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Executive Summary 

To examine the adequacy of fish probability of detection estimates, I examined 

distributional properties of survey and monitoring data for bull trout (Salvelinus 

confluentus), brook trout (Salvelinus fontinalis), westslope cutthroat trout (Oncorhynchus 

clarki lewisi), chinook salmon parr (Oncorhynchus tshawytscha), and steelhead /redband 

trout (Oncorhynchus mykiss spp.), from 178 streams in the Interior Columbia River 

Basin. Negative binomial dispersion parameters varied considerably among species and 

streams, but were significantly (P<0.05) positively related to fish density. Across streams, 

the variances in fish abundances differed greatly among species and indicated that the 

data for all species were overdispersed with respect to the Poisson (i.e., the variances 

exceeded the means). This significantly affected Poisson probability of detection 

estimates, which were the highest across species and were, on average, 3.82, 2.66, and 

3.47 times greater than baseline values. Required sample sizes for species detection at the 

95% confidence level were also lowest for the Poisson, which underestimated sample 

size requirements an average of 72% across species. Negative binomial and Poisson-

gamma probability of detection and sample size estimates were more accurate than the 

Poisson and generally less than 10% from baseline values. My results indicate the 

Poisson and binomial assumptions often are violated, which results in probability of 

detection estimates that are biased high and sample size estimates that are biased low. To 

increase the accuracy of these estimates, I recommend that future studies use predictive 

distributions than can incorporate multiple sources of uncertainty or excess variance and 

that all distributional assumptions be explicitly tested. 
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Introduction 

The development of efficient and effective stream-fish management strategies 

requires the analysis of high quality data. However, many fish species are difficult to 

sample due to physical (e.g., morphology) and behavioral (e.g., habitat use) 

characteristics or are difficult to locate because they are relatively rare (Rieman and 

McIntyre 1995; Bonar et al 1997; Watson and Hillman 1997). In these instances, data 

collection and analyses often are limited to species presence and absence (Strayer 1999). 

The ability to detect a species is, in part, positively related to the amount of sampling 

effort (e.g., sample size, Elliot 1969; Pielou 1969; Poole 1974). Collecting too few 

samples can affect the quality of presence and absence data by lowering the ability to 

detect a species when present (i.e., false absence), whereas collecting too many samples 

is not cost-effective and wastes resources. To maintain consistent levels of effort, sample 

size requirements should be determined prior to developing sampling protocols. 

 For presence and absence studies, sample size requirements are estimated using 

species-specific estimates of the probability of detecting the species in a single sample 

(Elliot 1969; Pielou 1969; Poole 1974). Probability of detection estimates, in turn, require 

estimates of fish abundance and distribution that are best approximated by a discrete 

statistical distribution (i.e., a sampling unit cannot contain a fraction of a fish). Previous 

studies have modeled organismal abundance and distribution using the Poisson and 

negative binomial distributions (Bliss and Fisher 1953; Green and Young 1993; Watson 

and Hillman 1997). Although both distributions are discrete and can range from zero to 

infinity, they fundamentally differ in how they model variance and approximate species 

distributions. The Poisson distribution has one parameter (m) that is both the mean and 
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the variance and hence, it assumes that the mean and variance are equal. In contrast, the 

negative binomial has two parameters, the mean (m) and dispersion (k), which is a 

measure of variability. Somewhat counter-intuitively, low values of k indicate high 

dispersion (variance) and high values indicate low dispersion. As k gets very large, the 

negative binomial is equivalent to the Poisson (Pielou 1969; Poole 1974). Thus, variance 

can be less than or greater than the mean for the negative binomial distribution.  

For a fixed sampling unit size, the negative binomial dispersion parameter (k) has 

been biologically interpreted as the degree of clumping in a population’s distribution 

(Elliot 1969; Pielou 1969; Poole 1974). Small values of k indicate a very clumped 

distribution and large values indicate a more random distribution. For a fixed mean, k 

also can be thought of as an index of the number of groups (clumps) containing all of the 

individuals in a population (Southwood 1966), which affects the probability of detecting 

the population. For example, consider a population consisting of 10 individuals and 10 

areas (sample units) where the individuals can occur. If each area contains 1 individual 

(all areas occupied), the mean density would be 1 and the single sample probability of 

detection would be 100%. If all 10 individuals were in a single area (1 clump), the mean 

density would still be 1 but the single sample probability of detection would be 1/10 or 

10%. In contrast to the negative binomial, the Poisson assumes that individuals in a 

population are randomly distributed and also assumes spatial independence (Pielou 

1969). That is, the distributions of individuals in a population are independent of one 

another and other factors, such as physical habitat characteristics. Fish distribution, 

however, is nonrandom and can be influenced by landscape (Matthews 1988; Thurow et 

al. 1997; Dunham and Rieman. 1999) and physical habitat characteristics (Gorman and 
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Karr 1978; Angermeier and Karr 1984; Bisson et al. 1988; Baltz et al 1991) and intra- 

and inter-specific interactions (Edmundsen et al. 1968; Fraser et al. 1987; Baltz et al. 

