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Modeling relationships between landscape-level
attributes and snorkel counts of chinook salmon
and steelhead parr in Idaho

William L. Thompson and Danny C. Lee

Abstract: Knowledge of environmental factors impacting anadromous salmonids in their freshwater habitats, particu-
larly at large spatial scales, may be important for restoring them to previously recorded levels in the northwestern
United States. Consequently, we used existing data sets and an information-theoretic approach to model landscape-level
attributes and snorkel count categories of spring–summer chinook salmon (Oncorhynchus tshawytscha) and steelhead
(Oncorhynchus mykiss) parr within index areas in Idaho. Count categories of chinook salmon parr were negatively re-
lated to geometric mean road density and positively related to mean annual precipitation, whereas those for steelhead
parr were negatively related to percent unconsolidated lithology. Our models predicted that chinook salmon parr would
be in low count categories within subwatersheds with >1 km·km–2 geometric mean road densities and (or) <700 mm
mean annual precipitation. Similarly, steelhead parr were predicted to be in low count categories in subwatersheds with
>30% unconsolidated lithology. These results provide a starting point for fish biologists and managers attempting to
map approximate status and quality of rearing habitats for chinook salmon and steelhead at large spatial scales.

Résumé: La connaissance des facteurs environnementaux influant sur les salmonidés anadromes dans leurs habitats
dulcicoles, particulièrement aux grandes échelles spatiales, peut être importante pour le rétablissement des populations
aux niveaux observés dans le passé dans le nord-ouest des États-Unis. Ainsi, nous avons utilisé des ensembles de don-
nées déjà existants et une approche basée sur la théorie de l’information pour relier des attributs du paysage avec
l’abondance des tacons de saumon quinnat (Oncorhynchus tshawytscha) et de saumon arc-en-ciel (Oncorhynchus
mykiss), dénombrés dans l’eau par plongée au tuba, dans des secteurs témoins de l’Idaho. Les catégories d’abondance
des tacons de saumon quinnat étaient corrélées négativement avec la moyenne géométrique de la densité des routes et
corrélées positivement avec les précipitations anuelles moyennes, tandis que celles des tacons de saumon arc-en-ciel
étaient corrélées négativement avec le pourcentage de matière non consolidée. Nos modèles prévoient que les tacons de
saumon quinnat seraient peu abondants dans les bassins secondaires où les moyennes géométriques de la densité des
routes sont >1 km·km–2 et (ou) les précipitations annuelles moyennes sont <700 mm. De même, ils prévoient que les
tacons de saumon arc-en-ciel seraient peu abondants dans les bassins secondaires où le pourcentage de matière non
consolidée est >30%. Ces résultats peuvent servir de point de départ aux biologistes et aux gestionnaires responsables
de la faune ichthyenne qui veulent établir des cartes représentant l’état et la qualité approximatifs des habitats où se
développent le saumon quinnat et le saumon arc-en-ciel couvrant de grandes régions.

[Traduit par la Rédaction] Thompson and Lee 1842

Introduction

Numbers of anadromous salmonids have greatly de-
creased from previously recorded levels for many stocks in
the northwestern United States (Nehlsen et al. 1991). For in-
stance, numbers of salmon and steelhead in the Columbia
Basin have decreased sharply from an estimated 10–16 mil-
lion adults to about 1.5–4.0 million adults during this cen-

tury (Northwest Power Planning Council 1986). One factor
thought to be influencing these declines is loss or degrada-
tion of freshwater spawning and rearing habitats (Nehlsen et
al. 1991). Unfortunately, empirical data supporting this as-
sertion at the landscape or basinwide scale are lacking in the
published literature because fishery research has tradition-
ally been conducted on smaller spatial scales (Schlosser
1991; but see Dunham and Rieman 1999; Torgersen et al.
1999). Thus, there is a need for empirically based models to
investigate relationships between large-scale habitat and
land management attributes and numbers of anadromous
salmonids in their rearing environments (e.g., Bradford et al.
1997). These models could be used to predict status and
quality of salmon spawning and rearing habitats across an
area of interest as well as serve to highlight possible factors
affecting population status and trends.

