
A MODIFIED FORCE-RESTORE APPROACH TO MODELING SNOW-SURFACE HEAT FLUXES 

 
Charles H. Luce1 and David G. Tarboton2 

ABSTRACT 

Accurate modeling of the energy balance of a snowpack requires good estimates of the snow surface 
temperature.  The snow surface temperature allows a balance between atmospheric heat fluxes and the conductive 
flux into the snowpack.  While the dependency of atmospheric fluxes on surface temperature is reasonably well 
understood and parameterized, conduction of heat from the snow surface into the snowpack depends on a complex 
history of previous heat exchanges and surface temperatures and can be somewhat more difficult to model.  A 
variety of schemes ranging from multiplayer finite difference models to simple approximations based on air 
temperature exist to estimate snow surface temperatures and conductive fluxes.  Previous research has suggested 
that single layer models are incapable of dealing with the complexity of the heat flow calculations within a 
snowpack.  In this paper, we explore the idea of describing heat fluxes into the snowpack based on knowledge of 
the diurnal forcing.  We examine observations of snow temperatures within a snowpack in detail and compare heat 
fluxes estimated from a linear equilibrium approach, a force restore approach, and a modification of the force-
restore approach that estimates the effects of lower frequency temperature variations on the surface heat flux.  The 
modified force restore model shows the best agreement with observations. 

INTRODUCTION 

The exchange of heat between the snowpack and the atmosphere is largely governed by the snow surface 
temperature and the driving climatic variables.  Consequently, an accurate estimate of the snow surface temperature 
is important in calculating the snowpack energy balance.  The net atmospheric exchange has a nearly linear 
relationship with the surface temperature that is fairly well defined. Conduction of heat from the snow surface into 
the snowpack, however, depends on a complex history of previous heat exchanges and surface temperatures.   

If the heat flux into the snowpack were steady state and snowpack thermal properties homogeneous, the 
temperature profile would be linear and the temperature gradient constant with depth.  Because snow surface 
heating varies dramatically over the course of a day and over longer time periods, the temperature profile with 
depth is decidedly nonlinear, and much of the pattern is caused by temporal fluctuations of heating.  To calculate 
heat conduction into the snowpack based on the complex history of surface temperatures snowpack heat models 
and snowmelt models frequently use finite difference schemes (Yen, 1967; Anderson, 1976; Blöschl and 
Kirnbauer, 1991; Jordan, 1991; Gray et al., 1995; Marks et al., 1999).  The finite difference models keep track of 
heat stores and varying gradients with depth using short linear approximations, with more elements near the surface 
where the temperature profile is most nonlinear.  In addition, these finite difference models may keep track of 
changes in snow properties within layers based on models of snow metamorphism (Colbeck, 1982; Jordan, 1991; 
Arons and Colbeck, 1995).  The distributed temperature and snow property information internal to the snowpack is 
useful in some applications, such as determining hoar crystal development at depth for snowpack strength. 
However, for most snowmelt modeling purposes, the heat flux at the surface and the base of the snowpack (or other 
suitable control volume) are the only pieces of information required, and they depend on the temperature gradient 
and the properties of the snow at the surface and base. 

Because inaccuracies in the modeling of internal snowpack properties could lead to substantial errors in 
estimating the distributed snowpack temperature (Arons and Colbeck, 1995), it is desirable to have a minimum of 
model complexity.  Also, vertical integration of the snowpack energy distribution may be an important initial step 
in constructing spatially integrated models (Horne and Kavvas, 1997).  There is also the bonus that substantial 
computational savings could be realized if we could calculate the heat flux into the snowpack without the burden of 
describing the internal variations in detail.  Some have investigated the problem from the point of view of 
minimizing the number of layers needed while still retaining essentially a finite difference solution (Jin et al., 1999; 
Marks et al., 1999).  One of the primary reasons cited for the poor performance of single-layer models in 
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comparative validations is poor representation of internal snowpack heat transfer processes (Blöschl and Kirnbauer, 
1991; Koivasulo and Heikinheimo, 1999).  They have also specifically cited the errors being most pronounced 
during cold periods before melt occurs, indicating that heat flow more than water flow may be to blame.  This 
raises the question of whether single-layer representation of the snowpack is a feasible goal or, phrased another 
way, whether the models examined had errors in the specific derivation of their single-layer approach that can be 
overcome.  Given that the source of the strongest nonlinearities in the snowpack temperature profile are daily 
temperature fluctuations at the surface, which have an approximately sinusoidal pattern, it seems reasonable to use 
this to formulate a solution to the surface and basal heat fluxes for a single-layer snowmelt model. The force-restore 
approach to estimating snow surface heat flux (e.g., Deardorff, 1978; Dickinson et al., 1993; Hu and Islam, 1995) 
assumes that the driving flux at the surface is sinusoidal.  Such an assumption may allow for significant 
simplification of heat flow modeling compared to finite difference procedures, while still retaining important 
information about the process. 