1982; Bisson et al. 1988). Thus, it is likely that the Poisson assumptions cannot be met, 

limiting its usefulness for estimating fish detection probabilities and sample size 

requirements. 

Previous studies have justified the use of the Poisson to estimate detection 

probabilities for rare species by assuming that there is a negative relationship between a 

species’ density and dispersion, k (Green and Young 1993; Bonar et al 1997). That is, a 

species’ distribution becomes more random (less clumped) as it becomes rare. Although 

there is some evidence for this relationship for relatively sessile organisms (Green and 

Young 1993; Elliot 1969; see however Hariston 1959), the validity of this assumption has 

yet to be evaluated for fishes. 

Both the negative binomial and Poisson estimators require that all individuals in a 

sampling unit can be counted (Elliot 1969; Pielou 1969; Poole 1974). In practice, this is 

impossible for most fish collection efforts because fish sampling efficiency is rarely, if 

ever, 100% (Reynolds 1996; Dolloff et el. 1996 and references therein). Previous efforts 

have attempted to account for the influence of sampling efficiency by assuming that fish 

capture is a binomial process (Rieman and McIntyre 1995; Bonar et al.1997). That is, a 

fish is either captured or missed (e.g., a fraction of a fish cannot be caught). Detection 

probabilities then were adjusted assuming a binomial distribution and using a point 

estimate of sampling efficiency (q). The binomial adjustment assumes that all individuals 

within a sampling unit have the same probability of capture and all respond 

independently. However, sampling efficiency is influenced by body size (Buttiker 1992; 
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Anderson 1995; Dolloff et el. 1996) and thus, it likely varies among individuals within a 

sampling unit. The prevalence of overdispersion (variance in excess of the binomial 

distribution) in many fish sampling efficiency and mark and recapture models also 

suggests that fish do not respond independently (Bayley 1993). Therefore, the binomial 

assumptions are likely violated. 

The use of the Poisson and binomial (for adjustment) distributions to estimate 

detection probabilities and sample size requirements are gaining widespread acceptance 

(Hillman and Platts 1993; Rieman and McIntyre 1995; Bonar et al. 1997; Watson and 

Hillman 1997; Dunham and Rieman 1999). Unfortunately, there have been no studies 

examining validity of their assumptions and the effects of potential violations. Thus, I 

examined the adequacy of several methods for estimating detection probabilities with the 

following objectives: (1) determine the relationship between density and negative 

binomial dispersion for several fish species, (2) examine the influence of dispersion on 

probability of detection and sample size estimates, (3) determine the relative accuracy of 

probability of detection estimates four composite estimators, and (4) provide 

recommendations for the development of future sampling strategies. 

Methods 

 I examined the adequacy of several methods for estimating fish detection 

probabilities using 2 sets of data: one was collected for a large-scale fish and fish habitat 

survey and the other for monitoring trends in fish population sizes.  In all applications, 

trained personnel collected fish with standardized protocols from various streams types. 

Assuming that most fish sampling and monitoring are conducted under similar 

circumstances, I considered these data typical of data that are collected when the 
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probability of detection is a concern (e.g., monitoring rare and endangered species).  I 

caution, however, that this is an analysis of ‘found data’ (sensu Overton et al. 1993). That 

is, the data were collected for a variety of purposes and site selection was nonrandom. 

Therefore, the reported detection probability estimates should not be extrapolated or 

applied to other systems. Rather, these estimates should only be used to compare the 

relative usefulness of the various methods. 

Study Areas and Fish Sampling 

Forest Service Survey.- Fishes were surveyed by USDA Forest Service (FS) 

biologists during the summer months in 156 stream reaches within the Columbia 

River Basin from 1991- 96 (Peterson and Wollrab 1999). Most of the reaches were 

located in Central Idaho and Western Montana (Figure 1), with the majority of these 

in the Salmon River Basin, Idaho.  Surveys were generally conducted to provide 

baseline data before the initiation of management activities, such as timber harvest or 

cattle grazing (Peterson and Wollrab 1999), or to collect reference data on natural or 

desired conditions (Overton et al. 1995). Consequently, they represent a wide variety 

of stream types and habitats encountered in the Basin. 

All fishes were sampled via daytime snorkeling within individual sampling 

units that were deep enough to submerge a diver’s mask. Sampling unit selection 

procedures were nonrandom, varied among reaches, and depended upon the decisions 

of the field biologists. In general, the biologists attempted to sample the habitats most 

likely to contain salmonids (e.g., pools). All sampling began at the downstream end 

of a sampling unit and 1-2 divers swam upstream, counted each fish observed, and 
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identified all salmonids to species. Note that steelhead parr could not be distinguished 

from sympatric redband trout and the data were combined into a single group. 

 Fish monitoring data.- Fishes were monitored by Idaho Department of Fish and 

Game, USDA Forest Service, Nez Perce Tribe and Shoshone-Bannock Tribes during the 

summer months at 838 established sites between 1984-97 (Rieman et al 1999).  These 

sites were distributed across the Salmon and Clearwater River Basins in Central Idaho 

(Figure 1) and were chosen to provide an annual index of chinook salmon and steelhead 

production. Relative abundance data for bull trout, brook trout, and westslope cutthroat 

trout also were collected during sampling. 

