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Tillage information is crucial in environmental modelling as it has a direct impact

on water holding capacity, evapotranspiration, carbon sequestration and water

quality. In this study, a set of Landsat Thematic Mapper (TM)-based linear

logistic models were developed for mapping tillage practices and verified with an

independent dataset. For data collection purposes, 35 and 41 commercial fields

were randomly selected in Moore and Ochiltree counties, respectively, in the

Texas Panhandle. Tillage survey was planned and conducted to coincide with

Landsat 5 satellite overpasses during the 2005 planting season and two TM

scenes were acquired. Using the Moore County dataset, seven logistic regression

models were developed and these were evaluated with the data collected from

Ochiltree County. The overall classification accuracy of the models varied from

86% to 91% with the Moore County dataset. These models were evaluated

against independent Ochiltree County dataset and resulted in somewhat less

accurate (classification accuracy of 67–85%) but still useful results. Analysis of

these results indicates that logistic regression models that have indices derived

from the combination of TM band 5 with bands 4 or 6 may provide consistent

and acceptably accurate results when they are applied in the same geographic

region.

1. Introduction

Tillage has a direct impact on soil and water quality. Consequently, environmental

models require information on tillage management practices to predict carbon

sequestration potential (Lal et al. 1999), and soil and nutrient losses due to wind and

water erosion (Dalzell et al. 2004, Gowda and Mulla 2006) from agricultural lands.

Studies have shown that the adoption of conservation tillage methods can

substantially reduce soil and phosphorus (P) losses compared with conventional

tillage methods as they retain at least 30% of the soil surface covered with crop

residue after a crop is planted. Conservation tillage includes no-till, ridge-till, strip-

till, mulch-till and reduced-till. A 12-year (1983–1994) monitoring study by Ghidey

and Alberts (1998) on 28 natural rainfall erosion plots on a silt loam soil near

Kingdom City, Missouri, showed that annual surface runoff decreased by 5% with

chisel plowing when compared to conventional tillage. Chisel tillage also lowered

soil losses by 31% compared to conventional tillage. In a study on fine-loamy soil at

Morris, Minnesota, Ginting et al. (1998) reported higher P losses associated with
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mouldboard plough (1.30 kg/ha) versus ridge tillage (0.16 kg/ha). Higher P losses

associated with mouldboard plough were due to higher runoff and sediment losses.

Logan and Adams (1981) found that conservation tillage practices were effective in

reducing sediment and sediment-bound P losses by 89%. Similar results were

observed by Angle et al. (1984) in their study on a Manor loam soil in Howard

County, Maryland, where total P losses were 8 and 161 g/ha from corn plots with

conservation and conventional tillage systems, respectively.

The US Environmental Protection Agency and state pollution control agencies

are currently addressing agricultural non-point source pollution by developing and

implementing Total Maximum Daily Loads (TMDLs) on water quality limited

sections of rivers and streams. Sediment from cropland is one of the primary

pollutants leading to impairment of rivers and lakes. The TMDL development

process requires site-specific knowledge of topography, soil and tillage management

practices to identify and target potential sources of non-point source pollution, as

water quality varies across soils and topographic conditions (Dalzell et al. 2004).

Knowledge of prevailing patterns for adoption of tillage systems in relation to

topography within a watershed is important for appropriate allocation of limited

funds to target crucial sources of agricultural non-point source pollution (Gowda

et al. 2003). It is also helpful to evaluate the success of conservation programmes

that are promoting adoption of conservation tillage practices to reduce non-point

source pollution. Collecting tillage information manually at individual fields on a

regional scale can be time-consuming, labour-intensive and costly. Moreover, field

data are limited because they provide point- rather than area-based information.

Remote sensing techniques promise considerable improvements in providing such

spatial data over a large area in a time- and cost-effective manner.

