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Abstract. Rainfall simulation is a commonly used approach for studying runoff and
erosion from forest roads, and a method is needed to estimate infiltration parameters
from these experiments. We used two algorithms, the Simplex and Shuffled Complex
Evolution, to estimate parameters for a physically based infiltration and overland flow
model. Each algorithm was tested by estimating parameters for 92 field-measured
hydrographs from forest roads. Nine of the field-measured hydrographs allowed us to

further test whether estimated parameters could be extended to other antecedent
conditions and plot sizes. The results demonstrate (1) the physically based model is
able to estimate hydrographs from forest roads, (2) the two algorithms find unique
parameter sets in spite of an error surface that suggests identifiability problems
between the hydraulic conductivity and pressure parameters,-(3) the two algorithms
converged to the same parameter values, and (4) that parameters estimated for one
antecedent condition and plot size can be extended to others with reasonably small

€Iror.

Introduction

Dirt roads built to access forest lands are major and
persistent sources of sediment to headwater streams. Public
and private landowners are increasingly being required to
evaluate sediment contributions from both existing and
proposed roads as part of environmental analyses to protect
fish and water resources. To improve predictions of sedi-
ment production from forest roads, the U.S. Department of
Agriculture Forest Service is building a forest road compo-
nent for the Water Erosion Prediction Project [Burroughs et
al., 1991], a physically based model of hydrology and
erosion.

Accurate infiltration parameter estimates are needed to
drive the model. Rawls et al. [1989] developed methods to
estimate Green-Ampt infiltration parameters for croplands
and rangelands, but their empirical formulas are inappropri-
ate for coarse-grained soils common to road surfaces and to
compacted conditions. Estimates of infiltration capacity for
roads have been made by several authors. Reid and Dunne
[1984] measured runoff from roads during natural rainfall
events. They found the steady state infiltration rate averaged
over the complete road profile by subtracting the runoff rate
from the rainfall rate during periods of uniform rain inten-
sity. While the infiltration rates they found were small, they
were high enough to prevent runoff for several rainfall
events. ' . ’

Rainfall simulation is commonly used to measure infiltra-
tion and overland flow on roads and has the advantages of
providing control of rainfall timing and intensity, sampling
over a relatively large area, and measuring in situ with
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minimal disturbance of the sampled area. Ward and Sieger
[1983], Ward [1986], and Flerchinger and Watts [1987] used
a least squares fit of the infiltration rate to the reciprocal of
the accumulated infiltrated depth to determine values for the
Green-Ampt infiltration parameters from rainfall simulation
data. Ward [1986] was dissatisfied with this method because
it frequently yielded negative parameter values. Ward and
Bolin [1989a, b] and Ward and Bolton [1991] used the
regression approach or an average of the final three steady
state infiltration rates from a simulated event to estimate the
hydraulic conductivity; they then back-calculated the suc-
tion head using the hydraulic conductivity estimate and total
depth of infiltration for the simulated event. These methods
occasionally yielded physically impossible parameters, and
the authors found it necessary to resort to trial and error in
those instances.

To properly use rainfall simulator data for parameter
estimation, infiltration information must be extracted from
the hydrograph. None of the previously discussed studies
explicitly consider routing in their methods to estimate
infiltration parameters. In this paper, we test two algorithms
to estimate infiltration parameters from hydrographs ob-
tained using ‘rainfa‘ll simulation. Estimated parameters are
used in a physically based model of Horton overland flow,
including infiltration, depression storage, and routing, to
predict the hydrograph. '

The major issues to be investigated are as follows: (1) to
see if the physically based\\ model of Horton overland flow
can reproduce hydrographs with physically meaningful pa-
rameter sets, (2) to detérmine whether the estimation algo-
rithms yield unique parameter sets, and (3) to see if param-
eters estimated for a given set of ‘conditions are applicable to
other antecedent conditions and plot sizes.
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Table 1. Information About Locations and Soils Where Rainfall Simulation
Was Done

Location Parent Material Texture Year

Deep Creek, Idaho metamorphic-gneiss sandy silt 1989
Hahn’s Peak, Colorado eolian sandstone fine sandy loam 1989
Park Lake, Montana metamorphic-schist sandy silt loam 1988
Potlatch River, Idaho loess silt loam 1990
Tin Cup Creek, Idaho metamorphic-shale silt clay 1989
Tea Meadow, Idaho loess silt loam 1990

Methods fall intensity was measured before and after each event using

Field Data Collection

Rainfall simulations were performed on forest roads on six
different soils. Descriptions of the soils are in Table 1. More
than one road segment was used for simulation on some
soils, yielding 11 sites. Information for each site is listed in
Table 2. Each site had three plots, two 1-m wide by 1-m long
plots and one 1-m wide by 5-m long plot, except for the site
at Park Lake, which had only two 1-m by 1-m plots and no
I-m by 5-m plot. This yielded a total of 32 plots. An example
layout from the Tea Meadow Site is presented in Figure 1.
Each plot was subjected to three rainfall events, giving a
total of 96 hydrographs. Three hydrographs from Potlatch
River were discarded because the pump gradually ceased
operation during the final event, and one hydrograph from
Hahn’s Peak was discarded because of a bad nozzle over one
of the plots for one event. The remaining 92 hydrographs
were used in the analysis.

