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Abstract 

Predicting the distribution or status of animal populations at large scales often 

requires the use of broad-scale information describing landforms, climate, vegetation, etc. 

These data, however, often consist of mixtures of continuous and categorical covariates 

and nonmultiplicative interactions among covariates, complicating statistical analyses. 

Using data from the interior Columbia River Basin, USA, we compared four methods for 

predicting the distribution of seven salmonid taxa using landscape information. 

Subwatersheds (mean size,  7800 ha) were characterized using a set of 12 covariates 

describing physiography, vegetation, and current land-use. The techniques included 

generalized logit modeling, classification trees, a nearest neighbor technique, and a 

modular neural network. We evaluated model performance using out-of-sample 

prediction accuracy via leave-one-out cross-validation and introduce a computer-

intensive Monte Carlo hypothesis testing approach for examining the statistical 

significance of landscape covariates with the non-parametric methods. We found the 

modular neural network and the nearest-neighbor techniques to be the most accurate, but 

were difficult to summarize in ways that provided ecological insight. The modular neural 

network also required the most extensive computer resources for model fitting and 

hypothesis testing. The generalized logit models were readily interpretable, but were the 

least accurate− possibly due to nonlinear relationships and nonmultiplicative interactions 

among covariates. Substantial overlap among the statistically significant (P<0.05) 

covariates for each method suggested that each is capable of detecting similar 

relationships between responses and covariates. Consequently, we believe that employing 

one or more methods may provide greater biological insight without sacrificing 

prediction accuracy. 
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1. Introduction 

Ecosystem management requires understanding of both fine-grained and coarse-

grained ecological features (Levin, 1992). While remote data-capture technologies allow 

compilation of coarse-grained information describing landforms, climate, vegetation, etc., 

these technologies cannot detect fine-grained features such as the distribution of 

vertebrate species. Consequently, ecologists are increasingly relying upon models to 

predict the distribution or status of vertebrate populations (Miller et al., 1989; Kruse et 

al., 1997; Carroll et al., 1999; Naugle et al., 1999) and to examine the effect of 

environmental or anthropogenic impacts on those populations over large scales (Lee et 

al., 1997; Baxter et al., 1999; Dunham and Rieman, 1999). The accuracy of these 

predictions depends, in part, on the development of rigorous statistical models that relate 

environmental data, which often consisting of a mix of continuous (hereafter, quantitative 

covariates) and discrete-valued variables, to categorical population responses (e.g., 

species presence/absence). In these instances, the use of traditional parametric modeling 

techniques (e.g., linear regression) is inappropriate. Recent advances in the statistical and 

computing sciences have led to the development of sophisticated nonparametric methods 

for the analysis of these complex data sets (e.g., Lek and Guegan, 1999). However, 

statistical models and hypothesis tests for these techniques are not as well developed as 

traditional parametric approaches. 

For purposes of both finding the best performing nonparametric model and for 

assessing the importance (significance) of a subset of covariates, some method of judging 

whether two nonparametric classifiers are significantly different in predictive 

performance is needed. Here we present such an approach and compare the predictive 

performance (accuracy) of 4 methods: generalized logit modeling, classification trees, a 

nearest neighbor technique, and modular neural network using existing data on landscape 

features and salmonid populations in the Northwestern U.S. Our goal was to illustrate and 

discuss alternative methods of modeling categorical responses, compare their predictive 

performance, and provide a means to identify important relationships between population 

responses and landscape covariates. These methods were selected for evaluation because 

they each represent recent statistical research on the classification problem. As an aside, 

linear discriminant analysis was not evaluated because it cannot incorporate qualitative 
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covariates (Johnson and Wichern, 1992) and is generally inferior to generalized logit 

modeling (Press and Wilson 1978). 

1.2 Data description 

We evaluated the performance of the 4 parametric and nonparametric methods 

using landscape and population status data for 7 salmonid taxa in the interior Columbia 

River Basin, USA. These data are thoroughly described in previous works (Lee et al., 

1997; Rieman et al., 1997; Thurow et al., 1997) and are briefly reviewed here. The study 

area included the entire Columbia River Basin east of the Cascade Mountains and small 

portions of the Klamath and Great Basins, USA, which encompasses 58.6 million 

hectares in Idaho, Montana, Nevada, Oregon, Washington, and Wyoming, USA. Within 

the study area, subwatersheds (U.S. Geological Survey 6th code hydrologic units; mean 

size 7800 ha) were used as the basic unit for our analysis. Landscape data for each 

subwatershed were obtained from the Interior Columbia River Basin Project (Quigley 

and Arbelbide, 1997) and included 11 quantitative attributes and 1 qualitative 

(categorical) attribute with 10 levels (Table 1).  These data represented various landform, 

climate, vegetation, and land use characteristics known to influence the structure and 

stability of lotic habitats and, presumably, fish populations. 

The salmonid taxa analyzed were both ecologically and economically important 

to the region (Lee et al., 1997) and included bull trout (Salvelinus confluentus), redband 

trout (Oncorhynchus mykiss gibbsi), westslope cutthroat trout (Oncorhynchus clarki 

lewisi), Yellowstone cutthroat trout (Oncorhynchus clarki bouvieri), chinook salmon 

(Oncorhynchus tshawytscha), and steelhead (Oncorhynchus mykiss mykiss). Because life 

history requirements are likely to differ among anadromous stocks with very different 

migratory patterns (Thurow et al., 1997), chinook salmon were subdivided into 2 groups 

(stocks) based on Healey�s (1991) definitions: ocean-type, those that migrate seaward as 

subyearlings and stream-type, those that migrate after rearing one or more years in 

freshwater. Using current (post 1993) empirical data, more than 150 governmental, tribal, 

and privately employed biologists classified the population status of each salmonid taxon 

in individual subwatersheds as strong− all major life history types are present and 

numbers are stable or increasing, depressed− one or more life history types absent or 

numbers decreasing, absent, or unknown. For the anadromous salmonids− chinook 
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salmon and steelhead,  migrant status was used to classify subwatersheds functioning 

primarily as migration corridors (Rieman et al., 1997). Subwatersheds for which the 

population status was unknown were not included in the analyses. Note that some of these 

responses (strong and depressed) are the result of a judgment by a biologist and not a 

direct measurement; hence there potentially was a variability to the data that could not be 

explainable by the covariates. 

2. Statistical modelling 

2.1 Assessing predictive ability 

The expected error rate (EER) of a classifier is the average error rate of the 

classifier averaged over all possible patterns of responses at the design points (i.e., 

covariate locations) (Lachenbruch 1975). To compute the EER, the distribution of the 

categorical response would need to be known at each design point. Then, an expected 

error rate could be computed over all possible such patterns at these design points.  Note 

that EER is not the error rate of the classifier built from the particular sample in-hand 

(called the actual error rate) but rather the average over all possible response patterns at 

the design points - not just the one observed. Thus, the EER could provide the basis for 

comparing the performance of the various models of fish population response. EER also 

is a deterministic function of the parameters defining the response variable's distribution 

and hence can be thought of as a parameter itself. 

Fukunaga and Kessel (1971) found the cross-validation estimator to be nearly 

unbiased and in fact, slightly conservative when used to estimate EER of a nonparametric 

estimator. Similarly, Efron (1983) concluded that with a large sample size, cross-

validation gives a "nearly-unbiased" measure of overall predictive ability without 

excessive variance.  Efron (1983) also concludes that although bootstrap estimates of 

predictive performance usually have low variance, they can also exhibit large negative 

bias - particularly when used with overfitted models.  This last cautionary note 

concerning the use of a bootstrap estimate is echoed in a review paper on discrimination 

analysis: "However, in utterly nonparametric situations, the bootstrap can badly 

underestimate the misclassification costs (Breiman et al., 1984) and even be 

inconsistent." (Gnanadesikan et al.,1989).  An alternative estimator of EER that uses the 

double bootstrap (Efron, 1983) may offer a lower variance estimate of EER that also has 
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small bias.  However, numerical experimentation and comparison with cross-validation 

error rate estimates are needed to assess this alternative estimator's performance.  

We estimated the EER (hereafter,
∧

EER ) via leave-one-out cross-validation as 

originally proposed by Lachenbruch (1965).  Each observation in a data set was 

temporarily held out of the sample and the model fitted with the remaining n - 1 

observations.  The held-out observation was then predicted by the mode of this fitted 

model evaluated at the held-out observation's vector of covariate values. The average 

number of misclassifications were then summed over all observations and also over 

observations on each response category. For logit modeling, we also estimated the 

within-sample error rate, EERw (also known as the apparent error rate), which was 

calculated by applying the model to the observations that were used during model fitting.  

Note that EERw, is known to be a negatively biased (optimistic) estimator for the EER 

(Johnson and Wichern, 1992), but provides a relatively quick estimate of model 

performance when examining several complex models with large data sets, such as those 

used here. 