Availability of broadscale habitat and land management
data generated by the recent interior Columbia Basin assess-
ment (Quigley and Arbelbide 1997) and a 10-year data set of
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spring–summer chinook salmon (Oncorhynchus tshawytscha)
and steelhead (Oncorhynchus mykiss) parr counts obtained
from streams across Idaho (Hall-Griswold and Petrosky
1996) provided an opportunity to build large-scale predictive
models based on empirical data. Consequently, we applied
the latest information-theoretic modeling techniques (Buck-
land et al. 1997; Burnham and Anderson 1998) to investi-
gate possible relationships between broadscale habitat and
land management attributes and snorkel counts of spring–
summer chinook salmon and steelhead parr within index
streams in the Snake River drainage in Idaho. This geo-
graphical area is of particular importance because the indig-
enous stocks of spring–summer chinook salmon and
steelhead have been listed as threatened under the Endan-
gered Species Act (Federal Register 1997, 1998a). Due to
various shortcomings with the snorkel count data, emphasis
of this paper is as much on the approach to extract informa-
tion from this broadscale but problematic data set as it is on
interpretation of model results. We emphasize that the infor-
mation-theoretic approach to model building, model selec-
tion, and model averaging applied in this paper is relevant to
any study requiring a statistically based modeling approach.

Materials and methods

Snorkel count data set
The Idaho Department of Fish and Game (IDFG) and several

cooperating agencies conducted snorkel counts of juvenile chinook
salmon and steelhead (i.e., parr) in the Salmon River, Clearwater
River, and lower Snake River drainages in Idaho during 1986–1995
(Hall-Griswold and Petrosky 1996) (Fig. 1). Abundance indices
were obtained via snorkel counts by divers swimming approxi-
mately 100 m upstream within stream sections. One to five divers
were used depending on stream size (Petrosky and Holubetz 1986).
Stream sections were chosen based on a variety of criteria such as
access, existence of previous counts, and perceived quality of rear-
ing habitat (J. Hall-Griswold, IDFG, Stanley, Idaho, personal com-
munication). Thus, selection of stream sections was nonrandom,
but these sections represented a spectrum of habitats, stocks, and
production types (i.e., wild (native) and natural (having a previous
hatchery influence); Rich and Petrosky 1994). Although an attempt
was made to survey the same sections over time, location and size
(length and width) of snorkeled sections often varied among years
mainly due to loss of previous section boundary markers, difficul-
ties in relocating inadequately described sections, loss of access,
and annual differences in stream flows. Further, not all sections
were surveyed every year because of personnel, funding, and logis-
tical constraints (J. Hall-Griswold, IDFG, Stanley, Idaho, personal
communication). Finally, some stream sections were stocked with
hatchery fish to better evaluate population responses of parr to
mitigation measures (Petrosky and Holubetz 1986).

Subsetting the snorkel count data set
We only analyzed counts from stream sections where mitigation

measures and stocking were not applied (see Rich and Petrosky
1994, their appendix B) because of confounding effects of those
factors on the relationship between landscape-level variables and
fish abundance. In addition, we limited our analyses to counts con-
ducted when the water temperature exceeded 9°C because of the
low detectability of fish below this temperature (Thurow 1994),
which also would have had a confounding effect on the relation-
ship between landscape attributes and snorkel counts.

Because snorkel counts were uncorrected for incomplete
detectability of fish within sections and therefore contained an un-
known amount of bias (e.g., Rodgers et al. (1992) reported that
only 40% of fish were detected during their snorkel counts), we
pooled them into two categories in an attempt to alleviate detri-
mental effects of this bias on interpretation of model results. Cate-
gories were defined based on fish density indices and habitat
ratings used by IDFG to categorize quality of rearing habitat; these
values were 0.12 parr·m–2 for chinook salmon and 0.06 parr·m–2

for steelhead (Hall-Griswold and Petrosky 1996). Counts were di-
vided by estimated area of each snorkeled stream section to pro-
vide a common unit of comparison with the IDFG ratings. Snorkel
counts per unit area at or below 0.12 parr·m–2 for chinook salmon
or 0.06 parr·m–2 for steelhead were placed into category 1, whereas
higher counts per unit area were placed into category 2. This ap-
proach may lessen effects of bias, for instance, when two stream
sections have the same actual densities of chinook salmon parr
(e.g., 0.06 parr·m–2) but different detection rates of individuals
(e.g., 40 and 80%). In this case, if observed counts were used, one
section would be improperly modeled with twice the observed
count than the other section, which could lead to spurious model
results. Conversely, results of both counts would be placed into the
same count category under the categorization approach described
above. Note, however, that categorization still could lead to
misclassification of stream sections (and spurious results), depend-
ing on the detectability of fish within a given section and how
close the count per unit area was to the cutoff value used in the cat-
egorization.

