

Here the meaning of R is the same as for two-dimen-

sional circular statistics.

All statistical measures and eigenvalue ratios that

incorporate pixel aspect (the circular standard devia-

tion and dispersion, two and three-dimensional resul-

tants, and eigenvalue ratios ln(S1/S3) and ln(S2/S3)),

produce results similar to Fig. 8. These statistics are

superior in this relatively gentle portion of the land-

slide because slope angles are never high and the

greatest manifestation of topographic roughness is a

local change in aspect. In contrast, the one-dimen-

sional standard deviation of the third direction cosine

performs poorly in the area show in Fig. 8 because of

the lack of steep elements in this gentle terrain.

However, the third direction cosine defines more

clearly the steep edges of the lateral scarps of the

landslide and the edges of blocks in the Blocky unit

where the local slopes are up to 90j.
5. Laplacian operator

An alternative measure that can define topographic

features of the kind seen on the surface of bedrock

landslides is the Laplacian operator that evaluates the

two-dimensional topographic curvature:

j2z ¼ B
2z

Bx2
þ B

2z

By2
: ð6Þ



Fig. 9. Laplacian operator calculated on aDEMwith a grid spacing of 1m. The area is the same shown in Fig. 7. The Laplacianwas calculated using

a five-point central difference algorithm. Warm colors map convex upward morphology. The white line in the center of unit E2 is the location of a

profile through four compression folds (profile shown in Fig. 11b). The geographic coordinates are in the New Zealand Map Grid system.
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The Laplacian operator was calculated using a stand-

ard five-point central difference formula (e.g. Zeven-

bergen and Thorne, 1987):

j2zðx; yÞ ¼ zE � 2zþ zW

Dx2

� �
þ zN � 2zþ zS

Dy2

� �
:

The Laplacian operator was tested on DEMs with a

variety of grid spacings and an interval of 1 m

provided good spatial resolution while still correctly

defining the topographic patterns inside the slide (Fig.

9). This image covers the same portion of the Coringa

Landslide shown in Fig. 8. The warm colors represent

convex upward morphology and the cool colors

correspond to topographic depressions.

The Laplacian operator readily distinguishes the

kinematic units U1, E1 and E2 and the boundaries

between these areas (Fig. 9). The more random pattern

of surface morphology in E1 relative to E2 is perhaps

better illustrated in the Laplacian image than in Fig. 8.

The predominately N–S trend of the topography in

U1 is also visible in Fig. 9. The large compression

ridge at the toe of the landslide complex along the

north bank of the Motunau River is also more clearly

defined in Fig. 9 than in Fig. 8.

While the Laplacian operator did map many of the

interior features of the slide complex correctly, in

general it did not differentiate the entire complex

from the surrounding terrain as cleanly as did the

statistics. There was more confusion with both fine

scale topography caused by overland flow and rilling

and broad undulations on slopes where the dominant

modern surface process appears to be soil creep.

Examples of the latter are visible in Fig. 9 in the area

west of the landslide.
6. Spectral analysis

Two-dimensional spectral analyses can be used to

quantify the scale-dependence of topographic rough-

ness (Turcotte, 1997). To explore the efficacy of this

technique, we calculated the power spectra for a

100� 100 m patch of topographic data (with a 1 m

grid spacing) for three areas that experienced different

histories of landsliding. The 1-m grid spacing assured

that topographic features with a length scale of a few

meters, which are common within the slide, would be
included in the analysis. Test areas of 100� 100 m

are the minimum size necessary to still include a

good sample of these landslide features. We analyzed

a patch in the center of unit E2 characterized by

active movement that causes relatively regular fold-

ing. The second area is in the central portion of E1

where there appears to be less active movement and

less pronounced folding. Finally, a patch of smooth,

unfailed terrain just northwest of the main Coringa

Landslide was analyzed (located at 2512900E,

5798000N in Fig. 6).