Plots were installed on native surfaced forest roads freshly
bladed to remove ruts and form a smooth, uniform surface.
Sidewalls made of sheet metal were installed parallel to the
direction of flow and sealed to the road surface with latex
and bentonite. Headwalls with covers were set up at the
bottom to collect runoff.

Three 30-min rainfall events were simulated at each site.
The first event, designated the ‘‘dry’’ event, occurred with
soil moisture at the condition found when arriving at the site:
the second event, designated ‘‘wet,”” was 24 hours later; and
the third event, designated “‘very wet,”” occurred as quickly
after the second as possible, usually about 30 min.

Rainfall was applied with an oscillating rainfall simulator
(modified Purdue). A windscreen surrounded the plot. Rain-

metal pans covering each plot. Rainfall was set to a nominal
intensity of either 30 mm/h or 50 mm/h, and only one
nominal intensity was used at a site. The nominal intensity
for each site is listed in Table 2. A reasonably constant
intensity was maintained with a flow regulator, although
there was a decrease of head in the feeding tank. For the
Hahn’s Peak data, which were typical of all of the data, the
coefficient of variation of rainfall intensity calculated from
the before and after measurements averaged 0.7% and never
exceeded 1.4%. Spatially, the rainfall varied little as well.
For the Hahn’s peak data, the coefficient of variation for
rainfall intensity between three plots averaged 3.4% for six
events and never exceeded 4.6%.

Runoff was measured differently in the 3 years of study. In
1988 when the Park Lake site was studied, runoff was
measured in the field directly in graduated cylinders hooked
to a bubble gauge to record the level every 20 s. In 1989 and
1990, grab samples lasting 30 s were collected every 45 s. If
the 1-L sample bottle was close to filling before 30 s, it was
removed. Exact time of collection was measured on a stop
watch, and flow rate was calculated by dividing volume
collected by time. Volumes of one half of the samples were
determined in the laboratory gravimetrically; volumes of the
other half were determined from measurements in the field.
In 1989 volumes of field-measured samples were measured in
gradunated cylinders, and in 1990 volumes of field-measured
samples were measured on scales. A correction factor de-
termined in the laboratory was applied to the field-measured
samples to account for their sediment content.

Antecedent conditions were determined by soil moisture
content. Volumetric moisture content was calculated from

Table 2. Topographic and Rainfall Information About Specific Sites

Nominal Rain Slope, %
Surface Intensity,

Site Dsy, mm mm/h Plot 1 Plot 2 Plot 3
Deep Creek 1 2.08 30 5.7 6.5 6.6
Deep Creek 2 2.08 50 5.9 6.9 6.2
Deep Creek 3 1.72 30 1.8 3.6 4.2
Hahn’s Peak 1 0.23 30 8.8 10.2 8.7
Hahn’s Peak 2 0.23 50 4.7 4.6 4.4
Hahn’s Peak 4 0.13 50 6.4 6.5 7.1
Park Lake 1 0.76 30 n/a 6.3 53
Potlatch River 3 0.09 50 5.1 5.0 4.9
Tin Cup Creek 1 0.20 30 8.5 9.6 7.7
Tin Cup Creek 2 0.20 50 13.5 14.4 11.8
Tea Meadow 5 0.03 50 6.5 6.5 7.3
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Figure 1. Example layout of a site for rainfall simulation
showing the three plots.

the average moisture content, mass basis, of the points
closest to each plot (Figure 1) multiplied by the specific
gravity of the soil measured in that plot. To ensure that the
plot and soil moisture sampling sites received the same
amount of rainfall, locations where soil moisture samples
were taken were covered at the beginning and end of each
event at the same time that the plots were covered for
measuring rainfall intensity. Bulk density was measured
within the plots after the third event by the compliant cavity
method [Grossman and Pringle, 1987].

While a large data set from many sites was available for
parameter estimation, we used only the data from one of the
sites, Tea Meadow, for testing the parameters on different
plot sizes and antecedent conditions. Data collected at the
other sites were inadequate for the test. Prior to 1990, soil
moisture contents were not measured such that the moisture
content of the plots at the beginning of each event were
accurate. Although the Potlatch River site was also mea-
sured in 1990, the rainfall simulations were done after two
weeks of wet weather in the snowmelt season, and the site
was nearly saturated for all events. This meant that we could
not test how well we could extend the results to other
antecedent conditions. In addition, the pump failed during
the final event, so only a portion of the data were useful.

Modeling Approach

The overland flow model assumes the case of Horton
overland flow, where runoff is generated only when rainfall
intensity exceeds infiltration capacity. It is a semianalytic
solution to the kinematic wave overland flow equation using
Philip’s infiltration equation to calculate rainfall excess for
the case of constant rainfall intensity [Cundy and Tento,
1985; Luce and Cundy, 1992]. The model uses four param-
eters to model the processes of infiltration, depression
storage, and overland flow.

