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Environmental heterogeneity often produces patchy
or discontinuous distributions of organisms. Even
broadly distributed species show localized peaks of
abundance (Maurer 1999). This is particularly obvi-
ous in stream ecosystems, where patch dynamics is a
dominant theme (Pringle et al. 1988). Features of the
environment that may influence species occurrence in
streams are believed to result from a hierarchy of
physical processes operating within drainage basins.
This idea has formed the basis of several classification
schemes for stream habitats (e.g., Frissell et al. 1986;
Hawkins et al. 1993; Imhof et al. 1996; Naiman
1998; see Morrison and Hall (Chapter 2) for defini-
tion of “habitat”). These classifications provide a use-
ful framework for understanding physical processes
that generate stream habitat over areas of varying size
and spatial resolution, but they do not explicitly con-
sider how individual species actually perceive or uti-
lize these patchy environments.

To be most useful, patches should be clearly defined
by associations between a biological response (e.g., re-
production, migration, feeding) and environmental
variability (Addicott et al. 1987; Kotliar and Wiens
1990). Classifications of aquatic habitat based purely
on physical characteristics or subdivision of water-
sheds into arbitrary segments may not adequately de-
scribe “patchiness” from an organism’s point of view.

Lack of attention to realistic scaling of environmental
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variation and biological responses can produce weak
or misleading inferences (Goodwin and Fahrig 1998).
Our focus in this chapter is on definition of patches
suitable for supporting local breeding populations.
This is a key prerequisite for applying ideas from
metapopulation and landscape ecology to predicting
species occurrence.

Here, we review our attempts to develop patch-
based classifications of aquatic habitat and models to
predict occurrence of salmonid fishes in streams. We
begin with a brief overview of the concept of patchi-
ness. Next, we outline criteria to define the biological
response of interest: occurrence of local populations.
We then describe models to predict the distribution of
local populations within stream basins. These models
allow delineation of patches of suitable habitat within
watersheds and definition of patch structuring. Pat-
terns of patch structuring and characteristics of indi-
vidual patches provide the basis for modeling occur-
rence of local populations. We compare patch-based
models of occurrence for two threatened salmonids:
bull trout (Salvelinus confluentus) and Lahontan cut-
throat trout (Oncorbynchus clarki henshawi). Finally,
we compare our results to alternative approaches to
predict occurrence of salmonids and discuss implica-
tions of a patch-based approach that should be
generally relevant for developing models of species

occurrence.
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The Concept of Patchiness

The term “patch” has been applied in numerous con-
texts in ecology (e.g., Pickett and White 1985; McCoy
and Bell 1991; Pickett and Rogers 1997; Morrison
and Hall, Chapter 2). Our definition of patches paral-
lels the concept of ecological neighborhoods intro-
duced by Addicott et al. (1987). Ecological neighbor-
hoods are defined by a specific biological response and
not by an arbitrary temporal or spatial scale or by a
perceived boundary or control imposed on the system.
A “patch” corresponds to limits or boundaries of en-
vironmental conditions that can support a biological
response. Patches of environmental conditions poten-
tially suitable to support local populations of a species
are often the focus in landscape and metapopulation
ecology.

Kotliar and Wiens (1990) provided a general
framework for defining patch structure. Given that a
biological response is observed to occur within a de-
finable spatial frame, patch structure can be character-
ized by (1) the degree to which patches can be distin-
guished from each other and the surrounding
environment (patch contrast), and (2) how patches are
spatially aggregated. Patch structuring may be charac-
terized by a nested or hierarchical pattern and may
vary widely among biological responses.

Patch structuring is not directly synonymous with a
specific temporal or spatial scale. For example,
patches defined here may vary by an order of magni-
tude or more in size (patch area). It is definition of
common biological responses and environmental crite-
ria for determining patch structure, not spatial or tem-
poral scale per se, that provides a foundation for
patch-based models of species occurrence that may be
generalized within and among species.