In order to distinguish local roughness from broad

topographic trends in each of the three areas, we first

subtracted a coarsely smoothed version of the top-

ography from the local elevation data, producing a

rough surface with mean elevation equal to zero. The

initial step in the smoothing procedure was the defi-

nition of points at 2-m intervals within the test

patches. Then a second order polynomial was fit to

all data within 10 m of each point and the elevation

values of the points were established locally according

to these polynomial fits. Finally these smoothed data

were subtracted from the original gridded laser data to

produce a residual surface. Such residual surfaces

reveal the form of local deformation features or their

absence. As a result, the spectral signature that arises

from our analysis is purely associated with local

surface features and not general topographic trends.

We calculated the two-dimensional power spectra for

each residual surface using a radial-based coordinate

scheme (Turcotte, 1997). Resulting power spectra

illustrate how spectral power (which can be thought

of as roughness) varies with wavelength such that, for

example, several folds with a highly characteristic

length scale within a landslide should produce a

distinct spectral peak (Fig. 10).

Coarse-scale topographic data have been shown to

exhibit scale invariance over many orders of magni-

tude, so that the power spectra vary with wavelength

according to a power-law equation (Turcotte, 1997).

In contrast, our analyses of fine resolution data

indicate systematic patterns that deviate from power-

law behavior (Fig. 10). For the smooth, unfailed area

(labeled S), spectral power increases monotonically

with wavelength and no dominant length scale is

apparent. In contrast, both earthflow areas E1 and

E2 exhibit variable spectral peaks for wavelengths

between 9 and 20 m. The distinct peak shown for E2



Fig. 10. Power spectra for three 100� 100 m sub-areas of the study

site (see procedure description in text). Spectral power corresponds

to topographic roughness associated with a particular wavelength.

No dominant wavelength (or roughness scale) is observed for

smooth, unfailed terrain, curve S. The unfailed terrain data are from

location 2512900E, 5798000N in Fig. 6. Spectral data from the

center of the most active earthflow, curve E2, have a distinct

spectral peak with a dominant wavelength of 20 m. The less active

and more degraded earthflow, E1, has a broader and lower spectral

peak with wavelengths of 9 to 14 m.
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suggests the presence of relatively regular spacing of

roughness elements, corresponding to the pattern of

folding previously discussed. The broader peak asso-

ciated with E1 indicates a series of similar scale

features but without a single characteristic wave-

length. One interpretation of Fig. 10 is that the lower

and broader peak spectral density in E1 results from

smoothing over time of the surface of this less active

earthflow. However, we cannot rule out the possibility

that the surface of E1 was never as regularly rough as

the modern surface of E2.
7. Discussion

7.1. Identifying and mapping the perimeter of bedrock

landslides

The results of this pilot study suggest that all of the

tested statistics can be used successfully to detect and
generally map the area of bedrock landslides and that

the exact details of the statistical measure of rough-

ness are less critical. It is more important to have

DEMs with appropriate grid resolution to be able to

evaluate topographic roughness over a suitable length

scale. The Coringa Landslide could not be correctly

identified and mapped using a statistical analysis of

roughness depicted in a DEM with a standard 25 or 30

m grid resolution.

Having said that, it also obvious that each statistic

is sensitive to different topographic roughness ele-

ments and thus may work better in some geologic

conditions than others. The one-dimensional measure

of the local variability of slope gradient fluctuates

most along the borders of abrupt topographic change

(positions of strong positive or negative slope curva-

ture). It is predicted then that this statistic will be more

effective on slides in ‘‘brittle’’ materials that deform

with sharp edges along shear and tensile failure

surfaces. As most shear failure is commonly concen-

trated on the margins of slides, the one-dimensional

statistic will best map the lateral and head scarps of a

slide. This metric may be less definitive where mass

movement has caused broader gradual changes in

topography or roughness has become degraded after

movement slowed.

The local changes in topographic aspect mapped

by the two-dimensional circular statistics are the same

regardless of the degree of change in slope steepness.

