APPENDIX | PEDESTRIAN ENVIRONMENT ANALYSIS

Walkability Audit - Summary

Prior to the design workshop, Walk Albuquerque and Alliance for Active Living organized a volunteer group to travel and evaluate the pedestrian world in the Central-Highland-Upper Nob Hill area. Three routes on Central, from Carlisle to San Mateo, were evaluated on two different Saturdays. This was a small sampling, with 6-7 people in each group, including area residents, business owners and members of the associations running the volunteer event. Participants familiar with this area noted that Saturday activity varies from weekday activity.

This type of analysis helped inform the design team as to the current state of affairs for the pedestrian, which is directly linked with the success of businesses in the area. A comment by one participant summed up the existing condition of the area for both folks on foot and for businesses in the area:

"I didn't think about the businesses at all. You just paid attention to the cars." (and the ground in front of your feet.)

Tally sheets with various criteria were given to participants. Results were tallied and the following general issues arose:

- · Traffic: noise, fumes, speed, no buffer between sidewalk and cars in many places.
- Driver behavior: failure to yield to pedestrians, especially when turning.

• Sidewalks: broken sidewalks, rough surfaces, frequent driveways with steep side slopes, utility poles and other obstacles blocking the way. Very steep curb ramps that send walkers out into the traffic flow, uneven joints. Sidewalks too narrow to walk two abreast and pass anyone. No buffer between sidewalks and traffic lanes in many places.

 $\cdot\,$ Street Crossings: timing on pedestrian crossing signals too short, intersections too wide, no really useful median refuges, parked cars block views at some intersections.

 Safety (real or perceived): barred windows, vacant lots, vast parking lots, vacant stores, locked front doors facing Central with signs to go around the back or side, no loitering signs, few other pedestrians out - of those we saw, some were perceived of as "scary".

• Buildings and land use: Many buildings are designed for cars, with large parking lots facing Central along the sidewalk, multiple driveways crossing sidewalks, entrances oriented to parking lots, rather than sidewalks. The block west of the Highland theater was the worst in total lack of pedestrian accommodations.

- Many vacant parcels and vacant buildings

- Vast no man's land south of the theater, and around Highland High School

- Very little residential within the MRA boundaries

- Highland Theater is a definite positive, as well as a few other isolated and short segments, where businesses with interesting facades were close to the sidewalk and onstreet parking provided a buffer for pedestrians.

 $\cdot\,$ Aesthetics and amenities: dirt, litter, graffiti, few trees, benches, trash receptacles, etc.

 $\cdot\,$ Central has an active bus route, but bus stops generally lacked amenities. Few benches (standard issue grey recycled plastic) or trash receptacles, no shade or shelter.

 $\cdot\,$ We weren't considering bicycles with this audit, but we noted several bicycles competing with pedestrians for space on narrow sidewalks, and no bike parking facilities.

Your Name (please print):	JHT V	Your Name (please print):
How Walkable is the Nob Hill /	Highland Area?	SEGMENT #3: Walk east along the north side of Central, from Monroe to San Mateo
Directions: Use this survey form to record your opinions and Hiland area. Please follow your specified route <i>exactly</i> as sh to record images of things that you like or don't like. Be sur the map. Also feel free to use the map to mark problem local	observations as you walk through the Nob Hill/ wen on the map. If you have a camera, use it to record the location of each photograph on ions or record any other useful notes.	Overall, how pleasant was your walk over this segment of the route? (please check only one) Extremely Extremely Unpleasant If you were alone, how safe would you feel walking here during the day? (please check only one)
ROUTE #2: Your starting location is the ne Day & date: Start time: End time: U/1/04 Start time: 10:45	Weather Coll & Copper	□ Extremely unsafe □ Very unsafe 1□ Somewhat unsafe ()/1□ Somewhat ()□ Very □ Extremely ()/2000-00101010100 safe safe safe
Segment #1: Cross to the south side of Copper	, staying on the east side of Monroe	What sorts of things did you like walking along this segment? (check all that apply) People met or passed along the way
How difficult or easy was it to cross the street at this I	ocation? (please check only one) onewhat rasy / ① Very easy ① Extremely easy	Priordy dogs/ cats Possibility (1990; 1
How safe did you feel crossing the street at this locati	on? (please check only one)	What sorts of things did you NOT like? (check all that apply)
Extremely Very Commutat Unate Unsate	omewhat safe // D Very safe D Extremely safe	∬ □ Dirty sciewark 10/11 □ Not enough these or other vegetation 1□ Graffic in the sciencific 0/11 □ Not enough shelter from sun, rain, wind, etc. □ Graffic in the sciencific 0/11 □ No place to sit (e.g., benches, etc.)
Curb ramp(s) not available Curb ramp(s) not in line with sidewalk Curb ramp(s) lead into active auto travel lane Curb ramp(s) too steep Curb ramp(s) too steep	Inc protection crossing signal Long wait at traffic signal Long wait at traffic signal Pedestrian push button is difficult to find/ hard to reach Pedestrian push button on traffic signal does not work Curbed median refuge is not available Parted cars tolock view of traffic Other obstructions block view of traffic Other obstructions block view of traffic Other obstructions block view of traffic Other:	Starty dogs Closed Million Traffic to close to adseads Buildings in poor condition Million Traffic moves too test Did you encounter any obstacles or obstructions? If so, please indicate the types of obstacles or obstructions you encountered (check all that apply): Other Current of the started of

Sample score cards used by walkability volunteers

Moule & Polyzoides Architects and Urbanists June, 2004

38

APPENDIX | TRAFFIC ANALYSIS

Traffic Considerations:

The focus of the Street and sidewalk designs are to slow traffic down while increasing capacity of traffic volume on Central Ave.. The safety and aesthetics of the pedestrian environment [and also the economic environment] should be as important as the considerations given to vehicles in the area, if not more so. Some parameters of the design:

1. Pedestrian crossing times must be kept to a minimum. Crossing times of 19 seconds or less are preferred. This represents a street with four 12 foot wide lanes.

2. Vehicle speeds must be kept to 20 miles per hour or less generally, and around 30 miles per hour on primary thoroughfares.

3. Pedestrians should be protected from the elements as much as practical.

- 4. Streets should be defined by buildings at their edges.
- 5. The street must accommodate bicyclists and the handicapped.
- 6. Transit must be a part of thoroughfare planning.