Conventional methods of mapping tillage practices over a large area include field

survey and manual interpretation of film products derived from sensors mounted on

aerial or satellite platforms. In a 5-year study, DeGloria et al. (1986) manually

interpreted the Landsat Multi-Spectral Scanner (MSS) data for identifying land

under conventional and conservation tillage practices in the central coastal region of

California. They achieved an overall classification accuracy of 81%. However, the

accuracy of their map was a function of a human interpreter’s ability to identify

tillage patterns on the image. Motsch et al. (1990) derived a crop residue map

showing four tillage categories from Landsat Thematic Mapper (TM) data for

Seneca County, northern Ohio, and reported an accuracy of 68%.

In recent years, numerous spectral models have been developed to measure crop

residue cover or identify contrasting tillage practices. Daughtry et al. (2006)

evaluated several spectral models for estimating crop residue cover using Landsat

TM data. They found weak relationships between Landsat TM indices and crop

residue cover. Similar results were reported in Minnesota (Thoma et al. 2004).

However, these studies reported higher prediction accuracy when crop residue cover

was classified into two categories (.30% and ,30%), indicating that Landsat TM

indices are useful in identifying contrasting tillage practices.

Linear logistic regression modelling is an appropriate technique for

modelling binary responses (Neter et al. 1996). Numerous studies (van Deventer

et al. 1997, Vina et al. 2003, Bricklemyer et al. 2006) have successfully used this

technique to develop remote sensing-based models for classifying contrasting tillage

practices at a regional scale. The linear logistic regression model (SAS 2005) has the

form:

3478 P. H. Gowda et al.
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logit pð Þ~ln
p

1{p

� �
~azbX ð1Þ

where p is the response probability for a specific tillage management practice and

varies between 0 and 1, X is an independent response variable based on reflectance, a
is the intercept parameter, and b is a vector of the slope parameter. The p value,

expressed as a fraction, is:

p~
elogit pð Þ

1zelogit pð Þ ð2Þ

The LOGISTIC procedure in SAS (2005) uses a one-step jackknife procedure to

obtain new parameter estimates when classifying ordinal data. The method reduces

the bias associated with estimating the error count based on the same dataset that

was used to develop the logistic regression equation. It is necessary to specify a cut-

point response probability to classify the outcome of an event occurring. In efforts

to develop logistic models, knowledge of the actual outcome is known and the cut

point (p value) that results in most fields being correctly classified is reported as the

cut point response probability. The ideal cut-point probability for binary responses

is 0.5; however, the selection of a cut-point response probability will normally

depend on the application.

For an agricultural region located north of Chester, Montana, Bricklemyer et al.

(2006) developed and evaluated a logistic regression model based on Landsat

Enhanced Thematic Mapper Plus (ETM + ) data. They reported an overall

classification accuracy of 95% when the model was used to separate conventional

tillage systems from conservation tillage systems. Vina et al. (2003) reported 77%

overall classification accuracy with their Ikonos-based logistic regression models.

van Deventer et al. (1997) developed a set of Landsat TM-based probability models

for discriminating conservation tillage from conventional tilled fields in Seneca

County, northern Ohio. In their study, models using the ratio and the normalized

differences of TM bands 5 and 7 classified 93% of the tillage attributes correctly

evaluated with independent data from 15 fields. However, the accuracy level was

reduced to 77% when these models were applied in the Lower Minnesota River

Basin (Gowda et al. 2001). In addition, the cut point probability values that gave

higher classification accuracy were significantly different from the values reported in

van Deventer et al. (1997), possibly because TM bands 5 and 7 are sensitive to

organic matter content and soil water conditions (McNairn et al. 1996). Ratio-based

models are also generally sensitive to soil background (Huete et al. 1985). In the

Lower Minnesota River Basin, the majority of the soils are clay and loam in texture,

and the soil water content is usually high compared to that in northern Ohio. For

this reason, the ratios of TM bands 5 and 7 were smaller (,1.7) in the Minnesota

River Basin than the range of values (1.7–2.1) reported by van Deventer et al.

(1997).

