CHAPTER 6

SATELLITE SURVEILLANCE OF TROPICAL AND SUBTROPICAL CYCLONES

6.1. Satellites.

6.1.1. Geostationary Operational Environmental Satellite (GOES). Using modern 3axis stabilization for orbit control, GOES-12 at 75°W and GOES-10 at 135°W support the operational two-GOES constellation. Independent imager and sounder instruments eliminate the need to time share, yielding an increase in spatial coverage of image and sounder data at more frequent scanning intervals. The GOES also provides higher resolution and additional spectral channels than its predecessor, affording the hydrometeorological community improvements in detection, monitoring, and analysis of developing tropical cyclones. From 135°W and 75°W, routine GOES satellite data coverage is extensive, stretching from the central Pacific through the Americas to the eastern Atlantic, including the vital breeding grounds for tropical cyclones.

Routinely, each GOES schedule provides two views of the CONUS (GOES-10 view is termed PACUS) every 15 minutes. More frequent interval scans can be employed to support NOAA's warning programs, including the tracking of tropical and subtropical cyclones. Government agencies and the private sector have access to digital data transmissions directly from NOAAPORT or directly from GOES.

The current series of GOES satellites provide satellite data generated from full resolution, and imager and sounder data. Imagery at 1, 4, and 8 km resolution is available for daytime and nighttime applications. The increased resolution of the satellite imagery is a vast improvement from previous satellites. Visible data are available at 1 km, "shortwave" infrared (channel 2 data) as well as the infrared channels 4 and 5 are available at 4 km resolution, and water vapor (channel 3) is available at 8 km resolution on GOES-10 and 4 km resolution on GOES-12. Channel 2 data are valuable for the detection of low clouds, fog, stratus, and surface hot spots; channel 5 data, available on GOES-10, in combination with data from channels 2 and/or 4 are useful for detecting volcanic ash in the atmosphere. On GOES-12, channel 6 is a 13.3 µm band that detects the presence of CO₂ Channel 6 improves the measurement of the height of clouds and volcanic ash, thus improving computer model forecasts and ash warnings to the aviation community. The digital data may be enhanced to emphasize different features as desired. A suite of digital data and products is available to users in the National Weather Service (NWS), the National Environmental Satellite, Data, and Information Service (NESDIS), other Federal agencies, the academic community, and many private agencies, both national and international. These data are made available through NOAAPORT, RAMSDIS, the Internet, and other means such as local networks.

6.1.1.1. GOES-12. GOES-12, launched July 23, 2001, supports the GOES-East station at 75°W and serves NOAA operations, to include the TPC/NHC, other Federal agencies, and the private sector. Various imager channels at higher resolutions are being utilized to monitor the intensification and movement of tropical cyclones over the Atlantic Ocean and a

portion of the East Pacific. In particular, greater detail in the imagery facilitates tropical cyclone monitoring and analysis, and the use of the GOES imager channel 2 has vastly improved the detection of low-level circulation centers at night to assist in storm positioning. Retrievals from the GOES sounder are now being incorporated into NCEP's numerical models to improve model output. In addition, sounder data are being exploited to generate derived product imagery such as total precipitable water, atmospheric stability indices, surface temperatures and cloud heights.

During the 1996 hurricane season, NESDIS instituted a specialized GOES-East sounder schedule consisting of four sectors covering distinct areas of the Atlantic Ocean. Of the four sounder sectors, the CONUS sector is scanned every hour and covers the northern Gulf of Mexico and the east coast of the United States. During routine scanning operations, of the other 3 sounder sectors (the Gulf of Mexico, North Atlantic, and the East Caribbean) the Gulf of Mexico sector is designated as the "primary OCONUS" (off CONUS) sector and is scanned 4 times in a 6 hour period, while the other two sectors are only scanned once in every 6 hour period. Event driven, this "primary OCONUS" sounder sector can be changed by the TPC/NHC. The "primary" OCONUS sector provides frequent scans over the area of interest to generate experimental sounder winds (identifies steering currents) and provide moisture and temperature retrievals. Sounder winds are made available to TPC/NHC as a forecasting tool by the Cooperative Institute for Meteorological Satellite Studies (CIMSS), University of Wisconsin.

