Walkability Audit - Summary

Prior to the design workshop, Walk Albuquerque and Alliance for Active Living organ ized a volunteer group to travel and evaluate the pedestrian world in the Central gred on two different Saturdays. This was a smal sampling with 67 peopl in each group including area residents, business owners and members of the associations running the volunteor event Participants familiar with this area noted that Saturday activity varies from weekday activity.

This type of analysis helped inform the design team as to the current state of affairs for the pedestrian, which is directly linked with the success of businesses in the area. A comment by one participant summed up the existing condition of the area for both folks on foot and for businesses in the area
"I didn't think about the businesses at all. You just paid attention to the cars." (and the ground in front of your feet.)

Tally sheets with various criteria were given to participants. Results were tallied and the following general issues arose.
Traffic: noise, fumes, speed, no buffer between sidewalk and cars in many places Driver behavior: failure to yield to pedestrians, especially when turning.
Sidewalks: broken sidewalks, rough surfaces, frequent driveways with steep side slopes, utility poles and other obstacles blocking the way. Very steep curb ramps tha send walkers out into the traffic flow, uneven joints. Sidewalks too narrow to walk two abreast and pass anyone. No buffer between sidewalks and traffic lanes in many places.
Street Crossings: timing on pedestrian crossing signals too short, intersections too wide, no really useful median refuges, parked cars block views at some intersections. : Central with signs to go around the back or side, no ns, few other pedestrians out - of those we saw, some were perceived of as scary
Buildings and land use: Many buildings are designed for cars, with large parking lots facing Central along the sidewalk, multiple driveways crossing sidewalks, entrances oriented to parking lots, rather than sidewalks. The block west of the Highland theater ented to parking lots, rather than sidewalks. The block - Many vacant parcels and vacant buildings

Vast no man's land south of the theater, and around Highland High School - Very little residential within the MRA boundaries

- Highland Theater is a definite positive, as well as a few other isolated and short segments, where businesses with interesting facades were close to the sidewalk and onstreet parking provided a buffer for pedestrians.
Aesthetics and amenities: dirt, litter, graffiti, few trees, benches, trash receptacles, etc.
- Central has an active bus route, but bus stops generally lacked amenities. Few benches (standard issue grey recycled plastic) or trash receptacles, no shade or shel ter.
We weren't considering bicycles with this audit, but we noted several bicycles com peting with pedestrians for space on narrow sidewalks, and no bike parking facilities.

rour reme (plesese prutr

SEGMEN \#3: Walk east along the north side of Central, from Monroe to San Mateo

Overall, how plemsant was your walk over this seemment of the route? (please creck onfy one)					
	IV Vey	A.tro somiontar	11 Samentat	- yery	II Extremesy

What sots of things die youlit	
-1.	
110 Eusinesse/ sho	dele Chuncil

 What sorts of things diic you Nor nike? (check all that apply

Uutro o tuat		Thit Not enowh tres or cher wep
Scary dose Undeast burreves	cma	Trafic move to tat
	seatars	Wht tamic nose
Euitanc in moco conditicm		Hfo ven
bos not well desined	tsined	

Did you encounter any obstacles or obstructions? Ifso, please indicate the types of obstadie or obstructions
abne Sane d Poasmar:

Wate pocs on He spdeak
10 Rach ox weren stree penemart to telle

kithear Guinez Mhorix
pwenish Whot oten dhervin pesses luas
PWinubs not open haring porsal lase

Sample score cards used by walkability volunteers

Moule \& Polyzoides Architects and Urbanists
June, 2004

Traffic Considerations:

The focus of the Street and sidewalk designs are to slow traffic down while increasing capacity of traffic volume on Central Ave.. The safety and aesthetics of the pedestrian environment [and also the economic environment] should be as important as the con siderations given to vehicles in the area, if not more so. Some parameters of the design:

1 Pedestrian crossing times must be kept to a minimum. Crossing times of 19 seconds or less are preferred. This represents a street with four 12 foot wide lanes.
2. Vehicle speeds must be kept to 20 miles per hour or less generally, and around 30 miles per hour on primary thoroughfares.
3. Pedestrians should be protected from the elements as much as practical.
4. Streets should be defined by buildings at their edges.
5. The street must accommodate bicyclists and the handicapped.
6. Transit must be a part of thoroughfare planning.
7. Parking standards must be reduced to reflect historically supported demand for traditional urbanism.
8. Central is the main artery for the project and needs special attention.