Infiltration is given by the model of Philip [1969] modified
for constant intensity rainfall [Cundy and Tento, 1985]:

f@)=A+Blt-(1,—1)] " (1

where ¢ is time from the onset of rain (T), (f(t) is the
infiltration capacity at time t(L/T), A is the conductivity
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(L/T), and B is the sorptivity at the initial soil moisture
content (L/T"2). The factor f, — ¢, is a time correction
composed of the actual time to ponding (¢,) and the time
when f(#) = { under a continuously ponded condition (¢),
where i is the constant rainfall intensity (L/T).

Depression storage h,(L) is the maximum equivalent
depth of water that can be stored on the surface before flow
will begin. If the depth of depression storage is known, then
the time at which it is filled and runoff begins ¢,(T) can be
found from

h, = f’" i~ f(0) dt @)
tp

substituting the relationship for f(¢) described by (1) gives
hy=(i—A)t, —t,) —2B(1, — 1, + 1)2 + 2B:}*  (3)

where ¢, can be found numerically.
Overland flow is modeled using the kinematic wave ap-
proximation

et 2 R £ (4)
R _ = —_ t

B ax ot !

where & is the flow depth (L), x is the distance downslope

(L), and a and B describe the stage discharge relationship

g=ahP e

where g is the discharge per unit width (L%/T). In the case
of overland flow on forest roads, flow lengths are sufficiently
short that for the rainfall intensities used here, a laminar
regime was thought to represent the overland flow best.
Runoff from the plots had Reynolds numbers of the order of
10; therefore « and B are given by

B=3 (6)

where g is gravitational acceleration (L/ T, S o s bed slope
(L/L), vis kinematic viscosity (L%/T), and k is a dimension-
less roughness coefficient.

Both the kinematic wave and Philip’s equations are ap-
proximations to the true field situation. A principal assump-
tion for this model is that there is no spatial variation in soil
or hydraulic properties. Freshly bladed road surfaces are
almost ideal for testing this model, as they come close to
meeting this assumption. A further assumption in Philip’s
model is that initial soil moisture does not vary with depth.
No measurements were taken to confirm the validity of this
assumption.

a =gSylkv

Parameter Estimation Algorithms

In general, a four-parameter problem is posed, with the
objective of finding the best A, B, h,, and k parameter set to
reproduce a given field hydrograph. In this analysis, & was
estimated independently following the method of Katz [1990];
he investigated surface roughness in laboratory experiments on
artificial road surfaces and found a relationship between &,
median soil aggregate diameter, and rainfall intensity

DSO 4.87 i 3.39
k=25.17 + (-7‘> + (Za) (7

where D5, is median soil aggregate diameter in millimeters
and { is rainfall intensity in millimeters per hour. When D,
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Figure 2. Hydrographs showing effects of changes in three

parameters in the kinematic wave—Philip infiltration over-
land flow model: (a) increase in A, (b) increase in B, and (c)
increase in 4.

is less than 0.7 mm it is set equal to 0.7 mm, and when  is
less than 40 mm/h, it is set equal to 40 mm/h.

The following brief sensitivity analysis will show how
changes in the remaining three parameters, A, B, and 4,
affect the hydrograph. The analysis illustrates potential
problems in arriving at unique estimates of A and B. For the
following examples, we used A = 5.0 mm/h, B = 5.0
mm/h'2, Dgy = 1.69 mm, &, = 0.5 mm, S, = 0.05, a plot
length L of 1 m, and a 30-min rainfall at i = 50 mm/h.

Figure 2a shows hydrographs with A = 5.0 mm/h (the
base case) and A = 7.5 mm/h, an increase of 50%. There are
three distinct effects of increasing A: (1) the time to ponding
increases, (2) the time to fill depression storage increases,
and (3) the peak flow rate decreases.

Figure 2b shows hydrographs with B = 5.0 mm/h'? (the
base case) and B = 6.5 mm/h'2, an increase of 30%.
Qualitatively, the effects of increasing B are similar to those
of increasing A. However, the delay in runoff is greater, and
there is an increase in curvature, concave down, of the upper
limb of the hydrograph.