6.1.1.2. GOES-10. GOES-10 was launched on April 24, 1997, and supports the GOES-West station at 135°W. The routine scanning mode of GOES-10 provides coverage of the Northern and Southern Hemisphere eastern Pacific Ocean as well as the western United States. The GOES-West satellite also supports the missions of both the TPC/NHC and the CPHC, and provides coverage of developing tropical cyclones over the East and Central Pacific. The DOD and other Federal agencies are also supported.

6.1.1.3. GOES-11. GOES-11 was launched on May 3, 2000. GOES-11 carries the same imager and instrumentation capabilities as GOES-10. GOES-11 is stored on orbit at 105°W until required to replace either of the older operational satellites.

6.1.1.4. GOES-N. *GOES-N, scheduled to launch on May 3, 2006, is the first of a new generation of GOES. Once GOES-N reaches geostationary orbit, it will be renamed to GOES-13 and will be placed in on-orbit storage. GOES-13 was built on a reconfigured bus, allowing better navigation and calibration. GOES-13 will also eliminate the need for eclipse scheduling, as it will allow mission critical instruments to remain powered during the eclipse of the satellite.*

(NOTE: For GOES imager/sounding schedules go to http://www.ssd.noaa.gov/PS/SATS/)

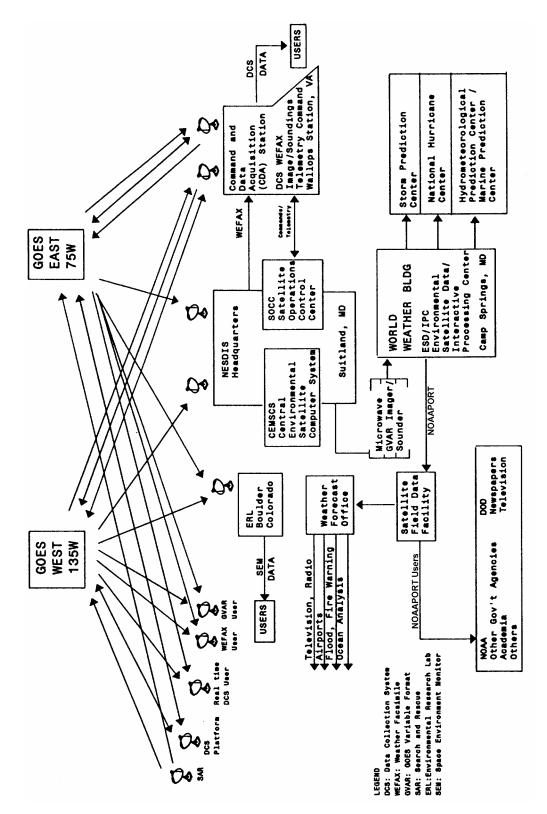


Figure 6-1. The GOES satellite system

6.1.2. EUMETSAT Meteosat Geostationary Satellites. Meteosat-8, launched Aug 28, 2002, will replace Meteosat-7 *on June 14, 2006*, and will provide vital coverage of developing tropical waves off the African Coast and eastern Atlantic Ocean. Conventionally, the full disk IR, visible (VIS), and water vapor imagery have a 3 km resolution whereas a specialized VIS sector provides a maximum 1 km resolution. This visible sector has a limited scan, and will shift from the West Indian Ocean to the East Atlantic Ocean from 14:00 UTC to 01:00 UTC every day during hurricane season. This shift will ensure interests monitoring for tropical activity in the North Indian Ocean (Meteo-France) as well as the East Atlantic (TPC) will be satisfied. The digital data are transmitted to NESDIS and NCEP at the NOAA Science Center (NSC) in Camp Springs, MD, every 15 minutes. They are also available to the TPC and the Storm Prediction Center (SPC) through central processing at the NSC. Meteosat WEFAX data are also available and distributed via the GOES WEFAX system and through NOAAPORT as part of a northern hemisphere composite image.