All sampling was conducted via daytime snorkeling at the established sites 

(average 100m long) and samples were generally collected during low-flow 

conditions. Sampling began at the downstream end of each site and 1-2 divers swam 

upstream, counted each fish, and identified salmonids to species. 

Definitions and Statistical Analysis 

 Density and dispersion.– A fundamental assumption of using the Poisson 

estimator for rare species is that there is a negative relationship between a species’ 

density and dispersion (Green and Young 1993). Unfortunately, this relationship cannot 

be examined with fish collection data because the statistical distribution (i.e., dispersion) 

of fish collection data is a function of a species’ spatial distribution and the variability in 

sampling efficiency. An examination of raw (unadjusted) catch data, however, could 

provide some insight into combined effect of fish spatial distribution and sampling 

variability on data dispersion and its influence on detection estimates. To examine the 

relationship between data dispersion and density estimates, I selected 58 streams that 
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were known to contain populations of 5 salmonid species (Table 1) from the FS Survey 

database. The analysis was restricted to smaller streams (average wetted width 3-6 m) to 

maintain a relatively constant sample unit area and to minimize the potential differences 

in sampling efficiency. (Note that I included all of the streams in the FS database that 

were in the known range of all 5 species and that met the size criteria.) Stream reach 

lengths averaged 7.2 km; sample unit lengths, 10.1 m; and the number sample units per 

stream reach varied between 10-54.  Therefore, the proportion of each stream reach 

sampled was very small and I assumed an infinite sample size in which no finite 

population correction factor was needed. 

Means and variances were estimated for each stream by species combination and 

the negative binomial distribution parameter, k, was fit via maximum likelihood (Poole 

1974). In several instances, a dispersion parameter could not be estimated because a 

species was not collected in a surveyed stream (Table 1). The dispersion parameter, k, 

also showed a large range of values within and among species (Table 1) and was natural 

log transformed prior to regression analysis (below).  

The relationship between mean density and the dispersion parameter was 

examined via linear regression. Differences among species were examined by recoding 

species identities as dummy variables (i.e., 0 or 1) with steelhead/ redband trout as the 

baseline because it had the fewest missing observations (i.e., a dispersion parameter 

could be estimated for the greatest number of sites). Goodness-of-fit was assessed for the 

regression model by examining residual and normal probability plots (Nelder et al. 1993).  

Ninety-five percent confidence intervals were constructed for each parameter estimate to 

provide a means to assess precision and statistical significance. Note that the mean and 
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dispersion parameter estimates were estimated with error, but the effect of this error on 

the regression should only result in a weaker relationship between the mean density and 

dispersion (Green and Young 1993). 

Prior and predictive distributions.– Assuming a Poisson distribution, the 

probability (pe) of encountering (not necessarily capturing) at least 1 individual in a 

single sample (site) is one minus the probability of encountering no individuals (i = 0) 

and is estimated as: 







+Γ

−=
−

)1(
1

i
emp

m
i

e , (1) 

where m is mean or expected number of individuals per sampling unit. This estimate, 

however, only takes into account process uncertainty (i.e., the uncertainty associated with 

spatial and temporal fish distribution, given m) and assumes a fixed or known m.  

Another potentially significant source of uncertainty (variance) is that which is associated 

with the value of m, referred to as the parameter uncertainty. Parameter uncertainty 

represents the variability of m (e.g., among locations or through time). Fishery biologists 

are used to expressing this source of variability with some measure of precision, such as 

confidence intervals or standard errors.  To account for parameter uncertainty, m can be 

treated as a random variable with its own distribution and mean.  For the Poisson, the 

natural conjugate distribution (also referred to as the prior) is the generalized gamma 

(Berger 1985): 
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where a and b are the shape and scale parameters, respectively. Assuming that all of the  

parameters (a, b, m) are greater than zero, the variation in m then can be incorporated by  
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combining the gamma and the Poisson and integrating over m as: 

p I i m f m dme = − =
∞
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0

Pr( | ) ( ) ,  (3) 

to obtain the predictive distribution of the Poisson, the negative binomial. The probability 

of encountering at least 1 individual then is estimated as: 
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where a is the dispersion parameter (k), b is equivalent to the ratio of the negative 

binomial parameters (m/k), and i = 0 as defined above (Pielou 1966). 

One of the difficulties with using the negative binomial to estimate detection 

probabilities and sample size requirements is the relatively large amount of data needed 

to estimate both the mean and dispersion parameter (Green and Young 1993). The 

gamma could provide the means to incorporate existing information on the inherent 

variability of m. To examine usefulness of a gamma prior, I compared the probability of 

detection estimates for Poisson, Poisson-gamma (i.e., negative binomial with gamma 

parameters), and negative binomial estimators using the FS survey data described above. 