THEORY 

We can describe heat flow in the snowpack approximately using the diffusion or heat equation and 
assuming homogeneity of properties (Yen, 1967), 

(1) 

where T is the temperature (C), t is time (s), z is depth (m) measured downwards from the surface, and k is the 
thermal diffusivity (m2 s-1).  Thermal diffusivity is related to thermal conductivity and specific heat through k = 
λ/Cρ where λ is the thermal conductivity (J m-1 K-1 s-1), C is the specific heat (J kg-1 K-1), and ρ is the density (kg 
m-3).  For semi-infinite boundary conditions (0 < z < ∞) with a sinusoidal temperature fluctuation at the upper 
boundary, the differential equation (1) has a solution (Berg and McGregor, 1966) 

(2) 

In this solution, A is the amplitude of the diurnal temperature fluctuation at the surface (C), T is the time average 
temperature at the upper boundary (C). d1 is the diurnal damping depth, the depth at which the amplitude is 1/e 
times the surface amplitude and is related to the diffusivity and frequency by d1=(2k/ω1)1/2.  ω1 is the diurnal 
frequency (radians s-1), where the subscript 1 denotes one day.  

The heat flux is the thermal conductivity times the temperature gradient 

(3) 

and the surface heat flux is 

(4) 

showing that the temperature lags the heat flux by π/4 radians, which is 1/8 of a cycle or 3 hours.   
Here Qc and Qcs are defined as positive in the positive z direction which is into the snow.  From equation 3, 

recognizing that ωcos(ωt) is the derivative of sin(ωt), and substituting equation 2 we can express the heat flux 

(5) 

This is the basis for the force restore method to estimate the surface heat flux (c.f. equation 10 of Hu and Islam, 
1995).  Applied at the surface and using a finite difference approximation for tTs ∂∂ /  results in an estimate 

(6) 
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where ∆t is the measurement interval, Ts is the surface temperature, and Tslag1 is the surface temperature lagged by 
one time step, i.e. at t-∆t.  While T is identified as the time average temperature in equation 2, in typical application 
T  is interpreted as the average temperature of the medium with depth (see Hu and Islam, 1995, for example).  In 
this paper, we denote the depth-averaged temperature as Tave.  A preview to Figure 1b shows that Equation 6 may 
be a poor approximation because the temperature gradient with depth does not cycle on a daily time scale.  The 
diurnal cycle is superimposed on a strong upward temperature gradient with what appears to be a weekly time 
scale.  Lower frequency fluctuations cause temperature variation with depth and thus heat fluxes.  In fact, there may 
be greater power in the lower frequency variability.  We can superimpose the heat fluxes due to lower frequency 
variability on equation 6 using the gradient in daily average temperature to estimate the net result of lower 
frequency variability.  We roughly approximate the superimposed gradient using the difference in the daily average 
surface temperature, sT , and the daily average depth average snowpack temperature (estimated from the energy 
state of the snowpack), aveT , over a distance dlf, the low frequency damping depth.  This results in a modification of 
the force-restore equation to 

(7) 

where dlf = (2k/ωlf)1/2 , associating a frequency, ωlf, with the distance dlf used in the daily average gradient estimate.  
The thermal properties of the snowpack are the same for both low and high frequency forcing; however, the 
appropriate frequency to describe the low frequency contribution, ωlf, is less clear.  In this paper, ωlf is fitted to 
observations. 