The design of Central Avenue is informed by several elements listed as follows; 1 A LRT or BRT system may be introduced into the corridor. This would require a 26 foot wide path in the center of the street. To allow for this potential, a 26 foot wide median is proposed as one of the cross section scenarios.
2. The intersection of Central and San Mateo is operating at LOS F with more than 4,000 vehicles at PM peak hour times. This study proposes that a 2 lane roundabout be built in the intersection. This will provide better access for non-motorists, boost the area of the neighborhood. See traffic model output in later pages this appendix.
3. The other signalized intersections along Central operate in the low to mid 30,000 ADT range For the above stated reasons, each intersection could have a single lan roundabout with 2 approach lanes and one exit lane. The LOS would be B and they roundabout with 2 approach lanes and one exit lane. The LOS would be B and they for two intersections are illustrated as follows;

It should be noted that the 26 foot wide median is shown at Washington, but not San Mateo. An 18 foot increase to the median width can be achieved and work well with a 2 lane roundabout.

Slower traffic speeds are critical for safety in this corridor. A combination of on-street parking, narrower street designs, bulb-outs, street trees, and roundabouts are proposed to keep traffic at posted speeds throughout the area. The following table shows in graphic detail the repercussions of pedestrian/automobile collisions as they relate to automobile speed:

Selected Sample of Injuries by the Abbreviated Injury Scale (AIS) AIS Code Injury Severity Level and Selected Injuries
(14 mph) M inor Superficial abrasion or laceration of skin; digit sprain; frst-degree burn; head trauma with headache or dizziness (no other neurological signs).
$(20 \mathrm{mph})$ M oderate Major abrasion or laceration of skin; cerebral concussion unconscious less than 15 minutes); finger or toe
crush/amputation; closed pelvic fracture with or without dislocation.

3 (25 mph) Serious M ajor nerve laceration; multiple rib fracture (but without flail chest); abdominal organ contusion; hand, foot, or arm crush/amputation
4 (29 mph) Severe Spleen rupture; leg crush; chest-wall perforation; cerebral concussion with other neurological signs (unconscious less than 24 hours).

5 (33 mph) Critical Spinal cord injury (with cord transection); extensive secondor third-degree burns; cerebral concussion with severe
or third-degree burns; cerebral concussion with severe
neurological signs (unconscious more than 24 hours).
6 (36 mph) Fatal Injuries which although not fatal within the first 30 days after an accident, ultimately result in death

TP Values Per AIS Injury Level (2001 dollars)
AIS Code Description of Injury Fraction of WTP Value of Life
WTP Value
AIS 1 Minor
AIS 2 M oderat
AIS 3 Serious
S 4 Severe
IS 5 Critical
155 Percent
$\begin{array}{ll}\text { 10.75 Percent } \\ 76.25 \text { Percent }\end{array} \$ 262,500$
100.00 Percent $\$ 3,000,000$

As can be seen, the costs increase exponentially with speed. Tax dollars are spent every year to treat uninsured accident victims and the fiscal costs are sometimes excessive.