Mean densities and maximum likelihood estimates of the gamma and negative binomial 

parameters were estimated for each species, across streams, and goodness-of-fit was 

assessed via chi-square tests (Sokal and Rohlf 1995). Probabilities of detection were 

estimated using the maximum likelihood estimates and equations 1 and 4, with b replaced 

by m/k in equation 4 for the negative binomial estimates. These probabilities were then 

used to estimate the number of samples required for species detection at the 95% 

confidence level according to Green and Young (1993). 
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Sampling efficiency and variability.- For clarity, I define sampling efficiency as 

the proportion of individuals, in a given area, that are captured or observed during 

sampling. The effect of sampling efficiency on detection can be estimated by assuming 

capture is a binomial process and that individuals respond independently and are equally 

catchable. Thus, the probability of capturing (pc) at least 1 individual, given the sampling  

efficiency (q) and number of individuals encountered (i), is one minus the probability of 

capturing no individuals and is estimated as: 

pc = 1- (1- q)i. (5) 

Similar to the Poisson estimator, the binomial only takes into account process 

uncertainty and assumes a fixed or known q. The uncertainty or variability of q (e.g., 

due to differences in sampling efficiency among individuals) can be taken into account 

by treating q as a random variable with a beta distribution, which results in predictive 

distribution of the binomial, the beta-binomial (Berger 1985). The probability of 

capturing at least 1 individual is then estimated as: 

pc = −
+ + + + −

+ − + + +






1
1

1 1
Γ Γ Γ Γ

Γ Γ Γ Γ Γ
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
i a x a b i b x

x i x a b i a b
, (6) 

where a and b are the beta shape parameters and x is the number of individuals captured 

(0 in this case).  The assumption of independence among individuals is also relaxed for 

the beta-binomial (Prentice 1986). 

Relative accuracy evaluation.- Evaluating the ‘true’ accuracy of detection 

estimates requires species’ presence and absence to be known with certainty. 

Unfortunately, these estimates are generally unobtainable unless study areas are stocked 

with known numbers of (presumably marked) individuals, which could be cost-

prohibitive when conducted over the large number of sites presumably needed to obtain 
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reliable estimates. An alternative approach (and the one used here) is to use data for sites 

that were sampled on multiple occasions and assume that occupied sites are always 

potentially occupied (i.e., during sampling, across occasions). The proportion of sampling 

occasions that a species was detected could provide a baseline for comparing the relative 

accuracy of various estimation techniques. Thus, I examined the relative accuracy of 4 

detection probability estimators (outlined below) using the fish monitoring data (Rieman 

et al 1999) for occupied sites that were sampled on 10 or more occasions. This cutoff was 

selected for practical reasons, such as resolution (e.g., only 3 relative efficiency estimates 

are possible for 3 sampling occasions, 0.33, 0.67 and 1.00), and to ensure that sites with 

high probabilities of detection were not over represented. The analysis was also restricted 

to bull trout, brook trout, and westslope cutthroat trout because the densities of chinook 

salmon parr and steelhead/redband trout were confounded by supplementation (stocking), 

which would likely affect the accuracy of fish abundance models. 

The probability of detecting a fish species is a function of sampling efficiency 

(i.e., probability of capture, pc) and the number of vulnerable fish (i.e., probability of 

encounter, pe), both of which are influenced by habitat features. Thus, to estimate the 

probability of detection requires site-specific estimates of sampling efficiency and fish 

abundance. Sampling efficiencies were estimated for each site and sampling occasion 

using beta-binomial models of relative sampling efficiency (Reiman et al. 1999; R. 

Thurow, Rocky Mountain Research Station 316 E. Myrtle Street Boise Idaho, 

unpublished data) and were used to adjust fish abundance estimates. Site-specific 

estimates of sampling efficiency, fish abundance, and habitat characteristics were then 

averaged to approximate "average" sampling conditions and abundance, across sampling 
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occasions (Table 2). Abundance estimates were rounded to the nearest integer to facilitate 

model fitting with a discrete distribution. 

The relative accuracy of detection estimates was assessed via leave-one-out cross-

validation for 4 combinations of the probability of encounter (pe) and capture (pc) 

estimators described above: the Poisson-binomial (P-B), Poisson-beta-binomial (P-BB), 

negative binomial-binomial (NB-B) and negative binomial-beta-binomial (NB-BB). 

During the cross-validation procedure, one observation (site) was excluded from the data 

set; Poisson or negative binomial regression models (White and Bennetts 1996) were 

fitted to the remaining data with fish abundance as the response and site dimensions, 

depth, gradient, and elevation as the predictors; and the regression model was used to 

predict fish abundance and the dispersion parameter (for the negative binomial) for the 

excluded observation. The probability of detection, Pr(detect), was then estimated for the 

left-out observation as: 

Pr(detect) ∑
∞

=

=>=
0

)],|Pr(),|0[Pr(
i

miIqiX  (7) 

where, for the Poisson- binomial, Pr(I = i|m) is the probability of encountering i 

individuals assuming a Poisson distribution (equation 1), given the estimated mean 

abundance (m) from the Poisson regression, and Pr(X > 0| i, q) is the probability of 

capturing at least 1 individual, given the number of individuals encountered and the 

estimated sampling efficiency (equation 5). Combinations that included the negative 

binomial and beta-binomial used equations 4 and 6 in place of equations 1 and 5, 

respectively. The beta-binomial shape parameters were estimated as a  = q/γ and              

b =  (1-q)/γ, where γ is the dispersion parameter from the beta-binomial regression model 
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that estimates the sampling efficiency variability (i.e., larger values indicate greater 

sampling variability). Note that the term within the brackets above is a Taylor expansion 

(i.e., it converges to a value as i → ∞ ; Hillborn and Mangel 1997). During the cross-

validation, the summation converged rapidly and hence, i did not exceed 500 in practice. 