2.2 Generalized logit model 

2.2.1. Theory and definitions 

Say that n multivariate observations on J multinomial random variables are taken.  

Let g be the number of populations or groups (unique combinations of covariates).  For 

the ith observation, let Y(xi) = (Y1(xi),...,YJ(xi))' where Yj(xi) is the number of response 

category j occurrences in ni trials.  Define πij to be the probability that the jth response 

category occurs on any particular trial. Then, Y(xi) ~ Multinomial(ni, ππππi).  Hence, at 

covariate vector xi, there is a pattern of response probabilities.  Let the observed value of 

Yj(xi), yij be the number of response j occurrences observed on the ith population. 
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A natural extension of linear model theory leads to a model of transformed 

response probabilities being linear in the covariate parameters.  This is the generalized 

logit model (Agresti 1990).  The jth logit is: 

[ ]( ) ( ) ji
iJ

ij
ijijij gYEg ββββηηηη xxxx ′=








π
π

≡µ== log)()()( , (1) 

for j = 1 . . . , J −1 baseline-category logits.  The function g(.) is called the link function 

between the observed variable's expected value in the original-scale space and its value in 
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For computational purposes, this model is written as: 
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In vector notation, 
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The jth response category probability is a nonlinear function of the parameter vector, ββββj: 
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For identifiably, 0≡β j (and hence ηJ(.) = 0) and the response category probabilities can 

be recovered from the logits via the response function, h(.): 
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for j = 1,...., J−1. 

The joint probability of observing the data is: 
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and hence the log-likelihood function is { }∑ ∑ ∑=
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The vector ββββ that maximizes this function is the estimate of the model's parameters. 

A well-known form of the generalized logit model, binary logistic regression, is 

used when there are 2 response categories (i.e., J = 2).  Here, there is only one logit called 

the log-odds of observing the first category from the ith population: log(πi1/πi2) = 

log(πi1/(1−πi1)). 

2.1.2 Cumulative logit model 

If the response categories are ordered, a reduction in the number of model 

parameters relative to the baseline-category logit model can be achieved by incorporating 

this assumption into the model. One way to do this is with cumulative logits: 
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1-1,...,   , Jjij =′+α= ββββx  (10) 

(Agresti 1990).  Note that for J > 2, the logit models share a common set of covariate 

effect parameters (ββββ) and differ only in their intercept parameters (αj�s).  The assumption 

is that differences among the logits are due only to an order-driven shift in the overall 
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mean. Hence, these models form J −1 parallel lines (for J > 2).  A test of this parallel 

lines assumption is reviewed below. 

2.1.3 Hypothesis testing and model selection 

 Let Σi(ββββ) be the covariance matrix of Y(xi) and Di(ββββ) be the Jacobian of the 

response function evaluated at ββββ. 
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Let Wi(ββββ) = Di(ββββ)Σi(ββββ)-1(ββββ)Di(ββββ)’be an approximation toCov�1[g(Y(xi)].  The gradient of 

the log-likelihood is called the score function: 
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and the negative expected value of the log-likelihood's Hessian matrix is called the Fisher 

Information matrix: 
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Consider the case of adding one covariate to the model.  If the parameters corresponding 

to the added covariate are contained in the vector ββββ2 and those of the original model in ββββ1, 

then ββββ = (ββββ1
’,    ββββ2

’). Partition s and F with respect to ββββ:  
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Let the null hypothesis be Ho: ββββ2 = 0 and let s~ and F~ be s and F evaluated at the 

parameter estimates under Ho.  Then, letting A ≡F−1, the score statistic is u 2222 s~A~s~′≡  

and is asymptotically distributed as 2
2 )dim(âχ (Fahrmeir and Tutz, 1994).  An important 

property of the score statistic is that convergence to its asymptotic distribution is not a 

function of the individual cell counts, i.e., convergence is for ∞→n whether or not ni is 

also increasing (Fahrmeir, 1988; Fahrmeir and Tutz, 1994; Fahrmeir and Kaufmann, 

1987).  Essentially, the asymptotic distribution depends on the design points being 
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sufficiently dispersed throughout the design space (covariate space) but replication at 

design points, unlike the power-divergence statistic (below), is not required. 

A related statistic, useful for testing a reduced model after a full model has been 

successfully fitted (i.e., backward elimination), is the Wald statistic: 2
1

222 ββ ˆÂˆw −′≡  where 

2β̂  and F̂ are estimated under the full model (Fahrmeir and Tutz, 1994).  The above 

remarks on the asymptotic distribution of the score statistic also apply to the Wald 

statistic. 

Fahrmeir and Tutz (1994) recommend forward selection as a workable model 

selection procedure when the fitting of a complete model would fail due to a large 

number of covariates.  For example, if there are 20 quantitative covariates, the full two-

way interaction model would contain 1 + 20 + 20(20 - 1)/2 = 211 terms making it 

infeasible to start the model with all two-way interactions included and perform (say) 

backward selection. Forward selection proceeds by computing u for each covariate (or 

interaction) not already in the model and selecting for inclusion that variable (or 

interaction) that gives the largest value of u that is also larger than a critical value defined 

by a modeler-selected Type I error probability, α. There is no guarantee however, that the 

forward selection method will find an adequate model for the data since the method not 

only starts with an inadequate model but then proceeds to consider only variables or 

interactions one at a time (Christensen, 1990). One way to address this drawback (and 

one approach we took) is to start with a model that contains all of the main effects and 

then forward-select two-way interactions.  This approach is best suited when a large data 

set is available so that the loss of power due to having (perhaps) too many covariates in 

the smallest model is not too great. 

2.1.4 Goodness-of-fit and residual analysis 

Power divergence statistics 

For λ a real number, the class of power-divergence goodness-of-fit statistics is 

defined to be [ ]∑∑ =
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the understanding that )log( ijijij ˆ/yy π  is 0 if 0=ijy  (Fahrmeir and Tutz, 1994). 
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Asymptotic analysis shows that ( )
2

110 )p()J(g

a
~D +−−χ  if ∞→in  for all i, and g is fixed. 

Hence, when this increasing-cell-counts asymptotic distribution is approximated, D0 can 

be used as a goodness-of-fit statistic.  The value λ = 1 gives the Pearson Goodness-of-Fit 

statistic, ij
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111 )(  (Fahrmeir and Tutz, 1994) and has the same 

increasing-cell-counts asymptotic distribution as D0. 

Pearson residuals are ∑− π−≡ 21 )(/
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residuals are i
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11 g/))p()J(g( +−−χ  

(Fahrmeir and Tutz, 1994) and hence a 2
11 g/))p()J(g( +−−χ  probability plot of r(s)'r(s),                      

i = 1,..., g should be approximately one-to-one. 

 If cell counts are small and/or diagnostic plots suggest that the increasing-cell-

counts asymptotic distribution of the test statistic is not holding, then increasing-cells 

asymptotics may be more appropriate.  These are discussed next. 

Increasing-cells asymptotics 

If ni is small and bounded but the number of populations, g is increasing, then, 

under certain conditions, ( ) ( )10111 ,N~/D
a

σµ−  (Osius and Rojek, 1992).  These 

conditions are: (1) pij is bounded away from zero as ∞→g , (2) the quantity 2
1σ/g  

(Osius and Rojek, 1992) note that if the covariates are bounded, condition 1 is always 

satisfied.  These authors show that the asymptotic mean, µ1 is g(J - 1) and the asymptotic 

variance is: 
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where 
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evaluated at ijπ̂ .  When the cell sizes are all exactly 1, as was the case with the salmonid 

population response data, Osius and Rojek (1992) recommend a two-sided test.  

Consequences of failed asymptotics 

If cell counts are small, the median of D0 and D1�s true distribution will be less 

than the increasing-cell-count asymptotic χ2 distribution's median.  The result of this is 

that using the χ2 distribution to find the critical value for rejecting the null hypothesis, H0: 

�correct model,� will give a much larger value than the true distribution's value for a 

fixed α.  Hence, the goodness-of-fit test will rarely reject, i.e., poorly fitting models will 

rarely be detected (Agresti, 1990; Haberman 1988).  There is no clear rule for how large 

cell counts need to be for reasonable approximation of the increasing-cell-counts 

asymptotic distribution.  One well-known heuristic is Cochran's (1954) recommendation 

that no more than 20% of the cells have < 5 observations.  Agresti (1990) states that in 

this case, goodness-of-fit statistics are not appropriate for testing the fit of a model but 

can be used to compare models.  The same author also states however, that chi-squared 

goodness-of-fit statistics can be completely uninformative for highly sparse data. 