Narrow lanes, transit mixed in traffic, wide sidewalks

APPENDIX | TRAFFIC ENGINEERING

SIDRA ROUNDABOUT OUTPUT

CENTRAL AND WASHINGTON	
Degree of saturation (highest)	$=0.636$
Practical Spare Capacity (lowest)	= 34%
Total vehicle flow (veh/h)	= 3369
Total vehicle capacity, all lanes (veh/h)	= 5995
Average intersection delay (s)	$=14.2$
Largest average movement delay (s)	$=32.4$
Total vehicle delay (veh-h/h)	$=13.26$
Largest back of queue, 95\% (ft)	= 169
Performance Index	= 56.50
Intersection Level of Service	= B
Worst movement Level of Service	= C

SAN MATEO AND CENTRAL

Practical Spare Capacity (lowest) $\quad=-1 \%$
Total vehicle flow (veh/ h) $=523$
Total vehicle capacity, all lanes (veh/h) = 7039
Average intersection delay (s) $\quad=17.1$
Largest average movement delay (s) $\quad=20.3$
Total vehicle delay (veh-h/h) $\quad=24.91$
Largest back of queue, 95\% (tt)
Performance Index
Intersection Level of Service
$=108.27$
$\begin{array}{ll}\text { Worst movement Level of Service } & =\mathrm{B} \\ & \end{array}$

```
Akcelik & Associates Pty Ltd - SIDRA 5.30
Swift and Associates
Longmont Rociates Registered User No. LKWHE
Trem and Date of Analysis 3:49 PM, Feb 27,2004 * CENWASPM
PM Peak Hour
Intersection ID: 1 Copata manual Version
RUN INformation
* Basic Parameters:
Driving on the right-hand side of the road
SIDRA US Highway Capacity M anual Version
mput data specified in US units
Default Values File No. 11
Peak flow period (for performance): 15 minutes
Unit time (for volumes): 60 minutes (Total Flow Period)
Delay definition: Control delay
Geometric delay included
Delay formula: Highway Capacity M anual
Queue definition: Back of queue, 95th_Percentile
```


Table R.5-ROUNDABOUT CAPACITY \& LEVEL OF SERVICE - SIDRA \& ACM MODELS

NA Values for this roundabout capacity model have not been calculated because the model was not applicable for the given roundabout conditions. Note that the HCM models are only applicable to singleany of the models for slip lane or continuous movements. See SIDRA Output Guide Appendix Section A3.8 for roundabout limits.

Mov Arv Total No. Flow Opng (veh Flow h) (veh/ $/ \mathrm{h})$	\%HV	Adjust. Opng Flow (pcu/h)	Total Cap. (veh (h)	$\begin{aligned} & \text { Prac. } \\ & \text { Deg. } \\ & \text { Satn } \\ & \text { xp } \end{aligned}$	Prac. Spare Cap. (\%)	Lane Util (\%)	Deg. Satn x
West: West Approach 12 LTR 1388421	2.0	421	2264	0.85	39	100	0.613
South: South Approach 32 LTR 3691399	2.0	1399	580	0.85	34	100	0.636*
East: East Approach 22 LTR 1188398	2.0	398	2287	0.85	64	100	0.519
North: North Approach 42 LTR 4241194	2.0	1194	864	0.85	73	100	0.491

Table s.3-INTERSECTION PARAM ETERS

Degree of saturation (highest)	= 0.636
Practical Spare Capacity (lowest)	= 34%
Total vehicle flow (veh/h)	= 3369
Total vehicle capacity, all lanes (veh/	$=5995$
Average intersection delay (s)	
Largest average movement delay (s)	$=32.4$
Total vehicle delay (veh-h/h)	
Largest back of queue, 95\% (ft)	$=169$
Performance Index	56.50
Total fuel (ga/h)	
Total cost (\$/h)	266.6
Intersection Level of Service	
Worst movement Level of Service	

Total Flow (veh/h)	Total Delay (veh-h/h)	Aver. Delay (sec)	Prop. Queued	$\begin{aligned} & \text { Eff. } \\ & \text { Stop } \\ & \text { Rate } \end{aligned}$	Perf. Index	Aver. Speed (mph)
West: West Approach						
1388	4.20	10.9	0.591	0.77	19.83	16.5
South: South Approach						
369	3.32	32.4	0.912	134	1172	9.1
East: East Approach						
1188	3.29	10.0	0.532	0.70	15.54	16.8
North: North Approach						
424	2.45	20.8	0.856	110	9.40	12.0
Intersection:						
3369	13.26	14.2	0.639	0.85	56.50	14.6