Prior to the cross-validation procedure, Poisson and negative binomial regressions 

were fitted to the full data set and goodness-of-fit was assessed for each with chi-square 

tests (Sokal and Rohlf 1995).  The similarity between the Poisson and negative binomial 

site-specific abundances estimates also were examined for each species via Pearson 

correlations. The relative accuracy of each of 4 composite estimators (P-B, P-BB, NB-B, 

and NB-BB) was assessed as the difference between site-specific probability of detection 

estimates and the baseline (i.e., the proportion of sampling occasions detected). Ninety-

five percent confidence intervals of differences were calculated following Zar (1996). 

Results 

 Density and dispersion.- Negative binomial dispersion parameters could not be 

calculated for each stream by species combination because in several instances a species 

was not collected in a surveyed stream (Table 1). Of the streams where individuals were 

collected, mean density and the negative binomial dispersion parameters varied 

considerably among species and streams (Table 1). Densities were greatest for chinook 

salmon parr and steelhead/redband trout and lowest for bull trout. Across species, fish 

were rare in 12% of the 58 streams (densities < 0.1 as defined by Green and Young 

1993). The negative binomial dispersion parameters were generally low and did not 

exceed 1 for 53% of the observations (low values indicate greater clumping or 

overdispersion).  However, 4 of the dispersion estimates, 1 steelhead/rainbow trout and 3 
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bull trout, exceeded 100.  An examination of the data indicated that they were collected 

in accordance with the protocols and that the sampling conditions and habitat was similar 

to the other streams. Therefore, there was no basis for their removal from the data and 

they were included in the regression. 

  Regression analysis indicated a statistically significant (P<0.05) positive 

relationship between raw density and data dispersion across species (i.e., overdispersion 

increased as density decreased; Table 1). Differences among species varied widely and 

chinook salmon was the only species to differ significantly (P<0.05) from 

steelhead/rainbow trout (the baseline). Density by species interactions also varied 

considerably in magnitude and direction (Table 1), but none were statistically significant 

(P>0.05). 

Prior and predictive distributions.- Variances differed greatly among species and 

indicated that the catch data for all species were overdispersed with respect to the Poisson 

(i.e., the variances exceeded the means; Table 3). This significantly affected Poisson 

probability of detection estimates, which were the highest across species and were, on 

average, 3.82, 2.66, and 3.47 times greater than the baseline, Poisson-gamma, and 

negative binomial, respectively (Table 3). Required sample sizes for species detection at 

the 95% confidence level also were lowest for the Poisson, which underestimated sample 

size requirements an average of 72%, across species. Negative binomial dispersion 

parameters also varied among species, which suggested that chinook salmon parr 

distribution patterns were the most clumped among species.  The negative binomial 

probability of detection and sample size estimates were the closest to, and differed from 

the baseline an average of 9.6% and 9.5%, respectively. Poisson-gamma probability of 
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detection and sample size estimates were similar to the negative binomial except for 

brook trout and chinook salmon, which were the only species to fail goodness-of-fit tests 

for the gamma (P<0.05). Nonetheless, these estimates were much closer to the baseline 

than the corresponding Poisson estimates (Table 3). 

Relative accuracy assessment.- Goodness-of-fit tests indicated that the Poisson 

regression model fitted to the full data set were overdispersed for all species (i.e., the 

variance exceeded the presumed Poisson). Quasi-likelihood Poisson regression is similar 

to Poisson regression, but it has an additional element to account for error variances in 

excess of assumed distributions (Wang et al. 1996). Therefore, I fit quasi-likelihood 

Poisson regression models for the leave-one-out cross-validation procedure. 

Pearson correlations of site-specific abundances estimated during the cross-

validation indicated that quasi-likelihood Poisson and negative binomial estimates were 

very similar for bull trout (r = 0.98), brook trout (0.94), and westslope cutthroat trout 

(0.95). On average, quasi-likelihood Poisson estimates differed from their negative 

binomial counterparts the by 8% across species (Figure 2).  