Hence, when using a power-divergence statistic with small cell counts for 

purposes of assessing model goodness-of-fit, one strategy is to first determine if the χ2 

asymptotic distribution is well-approximated and if so, use increasing-cell-counts 

asymptotics to test hypotheses.  Apparently, diagnostics (e.g., plots) do not exist for 

assessing how well the increasing-cells asymptotic distribution of the D1 statistic is being 

approximated by the observed process.  Note that it is misleading to examine a normal 

quantile-quantile (Q-Q) plot of the Osius and Rojek-standardized residuals because the 

derivations of the asymptotic normality of the test statistic, unlike those under increasing-

cell-count asymptotics, do not begin with the individual residuals (see Agresti, 1990 and 

Osius and Rojek, 1992).  Because of this difficulty in assessing the appropriateness of 

increasing-cells asymptotics, an omnibus test should always be computed whenever 
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increasing-cell-count asymptotics is in doubt.  Andrews (1988) provides theoretical 

justification for a general family of such tests that have a χ2 distribution when the model-

based distribution and the data-generating distribution are the same.  Such a test is 

computed by first grouping the observations into a fixed number of nearly homogeneous 

groups and then conducting a modified χ2 test of the similarity between two vectors of 

counts.  Because of the grouping step, under the null hypothesis, the test statistic's 

asymptotic distribution is always approached as the total sample size increases (described 

below). It should be noted however, that for practical purposes, the most relevant 

measure of model goodness-of-fit is an estimate of EER. 

Test of parallel lines assumption 

 For the cumulative logit model, if parallel lines is not assumed (full model), then 

,jijij βx′+α=η  j = 1, . . . , J - I where ββββj equals ββββ1 for j = 1 and equals ββββ1 +  γj for j > 1. 

Here, γj represents the differences between ββββ1 and ββββj, j > 1. Under the reduced model, H0: 

γ2 = ... γJ-1 = 0. By partitioning s and F so that the second partition contains γ2, ... γJ-1, a 

score statistic can be computed that is asymptotically chi-squared under H0 (SAS 

Institute, 1989). 

Hosmer-Lemeshow test 

For the case of J = 2 (binary observations), let πi be the probability of Yi = 1 

(referred to as the event) for the ith population.  Sort the observations by iπ̂  and then 

partition this sorted list into h = 10 groups of nearly equal size.  Let the kth group's size be 

nk.  Let iπ  be the average estimated event probability and ok the observed frequency of 

events within group k. Hosmer and Lemeshow (1980) show through a simulation study 

that if the model used to compute π̂ is true, the statistic: 

( )
( )∑

= π−π
π−

=
h

k kkk

kkk

n
noHL

1

2

)1(
, (17) 

has approximately a χ2 distribution as the overall sample size, n becomes large.  Hosmer 

and Lemeshow (1980) do not discuss how the observations should be sorted for the case 

of J > 2. 
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Andrews chi-square test 

The Andrews χ2 test is a generalization of the Hosmer-Lemeshow test and is valid 

for any number of responses (J). The procedure for computing this test for a generalized 

logit model with all ni = 1 is as follows. 

Step 1: Use iqi p̂,,p̂ K1 as variables for partitioning the data into K clusters using K-

Means clustering (Johnson and Wichern, 1992). 

Step 2: Regard h = KJ as the number of groups or cells for the test.  Let yij = 1 if 

the jth response occurs on the ith observation and 0 otherwise.  Form the 

vector ( )′′′= iKii ,,ˆ II K1ΓΓΓΓ where 

( ) ( ) ( )( )′= iiiI ppp ˆ,yI,,ˆ,yI,ˆ,yI iJ}C,J{i}C,{i}C,{i lll
K22111 and Cl, is the lth 

cluster. The iΓ̂ΓΓΓ  is a vector of indicator variables.  For the ith observation, 

the indicator variable corresponding to the jth response category and kth 

cluster will equal one if the jth response is observed and ip̂ belongs to the kth 

cluster.  

Also form the vector ( ) ( )( )′′′= iiiiF pppp ˆIˆ,,ˆIˆˆ
}C{}C{i K

K
1

.  Hence, iF is 

similar to iΓ̂ΓΓΓ  except the binary response vector for the observed partition is 

replaced with the vector of model-based probabilities.  

Finally, form the matrix H with the ith row defined to be ( )iii ,ˆˆ s′′− FΓΓΓΓ  where 

( ) ββββββββ ∂∂=′ /,|flog iii xys , the score function for the ith observation.  

Step 3: Letting one be the n x 1 vector of all 1's, compute the test statistic 

11 H'HH'Hˆ,ˆX -)()(2 ′=βΓ  and compare its value to the chi-square 

distribution with h � K degrees of freedom. 

2.2 Classification Trees 

2.2.1 Theory and definitions 

Tree-based classification is one of a larger set of techniques recently developed 

for analyzing non-standard data (e.g., mixtures of quantitative and qualitative covariates; 

Brieman et al., 1984). Classification trees (hereafter simply tree) consist of a collection of 

binary decision rules called nodes, connected by directed arcs (Fig. 1), and created during 



Haas et al. Draft 8/3/00 

 14 

a procedure known as recursive partitioning (described below). At a node, the value of a 

particular covariate (xo) determines which of the two arcs is followed.  If xo is a 

quantitative covariate, the rule is: follow left arc if xo < α, otherwise, follow right arc.  If 

xo is qualitative, the rule is: follow left arc if xo ∈  A otherwise, follow right arc. Terminal 

nodes are the model's predicted values of the response category. The structure of tree 

classification rules differ significantly from techniques, such as discriminant analysis and 

generalized logit models, where classification rules are based on linear combinations of 

covariates. This makes tree classifiers more flexible than traditional linear methods. For 

instance, tree models can incorporate qualitative covariates with more than 2 levels, 

integrate complex mixtures of data types, and automatically incorporate interactions 

among covariates. Tree models also do not necessarily use all covariates and may use 

some covariates more than once. 

Mathematically, a tree can be represented as a set of nodes. After the tree has 

been fitted, each node has been assigned a subset of the observations. These subsets then 

can be used to estimate the response variable's probability distribution at each terminal 

node. This distribution is the empirical distribution of observations "falling" to that 

terminal node.  When a new covariate vector is "dropped" down the tree, this observed 

distribution serves as the tree's prediction of the response variable (Fig. 1).  Typically, the 

mode of this distribution is the predicted response category and terminal node's label. 

2.2.2 Tree model fitting 

Binary trees are created by repeatedly splitting the data set into 2 smaller subsets 

using binary rule-sets. The tree growing process begins with all of the data at a single 

location known as a parent or root node (e.g., t1 in Fig. 1).  This node is split into two 

child nodes (e.g., t2 and t3 in Fig. 1) using a rule generated during recursive partitioning.  

The recursive partitioning process searches for a covariate and its cutoff value 

(partitioning rule) that results in the greatest within-partition homogeneity for the 

response categories' distribution.  In other words, the data is split into two subsets, each 

containing greater proportions of one response category. This covariate and partitioning 

rule defines the root node. This process is continued recursively down each �branch� of 

the tree until the size of a partition at any node is smaller than a prespecified stopping 

value (i.e., the minimum partition size). 
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Several measures of within-partition homogeneity are possible (Breiman et al., 

1984). For the current study we used the deviance, defined to be the negative of twice the 

log-likelihood (Chambers and Hastie, 1992).  The partitioning rule at node t is found by 

exhaustively searching for a covariate and partitioning pair that yields the largest 

reduction in node t's deviance. The reduction in deviance at a particular root node t is 

estimated as:  

 ∑
= 
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2 , (18) 

where l represents node t's data assigned to the left child node and r, the data assigned to 

the right child node.  Note that deviance is zero when a node contains observations from 

only one response group. 

Trees resulting from recursive partitioning are generally too large and tend to 

overfit the data. To reduce tree size, the effect of removing different terminal nodes (i.e., 

pruning the tree) on tree deviance, which is the sum of the deviance at each terminal 

node, is recursively evaluated. The routine stops pruning when the tree reaches the 

specified maximum size. This tree will have the lowest deviance of any tree of its size 

(Chou et al., 1989). To improve the predictive ability of tree models (i.e., reduce 

overfitting), optimum tree sizes can be determined by examining plots of the
∧

EER by tree 

size (Brieman et al., 1984). These plots generally show an initially rapid decrease in error 

rate with increasing tree size, followed by relatively stable error rates, and then gradual 

increases in error as the larger trees begin overfitting the data. The most parsimonious 

tree model is generally considered the one in which size and expected error are 

minimized. 

2.4. Nearest Neighbor Discriminant Analysis 

2.4.1 Theory and definitions 

K-Nearest Neighbor (KNN) classification is used to predict the response at a point 

xo in the covariate space by first finding the nearest K observations to xo and fitting a 

local response distribution.  The response is then predicted with the mode of this local 

distribution (Hand 1989). KNN classification is relatively flexible and does not require an 

assumption of multivariate normality or strong assumption implicit in specifying a link 
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function (e.g., the logit link).  It is based on the assumption that the characteristics of 

members of the same class should be similar and thus, observations located close together 

in covariate (statistical) space are members of the same class (e.g., Fig. 2) or at least have 

the same posterior distributions on their respective classes (Cover and Hart 1967).  KNN 

has been compared against several neural network and nonparametric statistical methods 

and has been found to be among the better classifiers (Ripley 1993). One drawback 

however, is that KNN classification rules are difficult to interpret because they are only 

based on the identity of the K nearest neighbors. Therefore, information for the remaining 

n - K classifications is ignored (Cover and Hart 1967).  