7. Parking standards must be reduced to reflect historically supported demand for traditional urbanism.

8. Central is the main artery for the project and needs special attention.

The design of Central Avenue is informed by several elements listed as follows; 1. A LRT or BRT system may be introduced into the corridor. This would require a 26 foot wide path in the center of the street. To allow for this potential, a 26 foot wide median is proposed as one of the cross section scenarios.

2. The intersection of Central and San Mateo is operating at LOS F with more than 4,000 vehicles at PM peak hour times. This study proposes that a 2 lane roundabout be built in the intersection. This will provide better access for non-motorists, boost the LOS to B, reduce accidents and will allow some civic art in the center punctuation this area of the neighborhood. See traffic model output in later pages this appendix.

3. The other signalized intersections along Central operate in the low to mid 30,000 ADT range. For the above stated reasons, each intersection could have a single lane roundabout with 2 approach lanes and one exit lane. The LOS would be B and they would upgrade existing signal performance characteristics. Samples of possible design for two intersections are illustrated as follows;

It should be noted that the 26 foot wide median is shown at Washington, but not San Mateo. An 18 foot increase to the median width can be achieved and work well with a 2 lane roundabout.

Slower traffic speeds are critical for safety in this corridor. A combination of on-street parking, narrower street designs, bulb-outs, street trees, and roundabouts are proposed to keep traffic at posted speeds throughout the area. The following table shows in graphic detail the repercussions of pedestrian/automobile collisions as they relate to automobile speed:

Selected Sample of Injuries by the Abbreviated Injury Scale (AIS) AIS Code Injury Severity Level and Selected Injuries

1 (14 mph) Minor Superficial abrasion or laceration of skin; digit sprain; first-degree burn; head trauma with headache or dizziness (no other neurological signs).

2 (20 mph) Moderate Major abrasion or laceration of skin; cerebral concussion (unconscious less than 15 minutes); finger or toe crush/amputation; closed pelvic fracture with or without dislocation.

3 (25 mph) Serious Major nerve laceration; multiple rib fracture (but without flail chest); abdominal organ contusion; hand, foot, or arm crush/amputation.

4 (29 mph) Severe Spleen rupture; leg crush; chest-wall perforation; cerebral concussion with other neurological signs (unconscious less than 24 hours).

5 (33 mph) Critical Spinal cord injury (with cord transection); extensive secondor third-degree burns; cerebral concussion with severe neurological signs (unconscious more than 24 hours).

6 (36 mph) Fatal Injuries which although not fatal within the first 30 days after an accident, ultimately result in death .

WTP Values Per AIS Injury Level (2001 dollars) AIS Code Description of Injury Fraction of WTP Value of Life WTP Value AIS 1 Minor 0.20 Percent \$6,000

	0.20 FEICEIIL	\$0,000
AIS 2 Moderate	1.55 Percent	\$46,500
AIS 3 Serious	5.75 Percent	\$172,500
AIS 4 Severe	18.75 Percent	\$562,500
AIS 5 Critical	76.25 Percent	\$2,287,500
AIS 6 Fatal	100.00 Percent	\$3,000,000

As can be seen, the costs increase exponentially with speed. Tax dollars are spent every year to treat uninsured accident victims and the fiscal costs are sometimes excessive.

Narrow lanes, transit mixed in traffic, wide sidewalks

Balancing people and cars in an environment

APPENDIX | TRAFFIC ENGINEERING SIDRA ROUNDABOUT OUTPUT

CENTRAL AND WASHINGTON

Degree of saturation (highest)	= 0.636
Practical Spare Capacity (lowest)	= 34 %
Total vehicle flow (veh/h)	= 3369
Total vehicle capacity, all lanes (veh/h)	= 5995
Average intersection delay (s)	= 14.2
Largest average movement delay (s)	= 32.4
Total vehicle delay (veh-h/h)	= 13.26
Largest back of queue, 95% (ft)	= 169
Performance Index	= 56.50
Intersection Level of Service	= B
Worst movement Level of Service	= C

SAN MATEO AND CENTRAL

Degree of saturation (highest)	= 0.861
Practical Spare Capacity (lowest)	= -1 %
Total vehicle flow (veh/h)	= 5233
Total vehicle capacity, all lanes (veh/h)	= 7039
Average intersection delay (s)	= 17.1
Largest average movement delay (s)	= 20.3
Total vehicle delay (veh-h/h)	= 24.91
Largest back of queue, 95% (ft)	= 264
Performance Index	= 108.27
Intersection Level of Service	= B
Worst movement Level of Service	= C

Akcelik & Associates Pty Ltd - SIDRA 5.30	
Swift and Associates	
Longmont Registered User No. LKWHEF	
Time and Date of Analysis 3:49 PM, Feb 27,2004	
Central Na Washington, ABQ	* CENWASPM
PM Peak Hour	
Intersection ID: 1	
SIDRA US Highway Capacity Manual Version	Roundabout
0,1,1,1	

RUN INFORMATION

* Basic Parameters: Intersection Type: Roundabout Driving on the right-hand side of the road SIDRA US Highway Capacity Manual Version Input data specified in US units Default Values File No. 11 Peak flow period (for performance): 15 minutes Unit time (for volumes): 60 minutes (Total Flow Period) Delay definition: Control delay Geometric delay included Delay formula: Highway Capacity Manual Level of Service based on: Delay (HCM) Queue definition: Back of queue, 95th_Percentile

Mo No	-	Lef	t	Thro	ough	Righ		Flow Scale	Peak Flow
110	•	LV	ΗV		ΗV	LV	ΗV	Scale	Factor
West: V	Vest Approa	ch							
	12	91	2	1227	24	42	1	1.00	0.90
South:	South Appro	oach							
	32	33	1	266	5	63	1	1.00	0.90
East: Ea	ast Approac	h							
	22	82	2	1056	22	25	i 1	1.00	0.90
North:	North Appr	oach							
	42	52	1	279	6	84	2	1.00	0.90

Based on unit time = 60 minutes.

Flow Scale and Peak Hour Factor effects included in flow values.