Probability of detection estimates indicated significant differences among the 4 

composite predictors across species (Figure 3). On average, bull trout, brook trout, and 

westslope cutthroat trout were detected at multiply-sampled, occupied sites on 33.7%, 

40.1%, and 46.6% of sampling occasions, respectively. The NB-BB detection estimates 

were the most accurate (relative) for all species and were not significantly different 

(P>0.05) from the baseline (Figure 3). On average, bull trout, brook trout, and westslope 

cutthroat trout NB-BB detection estimates differed from the relative detection 

probabilities by 0.01, -0.03 (underestimate), and 0.05, respectively. In contrast, the P-B 
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estimates were the least accurate and significantly (P<0.05) overestimated detection 

probabilities by 0.28, 0.32, and 0.47 for bull trout, brook trout, and westslope cutthroat 

trout relative, respectively. In contrast to the other species, the brook trout NB-B 

estimates also were not significantly different from the baseline (Figure 3). The relative 

accuracy of the estimators also differed among species. The bull trout P-BB estimates 

were more accurate than the NB-B, whereas the opposite pattern was observed for the 

other two species (Figure 3). 

Discussion 

The variability of fish density and sampling efficiency had a profound effect on 

the relative accuracy of the probability of detection estimates. The negative binomial and 

beta-binomial estimators were consistently more accurate than the Poisson and binomial. 

These discrepancies were not due to differences in fish density or sampling efficiency 

estimates. Poisson and negative binomial estimators used the same or similar fish 

densities (Table 3; Figure 3), yet the Poisson detection estimates were as much as 584% 

greater than the negative binomial estimates (Table 3). Similarly, the binomial and beta-

binomial estimators used the same sampling efficiency estimates (Table 2) and binomial 

detection estimates were, on average, 26% greater than their beta-binomial counterparts 

(Figure 2). The major difference between these estimators is their ability to incorporate 

additional variability in fish density or sampling efficiency. The negative binomial and 

beta-binomial estimators explicitly incorporate extra variation (or uncertainty) via the 

dispersion parameters, whereas the Poisson and binomial cannot (Gelman et al. 1995). 

Consequently, the Poisson and binomial almost certainly underestimated the total 

variation associated with fish sampling, which resulted in overly optimistic (i.e., biased 
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high) estimates of probability of detection. To increase the accuracy of probability of 

detection estimates, I recommend that future studies use predictive distributions that can 

incorporate multiple sources of uncertainty or additional variance. 

Variance also had a significant effect on sample size estimation. The Poisson-

based sample size estimates for 95% detection level were, on average, 72% lower than 

would have been required for (baseline) detection (Table 3), whereas the negative 

binomial estimates were 9.6% lower. Interestingly, Watson and Hillman (1997) assumed 

that bull trout were distributed as a Poisson with a mean density (0.25 per sampling unit) 

identical to that of the FS survey data (Table 3), and estimated that 12 samples assured 

detection probabilities of 95%. Although they did not provide variance estimates to 

determine if their data were overdispersed, the prevalence of overdispersion (relative to 

the Poisson) in the FS survey and fish monitoring data suggest that it was likely. In fact, 

biological count data (e.g., fish abundance) are more often distributed as a negative 

binomial (overdispersed) than a Poisson (White and Bennetts 1996). Failure to 

incorporate extra variance would result in the systematic underestimation of required 

sample sizes. For example, the FS survey data suggest that Watson and Hillman might 

have underestimated the required sample sizes by one third, potentially missing bull trout 

when they were present. Inadequate sampling effort (number of samples) would likely 

result in mistaken or false absences, which would waste valuable management resources 

and potentially place species at risk. To avoid such mistakes, I urge researchers to 

rigorously evaluate their assumptions and further suggest that journal editors and 

reviewers insist that results of such evaluations be reported. 
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Negative binomial dispersion was positively related to (raw) density for the 5 

salmonid species considered (Table 1), which suggested that species’ distributions 

became more clumped as a species became rarer. This was contrary to the reported 

patterns for some benthic aquatic invertebrates (Elliott 1969; Green and Young 1993) and 

plants (Greig-Smith 1964), but is consistent with Harrison’s (1959) analysis of soil 

arthropods. These conflicting studies, however, were conducted on relative sessile 

organisms. Because dispersion patterns are influenced by species behavior (Poole 1974), 

these differences were likely due, in part, to the greater mobility of fishes. Stream-

dwelling salmonids can move relatively long distances to exploit newly created habitats 

or food resources (Gowan et al. 1994 and references therein) and will congregate where 

resources are abundant. Fish also can vary their distributions patterns (i.e., move) 

seasonally, within and among reaches, in response to changes in the distribution of prey 

species (Petty and Grossman 1996). Schooling behavior also can influence dispersion. 

Small fish schools often combine in order to maintain a critical size (Shaw 1978), which 

would cause the population to become more clumped as the number of schools decreased. 

Among fish species, distribution patterns also were influenced, in part, by species- 

specific behaviors. For instance, the negative binomial dispersion parameter was lowest 

for chinook salmon parr, a species generally found in schools (Scott and Crossman 1973), 

whereas it was greatest for steelhead/ redband trout, a somewhat territorial species 

(Edmundson et al. 1968). Fish distribution patterns also are influenced by environmental 

heterogeneity, which can operate independent of density. For example, the distributions 

of several warmwater streams fishes are significantly influenced by the juxtaposition of 

tributaries (Osborne and Wiley 1992). The relatively large differences among species 
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dispersion parameters (Tables 1 and 3) also suggest that no single dispersion parameter 

would likely be adequate for estimating detection probabilities and developing sampling 

guidelines, across several fish species. Rather, the best approach would be to use existing 

sampling data or collect preliminary data and fit them to a statistical distribution. 

