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Abstract. Textural patches (i.e., grain-size facies) are commonly observed in gravel-bed
channels and are of significance for both physical and biological processes at subreach
scales. We present a general framework for classifying textural patches that allows
modification for particular study goals, while maintaining a basic degree of
standardization. Textures are classified using a two-tier system of ternary diagrams that
identifies the relative abundance of major size classes and subcategories of the dominant
size. An iterative procedure of visual identification and quantitative grain-size
measurement is used. A field test of our classification indicates that it affords reasonable
statistical discrimination of median grain size and variance of bed-surface textures. We
also explore the compromise between classification simplicity and accuracy. We find that
statistically meaningful textural discrimination requires use of both tiers of our
classification. Furthermore, we find that simplified variants of the two-tier scheme are less
accurate but may be more practical for field studies which do not require a high level of
textural discrimination or detailed description of grain-size distributions. Facies maps
provide a natural template for stratifying other physical and biological measurements and
produce a retrievable and versatile database that can be used as a component of channel
monitoring efforts.

1. Introduction

Bed surfaces of natural and laboratory gravel channels are
frequently organized into distinct textural patches (i.e., facies)
that are distinguished from one another by differences in grain
size and sorting (Figure 1) [Iseya and Ikeda, 1987; Collins, 1988,
1990; Collins and Dietrich, 1988; Dietrich et al., 1989, 1993;
Ferguson et al., 1989; Kinerson, 1990; Wolcott and Church, 1990;
Lisle and Madej, 1992; Lisle et al., 1993; Paola and Seal, 1995;
Powell and Ashworth, 1995; Kondolf, 1997; J. M. Buffington and
D. R. Montgomery, Effects of hydraulic roughness on surface
textures of gravel-bed rivers, submitted to Water Resources
Research, 1999; hereinafter referred to as submitted paper].
Textural patches likely result from size-selective deposition or
entrainment caused by spatial variations in shear stress, sedi-
ment supply, and lateral bed slope [Dietrich and Smith, 1984;
Parker and Andrews, 1985; Dietrich et al., 1993]. Grain interac-
tions, such as kinematic waves [Langbein and Leopold, 1968],
intergranular friction angles [Miller and Byrne, 1966; Buffington
et al., 1992; Johnston et al., 1998], relative grain protrusion
[Kirchner et al., 1990], and grain wake effects [Iseya and Ikeda,
1987; Naden and Brayshaw, 1987; Whiting et al., 1988], also may
play a role in textural patch development.

Patchy bed surfaces affect physical and biological processes
within a stream reach. For example, textural patches affect bed
load transport rates by creating patch-specific mobility thresh-
olds that give rise to spatially nonsynchronous sediment mo-
tion and the appearance of size-selective transport [Lisle and

Madej, 1992; Paola and Seal, 1995]. Textural patches also in-
fluence bed load transport rates by providing spatially variable
surface roughness [Dietrich et al., 1989]; fine patches with low
surface roughness are expressways for coarse grains, while
coarse patches with high surface roughness trap fine particles
in downstream grain wakes [Iseya and Ikeda, 1987; Whiting et
al., 1988] or in deep intergranular pockets [Buffington et al.,
1992]. Differential roughness of textural patches also influ-
ences local boundary shear stress [Naot, 1984]. Patchy bed
surfaces and spatial variability of physical environments have
direct biological implications [Townsend, 1989], as many
aquatic animals prefer specific substrate sizes [Cummins and
Lauff, 1969; Reice, 1980; Kondolf and Wolman, 1993] and par-
ticular hydraulic regimes for different life stages [Sullivan,
1986].

In addition to their physical and biological significance, tex-
tural patches provide a natural template for stratifying sedi-
ment sample sites. In facies-stratified sampling, grain-size char-
acteristics of each textural patch are quantified through
random or systematic (i.e., grid/transect) sampling within
patches (Figures 2a and 2b), and then weighted by patch area
to determine reach-average grain-size statistics [Kinerson,
1990; Wolcott and Church, 1990; Lisle and Madej, 1992; Kon-
dolf, 1997; J. M. Buffington and D. R. Montgomery, submitted
paper, 1999]. Provided that each textural type is adequately
sampled (both in terms of the number of observations per
patch and the number of patches sampled per facies type),
facies-stratified sampling can be a very accurate means of de-
termining reach-average grain-size statistics, as it correctly
weights particle sizes by their areal extent. Facies stratification
also allows statistical comparison of between-patch differences
in grain-size distribution and physical environment [Krumbein,
1953, 1960]. However, stratified sampling is a two-step process
that requires a method of classifying bed-surface facies. Many
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Figure 1. Textural and topographic maps of (a) Skunk Creek and (b) Mill Creek, forest pool-riffle channels
of the Olympic Peninsula, western Washington. Each facies type is named according to our textural classifi-
cation (discussed in text). D50s is the patch, median, bed-surface grain size, and sgs is Folk’s [1974] graphic
standard deviation ([f84 2 f16]/2, where f84 and f16 are the log2 grain sizes [Krumbein, 1936] for which 16%
and 84% of the surface grain sizes are finer).
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investigators choose a simpler approach of unstratified random
sampling (Figure 2c) or unstratified systematic sampling (Fig-
ure 2d). The ability of unstratified sampling to measure the
true underlying sediment distribution depends on the areal
coverage and density of sample sites, as well as the spatial
distribution of textural patches (i.e., their size and frequency)
[Smartt and Grainger, 1974; McCammon, 1975; Wolcott and
Church, 1990]; too few observations and too large a sampling
interval will produce a poor representation of the true under-
lying sediment population. For example, Bevenger and King
[1995] recently proposed a pebble count procedure [Wolman,
1954] in which grains are selected from a transect that zig-zags
bank-to-bank downstream through a channel reach to produce
a reach-average grain-size distribution. While well intended,
the proposed sampling coverage of this procedure would be
insufficient to give the correct areal weighting of textures and
their grain sizes in channels with complex spatial arrangements
of textural patches, such as those of Figure 1b [Kondolf, 1997].