	Arv					Queue	
	Flow	Cap	Deg.	Aver.	Eff.	95\% Back	Short
Lane Mov	(veh	(veh	Satn	Delay	Stop		Lane
No. No.	/h)	/h)	\times	(sec)	Rate	(vehs) (ft)	(tt)

West: West Approach								
1 LT	12	757	1235	0.613	10.6	0.74	5.6	141
2 TR	12	631	1028	0.613	112	0.79	5.6	143

South: South Approach							
1 LT	32	158	249	0.636	34.6	131	5.6
2 TR	32	211	332	0.636	30.7	136	6.7

1LT	22	646	1244	0.519	9.8	0.69	3.8	97
2TR	22	542	1044	0.519	10.1	0.72	3.7	95

North: North Approach							
1LT	42	187	381	0.491	22.3	110	3.7
24							
TR	42	237	483	0.491	19.7	110	4.1

1747461951115		2	0.744	17.6	154
ALL VEHICLES	$\begin{aligned} & \text { Tot } \\ & \text { Arv } \\ & 5233 \end{aligned}$	$\begin{aligned} & \% \\ & \% \\ & \text { HV } \end{aligned}$	$\begin{aligned} & \text { Max } \\ & \mathrm{X} \\ & 0.861 \end{aligned}$	$\begin{aligned} & \text { Aver. } \\ & \text { Delay } \\ & 17.1 \end{aligned}$	Max Queue 264
Total flow period $=60$ minutes. Peak flow period $=15$ minutes. Note: Basic Saturation Flows are not adjusted at roundabouts or signcontrolled intersections and apply only to continuous lanes. Values printed in this table are back of queue.					

$\begin{aligned} & \text { Mov Mov } \\ & \text { No. Typ } \end{aligned}$	$\begin{aligned} & \text { Total } \\ & \text { Flow } \\ & \text { (veh } \\ & \text { (h) } \end{aligned}$	$\begin{aligned} & \text { Total } \\ & \text { Cap. } \\ & \text { (veh } \\ & \text { (h) } \end{aligned}$	$\begin{aligned} & \text { Deg. } \\ & \text { of } \\ & \text { Satn } \\ & \text { (v/c) } \end{aligned}$	Aver. Delay (sec)	LOS
West: West Approach					
12 L	230	334	0.689	15.6	B
11 T	934	1358	0.688	15.4	B
13R	134	195	0.687	15.0	в
	1298	1887	0.689	15.4	B
South: South Approach					
32 L	188	275	0.684	14.9	B
31 T	934	1364	0.685	14.8	в
33 R	134	196	0.684	14.4	B
	1256	1835	0.685	14.8	в
East: East Approach					
22 L	341	396	0.861*	20.3	c
21 T	1015	1180	0.860	20.2	c
23R	208	242	0.860	19.7	B
	1564	1818	0.861	20.2	C
North: North Approach					
42 L	174	234	0.744	19.0	B
41 T	746	1003	0.744	17.7	B
43 R	195	262	0.744	16.1	B
	1115	1499	0.744	17.6	в
ALL VEHICLES:	5233	7039	0.861	17.1	в
INTERSECTION:	5233	7039	0.861	17.1	в
Level of Service calculations are based on average control delay including geometric delay (HCM criteria), independent of the current delay definition used. For the criteria, refer to the "Level of Service" topic in the SIDRA Output Guide or the Output section of the on-line help. * Maximum v/c ratio, or critical green periods					

