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This report describes results of research sponsored through an interagency agreement
between the U.S. Forest Service Rocky Mountain Research Station and U.S.
Environmental Protection Agency (Interagency Agreement #00-1A-11222014-521). The
primary objectives of this research included 1) develop models relating occurrence of two
threatened inland salmonid fishes to stream temperature regimes; 2) develop a
comprehensive protocol for sampling stream temperatures using digital data loggers. The
two species of interest were bull trout (Salvelinus confluentus) and Lahontan cutthroat
trout (Oncorhynchus clarki henshawi). The distribution of each species in relation to
stream temperature regimes was modeled using a variety of approaches. The results of
this work were related to thermal responses of each species in the laboratory. Together,
these lines of evidence form a more rigorous basis for evaluating the biological
requirements of each species, and for determining appropriate temperature criteria for
water quality management. Given that water temperature is a critical concern in streams
in the western United States, it is also important to provide guidance for monitoring
stream temperatures. The recent widespread availability and use of digital temperature
data loggers has resulted in a proliferation of data on stream temperatures. In many
cases, our ability to carefully assure and document the quality and utility of the data has

not tracked our capacity to collect temperature data.

We anticipate three published products from this research. Two papers will focus on the
relationships between the distribution of bull trout and Lahontan cutthroat trout in
relation to different measures of maximum annual temperatures. A third paper will be a
protocol for measuring and sampling stream temperatures using digital data loggers. The
first two papers will be submitted to peer-reviewed journals, and the third will be
published electronically as a Forest Service/Environmental Protection Agency report.
Each section of this final report corresponds to these papers. These should be considered

as early drafts of papers to be submitted for publication in the near future.



Predicting the distribution of stream-living Lahontan cutthroat trout in

relation to air and water temperatures

Introduction

Temperature plays a key role in determining the distribution of many aquatic organisms
(Magnuson et al. 1979). Temperature has been a particular focus for salmonid fishes, due
to their requirement for relatively cold water (Elliott 1981). Past research has linked
salmonid distributions to several indicators of temperature, including elevation gradients
associated with climate (Fausch et al. 1994; Flebbe 1994), modeled air temperatures
(Keleher and Rahel 1996; Rieman et al. 1997), measured (Nakano et al. 1996) or
modeled (Meisner 1990) groundwater temperatures, and measured surface water
temperatures (Eaton et al. 1995; Torgerson et al. 1999). While the latter most directly
affect fish, detailed information on surface water temperatures is often limited or
expensive to obtain, so alternative indicators (e.g., air temperature) may be more useful
(e.g., Stoneman and Jones 1996). The utility of a particular indicator may also depend on
the scale of inference. For example, distribution of fish within a small area may be
related to small gradients in surface water temperatures (e.g., Nielsen et al. 1994;
Peterson and Rabeni 1996; Ebersole et al. 2001), but distributions on a larger scale may
be indicated by broad-scale climatic gradients (e.g., Fausch et al. 1994; Rieman et al.

1997; Dunham et al. 1999).

Our primary objective in this study was to examine the distribution of stream-living trout
(Lahontan cutthroat trout; Oncorhynchus clarki henshawi) in relation to temperature.
Studies of thermal tolerance in the laboratory (Vigg and Koch 1980; Dickerson and
Vinyard 1999; Meeuwig 2000) suggest that surface water temperatures can potentially
limit the distribution of Lahontan cutthroat trout in the field. Previous field studies
(Dunham et al. 1999) indicate the distribution of Lahontan cutthroat trout in streams can
be predicted by large-scale elevation and climatic (summer air temperature) gradients.
However, this work did not provide any direct evidence to link fish distributions in the

field to air or surface water temperature gradients at a local scale. To better understand



thermal habitat relationships on a local scale, we modeled the distribution of Lahontan

cutthroat trout at sites within streams in relation to surface water temperatures.

Results of this study allowed us to assess the utility of surface water temperatures as
indicators of the distribution of cutthroat trout within streams. We contrasted these
results with our previous work relating cutthroat trout distributions to temperature at
larger spatial scales (e.g., Dunham et al. 1999) to better understand the scale-dependent
relationship between salmonid fish distributions and different indicators of temperature.
We also compared our results to studies in different systems (e.g., Stoneman and Jones
1996) to better understand variability in the utility of air versus water temperatures as
indicators of salmonid distributions. Finally, patterns of thermal habitat use in the field
were compared to results of laboratory studies of responses of Lahontan cutthroat trout to

temperature (Vigg and Koch 1980; Dickerson and Vinyard 1999; Meeuwig 2000).

Methods

Study system

Lahontan cutthroat trout is endemic to the Lahontan basin of northeast California,
southeast Oregon, and northern Nevada. The Lahontan basin is part of the Great Basin
desert, which is characterized by hot summers and cool winters, with most precipitation
falling as snow at higher elevations in the winter (Peterson 1994). Topography in this
region is characterized as “basin-and-range,” with north-south trending mountain ranges
and intervening alluvial valleys (Morris and Stubben 1994). Under current conditions,
streams draining these mountain ranges often lose surface flow in the summer as they
flow onto alluvial valley floors. Stream habitats occupied by Lahontan cutthroat trout are
typically small in size, with summer low-flow wetted widths of less than 6 m (Jones et al.

1998; Dunham et al., in press).

Study streams were dispersed throughout the eastern half of the Lahontan basin,

including the Coyote Lake, Quinn River, and Humboldt River basins (Figure 1). The



broad geographic distribution of study streams was chosen to capture a wide range of
conditions. Populations in two streams (Edwards and Sherman Creeks, Nevada) were
derived from undocumented transplants of Lahontan cutthroat trout (M. Sevon, Nevada
Division of Wildlife, personal communication). Edwards Creek lies just outside of the

native range of the species (Figure 1).
Sampling of water and air temperatures

We used a standardized protocol to sample temperatures using digital temperature data
loggers. The model of data logger we used (Hobo Temp®; Onset Computer Corporation,
Pocasset, MA) measures temperature to within = 0.7 °C, and records temperatures within
a range of 0-43 °C. We conducted pre- and/or post-calibrations following manufacturer

specifications to correct for instrument bias in temperature readings.

Our interest was in characterizing general surface water temperatures of streams, as
opposed to groundwater or thermal refugia (Nielsen et al. 1994, Torgerson et al. 1999;
Ebersole et al. 2001). We placed data loggers at sample sites within the well-mixed
portion of the main flow (thalweg) of the active stream channel, and out of contact with
direct solar radiation. Air temperature data loggers were suspended from streamside trees
or shrubs, and out of contact with direct solar radiation. Local water temperatures at sites
were checked with hand-held thermometers before data loggers were deployed. In each
stream, at least one air temperature data logger was deployed to provide a reference for
water temperature readings. In 1998, air temperature loggers were placed at every water
temperature sampling location. In 1999, a single air temperature logger was placed at the
midpoint (up-downstream direction) of sampling within each stream. Data loggers were

programmed to record temperature every 30 min.

Data loggers were placed in a longitudinal (up-downstream) array of sites within streams
to bracket the known or suspected distribution limits of Lahontan cutthroat trout. This
focused sampling at or near areas where thermal regimes were expected to exceed the

tolerance of this subspecies. Within each stream, we sampled 4-10 sites, depending on



access, time, and physical constraints (e.g., lack of surface flow). Sites were generally
spaced 600 meters apart, but spacing varied occasionally due to loss or failure of the data

logger.

Water temperatures were sampled from 15 July to 15 September in 1998, and from 01
July to 15 September in 1999. We assumed that maximum water temperatures occurred
within this temporal window. Prior to the study, we examined long-term climate records
from monitoring stations throughout the region (e.g., Figure 2) to confirm that maximum
air temperatures were likely to be observed at this time of year. Long-term water
temperature data are not widely available, but we assumed the coincidence of high levels
of solar radiation and long photoperiods, coupled with declining stream flows in the latter

part of the summer should lead to maximum water temperatures during this time period

(Figure 2).

Fish sampling

Fish sampling followed procedures described by Dunham et al. (1999). We used
backpack electrofishers to survey for occurrence of cutthroat trout within = 150 m of each
temperature sampling site. If fish were found within this 300 m reach, then cutthroat
trout were scored as “present.” In 1998, fish distributions were determined once during
the summer season (15 July-15 September). In 1999, streams were sampled several (=3)
times during the summer to confirm that fish distributions were constant (i.e., fish
presence or absence remained the same within = 150 m of sites sampled for temperature)
over the summer season. Previous work on redband trout (Oncorhynchus mykiss) in the

region also found that fish distribution limits in streams were constant over the summer

season (Zoellick 1999).

Data screening and analysis

Temperature data were screened visually for unusual “spikes,” or large fluctuations

associated with instrument malfunction or stream desiccation. When necessary,



screening involved comparison with local air temperatures. Several different quantitative
summaries of the thermal regime (temperature “metrics”) were calculated (Table 1). Our
choice of metrics attempted to capture the range of biological effects that temperature
may have on cutthroat trout. Effects of temperature may range from chronic to acute
exposure of fish to unsuitably warm temperatures (e.g., Sprague 1990). For example,
temperature metrics based on average temperatures or longer (e.g., weekly) exposure
periods should reflect the influences of prolonged or chronic exposure, while metrics
based on thermal maxima or cumulative exposure over shorter time periods may
represent acute exposure. Metrics describing cumulative exposure were calculated only
for water temperature. The range of values for cumulative exposure metrics represents
the range of lethal and sublethal effects that temperature may have on cutthroat trout

(Vigg and Koch 1980; Dickerson and Vinyard 1999; Meeuwig 2000).

Because there are so many ways to describe temperature, we first examined correlations
among all sets of metrics for both air and water. Previous analyses using multiple
temperature metrics have used principal components analysis to deal with these
intercorrelated summaries of temperature (Haas 2001). We considered this approach as
well, in addition to modeling the effects of individual metrics. Our choice of individual
metrics was guided primarily by the degree of correlation between metrics for each
medium. For groups of metrics that were strongly correlated, we used only a single
representative. Using more than one metric in such circumstances could lead to problems
with multicollinearity (Phillipi 1994), and would presumably not add much new
information, given the strong correlation among variables. We also examined
correlations between air and water temperatures to compare to previous related work

(e.g., Stoneman and Jones 1996).

Occurrence of cutthroat trout was modeled at all sites in both years in relation to
predictors describing surface water temperature regimes. Data analyses used logistic
regression (SAS, Allison 1999) to relate surface water temperature metrics to occurrence
(presence or absence) of cutthroat trout. We also tested for variation among years and

streams using a “stream-year” categorical variable (Dunham and Vinyard 1997). This



analysis tested for differences in the slopes or intercepts of the model parameter estimates
among different streams or streams sampled in different years. The analysis of stream-
year variability only used streams with multiple (>6) sites sampled within each stream.
Therefore, we excluded data collected in 1998 from Sherman Creek and Dixie Creeks,
where only four sites were sampled. To provide an alternative to classical null
hypothesis testing (Anderson et al. 2000), we also evaluated the relative likelihood of the
two alternative models (temperature only and temperature + stream-year effects) using
model selection procedures described by Burnham and Anderson (1998; see also

Thompson and Lee 2000).