Although the occurrence of textural patches is fairly com-
mon in gravel-bed channels and is of significance to both phys-
ical and biological processes, there is no standard procedure
for identifying and classifying bed-surface facies; a variety of
approaches exist that vary in subjectivity and utility. Fisheries
biologists commonly differentiate bed-surface textures visually
[Platts et al., 1983; Shirazi and Seim, 1981; Shirazi et al., 1981]
but do not have a formal textural classification scheme and
rarely conduct accompanying grain-size measurements of the
bed surface. Although visual differentiation is the primary
means of classifying bed-surface textures, accompanying grain-
size measurements are required to verify visual classification
and reduce subjectivity [Kondolf and Li, 1992]. In contrast to
visual identification, Crowder and Diplas [1997] recently pro-
posed a grid sampling technique that uses a moving window
comparison of mean grain size to locate textural boundaries.
While more rigorous, the success of their approach depends on
grid spacing (i.e., density of sample sites) and may be unnec-
essarily laborious in channels that have distinct textural bound-
aries that can be located more simply by visual inspection.
Other methods of classifying textural patches are frequently
site- or study-specific [Lisle and Madej, 1992; Paola and Seal,
1995]. In this paper, we present a standard procedure for
classifying textural patches that combines visual identification
and quantitative grain-size measurement. Our intent is to pro-
vide a general classification framework that can be modified, as
needed, for particular study goals. We also examine the rela-
tive accuracy of different classification schemes and explore
the trade-off between classification simplicity and accuracy.

2. Classifying Textural Patches
No single textural classification can satisfy all study goals.

However, some degree of standardization for classifying bed-
surface textures is appealing, particularly due to the growing
number of studies dealing with textural patches [Collins, 1988,
1990; Collins and Dietrich, 1988; Dietrich et al., 1989, 1993;
Ferguson et al., 1989; Kinerson, 1990; Lisle and Madej, 1992;
Lisle et al., 1993, 1997; Paola and Seal, 1995; Powell and Ash-
worth, 1995; Kondolf, 1997; J. M. Buffington and D. R. Mont-
gomery, submitted paper, 1999]. Here, we present a classifica-
tion procedure that is purposefully general, allowing study-
specific adaptation, while maintaining a basic degree of
standardization.

It is common practice in the earth sciences to use ternary

diagrams for classifying chemical composition of minerals
[Deer et al., 1982], mineral composition of rocks [Dietrich and
Skinner, 1979; Williams et al., 1982], and grain-size composition
of sediments and soils [Krumbein and Pettijohn, 1938; Folk,
1954; Plumley and Davis, 1956; U.S. Department of Agriculture
(USDA), 1962; Ritter, 1967]. Continuing this tradition, we pro-
pose a two-level ternary classification for textural patches (Fig-
ure 3) that uses standard grain-size divisions and names (Table
1). Ternary diagrams classify objects according to the relative
abundance of three primary components. Each of our ternary
diagrams is divided into 15 categories: six equal-area central
fields that represent relative abundances of three primary grain
sizes, and nine edge classes that represent end-member con-
ditions with one or two dominant grain sizes, effectively reduc-
ing the system to a binary or unary classification. In construct-
ing the ternary diagrams, we assumed equal probability of
occurrence of different grain-size mixtures (i.e., no inherent
mixture bias). Consequently, the central six fields within each
ternary diagram are equal area and trisymmetrical.

Level I of the classification is used to classify the relative
abundance of the three primary grain-size classes of a texture
(i.e., silt, sand, gravel, cobble, or boulder) (Figure 3). For
example, if a textural patch is predominantly composed of
sand, gravel, and cobble, the fourth ternary of Figure 3 is used
to classify the texture based on the relative abundance of these
three primary size classes. To classify a texture, rank the three
primary size classes from least to most abundant and name the
texture according to that ranking (e.g., a texture with sand ,
gravel , cobble is classified as sgC, a sandy, gravelly cobble
facies; the order of the adjectives (lower case letters of the
classification) denotes the relative abundance of each of the
subordinate size classes [Wentworth, 1922; Folk, 1954; Wash-
burn et al., 1963]). If a subordinate size class comprises less

Figure 2. Cartoon illustrating basic strategies for sampling
bed-surface material in a channel reach: (a) facies-stratified
random, (b) facies-stratified systematic (grid/transect), (c) un-
stratified random, and (d) unstratified systematic. Textural
patches are indicated by different fill patterns, and sample
locations are shown by black dots. In Figure 2b the interval of
sample sites within patches is scaled to individual patch area,
with each patch having the same number of samples.
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than 5% of the relative abundance, it is considered negligible
and is not used in naming the texture (in the above example, if
there is ,5% sand, then the texture is classified as gC, a
gravelly cobble facies). Similarly, if both subordinate size
classes together comprise less than 10% relative abundance,
they are both omitted from the texture name (the above tex-
ture would then be classified as C, a cobble facies). These rules
for classification are defined graphically by the ternary dia-
grams (Figure 3). However, once the above rules are learned,
textures are easily classified without recourse to the diagrams.