Large and fast variations in the snowpack surface temperature and strong nonlinearities in the process make 
finding the average temperature of the top few centimeters of snow difficult.  Here we superimpose the solution 
expressed in equation 2 onto a linear temperature gradient (i.e. )(zT  is assumed to be linear) and integrate over a 
layer from the surface (z=0) and a depth zb to get 

(8) 

where slT  is the depth averaged temperature of the surface layer, sT  is the time averaged surface temperature, and 

bT  is the time averaged temperature at depth zb (we used the 24-hour average centered on the time of interest for 
our application).  Noting the identities for temperature at the surface and the temperature at zb, and recognizing that 
a phase change of -π/4 represents 3 hours earlier yields 

(9) 

Equation 9 is approximate because of the assumptions regarding sinusoidal temperature fluctuations in the 
derivation of equation 2.  Equation 9 is also in error in so far as there are lower frequency variations in temperature, 
i.e., sT  and bT  are not constant. 

Equations 1-9 present a description of how snowpack temperatures should behave if the sinusoidal forcing 
model is a reasonable approximation of the heat conduction processes.  One of the primary clues we can use from 
temperature measurements in the snowpack is the relative phase and amplitude of the diurnal wave as it passes 
through the snowpack.  Table 1 presents a brief summary for the reader’s later reference. 

 
Table 1: Theoretically Derived Relative Phase and Amplitude of Temperature and Heat Flux Observations. 

 

Measurement Relative Phase Relative Amplitude Equation
Surface Temperature φ  Α

Surface Heat Flux φ+π/4 4
Temperature at z φ-z/d1 2
Average snowpack temperature (z/d > 3) φ−π/4 8
Heat flux at z φ+π/4−z/d1 3
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METHODS 

The measurements used in this analysis were previously presented by Tarboton (1994) as part of a 
validation of the UEB snowmelt model (Tarboton et al., 1995).  Based on that analysis, one of the problems 
identified was a disparity between modeled and measured energy contents indicating the need for a better 
parameterization of the conductive heat flux into the surface of the snowpack and prompting this study. 

Site Description 
Measurements were made west of Logan, Utah, near the center of Cache Valley, situated in the Wasatch 

Mountains, east of the Great Salt Lake in Utah.  Cache Valley is similar to many valleys formed by faulting in the 
Basin and Range Province of the western United States.  It is oriented north and south, about 110 km long and 15 
km wide, between two high ranges on the east and west, about 2000 m higher than the valley floor, a situation 
making the valley prone to long winter inversions. 

The valley bottom is flat and is mostly covered by wetlands and related vegetation.  Much of the land near 
the valley bottom has been converted to pasture land through the use of drainage canals.  Measurements were taken 
at the Utah State University Research Drainage Farm, which was instrumented to measure the effects of the 
wetland-to-pasture conversion.  The ground at the site has a loamy soil, rich in organics and a cover of short grass. 

Measurements 
Snowpack and shallow soil temperatures were measured using eight copper-constantin thermocouples and 

an infrared thermometer.  Two thermocouples were placed below the ground surface at depths of 2.5 and 7.5 cm.  
Another thermocouple was placed at the ground surface, and the remaining five thermocouples were placed at 5, 
12.5, 20, 27.5, and 35 cm above the ground surface on a ladder constructed of fishing line.  

The raw thermocouple measurements showed high frequency, large magnitude temperature variations 
simultaneously through the snowpack, and temperatures greater than 0°C in some cases (Figure 1a).  The fact that 
the high frequency variations were simultaneous through such a strong insulator as a snowpack was a clue to the 
explanation that that the reference thermistor on the faceplate of the multiplexer gave inadequate correction for 
voltages created where the thermocouples connected to the metal of the multiplexer.  Such voltages depend on the 
temperature at the connection, which evidently can vary during the day despite being in a cool box buried beneath 
the snow.  We corrected for this by assuming that the temperature at the thermocouple 7.5 cm below the ground 
surface had nearly no diurnal variation and set the temperature for this thermocouple as a linear interpolation of the 
daily average temperature.  The voltage differences between the recorded and the interpolated measurements were 
subtracted from the other thermocouple measurements to produce a corrected temperature trace for each 
thermocouple (Figure 1b).  For future investigations, it would be useful to place the reference thermistor with the 
thermocouple lowest in the soil; then differences between thermocouple voltages can be used to estimate 
temperature differences between the thermistor and each thermocouple. 