Results

Mean dates for maximum daily water temperatures in streams were 5 August and 29 July
in 1998 and 1999, respectively. Because we did not begin monitoring temperatures in
1998 until 15 July, there is some possibility the maximum temperatures could have
occurred prior to that date. In 1998, the earliest date for which the maximum daily
temperature was observed in a stream was 18 July, only three days after sampling was
initiated. In 1999, water temperature monitoring was initiated by 1 July. Maximum
water temperatures were generally observed after 15 July, but there were exceptions in
some streams (Figure 2). In Frazer Creek, maximum water temperatures in sites
occupied by Lahontan cutthroat trout occurred on 12 July and after 15 July 1999.
Maximum water temperatures in unoccupied sites were also observed on 12 July in
Frazer Creek in 1999. We also found maximum air and water temperatures did not occur
at the same times in the streams we studied. For these reasons, we did not further pursue

analyses of air temperature regimes in relation to fish distributions.

Water temperatures varied substantially among sites over the summers of 1998-1999
(Table 2). All temperature metrics were linearly correlated (all P-values < 0.0001).
Nonparametric Spearman rank correlation coefficients ranged from 0.74 to 0.99 for the
six water temperature metrics examined. Because all water temperature metrics were

strongly correlated, we selected only one metric for use in relating water temperature to



occurrence of cutthroat trout. We selected maximum daily temperature because it is an
easily understood metric with strong biological implications for acute exposure (e.g.,
Meeuwig 2000). We also attempted to use principal components analysis to create
indices that incorporate information on several intercorrelated temperature metrics. In
spite of attempts at data transformations, we could not produce normally distributed data,
thus violating a basic assumption for principal components analysis (McGarigal et al.
2000). Accordingly, we abandoned principal components and modeled the response of

cutthroat trout in relation to maximum daily water temperature.

Cutthroat trout were found to occur in sites with maximum daily temperatures ranging up
to 28.5 °C, and were found to be absent in sites with summer maximum temperatures as
cold as 18.9 °C (Figure 3). Occurrence of cutthroat trout in the site with the highest
temperature (28.5 °C) was confirmed on the day when the maximum temperature was
observed (A. Talabere, Oregon State University, personal communication). Overlap in
water temperatures between occupied and unoccupied habitats was due to occurrence of
cutthroat trout in two sites with relatively cool maximum daily temperatures (18.9-20.2
°C). For streams sampled in 1998 and 1999, the difference in maximum daily
temperature associated with occurrence of cutthroat trout ranged from 0.2 to 1.1 °C

(Figure 3).

Conventional analyses using logistic regression indicated highly significant (P<0.001)
relationships between occurrence of Lahontan cutthroat trout and temperature, but
stream-year effects were not significant (P=0.17) when analyzed together with
temperature. A likelihood-based assessment of these alternative models suggested that
stream-year effects were important, in spite of the large number of added parameters
(Table 3). This finding was concordant with the wide range of maximum temperatures
we found to be associated with distribution limits of Lahontan cutthroat trout in different

streams (Figure 3).



Discussion

Correspondence between thermal responses observed in the field and laboratory

Based on responses of cutthroat trout to temperature in the laboratory, we expected
distributions of fish within streams to correspond to stream temperature gradients.
Streams in the Lahontan basin often heat to temperatures known to cause physiological
stress for salmonids (e.g., Elliot 1981). Within most streams we studied, cutthroat trout
occurred in sites with temperatures observed to cause sublethal stress (>22 °C; Dickerson
and Vinyard 1999; Meeuwig 2000) or mortality (>24 °C; Dickerson and Vinyard 1999) in
the laboratory under relatively optimal conditions (e.g., unlimited food, dissolved oxygen
saturation, low ammonia levels). In a few sites, occurrence of cutthroat trout was
associated with maximum daily temperatures (>26 °C) that could be lethal with very

short-term (< 1d) exposure (Dickerson and Vinyard 1999).

Modeling fish distributions in relation to temperature

Spatial variation in the response of cutthroat trout distributions to temperature was
evident among streams. In two streams, maximum temperatures associated with
occurrence of cutthroat trout were relatively cool (< 20 °C). In both of these two streams,
the influence of temperature may have been modified by extreme declines in surface
flows in late summer (JBD, personal observations). Loss of surface flow is common in
streams of the Great Basin desert as they flow from mountain slopes onto alluvial valleys
with finer-textured sediments. As flows decline, fish are often trapped in intermittent
pools, and may be vulnerable to other stressors (e.g., predators, changes in water quality)

that could independently or interactively modify their response to temperature gradients.

We found logistic regression to be useful for assessing the relative strength of
relationships between fish occurrence and water temperatures, but model predictions
(Figure 4) did not accurately reflect the known biology of Lahontan cutthroat trout. In

particular, the model for maximum daily temperature predicted occurrence of cutthroat
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trout in water temperatures that should cause immediate mortality (>30 °C; Dickerson
and Vinyard 1999). Simple summaries of maximum temperatures observed in
association with cutthroat trout occurrence (Figure 3) provided a more biologically

plausible representation of thermal habitat use.

Comparison to related field studies

Recent work in an adjacent area to the north of our study system reported similar
temperatures associated with the distribution of redband trout (Oncorhynchus mykiss;
Zoellick 1999). In the four streams studied by Zoellick (1999), redband trout
distributions were associated with maximum daily temperatures ranging from 22.5-29.0
°C. To our knowledge, there is only one published study of occurrence of cutthroat trout
in relation to stream temperatures in the field. Eaton et al. (1995) reported the 95t
percentile of average weekly mean temperatures (MWAT) associated with occurrence of
cutthroat trout to be 23.2 °C. This temperature is closely associated with the induction of
sublethal stress under chronic exposure (e.g., cessation of growth and feeding; Meeuwig
2000) for Lahontan cutthroat trout. Our sample size was limited (z < 100), but
temperatures associated with distribution limits of Lahontan cutthroat trout were much
colder. Mean weekly average temperatures associated with distribution limits averaged

17.5 °C, with a maximum of 20.9 °C.

The discrepancy between our results and those reported by Eaton et al. (1995) can be
attributed to several potential causes. The approach used by Eaton et al. (1995) required
a minimum of 1000 observations matching fish occurrences with stream temperatures.
Our sample size was much smaller, so it was unlikely that we would have observed
extremely high temperatures associated with occurrence of cutthroat trout, because the
frequency of such observations should be very low. Our sample size was small, but
matching between records of fish occurrence and temperature was more precise. Records
of fish occurrence used by Eaton et al. (1995) were matched to temperature records

located within 7 km, whereas our study matched fish occurrence to temperature records
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within 0.3 km. Thus, it is possible that Eaton et al. (1995) could have overestimated

actual temperatures associated with occurrence of cutthroat trout.

Air versus water temperatures as indicators

In the systems we studied, it was clear that maximum summer air and water temperatures
did not occur within the same time frame. We anticipate the utility of maximum summer
air temperatures for discriminating fish distributions in our study system is probably
limited by lack of association between air and water temperatures, and limited variability
in air temperatures in comparison to water temperatures within streams (unpublished
results). Air temperature gradients appear to reliably discriminate salmonid distributions
on smaller spatial scales in other regions (Stoneman and Jones 1996). Regional
differences in the relationship between fish distributions and water or air temperatures
likely reflect the degree of correlation between the latter. In areas with strong air-water
temperature correlations, either measure may prove useful for delineating suitable
habitats. In the western United States, air temperatures have been shown to be useful for
modeling salmonid distributions at larger spatial scales, where variability in temperature
should be larger and more informative. Examples include the distribution of cutthroat
trout among streams across the eastern Lahontan basin (Dunham et al. 1999), and the

distribution of bull trout in the interior Columbia River basin (Rieman et al. 1997).

Conclusions and management implications

The importance of temperature to Lahontan cutthroat trout has been demonstrated at
several spatial scales and levels of biological organization. Studies in the laboratory
(Vigg and Koch 1980; Dickerson and Vinyard 1999; Meeuwig 2000) have examined
growth, survival, and behavior of individual fish exposed to different thermal regimes. In
the field, fish distributions likely represent population-level responses to temperature.
Within streams with perennial surface flow, summer maximum temperatures play a
dominant role in determining the distribution of fish. Among streams within the region,

distribution limits are tied strongly to elevation and climatic (air temperature) gradients
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(Dunham et al. 1999). Within the eastern Lahontan basin, the amount of suitable thermal
habitat, as indexed by watershed area upstream of distribution limits, is a strong predictor
of the occurrence of local populations of cutthroat trout (Dunham et al. 2001).
Watersheds with larger areas of potentially suitable thermal habitat are more likely to
support extant populations of Lahontan cutthroat trout. Protection and restoration efforts
to benefit habitat for Lahontan cutthroat trout should therefore focus on temperature as a
primary limiting factor. Management should focus on changes in the distribution of
suitable thermal habitat caused by contemporary human influences (Poole and Berman
2001) in the context of potential future scenarios, should climate change (Keleher and

Rahel 1996) lead to increased fragmentation of suitable habitats.
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Table 1. Definition of statistical summaries of temperature or temperature “metrics.”

Metric Definition

Maximum average daily temperature Mean daily temperature observed on the
warmest day of the year

Maximum daily temperature Maximum of maximum daily temperature
observed within a year

Maximum weekly average temperature Average of daily average temperatures
observed on the warmest week within a year

Maximum weekly maximum temperature  Average of daily maximum temperatures
observed on the warmest week within a year

Number of observations exceeding 18°C  Self-explanatory: observations recorded
at 30 min intervals

Number of observations exceeding 22°C  Self-explanatory: observations recorded
at 30 min intervals

Number of observations exceeding 26°C  Self-explanatory: observations recorded

at 30 min intervals
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Table 2. Summary of observed water temperatures.

Metric Units N Mean  Minimum Maximum
Maximum daily °C 87 23.5 15.2 32.5
temperature

Maximum weekly average  °C 87 16.8 12.13 23.0
temperature

Maximum weekly °C 87 22.7 14.9 30.4

maximum temperature
Number of observations Time' 87 20.3 0 48
exceeding 18°C

Number of observations Time 87 9.3 0 33
exceeding 22°C
Number of observations Time 87 4.0 0 20
exceeding 26°C

'Time units correspond to the number of 30-minute sampling intervals, for which a given

temperature was observed or exceeded.
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Table 3. Candidate models and relative likelihoods, as indicated by Akaike’s information
criterion (AIC). Larger AQAIC. weights (Wi) indicate likely models. See Burnham and
Anderson (1998).

Model Parameters QAIC, AQAIC, Wi
Temperature and “stream- 10 78.06 0 0.60
year”

Temperature only 2 78.85 0.80 0.40
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List of Figures

Figure 1. Map of study stream locations in the Lahontan basin system (grey outline).
Filled dots indicate locations of study streams. Names of study streams are as follows
from north to south: Willow Creek (Oregon), Threemile Creek, Indian Creek, Frazer
Creek, Sherman Creek, Dixie Creek, Carville Creek, Edwards Creek. Populations of
Lahontan cutthroat trout in Sherman and Edwards Creek were established via
translocations. Edwards Creek lies outside of the Lahontan basin. The filled triangle
corresponds to a section of Marys River with long-term stream discharge data, and the
unfilled triangle corresponds to the location of a temperature sampling station at Elko,

Nevada (see Figure 2).