The relative percentages that define the unary and binary
fields (edge classes) within each ternary diagram are somewhat
arbitrary. Here we use 5% relative abundance and 10% rela-
tive abundance as levels of significance for including subordi-
nate size classes in textural names and defining binary and
unary categories, as discussed above. Other textural classifica-

tions use limits of significance that range from 0.01 to 60%
relative abundance for inclusion of subordinate size classes
[USDA, 1904, 1962; Wentworth, 1922; Folk, 1954; Washburn et
al., 1963]. As there is no physical rationale or compelling his-
torical precedent, the particular limits for defining unary and
binary categories is a matter of personal preference.

Using similar ternary diagrams, level II of the classification
further delineates the grain-size composition of the dominant
size class (Figure 3). The purpose of the second level of the
classification is to distinguish visually distinct textures that have
the same level I name. For example, two gravel textures (G,
.90% relative abundance, level I) might be distinguished as
Gfm and Gc (fine to medium gravel versus uniformly coarse
gravel) using the second level of the classification. Level II
delineates boulder, cobble, and gravel subsizes only; fine-scale
divisions of sand and silt classes are not differentiated here

Figure 3. Two-level ternary classification for bed-surface facies. Level I decomposes the basic sextahedron
of major size classes into seven ternary diagrams for classifying textures according to their relative abundance
of three major size classes; standard grain-size names and divisions are used (Table 1). Level II further
delineates the grain-size composition of the dominant size class (see figure text for symbol key and examples).
Note that the figures are not drawn to scale.
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because most surface-based sampling techniques (e.g., pebble
counts [Wolman, 1954]) cannot realistically resolve those fine-
scale divisions, nor are such divisions readily discernible by
visual inspection. To minimize the number of level II ternary
diagrams, the usual terms of “small” and “large” used to de-
scribe cobble and boulder subsizes are replaced by the terms
“fine” and “coarse” in Table 1.

The above classification scheme is applied as follows to
identify textural patches within a study area.

1. Conduct a preliminary reconnaissance of the stream
reach, visually identifying textural patches according to Figure
3.

2. Map surface textural patches according to the names
given in step 1. Discrete patches of a given textural type may
occur several times within a reach, as illustrated in Figure 1.

3. Determine grain-size distributions for several patches of
each facies type (see discussion below) and compare them with
the visually estimated grain-size components of step 1. If there
is a discrepancy, reclassify according to the measured grain-
size distributions.

4. Group visually similar, but technically dissimilar, tex-
tures as equivalent for practical purposes (Figure 4). The im-
posed classification boundaries should not artificially separate
textures that are visually and functionally similar.

The method outlined here is an iterative procedure of visual
identification, quantitative grain-size measurement, and reclas-
sification as needed.

In step 3 above, grain-size analysis of a given textural patch
should encompass the entire surface area of the patch. The
number of measurements per patch and the number of patches
measured per facies type depend on the desired level of pre-
cision [Mosely and Tindale, 1985; Church et al., 1987; Rice and
Church, 1996]. Choice of surface sampling technique (i.e., peb-
ble count [Wolman, 1954], areal adhesion [Fripp and Diplas,
1993], photo-sieving [Ibbeken and Schleyer, 1986], etc.), as well
as the strategy by which the technique is applied to a patch
(i.e., random versus systematic sampling, Figures 2a and 2b),

may also influence sample precision and requisite size. System-
atic (i.e., grid/transect) sampling is generally more accurate
than random sampling [Smartt and Grainger, 1974; Wolcott and
Church, 1990]; however, the performance of each sampling
strategy is influenced by the size and frequency of the objects
being sampled and the areal coverage of the sampling effort
(i.e., density of observations) [Smartt and Grainger, 1974; Mc-
Cammon, 1975; Wolcott and Church, 1990].

While there are a variety of surface sampling techniques to
choose from, not all yield equivalent results [Leopold, 1970;
Kellerhals and Bray, 1971; Potter, 1979; Church et al., 1987;
Diplas and Sutherland, 1988]. Of the methods available, sys-
tematic (i.e., grid/transect) pebble counts [Wolman, 1954] are
particularly attractive because they are easy to perform, rela-
tively cheap (not much time and labor investment), and can be
directly compared with subsurface samples sieved by weight
[Kellerhals and Bray, 1971; Church et al., 1987; Diplas and
Sutherland, 1988]. To minimize methodological differences be-
tween pebble counts and sieved samples, a gravelometer
(square grain-size template [e.g., Hey and Thorne, 1983; Church
et al., 1987]) should be used when conducting pebble counts.

Some bed surfaces exhibit continuous spatial gradients of
grain size and sorting that make it difficult to identify discrete
textural boundaries. Consequently, it may be necessary, in
some cases, to classify bed surfaces as gradational from one
textural composition to another. Regardless of whether bed
surfaces are composed of punctuated (i.e., discrete) facies or
gradational textures, our procedure for classifying bed surfaces
will reduce subjectivity and observer bias.

3. Field Test
Demonstration of textural similarity within classification cat-

egories, as well as textural difference between categories, is
required for acceptance of facies classification as a reliable
means of quantifying textural variation within and between
channel reaches. Our proposed textural classification distin-
guishes bed-surface facies based on differences in both grain
size and sorting. Consequently, we test our classification by
comparing grain-size distribution medians and variances within
and between textural categories. In particular, we test for with-
in-group similarity of both grain-size median and variance, and

Figure 4. Technically dissimilar textures (sgC and gsC)
grouped as functionally similar (circled points), but distinctly
different from gcS and csG textures in the same reach. Figure
not to scale.