An extension of a nonparametric categorical regression smoother by Tutz (1990), 

referred to here as the extended K-nearest neighbor classifier (EKNN), is as follows. Let 

Y be the discrete dependent variable having m categories and let x = (z1, z2,..zq, w1, 

w2,..wr)’be the vector of covariates consisting of q quantitative covariates and r 

qualitative covariates. At a prediction location xo, estimate the response probability for 

category j with ( ) K/yˆ K

i ijj ∑ =
=π

10 , i.e., the relative local frequency of the jth response. 

By assuming zero correlation between the quantitative and qualitative covariates 

and themselves, define a distance measure between xo and xi as follows.  First, define a 

vector of generalized differences: ( )iD xxs −≡ −
0

21 , where  

Dii = 
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The distance between qualitative covariates, which are assumed to be uncorrelated among 

themselves and with the quantitative covariates, is defined following Tutz (1990) as 

 ( )


 =

≠≡ ijj

ijj
ijj

ww,
ww,w,wwd 0

0
0

0
1 . (21) 

Let V be the correlation matrix of the covariates: 

 2121 /qq/ D
I

C
DV −−









≡

0
0

, (22) 

where Cqq is the within-category pooled variance-covariance matrix of the quantitative 

covariates. Then ssxx 1
0

−′= V),(d i is the generalized Mahalanobis distance between x0 

and xi (Johnson and Wichern 1992). Note that if the assumption of independence among 

the qualitative covariates is not met, this distance computation will distort the true 

statistical distance between two observation locations (i.e., covariate vectors). 

2.4.2 EKNN model fitting 

The optimal value of K is defined as the value that minimizes the
∧

EER and is 

found by repeating the cross-validation analysis for increasing values of K.  Note that if 

the number of neighbors (K) is small, the estimated local response distribution will be 

based on a small sample and hence will have large variance.  In the limit with K = 1, the 

estimated distribution will be degenerate at the response category of the nearest neighbor.  

If a lower variance estimate of the true response distribution at a particular location in the 

covariate space is desired, m delete-d jackknife samples (see below) may be drawn from 

the full sample and EKNN predictions of the response at the desired location computed 

from each jackknife sample.  The percentage of predictions in each response category is 

the estimate of the response distribution at that location.  Thus as m increases, the 

variance of each response category probability estimate decreases. Cover and Hart (1967) 

also show that for K = 1, the error rate of KNN approaches that of the optimal Bayes rule 

classifier as the sample size grows to infinity (see also Ripley, 1996). 

Because EKNN classification is computationally fast, it lends itself to computer 

intensive hypothesis testing (see below).  Further, unlike logistic regression, such testing 

can always be performed under a full model that consists of any number of covariates. 

That is, the use of all possible subsets model selection does not depend on the 
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computational tractability of a likelihood function. Additionally, missing values on the 

qualitative variables can be accommodated by either eliminating those observations with 

missing covariate values or by defining a "missing" category for each covariate that has 

missing values. 

2.5 Modular Neural Networks 

2.5.1 Theory and definitions 

A neural network (NN) is a particular family of nonlinear functions, g(x) that map 

the input vector of covariates, x to a k-valued response or output.  Unlike parametric 

statistical models, most NN�s do not explicitly model the error term and do not model the 

response variable's probability distribution.  NN�s are quite often extremely accurate 

(Cheng and Titterington, 1994; Anand et al., 1995), but difficult to interpret because the 

complex nature of their interconnected functions. They generally consist of four linked 

components: the input, hidden, and output layers, and the target (Fig. 3). The input layer 

is made up of covariate nodes (one for each) and a bias node used during neural network 

training. The hidden layer is composed of hidden nodes, each containing a set of link 

weights (one for each covariate and the bias term) that are analogous to parameter 

estimates in a generalized linear model (Sarle, 1994). 

To illustrate the relationships between layers, consider the prediction of a 

response with the classical NN given an input vector x. Predicted responses, are 

estimated using activation functions in both the hidden and output layers as follows. First, 

fix the values xp+1 and yL+1 to 1. The hidden layer output vector yl is estimated using (say) 

a sigmoidal mashing function (i.e., logistic function bounded by 0-1) as: 

,
lexp

lexp
yl )(1

)(

ωωωω

ωωωω

x

x

′+

′
=  l = 1,..., L (23) 

where x = (x1, ...,xp, xp+1)’are the covariates and ωωωωl  = (wl,1, ...,wl,p+1)’are the weights. 

Note that the ωωωωL+1 is the hidden layer bias, which is similar to a constant in a generalized 

linear model (Sarle, 1994).  The output vector, y, is then passed to the output layer and 

used to compute the output layer nodes values as: 

,
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where νννν =  (νj,1, ..., ν j,L, ν j,L+1)’are the link weights and z*
j is the output value for module 

j = 1,.., J.  The values of z* are used to predict an observation's response, which is 

identified as the response with the largest z*. 

A modular neural network (MNN) differs from a NN in that each category has its 

own hidden layer module (e.g., Fig 3) which, through training, becomes "specialized" at 

predicting the associated category.  Because of these hidden layer modules, a MNN has 

many more ωωωω vectors than a NN.  Experiments reported in Anand et al. (1995) suggest 

that a MNN is often a more accurate classifier than a classical NN. 

2.5.2 Constructing and training a MNN 

The parameters of a MNN are L, ωωωω1,..., ωωωωL, and ννννl,..., ν ν ν νk.  Hence, there are 1 + L(p 

+ 1) + k(L + 1) parameters to be estimated from a sample.  Because a NN can "grow" 

parameters quickly as p, L, or k become large, NN's are prone to data overfitting, i.e., 

producing a model that attempts to represent part of the noise in the data.  On the other 

hand, the reason NN's are attractive is because for L large enough, a NN can be found 

that is equivalent to any function g(x).  This means that, given a large enough L, any 

relationship between x and z can theoretically be modeled with a NN (Hornik, 1991).  

This makes NN's attractive when g(x) is suspected of being nonlinear with 

nonmultiplicative interactions.  Thus when fitting a NN, one must contend with 2 basic 

problems: (1) how to efficiently estimate the parameters of the NN so as to minimize 

EER and (2) how to choose the optimal the value of L, so that overfitting does not occur 

but EER is minimized. 

The first problem is called "neural network training" and is similar to statistical 

parameter estimation.  Note that the statistical technique of parametric maximum 

likelihood estimation cannot be directly used because a NN is not a probability model of 

the observed process.  Because of the typically large parameter count, efficient 

mathematical programming algorithms are needed to search for parameter values that 

minimize some measure of NN agreement with a data set.  For the current study, we used 

quasi-Newton methods (Setiono and Hui, 1995) for the training step over the less-

efficient Back-Propagation method.  Although this routine is relatively fast and efficient, 

it can converge to a local minimum where classification accuracy is very low (Setiono 
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and Hui, 1995).  We found that artificially setting one observation in the data set to 

�missing� (only) during the initial training helps to break free of potential local minima. 

MNN training begins with 2 hidden nodes (L) per module (response category). 

Initial hidden node weights are randomly assigned and the quasi-Newton routine searches 

for parameter values that minimize the disagreement between the MNN and the data set 

as measured by: 

∑ ∑
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where ni is the number of observations on the ith category and, for the jth observation (xj, 

zj): 
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Advantages of this measure of disagreement over (say) the energy measure used in Back-

Propagation are that S is not overly-sensitive to radically different values of ni since only 

error rates are summed and the ultimate, pragmatic measure of classifier goodness, the 

misclassification rate, is directly minimized to fit the MNN to the data set. 

The second problem is called "network construction" and has been attacked with a 

variety of techniques (e.g., Setiono and Hui, 1995). Here, additional hidden nodes (L) are 

added in a stepwise manner and the MNN is retrained to increase its predictive ability. 

Thus, constructing an optimal (best predicting) MNN can be conducted in a manner 

similar to the selection of the optimal K for the EKNN models, with the optimal L 

considered to be the one in which the 
∧

EER is minimized. 

2.6. Hypothesis testing with nonparametric classifiers 

2.6.1 Theory and definitions 

Classically, a hypothesis test is performed on the hypothesis that the effect of a set 

of excluded covariates is exactly zero.  Such a test can be constructed with a computer 

intensive approach called a Monte Carlo hypothesis test.  For a nonparametric classifier 

such as EKNN or a tree, such a test can be based on resampling statistics.  See Hall and 
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Titterington (1989) for a description and asymptotic properties of Monte Carlo 

hypothesis tests, and Shao and Tu (1995) for a like discussion of resampling statistics. 