Linear logistic regression models based on Landsat TM data have the ability to

identify contrasting tillage practices at a regional scale with acceptable tillage

mapping accuracy (van Deventer et al. 1997) and cost of the imagery. Table 1

presents spatial and spectral resolutions of the Landsat TM data. However, these

models should be evaluated thoroughly before using them in different geographic

regions to adjust the cut-point probability values in order to attain higher

classification accuracy, or new models may need to be developed when existing

Remote sensing of contrasting tillage practices 3479
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models are insensitive to tillage classes. In either case, ground truth data are needed.

Given the options, it is preferable to develop region-specific tillage models for

mapping tillage practices to maintain greater tillage classification accuracy. In this

study, the main objective was to develop and evaluate a set of Landsat TM-based

linear logistic regression models to identify contrasting tillage practices on semi-arid

agricultural systems in the Texas Panhandle.

2. Study area

This study was conducted with tillage data collected from 76 commercially operated

farms (31 in Moore County and 41 in Ochiltree County) in the Texas Panhandle

underlain by the Ogallala Aquifer (figure 1), which is being depleted by excessive

Table 1. Landsat 5 Thematic Mapper (TM) sensor specifications.

Band Wavelength region (mm) Spatial resolution (m)

1 0.45–0.52 (Blue) 30
2 0.52–0.60 (Green) 30
3 0.63–0.69 (Red) 30
4 0.76–0.90 (NIR) 30
5 1.55–0.75 (MIR) 30
6 10.4–12.5 (TIR) 120
7 2.08–2.35 (MIR) 30

NIR, near infrared; MIR, mid-infrared; TIR, thermal infrared.

Figure 1. Location of Moore and Ochiltree counties in the Texas Panhandle, USA.

3480 P. H. Gowda et al.
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pumping. The Moore County is in the north-central part of the Panhandle and has a

total area of 236 826 ha. Two-thirds of the land is in the nearly level, smooth uplands

of the High Plains (USDA-SCS 1975) and most of it is under row crop production.

Corn, sorghum and wheat are the major crops in the county. In 2004, Moore

County ranked fifth in corn production and accounted for about 5.7% of total corn

produced in the state (NASS 2005). The area of Ochiltree County is 234 911 ha, with

more than 70% of the land under row crop production. Sorghum, wheat and corn

are the major crops in the county. In 2004, Ochiltree County ranked eighth in

sorghum production and accounted for about 2.4% of the total sorghum produced

in the state (NASS 2005). Typical planting dates for major crops in the study area

vary from the second week of April to the third week of May. Annual average

precipitation is about 481 and 562 mm for Moore and Ochiltree counties,

respectively. Crop water needs are supplemented with groundwater from the

underlying Ogallala Aquifer. Nearly level to gently sloping fields with silty clay soils

of the Sherm series occupy nearly all of the crop land in both Moore and Ochiltree

counties. Conventional tillage practices in the study area usually consist of offset

disk in autumn. Common conservation tillage practices are no ploughing in the

autumn and sweep or disk ploughing at planting that leaves at least 30% of the

surface covered with crop residue after planting.

3. Materials and methods

Developing and evaluating the tillage models consisted of four steps: (1) ground-

truth data collection, (2) remote sensing data acquisition, (3) development of models

using the linear logistic regression modelling technique, and (4) evaluation of models

using statistical measures of classification accuracy (i.e. percentage correct and

kappa (k) values). Two Level-1 processed, precision-corrected Landsat TM scenes

were acquired, one on 10 May 2005 for Ochiltree County (Path 30/Row 35) and the

other on 17 May 2005 for Moore County (Path 31/Row 35), for developing and

evaluating Landsat TM-based tillage models. On the day of the Landsat 5 satellite

overpass, ground-truth data were collected from 35 and 41 randomly selected

commercial fields planted with major crops in Moore and Ochiltree counties,

respectively. Ground-truth data included geographic coordinates obtained using a

handheld Global Positioning System (GPS), infrared images taken at 2-m height

using the Agricultural Digital Camera (ADC, Dycam Inc., Chatsworth, CA, USA)

and digital pictures for residue cover taken with a 5-megapixel digital camera.