Table 1. Standard Grain-Size Divisions and Names

Name f Size, mm

Boulder
Very coarse 212 to 211 2048–4096
Coarse 211 to 210 1024–2048
Medium 210 to 29 512–1024
Fine 29 to 28 256–512

Cobble
Coarse 28 to 27 128–256
Fine 27 to 26 64–128

Gravel
Very coarse 26 to 25 32–64
Coarse 25 to 24 16–32
Medium 24 to 23 8–16
Fine 23 to 22 4–8
Very fine 22 to 21 2–4

Sand 21 to 4 0.0625–2
Silt 4 to 8 0.0039–0.0625
Clay $8 #0.0039

Udden [1898, 1914]–Wentworth [1922] grain-size scale adapted from
Lane et al. [1947] and Church et al. [1987]. Note that we replace the
usual cobble and boulder terms “small” and “large” with “fine” and
“coarse” to minimize the number of ternary diagrams required for
level II of our classification (Figure 3). Here f is the Wentworth
exponent, the standard log2 unit of grain-size measurement [Krumbein,
1936]; f 5 2log2 D, where D is grain size in millimeters.
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between-group difference of one of these quantities. Because
our classification distinguishes textures based on differences in
either grain size or sorting, a difference of one of those quan-
tities will suffice to demonstrate between-texture difference.
For example, textures are distinguishable if they have different
variances despite similar medians, or vice versa. We choose to
compare grain-size distribution medians, rather than means,
because the median value is a more robust measure of the
central tendency of a distribution, particularly for coarse-
grained fluvial sediments which rarely have either normal
(Gaussian) or lognormal size distributions [Church and Keller-
hals, 1978; Church et al., 1987; Rice and Church, 1998]. Simi-
larly, we examine the variance about the median, rather than
about the mean.

We also test whether more detailed classification schemes
improve one’s ability to discriminate statistically different tex-
tures. Specifically, we explore the potential compromise be-
tween classification simplicity and accuracy. To address this
issue, we compare the statistical accuracy of our proposed
classification to that of a simplified version (less categories per
ternary), as well as to that of a complicated one (more cate-
gories per ternary). We further investigate the issue of simplic-

ity versus accuracy by examining whether a level I 1 II classi-
fication significantly improves one’s ability to discriminate
statistically different textures compared to that of a level I
classification alone.

3.1. Field Sites

We examined the above questions using 83 bed-surface tex-
tures sampled in 17 gravel-bed rivers in northwestern Wash-
ington and southeastern Alaska; the study sites are located in
forested mountain drainage basins and are further described
by J. M. Buffington and D. R. Montgomery (submitted paper,
1999). Textural patches were classified in the field using a
prototype procedure similar to that proposed here (Figure 3).
Surface grain-size distributions of each texture were deter-
mined from patch-spanning, random pebble counts that sam-
pled 1001 grains [Wolman, 1954]. All but two of the sampled
textures plot in the sand-gravel-cobble ternary, with gravel
being the most common size class (Figure 5a); the remaining
two textures plot in the gravel-cobble-boulder ternary. While
most of the sampled facies are gravel textures (78 out of 83),
the subsize composition of the gravel is quite variable and
defines a roughly arcuate band of occurrence (Figure 5b), the
physical explanation for which is uncertain. Median grain sizes
of the sampled textures have a flat-lying (platykurtic) distribu-
tion, predominantly composed of fine to very coarse gravel
(Figure 6). In contrast, the distribution of grain-size variance is
peaked (leptokurtic), with most patches composed of moder-
ately well sorted to poorly sorted sediment (Figure 6). For this
analysis, we are interested in the relative accuracy of different
classification schemes and assume that the pebble counts,
themselves, are sufficiently accurate.

3.2. Statistical Analysis

To assess the accuracy of different classification schemes, we
reclassified the sampled bed-surface textures using 12, succes-
sively more complex approaches: three level I classifications,
with ternaries divided into 15, 27, and 39 categories, respec-
tively, (Figure 7); three level I 1 II classifications using the
above level I ternaries combined with a unary level II classifi-
cation (i.e., one that describes only the primary component of
the dominant size class; e.g., a Gfmc texture would be classified
as Gc in a unary level I 1 II scheme); three level I 1 II
classifications like the previous, but with a binary level II clas-
sification (i.e., one that identifies the primary and secondary

Figure 5. Grain-size composition of textures sampled at our
study sites: (a) composition of primary size classes (level I) for
all but two samples (see text), and (b) composition of gravel
subsizes (level II) (gravel is the dominant size class for 78 out
of 83 textures sampled). Here, the seven, level II, gravel ter-
naries (Figure 3) are simplified to a single ternary diagram
(Figure 5b), with the data stratified by the dominant subsize
class.

Figure 6. Distributions of grain-size median and variance for
textures sampled at our study sites. Here we define sample
variance about the median as s92 5 ¥ j51

n ( xj 2 x9)2/(n 2 1)
where xj is the jth observation in a sample of size n and x9 is
the sample median (i.e., D50).
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components of the dominant size class; Gmc for the above
example); and three complete level I 1 II classifications, using
the 15-category, 27-category, and 39-category ternaries for
both levels. We use a short hand representation for each of
these classifications by indicating in parentheses the number of
textural categories per ternary (e.g., I (15) 1 II (1) is a 15-
category level I classification combined with a unary level II
classification).