Cont	Circ	Insc	No of	No of	Av Ent		ating/E			
Islanc Diam	d Wid	th Diam.	Circ.	Entry	Lane	Flow (veh/	%HV	Adjust. Flow (pcu/h)	%Exit Incl.	Constr
		t Approad 104		2	16.00	421	2.0	421	0	N
		ith Appro 104		2	16.00	1399	2.0	1399	0	N
		Approach 104		2	16.00	98	2.0	398	0	N
North 64		rth Appro 104		2	16.00	1194	2.0	1194	0	N

Central Na Washington, ABQ PM Peak Hour Intersection ID: 1 Roundabout

	Lane No.	Lane Type	Circ/ Exit Flow (pcu/h)	Intra- Bunch Headway (s)	Prop. Bunched Vehicles	Critical Gap (s)	Follow Up Headway (s)
Nest:	West	t Approach					
_eft	1		421	2.00N	0.443	3.17	2.04
Thru	1	Dominant	421	2.00N	0.443	3.17	2.04
	2	Subdominant	421	2.00N	0.443	3.69	2.38
Right	2	Subdominant	421	2.00N	0.443	3.69	2.38
South	: Sou	ith Approach					
eft	1	Subdominant	1399	2.00N	0.857	2.94	2.25
Thru	1	Subdominant	1399	2.00N	0.857	2.94	2.25
	2	Dominant	1399	2.00N	0.857	2.41	1.85
Right	2	Dominant	1399	2.00N	0.857	2.41	1.85
ast:	East	Approach					
eft	1	11	398	2.00N	0.424	3.21	2.06
Гhru	1	Dominant	398	2.00N	0.424	3.21	2.06
	2	Subdominant	398	2.00N	0.424	3.72	2.39
Right	2	Subdominant	398	2.00N	0.424	3.72	2.39
North	: Nor	rth Approach					
_eft	1	Subdominant	1194	2.00N	0.810	3.00	2.30
Thru	1	Subdominant	1194	2.00N	0.810	3.00	2.30
	2	Dominant	1194	2.00N	0.810	2.52	1.93
Right	2	Dominant	1194	2.00N	0.810	2.52	1.93

Turn	Lane No.	Lane Type	Circ/ Exit Flow (pcu/h)	Intra- Bunch Headway (s)	Prop. Bunched Vehicles	Critical Gap (s)	Follow Up Headway (s)
West:	West	Approach					
Left	1	Dominant	421	2.00N	0.443	3.17	2.04
Thru	1	Dominant	421	2.00N	0.443	3.17	2.04
	2	Subdominant	421	2.00N	0.443	3.69	2.38
Right	2	Subdominant	421	2.00N	0.443	3.69	2.38
South	n: Sout	h Approach					
Left	1	Subdominant	1399	2.00N	0.857	2.94	2.25
Thru	1	Subdominant	1399	2.00N	0.857	2.94	2.25
	2	Dominant	1399	2.00N	0.857	2.41	1.85
Right	2	Dominant	1399	2.00N	0.857	2.41	1.85
Fast.	Fast Δ						
Left	1	Dominant	398	2.00N	0.424	3.21	2.06
Thru	1	Dominant	398	2.00N	0.424	3.21	2.06
	2		398	2.00N	0.424	3.72	2.39
Right	2	Subdominant	398	2.00N	0.424	3.72	2.39
North	n: Nort	h Approach					
Left	1	Subdominant	1194	2.00N	0.810	3.00	2.30
Thru	1	Subdominant	1194	2.00N	0.810	3.00	2.30
	2	Dominant	1194	2.00N	0.810	2.52	1.93
Right	2	Dominant	1194	2.00N	0.810	2.52	1.93

as a result.

* CENWASPM

Table R.1 - ROUNDABOUT GAP ACCEPTANCE PARAMETERS

N The number of circulating lanes specified in front of this approach ("No. of circ. lanes" in Roundabout Data screen) is less than the number of lanes effectively used when the entry flows that constitute the circulating flow are considered. Intra-bunch headway for the circulating stream has been set to a higher value

Mov Arv	SIDRA	HCM Lower	HCM Upper
No. Flow	(veh Satn Delay LOS	Cap. Deg. Av. 6 (veh Satn Delay LOS /h) x (sec)	Cap. Deg. Av. (veh Satn Delay LOS
West: West Appro	bach		
12 LTR 1388		1617 0.858 19.4 B	
	2264 0.613 10.9 B	1617 0.858 19.4 B	1988 0.698 13.4 B
South: South App			
32 LTR 369	580 0.636 32.4 C	NA	
	580 0.636 32.4 C		NA
East: East Approa	ach		
22 LTR 1188	2287 0.519 10.0 A	1650 0.720 14.4 B	2025 0.587 11.5 B
	2287 0.519 10.0 A	1650 0.720 14.4 B 2	025 0.587 11.5 B
North: North App	broach		
42 LTR 424	864 0.491 20.8 C	808 0.525 32.6 C	
		808 0.525 32.6 C	
ALL VEHICLES:	5995 0.636 14.2 B	NA	NA

NA Values for this roundabout capacity model have not been calculated because the model was not applicable for the given roundabout conditions. Note that the HCM models are only applicable to single-lane roundabouts with circulating flows less than 1200 veh/h. Also note that results are not calculated for any of the models for slip lane or continuous movements. See SIDRA Output Guide Appendix Section A3.8 for roundabout limits.

Mov No.	Flow	Opng		1 0	Сар.	Prac. Deg. Satn		Lane Util	5
	•				•	хр		(%)	Х
West: W	/est Ap	proach							
				421		0.85	39	100	0.613
South: S									
32 LTR	369	1399	2.0	1399	580	0.85	34	100	0.636*
East: Ea	st App	roach							
22 LTR	1188	398	2.0	398	2287	0.85	64	100	0.519
North: N	North /	Approacl	 า						
	424	1194	2.0	1194	864	0.85	73	100	0.491

Table S.3 - INTERSECTION PARAMETERS Degree of saturation (highest) = 0.636

Practical Spare Capacity (lowest)	=	34 %
Total vehicle flow (veh/h)	=	3369
Total vehicle capacity, all lanes (veh/h)	=	5995
Average intersection delay (s)	=	14.2
Largest average movement delay (s)	=	32.4
Total vehicle delay (veh-h/h)	=	13.26
Largest back of queue, 95% (ft)	=	169
Performance Index	=	56.50
Total fuel (ga/h)	=	29.7
Total cost (\$/h)	=	266.67
Intersection Level of Service	=	В
Worst movement Level of Service	=	С

