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GROUND–BASED REMOTE SENSING OF 
WATER AND NITROGEN STRESS

M. Kostrzewski,  P. Waller,  P. Guertin,  J. Haberland,  P. Colaizzi,  
E. Barnes,  T. Thompson,  T. Clarke,  E. Riley,  C. Choi

ABSTRACT. A ground–based remote sensing system (Agricultural Irrigation Imaging System, or AgIIS) was attached to a
linear–move irrigation system. The system was used to develop images of a 1–ha field at 1 Ü 1 m resolution to address issues
of spatial scale and to test the ability of a ground–based remote sensing system to separate water and nitrogen stress using
the coefficient of variation (CV) for water and nitrogen stress indices. A 2 Ü 2 Latin square water and nitrogen experiment
with four replicates was conducted on cotton for this purpose. Treatments included optimal and low nitrogen with optimal
and low water. ANOVA was not an adequate method to assess the statistical variation between treatments due to the large
number of data points. In general, the coefficient of variation of water and nitrogen stress indices increased with water and
nitrogen stress. In fact, the coefficient of variation of stress indices was a more reliable measurement of water and nitrogen
status than the mean value of the indices. Differences in coefficient of variation of stress indices between treatments were
detectable at 3 m grid resolution and finer for water stress and at 7 m grid resolution and finer for nitrogen stress.
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his project investigated the feasibility of collecting
high–resolution remotely sensed spectral and
thermal data using the Agricultural Irrigation
Imaging System (AgIIS). The researchers designed

and constructed a ground–based remote sensing system
(AgIIS) that collected 1–m resolution data for application in
precision agriculture.

Spatially variable drying of a field is caused by the spatial
variability of soil properties. The coefficient of variation
(CV) of remotely sensed indices may be as strong an indicator
of plant stress as the mean value of stress indices. The focus
of this work is primarily on the variability of stress indices in
space rather than the mean values of stress indices.

Others researchers on the project conducted a detailed
comparison of mean values of water stress (Colaizzi, 2001)
and nitrogen stress indices (Haberland, 2001) with field
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measured soil water content and leaf tissue nitrogen con-
centration,  respectively.

The objectives of this research were to: (1) demonstrate
the feasibility of using the AgIIS system to detect nitrogen
and water stress in a cotton field, (2) evaluate the effect of
scale on detection of stress and on the variation of stress
indices within plots, and (3) evaluate the CV of stress indices
as an indicator of plant nitrogen and water stress.

LITERATURE REVIEW
With the advent of the earth resources satellites, the

concept of collecting remotely sensed data for management
of agricultural products was one of the many applications
proposed to utilize this technology (Barnes et al., 1996).
Myers (1975) stated, “Remote sensing offers the feasibility
of monitoring agricultural areas for rapid and continuous
assessment of plants, soil and water resources, and interre-
lated problems.” He further stated, “A successful remote
sensing program must be tailored to solve or manage the
maximum variety and complexity of applications.” Present-
ly, remotely sensed spectral data have primarily been used at
the research level. However, it shows potential for managing
crop water stress and applying fertilizer.

Major issues associated with remotely sensed systems
include resolution and the timeliness of the data. High–reso-
lution data can be costly and time consuming to collect
(Moran et al., 1997), but data with low spatial resolution can
be less descriptive and thus less useful. Resolution is an issue
of scale, and scale is important in management decisions
(Woodcock and Strahler, 1987) and must be optimized to
provide the best economic return. Data collected on a small
scale (high resolution) provide more detail than data
collected at a large scale (low resolution), and data collection
costs increase as scale decreases (Klopatek and Gardner,
1999). This produces a tradeoff between cost and the value

T



30 TRANSACTIONS OF THE ASAE

of the information such that the optimum system would
collect sufficient data for crop management at the least cost.

In addition to scale, the timeliness of delivery of remotely
sensed data is a factor. It has been shown that the usefulness
of remotely sensed data decreases rapidly as frequency
decreases and time from collection increases (Moran et al.,
1997). Remotely sensed data are typically obtained through
satellite or aerial images and presently takes from three days
to several weeks to be post–processed and became available
for making management decisions. These timeframes make
the information of little use in crop management, and faster
delivery of data is essential but prohibitively expensive for
growers.