Let the null hypothesis, H0 be that there is no difference in the error rate between 

a reduced model and the full model.  Let δ ≡  EERR - EERF where EERR and EERF are 

the expected error rates using the reduced set of covariates and the full set of covariates, 

respectively.  Define the test statistic to be δ−δ≡ ˆT .  Note that under H0, T = δ̂ . 

We used EER as the basis for the test statistic because we believe that for 

purposes of both understanding ecological processes and developing natural resource 

management strategies, the most important property of a data-based classifier is its out-

of-sample prediction accuracy.  That is, if performance on this criterion is not acceptable, 

the classifier should not be used for policy-relevant decision-making. 

If the number of observations on each response category are very different, a 

possible drawback to using EER as the test statistic is that the test will only be sensitive 

to error rate changes in the most frequent category or categories.  This may result in 

declaring as insignificant covariates that in actuality, significantly affect the error rate of 

the more rare categories. Therefore, a second test statistic, which we used for all our 

analyses, is defined based on EERS ∑ =
≡ k

i i1
EER  yielding FRS EERSEERS −=δ  and 

ss δ−δ= ˆTS . The TS statistic is uniformly sensitive to changes across individual category 

error rates no matter what the observed frequencies are and hence, can be said to be less 

sample-dependent. 

The Monte Carlo hypothesis test procedure is as follows. 

Step 1: Compute RRÊE  and FRÊE  from the actual data set (hereafter called the 

full sample).  Compute δ= ˆT , the observed value of the test statistic 

assuming H0 is true. 

Step 2: Sample without replacement r (< n) observations from the full sample. 

Step 3: Compute reduced and full model error rate estimates of the classifier using 

this jackknife sample.  Denote these two error rate estimates EERR
* and 

EERF
* respectively.  Compute and store δ−δ= ˆˆT ** , the jackknife sample's 

test statistic value.  Note that the true (but unknown) error rates have been 
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replaced with those estimated from the full sample.  Doing so gives the 

Monte Carlo test good statistical power (Hall and Titterington 1989). 

Step 4: Repeat steps 2 and 3 m times (always with a new randomly selected 

jackknife sample). 

Step 5: Compute the p-value of the test to be the fraction of T* values greater than 

T. 

Note that when r < n � l, the histogram of the m T* values is a delete-d jackknife statistic 

(Shao and Tu 1995) where d = n - r. For properly chosen values of d and m, delete-d 

jackknife sampling can approximate the true test statistic distribution (Shao and Tu, 

1995). Additionally, although the cross-validation REEˆ is nearly unbiased, defining the 

test statistic as a function of only differences in estimated error rates reduces the effect on 

the test statistic of any such biases. 

The empirical distribution of T, needed for Step 5, above, is formed with delete-d 

jackknife samples instead of bootstrap samples (i.e., sampling with replacement) because 

numerical experiments showed such samples produced excessively biased values of 

EER(.)
* (also see Hall and Titterington 1989).  In addition, subsamples for computing the 

test statistic's empirical distribution are formed from resampling instead of simulation 

because with K = 1, EKNN's locally estimated response distributions are all degenerate at 

the nearest neighbor's response value and hence all simulated data sets from these 

response distributions would be identical. 

2.6.2 Evaluation of Monte Carlo hypothesis test consistency 

For the hypothesis test to be consistent, both d and m need to be large (Shao and 

Tu, 1995). That is, jackknife sample sizes (r) should be small relative to the total sample 

size (n) and the number of jackknife samples (m) should be large.  Total sample sizes, 

however, are likely to vary considerably among datasets for most practical applications. 

Consequently, the use of a single r for all analyses could result in inconsistent or 

unreliable hypothesis tests, whereas large m could result in excessively long computer 

run-times.  We examined the relationships between hypothesis test p-values and r and m 

for 3 salmonid taxa representing small (Yellowstone cutthroat trout), moderate (redband 

trout), and large (steelhead) sample sizes. Using the EKNN models and a randomly 

chosen covariate for each species, the influence of r on p-values was examined for each 
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of the 3 taxa by initially setting r = 0.05n and running 100-replicate tests with m = 100.  

This process was repeated with r increasing in 0.05n increments until it reached 0.5n.  

The influence of m on the variability of p-values was examined by running 100-replicate 

tests for m from 50-100 with r = 0.15n. 

 The influence of r on test p-values was similar among species with relatively 

stable p-values for r from 10-20% of the total sample sizes (Fig. 4a). Similarly, p-values 

were most variable for all salmonid tests with 50 jackknife samples (Fig. 4b). The 

relatively small p-values for the steelhead tests, with a mean of 0.02, were also the most 

variable but tended to stabilize (shallower slope) after approximately 500-600 samples.  

Based on these results, we used r = 0.15n and m = 500 for all of the Monte Carlo 

hypothesis tests with the salmonid response data below. 

3. Model fitting and parameter estimation 

3.1. Generalized Logit Model 

Preliminary modeling indicated that the cumulative logit model was inappropriate 

for modeling population status of all salmonid taxa (i.e., all models failed the parallel 

lines test). Hence, we restrict our examination of logit model performance to the 

multinomial logit model (1). All of the modeling (below) was conducted using CATDAT 

statistical software (Haas et al., 1999) available via the internet (freeware). 

Following a recommendation in Agresti (1990), the most frequent response for 

each data set was defined to be the Jth response (i.e., baseline) category.  Levels of the 

qualitative covariate, Mgntcls (Table 1), were recoded into dummy variables (0,1) prior 

to fitting each generalized logit model.  For most species, some Mgntcls levels were rare 

(i.e., comprised < 10% of observations), which could have caused unstable maximum 

likelihood estimates (Agresti 1990). Consequently, we combined the observations from 

rare, but related, land management types into composite groups to increase the number of 

observations and maintain the interpretability of model coefficients (Table 2). For 

instance, data from relatively unimpacted areas, National Park (Np) and Forest Service 

wilderness (Fw) lands, were combined into a single group Np-Fw. 

The choice of covariates and the form of the generalized logit model can 

influence model performance (i.e., out-of-sample prediction accuracy). For example, 

including too few covariates in a model can result in an incomplete representation of the 
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factors that affect the responses, whereas including too many or insignificant covariates 

could introduce too much noise in the model, lowering performance. Similarly, 

interactions among the covariates may also be important for characterizing responses. To 

obtain the best generalized logit model for each taxon, we fit 4 models: (1) full main-

effects, (2) statistically significant main-effects, and (3) full main-effects and statistically 

significant 2-way interactions, and (4) statistically significant main-effects and 2-way 

interactions; and examined their expected error rates. Statistically significant main-effects 

(only) were selected via backward elimination, whereas forward stepwise selection was 

used to select statistically significant main effects and 2-way interactions. To maintain a 

consistent 0.05 experiment-wise error rate, covariates and interactions were considered 

statistically significant at a Bonferroni adjusted α = 0.05/k (k = the number of main 

effects and/or interactions). The overall statistical significance of each model was 

assessed with log-likelihood test statistic and the goodness-of-fit of each model was 

assessed by examining the studentized Pearson residuals and via the Osius and Rojek 

(1992) increasing cell asymptotics and Andrews' (1988) omnibus chi-square tests. 

3.2. Classification Tree  

For each salmonid taxon, optimal tree sizes were determined by fitting models 

with all covariates (Table 1) and setting minimum partition sizes (stopping value) at 

0.04n.  EERs were then estimated for trees ranging in size from 10-70 nodes or the 

maximum number of nodes possible for smaller data sets (e.g., 40 nodes for ocean-type 

chinook salmon). Tree sizes that resulted in the lowest overall
∧

EER (e.g., Fig. 5a) were 

considered optimal and were used for the Monte Carlo hypothesis testing procedure to 

ensure that the expected resolution of the subsampled trees were comparable to the full 

trees. Statistically significant covariates (P<0.05) were selected via backward elimination 

with the Monte Carlo hypothesis testing procedure described above. 

3.3  Extended K-nearest neighbor models 

Extended K-nearest neighbor models were initially fit for each salmonid using all 

covariates (Table 1). The optimal numbers of neighbors (K) were determined by fitting 

models with K set from 1- 30 and examining overall
∧

EER (e.g., Fig. 5b).  Similar to the 

tree models, the optimal value was considered to be that which had the lowest 
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overall .EER
∧

 These were then used for the Monte Carlo hypothesis testing procedure for 

selecting statistically significant covariates (P<0.05) via backward elimination. 

3.4 Modular neural network models 

The modular neural networks (MNN) were fit for each salmonid using all 

covariates (Table 1). The optimal number of hidden nodes (L) was determined by fitting 

models with the number of nodes set from 1-15 and estimating the overall
∧

EER (e.g., Fig. 