Mov	Total		Prop.		Longest 95% Bac		Perf.	
No.	Delay (veh-h/h)		Queued	Stop Rate	(vehs)		Index	Speed (mph)
West: W	est Approa	ch						
12 LTR	4.20	10.9	0.59	0.77	5.6	143	19.83	16.5
South: S	outh Appro	bach						
32 LTR	3.32	32.4	0.91	1.34	6.7	169	11.72	9.1
East: Eas	st Approach	 า						
22 LTR	3.29	10.0	0.53	0.70	3.8	97	15.54	16.8

Mov No.	Total					Queue k	Perf. Index	
INU.	(veh-h/h)	, ,	Queued	Stop Rate	(vehs)		muex	Speed (mph)
West: W	est Approa	ch						
12 LTR	4.20	10.9	0.59	0.77	5.6	143	19.83	16.5
South: S	outh Appro	bach						
32 LTR	3.32	32.4	0.91	1.34	6.7	169	11.72	9.1
East: Eas	st Approach	 າ						
22 LTR	3.29	10.0	0.53	0.70	3.8	97	15.54	16.8
North: N	Jorth Appro	bach						
42 LTR	2.45	20.8	0.85	1.10	4.1	104	9.40	12.0

Table S	6 - INTERSE					
	Total Delay	Aver.	Prop.	Eff.	Perf.	Aver.
(veh/h)	(veh-h/h)	(sec)		Rate		(mph)
	West Approa					
1388	4.20	10.9	0.591	0.77	19.83	16.5
South:	South Appro	bach				
	3.32					
East: E	ast Approacl	า				
	3.29					
North:	North Appro	bach				
424	2.45				9.40	
	ECTION:					
3369	13.26	14.2	0.639	0.85	56.50	14.6

Table S	5.7 - LANE F
Lane	Mov
No.	No.
	West Appro
1 LT	12
2 TR	
	South App
1 LT	
2 TR	32
	act Approx
1LT	East Approa
2 TR	
North:	North App
1 LT	42
2 TR	42

MANCE					
				Queue	
Сар	Deg.	Aver.	Eff.	95% Back	Short
(veh	Satn	Delay	Stop		Lane
/h)	Х	(sec)	Rate	(vehs) (ft)	(ft)
1235	0.613	10.6	0.74	5.6 141	
249	0.636	34.6	1.31	5.6 143	
332	0.636	30.7	1.36	6.7 169	
1244	0.519	9.8	0.69	3.8 97	
1044	0.519	10.1	0.72	3.7 95	
381	0.491	22.3	1.10	3.7 94	
483	0.491	19.7	1.10	4.1 104	
	Cap (veh /h) 1235 1028 249 332 1244 1044 381	Cap (veh /h) Deg. Satn x 1235 0.613 1028 0.613 249 0.636 332 0.636 1244 0.519 1044 0.519 381 0.491	Cap (veh Deg. Satn Aver. Delay (sec) 1235 0.613 10.6 1028 0.613 11.2 249 0.636 34.6 332 0.619 9.8 1044 0.519 9.8 1044 0.519 10.1 381 0.491 22.3	Cap (veh /h) Deg. Satn x Aver. Delay (sec) Eff. Stop Rate 1235 0.613 10.6 0.74 1028 0.613 11.2 0.79 249 0.636 34.6 1.31 332 0.636 30.7 1.36 1244 0.519 9.8 0.69 1044 0.519 10.1 0.72 381 0.491 22.3 1.10	Cap (veh /h)Deg. Satn xAver. Delay (sec)Eff. Stop Rate95% Back (vehs) (ft)1235 10280.613 0.61310.6 11.20.74 0.795.6 5.6141 143249 3320.636 0.63634.6 30.71.31 1.365.6 6.7 1691244 10440.519 0.5199.8 10.10.69 0.723.8 3.7 953810.491 22.31.10 1.103.7 3.794

								Flow				
Lan Mo	ov /	Arv Flow	(veh/h)	Lane	Adj.		Aver	Aver	Сар	Сар	Deg.	Lane
No. No	D			Width	Basi	С	1st	2nd	(veh	(veh	Satn	Util
			ı Rig Tot									
	/est Approac											
1 LT 12		93 664	0 757	16.0N			-		60	1235	0.613	100
			43 631								0.613	100
	South Appro											
1 LT 32		34 124	0 158	16.0N	-	-	-		60	249	0.636	100
			64 211								0.636	
	st Approach											
1 LT 22	2 8	84 562	0 646	16.0N			-		60	1244	0.519	100
			26 542								0.519	100
	North Appro											
1 LT 42	2 5	53 134	0 187	16.0N			-		60	381	0.491	100
2 TR 42	2 (0 151 8	86 237	16.0N			-		60	483	0.491	100

N Width value was not used for saturation flow adjustment in this case. (Lane width adjustment does not apply at sign-controlled intersections or to gap-acceptance capacities at signalised intersections). Basic Saturation Flow in this table is adjusted for lane width, approach grade, parking manoeuvres and number of buses stopping. Saturation flow scale applies if specified.

Lane Arrival Flow (veh/h) No % L T R Tot			Sat Delay		Shrt Lane (ft)
West: West Approach					
LT 230 248 0 478	2	0.68	8 15.6	140	
2 T 0 410 0 410	2	0.68	8 15.5	131	
TR 0 276 134 410	2	0.68	8 15.0	131	
230 934 134 1298	2	0.68	8 15.4	140	
South: South Approach					
LT 188 278 0 466	2	0.68	5 14.9	126	
2 T 0 395 0 395	2	0.68	5 15.0	118	
TR 0 261 134 395	2	0.68	5 14.4	118	
188 934 134 1256	2	0.68	5 14.8	126	
East: East Approach					
LT 341 240 0 581	2	0.86	0 20.3	264	
2 T 0 491 0 491	2	0.86			
TR 0 283 208 491	2	0.86	0 19.7	243	
341 1015 208 1564	2	0.86	0 20.2	264	
North: North Approach					
LT 174 172 0 346	2	0.74	4 19.0	140	
2 T 0 346 0 346	2	0.74	4 18.0	140	
TR 0 227 195 422	2	0.74	4 16.1	154	

Client: City of Albuquerque Planning Department Albuquerque, New Mexico

174 746 19	5 1115	2	0.744	17.6	154
ALL VEHICLES	Tot	%	Max	Aver.	Max
	Arv.	HV	X	Delay	Queue
	5233	2	0.861	17.1	264

Total flow period = 60 minutes. Peak flow period = 15 minutes.