Figure 2. Plot of stream discharge (cubic meters per second, lower line) for the Marys
River (U.S. Geological Survey station 10315500), and maximum daily temperatures (°C,
upper line) recorded at Elko, Nevada, in 1995. Circles indicate the Julian dates for
maximum daily water temperatures observed in occupied (filled circles) and unoccupied
(unfilled circles) in 1998 (lower rows for each symbol type) and 1999 (upper rows for
each symbol type). The vertical reference lines indicate Julian dates corresponding to 15

July and 15 September.

Figure 3. Maximum daily temperatures for sites with Lahontan cutthroat trout in 1998

(unfilled circles) and 1999 (filled circles).

Figure 4. Plot of predicted probability of occurrence in relation to maximum daily
temperatures (solid line). Data for presence and absence (circles) were “jittered” by
adding a random number between —0.02 and 0.02 to presence (1) or absence (0) to
increase visibility of overlapping points. The maximum temperature at which Lahontan

cutthroat trout were observed to occur was 28.5 °C.
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Stream temperatures and the distribution of bull trout at the southern

margin of its range

Introduction

Temperature is one of the fundamental elements that define suitable habitat for fishes
(Magnuson et al. 1979). Temperature directly influences individual fish through
physiological processes (e.g., growth, metabolism; Elliott 1981) and behavioral
thermoregulation (Berman and Quinn 1991). Indirect effects of temperature include
effects on biotic interactions (Reeves et al. 1987; Taniguchi et al. 1998; Taniguchi and
Nakano 2000) and responses of individual fish to other physiological stressors, such as
dissolved oxygen or ammonia (Dockray et al. 1998). These influences on individuals
may be related to the distributions of local populations in landscapes (Dunham et al.
2001a,b), or be manifested as the geographic limits to species distributions (Shuter and

Post 1990; Adams 1999).

Patterns of temperature and fish distributions in the field may provide an important
context for understanding thermal responses of individual fish in the laboratory.
Laboratory conditions provide an excellent environment for controlled experimental
studies, but it is impossible to duplicate the complex environments that individual fish
experience in the field. Accordingly, thermal responses observed in the laboratory may
have little ecological relevance. To address this issue, Eaton et al. (1995) attempted to
relate results of laboratory-derived upper thermal tolerance limits for a variety of fishes to
maximum water temperatures associated with records of species occurrence in the field.
Maximum temperatures associated with species distributions in the field were often lower
than upper thermal tolerance limits observed in the laboratory. For example, among the
salmonid species studied, maximum water temperatures associated with fish distributions
in the field were 1-4 °C cooler than upper thermal tolerance limits indicated by laboratory
studies. The fact that fish distributions in the field corresponded to cooler temperatures

suggests sublethal effects of temperature, such as growth limitation and disease
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resistance, may be important. Alternatively, there may be conditions in the field, such as
food limitation or interactions with other stressful conditions that reduce the thermal
tolerance of individual fish. In any case, our understanding of the thermal requirements
of fishes is greatly improved by considering lines of evidence from both field and

laboratory studies.

Patterns of fish distribution in relation to temperature also have potentially important
implications for the persistence of local populations. For example, recent studies suggest
that persistence of local populations of stream-living salmonids can be tied strongly to the
amount and distribution of suitable habitats on natural landscapes (Rieman and Dunham
2000; Dunham et al. 2001a). If fish distributions are limited by temperature, then large-
scale patterns of thermal habitat availability may have strong effects on population
persistence. The amount and distribution of thermally suitable habitat for fish is a major
concern for regulation of water use and land management because temperature is
sensitive to past and present human influences (Poole and Berman 2001) that may be

exacerbated by future climate change (Keleher and Rahel 1996).

Species with a narrow thermal “niche” (Magnuson et al. 1979) are most likely to be
affected by alterations in water temperature regimes. In particular, species tied to
coldwater habitats may be especially vulnerable to increases in temperature that
commonly result from human influences on water temperature regimes (Poole and
Berman 2001). In western North America, bull trout (Salvelinus confluentus) is believed
to be among the most thermally sensitive species in coldwater habitats (Rieman and
Mclntyre 1993; Buchanan and Gregory 1997; Haas 2001; Selong et al. 2001). Bull trout
is listed as threatened under the U.S. Endangered Species Act, and occupies a broad
range across the western United States (Rieman et al. 1997). Accordingly, issues
regarding the sensitivity of bull trout to temperature, and in turn, the sensitivity of
temperature to human influences, are of great interest to land management and species

recovery efforts.
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Information on the thermal tolerance of bull trout has come from a variety of indirect
lines of evidence and localized case studies in the field (e.g., Pratt 1992; Rieman and
Mclntyre 1993, 1995; Bonneau and Scarnecchia 1996; Buchanan and Gregory 1997;
Dunham and Rieman 1999; Zurstadt 2000; Haas 2001) and laboratory (Selong et al.
2001). These studies have provided key insights into the thermal requirements of bull
trout, but with the exception of analyses of climatic gradients (Rieman et al. 1997), a
comprehensive analysis of thermal habitat associations of bull trout in the field has not
been conducted throughout the species’ range. Of particular interest should be the
southern margin of the species’ range (e.g., Flebbe 1994), where temperature should be
most important. Because bull trout are known to be sensitive to warm water temperatures
(Buchanan and Gregory 1997; Selong et al. 2001), temperature metrics that reflect annual
maximum temperatures should be suitable indicators of habitat use. Our primary
objectives in this study were to 1) collect information on the distribution of bull trout and
water temperatures throughout the southern margin of its range; 2) determine if
temperature can predict the distribution of bull trout; 3) examine the generality of model
predictions from different locations; and 4) relate results of associations between bull

trout and temperature in the field to the results of previous field and laboratory studies.

We modeled the distribution of bull trout in relation to temperature in the field
throughout the southern margin of its range in the United States. Our focus was on the
distribution of small bull trout (<150 mm). Areas where small bull trout occur represent
key spawning and rearing habitats, and are thus an essential component of bull trout
habitat (Rieman and Dunham 2000). Small bull trout represent resident (non-migratory)
individuals, or juveniles that have yet to emigrate. Juveniles rear in their natal streams
for at least one year (Rieman and MclIntyre 1993). Accordingly, small bull trout are
present through at least one entire annual thermal regime within a stream. Larger fish
often undertake extensive migrations (Bjornn and Mallet 1964; Swanberg 1997), it is
therefore much more difficult to match their distribution with thermal regimes at a given

time or location.
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We used two data sets to model the distribution of bull trout in relation to water
temperature. A model developed from a regional data set covering observations over a
large portion of the range of bull trout within the United States (Rieman and Chandler
1999) was compared to a model developed from data collected on temperature and
occurrence of bull trout in Washington State in 2000 (Dunham and Chandler 2001).
Models developed using each data set were used to predict observations in the other.
This cross validation with different data sets was used to determine if patterns in each
were similar. The data sets were derived using different sampling methods, so
differences between models generated with each could result from this influence, or from
different responses of bull trout to temperature. Similarity in predictions from each

model would suggest these potential influences are not important.

Methods

Data acquisition

Regional data set. We assembled a database of thermograph records throughout the
current range of bull trout in the United States using data from our own surveys of bull
trout and stream temperatures, and data received from other biologists in the region
(Rieman and Chandler 1999). Temperature records for analysis of bull trout distributions
in relation to maximum summer temperatures spanned from July 15-August 31. This
period was selected to symmetrically bound the period for which maximum water
temperatures were observed. Minimum requirements for temperature measurements
were uniform sampling intervals of at least 4 instantaneous observations per day.
Information on occurrence of bull trout within 500 m of the site (unknown was a
potential response) was also required for all records. Records were classified for
presence of small (<150 mm) bull trout. Only records with definite presence or absence
of small bull trout were used in this analysis. This resulted in a total of 175 streams and
643 sites distributed throughout the western United States (Figure 1), representing data
reported in Rieman and Chandler (1999), and subsequent data acquisition (1999-2001).
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Washington State data set. To ensure broad coverage of stream habitat conditions
experienced by bull trout in Washington State, we sampled streams over a broad
geographic area. We selected streams from three broad regions, west of the Cascade
Mountains, east of the Cascade Mountains, and Blue Mountains (southeast Washington).
Final selection of study streams was based on workshops and consultation with over 100
local biologists familiar with each region. Streams sampled for bull trout occurrence and
temperature included the South Fork Skokomish River, Twisp River, Chiwawa River,

Ahtanum Creek, and Tucannon River (Figure 1).

Locations of sampling sites attempted to bracket the downstream distribution limits of
small bull trout in each stream. Within each stream, 100 m sites were spaced 2 km apart
in an up-downstream array. Site spacing varied occasionally, due to logistical difficulties
encountered in the field. The purpose for 2 km spacing of sites was to provide enough
distance between sites to sample changing thermal conditions as a function of

downstream changes in stream characteristics.

All fish sampling was conducted using single-pass night snorkeling (see Thurow 1994),
which is among the most efficient methods for sampling bull trout (Peterson et al. 2001).
All bull trout were counted, and bull trout less than 150 mm in total length were
specifically noted. Whenever possible, block nets were installed at the upper and lower
unit boundaries to prevent fish movement into or out of the site during sampling. In
some cases, it was not possible to hold block nets. This was common in larger (>5 m
wetted width) streams, and streams with strong discharge. All sampling was conducted
in late summer to early fall (15 July-15 September 2000), to capture observations of fish

distributions during the warmest time of year.

We sampled water temperatures at all sites with “Tidbit” temperature data loggers
manufactured by Onset Computer Corporation, Inc. (www.onset.com). These data
loggers are waterproof, but were placed in protective PVC casings to protect them from

potential physical damage while in the streams. Data loggers were programmed and
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calibrated following manufacturer’s instructions. Placement of data loggers within sites

followed methods outlined by Dunham (1999) and Zaroban (1999).

Data Analysis

Data analyses used logistic regression (Allison 1999) to relate occurrence of small bull
trout to maximum daily summer (15 July-15 September) temperatures in both data sets.
Patterns of occurrence in each data set were analyzed separately. Cross validations were
performed both within and between the data sets to evaluate model predictions. Within
both data sets, a “leave one out” cross validation was performed. This was accomplished
by sequentially omitting a single observation from the dataset, fitting a model with the
remaining observations, and using the model to predict occurrence for the omitted
observation. Using this method of cross-validation allows the entire data set to be used as

independent observations to evaluate out-of-sample model performance.

Between data sets, we applied predictions from models developed with one data set (e.g.,
regional, or Washington State) to the other. In other words, we asked “How well do
models developed from the regional data set predict observations in the Washington State
data set, and vice versa?”’ Model predictions were classified as “present” when predicted
probabilities of occurrence equaled or exceeded 0.50. Predictions of 0.49 or less were
treated as predicted “absence.” The frequency of correctly classified presence and
absences, and overall (presence + absence) classification rates were summarized to

evaluate model predictions.

We were also interested in the spatial stability of model predictions within each data set.
Because the regional data set was not collected with a statistically based sampling design,
we were only able to quantitatively test for spatial variability within the Washington State
data set. Data collected in Washington State in 2000 were from sites nested within
streams, so it was possible to test for the influence of spatial variability on the model
results. Spatial variation included variation among sites within streams and variation

among streams. Because sites within streams might not be truly independent, each
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observation may not contribute a single degree of freedom to the analysis. The spatial
autocorrelation of these sites may result in overestimation of degrees of freedom for
hypothesis testing and underestimation of the precision of model parameter estimates and
predictions (Legendre 1993). Spatial variability among streams (Dunham and Vinyard
1997; Dunham et al., in press) may also affect model parameter (slopes, intercepts, and

interaction terms) estimates.