We pooled seasonal runs for both species because sample sizes
were inadequate to model these data separately. Although peaks in
average counts per unit area differed slightly between runs for both
species in two years during 1986–1990, their 90% confidence in-
tervals broadly overlapped. We also included both wild and natural
populations in our analyses. Further, we concentrated on counts
from C channels for chinook salmon and B channels for steelhead
because these were their optimal habitats (Hall-Griswold and
Petrosky 1996) and therefore should have supported higher densi-
ties of parr. C channels occurred in low-gradient (<2% slope) ter-
rain, whereas B channels were those in moderate-gradient (2–4%
slope) terrain (Rosgen 1985, 1996). Finally, data from the year
with the highest average counts per unit area for each species were
used in our investigation of landscape linkages. We did this to
maximize our ability to detect a difference between better and
lower quality sites, where quality was defined in terms of fish
counts per unit area during years of high fish numbers. Preliminary
analyses suggested that average counts per unit area of fish were
similar between better quality sites and lower quality sites during
years of low counts, whereas these sites were much more distinct
during years of high counts (J. Peterson, Rocky Mountain Research
Station, Boise, Idaho, unpublished data). Difficulties associated
with site identification, nonrandom site selection, incomplete time
series of surveys, and counting bias precluded use of typical meth-
ods for modeling time series data.

Landscape habitat and anthropogenic data
Landscape-level data were compiled by Lee et al. (1997) and

defined at the subwatershed scale, which is about 7800 ha on aver-
age within the Columbia Basin. These variables were categorized
as either physiographic and geophysical or as anthropogenic (Ta-
ble 1). One of the anthropogenic variables, management cluster,
was categorical (i.e., each subwatershed was assigned the predomi-
nant category) and was generated by Lee et al. (1997) from results
of a cluster analysis of variables representing land-type classifica-
tion, management classification, ownership, percent grazed, and
percent wilderness (for details, see Lee at al. 1997). We further
pooled these results into four broad categories for simplicity (Ta-
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ble 1). This variable is an index to potential effects of land use and
land management practices on adjacent streams and stream fish
populations.

Modeling approach
We employed the information-theoretic approach to model

building and selection suggested by Akaike (1973) and extended
by  Burnham  and  Anderson  (1998).  First,  a  global  (i.e.,  overall;

Burnham and Anderson 1998) logistic regression model was con-
structed with count category as the dichotomous response and
landscape-level habitat and anthropogenic covariates that were
deemed ecologically most relevant as predictors. Choice of predic-
tors was based on results from Lee et al. (1997) and subject area
experts familiar with the study area. We then assessed the fit of the
global model via the Hosmer–Lemeshow goodness-of-fit (GOF)
test and checked the Pearsonc2 residuals for obvious outliers (i.e.,
>2; Hosmer and Lemeshow 1989). An outlier was dropped from

© 2000 NRC Canada
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Fig. 1. Mapping of historical and current range of chinook salmon and steelhead in Idaho, U.S.A. (Lee et al. 1997). Dark areas are
subwatersheds containing stream sections that were sampled for chinook salmon parr during 1987 and steelhead parr during 1990.
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analysis if its inclusion caused serious model lack of fit (see be-
low). The Hosmer–Lemeshow GOF statistic was generated by or-
dering observations by their event probabilities, grouping them
into a 2 ×g table (whereg is number of groups; for the grouping
procedure, see Hosmer and Lemeshow 1989), and calculating a
Pearsonc2 GOF statistic for this table. LowP values (P < 0.10) in-
dicated model lack of fit. If the global model adequately fitted the
data, we constructed a subset of candidate models from it that rep-
resented ecologically meaningful combinations of the landscape
covariates. Each subsetted model was assumed to provide an ade-
quate fit if the global model did so (Burnham and Anderson 1998).