Although the greater flexibility of the negative binomial makes it an ideal candidate, I 

recommend that all distributional assumptions be explicitly tested. 

The greater mobility of fish also allowed them to evade capture and likely 

influenced the observed negative relationship between density and dispersion. Sampling 

efficiency for the sessile organisms (i.e., aquatic benthic invertebrates and plants) was 

presumably very close to 100%, whereas relative sampling efficiency averaged less than 

35% across salmonid species (Table 2). The inability to count or capture all of the 

individuals in a sampling unit would have increased variance regardless of fish density.  

The greater accuracy of the beta-binomial, which accounts for extra variation 

(overdispersion) relative to the binomial, also suggests that variability in sampling 

efficiency influenced data dispersion (i.e., negative binomial k). Overdispersion was 

probably the result of a combination of factors including failure to incorporate significant 

influences on efficiency into the sampling efficiency models (e.g., the effects of fish size) 

and the non-independence of species’ responses (Bayley 1993). Among these, the non-

independence of fish response would have a greater effect on the relationship between 

density and dispersion. For example, fishes fleeing from a sampling crew are likely to 

affect the behavior of other fish (e.g., flight, concealment) in the sampling unit. In effect, 

several fish act as single individual (their responses are dependent) and depending upon 

their joint response, none are captured (0% efficiency) or all are captured (100% 
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efficiency). When fish abundance is high, there is likely a greater number of fish acting 

as an individual. This would increase variance (i.e., decrease k) for higher fish densities 

and result in a negative relationship between density and negative binomial dispersion. 

Therefore, the positive relationship between actual density and dispersion was probably 

greater than that observed for the raw catch data. 

Presumably, detection probabilities will be used to develop sample size 

requirements for surveying or monitoring rare or endangered species (e.g., Bonar et al. 

1997). In these instances, regulatory agencies would likely be required to choose target or 

threshold densities for estimating detection probabilities (Green and Young 1993).  The 

choice of a biologically meaningful threshold is wrought with uncertainty, especially for 

a rare species. The use of a gamma prior distribution is one means to incorporate this 

uncertainty into sampling guidelines. Indeed, the Poisson-gamma detection probability 

and sample size estimates were relatively accurate (Table 3), which suggests that the 

gamma could provide a realistic approximation of the variability of fish density (e.g., 

minimum viable population size) or uncertainty about a biologically meaningful 

threshold. For example, existing data on distribution and abundance of target species 

could be combined and fitted to a gamma distribution. This would provide the most 

biologically realistic measure of the variation. Where existing data are lacking, a prior 

could be developed from a distribution of expert opinions on the minimum density to 

maintain a viable population (i.e., a subjective prior; Gelman et al. 1995). The data 

generated from the subsequent monitoring or surveys then can be used to update the prior 

and reexamine the distributional assumptions. 
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The widespread use and acceptance of the Poisson distribution to estimate 

detection probabilities and sample size requirements was probably due, in part, to Green 

and Young’s (1993: 356) contention that the adequacy of the Poisson estimator “do[es] 

not depend on species, habitat, sampling method, or sample unit size.” Yet as I indicated 

above, these are the same factors affecting the variability of sampling efficiency and fish 

distribution. To be fair, Green and Young suggested that preliminary sampling would be 

useful for examining the adequacy of the Poisson assumption. My results, however, 

suggest that preliminary data are not just useful, but necessary for developing rigorous, 

defensible survey and monitoring protocols. Failure to examine the adequacy of Poisson, 

negative binomial, or other models before adopting a protocol can result in the collection 

of useless data. Worse, "a poorly performed survey means the inertia of its imprecise 

results must be overcome before a legitimate survey can be conducted" (Thompson et al. 

1998: xii).  In these instances, the additional costs associated with overcoming the inertia 

and renovating the survey design would very likely exceed any costs that would have 

been incurred during preliminary sampling and analyses. Therefore, I strongly 

recommend that all monitoring or survey protocols include a pilot or implementation 

phase that allows for periodic evaluations of the data so that assumptions can be assessed 

and sampling strategies revised, if necessary.   
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Table 1. Means, standard errors (in parenthesis) and range of mean density (number per 

sample unit) and the negative binomial dispersion parameter (k), by species, and 

coefficients, standard errors (SE), and 95% confidence limits (CL) from linear regression 

of species-specific mean abundance and negative binomial dispersion parameter. The 

dispersion parameter was natural log transformed prior to fitting the linear model and 

steelhead/ redband trout was the baseline category for the regression.  