5c).  Similar to the other nonparametric classifiers, the optimal L was considered to be 

that which had the lowest overall .EER
∧

 Fitting and cross-validation of the MNN required 

excessively long run times.  For example, leave-one-out cross-validation for the steelhead 

15 node MNN required approximately 62 hours on a RISC System 6000 Uni-processor. 

Therefore, we did not conduct Monte Carlo hypothesis tests with the MNN models. 

4. Results 

4.1 Generalized logit model 

For all salmonid taxa, each of the 4 generalized logit models was statistically 

significant (log-likelihood test statistic, P < 0.05). However, the full main-effects and 

statistically significant 2-way interaction models consistently had the lowest overall 

EERw, across species (Table 3). Using the best fitting models for each taxon (except 

Yellowstone cutthroat trout), we found several of the estimated probabilities (>23 per 

taxon) for strong and depressed responses were very small (<10-5) and asymptotic 

variances were very high (σ1
2 >1013). Hence, condition 1 of the increasing-cells 

asymptotics did not hold and the power of the Osius and Rojek goodness-of-fit test was 

unacceptably low. The Andrews omnibus χ2 test, however, indicated that the logit models 

failed to fit the trinary response data for all of the resident salmonids (P< 0.05), except 

Yellowstone cutthroat trout (P= 0.63), and the quaternary response models for all of the 

anadromous salmonids (P<0.05). Because the very small probabilities were for the less-

frequent strong and depressed responses, the failed increasing-cells asymptotics might 

have been due to these categories. Thus, we combined the strong and depressed 

population status into a single category, present, and refit the best model for each taxon 

except Yellowstone cutthroat trout.  Andrews omnibus χ2 test of these models indicated a 
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better fit (P> 0.05) for the binary response data of the resident salmonids and the trinary 

response data of the anadromous salmonids. 

Although the resident and anadromous salmonid binary and trinary response data, 

respectively, could be fit by a generalized logit model, leave-one-out cross-validation 

indicated that the logit models were poor at predicting salmonid population status (Table 

4).  Among the salmonids, the logit model was best at predicting the population status of 

stream-type chinook salmon (39.0% )EER
∧

and worst at predicting steelhead and 

Yellowstone cutthroat trout status (56.7 and 56.8% ,EER
∧

respectively). Category-wise 

error rates also indicated that, in most instances, the logit model predictions were 

unreliable for the population responses with the fewest observations. For instance, 

migrant status for the anadromous salmonids had the fewest observations and the greatest 

classification and prediction error rates for all of the logit models (Table 4). A similar 

pattern was apparent for the resident salmonid binary response models. 

4.2. Classification tree  

Optimal tree sizes varied considerably among species and appeared to be 

unrelated to 
∧

EER or the number of response categories (Table 4).  For example, ocean-

type and stream-type chinook salmon models had lowest overall 
∧

EER and smallest and 

largest optimal tree sizes, respectively, whereas the redband trout model had second 

smallest optimal tree size and the greatest overall .EER
∧

 

Following model selection, an examination of the 
∧

EER indicated an improvement 

in classification accuracy for 5 of the 7 tree models (Table 6).  Overall, the Yellowstone 

cutthroat trout model had the greatest increase in accuracy with a 23.3% reduction in the 
∧

EER followed by stream-type chinook salmon (8.4%) and bull trout (7.5%).  The 

classification tree models had, on average, fewer statistically significant covariates than 

the generalized logit models (Table 6).  There was also considerable overlap in the 

identity of the significant covariates among taxon-specific models fit with the 2 

classifiers. For example, all of the statistically significant covariates for bull trout, 

Yellowstone cutthroat trout and the anadromous salmonid classification tree models were 
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also found to be significant for the generalized logit models (Table 5). The overall and 

category-wise 
∧

EER for the tree models were also, on average, 10-20% lower than those 

of the generalized logit models (Table 4). However, response categories with the fewest 

observations tended to have the highest category-wise error rates, which was similar to 

the logit models. 

Although classification tree size appeared unrelated to accuracy, smaller trees 

were generally easier to summarize and interpret. For example, the landscape 

characteristics associated with ocean-type chinook salmon absence could be summarized 

with 3 rule sets (Fig. 6): (1) elevation greater than 2075 m and fewer than 1823 

contributing upstream subwatersheds; and (2) elevation less than 2076 m and between 

264 and 1051 contributing upstream sub-watersheds or (3) fewer than 10 contributing 

upstream subwatersheds and annual precipitation less than 234 mm. Thus, the tree model 

suggests that ocean-type chinook salmon are generally absent (n=298) in higher elevation 

subwatersheds containing smaller streams (i.e., fewer contributing upstream 

subwatersheds) and in lower evaluation subwatersheds with containing only small to 

moderately sized streams.  In contrast, summarizing the landscape characteristics 

associated with Yellowstone cutthroat trout absence with the larger model would require 

6 rule sets and would be likewise more difficult to interpret (Fig. 7). 

4.3  Extended K-nearest neighbor models 

Optimal K for the salmonid models were relatively low and varied from among 

species (Table 4) and, similar to the classification tree best parameter, the values of the 

optimal K appeared to be unrelated to the 
^

EERs or the number of response categories. 

The Monte Carlo hypothesis test of covariates indicated that the EKNN models also had, 

on average, fewer statistically significant covariates than the generalized logit models 

(Table 6), and there was considerable overlap in the identity of the significant covariates 

among the all three classifiers. The 
∧

EERs  however, suggested that the EKNN models 

were more accurate than both the classification tree (except ocean-type chinook salmon) 

and the generalized logit models (Table 4). On average, the overall 
∧

EER of the EKNN 

models were 56 % and 8% lower than the logit and tree models, respectively, but the 

responses with the fewest observations still tended to have the highest category-wise 
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classification and prediction 
∧

EER.  Among species, the EKNN models were most 

accurate at predicting the population status for all anadromous salmonids and poorest at 

predicting redband and westslope cutthroat trout status (Table 4).  

Although relationships between the covariates and the responses could not be 

determined with the EKNN models, the relationships (i.e., similarities) among responses 

were examined using the mean Mahalanobis distances (Table 7).  Among resident 

salmonids, the landscape characteristics of subwatersheds with no populations (absent) 

generally differed most from those with strong and depressed populations. Differences 

among landscape characteristics associated with anadromous salmonid population status, 

however, were greatest between the subwatershed containing only migratory corridors 

(migrant).  Additionally, the average Mahalanobis distances also appeared unrelated to 

the accuracy of the EKNN models (Tables 4 and 7). 

4.4 Modular neural network models 

The optimal number of hidden nodes (L) varied little among salmonid taxa and 

ranged from 7-11 (Table 4). The MNN had the lowest overall and category-wise 
∧

EER of 

any of the classifiers considered in this analysis. On average, the overall EERs of the 

MNN models were 69%, 45%, and 32% lower than the logit, tree, and EKNN models, 

respectively. Among species, the MNN models were most accurate at predicting the 

population status of ocean-type chinook and Yellowstone cutthroat trout and poorest at 

predicting redband and westslope cutthroat trout.  In addition, the category-wise error 

rates were unrelated to the number of observations, which was in sharp contrast to the 

other classification techniques (Table 4). 

5. Discussion 

An attractive feature of a parametric approach is that hypothesis testing is 

theoretically developed and computationally convenient.  The usefulness of results from 

such tests however, is compromised if the parametric model's fit to the data set is poor. 

Indeed, the generalized logit model was by far the poorest performing technique 

considered (Table 4).  Further, the salmonid population response processes did not appear 

to satisfy either increasing-cell-counts nor increasing-cells asymptotics assumptions. Had 

these conditions not been examined, we could have falsely concluded that the original 
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(uncombined) responses could be fit by a generalized logit model based on the Osius and 

Rojek tests. This highlights the need to verify that all conditions used to establish the 

asymptotic distribution of a test statistic are been met by the observed process.  Such 

conditions may not always be mentioned in a brief description of the test, say in the 

documentation of a statistical software package.  Instead, the delineation of all such 

conditions may require a close reading of the test's statistical derivation. 

 Reasons for the poor performance of the logit models were likely due to the 

presence of nonlinear relationships and nonmultiplicative interactions, effects that 

nonparametric classifiers are potentially able to capture (Chambers and Hastie, 1992). 

The much greater accuracy of the nonparametric methods, particularly the MNNs (Table 

4), tends to support this contention.  MNNs are universal approximators (White 1992) 

and thus, were likely able to capture complex relationships between the landscape 

covariates and salmonid population responses. MNNs also tended to have uniformly low 

error rates across response categories for all taxa, whereas category-wise error rates for 

the other 3 methods were inversely related to category-specific sample sizes (Table 4). 