Therefore, the circular statistics work equally well in

very rough to relatively smooth landslides. However,

as mentioned, confusion occurs when the terrain

contains flat landscape elements that circular statistics

interpret as extremely rough. The three-dimensional

measures (eigenvalue ratios or three-dimensional

resultant) are the best compromise that is sensitive

to changes in both slope and aspect. Of these, the

eigenvalue ratios may provide more information by

indicating whether the local roughness is random,

clustered in three-dimensional orientation or girdled

(representing some repeating topographic form). More

investigation is needed on other slides to determine

whether such information is generally useful and what

interpretations it supports.

Topographic roughness occurs at all spatial scales,

and at any scale, roughness may vary according to the

causal geomorphic processes. However, our practical

ability to measure roughness in landscapes is limited
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to a minimum length scale on the order of meters. A

critical and unresolved question is, above this prac-

tical minimum limit, what is the appropriate length

over which to measure roughness. In this project, the

specific issue is the appropriate density of raw LIDAR

elevation data necessary to produce DEMs that can be

used to detect and map both the perimeter and interior

features of bedrock landslides and distinguish the

slides from surrounding terrain. In addition, in this

study local roughness was often measured in sampling

windows, so the evaluated length scale was a function

of both grid resolution and window size.

There is little published guidance regarding the

best DEM resolution for landslide investigations and

we know of none applicable to the style of roughness

analysis attempted in this investigation. However,

there is a vast literature of studies that document the

spacing, scale, and spatial patterns of surface defor-

mations from landslides. From this accumulated

knowledge and our own and previous studies of the

Coringa Landslide, the original LIDAR data density

was chosen to support a DEM with a minimum grid

spacing of about 1 m. This limit was set by the desire

to detect and map features as small as the compression

folds in the interior earthflow E2 and to do so in

sampling windows with a minimum width of three

pixels. The received data density over much of the

landslide complex was slightly poorer than requested.

Nevertheless, the data still allowed construction of a

DEM with resolution sufficient to detect and map the

compression folds (although, using the statistical

methods, a grid spacing of 0.5 m was necessary for

the best mapping result). By trial-and-error, a variety

of grid sizes was produced from the LIDAR data and

used with the various roughness measures previously

discussed. While this worked in this pilot study, it is

clearly not a satisfactory approach for general use over

large areas.

In this test area a slightly coarser grid resolution (3

to 4 m) is superior for detecting and mapping the

general forms of bedrock landslides using the eigen-

value ratio ln(S1/S2) and the other statistical meas-

ures. At this resolution, confusion of the landslides

with surrounding unfailed hillslopes appears to be

minimized. It is possible to consistently distinguish

local topographic roughness caused by mass failures

from that due to other processes such as overland flow

and surface erosion. For example, a hillslope just
northeast of the northern end of the Evesham Fault

is covered with small gullies and rills, producing

terrain that appears quite rough in the shaded relief

image (Fig. 1). However, the eigenvalue ratio statistic

computed over a 9-m length scale has not confused

them with the earthflows or even the smaller dip slope

landslides along the forested tributaries in the north-

western portion of the study area. The gullies are

located at coordinates 2513400E, 5798600N in Fig. 6

and the median eigenvalue ratio in this area of fluvial

erosion is 1.97 with a standard deviation of 0.59.

Inspection of the pattern of eigenvalue ratio values

shows that they are at a minimum of about 1.25 on the

tops of interfluves and along channels where there are

opposing slopes. The majority of the surface of this

area is the smooth hillslopes between drainage divides

and channels, and on these slopes the ratio rises

quickly to about 2.75. In contrast, the median eigen-

value ratio for the entire Coringa Landslide is 1.13

with a standard deviation of 0.63.

When the grid resolution was dropped to 1 m,

confusion increased using the eigenvalue ratio ln(S1/

S2) as very local roughness on the scale of 3 m was

identified in many areas outside the landslide. Con-

versely, if the resolution was coarsened to 7 m and the

roughness was evaluated in a 21-m-wide sample

window, the perimeter of the landslide complex could

not be very accurately mapped.

The trial-and-error approach to selection of grid

resolution and sampling window size for the statistical

and Laplacian analyses is cumbersome and somewhat

subjective, although generally successful in this proj-

ect. The spectral analysis is a more efficient technique

that objectively explores length scale dependence and

defines any dominant wavelengths of roughness.