In December 1995, EUMETSAT, the program administrator, began encrypting digital Meteosat data 24 hours per day to regulate use within Europe. Based on international data policy agreements, U.S. non-government users are allowed access via a domestic satellite to non-encrypted Meteosat data 8 times per day at synoptic times; at other times, the data are encrypted. Hence, if half-hourly transmissions are required to support operational requirements, it is necessary for users to register with EUMETSAT to acquire decryption devices for installation at their local site (NOAA/DOD and other U.S. government agencies are registered).

6.1.3. MTSAT-1R. The Multifunctional Transport Satellite-1 Replacement (MTSAT-1R) was launched for the Japanese Meteorological Agency (JMA) on February 26, 2005. MTSAT-1R is located at 140° East, covering the West Pacific Ocean, East Asia, and the East Indian Ocean. MTSAT-1R is similar to GOES as it carries a 5-channel imager (one visible channel at 1 km plus four IR channels at 5 km, to include a new low-light IR channel). MTSAT-1R provides imagery for the Northern Hemisphere every 30 minutes, and JMA makes the data available to 27 countries and territories in the region. Data from MTSAT-1R is available to CONUS users via the DOMestic SATellite (DOMSAT) or from the NOAA Science Center and available to Pacific OCONUS users directly via downlinks in Hawaii and Guam.

6.1.4. National Oceanic and Atmospheric Administration (NOAA) Polar-Orbiting Satellites. Two primary operational NOAA polar orbiting satellites, *NOAA-17 and NOAA-18*, provide image coverage four times a day over a respective area in 6 spectral channels (however only 5 channels can be supported at one time; channel switching is used to support the 6th channel). These satellites cross the U.S. twice per day at 12-hour intervals for each geographical area near the Equatorial crossing times listed in Table 6-1. NOAA-17 and NOAA-18 provide the same capabilities as previous NOAA satellites, *except that the Advanced Microwave Sounding Unit – B (AMSU-B) sensor flown aboard NOAA-17 and previous polar orbiters has been replaced by the Microwave Humidity Sounder (MHS) on NOAA-18. Data are available via direct readout--high resolution picture transmission (HRPT) or automatic picture transmission (APT)— or central processing. Data from the Advanced Very High Resolution Radiometer (AVHRR) are available on a limited basis through the GOES distribution system (Figure 6-1). The Air Force Weather Agency (AFWA), Offutt AFB, NE, receives global NOAA imagery data direct from*

central readout sites on a pass-by-pass basis. The Command and Data Acquisition (CDA) stations at Fairbanks, AK, and Wallops, VA, acquire recorded global area coverage data subsampled to a 4 km spatial resolution, and then route the data to NESDIS computer facilities in Suitland, MD, where the data are processed and distributed to the NOAA, the DOD, and private communities. Ground equipment installed at various NWS regions including Kansas City, Miami (TPC), and Monterey enable direct readout and data processing of 1.1 km resolution AVHRR data from NOAA-17 and NOAA-18. The high resolution polar data and products generated at TPC complement other satellite data sources to support tropical mission objectives.

6.2. National Weather Service (NWS) Support.

6.2.1. Station Contacts. The GOES imagery is available in support of the surveillance of tropical and subtropical cyclones at specific NWS offices. Satellite meteorologists can be contacted at these offices; telephone numbers are in Appendix I.

6.2.2. Products. In addition to the satellite-related products listed in paragraphs 3.6.1, 3.6.2, and 3.6.3, there are two additional satellite products issued by the centers and their alternates.

6.2.2.1. Satellite Tropical Weather Discussions. TPC/NHC issues these discussions four times a day. They describe significant features from the latest surface analysis and significant weather areas for the Gulf of Mexico, the Caribbean, and between the equator and 32°N in both the Atlantic and eastern Pacific east of 140°W.

6.2.2. Satellite Interpretation Messages. CPHC issues these messages four times a day to describe synoptic features and significant weather areas in the vicinity of the Hawaiian Islands. FAA contractions are used. *WFO Guam issues these messages two times a day to describe synoptic features and significant weather over the Micronesian waters*.