Model selection was performed using a modification of Akaike’s
information criterion (AIC) (Akaike 1973; Burnham and Anderson
1998). An extension of likelihood theory, AIC is an estimate of the
relative distance between model pairs (Burnham and Anderson
1998), where distance refers to the Kullback–Leibler distance of
information theory (Kullback and Leibler 1951). The Kullback–
Leibler distance is a measure of the degree of information loss
when a model is used to approximate reality (Cover and Thomas
1991; Burnham and Anderson 1998). Specifically, AIC is defined
as

AIC data= - +2 2ln( ($ ))L kq|

where ln( ($L q| data))is the maximized log-likelihood over the un-
known model parameters (q) given the data andk is the number of
estimable parameters in the model (Buckland et al. 1997; Burnham
and Anderson 1998). We used the small sample adjustment to the
AIC that also corrects for overdispersion in count data, called
QAICc. This statistic is calculated as
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where $c is thec2 GOF statistic for the global model andn is sam-
ple size (Burnham and Anderson 1998). Overdispersion refers to
instances where sampling (observed) variance exceeds the theoreti-
cal variance of the underlying model (e.g., binomial model) and is
commonly present in count data (Burnham and Anderson 1998).
We used$c to adjust for overdispersion in parameter estimates for
each candidate model as well.

Models with lower QAICc values are considered better approxi-
mating models than those with higher values. However, QAICc is a
relative statistic. The meaningful quantity for comparing candidate
models is the difference between a particular model’s QAICc value
and the lowest QAICc value from all models; this difference is re-
ferred to asDQAICc (Burnham and Anderson 1998). The relative
plausibility or weight of evidence of each model, given the data
(wi), can then be computed as
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whereDQAICci is theDQAICc value for theith model in a set ofR
candidate models (Buckland et al. 1997). Thesewi, or model
weights, also can be used in model averaging. Instead of assuming
a single “best” model and using its parameter estimates to make in-
ferences, we based our inferences and predictions on a composite
model generated from thewi weighted average of parameter esti-
mates for each landscape covariate from the set of candidate mod-
els (for details on model averaging, see Burnham and Anderson
1998). Model averaging incorporates both uncertainty related to
model selection and uncertainty associated with parameter esti-
mates within each candidate model. Inference based on a single
model will lead to underestimates of variance and hence poor con-
fidence interval coverage for parameter estimates unless itswi is
much higher (see below) than that of all other competing models
(Burnham and Anderson 1998). Our composite models (one each
for chinook salmon and steelhead data) only contained landscape
covariates within candidate models whosewi were at least one
tenth of the maximumwi, which is comparable with the minimum
cutoff point (i.e., 8 or 1/8) suggested by Royall (1997) as a general
rule-of-thumb for evaluating strength of evidence.

Interpreting model results
Data for landscape covariates were standardized so that their co-

efficients could be interpreted on a common scale. We also com-
puted an odds ratio for each covariate by using its unstandardized
coefficient, e.g., raising the coefficient to base “e” ore

$b1 , to facili-
tate interpretation of the magnitude of its effect on parr densities.
As given, these odds ratios are based on a single unit change,
whereas larger (or smaller) units of change may be more ecologi-
cally interpretable. Therefore, we multiplied relevant unstandard-
ized coefficients by a constant (C) whose magnitude reflected a
more meaningful interpretation than a single unit change (e.g.,
eC$b1 ; Hosmer and Lemeshow 1989). We obtained an initial esti-
mate of the magnitude of the constant for each covariate based on
the difference represented in two standard deviations from its mean
as computed from the database compiled by the interior Columbia
Basin assessment (Lee et al. 1997). Then, we consulted with sub-
ject area experts familiar with the study area to fine-tune these esti-
mates. For example, the model coefficient for percentage of
subwatershed containing >50% slopes (Slope) was multiplied by
10 because a 10% change in Slope from one subwatershed to an-
other had more meaning, in terms of physical processes potentially
affecting the streams and fish therein, than a single unit (1%)
change in Slope. However, we also present unstandardized coeffi-
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Category Model covariate Description

Physiographic and
geophysical

Precip Mean annual precipitation (mm) based on the PRISM model (Daly et al. 1994)
Sumtemp Mean annual maximum summer temperature (°C)
Slope % of subwatershed with slopes >50%
Mafic % of subwatershed with mafic lithology
Unconsol % of subwatershed with unconsolidated lithology

Anthropogenic Georoad Geometric mean road density (km·km–2)
Mngclus Management cluster variable containing four land use and ownership categories:

(1) HIF (high impact forest): high impact, grazed USDA Forest Service forest
(2) MF (managed forest): moderate to high impact, ungrazed USDA Forest Service forest
(3) W (wilderness): USDA Forest Service wilderness
(4) R (rangeland): USDI BLM rangelands and moderate impact, grazed USDA Forest

Service rangeland

Table 1. Category and description of covariates used in modeling landscape (subwatershed scale) habitat and land management attrib-
utes (Lee et al. 1997) with count categories of chinook salmon and steelhead parr.
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cients and their standard errors for those interested in interpreting
odds ratios based on a single unit change.