Snowpack surface temperature was measured with two Everest Interscience model 4000 infrared 
thermometers with 15-degree field of view.  These instruments measure upwelling longwave radiation and assume 
an emissivity of 0.99 to estimate the snowpack temperature.  Snowpack emissivity in the longwave part of the 
spectrum is between 0.988 and 0.985 (Marks and Dozier, 1992). 

Ground heat flux was measured with a REBS ground heat flux plate placed at 10 cm depth in the soil.  The 
heat flux plate gives heat conduction from the ground into the snowpack as positive. 

Analysis 
We examined the temperature patterns over the first 8 days of the study period to examine how well the 

heating and the cooling of the snowpack can be described as a sinusoidal process. We also wanted to confirm that 
the large phase shift and amplitude change between the surface temperature and uppermost thermocouple (about 4 
cm depth) was reasonable.  We used Fourier analysis to estimate the amplitude and phase of the diurnal component 
associated with each temperature trace.  To do this, we performed a Fourier transform with a Parzen window (Press 
et al., 1992) spanning the full 8 days (192 hours).  The amplitude, A, and relative phase, φ, of the diurnal frequency 
component for each temperature trace was recorded, and the differences were used to infer z/d1 from equation 2.   

The difference in the value of φ at one layer and the value of φ at another is an estimate of the value of –z/d1 
from equation 2 for the intervening snow.  Similarly, the value of z/d1 for snow between two measurements can be 
estimated from the natural log of the ratios of the amplitude of the lower measurement to the amplitude of the upper 
measurement.  Knowing the vertical position of each measurement in the snowpack, we obtained an estimate of d1, 
which was used along with the measured average snowpack density of 0.4 Mg/m3 and specific heat of ice, 2.09 
kJ/kg, to estimate the conductivity, λ.   
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Figure 1:  a) Raw thermocouple traces and b) corrected thermocouple traces. Note that warmer 

temperatures correspond to deeper thermocouples; legend mimics sequence of lines in the graphs. 



The energy content of a control volume comprising the snow and soil above the heat flux plate buried at 10 
cm was estimated from the average snowpack temperature, the average soil temperature, and the snowpack surface 
temperature.  For layers of the snowpack and soil between thermocouples, we used the average temperature 
between the thermocouples.  The average temperature of the top layer from the surface to the first thermocouple 
was calculated from equation 9.  Taking 0°C ice as having 0 energy content, for U < 0,  

esoilsoilsoilicewsnowsnow DCTCWTU ρρ +=      (10) 

where snowT  is the depth averaged snow temperature and soilT  is the depth averaged soil temperature over the 
depth of the soil above the heat flux plate, De (0.1 m), Wsnow is the water equivalence of the snowpack, ρw is the 
density of water (1 Mg/m3), ρsoil is the density of soil (1.7 Mg/m3), Cice is the specific heat of ice (2.09 kJ/kg) and 
Csoil is the specific heat of soil (2.09 kJ/kg). Note that this measure of the energy content can only record energy 
content when there is no water in the snowpack, thus it can only calculate U<0.  For periods when this calculation 
results in a value close to 0, there may be liquid water in the snowpack, and the value of U may be higher. 

RESULTS AND DISCUSSION 

Figure 2 shows the snowpack energy content as measured by snowpack temperature over the study period.  
A value of U close to 0 may imply liquid water in the snowpack.  Figure 3 shows the magnitude of heat fluxes at 
the surface of the snowpack inferred from the time series of energy content and measured ground heat flux 
necessary to explain the observed changes in temperature.  During the first two weeks of the period, all parts of the 
snowpack were below freezing, so the energy content as measured by the temperature is an accurate description of 
the energy of the snowpack.  During this period, there is an opportunity to examine how to model changes in 
snowpack energy that relate to the average snowpack temperature.  Two important processes are conduction of heat 
from the surface and conduction of heat through the ground, or ground heat flux. 

Table 2 presents results from analysis of the diurnal components of the Fourier transform of the temperature 
data between January 26 and February 2, 1993.  We examined the implied snowpack thermal properties between 
the surface and each thermocouple (Table 2a) and the thermal properties between each thermocouple (Table 2b) 
using both phase shifts and amplitudes.  For reference, the formula used by Anderson (1976) to estimate thermal 
conductivity gives 0.53 W/m/K at this density of 0.4 Mg/m3, and the formula used by Jordan (1991) gives 0.61 
W/m/K.  Sturm and Johnson (1992) observed thermal conductivity values between 0.5 and 0.8 W/m/K in snow 
with a density close to 0.2 Mg/m3.  Anderson and Jordan both state that the effective thermal conductivity of air in 
a snowpack is about 0.02 W/m/K.   
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Figure 2:  Snowpack energy content over time. 
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Figure 3:  Snowpack surface energy fluxes over duration of study period reported at half-hourly intervals. 