6.3. NESDIS Satellite Analysis Branch (SAB). The SAB operates 24 hours a day to provide satellite support to the HPC/OPC, TPC, CPHC, JTWC, and other worldwide users. *In addition to providing high quality imagery from geostationary and polar-orbiting satellites and coordinating the execution of GOES Rapid Scan Operations (RSO) requests, SAB provides pertinent information on global tropical cyclone development, including location and intensity analysis based on the Dvorak technique.* For numerical model input and forecasting applications, data from high density cloud motion wind vectors, high density water vapor wind vectors, four layers of derived precipitable water from sounder moisture retrievals, and tropical rainfall estimates are provided to HPC and TPC. *In addition, estimates of cumulative rainfall expected over coastal areas derived using the Tropical Rainfall Potential (TRaP) methodology are provided for tropical storms within 24 hours of landfall and posted to a web site in support of CPHC, HPC, TPC, forecast offices in U.S. territories, and international customers.* Telephone numbers for the SAB are located in Appendix H.

6.4. <u>Air Force Support and the Defense Meteorological Satellite Program (DMSP)</u>. Data covering the National Hurricane Operations Plan areas of interest are received centrally at the Air Force Weather Agency (AFWA) and locally at several direct readout sites. The USAF uses all available meteorological satellite data when providing fix and intensity information to NWS hurricane forecasters. The DOD will provide DMSP coverage of tropical and subtropical cyclones whenever possible.

6.4.1. North Atlantic and Eastern Pacific Surveillance. AFWA readouts will augment NESDIS surveillance for the North Atlantic and Eastern Pacific. AFWA will, resources permitting, transmit four daily electronic text bulletins, describing the location and intensity classification of the system, using format shown in Figure 6-2 to the TPC/NHC on organized disturbances evident at the tropical classification of one point five (T-1.5) or higher. AFWA will, resources permitting, provide gale wind radius analysis utilizing SSM/I data for all systems with maximum intensities greater than 50 kt.

6.4.2. Central Pacific Surveillance. AFWA will maintain the capability to provide surveillance support cited in paragraph 6.4.1 to the CPHC. The 17 OWS/WXJ (JTWC Satellite Operations) will provide fix and intensity information to the CPHC on systems upon request.

WMO HEADING	TIME ISSUED	OCEANIC AREA TYPE OF	F DATA
ATHW40 PHFO	0030, 0530, 1230, 1830 UTC	Vicinity of the N Hawaiian Islands	/IS/IR
ATPQ40 PGUM	0300, 1500 UTC	Over Micronesia, West North Pacific Equator to 25EN from 130EE to 180	/IS/IR
AXNT20 KNHC	0000, 0600, 1200, 1800 UTC	Atlantic Ocean V South of 32EN to Equator Caribbean, Gulf of Mexico	/IS/IR
AXPZ20 KNHC	0135, 0735 1335, 1935 UTC	Eastern Pacific V South of 32EN to the Equator east of 140E W	/IS/IR

Table 6-1. Communications headings for satellite tropical weather discussion summaries