We did not simply rely on statistical significance to interpret
model results because an odds ratio could be small enough to be
considered ecologically unimportant but still be statistically signifi-
cant (Yoccoz 1991). Note that statistical significance can be
construed if the confidence interval for an odds ratio does not
include 1; this is equivalent to testing, say,b1 = 0, which can be
respecified in terms of an odds ratio,e e

$b1 0 1= = . We evaluated
ecological importance of each covariate in the composite model by
computing 90% confidence intervals for the scaled odds ratios
(e.g., eC

$b ±1.64C ($b1), where z0.95 = 1.64; Hosmer and Lemeshow
1989) and interpreting magnitudes of the values contained within
these intervals (Gerard et al. 1998). A confidence interval that only
contained values whose sizes were considered meaningfulindicated
an ecologically important relationship between the covariate andparr
count categories. Conversely, an interval that only contained values
whose magnitudes were considered of minimal importance indi-
cated a covariate exhibiting a weak relationship with parr count
categories. Finally, a confidence interval that contained values for
odds ratios either on both sides of 1 or whose range included both
ecologically important and unimportant magnitudes indicated in-
conclusive results due to imprecision from inadequate sample sizes.

We computed the predicted probability ($p) that a subwatershed
had a low count category of parr (category 1) or a moderate to high
count category of parr (category 2) using the formula

$

( ~~)
p

X
=

+ - -

1

1 0e b b
, whereb0 is the model intercept,

~
B is the vector of

slope estimates, and
~
X is the vector of predictor variables (Hosmer

and Lemeshow 1989). A Pearson correlation (r) was then calcu-
lated between predicted probability and predictor variable(s) with
an ecologically important relationship with parr count category in
both the chinook salmon and the steelhead composite models. If
more than one predictor variable was ecologically important, we
used the additional predictors as a basis for stratification for the
correlation analysis. For instance, if composite model results indi-
cated that both geometric mean road density and mean annual pre-
cipitation had ecologically important relationships with chinook
salmon parr count categories, correlations were computed between
predicted probability and mean annual precipitation for sub-

watersheds with both low and medium to high geometric mean
road densities.

The SAS statistical package (SAS Institute Inc. 1996) was used
for all of our analyses. Both the type I error rate (a) for GOF tests
and the confidence coefficient for confidence intervals were set at
0.10 prior to analyses.

Results

We used data from 1987 for chinook salmon and from
1990 for steelhead because these years contained both the
highest average parr counts per unit area and the narrowest
confidence intervals of these estimates for each species. Af-
ter removing one obvious outlier whose inclusion caused a
serious model lack of fit, the global model for chinook salmon
adequately fitted the data (Hosmer–Lemeshow GOF statistic =
6.06, 7 df,P = 0.53). The global model for steelhead also ade-
quately fitted the data (Hosmer–Lemeshow GOF statistic =
9.81, 7 df,P = 0.20) and had no obvious outliers.

For the chinook salmon parr data, the candidate model
containing mean annual precipitation, percentage of
subwatershed containing >50% slopes, and geometric mean
road density was nearly three times more plausible than the
next best approximating model (Table 2). The composite
habitat model for the chinook salmon data contained three
covariates that were statistically significant, two of which
had a fairly strong relationship with parr count categories
(Table 3). Geometric mean road density exhibited a negative
relationship with chinook salmon parr count categories in
that moderate to high counts of parr were 1.33 (1/0.750)
times less likely to occur in subwatersheds with every in-
crease in 1 km·km–2 road densities. Conversely, moderate to
high counts of chinook salmon parr were at least 1.29 times
more likely to occur in subwatersheds with every 200-mm
increase in mean annual precipitation. The lower bound of
the odds ratio for percent slope >50% in a subwatershed was
statistically significant but of trivial magnitude (Table 3).