Note: Basic Saturation Flows are not adjusted at roundabouts or signcontrolled intersections and apply only to continuous lanes. Values printed in this table are back of queue.

		(HCM STYLE)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					```			
n n (v/c) (sec) West: West Approach12 L2303340.68915.6B11 T93413580.68815.4B13 R1341950.68715.0BIzes 1882750.68414.9B31 T93413640.68514.8B33 R1341960.68414.4BIzes 18850.68514.8B33 R1341960.68514.8BIzes 18350.68514.8BIzes 18350.68514.8BIzes 18350.68514.8BIzes 18350.68514.8BIzes 18350.68514.8BIzes 18350.68514.8BIzes 18350.68514.8BIzes 18350.68514.8BIzes 18350.68619.7BIse 19300.86120.2CNorth: North Approach42 L1742340.74419.0BI11514990.74417.7BI11514990.74417.6BALL VEHICLES:523370390.86117.1B			Flow	Сар.	of		LOS	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				•		(sec)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	West:	West Approa	ach					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12 L		230	334	0.689	15.6	В	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11 T		934	1358	0.688	15.4	В	
South: South Approach $32 L$ 188 275 0.684 14.9 B $31 T$ 934 1364 0.685 14.8 B $33 R$ 134 196 0.684 14.4 BL256 1835 0.685 14.8 BEast: East Approach $22 L$ 341 396 0.861^* 20.3 C $21 T$ 1015 1180 0.860 20.2 C $23 R$ 208 242 0.860 19.7 BIs64 1818 0.861 20.2 CNorth: North Approach $42 L$ 174 234 0.744 19.0 B $41 T$ 746 1003 0.744 17.7 B $43 R$ 195 262 0.744 17.6 BALL VEHICLES: 5233 7039 0.861 17.1 B	13 R		134	195	0.687	15.0	В	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1298	1887	0.689	15.4	В	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	South:	South Appr	oach					
33 R 134 196 0.684 14.4 B 1256 1835 0.685 14.8 B East: East Approach 22 L 341 396 0.861* 20.3 C 21 T 1015 1180 0.860 20.2 C 23 R 208 242 0.860 19.7 B Is64 1818 0.861 20.2 C North: North Approach 42 L 174 234 0.744 19.0 B 41 T 746 1003 0.744 17.7 B 43 R 195 262 0.744 16.1 B ALL VEHICLES: 5233 7039 0.861 17.1 B	32 L		188	275	0.684	14.9	В	
1256 1835 0.685 14.8 B East: East Approach 396 0.861* 20.3 C 21 T 1015 1180 0.860 20.2 C 23 R 208 242 0.860 19.7 B I564 1818 0.861 20.2 C North: North Approach 42 L 174 234 0.744 19.0 B 41 T 746 1003 0.744 17.7 B 43 R 195 262 0.744 16.1 B I115 1499 0.744 17.6 B ALL VEHICLES: 5233 7039 0.861 17.1 B	31 T		934	1364	0.685	14.8	В	
East: East Approach 22 L 341 396 0.861* 20.3 C 21 T 1015 1180 0.860 20.2 C 23 R 208 242 0.860 19.7 B I564 1818 0.861 20.2 C North: North Approach 42 L 174 234 0.744 19.0 B 41 T 746 1003 0.744 17.7 B 43 R 195 262 0.744 16.1 B I115 1499 0.744 17.6 B ALL VEHICLES: 5233 7039 0.861 17.1 B	33 R		134	196	0.684	14.4	В	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1256	1835	0.685	14.8	В	
21 T 1015 1180 0.860 20.2 C 23 R 208 242 0.860 19.7 B 1564 1818 0.861 20.2 C North: North Approach 42 L 174 234 0.744 19.0 B 41 T 746 1003 0.744 17.7 B 43 R 195 262 0.744 16.1 B 1115 1499 0.744 17.6 B ALL VEHICLES: 5233 7039 0.861 17.1 B	East: E	East Approad	ch					
23 R 208 242 0.860 19.7 B 1564 1818 0.861 20.2 C North: North Approach 42 L 174 234 0.744 19.0 B 41 T 746 1003 0.744 17.7 B 43 R 195 262 0.744 16.1 B 1115 1499 0.744 17.6 B ALL VEHICLES: 5233 7039 0.861 17.1 B	22 L		341	396	0.861*	20.3	С	
1564 1818 0.861 20.2 C North: North Approach 42 L 174 234 0.744 19.0 B 41 T 746 1003 0.744 17.7 B 43 R 195 262 0.744 16.1 B 1115 1499 0.744 17.6 B ALL VEHICLES: 5233 7039 0.861 17.1 B	21 T		1015	1180	0.860	20.2	С	
North: North Approach 42 L 174 234 0.744 19.0 B 41 T 746 1003 0.744 17.7 B 43 R 195 262 0.744 16.1 B 1115 1499 0.744 17.6 B ALL VEHICLES: 5233 7039 0.861 17.1 B	23 R		208	242	0.860	19.7	В	
42 L 174 234 0.744 19.0 B 41 T 746 1003 0.744 17.7 B 43 R 195 262 0.744 16.1 B 1115 1499 0.744 17.6 B ALL VEHICLES: 5233 7039 0.861 17.1 B			1564	1818	0.861	20.2	С	
41 T 746 1003 0.744 17.7 B 43 R 195 262 0.744 16.1 B 1115 1499 0.744 17.6 B ALL VEHICLES: 5233 7039 0.861 17.1 B	North:	North Appr	oach					
43 R 195 262 0.744 16.1 B 1115 1499 0.744 17.6 B ALL VEHICLES: 5233 7039 0.861 17.1 B	42 L		174	234	0.744	19.0	В	
1115 1499 0.744 17.6 B ALL VEHICLES: 5233 7039 0.861 17.1 B	41 T		746	1003	0.744	17.7	В	
ALL VEHICLES: 5233 7039 0.861 17.1 B	43 R		195	262	0.744	16.1	В	
			1115	1499	0.744	17.6	В	
INTERSECTION: 5233 7039 0.861 17.1 B	ALL V	EHICLES:	5233	7039	0.861	17.1	В	
	INTER	RSECTION:	5233	7039	0.861	17.1	В	

Level of Service calculations are based on

average control delay including geometric delay (HCM criteria),

independent of the current delay definition used.