Figure 2c shows hydrographs with two different values of
hn: h, = 0.5 mm (the base case) and 4, = 1.0 mm, an
increase of 100%. An increase in h, causes a delay in
initiation of runoff and a very slight steepening of the rising
limb. There is no effect after the time of concentration (the
time when the rising limb of the hydrograph changes from
concave up to concave down). Because of the steepness of
the rising limb, small errors in timing can have a large effect
on any error function which uses differences between ob-
served and predicted hydrographs. Therefore when trying to
estimate at A and B, it is necessary to allow /,, to vary so
that the estimate of %,, does not unduly affect estimates of A
and B.
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A and B have similar effects on the runoff hydrograph,
potentially creating an identification problem. Figure 3
shows an error surface for the hydrograph we used in Figure
2, calculated as the mean-squared differences between the
predicted and base case hydrographs, plotted above the A-B
plane to show how joint variations in A and B affect the error
value. The prominent feature in the error surface is the
trough angled between A i, Bp.x and Ap.x, Bgin. The
trough identifies a region where the effects of high and low
values of A are offset by low and high values for B,
respectively. Figure 4 shows the base-case hydrograph plot-
ted with predicted hydrographs from two A,B pairs with
similar errors of about 4.7 X 107%. One predicted hydro-
graph used A = 8.75 mm/h, an increase of 75%, and B =
3.75 mm/h 2, a decrease of 25%. The other hydrograph used
A = 2.5 mm/h, a decrease of 50%, and B = 6.0 mm/hl/z, an
increase of 20%. Depression storage h, was adjusted to 0.9
mm for the first hydrograph and 0.17 mm for the second so
that the rising limb did not unduly influence the error values.
The systematic errors in the predicted hydrographs are
visually apparent, but they do not greatly affect the overall
sum of squared differences. This highlights the potential for
nonunique parameter sets based on error function evalua-
tion. We therefore tried two algorithms, one that has been
demonstrated to find the global minimum and another, more
traditional, approach that is more susceptible to identifica-
tion problems.

The objective function used was a simple mean-squared
differences

Err = (1/n) D, (g, = q¢)* (®)
1

where n is the number of discharge observations, g p» is the
predicted flow (L3/T), and q, is the observed flow (L3/T).
The model predicts only instantaneous flows, so the pre-
dicted flows g, are the average of the instantaneous flow
predicted at the observation time and 15 s before and 15 s
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Figure 3. Error surface in A-B plane with &, fixed at true
value (0.5 mm). Contours on bottom show that the trough
has little relief from end to end. Error surface is zero at A =
5 mm/h and B = 5 mm/h 2.
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Figure 4. Hydrographs showing systematic errors from A
overpredicted—B underpredicted and A underpredicted-B
overpredicted combinations. Both predicted curves have
about the same error value.

after. This averaging is consistent with the field measure-
ment methods discussed earlier.

Luce [1990] used a grid search method to estimate A, B,
and k. The method was time consuming and generated
multiple parameter sets that subsequently had to be sorted
subjectively. In this analysis, we tried two different auto-
mated methods to estimate a unique parameter set for each
hydrograph. The first method was the Simplex method
described by Nelder and Mead [1965]. We used the code
from Press et al. [1986] for this specific application with a
single start. This method is fast but can converge at a local
minimum if the error surface is flat or pitted. The second
method was the Shuffled Complex Evolution (SCE) de-
scribed by Duan et al. [1992). This method was developed to
find the global optimum for error surfaces that potentially
could have many local minima.

The Simplex method searches through the parameter
space using a tetrahedron (4 points in this case) to find the
minimum error value. An initial tetrahedron is set up using
four of the eight corners of the search space of reasonable
parameter values. A new tetrahedron is formed by replacing
the point on the tetrahedron having the greatest error with a
point with lower error. This new point is generated either by
reflecting the worst point through the centroid of the other
three points or contracting it toward the centroid. If neither
of these approaches finds a point with lower error, the entire
tetrahedron is contracted towards the point having the lowest
error. The process is iterated until convergence is found.

The SCE method essentially uses multiple Simplex tetra-
hedrons whose points are periodically shuffled to avoid the
possibility that the method will settle outside of the global
optimum. For our application, 49 initial points, randomly
selected from within the search space, are sorted into 7
complexes each containing 7 points. Four points are selected
randomly from a complex to form a tetrahedron. The point
with the greatest error value in the tetrahedron is replaced by
a point with less error using two iterations of the Simplex
method as described in the preceding paragraph, after which
the tetrahedron is dissolved and the updated points are re-
turned to the complex. Four new points are selected randomly
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from the updated complex to form a new tetrahedron. This
process of randomly forming a tetrahedron and iterating
through the Simplex method is performed 7 times for each of
the 7 complexes, after which 7 new complexes are formed from
the updated points in a shuffling (not random) action. This
process is repeated until convergence is reached.

A search space of reasonable parameter values is required
for both methods. The SCE method explicitly requires a
parameter space in which to work, and the Simplex method
may attempt to search outside of reasonable ranges. We
allowed the Simplex method to look outside of the reason-
able ranges, but set the error function for parameter values
outside of the bounds at 5 x 10°, which is much greater than
the error value that could be calculated from a hydrograph.
This effectively forced the Simplex method to search within
the space of physically reasonable parameter values.

The maximum value of A that could be expected would be
the rainfall intensity minus the highest observed flow rate
converted to a unit area basis, and was set as

Apmax = i = 0.9(qmax/L) &)

where g, is the maximum observed flow per unit width
(L*/T), and L is the plot length. The 0.9 factor was added
because there were fluctuations in observation of peak flow
that could lead to an observed peak flow greater than the
conductivity and rainfall would allow. The minimum value of
A was set to 0.