Work is continuing to explore the application of

spectral analyses to landslide detection and mapping.

7.2. Interpreting landslide kinematics and mechanics

Most large bedrock slide complexes, like the

Coringa Landslide, are composed of several internal

compartments of material that are moving semi-inde-

pendently of neighboring compartments. Identifica-

tion and mapping of these kinematic units is often key

to understanding the mechanics and behavior of the

overall landslide and its likely response to changes in

land use or environmental conditions.



Fig. 11. Details of fold geometry and surface roughness along the

profile location shown in Figs. 8 and 9. (a) shows the eigenvalue

ratio ln(S1/S2) and (b) the Laplacian operator. The dotted lines

indicate the surface topography of four small folds with a

wavelength of 10–13 m in the earthflow E2. The eigenvalue ratio

declines over the rough topography caused by either fold crests or

troughs and increases over the smooth slopes on the sides of the

folds. The Laplacian values are low over the convex fold crests.
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At the Coringa slide, the Blocky unit is easily

identified and mapped, as noted previously, because

of the change in surface roughness caused by the

incorporation of a different material, the blocks of

Amuri Limestone. Variations in roughness among

units U1, E1 and E2, however, appear to be the result

of slide mechanics and the degree of recent slide

activity within each of these units, as the materials

in all three are similar. The boundaries between U1,

E1 and E2 are distinct interfaces where levees and

small folds have developed. Similar topographic fea-

tures are common in earthflow landslides but the

mechanics of their formation are little studied and

poorly understood (e.g. see Fleming and Johnson,

1989; Baum et al., 1993 for discussions of the

possible origins of such levees).

The interior of earthflow E2 appears to contain

several separate packages or groups of folds that are

mapped by both the eigenvalue ratio and Laplacian

operator (Figs. 8 and 9). Historical airphotos suggest

that these may be time sequential and represent

periods when renewed activity in the source area of

E2 caused material to surge through the narrow trans-

portation track visible in Fig. 3 and then slow down in

the depositional zone in the lower half of E2. As the

packages of material accumulated in the gentler dep-

ositional zone, they went into compression and began

to fold. The oldest of these packages is between

coordinates 5797125N and 5797200N (Figs. 8 and

9). This material is distinguished by the orientation of

the folds being more variable with several trending

W–E as well as NW–SE.

The best-preserved sequence of transverse folds in

E2 is the group in the packet of slide debris between

5797200N and 5797300N in E2. In this area, the

trend of folding is much more consistently NW–SE.

The location of a profile perpendicular to the axes of

four folds in this region is shown in Figs. 8 and 9 and

the profile is plotted in Fig. 11a and b. These folds are

extremely regular with a wavelength of about 11 m

and amplitude of about 0.5 m. Fig. 11a also illustrates

the performance of the eigenvalue ratio ln(S1/S2). The

ratio declines over both fold crests and troughs and

rises on the intervening smooth slopes. Thus in Fig. 8,

pairs of lines of high roughness correspond to an

adjacent fold crest and trough. The performance of

the Laplacian operator over the same four folds in

area E2 is shown in Fig. 11b. The Laplacian values
accurately map and differentiate both the fold crests

and troughs.

Fig. 11 also demonstrates the importance of the

length scale over which roughness is evaluated. The

LIDAR data and detailed ground surveying show that

the wavelength of these folds is a nearly constant 11

m. The width (measured horizontally) of the convex-

ity at each crest and the concavity at each trough is

about 3.5 to 4 m. The horizontal length of the smooth

slopes between fold crests and troughs is typically 2 to

3 m. The statistical measures used in this study must

map all three of these topographic components to be

able to accurately define the folds. Experimentation

revealed that suitable accuracy (evaluated visually)

was achieved when the length scale of evaluated

roughness was about one-half the horizontal dimen-
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sion of these components. Thus, with a minimum

sample window size of three cells-by-three cells, the

grid spacing had to be 0.5 m. The Laplacian operator

maps convexities or concavities and does not need to

distinguish the smooth slopes between a fold crest and

trough. Therefore, the grid size was successfully

increased to 1 m for the Laplacian analysis.