A CYCLONE DESIGNATOR	A.	Designator of tropical cyclone category including name/number. When a cloud system has not yet been designated by name/number enter TROPICAL DISTURBANCE. Sample entry: TROPICAL STORM AMY (15)				
B DATE/TIME (Z) OF FIX	B.	Date and nodal of	crossing time in Zulu; r	round time to n	earest minute. Sample entry:	252303Z.
C LATITUDE OF POSITION	C.	Latitude to neare	est tenth of degree (N o	or S), followed	by checksum. Sample entry:	29.9N/0
D LONGITUDE OF POSITION	D.	Longitude to ne	earest tenth of degree for	ollowed by che	cksum. Sample entry: 56.7 V	W/8
E VIS/IR POSITION CODE NUMBER SSM/I CONFIDENCE NUMBER	E.	Position Code N GEOGRAPHIC ONE: eye THREE: we cir cer FIVE: poo cir cer		MI Confidence	(DMSP, NOAA, etc.). Spell Number and PCN number fr <u>RIS GRIDDING</u> eye fix well defined circulation center poorly defined circulation center	
F	F.	Dvorak classi				
DVORAK CLASSIFICATION		data. If a new Include in par	fication will be made a v Dvorak classification	minimum of tr number cannot nodal time of th	ed in NOAA Technical Repo wice each day based on infran t be derived, use the last repo le data on which the Dvorak a	red and/or visual rted number.
G	G.	data. If a new Include in par Sample entry Include infor	fication will be made a v Dvorak classification rentheses the date and r r: T 4.5/4.5/D1.0/25HR rmation, as appropriate	n minimum of t number cannot nodal time of th RS (252305Z)	wice each day based on infra t be derived, use the last repo	red and/or visual rted number. analysis is based. ubands, unexpected
G REMARKS H	G. H.	data. If a new Include in par Sample entry Include infor changes in st	fication will be made a v Dvorak classification rentheses the date and r r T 4.5/4.5/D1.0/25HR rmation, as appropriate orm movement, depart	minimum of tr number cannot todal time of th RS (252305Z) , on data type, ures from Dvor	wice each day based on infrai the derived, use the last repo e data on which the Dvorak a eye characteristics, spiral rair rak (modeled) intensities, etc.	red and/or visual rted number. analysis is based.
G REMARKS H NADIR REFERENCE DISTANCE I		data. If a new Include in par Sample entry Include infor changes in st Include cross Sample Entry Experimenta speed algorit	fication will be made a v Dvorak classification rentheses the date and r :: T 4.5/4.5/D1.0/25HR rmation, as appropriate orm movement, depart strack distance in degree y: Center WAS 5.4 DE	n minimum of tr number cannoi toodal time of th RS (252305Z) , on data type, ures from Dvon ees latitude betr GG EAST OF N us boundary ut	wice each day based on infrai the derived, use the last repo- le data on which the Dvorak a eye characteristics, spiral rair rak (modeled) intensities, etc. ween fix center and satellite r IADIR ilizing image mapped SSM/I	red and/or visual rted number. analysis is based.
G REMARKS H NADIR REFERENCE DISTANCE	H.	data. If a new Include in par Sample entry Include infor changes in st Include cross Sample Entry Experimenta speed algorit	fication will be made a v Dvorak classification rentheses the date and r : T 4.5/4.5/D1.0/25HR rmation, as appropriate orm movement, depart strack distance in degre y: Center WAS 5.4 DE ul gale wind (34kt) radi hm estimates.	n minimum of tr number cannoi toodal time of th RS (252305Z) , on data type, ures from Dvon ees latitude betr GG EAST OF N us boundary ut	wice each day based on infrai the derived, use the last repo- le data on which the Dvorak a eye characteristics, spiral rair rak (modeled) intensities, etc. ween fix center and satellite r IADIR ilizing image mapped SSM/I	red and/or visual rted number. analysis is based.
G REMARKS H NADIR REFERENCE DISTANCE	H.	data. If a new Include in par Sample entry Include infor changes in st Include cross Sample Entry Experimenta speed algorit Sample Entry DIR 1. N	fication will be made a v Dvorak classification rentheses the date and r : T 4.5/4.5/D1.0/25HR rmation, as appropriate orm movement, depart strack distance in degre y: Center WAS 5.4 DE Il gale wind (34kt) radi hm estimates. y: Gale Wind Radius A DIST-NM 140	ninimum of tr number cannoi todal time of th RS (252305Z) , on data type, ures from Dvor ces latitude bety CG EAST OF N us boundary ut Anal-Boundary LAT 29.4N	wice each day based on infrai the derived, use the last repo- le data on which the Dvorak a eye characteristics, spiral rair rak (modeled) intensities, etc. ween fix center and satellite r IADIR ilizing image mapped SSM/I Compass Points LONG 88.2W	red and/or visual rted number. analysis is based.