To look at both “site” and “stream” influences on the results, we analyzed a subset of
data collected at sites along continuous lengths of major streams sampled in each study
basin (see Dunham and Chandler 2001). We ordered sites in an upstream-downstream
array to test for the effects of spatial autocorrelation among sites within streams.
Variability among streams was analyzed by coding “stream” as a categorical or “group”

variable in the analysis (Allison 1999).

Results

Maximum temperature consistently predicted occurrence of young small bull trout in all
datasets and analyses. Logistic regression model parameter estimates for the Washington
State data set were similar to parameter estimates from the similar analysis of the larger
database (Table 1). Analysis of a spatially ordered subset of data from Washington State
indicated significant autocorrelation among sites within streams, but “stream” effects
were not significant, indicating that among-stream differences in the relationship between
temperature and bull trout occurrence were not detectable. The main effect of accounting

for autocorrelation was wider confidence bounds for parameter estimates (Table 1).

Overall error rates for cross validations within and between models and datasets were
similar (68-72%), but error rates for absence and presence were not consistent (Table 2).
Most notably, the regional model predicted presence very well for the Washington data
set, but poorly for absence of bull trout. For other cross validations classification rates

for presence and absence were similar, ranging from 64-77% (Table 2).
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Discussion

Results of this and related studies (Rieman and Chandler 1999; Dunham and Chandler
2001) suggest that temperature is a useful predictor of the occurrence of small bull trout
throughout the southern margin of the species’ range in the conterminous United States.
Concordance in parameter estimates and cross-validation both within and between a
regional and a more “local” (Washington State) model provide evidence for a robust

relationship between occurrence of bull trout and maximum stream temperatures.

Model predictions for the regional data set indicated slightly higher predicted

probabilities of occurrence for bull trout at warmer (>12°C) maximum temperatures
(Figure 2). This may be due to the larger sample size for the regional data set (n = 643)
in relation to the Washington data set (n = 109). With a larger sample size, it should be

more likely to observe bull trout in habitats with a low probability of use. Bull trout were

never observed at temperatures exceeding 17.5°C in the smaller Washington data set,

whereas the highest maximum temperature associated with occurrence of bull trout in the

regional data set was 26.2°C. Accordingly, the regional model predicted a higher

probability of occurrence for bull trout at warmer maximum temperatures.

Cross validations between the regional and Washington models reflected these
differences as well (Table 2). For example, the regional model was good at predicting
presence of bull trout in the Washington data set, but relatively poor at predicting absence

of bull trout. Most of the incorrect classifications of absence were for maximum

temperatures ranging from 13-17°C, where differences in predicted probabilities of
occurrence between the models were greatest (Figure 2). This pattern reflects the greater

uncertainty that should be expected in general for occurrence of bull trout at

“intermediate” temperatures. At colder (<12°C) and warmer (>25°C) maximum
temperatures, the probability of occurrence of bull trout predicted by both models is very

similar (Figure 2).
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Maximum temperatures associated with occurrence of bull trout in the field were
consistent with the results of laboratory studies of thermal tolerance. Under laboratory

conditions, mortality of bull trout occurs in less than 24 hours when fish are exposed to

temperatures greater than or equal to 26°C (Selong et al. 2001). Our models (Figure 2)

similarly indicate that occurrence of bull trout is very unlikely at these temperatures.

Bull trout can survive chronic exposure to constant temperatures of up to 20°C for long

periods of time, however. Selong et al. (2001) reported ultimate upper incipient lethal

temperatures (UUILT) for bull trout ranging from 20.9°C and 23.5°C for 60 and 7-day

exposures, respectively.

Model predictions from distributions in the field (Figure 2) imply that bull trout may be

present at potentially lethal temperatures, but that probability of occurrence is relatively

low (e.g., <0.50) until maximum daily temperatures decline to approximately 14-16°C.

Probability of occurrence is not high (e.g., >0.75) until maximum daily temperatures

decline to approximately 1 1-12°C. These patterns could reflect sublethal influences of

temperature. For example, Selong et al. (2001) found that growth of bull trout on

unlimited rations in the laboratory was maximized at 13.2°C. If rations are limited, the
temperature at which maximum growth is realized can be shifted to lower temperatures
(T. McMahon, Montana State University, personal communication). More detailed field
investigations of growth, behavior, and other responses are needed to better understand

the sublethal responses of bull trout to temperature.
Management implications

Results of this work provide an answer to the question of “how cold?”” water needs to be
to consistently support small bull trout. The answer to this question is not a single
number, but rather a continuum of values associated with the expected probability of
occurrence for bull trout. Risk-averse strategies to protect this threatened species may
adopt a more or less conservative approach to choosing an acceptable temperature for

management purposes. For example, a very conservative approach would be to protect a
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full range of habitats that bull trout could use (e.g., <26°C; Figure 2). Another approach

would be to target restoration of water temperatures that likely to support bull trout (e.g.,

<12°C; Figure 2).

It is important to realize that maximum daily temperature is but one of a variety of
different summary measures or “metrics” (e.g., maximum or mean temperatures
summarized on daily, weekly, or seasonal intervals) that could be associated with
occurrence of bull trout or used for management criteria. We used maximum daily
temperature because it is relatively easy to interpret, and because it provides relatively
fine-scale information on thermal exposure. Summary of temperatures in terms of means
or multi-day summaries could mask important information at finer scales (e.g., Dunham
1999). Detailed information on the biological importance of different kinds of thermal
exposure (e.g., sublethal versus lethal; chronic versus acute) is lacking. Finally, it is
important to note that most measures of maximum temperatures in streams supporting
bull trout are highly correlated, and are therefore statistically redundant, in terms of

predicting fish distributions.

The question of “how cold?” is obviously critical, but an even more pressing question, in
terms of the population-level significance of temperature is “how much?”’ (Dunham et al.
2001b). Research on bull trout and other salmonids has clearly linked patterns of
occurrence to the amount and distribution of potentially suitable thermal habitat on
landscapes (e.g., Rieman and Mclntyre 1995; Dunham and Rieman 1999; Dunham et al.
2001a; Poole et al. 2001). Useful models to predict stream temperatures on landscapes
are needed to provide a better view of large-scale habitat structuring that likely has
important effects on population persistence for bull trout and associated species. Bull
trout occupies a vast range in the western United States, and current models to predict the
distribution of suitable habitat are very simplistic and limited in spatial extent (e.g., only
the upper Boise River basin; Rieman and Mclntyre 1995; Dunham and Rieman 1999).
Future work should seek to provide useful landscape models for predicting stream

temperatures throughout the range of bull trout.
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With the models reported herein, we can now predict the distribution of potentially
suitable habitats for small bull trout, given that stream temperature patterns are known
(e.g., from direct measurement or landscape models). With these distribution models, it
should be possible to develop maps of suitable habitats, and “patch-based”” models of
occurrence (Dunham et al., in press) to predict patterns of occurrence at larger scales
(e.g., among basins, as opposed to within streams). One premise behind this kind of
modeling is that some, but not all, potentially suitable habitat is occupied by bull trout
(e.g., Rieman and MclIntyre 1995; Dunham and Rieman 1999; Rieman and Dunham
2000). In the absence of information on larger-scale suitability of habitat (e.g., “how
much?”’), managers may opt to conservatively protect any habitat with water cold enough
to potentially support bull trout. Application of larger-scale models, in conjunction with
new sampling protocols (Peterson et al. 2001; Peterson and Dunham, in review), would
be needed to provide increased resolution for land management classifications to protect

bull trout populations and key habitats.
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Table 1. Logistic regression parameter estimates and confidence intervals for three

models of bull trout occurrence in relation to summer maximum temperature. The

“Washington-All” dataset includes all fish-habitat data collected in 2000. The

“Regional” dataset is an extended version of the dataset described by Rieman and

Chandler (1999). The “Washington-Spatial” dataset (Dunham and Chandler 2001)

includes data from a spatially ordered sample of sites sampled in 2000. Parameter

estimates for all datasets are similar.

Dataset Parameter Estimated 95%
Coefficient Confidence
interval
Washington-All Intercept 5.47 2.87, 8.58
Temperature -0.38 -0.58, -0.21
Regional Intercept 4.64 3.81,5.83
Temperature -0.28 -0.34,-0.23
Washington-Spatial Intercept 7.91 0.52,15.31
Temperature -0.52 -0.98, -0.07
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Table 2. Results of cross validations using the “Washington-All” (WA) and “regional”
(REG) models (Table 1). Cross validations within a model (i.e., WA—WA and

REG—REG) were conducted by sequentially removing each observation from the

dataset, fitting the model with the remaining observations, and predicting the omitted

observation (e.g., a “leave one out” cross-validation). Cross validations between models

(i.e., WA—-REG and REG—->WA) were conducted by using a model developed using one

data set (e.g., WA or REQG) to predict observations in the other.

Presence Absence
Overall Percent Percent
Model Correct Correct Error correct  Correct Error correct
WA—-WA 0.70 30 17 63.8 46 16 74.2
WA—-REG 0.67 208 145 589 223 67 76.9
REG—>WA 0.68 42 4 91.3 32 31 50.8
REG—REG 0.72 290 120 70.7 170 63 73.0
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Figure 1. Locations of sites sampled for occurrence of small bull trout and stream
temperatures in the western United States. Circles represent sites within the “regional”

data set, and triangles represent sites sampled in Washington State in 2000.
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Figure 2. Predicted probability of presence (occurrence) for small bull trout in relation to

maximum daily temperature for the regional and Washington 2000 data sets.
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Measuring Stream Temperature with Digital Thermographs:
A User’s Guide

Introduction

Digital temperature data loggers (or thermographs) are among the most widespread
instruments in use for monitoring physical conditions in aquatic ecosystems. Most
temperature data loggers are relatively inexpensive (<$200 US), simple to deploy, and
capable of collecting large amounts of data (>32 kb). Temperature is a variable of
widespread interest in aquatic ecosystems because it is an important component of water
quality (e.g., Poole et al. 2001a), and it is affected by many different natural and human-
related influences (e.g., Webb and Zhang 1997; Poole and Berman 2001). Due in part to
the dramatic increase in the use of temperature data loggers and other new technologies
(e.g., Torgerson et al. 2001), the quantity of data on water temperature data has increased
dramatically. The rapid accumulation of new data has perhaps surpassed our data
processing ability, and it is not always clear that information from temperature data
loggers is reliable, accurate, or useful. This problem is not new or unique in water
quality monitoring, and has been termed the “data-rich, information-poor” syndrome by
Ward et al. (1986). This protocol is an attempt to provide guidance to improve the
quality and utility of water temperature data collected with digital temperature
dataloggers.