Water management with remotely sensed data is typically
based on canopy temperature. Jackson et al. (1981) used
remotely sensed temperature data to determine water stress
and subsequently developed a crop water stress index
(CWSI). Primarily by measuring canopy and air tempera-
tures with a handheld infrared thermometer, a CWSI method
to schedule irrigations for an individual field was investi-
gated (Geiser et al., 1982). Moran (1994) also utilized
remotely sensed surface temperatures and reflectance data to
determine a crop’s water status and developed a water deficit
index (WDI) to address incomplete canopy cover. Methods
for irrigation management that determine crop water stress in
Arizona using satellite or aircraft remotely sensed data have
been proposed (Moran, 1994).

A good correlation between petiole nitrate content and a
spectral index derived from plant reflectance of near–in-
frared, blue, green, and amber light has been demonstrated
for cotton (Sui et al., 1998). A relationship between a
reflectance–based  index named the canopy chlorophyll
concentration index (CCCI)) and N status was demonstrated
by Barnes et al. (2000). The CCCI utilizes the normalized
red–edge difference to determine the canopy chlorophyll
content.

As mentioned earlier, scale is an important consideration
in data collection and management. The question of what
scale best defines the phenomenon being studied has no easy
answer. The problem of scaling from one level to another is
not just a simple mathematical process but is more likely a
complex exercise (Golley, 1989). Cao and Lam (1997)
discussed how to extrapolate the results across scale and
resolution.

The problem of scale can be considered two–sided, that is,
scale can be too large where local variation is missing, or
scale can be so fine that it is difficult to discern what is
observed (Meyers, 1997). Scale dependency can cause
results to be heterogeneous at one spatial scale and homoge-
neous at another (Quattrochi et al., 1997). On dealing with the
issue of scale, it has been stated that there is no absolute
standard for what is a small or large scale; rather, the
researcher must ensure that the scale fits the goal of the study
(Cressie, 1993).

It is well understood that aggregating data through
averaging smoothes the data and reduces the variance. At the
uppermost aggregated level, the scale would be one large
pixel, one value and zero variance. It has been recommended
that when analyzing the differences between scales, the
variances at each resolution level can be used to determine
how much variation exists as one goes from coarse to fine
(Cola, 1996).

METHODS
This study used the AgIIS system constructed at the

University of Arizona Maricopa Agricultural Center near
Phoenix, Arizona, to collect remotely sensed data. The AgIIS
system was designed to simultaneously monitor water status,
nitrogen status, and crop growth at 1–m spatial resolution.
This study used the difference between plant canopy and air
temperature (PCT) as an indicator of water stress. The CCCI
(Barns et al., 2000) was used as an indicator of nitrogen stress.
CCCI values range from 0 to 1, with low values representing
lower canopy chlorophyll content and more nitrogen stress.

This section includes discussion of the AgIIS remote
sensing system, statistical design and data collection, and
soils.

AGIIS SYSTEM

The AgIIS system consisted of a nadir–looking group of
reflectance and infrared sensors that were transported by a
self–propelled cart that moved along a track. The track was
mounted on a two–span linear–move irrigation system. The
linear–move irrigation system (LM) provided a means to
precisely control water and nitrogen application. In addition
to the LM and cart, infrastructure for the delivery of
electricity, water, and nitrogen was installed. The infrastruc-
ture and field layout are shown in figure 1, and the rail system
is shown in figure 2. Further information on the AgIIS system
is contained in Haberland (2001).

The AgIIS system measured incoming and reflected
radiation with band–specific optical sensors. Thermal radi-
ation was measured with an infrared thermometer (IRT). The
sensor packages were designed and constructed by the
USDA–ARS United States Water Conservation Laboratory.
The upward and downward sensors consisted of four optical
sensors, all nadir–looking from a 4–m height above the
ground with a 15³ field of view, resulting in a footprint of
about 1 m. They were: (1) red (670 nm, maximum
chlorophyll absorption), (2) green (550 nm, maximum
chlorophyll reflectance), (3) red–edge (720 nm, a dynamic
spectral region sensitive to crop stress), and (4) near–infrared
(790 nm, sensitivity to canopy density). Each band was
filtered to a 10–nm bandpass about the band centers. Only the
downward sensor package contained an IRT.