G REMARKS H NADIR REFERENCE DISTANCE	H.	data. If a new Include in par Sample entry Include infor changes in st Include cross Sample Entry Experimenta speed algorit Sample Entry DIR 1. N 2. NE	fication will be made a v Dvorak classification rentheses the date and r : T 4.5/4.5/D1.0/25HR rmation, as appropriate orm movement, depart strack distance in degre y: Center WAS 5.4 DE ul gale wind (34kt) radi hm estimates. y: Gale Wind Radius A DIST-NM 140 130	niminum of tr number cannoi sodal time of th RS (252305Z) , on data type, , ures from Dvor cess latitude betr GEAST OF N us boundary ut Anal-Boundary LAT 29.4N 28.9N	wice each day based on infrat the derived, use the last repo- le data on which the Dvorak a eye characteristics, spiral rair rak (modeled) intensities, etc. ween fix center and satellite r IADIR ilizing image mapped SSM/I Compass Points LONG 88.2W 86.6W	red and/or visual rted number. analysis is based.
G REMARKS H NADIR REFERENCE DISTANCE	H.	data. If a new Include in par Sample entry Include infor changes in st Include cross Sample Entry Experimenta speed algorit Sample Entry DIR 1. N 2. NE 3. E	fication will be made a v Dvorak classification rentheses the date and r : T 4.5/4.5/D1.0/25HR rmation, as appropriate orm movement, depart strack distance in degre y: Center WAS 5.4 DE il gale wind (34kt) radi hm estimates. y: Gale Wind Radius A DIST-NM 140 130 80	Anal-Boundary LAT 29.4N 28.9N 27.0N	wice each day based on infrai the derived, use the last repo- le data on which the Dvorak a eye characteristics, spiral rain raik (modeled) intensities, etc. ween fix center and satellite r iADIR ilizing image mapped SSM/I Compass Points LONG 88.2W 86.6W 86.7W	red and/or visual rted number. analysis is based.
G REMARKS H NADIR REFERENCE DISTANCE	H.	data. If a new Include in par Sample entry Include infor changes in st Include cross Sample Entry Experimenta speed algorit Sample Entry DIR 1. N 2. NE 3. E 4. SE	fication will be made a v Dvorak classification rentheses the date and r : T 4.5/4.5/D1.0/25HR rmation, as appropriate orm movement, depart strack distance in degre vy: Center WAS 5.4 DE la gale wind (34kt) radi hm estimates. y: Gale Wind Radius A DIST-NM 140 130 80 65	Anal-Boundary LAT 29.4N 28.9N 27.0N 26.2N	wice each day based on infrai the derived, use the last repo- le data on which the Dvorak a eye characteristics, spiral rain raik (modeled) intensities, etc. ween fix center and satellite r ilaDIR ilizing image mapped SSM/I Compass Points LONG 88.2W 86.6W 86.7W 87.4W	red and/or visual rted number. analysis is based.
G REMARKS H NADIR REFERENCE DISTANCE I	H.	data. If a new Include in par Sample entry Include infor changes in st Include cross Sample Entry Experimenta speed algorit Sample Entry DIR 1. N 2. NE 3. E	fication will be made a v Dvorak classification rentheses the date and r : T 4.5/4.5/D1.0/25HR rmation, as appropriate orm movement, depart strack distance in degre y: Center WAS 5.4 DE il gale wind (34kt) radi hm estimates. y: Gale Wind Radius A DIST-NM 140 130 80	Anal-Boundary LAT 29.4N 28.9N 27.0N	wice each day based on infrai the derived, use the last repo- le data on which the Dvorak a eye characteristics, spiral rain raik (modeled) intensities, etc. ween fix center and satellite r iADIR ilizing image mapped SSM/I Compass Points LONG 88.2W 86.6W 86.7W	red and/or visual rted number. analysis is based.
DVORAK CLASSIFICATION G REMARKS H NADIR REFERENCE DISTANCE I GALE WIND RADIUS ANALYSIS	H.	data. If a new Include in par Sample entry Include infor changes in st Include cross Sample Entry Experimenta speed algorit Sample Entry DIR 1. N 2. NE 3. E 4. SE 5. S	fication will be made a v Dvorak classification rentheses the date and r : T 4.5/4.5/D1.0/25HR rmation, as appropriate orm movement, depart strack distance in degre v: Center WAS 5.4 DE digale wind (34kt) radi hm estimates. v: Gale Wind Radius A DIST-NM 140 130 80 65 65 65	Anal-Boundary LAT 29.4N 20.20 20.	wice each day based on infrai the derived, use the last repo- le data on which the Dvorak a eye characteristics, spiral rain raik (modeled) intensities, etc. ween fix center and satellite r iADIR ilizing image mapped SSM/I Compass Points LONG 88.2W 86.6W 86.7W 87.4W 88.2W	red and/or visual rted number. analysis is based.