Unlike the other methods, MNNs model each response separately and hence, were able to 

specialize in predicting individual responses. The substantial differences in accuracy of 

the various methods highlights the fact that model accuracy can be significantly 

influenced by how well a particular technique approximates the biological response of 

interest. Thus, researchers should exercise caution when attempting to interpret poorly 

fitting models in terms of weak or non-existent biotic responses. 

 Although the MNNs were the most accurate method considered, they were 

essentially useless for examining the relationships between the landscape covariates and 

salmonid population responses. They also required extensive computer resources for 

model fitting and cross-validation, which prevented us from using the Monte Carlo 

hypothesis test to gain some insight into these relationships. MNNs also do not generate 

probabilistic estimates for each response, which is unlike the other methods considered. 

Thus, they are inappropriate for use in situations that require an explicit expression of 

uncertainty, such as risk assessments. However when very accurate estimates are 

required, we believe that the MNN is an ideal method. 
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Trees offer more interpretability than MNNs (Figs. 6 and 7) and allow more 

complex interactions to be captured, but they can exhibit higher error rates due to their 

forward-selection mode of construction. Some of this error can be reduced if only the 

significant covariates are used to fit the tree (Table 5), possibly due to the reduction in 

aliasing.  In contrast, the EKNN classifiers were relatively accurate (Table 6), but they 

lack interpretability. As we have shown, the Monte Carlo hypothesis tests can be used to 

provide some insight into the significance of individual covariates with the EKNN.  

However, they cannot be used to determine form and strength of the relationships. 

Additional insight also can be gained by examining the relationships among responses via 

the mean Mahalanobis distance, which is similar to other distance (similarity) measures 

For example, relationships among several responses can be investigated with hierarchical 

cluster analysis and multidimensional scaling. In addition, the relative speed at which 

EKNN models can be fit (compared to the other nonparametric methods) in combination 

with their relatively high accuracy suggests that it is an ideal method for preliminary 

analyses. 

As we have shown, a parametric model is no longer a prerequisite to formal, 

statistical hypothesis testing. These hypothesis tests also provide additional insight and 

can improve the performance of the nonparametric approaches. Across taxa, all of the 

statistically significant covariates for each method were biologically plausible (see Lee at 

al., 1997 for a review).  For instance, bull trout are negatively affected by anthropogenic 

impacts (Rieman et al., 1997; Baxter et al., 1999 and references therein) and both 

measures of human impacts, road density and dominant land management type, were 

found to be significant for all methods considered (Table 4).  Furthermore, the large 

number of significant covariates common among methods suggests that each classifier is 

capable of detecting similar relationships (patterns) in the data. Thus, greater ecological 

insight could be gained by using several different classification methods. 

Conclusions 

Classification accuracy and model interpretability are among the most desirable 

characteristics of statistical classification methods. Of the techniques considered, the 

MNN and EKNN were the most accurate classifiers (Table 4) but were uninterruptible, 

whereas the generalized logit models were readily interpretable but were inaccurate. In 
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contrast, the tree models were fairly accurate (Table 4) and interpretable (Figs. 6 and 7) 

and would be the best method for modeling salmonid population status if both properties 

were required from a single model. The substantial overlap among the significant 

covariates for each classifier (Table 6) also suggests that each is capable of detecting 

similar relationships between responses and covariates. Thus if a single model is not 

required, an alternative approach could be to use two or more models. For example, 

accurate predictive models could be created with the EKNN or MNN and the significance 

of individual covariates could be examined via the Monte Carlo hypothesis test. The 

relationship between the significant covariates and the responses could then be examined 

with the generalized logit model and/or the classification tree.  Consequently, employing 

several classifiers may provide greater biological insight without sacrificing prediction 

accuracy. 
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Table 1.  Covariates used to parameterize the parametric and nonparametric models of 

population status for the 7 salmonid taxa.  

Covariate Name                       Description 
 
Quantitative  
 

 
Bank 

 
streambank erosion hazard  

 
 
Baseero 

 
base erosion index  

 
 
Drnden 

 
drainage density (km/km2)  

 
 
Elev 

 
mean elevation (m)  

 
 
Hk 

 
soil texture coefficient  

 
 
Hucorder 

 
number of contributing upstream subwatersheds  

 
 
Mtemp 

 
mean annual temperature (oC)  

 
 
Pprecip 

 
mean annual precipiation (mm)  

 
 
Rdmean 

 
mean road density (km/km2)  

 
 
Slope 

 
area weighted average midslope (degrees)  

 
 
Solar 

 
(Langley's) mean annual solar radiation loading   

Qualitative  
 

 
Mgntcls 

 
dominant land management type, ten levels shown below  

 Br Bureau of Land Management (BLM) rangeland  
 Fg Forest Service (FS) forest and rangeland, moderate impact,  
 Fh FS forest, high impact, grazed  
 Fm FS forest, high-moderate impact, no grazing  
 Fw FS managed wilderness  
 Np National Park Service forest land  
 Pa private agriculture  
 Pf private land and FS forest land  
 Pr private and BLM rangeland   
 Tl tribal lands  

  
 



Haas et al. Draft 8/3/00 

 37 

 Table 2.  The dominant land-management types that were combined and dummy coded 

(0,1) for the generalized logit models of salmonid population status. Note that the last 

composite management type listed received a zero coding for all dummy variables. 

    

Bull trout 
 Fg-Fh Fm Fw-Np Pa Pf-Tl Br-Pr 
Redband trout 
 Br Fg-Fh Pa Pf-Tl-Fm Pr Fw-Np 
Westslope cutthroat trout 
 Fg-Fh Fm Fw-Np Pf-Tl Br-Pa-Pr 
Yellowstone cutthroat trout 
 Fg-Fh Fw-Np Pa Br-Fm-Pf-Pr-Tl 
Ocean-type chinook salmon 
 Pa Pf-Tl-Fm Pr-Br Fg-Fh-Fw-Np 
Stream-type chinook salmon 
 Br Fg-Fh Pa Pf-Tl-Fm Pr Fw-Np 
Steelhead 
 Br Fg-Fh Pa Pf-Tl-Fm Pr Fw-Np 
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Table 3. Overall within-sample classification error rates (EERw) for various generalized logit models of salmonid population  

status. Because of the negative bias of EERw, cross-validation error rates can only be expected to be higher. Statistically  

significant covariates can be found in Table 4. 

 Chinook salmon 
Logit model Bull trout 

Redband 
trout 

Westslope 
cutthroat trout 

Yellowstone 
cutthroat trout ocean-type stream-type Steelhead 

Main-effects 0.297 0.382 0.303 0.206 0.128 0.199 0.273 
Statistically significant  
main effects 0.303 0.396 0.300 0.226 0.208 0.203 0.284 
Main-effects and significant 
interactions 

 
0.262 0.320 0.276 0.164 0.132 0.180 0.223 

Statistically significant main-
effects and interactions 0.300 0.354 0.283 0.218 0.143 0.223 0.230 
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Table 4. Summary of cross-validation classification and prediction (in parenthesis) error rates for each classifier 
and the optimal number tree nodes, nearest neighbors (K), and hidden nodes.  

Resident species 
Population 

status 
 

N 
Generalized 
logit model 

Classification 
tree 

K-nearest 
neighbor 

Modular 
neural 

network 

Bull trout 
overall 
EER  0.502 

58 nodes 
0.299 

K = 7 
0.234 

8 nodes 
0.207 

 Strong 169  0.674 (0.530) 0.544 (0.398) 0.112 (0.503) 
 Depressed 624 0.779 (0.453)1 0.319 (0.501) 0.442 (0.373) 0.213 (0.343) 
 Absent 1555 0.360 (0.382) 0.251 (0.155) 0.117 (0.175) 0.214 (0.059) 