What this protocol covers

In this protocol, we explore a range of issues associated with the use of temperature data
loggers for water temperature monitoring. Our intent is to provide a comprehensive
synthesis and analysis of the issues that must be addressed to ensure that data from
temperature data loggers serve the objectives for which they were collected (Table 1). In
addition to carefully considering the objectives for a monitoring effort, there are several
other potentially important issues (Table 2). Several protocols (e.g., Dunham 1999; Lewis
et al. 1999; Zaroban 1999) have summarized information on field sampling methods. We
review much of the information in these protocols here for the sake of completeness, but
we encourage users to refer to them as well. In this protocol, we cover these issues and
several others, including measurement interval, data screening, correlations among
various metrics, and development of a relational database for distribution. Users must be
cognizant of these issues during all phases (e.g., planning, implementation, analysis,
interpretation) of a monitoring effort. We do not wish to give readers of this protocol the
impression that sampling of water temperatures with digital data loggers should be
excessively complex or difficult. Rather, we wish to provide useful and relatively simple
guidance that will substantially improve the quality and utility of temperature data.
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Table 1. A list of common objectives for sampling of water temperatures (see also NRCS

1996).

Objective

Examples

Baseline monitoring

Monitoring of pre- and post-treatment water temperature
regimes

Monitoring to determine spatial and temporal temperature
patterns

Monitoring to provide information on temperature in
previously unsurveyed habitats

Water quality compliance

Monitoring of temperatures to determine if beneficial uses
(e.g., fish) are supported

Monitoring of temperatures in relation to point source
influences (e.g., warm or cold water discharges)

Monitoring of temperature patterns to validate or
parameterize water temperature models (e.g., Bartholow
2000)

Research

Monitoring of water temperatures to model responses of
aquatic biota (e.g., Eaton et al. 1995)

Monitoring of water temperatures to determine appropriate
spatio-temporal sampling designs for a given sampling
frame (e.g., water body or watershed of interest)
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Table 2. List of temperature sampling issues covered in this document.

Issue Examples

Instrument error Accuracy and precision, range of measurement, lag time in
temperature recording

Calibration Post and pre-use calibration of data loggers, “drifting” of
temperature readings, reliability of calibration conditions

Measurement Effects of temperature measurement interval on probability of
interval detecting important maximum and minimum temperatures
Field sampling Locating representative sampling sites to make inferences about

temperatures of interest (e.g., surface versus benthic temperatures),
effects of data logger housings on temperature readings

Error screening Numerical filters for detecting outlier and erroneous observations,
visual inspection of thermal patterns to detect possible errors

Data summaries Choice of statistical summaries of temperature, correlations among
different temperature metrics, methods for defining “exceptional”
conditions

Important issues not covered

Our focus in this protocol is on sampling temperatures at specific localities or sites. We
do not provide extensive guidance on different sampling designs for making inferences
about larger-scale spatial patterns of stream temperatures (e.g., Poole et al. 2001b).
Another topic that is worthy of consideration, but not considered in detail here, is
documentation and archiving of temperature data in a format that is readily accessible by
a wide range of users. As water temperature data accumulate at an accelerating pace and
scale, the need to organize this information in a useable format will increase accordingly.
Although we have developed a relational database for the temperature data used herein,
we did not wish to duplicate existing efforts to archive water quality information. There
are several noteworthy existing efforts related to this need, including StreamNet
(http://www.streamnet.org), the U.S. Environmental Protection Agency (e.g., STORET;
http://www.epa.gov/storet/) the USDA Forest Service National Resource Information
System (http://www.fs.fed.us/emc/nris/), and the U.S. Geological Survey National Water
Quality Assessment (http://water.usgs.gov/nawqa/).
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Outline of the protocol

This protocol is organized into four major sections that correspond to the series of steps
that users must take in using temperature data loggers. These steps include 1) study
design and planning, 2) field sampling, 3) data processing, and 4) data storage and
archiving.

Step 1. Study design and planning

Study objectives — Who will use the data, and why?

There are a variety of objectives for measuring or monitoring water temperature (Table 1,
NRCS 1996). In our experience, most uses of temperature data loggers are linked to a
specific objective. It is also common, however, to find several independent water
temperature monitoring efforts occurring in the same water body at the same time. Often
data loggers from different investigators are located in the same reach of stream, for
example. Coordination among investigators would help to minimize duplication of
effort, and allow opportunities for multiple uses of information from a single data
collection effort.

Choosing a data logger

There are many manufacturers and models of data loggers to choose from (Table 3).
Prices for data loggers at the time this protocol was written started at approximately
$50.00 (US). Important features to consider when choosing a logger include accuracy,
precision, memory capacity, durability, and programmability.

Accuracy and precision

Most data loggers, when properly functioning, are very accurate and capable of relatively
precise (= 1°C or less) temperature readings. Most manufacturers provide relatively
detailed information on the accuracy and precision of their instruments, some of which is
summarized in Table 3.
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Table 3. Examples with websites of some of the data loggers that are currently available.

Manufacturer Logger Submersible | Memory Temperature | Accuracy | Resolution Battery Web Site
Type Capacity Range Type
Onset HOBO H8 No 7943 -20-70 0.7 0.4 1 year Onsetcomp.com
replaceable
HOBO No 65291 -30-50 0.2 0.02 3 year Onsetcomp.com
Pro Temp replaceable
StowAway Yes 32520 -4-37 0.2 0.16 5 year non- Onsetcomp.com
Tidbit replaceable
Optic Yes 32520 -4 —-37 0.2 0.16 10 year Onsetcomp.com
StowAway replaceable
Veriteq Spectrum Yes 32520 -40 — 85 0.15 0.05 10 year non- Veriteq.com
1000 replaceable
Gemini Tinytag No 7943 -40 -85 0.2 0.4 2 year Geminidataloggers.com
Ultra replaceable
TinyTag No 10836 -40 -85 0.2 0.4 2 year Geminidataloggers.com
Plus replaceable
Ryan RL 100 Yes 1800 -39 - 87 0.5 0.1 Ryaninst.com
Vemco Minilog Yes 10836 -5-40 0.1 0.015 Replaceable Vemco.com
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Memory capacity

Memory capacity is more important if temperatures are to be recorded for long periods of
time (e.g., >1 year) or short sampling intervals (e.g., <30 min). Most data loggers
manufactured today have a minimum of 8k of memory, which allows deployment of 165
days at 30-minute intervals (7920 observations).

Durability

Durability is important when deploying data loggers in many water bodies. While some
models are quite durable, there are a wide variety of field conditions that can lead to
damage or loss of data loggers. For this reason, we recommend using data logger
housings in situations where there is any possibility of damage or loss. For example, data
loggers in streams could be damaged or lost during high flows, bed scour, and associated
transport of sediment and wood. Trampling from humans or animals could be important
in some locations.

Types of data logger housings. Many data loggers are not submersible and must be
deployed within sealed waterproof housings. Data loggers within waterproof housings
are not in direct contact with the water, and are actually recording air temperatures within
the sealed housing. Heat transfer between the air within the housing and the surrounding
water is not immediate, but air temperatures within the housing should track surrounding
water temperatures. There is a short time lag (~15 min) required for the air within the
housing to equilibrate with the surrounding water temperature. Thus, temperatures
recorded from data loggers within housings may not precisely track water temperatures
on very short (> 15 min) time scales. This is not usually a problem, except for
applications that require very precise tracking of water temperatures over short time
intervals.

In situations where temperatures must be measured precisely, it may be more advisable to
use data loggers with sensors that are in direct contact with water. For example, we
placed paired data loggers in two different streams for the summer months. Data loggers
in each pair were submersible but one was placed in a sealed, waterproof housing and the
second was placed in a flow through housing. Differences in temperature measurements
between the two setups (sealed and flow through housings) in a stream with moderate
diel fluctuation (6 °C) were within the reported accuracy of the instruments (Figures 1

and 2). Measurements from the paired data loggers in a stream with more diel fluctuation
(10°C) differed between setups. Temperatures recorded in the sealed housing were
cooler during the day and warmer at night (Figures 1 and 2). It seems likely that air
within the sealed housings does not closely track the actual variability in ambient water
temperatures, leading to an underestimation of the maximum temperatures and
overestimation of the minimum temperatures. This problem appears to be most
important for streams with large daily fluctuations in temperature in this example, but
further study is needed to identify the range of conditions that could be important.
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Figure 1. Comparison of 2 days of recorded temperatures for data loggers placed in two
streams. Each stream had a data logger placed in a flow through housing and a data
logger placed in a sealed (waterproof) housing.
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Data loggers that are submersible should be placed in flow-through, durable housings
(e.g., heavy duty, UV-resistant PVC pipe) to protect from physical impact or abrasions
and direct solar radiation. Investigators must consider local conditions when designing
data logger housings. For example, housings with fine screens or small flow-through
holes could be easily fouled in eutrophic systems with abundant periphyton or algal
growth. Housings placed in areas with abundant sediment deposition could be buried or
filled with fine sediment.

One important function of the data logger housing is to protect the sensor from direct
solar radiation. If the housing itself absorbs solar radiation, it may conduct heat to the
data logger’s sensor and bias temperature readings. For example, we tested temperatures
recorded by data loggers placed in waterproof housings of three different colors: white,
metallic, and transparent. Maximum water temperatures measured by loggers in clear
housings were up to 5°C warmer than temperatures measured by loggers in reflective
white or metallic colored housings. Thus, clear data logger housings may have acted like
miniature greenhouses that trapped solar radiation, causing erroneously warm water
temperature measurements. Black data logger housings may also bias temperature
measurements because they can absorb and re-radiate significant amounts of heat.

Programmability. Most temperature data loggers allow the user to program a starting
time (delayed deployment) and sampling interval. Delayed deployment is particularly
useful when using several data loggers within a single system. This assures that
temperatures are taken at the exact same times for all data loggers. Some data loggers
have a variable sampling interval option. This can be useful in a variety of situations.
For example, if memory is limited and temperatures must be sampled for the entire year.
Measurements can be programmed for longer sampling intervals in winter months when
the daily range of temperatures is smaller and shorter intervals during the summer when
daily variability in temperature is highest.
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Calibration of data loggers

Regardless of the type of data logger used, it is good practice to make sure it is
functioning properly. Calibration is a relatively simple process, and well worth the time,
given the consequences of lost or misleading data. A simple and effective procedure for
calibrating data loggers is the “ice bucket” method (see also
http://www.onsetcomp.com/Newsletters/Honest _Observer/HO.2.1.html). The procedure

involves the following steps:

1.

2.

Deploy the data loggers at a short sampling interval (for example, 1 minute).

Submerge data loggers in an insulated, well-mixed water bath with a generous
amount of melting ice (e.g., a large cooler with ice water). Be sure to use fresh
water (dissolved materials may alter the thermal properties of water).

If possible, record water temperatures using a NIST (National Institute of
Standards and Technology, http://www.nist.gov/) thermometer to ensure the
temperature of the water bath is 0°C.

After at least an hour, remove the data loggers and download the data. If the data
loggers are calibrated correctly, the temperature readings should level out at 0°C
(Figure 3).

It is good practice to check calibration both before and after data loggers are
deployed and retrieved. It is also advisable to use a NIST thermometer to test the
accuracy of data loggers at temperatures other than 0°C.

Calibration to determine the accuracy of time recorded by data logger may also be

necessary if temperature measurements are to be synchronized among different
data loggers, or measured on a short time interval (e.g., <30 min).
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Figure 3. Illustration of data logger calibration using the “ice bucket” method.