$\begin{aligned} & \text { Lane } \\ & \text { Control } \\ & \text { No. } \end{aligned}$			Delay (seconds/veh)			Acc. Dec.			Stopd (Idle) Geom							
	$\begin{aligned} & \text { Mov } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Deg. } \\ & \text { Satn } \end{aligned}$	Stop-line Delay				Queuing Total MvUp									
		x	d1		dSL	dn	dq	dqm	di	dig						
West: West Approach																
1 LT	12,	0.688	4.7	2.4	7.1	3.7	3.4	3.3	0.1	9.6	15.6					
	11				7.6											
2 T	11	0.688	5.3	2.5	7.9	3.7	4.2	3.3	0.9							
3 TR	11,	0.688	5.3	2.5	7.9	3.7	4.2	3.3	0.9	7.6						
South: South Approach																
1 LT	32,	0.685	4.4	2.1	6.5	3.5	2.9	2.9	0.0	9.6						
	31				7.6											
2 T	31	0.685	5.0		7.3	3.6	3.7	3.2	0.6	7.6						
3 TR	31,	0.685	5.0	2.3		3.6	3.7	3.2	0.6	7.6	14.4					
	33				6.1											
East: East Approach																
1 LT	22,	0.860	5.3			3.9	7.6	7.6	0.1	9.6	20.3					
	21				7.6											
2 T	21	0.860	6.0		12.8	4.0	8.7	7.5	13	7.6						
3 TR	21,	0.860	6.0		12.8	4.0	8.7	7.5	13	7.6	19.7					
	23				6.1											
North: North Approach																
1 LT	42,	0.744	6.4	4.0		3.9	6.5	4.8	17	9.6	19.0					
	41				7.6											
2 T	41	0.744	6.4	4.0		3.9	6.5	4.8	17	7.6						
3 TR	41,	0.744	5.5	3.7	9.2	3.8	5.4	4.9	0.5	7.6	16.1					
	43				6.1											

APPENDIX | GENERAL RETAIL PLANNING GUIDELINES

New Trends

1. M all Development has slowed to $1-2$ openings per year, vs. $4-5$ openings in the 1980 's,
2. Discount retailers continue to have steep gains in sales and market share, with WalM art now capturing over 20\% of the market in many categories
3. Wal-Mart is now the largest corporation in the world, recently passing Exxon and General Motors. Future growth will be focused on American urban city centers.
4. Dollar stores represent the fasted growing segment and are stores are expected to increase to 75,000 s.f..
5. Developers are being attracted to build un-anchored lifestyle centers, driven by higher end tenants due to strong sales.
6. Full service department stores are concerned about the lack of mall development and competition with discount department stores, resulting in a willingness to consider new formats, smaller sizes, and free standing stores.
7. Many national retail chains are now willing to accept basic principles of the new urbanism, including: 2-evel stores, lower parking standards, and front and back doors.
8. Over 65\% of all retail sales now occur after $5: 30 \mathrm{pm}$ and on Sundays.

Development

1. Retail development is the most risky form of real estate development
2. Real estate is the most difficult method to achieve higher than average financial returns on investment.
3. Most retail center types should open on August 15th of any given year; N ovember 15th in Florida.
4. Retail centers must open with a bang! All tenants fully open a major marketing campaign and strong sales from the start.
5. Centers that have slow rolling openings, with low sales, will take a generation to recover.
6. Centers must maintain their anchor tenants.
7. Centers must be able to accommodate new anchor tenants seeking to locate within the trade area.
8. Weak and tired tenants must be removed.
9. The entire center should have a turnover of approximately 30% every five years.

Site Selection

1. Locate along the most heavily traveled roads possible
2. The home-bound side will yield higher sales than the to-work lands (except for coffee and bagels).
3. Avoid all sites requiring more than one left turn to enter.
4. Purchase both sides of the highway when possible
5. Purchase as much highway frontage as possible.
6. Allow for 50% expansion during the second decade of the center.