Figure 6-2. Center fix data form and message format (satellite)

6.5. <u>Satellites and Satellite Data Availability for the Current Hurricane Season</u>. Table 6-2 lists satellite capabilities for the current hurricane season.

SATELLITE	TYPE OF DATA	LOCAL TIME	PRODUCTS
GOES-10	Multispectral	GOES-12 and GOES-	1. 1, 2, 4, and 8 km resolution
at 135°W	Imager and	10: Every 30 min, in	visible standard sectors.
	Sounder	Routine Scan Mode,	2. 4 km equivalent resolution IR
GOES-11		provides 3 sectors	sectors.
(on-orbit storage	5 Channels for	with prescribed	3. Equivalent and full resolution
at 105°W)	Imager	coverages: Northern	IR enhanced imagery.
		Hemisphere (NH) or	4. Full disk IR every 3 hours.
GOES-12	19 Channels for	Extended NH;	5. 8 km water vapor sectors.(4 km
at 75°W	Sounder	CONUS or PACUS;	on GOES-12)
		and Southern	6. Quantitative precipitation
		Hemisphere.	estimates; high density cloud and
		Exception is	water vapor motion wind vectors;
		transmission of full	and experimental visible and
		disk every 3 hours.	sounder winds.
		(Available Rapid Scan	7. Operational moisture sounder
		Operations yield	data (precipitable water) in four
		increased transmissions to 7.5	levels for inclusion in NCEP
		minute intervals to	numerical models. Other sounder products including gradient winds,
		capture rapidly	vertical temperature and moisture
		changing, dynamic	profiles, mid-level winds, and
		weather events).	derived product imagery
		weather events).	(precipitable water, lifted index,
			and surface skin temperature).
			8. Tropical storm monitoring and
			derivation of intensity analysis.
			9. Volcanic ash monitoring and
			dissemination of Volcanic Ash
			Advisory Statements.
			10. Daily northern hemisphere
			snow cover analysis.
			11. Twice daily fire and smoke
			analysis over specific areas within
			CONUS.

Table 6-2. Satellite and satellite data availability for the current hurricane season

Table 6-2. Satellite and satellite data availability for the current hurricane season
(continued)

SATELLITE	TYPE OF DATA	LOCAL TIME	PRODUCTS
METEOSAT-7	Multi-spectral Spin-Scan Radiometer	Full disk image every half hour	 2.5 km resolution digital VIS imagery; 5 km resolution digital IR imagery. 5 km resolution VIS and IR WEFAX imagery. 5 km water vapor imagery. Tropical storm monitoring and derivation of intensity analysis.
METEOSAT-8 (will replace METEOSAT-7 on June 14, 2006)	Multi-spectral Spin-Scan Radiometer (SEVIRI) and High Resolution Visible (HRV)	SEVIRI: Full disk image every 15 minutes. HRV: Sector scan to move with local noon.	 1 km resolution digital VIS imagery (HRV); 3 km resolution digital IR imagery (SEVIRI. 2 km resolution VIS and IR WEFAX imagery. 3 km water vapor imagery. 4 Tropical storm monitoring and derivation of intensity analysis. 5 Volcanic ash detection and analysis.
MTSAT-1R	Multi-band imager (Visible plus 4 IR channels)	Hourly Full disk and two Northern Hemisphere scans per hour, with special "quadrant" scans four per hour.	 1 km resolution digital VIS imagery 2 km resolution digital IR imagery and water vapor 4 Tropical storm monitoring and derivation of intensity analysis. 5 Volcanic ash detection and analysis