 
For further reference, Hu and Islam (1995) give a diurnal damping depth of about 5 cm for dry clay and about 20 
cm for stone.  The properties for the upper snow layers differ from those of the lower layers. Although the heat 
equation (1) assumes homogeneity of snowpack thermal properties, it has been established for heat conduction 
problems that a non-homogeneous system can be represented by effective parameters in the heat equation (Hanks 
and Ashcroft, 1980, p. 140).  Both the phase analysis and the amplitude analysis show a very low conductivity in 
the top 4 cm, underlain by 22.5 cm of high conductivity snow, which overlies 12.5 cm of snow with low to 
moderate thermal conductivity.  We could characterize this as a nugget of resistance near the top of the snowpack 
with relatively conductive snow below.  Strong temperature gradients near the surface of the snowpack may have 
promoted hoar frost development and destruction of bonds between snow grains, hampering conduction of heat.  
Even so, the estimated effective thermal conductivity is less than the effective thermal conductivity of air in a 
snowpack, which includes accounting of water vapor diffusion through the air (Yen, 1967).  This estimate is 
unrealistically low.  A possible reason for the low estimate is that the estimate of the position of the thermocouple 
in the snowpack was imprecise because the line by which the thermocouple was held may have sagged and because 
the snow depth measurement was taken as the average of several measurements a short distance away from the 
thermocouple ladder to avoid disturbing the thermocouples.  If the first thermocouple were at depth of 5 or 6 cm, 
the estimate of the surface conductivity would be 0.025 or 0.036 W/m/K, respectively, and the estimate of the 
conductivity of the next layer would be 1.523 or 1.090, respectively.  This sensitivity of the estimate to the precise 
thermocouple depth below the surface suggests that future studies should have a means to estimate the 
thermocouple position with precision.  Although the depth of the first thermocouple may be in error, we used it for 
lack of another measurement.  Sensitivity to imprecision in the depth estimate decreases with the depth of the 
thermocouple. 

Given the large phase shift and the strong damping in the upper layer, there is a concern that the infrared 
thermometer did not read the surface temperature of the snowpack, but the air temperature of the air between the 
lens and the snowpack.  We believe that the infrared thermometer correctly observed the snowpack surface 
temperature for the following reasons.  Equation 4 suggests that the surface temperature should lag the surface heat 
flux by 3 hours.  Incoming solar radiation, which was the largest part of the surface heat flux, peaks at about 12:30 
in the afternoon (Logan is west of the reference meridian for the time zone).  The surface temperature peaks 
between 2:00 and 4:30 every day during the period, most commonly at 3:00 in the afternoon.  Analysis of phase 
differences shows a phi of 4.595 radians for solar radiation and a phi of 4.225 radians for the surface temperature, 
giving a 1.5-hour estimate of the delay. Based on equation 8, we expect the average snowpack temperature to lag 
behind the surface temperature by just less than π/4 radians, depending on z/db.  The phase of the average snowpack 
temperature (phi=3.513) calculated from the average snowpack energy content (equation 10) lagged the surface 
temperature by 0.71 radians, or about 0.9π/4.  So the large phase difference between the surface temperature 
measurement and the first thermocouple measurement was not because the surface temperature measurement was 
early, but because heat transfer between the surface and the first thermocouple was slow. The amplitude analysis is 
consistent with this reasoning, showing strong damping in the upper layer because of slow heat transfer. 