Defining a Biological Response

We were interested in predicting occurrence of fish in
patches of habitat suitable for local breeding popula-
tions. Patches suitable for local populations should
correspond to locations where population growth can
be attributed primarily to in situ reproduction, rather
than immigration (Addicott et al. 1987). Limited de-

mographic interaction among local populations im-
grap g pop

plies some degree of reproductive (genetic) isolation.
Spatial isolation of spawning and rearing habitat for
salmonids is reinforced by strong natal homing
(Quinn 1993), and patches of suitable habitat may
therefore support relatively discrete local populations.
Ultimately, it would be desirable to use multiple
sources of information to delineate local breeding
populations. Several studies have demonstrated the
limitations of using limited genetic or demographic in-
formation alone to infer population structuring (Ims
and Yoccoz 1997; see Utter et al. 1992, 1993 for
salmonid examples).

Unfortunately, detailed genetic and demographic
data are not available for most systems. For salm-
onids, we have defined patches of suitable habitat by
modeling the distribution limits of smaller, presum-
ably “premigratory” or resident individuals within
streams. Larger juvenile and adult salmonids may
adopt migratory life histories (Northcote 1997, Fig.
26.1) and range far outside of spawning and rearing
areas, but their existence ultimately depends on
spawning and rearing habitat. Our delineation of
patches for salmonids, then, is based principally on
ecological information and an assumption of natal
homing. Population genetic analysis (e.g., Kanda
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Figure 26.1. Simplified schematic of life-history variation in
salmonid fishes. Fish with a “resident” life history spend their
entire lives within spawning and rearing areas. Migratory fish
use habitats outside of spawning and rearing areas but return
faithfully (homing) to breed in natal areas. Some dispersal is
possible among both life-history types. Our definition of
patches corresponds to the extent of spawning and rearing.
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1998; Spruell et al. 1999) for some systems indicates
genetic divergence does correspond to juvenile distri-
butions. Our approach to defining patches appears to
be a reasonable approximation, but detailed demo-
graphic and/or genetic data will be necessary to con-
firm the structure of any system (Haila et al. 1993;
Rieman and Dunham 2000).

Models of Distribution Limits
and Patch Delineation

Unlike terrestrial habitats, streams are generally
viewed as one-dimensional systems in terms of fish
distributions and dispersal. Therefore, boundaries of
habitat patches may be delineated in an up- and/or
downstream direction. Many factors can potentially
limit the distribution of spawning and rearing habitat
for salmonids, including natural and artificial disper-
sal barriers, water temperature, interactions with non-
native salmonids and other fishes, human disturbance,
and geomorphic influences. These factors are often
not independent. For example, interspecific interac-
tions mediated by water temperature may influence
longitudinal distributions of species within streams
(De Staso and Rahel 1994; Taniguchi et al. 1998).

In the case of bull trout and cutthroat trout, spawn-
ing and early rearing usually occur in upstream or
headwater habitats (often fourth-order streams or
smaller), so we were particularly interested in factors
that determine downstream distribution limits of juve-
niles. Our two study areas are located at the southern
margin of the range for both species, where unsuitably
warm summer water temperatures in streams are
probably an important factor limiting the amount of
suitable habitat (Rieman et al. 1997; J. B. Dunham
and B. E. Rieman unpublished data). Local popula-
tions of these species in other areas may be delineated
by different habitat characteristics, such as availability
of high-quality spawning habitat (Baxter et al. 1999;
also see Geist and Dauble 1998), barriers (e.g., dams,
waterfalls, subsurface flow), and sharp transitions in
habitat that occur as tributary streams flow into larger
streams or lakes.