SATELLITE	TYPE OF DATA	LOCAL TIME	PRODUCTS
TRMM (NASA	85 and 37 GHz	Fluctuates from 30°N	1. 15 km resolution microwave
Tropical Rainfall	Microwave	to 30°S	coverage of the tropics from
Measuring			30°S to 30°N.
Mission)			2. Microwave analysis of 85
			and 37 GHz radiance
			composited passes.
			3. Brightness temperature
			products of the 85 and 37 GHz
			horizontal and vertical
			polarization. Derived rain-rate
			products.
NOAA-18	AVHRR; GAC	$1025D^{1}/2225A^{2}$	1. 1 km resolution HRPT and
NOAA-10	and LAC	1023D /2223A	Local Area Coverage (LAC) data.
	(recorded);		2. 4 km resolution APT and
NOAA-17	HRPT (direct);	0239D/1439A	Global Area Coverage (GAC)
	AMSU-A;		data.
	AMSU-B (N-17);		3. Mapped imagery.
	MHS (N-18);		4. Unmapped imagery (all data
	HIRS		types) at DMSP sites.
			5. Sea-surface temperature
			analysis.
			6. Soundings.
			7. Moisture profiles.
			8. Remapped GAC sectors.
			9. Sounding-derived products
			total precipitable water, rain rate,
			and surface winds under sounding
			10. Daily northern hemisphere
			snow cover analysis.
			11. Twice daily fire and smoke
			analysis over specific areas within CONUS.
			CONUS.

Table 6-2. Satellite and satellite data availability for the current hurricane season (continued)

¹ D - descending

² A - ascending

SATELLITE	TYPE OF DATA	LOCAL TIME	PRODUCTS
DMSP F-12	OLS Imagery	0422D/1622A	1. 0.3 nm (regional) and 1.5 nm
	(direct only),		(global) resolution (visual and
	SSM/I (non-		infrared) imagery available via
	functional),		stored data recovery through
	SSM/T-1 (non-		AFWA.
	functional),		2. Regional coverage at 0.3 nm
	SSM/T-2 (direct		and 1.5 nm resolution (visual and
	only)		infrared) imagery available from
			numerous DOD tactical terminals.
DMSP F-13	OLS Imagery	0633D/1833A	3. SSM/T-1, SSM/T-2, SSM/I,
	(recorded and		and SSM/IS data transmitted to
	direct), SSM/I,		NESDIS and FNMOC from
	SSM/T-1		AFWA.
DMCDE 14		0(21D/10214	
DMSP F-14	OLS Imagery (recorded and	0621D/1821A	
	direct), SSM/I,		
	SSM/T-1 (inop),		
	SSM/T-2		
	55141/1 2		
DMSP F-15	OLS Imagery	0830D/2030A	
	(recorded and		
	direct), SSM/I,		
	SSM/T-1,		
	SSM/T-2		
DMSP F-16	OLS Imagery	0814D/2014A	
	(recorded and		
	direct), SSM/IS		
		Note: Times are	
		accurate to $+/-5$	
		minutes	<u> </u>

Table 6-2. Satellite and satellite data availability for the current hurricane season(continued)

6.6. <u>Current Intensity and Tropical Classification Number</u>. The current intensity (C.I.) number relates directly to the intensity of the storm. The empirical relationship between the C.I. number and a storm's wind speed is shown in Table 6-3. The C.I. number is same as the tropical classification number (T-number) during the development stages of a tropical cyclone but is held higher than the T-number while a cyclone is weakening</u>. This is done because a lag is often observed between the time a storm pattern indicates weakening has begun and the time when the storm's intensity decreases. An added benefit of this rule is the stability it adds to the analysis when short-period fluctuations in the cloud pattern occur. In practice, the C.I. number is not lowered until the T-number has shown weakening for 12 hours or more.</u>

C.I. NUMBER	MAXIMUM WIND SPEED	T-NUMBER	MINIMUM S (Atlantic)	EA-LEVEL PRESSURE (NW Pacific)
1	25 kt	1		
1.5	25	1.5		
2	30	2	1009 hPa	1000 hPa
2.5	35	2.5	1005	997
3	45	3	1000	991
3.5	55	3.5	994	984
4	65	4	987	976
4.5	77	4.5	979	966
5	90	5	970	954
5.5	102	5.5	960	941
6	115	6	948	927
6.5	127	6.5	935	914
7	140	7	921	898
7.5	155	7.5	906	879
8	170	8	890	858

Table 6-3. The empirical relationship* between the C.I. number and the maximum wind				
speed and the relationship between the T-number and the minimum sea-level pressure				

*Dvorak, V, 1984: Tropical Cyclone Intensity Analysis Using Satellite Data. NOAA Tech Report NESDIS 11, Washington, D.C.