Table 2:  Analysis of Phase Shifts and Amplitude Changes with Depth in the Snowpack 
for A) Effective Parameters Between the Surface and Each Thermocouple and B) 

Parameters of Each Increment Between Temperature Measurements in Layers 

A) Bulk Properties Surface to z

z phi z/d1 d1 K λ z Amplitude exp(z/d1) z/d1 d1 K λ
cm radians cm cm2/hr W/m/K cm C cm cm2/hr W/m/K

0 4.23 0.00 0 5.52 1.00 0.00
4 2.48 1.75 2.29 0.69 0.016 4 0.81 0.15 1.92 2.08 0.57 0.013

11.5 2.19 2.04 5.64 4.17 0.097 11.5 0.59 0.11 2.23 5.16 3.48 0.081
19 1.78 2.44 7.78 7.93 0.184 19 0.35 0.06 2.75 6.92 6.26 0.145

26.5 1.47 2.75 9.63 12.13 0.282 26.5 0.28 0.05 2.97 8.91 10.39 0.241
34 0.62 3.61 9.43 11.63 0.270 34 0.11 0.02 3.96 8.58 9.64 0.224
39 0.02 4.21 9.27 11.25 0.261 39 0.04 0.01 4.86 8.02 8.42 0.196

B) Properties Between Measurements

z phi ∆ z/d1 d1 K λ z Amplitude exp(∆ z/d1) ∆ z/d1 d1 K λ
cm radians cm cm2/hr W/m/K cm C cm cm2/hr W/m/K

0 4.23 0 5.52
4 2.48 1.75 2.29 0.69 0.016 4 0.81 0.15 1.92 2.08 0.57 0.013

11.5 2.19 0.29 25.83 87.31 2.028 11.5 0.59 0.73 0.31 24.33 77.50 1.800
19 1.78 0.40 18.61 45.34 1.053 19 0.35 0.60 0.52 14.52 27.61 0.641

26.5 1.47 0.31 24.04 75.65 1.757 26.5 0.28 0.80 0.23 32.93 141.96 3.297
34 0.62 0.85 8.79 10.11 0.235 34 0.11 0.37 0.99 7.59 7.55 0.175
39 0.02 0.60 8.33 9.08 0.211 39 0.04 0.41 0.90 5.56 4.04 0.094

Amplitude Analysis

Amplitude Analysis

Phase Shift Analysis

Phase Shift Analysis

 
 

As originally developed, the Utah Energy Balance Model (Tarboton, 1994; Tarboton et al., 1995; Tarboton 
and Luce, 1996) estimates the conduction of heat from the surface into the snowpack as a function of the difference 
between the average snowpack temperature (as estimated from the energy content) and the surface temperature.   

(11) 

There was some concern that this formulation might be inadequate based on the results of Tarboton (1994) showing 
that snowpack energy content was underestimated during the long cold period examined here.  The classical force 
restore approach (equation 6) and the modified force-restore approach (equation 7) appeared to be promising 
alternatives requiring few additional state variables or parameters, so we compared those solutions to the original 
simpler parameterization.  To perform the comparison, we constructed a simple energy balance model for the 
snowpack using the observed ground heat fluxes and the observed surface temperatures over time substituted into 
equations 11, 6, and 7, hereafter referred to as the equilibrium gradient model, the force-restore model, and the 
modified force restore model respectively.  In equation 6, we substituted Tave in place of T , per the general 
assumption that the time average at the surface is the same as the depth average temperature.  Where the models 
required a value for Tave, the modeled energy content was used, so that the model energy content evolved based on 
observed surface temperature and ground heat flux.  In equations 11 and 6, λ was calibrated so that the minimum 
modeled average temperature matched the minimum observed average temperature. We calibrated a value of λ for 
both models at 0.0045 W/m/K.  In the modified force-restore model, we used a value of 0.016 W/m/K for λ 
estimated from the Fourier transform analysis (Table 2).  ωlf was calibrated to give a period of 4 days.  Until further 
study provides more specific guidance, ωlf may be considered an adjustable parameter to fit the observed data. 
Tarboton (1994) used a value of 0.8 W/m/K for λ, which is more in keeping with the literature cited earlier, but did 
not match our measurements.  In his analysis, when this value was used, modeled surface temperatures were only 
slightly damped, but average snowpack temperature was dramatically underestimated during the cold period 
analyzed here.  There is evidence that the estimates of incoming longwave radiation used by Tarboton (1994), 
based on air temperature, were too low due to the presence of an inversion much of the time.  This allowed 
agreement with one observable variable (SWE), but yielded poor predictions of another variable (energy content). 