There are many recent examples of attempts to
classify aquatic habitat for salmonids based on differ-
ent indicators related to variability in stream tempera-
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Figure 26.2. Map of study areas: the upper Boise River Basin,
Idaho, and the eastern Lahontan Basin, Nevada.

ture. Various researchers have classified thermally suit-
able habitat from variation in groundwater (Meisner
1990; Nakano et al. 1996), air (Keleher and Rahel
1996), and surface water temperatures (Eaton et al.
1995; Rahel et al. 1996). Our approach is currently
based on modeling elevation gradients, which are cor-
related with temperature (Keleher and Rahel 1996).
Our attempts to delineate the amount and distribution
of suitable habitat (i.e., patch structure) for salmonids
have relied on empirical relationships between down-
stream distribution limits of juveniles and elevation or
geographic gradients (see also Flebbe 1994). Our
work has been with Lahontan cutthroat trout in the
eastern Lahontan Basin in southeast Oregon and
northern Nevada, and bull trout in the upper Boise
River Basin in southern Idaho (Fig. 26.2).

Delineation of patches for bull trout in the Boise
River Basin relied on information from surveys of ju-
venile distributions, which suggested a sharp increase
in occurrence above an elevation of 1,600 meters (Rie-
man and Mclntyre 1995; Dunham and Rieman 1999).
This distribution limit was used to delineate the
amount and distribution of suitable habitat patches
within the basin. In the case of Lahontan cutthroat
trout, a geographic model was necessary to account
for changes in the elevation of distribution limits over
the eastern Lahontan Basin, which covers a much
broader area (Dunham et al. 1999). Geographic
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location (latitude and longitude) explained over 70 per-
cent of the variation in the elevation of downstream dis-
tribution limits for Lahontan cutthroat trout.

Patch delineation involved linking models of down-
stream distribution limits with a geographic informa-
tion system (GIS). Predicted downstream distribution
limits were used to delineate the size and distribution
of watersheds with suitable habitat. We defined
patches of suitable habitat as the watershed area up-
stream of predicted elevations for downstream distri-
bution limits. Defining patches in terms of watershed
area is consistent with the view that watershed charac-
teristics have an important influence on stream habi-
tats (Montgomery and Buffington 1998). Local or re-
gional variation in watershed characteristics may have
an important influence on the development of stream
channels and aquatic habitat (Burt 1992), and patch
structuring and patterns of species occurrence may
vary accordingly.

An alternative, and perhaps more precise, measure
of patch size would be actual length of stream occu-
pied within a watershed. Length of stream occupied
requires information on both up- and downstream
distribution limits, whereas watershed area requires
only information on downstream distribution limits.
Stream length might be important where there is
strong local variability in climate and geomorphology,
or when barriers to fish movement within streams
limit upstream distributions. If barriers are important,
fish may only be able to occupy a very limited amount
of habitat, and patch sizes estimated by stream length
and watershed area could differ substantially. Limited
evidence suggests the influence of barriers on fish dis-
tributions within streams is generally minimal, though
important exceptions do exist (e.g., Kruse et al. 1997;
Dunham et al. 1999).

Another potentially important localized factor is
occurrence of nonnative trout. In the case of Lahontan
cutthroat trout, for example, downstream distribution
limits were significantly restricted when nonnative
trout were present (Dunham et al. 1999). This effect
was not consistent or predictable, so we could not
simply account for the effect of nonnative trout in
defining distribution limits and patch sizes. Earlier
models of occurrence of Lahontan cutthroat trout did
not detect an effect of nonnative trout (Dunham et al.

1997), but this study did not provide clear definition
of patch structure.

Because localized factors within streams (e.g., geo-
morphic features, nonnative fish) may place con-
straints on the amount of habitat that can be occu-
pied, patch areas may not reflect the “effective” size of
habitat available to fish. To remedy this potential
problem, we examine model interaction terms and
prediction errors for streams with and without known
constraints. The alternative is to directly map local
features of stream habitats across large areas to delin-
eate patches, which is often difficult to justify with
limited resources.

Modeling Species Occurrence

Delineation of patches and patch structuring within
drainage networks provides a template for predicting
species occurrence. Our approach is essentially a two-
tiered model: (1) define distribution limits in terms of
geographic or elevation gradients to delineate suitable
habitat patches, (2) predict occurrence of fish within
patches. To predict species occurrence, we have fo-
cused on influences of the geometry of patches within
landscapes, namely the size, isolation, and spatial dis-
tribution of patches (see Rieman and Dunham 2000).
Here, we focus on patch size. Patch size may be related
to fish occurrence because habitats in larger patches
may be more complex and resilient to disturbance and
should generally support larger populations.