1838 Can. J. Fish. Aquat. Sci. Vol. 57, 2000

Candidate model QAICc DQAICc
DQAICc
weight

% of maximum
DQAICc weight

Precip, Slope, Georoad 46.50 0 0.379 100
Precip, Mafic 48.48 1.98 0.141 37.2
Precip 48.77 2.27 0.122 32.2
Precip, Slope, Mafic 49.15 2.65 0.101 26.6
Precip, Slope, Unconsol, Georoad 49.16 2.66 0.101 26.6
Precip, Unconsol 50.07 3.57 0.064 16.9
Georoad 51.72 5.22 0.028 7.4
Precip, Slope, Unconsol 51.98 5.48 0.024 6.3
Sumtemp 53.50 7.00 0.011 2.9
Slope, Mafic 53.87 7.37 0.010 2.6
Sumtemp, Mafic 54.19 7.69 0.008 2.1
Global Model 54.94 8.44 0.006 1.6
Slope, Georoad, Mngclus 56.87 10.37 0.002 0.5
Mngclus 58.05 11.55 0.001 0.3
Slope, Mngclus 58.44 11.94 0.001 0.3
Georoad, Mngclus 58.60 12.10 0.001 0.3
Unconsol, Georoad, Mngclus 61.42 14.92 <0.001 <0.1

Table 2. Model selection results for logistic regression models containing landscape habitat predictor variables and
count categories of chinook salmon parr sampled during 1987 (n = 37 subwatersheds (72 stream sections)).
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Evidence was inconclusive for the remaining covariates in
the composite habitat model for chinook salmon.

Subwatersheds with low geometric mean road density
(<1 km·km–2; adapted from Lee et al. 1997) had a strong
positive correlation (r = 0.643,n = 32) between mean annual
precipitation and predicted probability of chinook salmon
parr count category, whereas those with medium to high
road density (³1 km·km–2) had a very strong negative corre-
lation (r = –0.874,n = 5) between these variables. The five
subwatersheds containing medium to high geometric mean
road densities had predicted probabilities close to 0, which
indicated that these subwatersheds were classified as con-
taining low count categories of chinook salmon parr regard-
less of mean annual precipitation levels (Fig. 2).

For the steelhead parr data, the model containing mean
annual precipitation and percent unconsolidated lithology
was the best approximating model but was only slightly

more plausible than the next highest ranked model (Table 4).
The composite habitat model contained three covariates
whose odds ratios were statistically significant (Table 3) but
only one (percent unconsolidated lithology) had a fairly
strong relationship with parr count categories. That is, mod-
erate to high counts of steelhead parr were at least 1.43 (1/
0.701) times less likely to occur in subwatersheds with every
10% increase in unconsolidated lithology than low densities.
Thus, there was a negative relationship between steelhead
parr counts and unconsolidated lithology.

Both mean annual maximum summer temperature and
percent mafic lithology had a small positive relationship
with moderate to high counts of steelhead parr. Moderate to
high steelhead parr counts were at least 1.09 times more
likely to occur in subwatersheds with every increase in 2°C
mean annual maximum summer temperature and at least
1.12 times more likely to occur in subwatersheds with every
increase in 10% mafic lithology (Table 3). Information on all
other covariates in the composite habitat model was incon-
clusive.

Subwatersheds with <10% unconsolidated lithology had a
weakly to moderately negative correlation (r = –0.343,n =
69) with predicted probability of steelhead parr count cate-
gory, whereas those with >10% unconsolidated lithology ex-
hibited an extremely strong negative correlation (r = –0.996,
n = 10) with these predicted probabilities. Using the typical
0.5 cutoff for categorizing predicted probabilities (Hosmer
and Lemeshow 1989), the five subwatersheds with >30% un-
consolidated lithology would be classified as containing low
count categories of steelhead parr (Fig. 3).

Discussion

Results generated from our analyses must be viewed
within the limitations of the parr monitoring and landscape
habitat data sets. First, our analyses suffered from the fact
that our objective differed from the one originally set forth
in the parr monitoring project, and therefore, we subsetted
the data accordingly. Second, problems with study design,
particularly the unknown impact of bias generated from the
nonrandom selection of stream sections and counts uncor-
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Model
parameter

Estimated
coefficient (SE)

Standardized
coefficient

OR unit
change

Estimated
OR

90% CI for OR

Species Lower Upper

Chinook salmon Intercept –2.336 (1.531) — — — — —
Precip 0.004 (0.002) 0.658 200 2.164 1.293 3.622
Slope –0.125 (0.073) –0.598 10 0.286 0.086 0.948
Mafic –1.490 (1.114) –0.512 10 <0.001 <0.001 28.992
Unconsol 0.008 (0.024) 0.079 10 1.080 0.723 1.612
Georoad –1.023 (0.448) –0.624 1 0.360 0.172 0.750