Site Planning

1. Allow for change and expansion.
2. Plan for the next 100 years: blocks, parking decks, multi-level parking, etc.
3. Form will follow anchor tenant demands, and anchor tenants will demand frontage along the highway.
4. Maintain an overall shopping length of 1000 or less.
5. Create pedestrian loops of 2000' max.
6. Create a full street, with two-way traffic and parallel parking along both sides.
7. M aintain at least 15 ' min. wide sidewalks.

Building Design

1. Most retailers are demanding 100' min. depth, with as little store frontage as possible.
2. Three level buildings, with 2 levels office over one level retail offer several advantages in tenant mix, shared parking, and urbanism.
17' floor to ceiling heights are now considered standard for most retail tenants,
3. Developers are now leasing "very cold dark shells" to tenants. This is a space that only has 3 walls, a dirt floor and no store front. This allows for a better variety of store design.
4. Many tenants will locate sales space in the basement or on a second level, in a strong market.
5. Department stores are now exploring total glass elevations, with fully open floor plates.
Store fronts located on the first level should be designed to be totally re-built with at least every ten years.
. Store interiors are designed to be totally gutted and re-built every 5 years, 9. First level tenants should have at least 70% clear glass on the first level.
6. Anchor tenants can have as little as 50% clear glass on the first level.

Major Anchors

1. Form follows anchor: it is difficult to have a successful center without significant anchors. Anchorless centers at all sizes tend to fail.
2. An anchor is a tenant or use that attracts large amounts of shoppers to a center on a regular basis.
3. Anchors include: department stores, restaurant groups, supermarkets, libraries, post offices, municipal offices
4. Theatres (cinema and performing), parks and lakes do not make significant contributions to retailers, however they can support restaurants.
5. At least 30% of the total gross leasable area should be an anchor.
6. M ost anchor retailers will accept liner retail to be constructed along one of its side elevations. Allowing for a proper retail street frontage.
7. Many anchor retailers are willing to accept as little as 50% of visibility from the highway.
8. Most anchors including Target and Wal-M art will consider 2 -level stores in the right market conditions.
9. M ajor anchors include: Sears, Penney's, Wal-M art, Target, M acy, N ordstrom's,

Junior Anchors

1. Junior anchors are relative new retail categories that can replace a full size department store.
2. Popular jr. anchors include: Crate \& Barrel, Borders, Barnes \& Noble, Eddie Bauer,
3. LL. Bean has recently been purchased by Sears and is expected to roll out 50,000 s.f. stores across the country.
4. Junior anchors are more attractive to developers because: they pay closer to market
rate rents than full service department stores, and a store closing will not be as significant as losing a department store
Tenant Mix
5. Centers need a focus in tenant type, market segment and categories. It is difficult to be all things to all shoppers.
6. The best tenants are now seeking to locate along the town square, rather than along the end-cap. These tenants will give up all highway exposure when the town square and urbanism are planned to a high standard.
7. Restaurants and Jr. Anchor tenants work best at the ends of the center.
8. An ideal tenant mix for urban centers is $1 / 3$ local independents, $1 / 3$ regional chains and $1 / 3$ national chains.
9. It's difficult for new shopping centers to have more than 5% independent retailers that are non-credit.
10. M ost center types need to have a focus of income price point and tenant type

Parking

. Parking is one of the most important elements of a successful center
2. On-street parking is essential for on-street retail. Except for major urban centers, with densities of over 100,000 per square mile, do not attempt to build street retai without the street, or on-street parking.
3. On-street parking should be metered or managed for 1-2 hour parking max.
4. People tend to park in the same aisle, for their entire life.
5. On overall gross ratio of 4 cars/ 1000 is now acceptable for most centers.
6. Major department store and grocery anchor need and will demand 5 cars/ 1000 s.f or greater.
7. Parking ratios can be as low as $3 / 1000$ with a 40% office- 60% retail ratio.
8. Decked parking can be constructed for office in mixed-use developments for approx imately $\$ 2.00 /$ s.f. additional debt service.
9. Parking must be located in the front of all major anchor stores
10. M ost centers require surface parking; however office and residential can use decked parking.
11 Residential parking must be set-aside for $24 / 7$ assigned spaces, when located in mixed-use town centers.