Our bed-surface textures tend to be positively skewed (Fig-
ure 8), indicating distributions shifted toward coarser sizes and
having long fine tails, similar to surface textures observed in
gravel-bed rivers of British Columbia [Rice and Church, 1998].
Because our grain-size distributions are asymmetrical, we use
nonparametric statistical tests for comparing sample medians
and variances, avoiding any formal assumption of distribution
shape or parameter specification.

Median grain sizes were compared using a sign test
[Conover, 1971; Ferguson and Takane, 1989]. To conduct the
test, the samples of interest are combined to determine a grand
median (X9). A contingency table is then constructed tallying
the number of observations in each sample that are less than or
equal to X9 versus the number of observations that are greater
than X9 . The null hypothesis of equal medians is evaluated via
a x2 statistic:

x2 5 O
i51

r O
j51

c
~Oij 2 Eij!

2

Eij
(1)

where Oij and Eij are the observed and expected frequencies
of grain sizes #X9 versus grain sizes .X9 for a contingency
table composed of r rows and c columns. Eij is defined as

Eij 5
1
n O

j51

c

Oij O
i51

r

Oij (2)

where n is the total number of observations for the combined
samples. We conducted two-tailed tests of the null hypothesis
(equal medians) at a significance level of a 5 0.05.

Sample variances were compared using Levene’s [1960] test
as modified by Brown and Forsythe [1974]. The procedure is a
robust test for the equality of variances when sample distribu-
tions are nonnormal. The test statistic is a single-factor analysis
of variance expressed in terms of sample medians:

W0 5

O
i51

g

ni~ z# iz 2 z# zz!
2/~ g 2 1!

O
i51

g O
j51

ni

~ zij 2 z# iz!
2Y O

i51

g

~ni 2 1!

(3a)

such that

zij 5 uxij 2 x9iu (3b)

z# iz 5 O
j51

ni

z ij/ni (3c)

z# zz 5 O
i51

g O
j51

ni

z ijY O
i51

g

ni 5 O
i51

g

z# iz/g (3d)

where xij is the jth observation ( j 5 1, z z z , ni) in the ith
group (grain-size distribution) (i 5 1, z z z , g) and x9i is the
median of the ith group. The null hypothesis of equal variances
is evaluated by comparing W0 to upper tail values of Fisher’s
[1928] F-distribution ( fa) with g 2 1 and ¥ i51

g (ni 2 1)
degrees of freedom; the null hypothesis is rejected when W0 .
fa (here we choose a significance of a 5 0.05).

3.3. Results

For each of the 12 candidate classifications, we conducted
3403 tests for equality of grain-size medians and variances,
comparing each sample to all of the others. Results are sum-

Figure 7. Sand-gravel-cobble ternary illustrating classifica-
tion schemes using 15 categories (solid lines), 27 categories
(solid lines plus long-dashed lines), and 39 categories (all lines
shown). The 27-category classification subdivides the two dom-
inant size classes at relative ratios of 1:2 and 2:1 (long dashes),
while the 39-category classification additionally subdivides the
two dominant size classes at relative ratios of 1:4 and 4:1 (short
dashes).

Figure 8. Skewness (Sk 5 m3/m2
3/ 2) and kurtosis (K 5 (m4/

m2
2) 2 3) of our sampled textures compared to a normal

distribution (Sk 5 K 5 0), where m2 5 ¥ j51
n ( xj 2 x# )2/n ,

m3 5 ¥ j51
n ( xj 2 x# )3/n , m4 5 ¥ j51

n ( xj 2 x# )4/n , xj is the
jth observation in a sample of size n , and x# is the mean grain
size.
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marized in Table 2, with the first two columns presenting
results for sample medians alone and the second two columns
presenting results for sample medians and variances together.
Our analysis demonstrates that level I classifications do not
perform as well as level I 1 II classifications in terms of
grouping statistically similar textures. For a level I classification
of our data, only 27–28% of within-group sample medians are
similar, and only 17–18% of both sample medians and vari-
ances are similar. However, within-group similarity doubles
when level I classifications are supplemented with a unary level
II classification and nearly triples when a binary level II clas-
sification is used (Table 2). A full, 15- to 39-category level I 1
II classification produces further, but less dramatic, improve-
ment (last three entries, Table 2). Although statistical similar-
ity of within-group textures increases from level I to level I 1
II, there is little difference among the 15- through 39-category
classification schemes. For example, there is only a 5% differ-
ence in the within-group similarity of medians between the
15-category and 39-category level I 1 II classifications (88%
versus 93%, Table 2). Our analysis also demonstrates that the
classification schemes examined here discriminate median
grain size of textures better than median and variance to-
gether. For example, 88% of within-group medians are statis-
tically similar for a 15-category level I 1 II classification of our
data, while only 64% of both within-group medians and vari-
ances are similar (Table 2). In contrast to the within-group
comparisons, between-group comparisons show a slight de-
crease in accuracy from level I to level I 1 II but are relatively
insensitive to the type of textural classification used (Table 2).