Steelhead Intercept –1.357 (1.728) — — — — —
Precip 0.002 (0.001) 0.300 200 1.350 0.922 1.975
Sumtemp 0.274 (0.140) 0.259 2 1.728 1.092 2.735
Slope –0.018 (0.028) –0.085 10 0.833 0.525 1.324
Mafic 0.026 (0.009) 0.390 10 1.300 1.120 1.509
Unconsol –0.107 (0.044) –0.645 10 0.342 0.167 0.701
Georoad 0.191 (0.250) 0.131 1 1.210 0.803 1.824

Note: Model parameters whose 90% confidence intervals (CI) for their estimated odds ratios (OR) do not include 1 are statistically significant.

Table 3. Model-averaged results of composite models for chinook salmon and steelhead.

Fig. 2. Relationship between mean annual precipitation and geo-
metric mean road density (open circles indicate low density and
solid circles indicate medium to high density) and predicted
probability ($p) of a subwatershed containing either low (e.g.,$p £

0.5) or moderate to high (e.g.,$p > 0.5) count categories of chi-
nook salmon parr.
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rected for incomplete detectability of individuals within sec-
tions, compelled us to further subset and pool the data. In
the latter case, simply modeling raw counts with covariates
thought to influence detectability of fish within sampled sec-
tions will not correct for sampling bias but will only reflect
how well the covariates relate to the biased counts. The mat-
ter of confounding still exists. Such a modeling approach
would only be valid if (i) the nature and magnitude of the
counting bias were known for single or repeated counts or
(ii ) repeated counts were conducted on each stream section
and the true abundance did not change among counts.
Changes in both abundance and covariate values across re-
peated counts produce confounding between biased counts
and covariates. Third, by scaling up to the subwatershed

level, we assumed that sampled stream sections were an
adequate representation of chinook salmon or steelhead pop-
ulations for all relevant stream sections within their respec-
tive subwatersheds.

Because of various difficulties inherent in the data, in this
paper we placed as much emphasis on our analytic approach
as we did on interpretation of results. Our procedure for
subsetting and modeling a problematic data set should be of
interest to fishery biologists, especially because snorkel
counts are so commonly used in stream fish studies. We
stress, however, that there is no substitute for proper study
design and statistically sound sampling methods. It is more
preferable to model counts directly than to lose information
by pooling data. Nonetheless, we deemed the potential for
spurious results due to biased counts to be far more serious
than loss of information due to pooling data.

The modeling component of our analyses, in particular,
has applications well beyond those used in this paper. AIC-
based model selection has a strong theoretical basis (for de-
tails, see Burnham and Anderson 1998) and, as such, repre-
sents a fundamental departure from traditional methods of
model building and variable selection based on null hypothe-
sis testing (e.g., various stepwise and all subset selection
procedures). Further, model averaging explicitly incorporates
model selection uncertainty into model parameter estimates
and also provides a statistically rigorous means to handle the
common situation where there is no single model that is
clearly better than other models. Ideally, construction of the
global and candidate set of models would occur during the
design stage of a study and be dictated by the research or
management questions being addressed as well as existing
information from previous studies. It is important to remem-
ber that AIC-based model selection will only choose the best
approximating model in the candidate set; it will not correct
for poor data or model choice. No analytical methods exist
that can completely rescue a data set generated from an in-
adequately designed study.

Within the boundaries of inference allowed by the data

Candidate model QAICc DQAICc
DQAICc
weight

% of maximum
DQAICc weight

Precip, Unconsol 81.51 0 0.280 100
Precip, Mafic 82.10 0.59 0.208 74.3
Precip, Slope, Unconsol 82.96 1.45 0.136 48.6
Sumtemp, Mafic 83.23 1.72 0.119 42.5
Precip, Slope, Mafic 84.28 2.77 0.070 25.0
Precip, Slope, Unconsol, Georoad 84.90 3.39 0.051 18.2
Unconsol, Georoad, Mngclus 85.76 4.25 0.034 12.1
Slope, Mafic 85.82 4.31 0.033 11.8
Sumtemp 86.39 4.88 0.024 8.6
Georoad 87.05 5.54 0.018 6.4
Precip 88.30 6.79 0.009 3.2
Global Model 88.58 7.07 0.008 2.9
Precip, Slope, Georoad 89.44 7.93 0.005 1.8
Mngclus 91.89 10.38 0.002 0.7
Georoad, Mngclus 92.76 11.25 0.001 0.4
Slope, Mngclus 94.13 12.62 <0.001 0.2
Sumtemp, Mngclus 94.73 13.22 <0.001 0.1

Table 4. Model selection results for logistic regression models containing landscape habitat predictor variables
and count categories of steelhead parr sampled during 1990 (n = 79 subwatersheds (155 stream sections)).