Choosing a sampling interval

Most data loggers can be programmed to measure and record temperatures at a variety of
time intervals. Obviously, longer time intervals will result in lower resolution and greater
potential for bias. For some measures of temperature, such as the daily maximum, it may
be necessary to sample with high frequency (short time intervals) if the variability or
range in temperatures over the course of a day is large. In other words, infrequent
sampling (e.g., >2 hour sampling intervals) in systems with a large amount of daily
variation in temperature may not adequately describe the true thermal regime at a site.
This may be particularly true of important instantaneous measures of temperature, such
as the daily maximum temperature. For a given daily range of variation in temperatures,
it should be possible to prescribe sampling intervals that ensure temperature regimes are
adequately described.

To quantitatively address the issue of temperature sampling frequency or sampling
interval, we used temperature data from data loggers deployed at 1252 sites sampled in
the Pacific Northwest and Rocky Mountain regions (Dunham 1999; Rieman and
Chandler 1999; Dunham and Chandler 2001; Figure 3). Sampling intervals at these sites
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ranged from as few as 5 observations per day (every 4.8 hours) to 96 observations per
day (every 15 minutes). These samples represent sites exhibiting a large range of
variability in daily water temperatures and the variability is highly correlated to the daily
range of temperature (Figure 5). The maximum range in daily temperature for the entire
data set was 17.8°C.

Daily Standard Deviation

20

Daily Range of Temperature

Figure 5. Linear correlation of mean daily range of temperature with mean daily standard
deviation (square root of variance) for each site in the data set (»=0.98).

We focused our analyses on the influence of sampling interval on the observed maximum
daily temperature. Maximum daily temperature should be the most sensitive to sampling
interval for several reasons. First, it is a relatively instantaneous measure of temperature,
and could easily be missed by sampling at longer intervals. Second, maximum daily
temperatures and the range or variability in temperatures are strongly correlated (Dunham
1999). Therefore, higher maximum daily temperatures may be more difficult to detect
with a given sampling interval.

To evaluate the potential for bias related to temperature sampling intervals, we needed a
baseline or reference representing the “true” thermal regime. The “true” thermal regime
within a day is the theoretical distribution of temperatures observed by sampling at
infinitely small intervals. In the data set we used, the shortest sampling interval for
which there were sufficient data to analyze was 30 min. This included a total of 211
“baseline” samples out of the 1252 for which we had information.

60



To compare maximum daily temperatures observed in the baseline data samples to those
observed with sampling at >30 min intervals, we sub-sampled observations from the
baseline data sets to simulate sampling at one, two, three and four hour intervals. For
these simulated sampling intervals, we predicted the probability of missing the maximum
daily temperature by more than 1°C from the baseline samples. The obvious
consequence of “missing” the maximum temperature during sampling is underestimating
the warmest temperatures that occurred at a given site. Probabilities of missing the true
maximum temperature were predicted using logistic regression (Allison 1999, also see
Dunham 1999).

As expected, sites with larger diel fluctuations (larger daily range in temperature) have a

greater probability of missing the true maximum than those with smaller diel fluctuations
(Figure 5). A daily range of 8°C would have an error rate of 4.5% and 8.5% for 3 and 4-

hour sampling intervals, respectively.
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Figure 5. Probability of missing the maximum daily temperature by 1 °C in relation to
daily range of temperature and sampling interval.
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Step 2. Field procedures

Spatial thermal variation and sample site selection

Spatial patterns of thermal variability are common in water bodies of all types. Spatial
differences in water temperature may be obvious at a variety of scales. In lakes and
reservoirs, larger-scale (e.g., > 1 m) patterns of vertical stratification are commonly
associated with thermal differences in the density of water. Patterns of stratification may
vary on a seasonal or irregular basis (Wetzel 1975). Smaller-scale (<10 m) variability in
the temperature of lakes and reservoirs can be caused by groundwater (e.g., springs) and
tributary inflow. Small-scale thermal heterogeneity is similarly common in streams.
Within a short segment of stream, localized variation in temperature can occur in a
lateral, horizontal, or vertical direction (Figure 6)
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Figure 6. An illustration of spatial variation in temperature in the Lochsa River, Idaho.
Note the influence of tributary inflow. The image was generated using infrared aerial
videography (Torgerson et al. 2001; image provided by Don Essig, Idaho Department of
Environmental Quality).
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If the objective is to characterize the well-mixed or “thalweg” temperature in a stream,
then small-scale variability in temperature must be carefully considered in selection of
sites for temperature measurements. For example, stream temperatures near tributary
junctions where flows are incompletely mixed are not representative of thalweg
temperatures (Figure 6).

Information on thermal variability at a small spatial scale is best obtained by probing with
a hand-held thermometer. Spatial variation in dissolved gases (e.g., dissolved oxygen) or
conductivity may also indicate sources of thermal variation. These alternatives may be
useful when potential thermal variability is not measurable at the time of data logger
deployment. This may be important during high spring flows, seasonal turnover periods
in lakes and still pools, and time periods when groundwater and surface water
temperatures are not distinguishable. At larger spatial scales, information from infrared
aerial videography can be useful for designing sampling programs for water
temperatures, particularly in streams (Torgerson et al. 2001).

Protecting the data logger in the field

Once a suitable site is selected for temperature sampling, the data logger must be securely
placed within the site. There are three common reasons for the loss or damage of data
loggers: 1) failure to relocate the data logger after initial field deployment; 2) human
tampering or vandalism; 3) natural disturbances, such as flooding, substrate movement,
and animal influences (e.g., trampling by livestock or wildlife, beaver pond construction).

Failures to relocate data loggers can be minimized by attention to a few simple practices.
Detailed hand-drawn maps and notes are usually necessary to re-locate temperature data
loggers following initial field deployment. This is particularly important when different
individuals are involved in different stages of field operations, as is often the case. Site
descriptions should keep in mind potential changes in conditions that could affect a
person’s ability to relocate the data logger (e.g., changes in stream flow or reservoir
level). Storing of geographic coordinates using a global positioning system (GPS) may
be useful as well, but GPS coordinates are often insufficient by themselves.

Human tampering or vandalism can be a challenge. In many situations it is necessary to
record temperatures in areas with high levels of human activity. The options for
minimizing human interference include camouflage, secured storage, or use of back-up
data loggers. The choice obviously depends on the situation. Camouflage is generally
less expensive, but it may also make the data logger more difficult to relocate.
Alternatively, data loggers can be secured in locked and signed housings may be
relatively impervious to physical vandalism or disruption. A third option is to use two or
more data loggers in a single location as back-ups in the case of human (or other)
interference.

Human tampering can also result from unintentional interference. Some examples
include damage to data loggers from construction or restoration efforts in the stream
channel and electrofishing surveys. Active coordination with ongoing research,
monitoring, or management in the study area is thus essential, not only to minimize
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duplication of temperature sampling efforts, but also to minimize problems with
unintentional interference.

Natural disturbances to data loggers are obviously impossible and perhaps undesirable to
control entirely, but they can be anticipated in many situations. Stream environments
pose the biggest problems, in terms of natural disturbance. The most common natural
disturbance affecting data loggers is stream discharge, particularly during higher flows.
Drag induced by higher water velocities and associated substrate movement and transport
of debris can damage or dislodge data loggers. In our experience, the durability of
housings provided by manufacturers or made by individual users is generally more than
sufficient to protect data loggers under most natural disturbances.

The most common source of data logger loss is dislodging. Accordingly, it is important
to properly anchor the data logger so it will not be lost. A variety of anchors can be used,
including large rocks, concrete blocks, and metal stakes (see also
http://www.onsetcomp.com/Newsletters/Honest _Observer/HO.2.1.html). A practical
consideration is the effort involved in transporting the anchor to the field site. We have
encountered a variety of weight-reducing alternatives. Lightweight and durable bags or
containers that can be easily carried to the site and filled with rocks or sand are popular.
Examples include sand bags (usually available from hardware stores) and rubber inner
tubes from automobile tires. Chain, cable, or metal stakes are also popular, but they must
be firmly anchored into the substrate. Chains or cables are often tethered to rocks or
large wood in the stream, or anchored into the stream bed with a variety of devices (need
picture of duckbill anchors, etc.).

Data loggers can also be buried under substrate, aquatic macrophytes, or accumulations
of debris. Location of data loggers in such situations can be aided by use of a metal
detector. Unfortunately, however, the ultimate solution is usually labor-intensive
excavation. Users should also keep in mind that buried temperature data loggers are no
longer recording surface water temperatures.

Finally, the issue of dealing with the effects of domestic or wild animals on data loggers
may be important. Given that most data logger housings are relatively durable, we have
encountered few problems with trampling from livestock or wildlife. In our experience,
beaver activity has been more important. Data loggers can be buried under beaver dams
or unsafe or difficult to retrieve in beaver ponds formed during sampling. Our only
suggestion is to use more than one data logger in areas where beaver activity is expected
to be important.
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Step 3. Data processing

Error Screening

Once data loggers are retrieved from the field and their data is downloaded, it is
important to verify the quality of the data, and check for potential errors. It is useful to
visually inspect each time series to catch any obvious data logger malfunctions or
dewatering of site (Figure 6). In many cases, there are tails of the data that need to be
trimmed. For example, if the logger was recording temperatures in the office during or
after deployment, these observations should obviously be removed before continuing
with any analysis. Usually, these problems are immediately obvious from visual
inspection of the data (Figure 7).
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Figure 7. Example of temperature measurements from a site that was dewatered during
the sampling period. Note the extreme (>30 °C) daily fluctuation in temperature, and
extraordinarily warm (>40 °C) temperatures.

It is also useful to automatically flag any suspect observations. For example, Rieman and
Chandler (1999) flagged all temperature observations that fell below —1°C or above 30°C.
Observations were also flagged if there was a rate of change greater than 3°C per hour or
a daily mean change of greater than 3°C between two successive days. The upper and
lower 5™ percentiles of the overall distribution of observed temperatures were also
flagged. Flagged observations were not removed from the database. They were re-
verified with personnel involved in data logger programming and field sampling.

Flagged observations were only removed if obvious problems were noted. The reason for
removal was noted in each case.
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Statistical summaries of temperature data

There are a variety of statistical summaries or “metrics” to describe important elements
of temperature regimes. Most often, the focus is on maximum temperatures, due to their
regulatory importance. Water quality criteria for temperature commonly use one or more
metrics to describe maximum temperatures. From a biological perspective, there are a
number of different components of thermal regimes (e.g., minimum temperatures,
seasonal patterns, timing and duration of different temperatures) that are biologically
important, but we will focus our discussion here on temperature metrics that describe
maximum temperatures.

Maximum temperatures are generally summarized within an annual time frame. Within a
year, there are a variety of time frames over which maximum temperatures may be
described. For water quality criteria, temperatures are most often summarized for the
warmest day or week of the year. Summaries of mean and maximum temperatures are
common, but it may also be useful to describe cumulative exposure to temperatures
exceeding a critical threshold. For example, if important biological (e.g., lethal or
sublethal) effects are known to occur above a certain temperature, then the time above
that threshold may be important. We summarized the data set based upon the hottest day
of the summer; hottest week of the summer; and cumulative exposure during the hottest
week and throughout the summer. We used 15 July — 15 September to represent the
summer. The metrics we summarized were:

1) Daily average on the hottest day (MN_DAY)
2) Overall summer maximum (hottest day — MX_ SUM)
3) Maximum weekly average maximum temperature (hottest week —
MX WEEK)
4) Average weekly temperature during the hottest week (MOV_AVG)
5) Overall average summer temperature (MN_SUM)
6) Cumulative days maximum greater than 14°C during hottest week
(WEEK 14)
7) Cumulative days maximum greater than 18°C during hottest week
(WEEK 18)
8) Cumulative days maximum greater than 22°C during hottest week
(WEEK 22)
9) Cumulative days maximum greater than 14°C during entire summer
(SUM_14)
11) Cumulative days maximum greater than 18°C during entire summer
(SUM_18)
12) Cumulative days maximum greater than 22°C during entire summer
(SUM_22)

We categorized each site by average daily range and grouped the sites on 2°C daily range
intervals. Within these intervals we correlated the metrics and also computed differences
among the metrics. Tables 4 — 10 summarize the correlations and conversion factors for
each grouping.
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Table 4a. Correlation matrix among temperature metrics (N=101) where the average daily range over the summer was 0 — 2°C.
Numbers underlined and in italics were not significant correlations.