We compared the combined results of the sign tests and
Brown-Forsythe tests of each classification (last two columns
of Table 2) to one another to assess which classification
schemes provide statistically significant improvements over the

others. The results of the sign tests and the Brown-Forsythe
tests describe binomial distributions of significant versus non-
significant observations, allowing comparison of the reported
percentiles (Table 2) via one-tailed z-tests:

z0 5
p̂1 2 p̂2

$ p~1 2 p!@~1/n1! 1 ~1/n2!#%
1/ 2 (4)

where z0 is the test statistic, p̂ is the proportion of interest, and
p is the pooled proportion defined as ( x1 1 x2)/(n1 1 n2),
where x is the number of observations out of n that define p̂ .
Results of these comparisons are presented in Table 3, with
P # 0.05 representing a significant change in percent accuracy
of classification. The first 12 entries of Table 3 assess the
significance of increasing the number of textural categories per
ternary (i.e., 15, 27, 39) for a given type of classification (i.e., I,
I 1 II(1), I 1 II(2), I 1 II), and demonstrate that, for our data,
there is no statistical difference between the 15-category, 27-
category, and 39-category classifications. The last nine entries
of Table 3 assess the significance of increasing the number of
levels used per classification (e.g., I versus I 1 II for a given
number of textural categories per ternary). These data dem-
onstrate that within-group similarity is significantly improved
by greater classification detail, while between-group difference
is either unchanged (Table 3, entries 13–15 and entries 19–21)
or significantly degraded (Table 3, entries 16–18; see also Ta-
ble 2).

It is important to note that because our statistical analyses
are based on multiple tests the probability for type I errors
(rejection of the null hypothesis when it is true) is greater than
the nominal value of a 5 0.05, our chosen level of significance.
In general, the greater the number of simultaneous compari-
sons, the greater the chance of type I errors. For example, the
experiment-wise type I error rate for the 42 comparisons made

Table 2. Statistical Accuracy of Textural Classification

Classification
Type

Median Grain Size* Median Grain Size and Variance†

Percent of Within-Group
Comparisons That Are

Statistically Similar

Percent of Between-Group
Comparisons That Are
Statistically Different

Percent of Within-Group
Comparisons That Are

Statistically Similar

Percent of Between-Group
Comparisons That Are
Statistically Different

Level I (15 categories) 28 85 18 98
Level I (27) 27 84 17 97
Level I (39) 27 84 17 97

Level I (15) 1 II (1) 63 86 39 97
Level I (27) 1 II (1) 64 86 39 96
Level I (39) 1 II (1) 64 86 41 96

Level I (15) 1 II (2) 81 85 53 96
Level I (27) 1 II (2) 83 85 54 95
Level I (39) 1 II (2) 83 84 53 95

Level I (15) 1 II (15) 88 84 64 95
Level I (27) 1 II (27) 93 83 71 95
Level I (39) 1 II (39) 93 83 70 94

*Median grain sizes compared via two-sample sign tests evaluated using a x2 statistic. Two-tailed tests of the null hypothesis (equal medians)
were conducted at a significance level of a 5 0.05. Note that even if all samples in a group had identical medians, one could only expect about
95% of the within-group comparisons to be “statistically similar” because the type I error rate (rejection of the null hypothesis when it is true)
is 5% for a 5 0.05.

†Median grain sizes compared as per the footnote above. Texture variances compared via two-sample Brown-Forsythe test. One-tailed tests
of the null hypothesis (equal variances) were conducted at a significance level of a 5 0.05. Here within-group similarity requires acceptance of
the null hypotheses for both the sign test (equal medians) and the Brown-Forsythe test (equal variances), while between-group difference
requires rejection of either null hypothesis. Because two tests are used for assessing within-group similarity, each evaluated at a significance level
of a 5 0.05, the type I error rate for the combined tests is 1 2 (1 2 a)2 ' 0.10. Consequently, one could only expect about 90% of the
within-group comparisons to be statistically similar.
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in Table 3 is 1 2 (1 2 a)42 5 0.88 for a nominal error rate of
a 5 0.05. In other words, there is an 88% chance that a type I
error will occur for a family of 42 tests each conducted at a
significance level of a 5 0.05. Similarly, type I errors are a near
certainty in Table 2, which reports the results of thousands of
simultaneous comparisons between grain-size median and vari-
ance. The Bonferroni [1935, 1936] correction can be used to
adjust a values for multiple comparisons and reduce the prob-
ability of type I errors. However, we choose not to use the
Bonferroni correction because it reduces the power of the
tests, increasing the potential for type II errors (acceptance of
the null hypothesis when it is not true). Despite the high
probability for type I errors in our analysis, it is the differences
between reported proportions (Table 3), rather than the ab-
solute significance of the tests or the absolute proportions
reported, that are important for comparing different classifi-
cation schemes.

3.4. Simplicity Versus Accuracy

Our analysis shows that level I classification is a poor dis-
criminator of statistically significant differences in median
grain size and variance of bed-surface textures. However, dis-
criminatory power is significantly improved with a level I 1 II
classification. Of the level I 1 II classifications examined, the
full 15- through 39-category classifications are more accurate
than either the unary level I 1 II classifications or the binary
level I 1 II classifications (Table 2). But there is no statistical
difference in classification accuracy among the 15- through
39-category schemes (Table 2). Consequently, the simpler, 15-
category, level I 1 II classification (as proposed) is recom-
mended over the more complicated 27-category and 39-
category approaches. We emphasize, however, that the results
of this analysis are specific to our particular data set, the
generality of which remains to be tested.