Fig. 3. Relationship between percent unconsolidated lithology
and predicted probability ($p) of a subwatershed containing either
low (e.g., $p £ 0.5) or moderate to high (e.g.,$p > 0.5) count cat-
egories of steelhead parr.
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set, there were some notable patterns that emerged between
parr count categories and various landscape attributes. For
instance, the negative relationship between geometric mean
road density and count categories of chinook salmon may be
of particular interest to land managers who are charged with
ensuring the persistence of anadromous salmonid popula-
tions. Particular attention should be paid to those
subwatersheds with >1 km·km–2 geometric mean road densi-
ties. Lee et al. (1997) also reported a negative relationship
between road densities and fish population status in the Co-
lumbia Basin. Unfortunately, the correlative nature of the
data is insufficient for identifying the important drivers be-
hind this relationship. Nevertheless, these findings are note-
worthy with respect to the recent road closure policy
proposed by the USDA Forest Service (Federal Register
1998b).

The fairly strong positive influence of mean annual pre-
cipitation on count categories of chinook salmon parr may
be related to the positive impact that stream discharge typi-
cally has on survival rates of anadromous salmonids (Gibson
and Myers 1988; Bradford 1994; Fukushima and Smoker
1997). However, other factors related to high stream flows
may be influencing chinook salmon parr numbers as well,
such as lower predation rates (Bradford 1994), increased
rearing habitat (Bradford 1994), and decreased egg mortality
due to freezing (Gibson and Myers 1988).

Model results also infer that surrounding lithology may be
especially important to steelhead parr numbers, even on a
landscape scale. The fairly strong negative relationship be-
tween unconsolidated lithology and steelhead parr count cat-
egories could be related to sedimentation. An unconsolidated
lithology is one that tends to slough off more than other
more consolidated lithologies and hence would contribute
more sediment inputs into surrounding streams, which could
adversely affect parr survival (Crouse et al. 1981; Waters
1995). Conversely, a mafic lithology contains a strong alka-
line component, and hence, its inputs may be tied to higher
alkalinity in streams, which has been previously related to
increased fish productivity (Scarnecchia and Bergersen
1987; Waters et al. 1993; Kwak and Waters 1997). This idea
is consistent with the positive relationship between average
maximum summer temperature (which was within the range
of tolerance for steelhead) and steelhead parr count catego-
ries, where elevated summer temperature may increase pri-
mary production in a stream or parr metabolism and growth
rates.

Our composite model results represent an initial approxi-
mation for fishery biologists and managers interested in
mapping approximate status and quality of rearing habitats
for chinook salmon and steelhead in relevant areas of Idaho.
Assuming that our count categories provide an adequate in-
dex of density, subwatersheds with medium to high
(>1 km·km–2) geometric mean road densities and (or) low
(<700 mm) mean annual precipitation levels may indicate
low densities of chinook salmon parr, whereas
subwatersheds with high percentages (>30%) of unconsoli-
dated lithologies may indicate low densities of steelhead
parr. These models could be updated and refined as more
and better information became available and then used to
help evaluate possible factors affecting salmonid population
status and trends. If additional population data are collected,

an effort should be made to collect them at the same spatial
scale as the predictor variables.

There are probably factors unrelated to habitat that may
be affecting status and distribution of these two species in
Idaho. For example, deleterious effects of dams on access to
spawning and rearing areas, stock productivity, and survival
rates could be the overriding factors influencing parr num-
bers (or even presence) (Schaller et al. 1999). A number of
subwatersheds may have an inherent capacity to support
high parr densities, based on landscape-level habitat attrib-
utes, but may lack proper access for anadromous salmonids
(e.g., blockage of the upper Snake River drainage by Hells
Canyon Dam). In any event, identifying cause and effect re-
lationships between anthropogenic variables (e.g., road den-
sity, land management practices, and dams) and parr
numbers will require carefully planned, well-funded, large-
scale field experiments.
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