The crop residue cover was estimated by classifying the infrared images using

Multispec# image processing software developed by the Purdue Research

Foundation. Tillage practices were assigned a class value of 0 for conventional

tillage and 1 for conservation tillage. In this study, the p in equation (1) is the

conservation tillage probability. Therefore, the ideal p values for 100% conventional

and 100% conservation tillage are 0 and 1, respectively. Tillage classification was

based on the percentage of the soil surface covered with crop residue. We defined

conservation tillage systems as those that retained at least 30% of the soil surface

covered with crop residue after a crop is planted.

Ground-truth pixel locations on each image were identified using the GPS

coordinates for extracting spectral reflectance data for each TM band image. In

Landsat TM data, reflectance values are stored as brightness values (or digital

numbers) in the 8-bit format. The raw brightness values for ground-truth pixels were

extracted and analysed using image processing software. For model development

Remote sensing of contrasting tillage practices 3481
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and evaluation, mean reflectance data from 9 pixels (ground-truth pixel and

surrounding 8 pixels) were used. Table 3 presents the mean brightness values for

Moore and Ochiltree counties. The Moore County dataset was used for model

development and the Ochiltree County dataset was used for testing the models.

For logistic regression model development, TM indices were developed with all

possible combinations of two bands from all seven Landsat 5 TM bands. The TM

indices included difference indices, sum indices, product indices, ratio indices and

normalized difference indices. A linear logistic regression analysis was performed for

the tillage variable with (1) the brightness value for each TM band, (2) each

difference, sum, product and normalized difference index, and (3) stepwise,

backward and forward analysis, where successive significant TM bands and indices

were added or insignificant TM bands and indices were deleted from the logistic

regression model. Finally, the tillage models that yielded an overall classification

accuracy of 75% or more were identified to match with the accuracy levels reported

with county-level tillage transect surveys commonly conducted in the USA for

collecting tillage information (Thoma et al. 2004). The selected models were

evaluated against the Ochiltree County dataset for their ability to accurately identify

conservation and conventional tillage systems. Two methods were used to determine

tillage classification accuracy. In method I, cut-point probabilities derived from the

Moore County dataset were used, whereas in method II, cut-point probabilities were

determined by comparing ground-truth data with tillage probability values to

maximize the tillage classification accuracy.

For the purpose of model evaluation, error matrices (Campbell 1987) were

developed for all logistic regression models to determine the overall classification

accuracy (percentage correct) and k values. Percentage correct was calculated by

dividing the sum of correctly classified fields by the total number of fields examined.

The ‘k value is a measure of the difference between two maps and the agreement that

might be contributed solely by chance matching of the two maps’ (Congalton and

Green 1999). The k value is calculated as:

k~
Observed � Expected

1{Expected
ð3Þ

where ‘Observed’ is the percentage correct and ‘Expected’ is an estimate of the

chance agreement to the ‘Observed’. A k value of + 1.0 indicates perfect accuracy of

the classification.

4. Results and discussion

Table 2 presents ground-truth data collected in the Moore and Ochiltree counties,

respectively, during the 2005 planting season. The Moore County dataset consists of

19 fields in conservation tillage and 16 fields in conventional tillage. About 53% of

the conservation and 50% of conventionally tilled fields had corn residue. Sorghum

residue was found in three fields in each tillage category and five out of nine fields

with wheat residue were conventionally tilled. The mean soil organic carbon and soil

moisture contents were 1.39% and 0.22 m3 m23, respectively, in conventionally tilled

fields. Out of 41 fields in Ochiltree County, conservation tillage was found in 20

fields and about 50% of these fields had wheat residue. Conventional tillage was

found in 21 fields and only 19% of these had wheat residue. About 40% of the

conservation and 33% of conventionally tilled fields had sorghum residue. Soybean

fields accounted for 33% of the conventionally tilled fields and none under

3482 P. H. Gowda et al.
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conservation tillage. Fields with conservation tillage generally exhibited higher mean

brightness values than did conventionally tilled fields (table 3). This is consistent

with results reported by van Deventer et al. (1997) and Stoner et al. (1980) but

contrary to Bricklemyer et al. (2006), who found that conventionally tilled fields

exhibited higher brightness values than did conservation tillage in Montana.