MN_DAY | MX_SUM | MX_WEEK | MN_SUM | MOV_AVG | WEEK 14 | WEEK_18 | WEEK 22 | SUM_14 | SUM I8 | SUM 22
MN_DAY 1.00 0.98 0.98 0.96 0.99 0.72 0.46 0.21 0.72 0.46 0.21
MX_SUM 0.98 1.00 0.98 0.96 0.98 0.73 0.47 0.24 0.73 0.47 0.24
MX _WEEK |  0.98 0.98 1.00 0.97 0.99 0.73 0.46 0.24 0.73 0.46 0.24
MN_SUM 0.96 0.96 0.97 1.00 0.97 0.71 0.46 0.22 0.72 0.46 0.22
MOV _AVG |  0.99 0.98 0.99 0.97 1.00 0.72 0.46 0.23 0.72 0.46 0.23
WEEK_ 14 0.72 0.73 0.73 0.71 0.72 1.00 0.58 0.28 0.99 0.58 0.28
WEEK_18 0.45 0.47 0.46 0.46 0.46 0.58 1.00 0.48 0.59 1.00 0.48
WEEK_22 0.21 0.24 0.23 0.22 0.23 0.28 0.48 1.00 0.29 0.49 1.00
SUM_14 0.72 0.73 0.73 0.72 0.72 0.99 0.59 0.29 1.00 0.59 0.29
SUM _18 0.46 0.47 0.46 0.46 0.46 0.58 1.00 0.49 0.59 1.00 0.49
SUM 22 0.21 0.24 0.24 0.22 0.23 0.28 0.48 1.00 0.29 0.49 1.00

Table 4b. Conversion factors for the continuous temperature metrics where the average daily range over the summer was 0 — 2°C.
The conversion is row minus column (i.e. if maximum summer (mx_sum) was 12°C then the overall mean summer temperature
(mn_sum) would be: 12.00-2.55=9.45 with bounds of 9.22 — 9.67.

MN SUM MOV_AVG MN DAY MX_WEEK
MEAN | LOWER | UPPER | MEAN | LOWER UPPPER | MEAN | LOWER | UPPER | MEAN | LOWER UPPER
MX SUM | 255 2.33 2.78 1.49 1.34 1.64 1.17 0.97 1.38 0.55 0.44 0.67
MX_WEEK | 2.00 1.84 2.15 0.93 0.87 0.99 0.62 0.49 0.75
MN DAY | 138 1.22 1.54 0.31 0.21 0.41
MOV AVG | 1.07 0.92 121
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Table 5a. Correlation matrix among temperature metrics (N=520) where the average daily range over the summer was 2 — 4°C.
Numbers underlined and in italics were not significant correlations.

MN_DAY | MX_SUM | MX_WEEK | MN_SUM | MOV_AVG | WEEK_14 | WEEK_18 | WEEK 22 | SUM_14 | SUM_18 | SUM 22
MN_DAY 1.00 0.95 0.96 0.95 0.99 0.88 0.50 0.19 0.90 0.51 0.20
MX_SUM 0.95 1.00 0.98 0.93 0.95 0.91 0.52 0.22 0.93 0.53 0.24

MX_WEEK |  0.96 0.98 1.00 0.95 0.97 0.91 0.51 0.19 0.93 0.51 0.20
MN_SUM 0.95 0.93 0.95 1.00 0.97 0.86 0.50 0.18 0.90 0.51 0.19

MOV _AVG |  0.99 0.95 0.98 0.97 1.00 0.88 0.50 0.18 0.91 0.51 0.19
WEEK_ 14 0.87 0.91 0.91 0.86 0.88 1.00 0.43 0.15 0.96 0.44 0.17
WEEK_18 0.50 0.52 0.51 0.50 0.50 0.43 1.00 0.41 0.51 0.98 0.43
WEEK_22 0.19 0.22 0.19 0.18 0.18 0.15 0.41 1.00 0.18 0.41 0.95

SUM 14 0.90 0.93 0.93 0.90 0.91 0.96 0.51 0.18 1.00 0.52 0.19
SUM 18 0.51 0.53 0.51 0.51 0.51 0.44 0.98 0.41 0.52 1.00 0.43
SUM 22 0.20 0.24 0.20 0.19 0.19 0.17 0.43 0.95 0.19 0.43 1.00

Table 5b. Conversion factors for the continuous temperature metrics where the average daily range over the summer was 2 — 4°C.
The conversion is row minus column (i.e. if maximum summer (mx_sum) was 12°C then the overall mean summer temperature
(mn_sum) would be: 12.00-4.08=7.92 with bounds of 7.79 — 8.04.

MN_SUM MOV_AVG MN DAY MX_WEEK
MEAN | LOWER | UPPER | MEAN | LOWER UPPPER | MEAN | LOWER | UPPER | MEAN | LOWER UPPER

MX SUM | 4.08 3.96 421 2.76 2.67 2.86 2.28 2.18 2.37 0.80 0.71 0.88

MX WEEK | 3.29 3.22 3.36 1.96 1.92 2.01 1.48 1.43 1.53

MN DAY | 1.81 1.74 1.88 0.49 0.45 0.52

MOV _AVG | 1.32 1.26 1.38
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Table 6a. Correlation matrix among temperature metrics (N=336) where the average daily range over the summer was 4 — 6°C.
Numbers underlined and in italics were not significant correlations.

MN_DAY | MX_SUM | MX_WEEK | MN_SUM | MOV_AVG | WEEK_14 | WEEK_18 | WEEK 22 | SUM_14 | SUM_18 | SUM 22
MN_DAY 1.00 0.94 0.96 0.95 0.98 0.82 0.79 0.39 0.90 0.79 0.39
MX_SUM 0.94 1.00 0.98 0.93 0.94 0.83 0.81 0.40 0.92 0.83 0.41
MX_WEEK |  0.96 0.98 1.00 0.94 0.97 0.86 0.82 0.39 0.94 0.83 0.39
MN_SUM 0.95 0.93 0.95 1.00 0.97 0.83 0.77 0.37 0.93 0.78 0.38
MOV _AVG | 098 0.94 0.97 0.97 1.00 0.84 0.79 0.38 0.92 0.79 0.38
WEEK_ 14 0.82 0.83 0.86 0.83 0.84 1.00 0.51 0.17 0.85 0.52 0.18
WEEK_18 0.79 0.81 0.82 0.77 0.79 0.51 1.00 0.43 0.74 0.98 0.43
WEEK_22 0.39 0.40 0.39 0.37 0.38 0.17 0.43 1.00 0.28 0.45 0.97
SUM_14 0.90 0.92 0.94 0.93 0.92 0.85 0.74 0.28 1.00 0.76 0.28
SUM 18 0.79 0.83 0.83 0.78 0.79 0.52 0.98 0.45 0.76 1.00 0.45
SUM 22 0.39 0.41 0.39 0.38 0.38 0.18 0.43 0.97 0.28 0.45 1.00

Table 6b. Conversion factors for the continuous temperature metrics where the average daily range over the summer was 4 — 6°C.
The conversion is row minus column (i.e. if maximum summer (mx_sum) was 14°C then the overall mean summer temperature
(mn_sum) would be: 14.00-5.60=8.40 with bounds of 8.22 — 8.57.

MN_SUM MOV_AVG MN DAY MX_WEEK
MEAN | LOWER | UPPER | MEAN | LOWER UPPPER | MEAN | LOWER | UPPER | MEAN | LOWER UPPER
MX SUM | 5.60 543 5.78 413 3.99 428 3.55 3.42 3.68 0.95 0.85 1.05
MX WEEK | 4.64 453 4.77 3.18 3.10 3.27 2.60 251 2.69
MN DAY |2.05 1.94 2.15 0.58 0.53 0.63
MOV _AVG | 147 1.38 1.55
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Table 7a. Correlation matrix among temperature metrics (N=130) where the average daily range over the summer was 6 — 8°C.
Numbers underlined and in italics were not significant correlations.

MN_DAY | MX_SUM | MX_WEEK | MN_SUM | MOV_AVG | WEEK_14 | WEEK_18 | WEEK 22 | SUM_14 | SUM_18 | SUM 22
MN_DAY 1.00 0.93 0.94 0.93 0.98 0.43 0.86 0.75 0.74 0.91 0.76
MX_SUM 0.93 1.00 0.98 0.90 0.92 0.44 0.89 0.82 0.71 0.92 0.83

MX_WEEK |  0.94 0.98 1.00 0.93 0.95 0.45 0.92 0.82 0.75 0.95 0.83
MN_SUM 0.93 0.90 0.93 1.00 0.95 0.45 0.83 0.75 0.74 0.92 0.77

MOV _AVG | 098 0.93 0.95 0.95 1.00 0.44 0.87 0.77 0.77 0.93 0.78
WEEK_ 14 0.43 0.4 0.45 0.45 0.44 1.00 0.39 0.20 0.45 0.39 0.20
WEEK_18 0.86 0.89 0.92 0.83 0.87 0.39 1.00 0.65 0.69 0.92 0.66
WEEK_22 0.75 0.82 0.82 0.75 0.77 0.20 0.65 1.00 0.57 0.76 0.98

SUM_14 0.75 0.71 0.75 0.74 0.77 0.45 0.69 0.57 1.00 0.82 0.58
SUM 18 0.91 0.92 0.95 0.92 0.93 0.39 0.92 0.76 0.82 1.00 0.77
SUM 22 0.76 0.83 0.83 0.77 0.78 0.20 0.66 0.98 0.58 0.77 1.00

Table 7b. Conversion factors for the continuous temperature metrics where the average daily range over the summer was 6 — 8°C.
The conversion is row minus column (i.e. if maximum summer (mx_sum) was 14°C then the overall mean summer temperature
(mn_sum) would be: 14.00-7.27=6.73 with bounds of 6.48 — 6.98.

MN_SUM MOV_AVG MN DAY MX_WEEK
MEAN | LOWER | UPPER | MEAN | LOWER UPPPER | MEAN | LOWER | UPPER | MEAN | LOWER UPPER
MX SUM | 7.27 7.02 7.52 5.57 533 5.80 4.93 471 5.14 1.01 0.88 1.14
MX WEEK | 6.26 6.07 6.45 4.55 441 471 3.92 3.74 4.09
MN DAY |2.34 2.15 2.53 0.64 0.53 0.74
MOV_AVG | 1.70 1.54 1.86
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Table 8a. Correlation matrix among temperature metrics (N=61) where the average daily range over the summer was 8 — 10°C.
Numbers underlined and in italics were not significant correlations.