For the criteria, refer to the "Level of Service" topic in

the SIDRA Output Guide or the Output section of the on-line help.

* Maximum v/c ratio, or critical green periods

		Deg.	Stop-lii	ne Delay	1	Acc.	Queuir	ng	Stopd		
Lane Control	Mov	Satn	1st	2nd	Total	Dec.	Total N	lvUp	(Idle) C	Geom	
		Х					dq	dqm	di	dig	dic
West: \	Nest App										
	11	0.688			7.6	3.7		3.3		9.6	15.6
2 T 3 TR		0.688 0.688		2.5 2.5			4.2 4.2	3.3 3.3	0.9 0.9		
South		nroach									
1 LT		0.685	4.4		6.5 7.6	3.5	2.9	2.9	0.0	9.6	14.
		0.685				3.6		3.2			
3 TR	31, 33	0.685	5.0	2.3	7.3 6.1	3.6	3.7	3.2	0.6	7.6	14.4
East: E	ast Appro	ach									
	21	0.860	5.3		11.6 7.6	3.9	7.6	7.6	0.1	9.6	20.
2 T		0.860									
3 IR	21, 23	0.860	6.0	6.8	12.8 6.1	4.0	8.7	7.5	1.3	7.6	19.
North:	North Ap	proach									
1 LT	42, 41	0.744	6.4	4.0	10.4 7.6	3.9	6.5	4.8	1.7	9.6	19.
2 T		0.744									
3 TR	41, 43	0.744	5.5		9.2 6.1	3.8	5.4	4.9	0.5	7.6	16.

_		Ovr	fl. /	Averaç	ge		Perce	ntile		
Queu	-	0	10							
No.	х	No	Nb1	Nb2	Nb	70%	85%	90%	6 9 5%	98%
	t: West									
						3.2				
						3.0				
3 TR	0.688	0.5	1.0	0.7	1.7	3.0	3.7	4.2	5.2	6.0
Sout	h: Sou	th Ap	proad	:h						
1 LT	0.685	0.4	1.0	0.6	1.6	2.9	3.5	4.0	4.9	5.8
2 T	0.685	0.4	0.9	0.6	1.5	2.7	3.3	3.7	4.6	5.4
3 TR	0.685	0.4	0.9	0.6	1.5	2.7	3.3	3.7	4.6	5.4
East	: East /	Appro	bach							
1 LT	0.860	1.4	1.4	2.2	3.5	5.8	7.2	8.3	10.4	12.2
						5.4				
						5.4				
	h: Nor									
					1.8	3.2	3.9	4.4	5.5	6.4
						3.2			5.5	
3 TR	0.744	0.6	1.0	1.0	2.0	3.5	4.3	4.9	6.1	7.1

Table D.1 - LANE DELAYS

PM Peak Hour, City Data Intersection ID: 1 Roundabout Table D.4 - MOVEMENT SPEEDS (mph) Queue Move-up App. Speeds Exit Speeds ------Mov ------ 1st 2nd ---- Av. Section Spd No. Cruise Negn Negn Cruise Grn Grn Running Overall
 West:
 West Approach

 12
 28.0
 14.0
 14.0
 28.0
 11.1

 11
 28.0
 14.0
 14.0
 28.0
 10.8
 14.7 14.6 14.7 14.4 13 28.0 14.0 14.0 28.0 10.6 14.8 14.3 South: South Approach
 32
 28.0
 14.0
 28.0
 10.9

 31
 28.0
 14.0
 14.0
 28.0
 10.5

 33
 28.0
 14.0
 14.0
 28.0
 10.4
 14.9 14.9 14.9 14.7 14.9 14.6 East: East Approach
 22
 28.0
 14.0
 14.0
 28.0
 10.9

 21
 28.0
 14.0
 14.0
 28.0
 10.5
 12.9 12.9 10.5 12.8 12.5 23 28.0 14.0 14.0 28.0 10.4 12.7 12.2 North: North Approach 42 28.0 14.0 14.0 28.0 10.0 14.0 13.3 41 28.0 14.0 14.0 28.0 10.2 13.9 13.4 13.9 13.7

Central and San Mateo, ABQ

"Running Speed" is the average speed excluding stopped peri-

43 28.0 14.0 14.0 28.0 10.6

CENSANPM

APPENDIX | GENERAL RETAIL PLANNING GUIDELINES

New Trends

- 1. Mall Development has slowed to 1-2 openings per year, vs. 4-5 openings in the 1980's.
- 2. Discount retailers continue to have steep gains in sales and market share, with Wal-Mart now capturing over 20% of the market in many categories.
- 3. Wal-Mart is now the largest corporation in the world, recently passing Exxon and General Motors. Future growth will be focused on American urban city centers.
- 4. Dollar stores represent the fasted growing segment and are stores are expected to increase to 75,000 s.f.
- 5. Developers are being attracted to build un-anchored lifestyle centers, driven by higher end tenants due to strong sales.
- 6. Full service department stores are concerned about the lack of mall development and competition with discount department stores, resulting in a willingness to consider new formats, smaller sizes, and free standing stores.
- 7. Many national retail chains are now willing to accept basic principles of the new urbanism, including: 2-level stores, lower parking standards, and front and back doors.
- 8. Over 65% of all retail sales now occur after 5:30 pm and on Sundays.

Development

- 1. Retail development is the most risky form of real estate development.
- 2. Real estate is the most difficult method to achieve higher than average financial returns on investment.
- 3. Most retail center types should open on August 15th of any given year; November 15th in Florida.
- 4. Retail centers must open with a bang! All tenants fully open a major marketing campaign and strong sales from the start.
- 5. Centers that have slow rolling openings, with low sales, will take a generation to recover.
- 6. Centers must maintain their anchor tenants.
- 7. Centers must be able to accommodate new anchor tenants seeking to locate within the trade area.
- 8. Weak and tired tenants must be removed.
- 9. The entire center should have a turnover of approximately 30% every five years.