Rieman and Mclntyre (1995) used multiple logistic
regression to model occurrence of bull trout in the
Boise River Basin and found patch area to be the
strongest predictor. Other significant factors included
patch isolation and road density within patches (Dun-
ham and Rieman 1999). Solar radiation and occur-
rence of nonnative brook trout were not associated
with occurrence, and patterns of occurrence were not
spatially aggregated (Dunham and Rieman 1999). Lo-
gistic regression of occurrence of Lahontan cutthroat
trout in relation to patch area revealed a highly signif-
icant (P < 0.0001) and positive relationship (J. B.
Dunham unpublished data).

Although analyses of data for Lahontan cutthroat
trout are preliminary, some interesting common
themes are suggested by the results. For both species,
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Figure 26.3. Comparison of patch size distributions for bull
trout (Salvelinus confluentus) in the upper Boise River Basin
and Lahontan cutthroat trout (Oncorhynchus clarki henshawi) in
the eastern Lahontan Basin.

patch area appears to be a significant correlate of
species occurrence. This is a common pattern emerg-
ing for many species in both terrestrial and aquatic
ecosystems (Bender et al. 1998; Moilanen and Hanski
1998; Magnuson et al. 1998; Hanski 1999) and a gen-
eral prediction from island biogeography and
metapopulation theory (Hanski and Simberloff 1997).
More interesting are the details of the relationship be-
tween patch size and species occurrence.

First, an examination of patch size distributions re-
veals that size distributions are remarkably similar for
both species and skewed toward very small patches
(Fig. 26.3). This means that very few patches are likely
to have a high probability of occurrence and that a
few large patches may be very important for both
species. In terms of total area of potential habitat oc-
cupied, bull trout in the Boise River Basin occupy rel-
atively more (46 percent) than Lahontan cutthroat
trout in the eastern Lahontan Basin (36 percent).
When the actual responses of both species to changes
in patch size are compared (Fig. 26.4), it is clear that
both species are likely to occur when patch sizes ex-
ceed about 104 ha in area. Relative to Lahontan cut-
throat trout, bull trout are more likely to occur in
smaller patches (Fig. 26.4), which may explain why
bull trout occupy a larger percentage of suitable habi-
tat overall.

Because a common definition for patches was used
for both species, we were able to compare specific re-
sponses of each to variability in patch size. In the fu-
ture, analysis of occurrence in relation to other char-
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Figure 26.4. Predicted probability of occurrence in relation to
patch size (area) for bull trout (Salvelinus confluentus) in the
upper Boise River Basin and Lahontan cutthroat trout (On-
corhynchus clarki henshawi) in the eastern Lahontan Basin.

acteristics of patches may reveal additional insights.
Although the biology of these two species differs in
important ways (Rieman and Dunham 2000), these
results provide general themes to guide efforts to con-
serve and manage these species, along with important
details relevant to particular species or environments
they inhabit.

Evaluating Model Prediction

The most relevant measure of a classifier is its expected
error rate (EER, Lachenbruch 1975). Among possible
EER estimators, leave-one-out cross-validation is a
nearly unbiased estimator of out-of-sample model per-
formance (Fukunaga and Kessel 1971) that provides a
measure of overall predictive ability without excessive
variance (Efron 1983). Leave-one-out cross-validation
involved removal of an individual observation from the
data set, fitting a model with the remaining observa-
tions, and predicting the omitted observation. Model
probabilities of occurrence greater than or equal to 0.50
were classified as predicted occurrences. Fits between
observed and predicted occurrences were summarized
as classification error rates, summarized over all obser-
vations and by response.