We used observations of the beginning of runoff to set the
maximum value of B. The time that runoff is first observed
t,0 must occur after ¢,, and can be considered a maximum
estimate of ¢,. Time to ponding under constant rainfall can
be calculated using Philip’s equation

B \? B?
A((z‘ —A)) ' 2(0 ~A>)
t, = A

P i

<i (10)

and because both A and B both act to increase ¢,,, we can use
A = 0 to find the maximum possible value of B as

it b2

B ax = —_\/27

B has a minimum value of 0. A further condition on B is that
if A =0, then B =0.

Depression storage was constrained between 0 and 20
mm. A depth of 0 mm is the physical minimum, and field
observations suggested that more than 20 mm of depression
storage on the freshly graded forest road plots was implau-
sible.

The four points used to start the Simplex method were (4,
B, h,)=(0,0,0), (An/5,0,0), (Amax/s’ Bmax/s’ 0, (0, 0,
K amax/10). Convergence for the Simplex method was based
on the difference between the minimum and maximum
values, which was compared to a fraction ¢ of the average of
the minimum and maximum error values. In the analysis
here, & was set to 1 x 1076, This tolerance was found by
using 1 x 1073 for initial tests and decreasing the tolerance
by an order of magnitude until it no longer converged
reliably at 1 x 1077,

The SCE was started with 49 randomly selected points
within the search space, sorted into 7 complexes each

(11
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Table 3. Descriptive Statistics of Errors From the Two Fitting Methods for All 92 Hydrographs

Simplex Method SCE Method

Absolute Absolute
Absolute  Value Absolute  Value

Mean- % Error Value % Error Mean- % Error Value % Error
Square- % Error Peak % Error Peak  Square- % Error Peak % Error  Peak
Statistic Error Volume Flow Volume Flow Error Volume Flow Volume Flow
Mean 0.00202 -1.171 0.050 1.431 2.324  0.00197 —1.026 0.152 1.111 2.045
Median 0.00104 —0.561 0.628 0.740 1.605 0.00095 —0.507 0.701  0.546 1.472
Minimum 0.00029 —11.663 —16.912 0.044 0.002 0.00028 —8.258 —15.650 0.001 0.002
Maximum 0.01084 4.318 9.202 11.663 16.912  0.00954 0.912 8.173  8.258 15.650
Standard deviation 0.00205 2.202 3.628 2.041 2.776  0.00198 1.544 2.998  1.483 2.188

Mean square error is calculated by (8), percentage error in volume is calculated by (15), and percentage error in peak flow

is calculated by (16).

containing 7 points. We determined convergence for the
SCE approach when the range between the A, B, and 4,
values of the best 5 points was 1 x 107> times the range of
the original search space. We started with a tolerance of 0.1
and decreased it by an order of magnitude until convergence
was no longer reliable at 1 X 107*. OQur convergence
criterion was different than that of Duan et al. [1992] because
they were fitting model outputs and determined convergence
when the error was within a tolerance limit of zero error.
This also was a different convergence criterion than for the
Simplex method. While the Simplex method checks to see if
the points are similar in error value, the SCE criterion
checks to see if they are close in space.

As an example of the resources required, the Simplex
method took about 5 min, and the SCE method took about 3
hours to obtain parameter values for the hydrographs shown
in Figure 2. Both were compiled BASIC programs run on a
33-MHz 386 computer.

Predicting. Hydrographs for Changes in Antecedent
Condition and Plot Size

The plots at Tea Meadow were used to see if parameters
estimated for a given set of conditions are applicable to other
antecedent conditions and plot sizes. We adjusted the SCE
parameter sets from the wet event on the three plots to
predict all of the other event-plot combinations at Tea
Meadow. For example we used the parameter set from the
wet event on plot 1 to predict the hydrographs for the dry
and very wet events on plot one and the dry, wet, and very
wet events on plots 2 and 3.

In order to predict runoff for different antecedent condi-
tions, it is necessary to know the how the parameters change
for the new antecedent conditions. Of the four parameters A,
B, h,, and k, we adjusted only B. Philip [1990] suggested
that the ratio A/K;, where K, is the saturated hydraulic
conductivity (L/T), changed with initial soil moisture con-
tent 6,(L3/L?), with A/K, = 1 at 6, = 6, and A/K, < 1 for
8; < 6, where 8,(L3/L%) is the saturated soil moisture
content. He showed that the ratio for a Yolo light clay varied
from 0.4 for dry conditions to 1.0 for saturated conditions,
which is probably less than A varies from point to point on
even a relatively homogeneous road. In any event, we did
not have the data required by Philip with which to predict the
changes in A with moisture content. Presumably, depression
storage #,, and roughness k& would change with the sequence
of events, since erosion processes remove some roughness

and depression features and create others. Exactly how they
would change, or even the direction of change, is not clear.

The sorptivity parameter in Philip’s equation B is a
function of the initial soil moisture content. Using Fok [1975]
and Campbell [1974], B can be estimated from

26+ 3\ 12 :
(12)

B=[(6,—-0)A¥, ——
((S l) $b+3

where 6, and 6; are the saturated and initial volumetric soil
moisture contents (L3/L3), ¥ s is the bubbling pressure, and
b is the slope of the log (¥) versus log (6/8,) plot. For a given
soil, ¥, A, b, and 6, can be considered constant and
grouped into one constant, C, and we can write

B=C((6,—6))" (13)

So the B value for any other antecedent moisture content B »
can be determined from the initial estimate of B, B, and the
square root of the ratio of the soil moisture deficits:

_ (gs - Gi)p 12
By "B"((os ~ 0,-)0)

We used the parameters estimated for the wet event by SCE
for all predictions. The A and %, values were unchanged,
and B was adjusted for the dry and very wet initial condi-
tions as described above.