Redband trout 
overall 
EER  0.420 

22 nodes 
0.323 

K = 9 
0.300 

9 nodes 
0.269 

 Strong 250  0.692 (0.388) 0.668 (0.503) 0.188 (0.482) 
 Depressed 712 0.332 (0.402) 1 0.282 (0.393) 0.294 (0.342) 0.354 (0.263) 
 Absent 825 0.524 (0.448) 0.246 (0.240) 0.194 (0.222) 0.219 (0.165) 
Westslope  
cutthroat trout 

overall 
EER  0.469 

52 nodes 
0.281 

K = 1 
0.245 

11 nodes 
0.220 

 Strong 330  0.488 (0.329) 0.406 (0.382) 0.330 (0.338) 
 Depressed 988 0.388 (0.223) 0.101 (0.272) 0.172 (0.185) 0.171 (0.179) 
 Absent 271 0.860 (0.472) 1 0.683 (0.295) 0.314 (0.306) 0.262 (0.298) 
Yellowstone   
cutthroat trout 

overall 
EER  0.568 

38 nodes 
0.213 

K = 3 
0.190 

10 nodes 
0.064 

 Strong 173 0.594 (0.698) 0.179 (0.177) 0.178 (0.144) 0.050 (0.020) 
 Depressed 115 0.809 (0.463) 0.384 (0.317) 0.244 (0.326) 0.061 (0.129) 
 Absent 101 0.393 (0.505) 0.079 (0.174) 0.162 (0.110) 0.075 (0.042) 
Anadromous species 
Ocean-type chinook 
salmon 

 
overall 
EER  

 
0.402 

21 nodes 
0.101 

K = 3 
0.170 

10 nodes 
0.021 

 Strong 21  0.476 (0.389) 0.619 (0.579) 0.000 (0.125) 
 Depressed 57 0.654 (0.775)1 0.386 (0.146) 0.491 (0.453) 0.018 (0.082) 
 Migrant 59 0.983 (0.938) 0.029 (0.081) 0.074 (0.105) 0.000 (0.017) 
 Absent 340 0.244 (0.246) 0.102 (0.102) 0.254 (0.170) 0.026 (0.003) 
Stream-type chinook 
salmon 

overall 
EER  0.390 

65 nodes 
0.184 

K = 3 
0.148 

8 nodes 
0.110 

 Strong 8  1.000 (1.000) 0.625 (0.625) 0.000 (0.429) 
 Depressed 470 0.872 (0.895)1 0.557 (0.377) 0.398 (0.390) 0.089 (0.397) 
 Migrant 254 1.000 (1.000) 0.464 (0.343) 0.319 (0.244) 0.016 (0.269) 
 Absent 2293 0.222 (0.264) 0.074 (0.145) 0.076 (0.089) 0.125 (0.008) 
Steelhead overall 

EER  0.567 
62 nodes 

0.296 
K = 5 
0.142 

7 nodes 
0.121 

 Strong 23  1.000 (0.000) 0.870 (0.500) 0.696 (0.385) 
 Depressed 969 0.678 (0.783)1 0.149 (0.475) 0.185 (0.222) 0.131 (0.193) 
 Migrant 239 0.992 (0.959) 0.288 (0.260) 0.268 (0.236) 0.247 (0.227) 
 Absent 1940 0.458 (0.448) 0.364 (0.099) 0.096 (0.087) 0.093 (0.069) 
1Strong and depressed population status were combined in to the single response, present. 
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Table 5.  Overall cross-validation error rates for full (all covariates) and  
reduced (significant covariates) classification tree models.  

Resident salmonids Full Model Reduced Model 

Bull trout 0.323 0.299 

Redband trout 0.326 0.323 

Westslope cutthroat trout 0.293 0.281 

Yellowstone cutthroat trout 0.278 0.213 

Anadromous salmonids   

Ocean-type chinook salmon 0.101 0.101 

Stream-type chinook salmon 0.201 0.184 

Steelhead 0.296 0.295 
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Table 6. Statistically significant covariates for the salmonid population status models, by taxa 

and method. A description of the covariates can be found in Table 1.  

 
Resident salmonids 

Generalized 
logit model Classification tree K-nearest neighbor 

Bull trout 
Slope, Solar, 

Rdmean, Mgntcls 

Slope, Pprecip, 
Mtemp, Solar, 

Rdmean, Mgntcls 

Slope, Drnden, 
Pprecip, Mtemp, 
Solar, Rdmean, 

Mgntcls 
Redband trout Slope, Drnden, 

Bank, Solar, 
Rdmean, Mgntcls 

Hucorder, Slope, 
Bank, Baseero, 
Solar, Mgntcls 

Elev, Slope, Bank, 
Solar, Rdmean, 

Mgntcls 
Westslope cutthroat trout Elev, Slope, 

Bank, Baseero, 
Hk, Mtemp, 

Solar, Mgntcls 

Hucorder, Elev, 
Bank, Pprecip, 

Mtemp, Mgntcls 

Hucorder, Bank, 
Baseero, Pprecip, 

Mtemp, Solar, 
Mgntcls 

Yellowstone cutthroat trout Hucorder, Elev, 
Slope, Baseero, 

Hk, Pprecip, 
Mtemp, Solar 

Hucorder, Elev, 
Pprecip, Mtemp, 

Solar 

Hucorder, Hk, 
Mtemp, Solar 

Anadromous salmonids    
Ocean-type chinook salmon Hucorder, Elev, 

Pprecip 
Hucorder, Elev, 

Pprecip, Rdmean 
Hucorder, Elev 

Stream-type chinook 
salmon 

Hucorder, Elev, 
Slope, Drnden, 
Bank, Pprecip, 
Mtemp, Solar, 

Rdmean, Mgntcls 

Hucorder, Elev, 
Drnden, Bank,  
Pprecip, Solar, 

Mgntcls 

Hucorder, Elev, 
Drnden, Bank,  
Mtemp, Solar, 

Mgntcls 

Steelhead Hucorder, Elev, 
Slope, Drnden, 
Bank, Baseero, 

Pprecip, Mtemp, 
Solar, Mgntcls 

Hucorder, Elev, 
Slope, Baseero,    
Mntemp, Solar 

Mgntcls 

Hucorder, Elev, 
Drnden, Bank,    

Pprecip, Mntemp 
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Table 7. Mean Mahalanobis distance between response categories from K-nearest  

neighbor classification of salmonid population status.  

   
Resident salmonids Strong Depressed 

Depressed 2.8441 - Bull trout 
Absent 7.1477 4.5480 

    
Depressed 2.5263 - Redband trout 
Absent 6.4816 3.9974 

    
Depressed 3.7678 - Westslope cutthroat trout 
Absent 6.2722 2.8891 

    
Depressed 7.1240 - Yellowstone cutthroat 
Absent 14.5497 7.7357 

Anadromous salmonids Strong Depressed Migrant 
Depressed 2.3306 -  
Migrant 3.4599 1.9189 - 

Ocean-type chinook 
salmon 

Absent 1.3043 1.6020 3.0771 
     

Depressed 3.4135 -  
Migrant 8.7295 7.4357 - 

Stream-type chinook 
salmon 

Absent 4.5415 4.3162 5.0881 
     
Steelhead Depressed 1.4503 -  
 Migrant 6.9372 6.7879 - 
 Absent 3.1854 3.2813 5.6573 
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Figure captions 

Fig. 1. An example of the recursive partitioning process used for tree classification. The trees 

(top) correspond to their respective graphs (below). The initial partition (left) is at X=30 with 

the corresponding tree decision if X < 30 go left. The second partition is at Y = 20 with the 

corresponding tree decision if Y < 20 go left. Partitions are separated by broken lines and are 

labeled with their corresponding tree node identifiers (t). Non-terminal nodes are represented 

by ovals and terminal nodes by boxes. 

 
Fig. 2. A simplified example of the classification of unknown observations, U1 and U2, as 

members of one of two groups, A or B. Arrows represent the distance from the unknown 

observations to their nearest neighbors. Using a K = 1 nearest neighbor classification rule (solid 

arrows), unknown observations U1 and U2 would be classified as members of groups A and B, 

respectively. A K =6 nearest neighbor rule (all arrows), however, would classify U1 and U2 as 

members of groups B and A, respectively. 

 

Fig. 3. A graphical representation of a modular neural network with 2 covariate variables, 2 

responses, and 2 hidden nodes per module labeled as Ljk with j = module and k = hidden node 

number, respectively. Nodes with B subscripts represent the bias term for the output layer, 

which is analogous to an intercept in generalized linear models. 

 

Fig 4. (a) Mean p-values from Monte Carlo hypothesis tests of k-nearest neighbor models as a 

function of jackknife sample size with 500 jackknife samples and (b) the coefficient of 

variation for p-values as a function of the number of jackknife samples with jackknife sample 

sizes approximately 15% of the totals. Means and coefficients of variation are from 100 

replicate tests of drnden, hk, and bank for Yellowstone cutthroat trout (heavy solid line), 

redband trout (broken line), and steelhead (thin line), respectively. Jackknife sample sizes are 

expressed as a percentage of total sample size for each salmonid. 

 
Fig. 5. Examples of estimating optimal values (arrows) of (a) the number of classification tree 

nodes, (b) the number of K-nearest neighbors, and (c) the number of hidden nodes for the  

modular neural networks using the overall .EER
∧
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Fig. 6. A graphical representation of the classification tree for ocean-type chinook salmon 

population status. Non-terminal nodes are labeled with covariate and number of observations 

(n) and terminal nodes with predicted status and the distribution of responses in the order: 

strong, depressed, migrant, and absent. Split-values are to the right of the covariates with node 

decision: if yes, then down. 

 

Fig 7. A graphical representation of the classification tree for Yellowstone cutthroat trout 

population status. Non-terminal nodes are labeled with covariate and number of observations 

(n) and terminal nodes with predicted status and the distribution of responses in the order: 

strong, depressed, and absent. Split-values are to the right of the covariates with node decision: 

if yes, then down. 
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Fig. 2 
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Fig. 3 
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Fig. 4
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Fig. 5
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Fig. 6 
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Fig. 7 
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