Between 5797300N and 5797400N in E2 (Figs. 8

and 9) is a region with diverse folding orientations.

This area has a very distinct southern boundary along

a broad compression ridge that trends NW–SE and

then turns sharply SW–NE. The region between

5797400N and 5797550N in E2 is a quite complicated

zone where material exiting the narrow transportation

track makes an abrupt approximately 70j left turn

followed by an equally abrupt 60j right turn (see also

Fig. 3). This transition occurs over a downslope

distance of about 50 m, during which the slope of

the moving debris declines from 11% to about 8% as

noted previously. Such complex movement produces

a wide array of fold trends. Several other lobes of

debris that are oriented along the downslope axis of

E2 and located on the true right margin of E2 are also

particularly prominent. On historical airphotos, these

lobes appear to be locked in place and perhaps

represent an earlier period when transport was straight

from the narrow track into the depositional area

without the modern left and right turns.

Mechanistic interpretations of the style and degree

of surface roughness of landslides are rare. Work has

begun at the Coringa slide to investigate the mechan-

ics of the nearly constant wavelength and amplitude

folding visible in earthflow E2, and to a lesser extent

E1. A trench was excavated through the four folds

along the profile shown in Fig. 11. All of the folds

appear to be thrust-propagated structures with multi-

ple generations of thrust faults visible in each fold

(Bird, McKean and Pettinga, in preparation). Model-

ling is underway to explore the relationships between

fold geometry, depth to a basal shear surface, and

material properties. The goal of the research is to

determine if in this case detailed maps of surface

topography can be interpreted to approximately pre-

dict the material properties, mechanics, and depth of

the earthflows in the landslide complex.

It is tempting to predict the future behavior of a

slide like Coringa based on the spatial patterns of

surface roughness. Indeed, one might argue that all
other things being approximately constant, the most

recently active zones within a single slide, or the most

recently active slide within a group of slides, will be

topographically rougher. In many earth materials,

mechanical failure causes deformations with relatively

sharp boundaries. When failure ceases or slows, the

boundaries of deformation are smoothed over time by

a variety of processes. Surface roughness can certainly

be quantified using measures like those presented here

and thus maps produced of relative activity over some

recent past period. However, it is not appropriate to

conclude that a smoother compartment within a single

slide, or a smoother slide among several failures in

similar geologic conditions, is ‘‘safer’’. An estimate of

safety is in fact a prediction of future behavior, while

surface roughness is a reflection of past activity. Such

predictions of behavior should only be based on

sound understanding of landslide mechanics. What

we propose here is that in some cases, measuring and

mapping surface roughness in high resolution DEMs

can improve our understanding of landslide mechan-

ics and contribute to better predictions of the likely

response of a bedrock landslide to changes in its

physical environment.

7.3. Other new technologies

Both airborne SAR imagery and radar interferom-

etry have also shown great potential for landslide

studies, particularly for defining zones of deformation

within a slide (e.g. Singhroy, 1995; Fruneau et al.,

1996; Singhroy et al., 1998; Kimura and Yamaguchi,

2000). Multi-pass radar interferograms can map small

time-sequential relative topographic displacements on

the order of 1 cm (Fruneau et al., 1996). However,

calibration with field-monitored data is normally

needed to define absolute movements (Fruneau et

al., 1996; Kimura and Yamaguchi, 2000). Interferom-

etry can also be complicated by changes over time in

atmospheric water vapor (Kimura and Yamaguchi,

2000) or the vegetation canopy (Fruneau et al.,

1996). Loss of radar coherence can also occur if there

has been excessive landslide deformation between

successive data acquisitions (Carnec et al., 1996). It

is unknown how well landslide displacements can be

evaluated in multi-temporal DEMs produced from

LIDAR data, and such work is planned at the Coringa

Landslide test site.
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Radar shadowing can be an issue in steep, rugged

terrain and the combination of slope aspect and steep-

ness and radar acquisition angle can strongly affect the

resolution of radar data (e.g. Carnec et al., 1996).