Because the results for Lahontan cutthroat trout
were preliminary, we focused on classification (omis-
sion) and prediction (commission) errors for the
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model of bull trout occurrence reported by Dunham
and Rieman (1999). Based on the overall classification
error rate (Table 26.1), our logistic regression model
was fairly accurate with a 19.7 percent error rate. This
suggests a good fit between the data and our logistic
regression model, but this simple measure of predic-
tive ability does not reveal insights into potential bias
or sources of error. When modeling species occur-
rences, biological responses are usually approximated
assuming some predefined statistical distribution. For
example, logistic regression assumes a binomial re-
sponse distribution and a logit link. Hence, model ac-
curacy is likely a function of how faithfully the distri-
bution approximates the biological response. To
illustrate, we fit the bull trout occurrence data to a k-
nearest-neighbor (KNN) model, a relatively flexible
nonparametric classification technique that does not
require distribution assumptions or a strong assump-
tion implicit in specifying a link function (Hand
1982). The overall KNN error rate was 17.3 percent,
only slightly lower than the logistic regression model,
which suggested a reasonable fit of the data to the as-
sumed binomial distribution. Category-wise (i.e., re-
sponse-specific) classification and prediction error
rates can also be influenced by response-specific sam-
ple size (Agresti 1990). In general, error rates are
higher for less-frequent responses. For instance, bull
trout occurrence had the lowest sample size and the
highest prediction and classification error rates for
both the logistic regression and KNN models (Table
26.1). Additionally, logit model error rates are influ-
enced by the choice of the baseline category (e.g.,
modeling presence or absence, Agresti 1990).

Choice of statistical model may be important, but

TABLE 26.1.

Summary of leave-one-out cross-validation classification and
prediction@ error ratesP for bull trout patch occupancy models.

Kc-nearest
Patch status n Logistic regression neighbor
Occupied 29 0.276 (0.276) 0.207 (0.258)
Unoccupied 52 0.154 (0.154) 0.154 (0.120)

aPrediction in parenthesis.
bOmission and commission errors, respectively.
Ck = 12 nearest neighbors.

error in determination of occurrence can also bias
model predictions. For example, bull trout in smaller
patches may also occur at lower densities, which may
affect probability of detecting fish. Another important
point is that predictions from the model are not pre-
cise. Lower and upper confidence intervals for slope
estimates of the patch area effect range from 48 to 61
percent of the point estimate (see Dunham and Rie-
man 1999). We do not have enough confidence in the
precision of our models to believe that model “accu-
racy” can be reasonably assessed by analysis of errors
of omission or commission alone. In other words,
there is a need for both statistical and biological “val-
idation” of models. We suspect similar limitations

apply to many other models of species occurrence.

Implications for Models of
Species Occurrence

The efficacy of a patch-based approach depends on
how clearly patches can be defined. Even if the defini-
tion of patch structuring is clear, it may not be realis-
tic to treat patches as independent of the landscape in
which they are embedded. The degree to which the
landscape “matrix” should be considered in models of
species occurrence will depend on patch contrast, ag-
gregation, and scale of study (Kotliar and Wiens 1990;
Wiens 1996a,b), as well as life history characteristics
of the species in question. For example, many
salmonids have complex migratory behaviors, and in-
teractions between migratory behavior and habitat
outside of spawning and rearing areas (e.g., Fig. 26.1)
may affect species occurrence within patches (Rieman
and Dunham 2000).

A patch-based approach to modeling patterns of
species occurrence has several important advantages.
In the simplest sense, a patch-based approach permits
stratification of models of species occurrence. In
purely statistical terms, stratification may be a useful
tactic to increase the precision of model predictions.
Lack of consideration or knowledge of patch structure
can produce mismatched inferences between patterns
of occurrence and habitat characteristics. Many
common approaches to subdividing landscapes into
pixels, polygons, political boundaries, and so forth
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Figure 26.5. Watersheds are often subdivided into hydrologic
units (HUs) for classification and analysis of aquatic habitats
(Maxwell et al. 1995). This overlay of sixth-field HUs (thin lines)
and patches (heavy lines with shading) for bull trout (Salvelinus
confluentus) in the Boise River Basin shows that patch and HU
watershed boundaries can be substantially different.

may not adequately reflect patch structuring (e.g., Fig.
26.5).