Figure 4 shows the relative performance of the three calibrated models over the 2-week period.  The 
modified force-restore model shows a pattern very similar to the observations, although the modified force restore 
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Figure 4:  Measured and modeled energy content during first 2 weeks. 
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Figure 5:  Surface conduction heat flux compared to models over first 3 days. 
 

based energy content precedes the observations.  Performance of the unmodified force restore model is similar to, 
but slightly better than, the simpler equilibrium gradient model.  Examining fluxes directly (Figure 5) shows the 
phase shift again and the relative magnitudes of the fluxes estimated by the models.  The equilibrium gradient 
model appears to be in phase with observations, but the amplitude is too small to explain any daily warming.  



Equations 11 and 7 would suggest that the modified force restore model is a force-restore equation superimposed 
on equation 11, and the differences in model behavior are consistent with this interpretation.   

Differences in the timing seen in Figures 4 and 5 support the idea that the depth of the uppermost 
thermocouple was greater than estimated.  If the thermocouple were deeper below the surface, the weight of the 
surface layer in the calculation of the snowpack energy content would be greater, and the daily oscillations of the 
observed average and flux would be greater in magnitude and earlier.  The Fourier analysis would give greater 
values for the conductivity, allowing the modeled oscillations to keep pace with the observed magnitude of the 
oscillations.  The timing of modeled oscillations would not be affected. 

The modified force restore model is based on the idea of a force restore parameterization with an imposed 
temperature gradient and, therefore, an imposed heat flux.  Under steady state conditions, the imposed flux should 
be equivalent to the ground heat flux, because there is insufficient heat storage occurring in the snowpack to have 
different fluxes at the ground heat flux plate and the snow surface for an extended period of time.  If equation 7 
accurately portrays the heat flux, then there should be some equivalence between the second term on the right side 
of equation 7 and the ground heat flux measured at the plate, G.  The reality of the situation, however, is that the 
imposed flux is not perfectly steady state, but varies with some period, and so does the ground heat flux.  
According to equation 3, substituting ωlf for ω1 and dlf for d1, because we are now working with time-averaged 
temperatures and fluxes (as a rough approximation we can consider the data to have passed through a low pass 
filter), the ground heat flux should lag behind the surface heat flux by z/dlf radians.  From our fitting, ωlf is ¼ ω1, so 
dlf should be twice d1 and z/dlf should be ½ of z/d1.  From Table 2, we can estimate that z/d1 might be between 5 and 
7 at a depth of 10 cm into the soil, so that z/dlf should be between 2.5 and 3.5.  Figure 6 shows the flux calculated 
from the second term of equation 7 at the surface versus the smoothed ground heat flux at the 1) same time (big 
loops) and 2) lagged by 35.5 hours (2.32 radians), which is the lag with the best fit.  The ground heat flux may be a 
bit early because of errors in depth measurement and because there are variations at yet lower frequencies slightly 
advancing the ground heat flux.  This shows that a directly steady state relationship should not be assumed, and that 
the frequency and power relationship implied by a sinusoidal model is reasonable.  The close correspondence 
between the calculated low-frequency imposed flux and the lagged observations of ground heat flux along the 1:1 
line provides additional support to the use of the modified force-restore model. 
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Figure 6:  Ground heat flux compared to low frequency contribution 
to the surface heat flux at the same hour and lagged by 35.5 hours. 



CONCLUSION 

 
Heat flow through the snowpack is considered a difficult and complex process to model.  So much so, that it 

has been generally assumed that single-layer snowpack models must, of necessity, err in estimates of heat 
conduction, with their worst performance during cold periods.  By making the assumption that the heating and 
cooling of the snowpack is diurnally forced, however, we can substantially improve our descriptions of heat flow in 
the snowpack, even a heterogeneous snowpack.  By recognizing further that there are lower frequency forcings, 
sometimes with greater power, we can improve descriptions for extended cold periods.  Equation 7, based on a 
force-restore model with a superimposed gradient, may be a good candidate to replace more complex models.  In 
the extreme, we could recognize that the forcing at the surface could be decomposed into a Fourier series with 
multiple frequencies.  Estimation of the parameters for that series would use the time series of all previous surface 
temperatures – essentially the same information used in finite difference models.  Theoretically the two numerical 
schemes would converge on a very similar answer.  Within this concept lies the seed for simplification.  If we can 
recognize those few frequencies with the greatest power, we can continue to represent the snowpack as a single-
layer, and only use such recent past temperature information as needed.   
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