While the complete level I 1 II classification is the most
accurate, its complexity makes it difficult to apply in the field.
In general, as the degree of finer-scale categorizing increases,
the more opportunity one has for visually misclassifying a tex-
ture. Visual assessment of the relative proportions of level II
size classes often is not very accurate, resulting in extra time
spent in reclassifying visually identified textures after comple-
tion of surface sampling. Moreover, the fine-scale textural dis-
tinctions generated from the full level I 1 II classifications are
not necessary for all studies. Consequently, we recommend the
simpler, unary or binary, 15-category, level I 1 II classifications
[I(15) 1 II(1) or I(15) 1 II(2)] for general field application,
while reserving the full, 15-category, level I 1 II classification
[I(15) 1 II(15)] for field studies that demand a high level of
textural discrimination. The unary level I 1 II classification will
likely involve the least amount of reclassifying but does not
discriminate statistical differences among bed-surface textures
as well as the binary level I 1 II classification (Table 2).

4. Discussion and Conclusion
Textural patches represent spatial differences in physical

environments within a stream reach and provide a natural,
easily discernible, stratification for sampling both physical and
biological conditions. For example, surface and subsurface
grain-size percentiles of textural patches are roughly correlated
with one another in forest channels of western Washington
(Figure 9a); coarser surface textures have correspondingly
coarser subsurfaces (see figure caption for methodology). Con-

sequently, classification and mapping of surface facies produce
a useful template for locating and stratifying subsurface sample
sites. However, using surface grain-size composition to infer
subsurface sizes is not recommended because surface textures
may be draped by ephemeral, low-flow deposition of fine sed-
iment that is not representative of the underlying subsurface
material. The relationship between surface and subsurface
grain sizes improves when the fine-grained, suspendable par-
ticles are removed from the grain-size distributions (Figure 9b;
see figure caption for methodology).

Between-patch differences in grain size, sorting, shear stress,
and sediment supply also create a practical template for strat-
ifying biological measurements, such as species preference for
spawning, feeding, and resting sites. For example, the 24 mm
patches of Figure 1b should appeal most to spawning steelhead
or chum salmon, while the 8 mm patches should appeal most
to spawning brook trout [Kondolf and Wolman, 1993]. How-
ever, facies stratification is only one of many ways to stratify
sample sites within a stream reach. Depending on the study
goals and the hypotheses to be tested, it may be more desirable
to stratify physical and biological measurements by factors
such as flow depth, velocity, or channel unit morphology (i.e.,

Table 3. Statistical Significance of Greater Classification
Detail

Classification
Comparison

P Value*

Within
Groups

Between
Groups

More Divisions per Ternary
I (15) vs. I (27) 0.341 0.074
I (15) vs. I (39) 0.288 (0.009)
I (27) vs. I (39) 0.439 0.179

I (15) 1 II (1) vs. I (27) 1 II (1) 0.469 0.127
I (15) 1 II (1) vs. I (39) 1 II (1) 0.270 0.074
I (27) 1 II (1) vs. I (39) 1 II (1) 0.300 0.380

I (15) 1 II (2) vs. I (27) 1 II (2) 0.467 0.238
I (15) 1 II (2) vs. I (39) 1 II (2) 0.482 0.178
I (27) 1 II (2) vs. I (39) 1 II (2) 0.451 0.416

I (15) 1 II (15) vs. I (27) 1 II (27) 0.133 0.094
I (15) 1 II (15) vs. I (39) 1 II (39) 0.166 0.079
I (27) 1 II (27) vs. I (39) 1 II (39) 0.449 0.460

More Levels per Classification
I (15) vs. I (15) 1 II (1) 0.000 0.052
I (27) vs. I (27) 1 II (1) 0.000 0.125
I (39) vs. I (39) 1 II (1) 0.000 0.322

I (15) 1 II (1) vs. I (15) 1 II (2) 0.000 (0.002)
I (27) 1 II (1) vs. I (27) 1 II (2) 0.001 (0.009)
I (39) 1 II (1) vs. I (39) 1 II (2) 0.003 (0.011)

I (15) 1 II (2) vs. I (15) 1 II (15) 0.014 0.271
I (27) 1 II (2) vs. I (27) 1 II (27) 0.001 0.114
I (39) 1 II (2) vs. I (39) 1 II (39) 0.002 0.137

Here vs., versus.
*The P values reported here are for one-tailed z-tests (4) of pro-

portions reported in the last two columns of Table 2. P values #0.05
and not in parentheses indicate that the latter classification is a signif-
icant improvement over the former in its ability to discriminate statis-
tical differences in median grain size and variance of bed-surface
textures. P values #0.05 and in parentheses indicate the latter classi-
fication significantly worsens discriminatory power relative to that of
the former.
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types of pools, bars, riffles, and steps [Church, 1992; Wood-
Smith and Buffington, 1996]).

Classification and mapping of textural patches provide an
important and versatile database, in itself, regardless of
whether such maps are used to structure further facies-
stratified sampling. Textural mapping yields an easily under-

stood visual record of channel conditions (particularly when
combined with topographic and morphologic maps (Figure 1))
from which a variety of data can be derived, such as subreach
spawning-habitat availability (a function of grain size and sort-
ing [Kondolf and Wolman, 1993]), patterns of sediment trans-
port and dispersal [Dietrich and Smith, 1984], and textural
response to sediment supply [Dietrich et al., 1993] and hydrau-
lic roughness, i.e., bars, wood (J. M. Buffington and D. R.
Montgomery, submitted paper, 1999). Combined textural, to-
pographic, and morphologic mapping produces a retrievable
database that allows one to associate channel processes and
morphologic response and is a defensible means of monitoring
channel characteristics.