Site Selection

- 1. Locate along the most heavily traveled roads possible.
- 2. The home-bound side will yield higher sales than the to-work lands (except for coffee and bagels).
- 3. Avoid all sites requiring more than one left turn to enter.
- 4. Purchase both sides of the highway when possible.
- 5. Purchase as much highway frontage as possible.
- 6. Allow for 50% expansion during the second decade of the center.

Site Planning

- 1. Allow for change and expansion.
- 2. Plan for the next 100 years: blocks, parking decks, multi-level parking, etc.
- 3. Form will follow anchor tenant demands, and anchor tenants will demand frontage along the highway.

- 4. Maintain an overall shopping length of 1000' or less.
- 5. Create pedestrian loops of 2000' max.
- 6. Create a full street, with two-way traffic and parallel parking along both sides.
- 7. Maintain at least 15' min. wide sidewalks.

Building Design

- 1. Most retailers are demanding 100' min. depth, with as little store frontage as possible.
- 2. Three level buildings, with 2 levels office over one level retail offer several advantages in tenant mix, shared parking, and urbanism.
- 3. 17' floor to ceiling heights are now considered standard for most retail tenants.
- 4. Developers are now leasing "very cold dark shells" to tenants. This is a space that only has 3 walls, a dirt floor and no store front. This allows for a better variety of store design.
- 5. Many tenants will locate sales space in the basement or on a second level, in a strong market.
- 6. Department stores are now exploring total glass elevations, with fully open floor plates.
- 7. Store fronts located on the first level should be designed to be totally re-built with at least every ten years.
- 8. Store interiors are designed to be totally gutted and re-built every 5 years.
- 9. First level tenants should have at least 70% clear glass on the first level.
- 10. Anchor tenants can have as little as 50% clear glass on the first level.

Major Anchors

- 1. Form follows anchor: it is difficult to have a successful center without significant anchors. Anchorless centers at all sizes tend to fail.
- 2. An anchor is a tenant or use that attracts large amounts of shoppers to a center on a regular basis.
- 3. Anchors include: department stores, restaurant groups, supermarkets, libraries, post offices, municipal offices.
- 4. Theatres (cinema and performing), parks and lakes do not make significant contributions to retailers, however they can support restaurants.
- 5. At least 30% of the total gross leasable area should be an anchor.
- 6. Most anchor retailers will accept liner retail to be constructed along one of its side elevations. Allowing for a proper retail street frontage.
- 7. Many anchor retailers are willing to accept as little as 50% of visibility from the highway.
- 8. Most anchors including Target and Wal-Mart will consider 2-level stores in the right market conditions.
- 9. Major anchors include: Sears, Penney's, Wal-Mart, Target, Macy, Nordstrom's,

Junior Anchors

- 1. Junior anchors are relative new retail categories that can replace a full size department store.
- 2. Popular jr. anchors include: Crate & Barrel, Borders, Barnes & Noble, Eddie Bauer, REI,
- 3. LL. Bean has recently been purchased by Sears and is expected to roll out 50,000 s.f. stores across the country.
- 4. Junior anchors are more attractive to developers because: they pay closer to market

- Tenant Mix

- and 1/3 national chains.
- that are non-credit.

Parking

- or greater.

- - parking.

Management

rate rents than full service department stores, and a store closing will not be as significant as losing a department store.

1. Centers need a focus in tenant type, market segment and categories. It is difficult to be all things to all shoppers.

2. The best tenants are now seeking to locate along the town square, rather than along the end-cap. These tenants will give up all highway exposure when the town square and urbanism are planned to a high standard.

3. Restaurants and Jr. Anchor tenants work best at the ends of the center.

4. An ideal tenant mix for urban centers is 1/3 local independents, 1/3 regional chains

5. It's difficult for new shopping centers to have more than 5% independent retailers

6. Most center types need to have a focus of income price point and tenant type.

1. Parking is one of the most important elements of a successful center.

2. On-street parking is essential for on-street retail. Except for major urban centers, with densities of over 100,000 per square mile, do not attempt to build street retail without the street, or on-street parking.

3. On-street parking should be metered or managed for 1-2 hour parking max.

4. People tend to park in the same aisle, for their entire life.

5. On overall gross ratio of 4 cars/1000 is now acceptable for most centers.

6. Major department store and grocery anchor need and will demand 5 cars/1000 s.f.

7. Parking ratios can be as low as 3/1000 with a 40% office-60% retail ratio.

8. Decked parking can be constructed for office in mixed-use developments for approximately \$2.00/s.f. additional debt service.

9. Parking must be located in the front of all major anchor stores.

10. Most centers require surface parking; however office and residential can use decked

11. Residential parking must be set-aside for 24/7 assigned spaces, when located in mixed-use town centers.

1. Centers should be clean and well maintained.

2. Tenants should be required to maintain minimum hours of operation.

3. All tenants should be required to update interior finishes every three years, and a total interior renovation at least every eight years.

4. Update all streetscape materials and fixtures at least every ten years.

5. Attempt to attract new anchors and tenants to your location as a defensive measure. 6. Rents typically represent 8-10% of gross sales.

7. Top national chains are presently paying \$28-\$35 s.f. for Lifestyle centers; Restaurants are paying up to \$40.-\$50 s.f.; Jr. Anchors \$18.-\$25. s.f..;

8. Independent retailers typically pay \$15-\$18 in Lifestyle centers.

9. Top department store anchors typically demand free land for both building and parking lot and a \$1,000,000. plus contribution towards the building costs.

10. Regional mall tenant rents typically range from \$40. s.f.-\$75. s.f., plus \$20-\$25/s.f. Common Area Management fees (CAM).

Site Visits

One of the most effective methods of exploring town center development options is to visit actual built projects. The best built town centers fall into those opened between 1915-1930 and those built after 1985. Please find below a summary of GPG's recommended site visits.