For the most significant logistic regression models (table 4), the cut-point

probabilities that yielded the greatest classification accuracy varied from 0.5 to

0.57 and were close to the theoretical cut-point probability of 0.5. Models with

combinations of TM bands 1, 4, 5 and 6 were shown to be useful for tillage

identification purposes with the best results obtained with the model that used TM

band 5 (model I). This model accurately classified 32 (91%) out of the 35 fields

sampled in Moore County.

When using the Ochiltree County dataset to test the proposed logistic regression

models, method I performed poorly (percentage correct and k values of 67% and

0.35, respectively, table 5) even though model I provided the highest percentage

correct (91%) with the Moore County data. The poor performance was partly due to

differences between Moore and Ochiltree counties in TM band 5 brightness values.

Table 2. Tillage and crop residue characteristics of randomly selected commercial fields for
ground-truth data in Moore and Ochiltree counties, Texas, during the 2005 pre-planting

season.

Tillage
Number of

fields

Crop residue

Corn Soybean Sorghum Wheat Others

Moore County
Conservation tillage 19 10 1 3 4 1
Conventional tillage 16 8 – 3 5 –
Total 35 18 1 6 9 1
Ochiltree County
Conservation tillage 20 2 0 8 10 –
Conventional tillage 21 2 7 7 4 1
Total 41 4 7 15 14 1

Table 3. Mean brightness values for each field in Moore and Ochiltree counties.

Tillage practice and
statistic TM1 TM2 TM3 TM4 TM5 TM6 TM7

Moore County
Conservation tillage

Mean 105.2 53.8 71.9 81.6 157.3 132.2 85.6
Standard deviation 10.2 5.3 6.4 7.5 13.2 13.3 6.1

Conventional tillage
Mean 97.8 48.5 63.3 73.3 132.1 131.6 75.3
Standard deviation 8.3 3.7 5.5 6.7 15.9 11.9 8.8

Ochiltree County
Conservation tillage

Mean 102.2 53.3 73.7 82.6 181.2 162.4 110.9
Standard deviation 5.9 4.6 7.2 8.7 13.9 2.1 16.0

Conventional tillage
Mean 93.7 47.7 64.4 72.2 157.2 162.0 99.7
Standard deviation 8.9 5.8 8.9 9.7 17.8 3.4 11.6

TM1, TM2, etc. are TM bands 1, 2, etc.

Remote sensing of contrasting tillage practices 3483
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The mean brightness value for conservation tillage in Moore County was about

2.9% higher than that for Ochiltree County (table 3). Similar variation was found for

conventional tillage. Although the absolute percentage difference was small, it made

a large difference on the logarithmic scale. Therefore, models using a single spectral

band may perform better when they are developed and used in spectrally similar

environmental settings (e.g. Gowda et al. 2001). Models V and VI performed better

(percentage correct and k values of 85% and 0.7, respectively, table 5). Model V uses

R45 (TM band 4/TM band 5) and R46 (TM band 4/TM band 6), and model VI uses

NDTI45 (normalized difference between TM bands 4 and 5) and NDTI46

(normalized difference between TM bands 4 and 6) as independent variables, which

means that they are functionally equivalent (Perry and Lautenschlager 1984). This is

Table 4. Landsat 5 TM-based logistic regression models for mapping tillage practices in
Moore County, Texas.

Model

Cut-
point
(%)

Correct predictions (%)

All fields
Conservation

tillage
Conventional

tillage

I. logit(p)5223.041 + 0.159 TM5 57 91.4 94.7 87.5
II. logit(p)5217.845 + 0.279 TM520.172
TM6

50 85.7 89.5 81.3

III. logit(p)527.51120.342 D15 + 0.248 D16 50 85.7 89.5 81.3
IV. logit(p)512.7435294.386 R35 + 61.036
R36

53 85.7 84.2 87.5

V. logit(p)511.036280.056 R45 + 53.910
R46

53 85.7 84.2 87.5

VI. logit(p)5210.560292.692
NDTI45 + 67.643 NDTI46

53 85.7 84.2 87.5

VII. logit(p)5210.006232.593
NDTI15 + 84.196 NDTI56

50 85.7 89.5 81.3

D155difference in bands 1 and 5; D165difference in bands 1 and 6; R35, R36, R45 and
R465ratio of bands 3 and 5, 3 and 6, 4 and 5, and 4 and 6, respectively; NDTI45, NDTI46,
NDTI15 and NDTI565normalized difference between bands 4 and 5, 4 and 6, 1 and 5, and 5
and 6, respectively.