Management

1. Centers should be clean and well maintained
2. Tenants should be required to maintain minimum hours of operation.
3. All tenants should be required to update interior finishes every three years, and a total interior renovation at least every eight years.
4. Update all streetscape materials and fixtures at least every ten years.
5. Attempt to attract new anchors and tenants to your location as a defensive measure 6. Rents typically represent $8-10 \%$ of gross sales.
6. Top national chains are presently paying $\$ 28$ - $\$ 35$ s.f. for Lifestyle centers; Restaurants are paying up to $\$ 40$.- $\$ 50$ s.f.; Jr. Anchors $\$ 18$. $\$ 25$. s.f..;
. Independent retailers typically pay $\$ 1-\$ 18$ in Lifestyle centers.
. Top depar sore
ing lot a $\$ 1,00,000$. plus contribution towards the building costs.
. Regional mall tenant rents typically range from $\$ 40$. s.f.- $\$ 75$. s.f., plus $\$ 20-\$ 25 /$ s.f. Common Area M anagement fees (CAM).

Site Visits

One of the most effective methods of exploring town center development options is to visit actual built projects. The best built town centers fall into those opened between 1915-1930 and those built after 1985. Please find below a summary of GPG's recom mended site visits.

* Highly Recommended Visits by GPG

Top Pre-War Town Centers
Country Club Plaza, Kansas City, KN*
Highland Park, Dallas, TX
Hyde Park, Tampa, FL
Lake Forest, Illinois*
Palmer Square, Princeton, NJ *
Palm Beach, Florida*

Top Recent Town Centers

Addison Center, Dallas*
Berkdale Center, Charlotte
Celebration, Orlando
City Place, W. Palm Beach* Easton Town Center, Columbus* The Glen Glenview (Chicago) The Glen, Glenview (Chicago) Legacy, Dallas
Mashpee Commons, Cape Cod* Mizner Park, Miami
Phillips Place, Charlotte*
Redmond Town Center, Seattle*

Reston Town Center, Reston, VA Riverside, Atlanta
Rosemary Beach Destin FL*
Rosemary Beach, Destin, FL
Seaside, Destin, FL* Seaside, Destin, $\mathrm{FL}{ }^{*}$
Village of Rochester Hills, Detroit* Washingtonian, Gaithersburg, MD*

GPG's Favorite Historic Towns for Shopping
Alexandria, Virginia*
Beverly Hills, California (Rodeo Drive)
Birmingham, Michigan
Chicago, (Michigan Avenue - State Street) Portland, O regon (downtown \& NW 23rd) Charleston, SC*
Chatham, Cape Cod
Georgetown, Washington DC*
Harvard Square, Cambridge, Mass. Street M arket)
Lincoln Road, Miami Beach, Florida*