* Highly Recommended Visits by GPG

Top Pre-War Town Centers

Country Club Plaza, Kansas City, KN* Highland Park, Dallas, TX Hyde Park, Tampa, FL Lake Forest, Illinois* Palmer Square, Princeton, NJ * Palm Beach, Florida*

Top Recent Town Centers

Addison Center, Dallas* Berkdale Center, Charlotte* Celebration, Orlando City Place, W. Palm Beach* Easton Town Center, Columbus* The Glen, Glenview (Chicago) Kentlands, Gaithersburg, FL* Legacy, Dallas Mashpee Commons, Cape Cod* Mizner Park, Miami Phillips Place, Charlotte* Redmond Town Center, Seattle*

Reston Town Center, Reston, VA Riverside, Atlanta Rosemary Beach, Destin, FL* Santana Row, San Jose* Seaside, Destin, FL* South Lake, Dallas* Village of Rochester Hills, Detroit* Washingtonian, Gaithersburg, MD*

GPG's Favorite Historic Towns for Shopping

Alexandria, Virginia*	Nantucket, Cape Cod
Beverly Hills, California (Rodeo Drive)	Newberry Street, Boston*
Birmingham, Michigan	Palm Beach, Florida*
Chicago, (Michigan Avenue - State Street) Portland, Oregon (downtown & NW 23rd)	
Charleston, SC*	Santa Fe, New Mexico
Chatham, Cape Cod	Santa Monica, California, (Third Street)*
Georgetown, Washington DC*	Shaker Heights, Ohio
Harvard Square, Cambridge, Mass.*	Seattle, Washington (Downtown and Pike
Street Market)	
Lincoln Road, Miami Beach, Florida*	

Gold Street, Albuquerque

Street near Pioneer Square, Seattle

Moule & Polyzoides Architects and Urbanists June, 2004

APPENDIX | PRINCIPLES OF THE NEW URBANISM

The Region, Metropolis, City, and Town

1. Metropolitan regions are finite places with geographic boundaries derived from topography, watersheds, coastlines, farmlands, regional parks, and river basins. The metropolis is made of multiple centers that are cities, towns, and villages, each with its own identifiable center and edges.

2. The metropolitan region is a fundamental economic unit of the contemporary world. Governmental cooperation, public policy, physical planning, and economic strategies must reflect this new reality.

3. The metropolis has a necessary and fragile relationship to its agrarian hinterland and natural landscapes. The relationship is environmental, economic, and cultural. Farmland and nature are as important to the metropolis as the garden is to the house.

4. Development patterns should not blur or eradicate the edges of the metropolis. Infill development within existing urban areas conserves environmental resources, economic investment, and social fabric, while reclaiming marginal and abandoned areas. Metropolitan regions should develop strategies to encourage such infill development over peripheral expansion.

5. Where appropriate, new development contiguous to urban boundaries should be organized as neighborhoods and districts, and be integrated with the existing urban pattern. Non-contiguous development should be organized as towns and villages with their own urban edges, and planned for a jobs/housing balance, not as bedroom suburbs.

6. The development and redevelopment of towns and cities should respect historical patterns, precedents, and boundaries.

7. Cities and towns should bring into proximity a broad spectrum of public and private uses to support a regional economy that benefits people of all incomes. Affordable housing should be distributed throughout the region to match job opportunities and to avoid concentrations of poverty.

8. The physical organization of the region should be supported by a framework of transportation alternatives. Transit, pedestrian, and bicycle systems should maximize access and mobility throughout the region while reducing dependence upon the automobile.

9. Revenues and resources can be shared more cooperatively among the municipalities and centers within regions to avoid destructive competition for tax base and to promote rational coordination of transportation, recreation, public services, housing, and community institutions.

The Neighborhood, the District and the Corridor

10. The neighborhood, the district, and the corridor are the essential elements of development and redevelopment in the metropolis. They form identifiable areas that encourage citizens to take responsibility for their maintenance and evolution.

11. Neighborhoods should be compact, pedestrian-friendly, and mixed-use. Districts generally emphasize a special single use, and should follow the principles of neighborhood design when possible. Corridors are regional connectors of neighborhoods and districts; they range from boulevards and rail lines to rivers and parkways.

12. Many activities of daily living should occur within walking distance, allowing independence to those who do not drive, especially the elderly and the young. Interconnected networks of streets should be designed to encourage walking, reduce the number and length of automobile trips, and conserve energy.

13. Within neighborhoods, a broad range of housing types and price levels can bring people of diverse ages, races, and incomes into daily interaction, strengthening the personal and civic bonds essential to an authentic community.

14. Transit corridors, when properly planned and coordinated, can help organize metropolitan structure and revitalize urban centers. In contrast, highway corridors should not displace investment from existing centers.

15. Appropriate building densities and land uses should be within walking distance of transit stops, permitting public transit to become a viable alternative to the automobile.

16. Concentrations of civic, institutional, and commercial activity should be embedded in neighborhoods and districts, not isolated in remote, single-use complexes. Schools should be sized and located to enable children to walk or bicycle to them.

17. The economic health and harmonious evolution of neighborhoods, districts, and corridors can be improved through graphic urban design codes that serve as predictable guides for change.

18. A range of parks, from tot-lots and village greens to ball fields and community gardens, should be distributed within neighborhoods. Conservation areas and open lands should be used to define and connect different neighborhoods and districts.

The Block, the Street and the Building

20. Individual architectural projects should be seamlessly linked to their surroundings. This issue transcends style.

21. The revitalization of urban places depends on safety and security. The design of streets and buildings should reinforce safe environments, but not at the expense of accessibility and openness.

lic space.

23. Streets and squares should be safe, comfortable, and interesting to the pedestrian. Properly configured, they encourage walking and enable neighbors to know each other and protect their communities.

24. Architecture and landscape design should grow from local climate, topography, history, and building practice.

25. Civic buildings and public gathering places require important sites to reinforce community identity and the culture of democracy. They deserve distinctive form, because their role is different from that of other buildings and places that constitute the fabric of the city.

26. All buildings should provide their inhabitants with a clear sense of location, weather and time. Natural methods of heating and cooling can be more resource-efficient than mechanical systems.

27. Preservation and renewal of historic buildings, districts, and landscapes affirm the continuity and evolution of urban society.

19. A primary task of all urban architecture and landscape design is the physical definition of streets and public spaces as places of shared use.

22. In the contemporary metropolis, development must adequately accommodate automobiles. It should do so in ways that respect the pedestrian and the form of pubEND

Client: City of Albuquerque Planning Department Albuquerque, New Mexico Moule & Polyzoides Architects and Urbanists June, 2004