(14)

Percentage Error Calculations for Field Hydrographs

In preparing the results, we developed two normalized
measures of error. We could not normalize the data based on
mean square error as given in (8), because hydrographs from
very wet conditions consistently had a lower total sum of
squares than did the dry events. The reason for this is that
the hydrographs for the very wet event rose to the equilib-
rium limb sooner, and the mean was closer to the equilibrium
limb, where most of the observations were made. We used
percentage error in volume and peak flow as measures of
accuracy. The three indices mean square error, error in
volume, and error in peak flow define the important aspects
of the hydrographs.

We calculated percent error in volume Ey as

Vi =V
Ey= " (15)
0
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Figure 5. Histograms of the absolute value of percent error for (a) volume for simplex method, (b)
volume for SCE method, (¢) peak flow for simplex method, and (d) peak flow for SCE method.

where V,, is the modeled volume, and V|, is the observed
volume. Volume was calculated as the time integral of the
hydrograph using a trapezoidal rule.

Percentage error in peak flow Ep was calculated by

Py - PO
Ep= ——— 16
P P, (16)
10
’a . . LI - .
[
e
E s
2
9
i
o ; , s \ . s
0 5 10 15 20 25 30
Time (min)

* Observed —SCE

Figure 6. An example of a well-fitted hydrograph, Tin Cup
Creek 1, plot 3, wet event. Least square error is 0.00055
(mL/s)2, percent volume error is 1.14%, and percent peak
error is —0.51%.

where P,, is the modeled peak flow, and Py is the observed
peak flow. We calculated peak flow as the average of the
final six runoff rate values before rain stopped. The averag-
ing helped to reduce error due to measurement and naturally
occurring surges in runoff.

Results and Discussion

The purpose of this investigation was primarily to find
whether an automated parameter estimation routine could be
used with the kinematic wave—Philip infiltration model to
estimate infiltration parameters. This requires showing that
the model can be used with a set of physically reasonable
parameters to reproduce field-measured hydrographs, that a
unique ‘“‘best’” parameter set can be found, and further, that
the parameters can be used to predict hydrographs for other
antecedent conditions and plot sizes.

Most of the 92 hydrographs can be well represented with
the model using physically reasonable parameters. Recall
that the search space for both methods was constrained so
that physically reasonable results were required. Hydraulic
conductivities estimated for the road surfaces ranged from
5 x 107> mm/h to 8.82 mm/h with a geometric mean of 0.11
mm/h, which is reasonable for a compacted mineral soil. For
comparison, Reid and Dunne [1984] found an average infil-
tration capacity of 0.5 mm/h for gravel surfaced roads on the
Olympic Peninsula in Washington State. Table 3 shows
statistics of errors in modeled hydrographs relative to the
field-measured hydrographs, and demonstrates that errors
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Figure 7. Ten hydrographs with the greatest errors when fitted with either algorithm. Codes above each
hydrograph reflect the site in the first three digits; the fourth digit is the plot number, and the final letter

reflects the dry, wet, or very wet event.

are typically small. Figure S shows the distribution .of the
absolute value of percentage error for volume and peak flow
for both the Simplex and SCE methods, showing that the
great majority of modeled hydrographs had less than 2%
error in volume and less than 3% error in peak flow. Figure
6 shows an example of a well-represented hydrograph with
volume error of 1.14% and a peak flow error of —0.51%. T
tests show that the average percentage error in peak flow
was essentially zero (Hy: Ep = 0: p = 0.90 for Simplex,
and p = 0.63 for SCE), and that the percentage error in
volume was consistently slightly less than zero (Hy: Ey =
0: p = 2 x 107° for Simplex, and p = 7 x 10~° for SCE).
As Table 3 demonstrates, this consistent underprediction of

volume by the estimated parameters was very small in
magnitude.

Those hydrographs that were not represented well using
either method typically showed either evidence of spatial
variability or high variability in the runoff data. Figure 7
shows 10 of the worst hydrographs as represented by SCE
estimated parameters. Figures 7a-7h were poorly repre-
sented, probably because of spatial variability in initial
moisture content or depression storage. Figures 7a and 7b
and 7g and 7h show a stepped shape characteristic of spatial
variation, and Figures 7¢-7f just show a rounding off that is
not explainable except through spatial variation. All eight of
these hydrographs were from the dry run of the series.
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Figure 8. Parameter values predicted by the Simplex
method plotted against parameter values predicted by the
SCE method with 1:1 line: (a) A, (b) B, and (c) &,,.