Table 5. Statistical performance of Landsat 5 TM-based logistic regression models used for
mapping tillage practices in Ochiltree County, Texas.

Model
no.

Method I Method II

Cut-off
probability*

Percentage
correct

Kappa
value (k)

Cut-off
probability{

Percentage
correct

Kappa
value (k)

I 0.57 67 0.35 0.99 73 0.46
II 0.50 76 0.52 0.84 83 0.66
III 0.50 78 0.56 0.90 85 0.70
IV 0.53 80 0.60 0.53 80 0.60
V 0.53 85 0.70 0.53 85 0.70
VI 0.53 85 0.70 0.53 85 0.70
VII 0.50 80 0.60 0.75 83 0.66

*Cut-off probability values derived from the Moore County data.
{Cut-off probability values associated with maximum percentage correct.

3484 P. H. Gowda et al.
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because NDTI45 and NDTI46 can be rewritten as (R45–1)/(R45 + 1) and (R46–1)/

(R46 + 1), respectively.

Four models (I–III and VII) performed slightly better with method II (table 4) but

at higher point probability values than those with method I. Models V and VI

produced the best results and performed equally well (% correct and k of 85% and

0.70, respectively). The cut-point probability values that produced the largest

percentage correct and k values were the same as the cut-point probability values

reported for the Moore County data, indicating that these models are transferable

within the Texas Panhandle region. As expected, model I, which uses TM band 5,

provided the least accurate map.

The TM band 5 or indices that contain TM band 5 were present in all models,

indicating that reflectance values in the mid-infrared spectral range (1.55–1.75 mm)

are highly sensitive to crop residue, and generally show higher reflectance in

conservation tillage fields than in conventionally tilled fields (table 3). However,

poor performance of model I with the Ochiltree County dataset indicated that the

TM band 5 alone is not sufficient to identify contrasting tillage practices. This is

because the magnitude of brightness values may vary from county to county for a

variety of reasons such as differences in soil colour, organic matter and soil moisture

contents. For instance, the mean brightness value for conservation tillage in Moore

County (157.3) in the mid-infrared range was 13% smaller than that for Ochiltree

County (table 3).

5. Conclusions

The availability of accurate information on prevailing tillage practices will aid the

assessment and adoption of appropriate tillage practices to reduce soil erosion and

nutrient losses. Using a linear logistic regression technique, a set of Landsat TM-

based statistical models was developed for identifying contrasting tillage practices in

the Texas Panhandle. Tillage data from Moore and Ochiltree counties were used to

develop and evaluate the models. The overall classification accuracy for the seven

models developed with the Moore County dataset varied from 86% to 91%. Testing

of these models against the independent dataset produced somewhat poorer but still

acceptable results with an overall classification accuracy of 67–85%. Analysis of the

results indicated that the logistic regression models that have indices of TM band 5

with bands 4 and 6 may provide consistent and accurate results when they are

applied to the Texas Panhandle. This is consistent with results reported by van

Deventer et al. (1997) and Bricklemyer et al. (2006). However, further evaluation of

these models in different geographic regions is needed to evaluate their regional

usefulness for identifying contrasting tillage practices. Logistic regression models

were found to be easy to use, cost- and time-effective, and produced reasonably

accurate tillage classification results. This approach is promising for the rapid

collection of tillage information on individual fields over large areas. However,

success of remote sensing-based tillage models depends on the availability of cloud-

free Landsat TM data immediately after the planting season.
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