MN_DAY | MX_SUM | MX_WEEK | MN_SUM | MOV_AVG | WEEK 14 | WEEK_18 | WEEK 22 | SUM_14 | SUM I8 | SUM 22
MN_DAY 1.00 0.82 0.84 0.92 0.97 - 0.70 0.80 0.39 0.82 0.84
MX_SUM 0.82 1.00 0.98 0.79 0.81 - 0.68 0.90 0.12 0.64 0.90
MX_WEEK |  0.84 0.98 1.00 0.83 0.86 - 0.70 0.93 0.17 0.68 0.92
MN_SUM 0.92 0.79 0.83 1.00 0.94 - 0.70 0.78 0.30 0.80 0.85
MOV _AVG | 097 0.81 0.86 0.94 1.00 - 0.71 0.82 0.37 0.84 0.87
WEEK_14 - - - - - - - - - - -
WEEK_18 0.70 0.68 0.70 0.70 0.71 - 1.00 0.54 0.39 0.69 0.53
WEEK_22 0.80 0.90 0.93 0.78 0.82 - 0.54 1.00 0.14 0.64 0.95
SUM 14 0.39 0.12 0.17 0.30 0.37 - 0.39 0.14 1.00 0.66 0.18
SUM _18 0.82 0.64 0.68 0.80 0.84 - 0.69 0.64 0.66 1.00 0.72
SUM 22 0.84 0.90 0.92 0.85 0.87 - 0.53 0.95 0.18 0.72 1.00

Table 8b. Conversion factors for the continuous temperature metrics where the average daily range over the summer was 8 — 10°C.
The conversion is row minus column (i.e. if maximum summer (mx_sum) was 16°C then the overall mean summer temperature
(mn_sum) would be: 16.00-8.79=7.21 with bounds of 6.77 — 7.66.

MN_SUM MOV_AVG MN DAY MX_WEEK
MEAN | LOWER | UPPER | MEAN | LOWER UPPPER | MEAN | LOWER | UPPER | MEAN | LOWER UPPER
MX SUM | 8.79 8.34 9.23 7.07 6.63 751 6.42 6.00 6.84 1.06 0.91 1.22
MX WEEK | 7.72 7.36 8.08 6.01 5.68 6.34 5.36 5.02 5.70
MN DAY |2.36 2.11 2.61 0.65 0.49 0.80
MOV _AVG | 1.72 1.50 1.93
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Table 9a. Correlation matrix among temperature metrics (N=26) where the average daily range over the summer was 10 — 12°C.
Numbers underlined and in italics were not significant correlations.

MN_DAY | MX_SUM | MX_WEEK | MN_SUM | MOV_AVG | WEEK_14 | WEEK_18 | WEEK 22 | SUM_14 | SUM_18 | SUM 22
MN_DAY 1.00 0.83 0.92 0.89 0.95 - 0.33 0.61 -0.05 0.19 0.80
MX_SUM 0.83 1.00 0.93 0.83 0.92 - 0.33 0.61 -0.10 0.08 0.68
MX_WEEK |  0.92 0.93 1.00 0.86 0.97 - 0.33 0.68 -0.03 0.21 0.78
MN_SUM 0.89 0.83 0.86 1.00 0.90 - 0.33 0.59 -0.32 -0.02 0.65
MOV _AVG |  0.95 0.92 0.97 0.90 1.00 - 0.33 0.62 -0.03 0.20 0.80
WEEK_ 14 - - - - - - - - - - -
WEEK_18 0.33 0.33 0.33 0.33 0.33 - 1.00 0.45 0.26 0.34 0.33
WEEK_22 0.61 0.61 0.68 0.59 0.62 - 0.45 1.00 0.01 0.34 0.70
SUM_14 -0.05 -0.10 -0.03 -0.32 -0.03 - 0.26 0.01 1.00 0.85 0.36
SUM 18 0.19 0.08 0.21 -0.03 0.19 - 0.34 0.34 0.85 1.00 0.64
SUM 22 0.80 0.68 0.78 0.65 0.80 - 0.33 0.69 0.36 0.64 1.00

Table 9b. Conversion factors for the continuous temperature metrics where the average daily range over the summer was 10 — 12°C.
The conversion is row minus column (i.e. if maximum summer (mx_sum) was 16°C then the overall mean summer temperature
(mn_sum) would be: 16.00-10.37=5.67 with bounds of 5.13 — 6.13.

MN_SUM MOV_AVG MN DAY MX_WEEK
MEAN | LOWER | UPPER | MEAN | LOWER UPPPER | MEAN | LOWER | UPPER | MEAN | LOWER UPPER
MX SUM | 1037 9.87 10.87 | 8.17 7.82 8.52 7.60 7.13 8.06 131 0.97 1.64
MX_ WEEK | 9.06 8.55 9.58 6.86 6.60 7.13 6.29 5.94 6.64
MN DAY |2.77 2.28 3.26 0.57 0.30 0.84
MOV _AVG | 2.20 1.79 2.61
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Table 10a. Correlation matrix among temperature metrics (N=25) where the average daily range over the summer was over 12°C.
Numbers underlined and in italics were not significant correlations.

MN_DAY | MX_SUM | MX_WEEK | MN_SUM | MOV_AVG | WEEK_14 | WEEK_18 | WEEK 22 | SUM_14 | SUM_18 | SUM 22
MN_DAY 1.00 0.55 0.62 0.81 0.77 - - 0.43 -0.10 0.14 0.53
MX_SUM 0.55 1.00 0.95 0.74 0.65 - - 0.47 -0.05 0.27 0.59
MX _WEEK |  0.62 0.95 1.00 0.81 0.72 - - 0.47 -0.08 0.28 0.61

MN_SUM 0.81 0.74 0.81 1.00 0.93 - - 0.47 -0.11 0.25 0.68
MOV _AVG | 0.77 0.65 0.72 0.93 1.00 - - 0.47 0.03 0.36 0.72
WEEK_ 14 - - - - - - - - - - -

WEEK_18 - - - - - - - - - - -

WEEK_22 0.43 0.47 0.47 0.47 0.47 - - 1.00 -0.30 -0.06 0.47
SUM_14 -0.10 -0.06 -0.09 -0.11 0.03 - - -0.30 1.00 0.88 0.40
SUM 18 0.14 0.27 0.28 0.25 0.36 - - -0.06 0.87 1.00 0.72
SUM 22 0.53 0.58 0.61 0.68 0.72 - - 0.47 0.40 0.72 1.00

Table 10b. Conversion factors for the continuous temperature metrics where the average daily range over the summer was over 12°C.
The conversion is row minus column (i.e. if maximum summer (mx_sum) was 16°C then the overall mean summer temperature
(mn_sum) would be: 16.00-11.82=4.18 with bounds of 3.55 — 4.81.

MN _SUM MOV_AVG MN DAY MX_WEEK
MEAN | LOWER | UPPER | MEAN | LOWER UPPPER | MEAN | LOWER | UPPER | MEAN | LOWER UPPER

MX SUM | 11.82 11.19 1245 | 1020 | 9.46 10.94 9.70 8.78 1061 | 1.17 0.91 1.43

MX_ WEEK | 10.65 10.21 11.09 | 9.03 8.45 9.60 8.52 7.76 9.29

MN DAY |2.12 1.55 2.69 0.51 -0.04 1.05

MOV AVG | 1.62 131 1.92
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Step 4. Data storage and archiving

Data storage and archiving is one of the most important steps in a temperature monitoring effort.
A plan for data storage is especially important for large studies. The volume of information data
loggers can collect warrants storage within a relational database system (i.e., Oracle, Sybase,
Access, etc.). Spreadsheets have limitations with the number of observations each sheet can hold
as well as ease of summarization of data. Relational databases, designed correctly, will have a
very minimal (if any) amount of redundant information. Therefore, time needed to summarize
and edit the data is greatly reduced. Relational database applications also have the advantage of
using far less computer hard drive space.

There are three basic steps to collecting and storing temperature data. Since temperature data is
generally collected as an objective of a much larger study, efficient storage and archiving of this
data makes it easy to relate to the other objectives of the study. The three steps are:

1. Pre-deployment information gathering
2. Field deployment information
3. Post-deployment information

Pre-deployment information includes data and notes on field site characteristics and calibration
of the data loggers. Minimal site data include: stream name, drainage and topographical map
name. Minimal data logger information includes: logger type (model), logger serial number and
pre-calibration factor (if calibration was performed).

Field deployment information includes site definition and time of deployment. Efficient data
collection at this point will save numerous hours of work at the post deployment stage. Minimal
data needed at this stage includes: stream name and site number (if appropriate), UTM
coordinates or other location information to geo-reference the site, description of site, habitat
type data logger was deployed in, date and time data logger was placed in stream, time interval
of samples, data logger serial number (to relate back to pre-calibration information), wetted
width at data logger, depth of logger and a picture of the site. An example of a field deployment
datasheet is shown in Figure 8.

Post-deployment information is gathered in the field as well as in the office. Minimal field data
includes: date and time of removal, wetted width at time of removal and any other relevant site
information (e.g., “Did the site dry up during sampling?,” “Was there any evidence of tampering
with the data logger?”’) Once the data logger is retrieved and the data downloaded the logger
should be calibrated again to note any differences in the pre and post calibration factors. We
have found loggers that can drift (i.e., the pre and post calibration factors are not the same).

Temperature data has numerous levels or tables including site data, logger data, deployment data,
removal data and temperature data. Setting this information up in a relational database system
allows for efficient processing of the data (Table 11).



Table 11. Example of a relational database application for storage of temperature data collected

using data loggers.

Table name | Field name Description
Site Site ID Auto number assigning consecutive numbers to sites.
Stream name | Name of stream sampled
Site Number of descriptor of site within stream
Basin River basin
Quad 24K Quad name
UTM X UTM easting coordinate
UTM Y UTM northing coordinate
UTM zone UTM zone number
Elevation Elevation in meters of site
Logger Logger ID Unique ID or serial number of logger
Type Manufacturer and/or model of logger
Year Year of sample
Pre calib Pre calibration factor
Post calib Post calibration factor
Deployed Site ID Site ID of stream and site (relates back to Site table)
Logger ID Unique ID of logger deployed in the stream (relates back
to Logger table)
Date Date logger placed in water
Time Time logger placed in water
Interval Time interval of samples
Width Wetted width of site at deployment
Depth Depth of logger
Hab type Habitat type where logger was placed
Removal Site ID Site ID of stream and site (relates back to Site table)
Date Date logger removed from water
Time Time logger removed from water
Width Wetted width at time of removal
Comments Any site differences from time of deployment to time of
removal
Temperature | Site ID Site ID of stream and site (relates back to Site table)
Date Date of sample
Time Time of sample
Temperature | Temperature (in C or F) of sample

These are the minimal data required to store temperature data. Additional tables and/or fields to
existing tables would be added depending upon the objectives of the study. The structure of any

relational database application should allow for the easy expansion of the database.
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Figure 8. An example of the data logger deployment field form.

Stream Information:

Stream Name: Site: Basin:
Quad Name:
UTM easting: UTM northing: UTM zone:

Site Description:

Data Logger Information:

Logger Type: Serial Number: Sampling interval:

Date placed in stream: Time placed in stream:

Site Information:

Habitat type of placement:

Wetted width at logger (m): Depth of logger (m):

Hand-held temperature at placement (°C):

Comments:

Tethering method for logger:

Map of specific site of logger placement:
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