Subsequent events were well represented, which implies

that the source of spatial variability was reduced by the first

event. This could be due to moisture contents being made

more uniform by the rainfall application and creation of a

drainage pattern that removed dams from the microtopogra-

phy of the freshly graded surface. Figures 7g and 7j show
_high variability in the runoff data.

The results above show that the model is capable of
representing most hydrographs from forest roads well. The
second issue is whether the parameter sets estimated with
these automated methods are unique.

The flat trough observed in the A-B error surface in Figure
3 has an analogy in the three-dimensional A-B-h, parameter
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Figure 9. Three hydrographs that were better fit by SCE
than Simplex and one hydrograph that was better fit by
Simplex than SCE.

space and raises the concern of representing hydrographs
equally well with a variety of parameter sets. Duan et al.
[1992] demonstrated the ability of the SCE approach to find
the global minimum even for very flat surfaces and surfaces
with many local minima, so we can accept that the parameter
sets estimated by the SCE approach are very close to the
“true’” values. The Simplex method, however, is prone to
converging in local minima and on flat surfaces. One might
expect different parameter sets to result from the two
different methods if the trough prevented finding unique
minima. We found that the two methods converged to the
same parameter values. Figure 8 shows the A, B, and £,
values for the Simplex method plotted against the A, B, and
h,, for the SCE method with the 1:1 line. In paired T tests,
we found that the difference between A, B, and 4, values
estimated by each method did not differ significantly from
zero (Hy: Agp, = Asce: p = 0.18, Hy: By, = Bscr:
p = 0.12, and Hy: hy, o1y = hy scg: p = 0.17). The fact
that both methods came to the same parameter values is
strong evidence suggesting that the estimates are unique.
There were a few individual hydrographs where the SCE
parameter set represented the hydrograph notably better
than the Simplex parameter set (Figure 9) and one where

Table 4. Initial Moisture Content by Plot and
Event for Tea Meadow

Volumetric Moisture Content

Bulk

Pre-very Density,
Plot Predry Prewet Wet g/mL
1 0.35 0.45 0.52 1.39
2 0.26 0.32 0.39 1.66
3 0.27 0.36 0.41 1.74
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Table 5. Parameter Values Optimized by SCE and Hydrograph Errors for the
Wet Event on the Three Plots at Tea Meadow

Optimized Parameter Values

% Error % Error
Plot A, mm/h B, mm/h 2 H,, mm Volume Peak Flow
1 2.86 1.99 2.0E-05 -0.3 -1.1
2 2.13 2.63 5.9E-02 -0.3 -2.0
3 4.75 0.65 1.3E-01 -0.7 0.5

representation by the Simplex parameter set was notably
better. The differences are of the nature we saw in Figure 4
where there are tradeoffs in A and B giving similar error
values. For the hydrograph in Figure 9a from Deep Creek,

70

which went from being one of the worst representations for
the Simplex method to being very well represented by the
SCE method, A changed from 1.1 mm/h for the Simplex
estimate to 4.1 mm/h for the SCE estimate; B went from 0.75
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Figure 10. Actual and SCE optimized hydrographs for the wet event at Tea Meadow. (Top) Plot 1.

(Middle) Plot 2. (Bottom) Plot 3.
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Table 6a.
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Predicted Parameter Values and Hydrograph Errors Using

Optimized Parameter Values From the Wet Event on Plot 1 (1 m by 5 m) at

Tea Meadow

Predicted For

Predicted Parameter Values

% Error % Error
Plot Event A, mm/h B, mm/h 12 H,, mm Volume Peak Flow
1 dry 2.86 2.70 2.0E—-05 5.0 0.3
1 very wet 2.86 0.00 2.0E—05 0.9 -1.7
2 dry 2.86 2.30 2.0E-05 7.5 9.7
2 wet 2.86 2.02 2.0E-05 i4 -1.6
2 very wet 2.86 0.00 2.0E-05 0.7 0.8
3 dry 2.86 2.77 2.0E—-05 -2.6 0.0
3 wet 2.86 1.63 2.0E—-05 -2.1 1.5
3 very wet 2.86 0.00 2.0E-05 7.6 6.2

mm/h'? to 0.16 mm/h'?; and h,, changed from 0.10 mm to
0.12 mm.

Showing that the model can reproduce hydrographs using
physically reasonable parameters, and that a unique param-
eter set can be found for each hydrograph using an auto-
mated method are important steps in demonstrating that this
model can be used to analyze rainfall simulation runoff data.
A further question is whether the model is able to represent
the changes in runoff that accompany physical changes in the
soil, for example, antecedent moisture conditions. The fol-
lowing results from Tea Meadow suggest that the model can
predict hydrographs for other antecedent conditions and plot
sizes when parameters are adjusted according to physically
based rules.

Table 4 presents the average soil moisture contents for
several points surrounding each plot at the beginning of each
event. Plot 1, the 1-m by 5-m plot, consistently showed
higher moisture contents than the other two plots. The four
sample locations on the fill slope side of the road (Figure 1)
had high moisture contents, so the difference did not result
from one spurious measurement point. This area receives
less traffic and is less compacted, so the higher moisture
contents are reasonable.