Patch Structure and Scale

Patch structure can have important implications for
finer-scale models of occurrence. Often, fish-habitat
relationships for salmonids are considered within rel-
atively small sites ranging from individual pools and
riffles to stream segments (100-102-meter) (Fausch et
al. 1988; Angermeier et al., Chapter 46). At these
spatial scales, occurrence of fish among sites is proba-
bly not independent, because they are nested within a
larger area supporting a population that is influenced
by larger-scale environmental variation and fish
movement (Schlosser 1995; Gowan and Fausch
1996b).

At finer scales (e.g., stream segments within
patches), the existence of suitable but unoccupied
habitat is a possibility, especially when patch dynam-
ics are characterized by extinction and/or (re)coloniza-
tion (Rieman and Dunham 2000). This implies that
absence of fish at sites may not be a function of site-

scale habitat quality, but rather a characteristic of a
larger patch (e.g., size, isolation), within which sites
are nested. As hypothesized by Kotliar and Wiens
(1990), larger-scale environmental variation may place
important constraints on patterns nested at smaller
scales. Nonspatial models of species occurrence im-
plicitly assume organisms are free to select all habitats,
but this is not true if external constraints (e.g., spatial
isolation, dispersal barriers) or internal constraints
(e.g., homing, philopatry) are important (see Rosen-
berg and McKelvey 1999 for a recent example).

At larger ecological scales, patches supporting local
populations may be aggregated within landscapes,
perhaps forming metapopulations or “semi-independ-
ent networks” (Hanski 1999; Rieman and Dunham
2000). For salmonids in streams, patterns of hydro-
logic connectivity may produce spatially aggregated
clusters or “networks” of patches. Whether defined as
metapopulations or otherwise, aggregates of patches
supporting local populations can be characterized by a
number of larger-scale characteristics, such as number
of patches, size distribution, isolation, land form, land
type, or climatic associations. Models linking species
occurrence to aggregate characteristics may be consid-
ered in terms of occurrence of a single or multiple
local populations.

Management Applications

One of the strongest motivations for better predictive
models of species occurrence is the need for better
data to support conservation planning for threatened
and endangered species (the two species described
here are listed as threatened under the U.S. Endan-
gered Species Act). Key steps in conservation planning
include (1) delineation of units for conservation, (2)
risk or status assessment of the units, and (3) prioriti-
zation of management and species recovery actions.
Delineation of biotic units and selection of appropri-
ate biological responses and/or criteria have been the
focus of much debate, especially for salmonid fishes
(e.g., Nielsen 1995; see also Paetkau 1999). Patch-
based models provide a useful context for integrating
different elements of biological diversity (e.g., compo-
sitional, structural, functional; Franklin 1988) that
should be considered in delineation of conservation
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units at different scales (Noss 1990b). In terms of risk
or status assessments, patch-based models provide
managers with a useful description of the amount and
distribution of suitable habitat (e.g., patch size, isola-
tion). Predictions from models of occurrence can pro-
vide important information to address fundamental
questions about habitat conservation (e.g., How many
habitats? How large? Where to focus?). Other patch
attributes (e.g., occurrence of other species, land
cover, ownership, climatic data, etc.) can also be
added to prioritize species recovery actions.
Patch-based models have provided useful insights
for a wide variety of species (see Hanski 1999). Ignor-
ing potential patch structure or applying overly sim-
plistic or unrealistic habitat classifications may result
in models with little biological relevance or poor pre-

dictive power. The past several years have seen a dra-
matic increase in our capacity to generate predictor
variables (e.g., via GIS, online databases, etc.) and bet-
ter analytical models to predict species occurrence. As
our ability in these important areas increases, how-
ever, we should not lose sight of the biological re-
sponses we wish to understand and predict.
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