Airborne LIDAR data are gathered over a narrow

vertical swath angle (usually less than 20j off nadir)

and normally do not suffer from topographic shadow-

ing. LIDAR data are also much easier to process than

SAR information and the data can be obtained with a

density on the order of 1 m and vertical accuracy on the

order of 10 cm. LIDAR derived DEMs can have a grid

resolution approaching 1 m and a vertical accuracy of

about 20–30 cm depending on the instrumentation,

operator skill, and topographic roughness. Singhroy

et al. (1988) indicates that typical DEMs produced

by single-pass airborne interferometry will have a grid

resolution of 5 to 10 m with an accuracy of 1 to 5 m

RMS and a height bias of usually less than 10 m.
8. Conclusions

Previous landslide field investigations have typi-

cally been either very detailed geotechnical studies of

specific sites or more generalized, often subjective,

mapping-based evaluations of slides over larger areas.

New technologies now allow us to digitally map

landforms, including landslides, over large areas with

unprecedented resolution and accuracy. We have

explored techniques to objectively derive information

about the spatial extent, internal kinematics and rela-

tive activity of bedrock landslides from high resolu-

tion DEMs constructed from LIDAR data.

Our initial results show that local surface rough-

ness can be accurately measured from high resolution

DEMs. Contrasts in roughness can be interpreted to

identify bedrock landslides, map their spatial extent

and patterns of occurrence in a landscape and inves-

tigate landslide internal kinematics. Statistics can

readily be used to quantify roughness over specified

length scales. On the relatively gentle terrain of earth-

flows, such as those within the Coringa Landslide

complex, roughness measured over a few meters is

most obviously manifested by a change in aspect and

all tested statistics that incorporated measures of

aspect performed well. None of the statistical meas-

ures, as defined in this project, can differentiate

between convex and concave landforms. The spher-
ical statistics could easily be adapted to do so by

identifying whether the unit vectors were converging

or diverging toward the center of the sampling win-

dow to define a concavity or convexity, respectively.

Alternatively, the Laplacian operator can be used to

map convexities and concavities. Using statistical

measures of roughness, the grid spacing of a DEM

should be about one-half the minimum surface dimen-

sion of a landform to allow detection and mapping of

the feature.

There are clearly different scales and degrees of

roughness within the Coringa Landslide that reflect

changes in material properties, movement mechanics

and level of activity. Characteristic patterns of defor-

mation were readily revealed using two-dimensional

spectral analyses, which may facilitate investigations

linking landslide mechanics and surface morphology.

Broad areas of compression contain small surface

folds, while a constricted zone of rapid material

transport is much smoother. The boundaries between

kinematic units are localized sites of intensive dif-

ferential movement that causes rough topography.

Further research is needed to investigate more quanti-

tative interpretations of the causes of roughness pat-

terns. Work is underway to study the mechanics of the

extremely regular pattern of folding in unit E2 of the

Coringa Landslide. A monitoring system is also in

place to investigate the evolution of the folds and the

relative and absolute motions of the four kinematic

units in the slide complex.

Careful monitoring is normally required to accu-

rately establish the activity of slides. However, this is

quite expensive and requires sufficient time for move-

ment rates and patterns to be revealed. The expendi-

ture of such time and resources is only warranted on

particular critical slope failures. Traditionally the

relative activity of bedrock slides in a landscape is

established by subjective observations of the ‘‘fresh-

ness’’ of surface features. The simple theory being

that when active movement slows, surface processes

begin to smooth the sharp edges of the landslide

topography. However, the subjective smoothness cri-

teria and their application vary among investigators.

The techniques presented here allow an automated,

rapid, objective measurement of the roughness of

landslide topography. Further research is needed to

investigate how direct the link is between recency and

amount of movement, which together define the state
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of recent activity, and surface roughness in the large

variety of bedrock landslides.
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