Our classification provides a standard method for identifying
textural patches and conducting facies-stratified sediment sam-
pling. While this method of sampling can be quite time con-
suming and laborious in channels with complex textural distri-
butions (Figure 1b), it produces an accurate areal weighting of
grain sizes. Unstratified sampling strategies (Figures 2c and
2d) are less time consuming and less costly alternatives for
sampling sediments within a stream reach but are abstractions
of the underlying, natural facies and may yield inaccurate re-
sults if there is insufficient areal coverage and density of sam-
ple sites. Furthermore, the underlying facies stratification and
all of its uses, as discussed above, are, in some cases, unretriev-
able from unstratified sampling. Consequently, important
channel characteristics and process insights may be hidden by
economical, but abstract, unstratified sampling strategies. For
example, textural mapping conducted in forest channels of
western Washington demonstrates that the frequency and di-
versity of textural patches (and therefore potential diversity of
aquatic habitat) is well correlated with the frequency of in-
channel wood and its consequent form drag and forced shear
stress divergence (J. M. Buffington and D. R. Montgomery,
submitted paper, 1999). This insight would not be evident
without textural mapping and facies-stratified sampling.

The results of our field test indicate that statistically mean-
ingful textural classification requires a level I 1 II analysis
(Tables 2 and 3); statistical differences in median grain size
and variance of bed-surface textures are poorly represented by
a level I classification alone. This result is not surprising given
that the level I size classes (silt, sand, gravel, cobble, and
boulder) each include a broad range of possible grain sizes and
sortings (0.2–0.5 logarithmic orders of magnitude each, Table
1) and are therefore best used for large-scale, regional quan-
tification of bed-surface texture. However, mechanistic studies
of subreach-scale physical and biological processes require
quantification of patch-scale variations of bed-surface texture
and therefore use of a level I 1 II type classification. While a
level I 1 II classification is more laborious than a level I
classification, our analysis demonstrates that there is no statis-
tical difference among the 15-category, 27-category, or 39-
category textural classifications (Table 3, first 12 entries). Con-
sequently, the simpler, 15-category scheme (as proposed) can
be used without significant loss of classification accuracy.

Although a full level I 1 II classification produces better
statistical discrimination of bed-surface textures, it is cumber-
some and less practical than the simpler, unary and binary,
level I 1 II schemes [I(15) 1 II(1) or I(15) 1 II(2)], both of
which yield reasonably accurate results (Table 2). Conse-
quently, we recommend these simpler approaches for general
field application and suggest reserving the full 15-category
level I 1 II classification [I(15) 1 II(15)] for studies that

Figure 9. Comparison of surface and subsurface grain-size
percentiles for textural patches in forest channels of the Olym-
pic Peninsula, western Washington [data from Buffington,
1995]. D84, D50, D16, and D5 are the grain-size percentiles for
which 84%, 50%, 16%, and 5% of the sizes are finer. Surface
grain-size distributions were determined from patch-spanning,
random, pebble counts [Wolman, 1954] of 1001 grains. Sub-
surface grain-size distributions were determined from sieved
bulk samples, following the Church et al. [1987] sampling cri-
terion (i.e., the largest grain is #1% of the total sample
weight). In Figure 9b, particle sizes that are suspendable at
bank-full stage are removed from the grain-size distributions to
separate the bed load distribution from the suspended load
distribution. The maximum suspendable size was calculated
from Dietrich’s [1982] settling velocity curves, assuming a Co-
rey shape factor of 0.7, a Power’s roundness of 3.5, and a
settling velocity equal to the bank-full shear velocity.
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require more detailed textural discrimination or more com-
plete description of grain-size distributions. For example, two
textural patches classified as medium gravel in a unary level I 1
II scheme may have very different fine- and coarse-gravel con-
tents, the distinction and quantification of which may be of
prime interest to fisheries biologists charged with assessing
spawning gravel quality. The complete 15-category level I 1 II
classification provides more detail about the relative abun-
dance of component size classes in gravel textures than is
available from level I and unary level I 1 II type classifications
currently used by fisheries biologists [e.g., Shirazi and Seim,
1981; Platts et al., 1983]. Consequently, it may offer better
quantification of the physical differences driving habitat quality
and use of the channel by aquatic animals.

While our data set samples 83 bed-surface textures from 17
rivers, the sampled textures are dominantly different subcate-
gories of gravel (Figure 5a). Furthermore, the samples tend to
plot along the edges of the sand-gravel-cobble ternary, indi-
cating that our textures are dominated by one to two major
grain sizes, rather than three; only one texture plots in the
central portion of the ternary. The data also demonstrate that
when there are two dominant size classes, they tend to be
closely related (i.e., sand and gravel, or gravel and cobble, but
not sand and cobble), suggesting a hydrologic control on the
grain-size composition of patches. A similar hydrologic control
on grain size is commonly observed at reach scales; there is a
general downstream sequence of boulder-bed, cobble-bed,
gravel-bed, and sand-bed morphologies that covaries with the
downstream decline of channel slope and shear stress [e.g.,
Montgomery and Buffington, 1997]. If our data are generally
representative, then most bed-surface textures may plot along
the edges of the level I grain-size ternaries, making the number
of commonly observed textural types less than the full suite of
possible textures proposed in our classification.

We have not conducted an exhaustive test of textural clas-
sifications, nor do we attempt to present the optimal scheme
for classifying bed-surface facies. Rather, our approach is a
minimalistic one that uses as few textural categories as possible
without compromising statistical accuracy of the classification,
thereby producing an economical classification procedure that
is more likely to be used. Moreover, we present a purposefully
general classification framework that can be modified for par-
ticular study interests, while maintaining a basic degree of
standardization.
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