Species   N1  Density k 

22 0.409 (0.335) 16.085 (39.137) Bull trout 

(Salvelinus confluentus)  0.02-1.33 0.03-177.95 

32 2.445 (3.116) 1.912 (4.403) Brook trout 

(Salvelinus fontinalis)  0.05 - 12.40 0.04-18.46 

26 1.452 (0.279) 2.283 (0.439) Westslope cutthroat trout 

(Oncorhynchus clarki lewisi)  0.04-8.00 0.07-34.87 

27 4.032 (5.131) 2.627 (8.89) Chinook salmon parr 

(Oncorhynchus tshawytscha)  0.09-19.61 0.04-40.05 

41 2.804 (3.598) 10.741 (47.548) Steelhead /redband trout 

(Oncorhynchus mykiss spp.)  0.04-14.00 0.08-304.97 

Parameter Coefficient SE Upper CL2 Lower CL 

Intercept -0.095 0.317 0.527 -0.717 

Density 0.149 0.066 0.277 0.020 

Bull trout 0.501 0.556 1.590 -0.588 

Brook trout -0.340 0.533 0.674 -1.413 

Westslope cutthroat trout -0.616 0.503 0.370 -1.601 

Chinook salmon -1.077 0.549 -0.001 -2.152 

Density*Bull trout 0.273 0.871 1.981 -1.434 

Density*Brook trout -0.127 0.123 0.114 -0.367 

Density*Westslope cutthroat trout 0.138 0.182 0.495 -0.218 

Density*Chinook salmon -0.130 0.100 0.066 -0.326 
1 Number of reaches for which a mean and dispersion parameter were estimated. 

2 Confidence limits can be used to infer statistical significance at P<0.05.
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Table 2.  Average habitat characteristics, fish abundance, and relative sampling efficiency (%) for monitoring sites used for the 

comparison of 4 approaches to estimating detection probabilities, for bull and westslope cutthroat trout. 

 

N  Elevation (m) Length (m) 

Mean 

width (m) 

 Mean  

depth (m) Gradient(%) Abundance 

Relative 

sampling 

efficiency1 

Beta-binomial 

dispersion 

parameter 

Bull trout         

 74 mean 1485 101.6 14.4 0.34 0.83 5.2 25.0 0.5055 

  SE 51.2 4.53 1.02 0.017 0.049 0.85 1.69  

  range 343-2110 39.5-280.6 3.7-48.6 0.08-0.91 0.05-2.10 1-34 7.06-87.0  

Brook trout         

 73 mean 1596 101.5 13.1 0.31 0.76 36.3 31.3 0.3633 

  SE 49.4 4.89 0.892 0.016 0.068 8.82 1.85  

  range 343-2110 39.5-280.6 3.7-47.8 0.08-0.91 0.02-4.10 1-386 7.6-92.5  

Westslope cutthroat trout         

 92 mean 1382 95.5 14.7 0.34 0.82 16.4 34.8 0.3804 

  SE 47.2 4.03 0.854 0.014 0.060 2.89 1.62  

  range 343-2024 39.2-280.6 3.8-48.6 0.08-0.91 0.05-4.10 1-164 8.2-92.3  

         
1 Sampling efficiency estimates are relative to removal estimates and are probably biased high. 
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Table 3. Mean density, variances (s2), gamma shape (a) and scale (b) parameters, negative binomial dispersion 

parameter (k), probability of detection estimates, and sample size requirements for 95% power (in parenthesis), by 

species, for salmonids collected during FS survey of small streams in the Interior Columbia River Basin.  Probabilities 

of detection were estimated using the Poisson, Poisson-gamma, and negative binomial estimators. Baseline is the 

proportion of the 1271 sample units that each species was detected and is shown for comparison. 

      Probability of detection 

 Species Density s2 a b k Baseline Poisson 

Poisson-

gamma 

Negative 

binomial 

Bull trout         

 0.257 0.599 1.272 0.195 0.169 0.150 (18) 0.227 (12) 0.148 (19) 0.145 (19) 

Brook trout1         

 0.906 18.481 10.680 0.085 0.048 0.127 (22) 0.596 (3) 0.188 (14) 0.134 (21) 

Westslope cutthroat trout         

 0.600 4.133 4.958 0.121 0.108 0.154 (18) 0.451 (5)  0.194 (14) 0.184 (15) 

Chinook salmon1         

 1.553 73.340 18.551 0.084 0.034 0.103 (28) 0.788 (2) 0.220 (12) 0.121 (23) 

Steelhead/ redband trout         

 1.639 17.281 11.979 0.137 0.172 0.344 (7) 0.806 (2) 0.296 (9) 0.333 (7) 
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Figure 1. Locations of surveyed and monitored stream channels (gray lines) in the interior Columbia River Basin (bold outline). States 

are labeled and boundaries (broken line) are shown for reference.
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 Figure 2. Abundance estimates from the quasi-likelihood Poisson and negative binomial 

regressions for (a) bull trout, (b) brook trout, and (c) westslope cutthroat trout calculated 

during the leave-one-out cross-validation procedure. Broken line represents perfect fit. 
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Figure 3. The mean differences between baseline detection probabilities and four detection probability estimators for bull trout 

(triangle), brook trout (circle), and westslope cutthroat trout (square). Brackets are 95% confidence intervals. 
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