Table 5 shows the SCE estimated parameter set and the
associated hydrograph error for the wet event on all three
plots. Figure 10 graphically shows the three modeled and
observed hydrographs.

Tables 6a through 6¢ present the adjusted parameter sets
and their associated hydrograph errors for all of the combi-

nations of plots and events used. Parameters were adjusted
from the estimated parameter sets in Table 5 and the
moisture contents in Table 4 using (14). Note that A and 4,
do not change within each table because they do not change
with initial soil moisture content, but B changes by event and
plot. B is zero for the very wet events, because we took the
pre-very wet event soil moisture content to be the saturated
soil moisture content. Tables 6a-6¢ are provided to show
how parameters estimated from each plot performed at
predicting other plots and events. The averages do differ, as
shown in Table 7, but the differences between the means are
not significant (Hg: V; = V, = V3: p = 0.55 and Hy:
P, =P, = P3: p = 0.68 for peak flow).

In general, we can see that the percentage errors in
volume and peak flow are small. Percentage volume errors
average 2.12% and range from —6.36% to 12.34%. Percent-
age peak flow errors average 1.45% and range from —6.05%
to 10.18%. Figure 11 shows histograms of the percentage
volume and peak flow errors for the 24 cases here. Figure 12
shows predicted and observed peak flows and volumes
plotted against the 1:1 line and bracketed with lines showing
+15% error.

Conclusions

The use of an automated parameter estimation algorithm
with a physically based model of Horton overland flow was
successful in terms of (1) reproducing field-measured hydro-
graphs with physically reasonable parameter sets, (2) finding

Table 6b. Predicted Parameter Values and Hydrograph Errors Using
Optimized Parameter Values From the Wet Event on Plot 2 (1 m by 1 m) at

Tea Meadow

Predicted For

Predicted Parameter Values

% Error % FError
Plot Event A, mm/h B, mm/h 2 H,, mm Volume Peak Flow
1 dry 2.13 3.51 5.9E-02 -0.1 -1.0
1 wet 2.13 2.59 5.9E-02 -33 —1.5
1 very wet 2.13 0.00 5.9E-02 2.5 0.0
2 dry 2.13 2.99 S.9E-02 5.1 9.0
2 very wet 2.13 0.00 5.9E—-02 2.1 2.2
3 dry 2.13 3.60 5.9E-02 -6.4 -1.2
3 wet 2.13 2.12 59E-02 -3.5 1.4
3 very wet 2.13 0.00 5.9E—02 9.1 7.8
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Table 6c. Predicted Parameter Values and Hydrograph Errors Using
Optimized Parameter Values From the Wet Event on Plot 3 (1 m by 1 m) at

Tea Meadow

Predicted For

Predicted Parameter Values

% Error % Error
Plot Event A, mm/h B, mm/Mh'? H,, mm Volume Peak Flow
1 dry 4.75 1.08 1.3E-01 12.3 1.7
1 wet 4.75 0.80 1.3E—-01 2.8 —-14
1 very wet 4.75 0.00 1.3E-01 —4.1 —-6.1
2 dry 4.75 0.92 1.3E-01 10.9 10.2
2 wet 4.75 0.81 1.3E-01 3.6 —1.8
2 very wet 4.75 0.00 1.3E-01 -3.2 -3.1
3 dry 4.75 1.11 1.3E-01 2.6 1.5
3 very wet 4.75 0.00 1.3E-01 2.3 1.8

unique parameter sets, and (3) predicting hydrographs for
other antecedent conditions and plot sizes. Eighty-four out
of 92 hydrographs were described well by the model in terms
of mean square error, percentage volume error, and percent-
age peak error, strongly suggesting that the model is appro-
priate to forest road surfaces. The poorly represented hy-
drographs may have been affected by spatial variability. The
fact that both algorithms found nearly the same parameter
values suggests that the error function has a unique mini-
mum that can be found by an automated search routine. The
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Figure 11. Distribution of percent error for predicted hy-

drographs at Tea Meadow.

model predicted hydrographs for changed antecedent condi-
tions and other plots at the same site well.

Both algorithms were able to estimate physically reason-
able parameter values reliably. Given the low relief in the
trough, the Simplex algorithm did better than expected. In
only three out of the 84 cases that were appropriate were
modeled hydrographs dramatically improved by using the
parameter values estimated with SCE. These were cases
where A and B tradeoffs created a sufficiently flat error
surface that the Simplex method converged before finding a

25
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Figure 12. Predicted versus (a) observed runoff volumes
and (b) peak flows.
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Table 7. Average Errors by Plot Used for
Prediction

% Error % Error
Plot Volume Peak Flow
1 2.30 1.90
2 0.68 2.09
3 3.40 0.37

global minimum. In one case, the SCE converged to a point
worse than the Simplex, but the difference was small.

This demonstration that the model is capable of reproduc-
ing field-measured hydrographs with unique, physically re-
alistic, parameter sets shows that the model is appropriate
for forest roads. To further validate the model and show that
this model provides a useful framework for data reduction,
we demonstrated that parameter values estimated using this
method can be extended to other antecedent conditions and
plot sizes.
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