Gold Street, Albuquerque

Street near Pioneer Square, Seattle

APPENDIX | PRINCIPLES OF THE NEW URBANISM

The Region, Metropolis, City, and Town

1 Metropolitan regions are finite places with geographic boundaries derived from topography, watersheds, coastlines, farmlands, regional parks, and river basins. The metropolis is made of multiple centers that are cities, towns, and villages, each with its own identifiable center and edges.
2. The metropolitan region is a fundamental economic unit of the contemporary world Governmental cooperation, public policy, physical planning, and economic strategies must reflect this new reality.
3. The metropolis has a necessary and fragile relationship to its agrarian hinterland and natural landscapes. The relationship is environmental, economic, and cultural Farmland and nature are as important to the metropolis as the garden is to the house
4. Development patterns should not blur or eradicate the edges of the metropolis. Infil development within existing urban areas conserves environmental resources, econom ic investment, and social fabric, while reclaiming marginal and abandoned areas Metropolitan regions should develop strategies to encourage such infill development over peripheral expansion.
5. Where appropriate, new development contiguous to urban boundaries should be organized as neighborhoods and districts, and be integrated with the existing urban pattern. N on-contiguous development should be organized as towns and villages with their own urban edges, and planned for a jobs/housing balance, not as bedroom sub urbs
6. The development and redevelopment of towns and cities should respect historical patterns, precedents, and boundaries.
7. Cities and towns should bring into proximity a broad spectrum of public and private uses to support a regional economy that benefits people of all incomes. Affordable housing should be distributed throughout the region to match job opportunities and to avoid concentrations of poverty.
8. The physical organization of the region should be supported by a framework of transportation alternatives. Transit, pedestrian, and bicycle systems should maximize access and mobility throughout the region while reducing dependence upon the automobile.
9. Revenues and resources can be shared more cooperatively among the municipali ties and centers within regions to avoid destructive competition for tax base and to pro mote rational coordination of transportation, recreation, public services, housing, and community institutions.

The Neighborhood, the District and the Corridor

10. The neighborhood, the district, and the corridor are the essential elements of development and redevelopment in the metropolis. They form identifiable areas that encourage citizens to take responsibility for their maintenance and evolution.
11. Neighborhoods should be compact, pedestrian-friendly, and mixed-use. Districts generally emphasize a special single use, and should follow the principles of neighborhood design when possible. Corridors are regional connectors of neighborhoods and districts; they range from boulevards and rail lines to rivers and parkways.
12. Many activities of daily living should occur within walking distance, allowing independence to those who do not drive, especially the elderly and the young. interconnected networks of streets should be designed to encourage walking, reduce the number and length of automobile trips, and conserve energy
13. Within neighborhoods, a broad range of housing types and price levels can bring people of diverse ages, races, and incomes into daily interaction, strengthening the personal and civic bonds essential to an authentic community.
14. Transit corridors, when properly planned and coordinated, can help organize metropolitan structure and revitalize urban centers. In contrast, highway corridors should not displace investment from existing centers
15. Appropriate building densities and land uses should be within walking distance of transit stops, permitting public transit to become a viable alternative to the automobile.
16. Concentrations of civic, institutional, and commercial activity should be embedded in neighborhoods and districts, not isolated in remote, single-use complexes. Schools should be sized and located to enable children to walk or bicycle to them.
17. The economic health and harmonious evolution of neighborhoods, districts, and corridors can be improved through graphic urban design codes that serve as pre dictable guides for change
18. A range of parks, from tot-lots and village greens to ball fields and community gardens, should be distributed within neighborhoods, Conservation areas and open lands should be used to define and connect different neighborhoods and districts.

The Block, the Street and the Building

19. A primary task of all urban architecture and landscape design is the physical definition of streets and public spaces as places of shared use.
20. Individual architectural projects should be seamlessly linked to their surroundings. This issue transcends style
21. The revitalization of urban places depends on safety and security. The design of streets and buildings should reinforce safe environments, but not at the expense of accessibility and openness.
22. In the contemporary metropolis, development must adequately accommodate automobiles. It should do so in ways that respect the pedestrian and the form of pub ic space.
23. Streets and squares should be safe, comfortable, and interesting to the pedestrian Properly configured, they encourage walking and enable neighbors to know each other and protect their communities.
24. Architecture and landscape design should grow from local climate, topography, history, and building practice.
25. Civic buildings and public gathering places require important sites to reinforce community identity and the culture of democracy. They deserve distinctive form because their role is different from that of other buildings and places that constitute the fabric of the city.
26. All buildings should provide their inhabitants with a clear sense of location, weath er and time. Natural methods of heating and cooling can be more resource-efficient than mechanical systems.
27. Preservation and renewal of historic buildings, districts, and landscapes affirm the continuity and evolution of urban society.