STATISTICAL DESIGN AND DATA COLLECTION

The field was planted to cotton on 16 April 1999 (DOY
105). A Latin square experimental design was used to
compare four treatments with four replicates (rows). Treat-
ment locations are shown in figure 1. The treatments were:
(1) low nitrogen and low water (nw), (2) optimal nitrogen and
low water (Nw), (3) low nitrogen and optimal water (nW),
and (4) optimal nitrogen and optimal water (NW). Water was
managed by measuring soil water content with neutron
probes and TDR probes. For optimal water, irrigations were
scheduled when the soil water content was depleted by 30%.
For stressed plots, irrigations were scheduled when the soil
water content was depleted by 50%. The water application
dates and amounts just prior to the dates of the four selected
images used in this analysis are provided in table 1. The total
seasonal irrigation, nitrogen application rates, and final lint
yields for each treatment are provided in table 2, with
seasonal nitrogen application data provided in table 3.
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Figure 1. Schematic of Agricultural Irrigation Imaging System (AgIIS) and field layout.

Figure 2. AgIIS cart and rail system mounted on linear–move irrigation system.

Data were collected at solar noon, as this was the optimal
time of day and the effects of shadows from the LM and the
plants were minimized. Imaging the complete field at a
resolution of 1 m took approximately 2.5 hours. The speed of
the LM system was adjusted so that 1 Ü 1 m spatial resolution
resulted as the sensor traversed the field. The AgIIS acquired
field images as often as three times per week during rapid

crop growth. Data from both the upward and downward
looking sensors were recorded with Campbell Scientific
CR–10X data loggers (Campbell Scientific, Inc., Logan,
Utah). The GPS system used in this project was a differential-
ly corrected Trimble AgGPS 132 12–channel receiver
(Trimble Navigation, Sunnyvale, Cal.).
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Table 1. Previous irrigation for each day of year (DOY) analyzed.
Image DOY Last Irrigation

181–182 DOY 177, 2.80 cm (1.1 in.), all plots
218 DOY 217, 3.05 cm (1.2 in.), all plots
228 DOY 225, 3.81 cm (1.5 in.), all plots
231 DOY 228, 2.54 cm (1.0 in.), optimal water plots only

Table 2. Total seasonal irrigation, rain, nitrogen application, and 
final lint yield for each treatment.

Treatment NW nW Nw nw

Irrigation (mm) 1070 1070 1000 1000
Rain (mm) 150 150 150 150
Nitrogen (kg ha–1) 222 112 222 112
Lint (kg ha–1) 1200 1380 1250 1360

Table 3. 1999 cotton season nitrogen applications for 
optimal and low nitrogen treatment plots.

DOY Date
Optimal N
(kg ha–1)

Low N
(kg ha–1)

97 7 April[a] 34 34
148 28 May 29    9
162 11 June 43 26
176 25 June 70 24
197 16 July 46 19

Total 222 112

[a]Nitrogen was applied to the soil as a pre–plant application on 7 April and
by fertigation on the remaining days.

The cart ran along the linear move in the north–south
direction, and the sensor system was triggered over each crop
row: a small cable ran the length of the rail, metal strips
attached to the cable were aligned with each row, and a
proximity sensor was mounted on the cart and triggered by
the strips. The longitude of the cart at the time each image
was collected was calculated based on the number of triggers
that had been tripped since the cart left the end tower or by
interpolation based on the time since the cart left the end
tower. The cart started nearly instantaneously at each tower,
so the cart speed was constant along the track. A GPS antenna
was fixed on the south tower of the linear move and recorded
the position of linear move in the east–west direction. The
latitude of the cart was calculated based on the position of the
GPS antenna at the time the image was collected.

The sensor had a “footprint” (the area of an image)
resulting in a data resolution of 1 m2. However, because the
cart and linear were moving, the data were not collected in
a symmetrical 1 Ü 1 m grid. To create a symmetrical 1 Ü 1
m grid for analysis, an inverse distance weighting (IDW)
routine (a power equation in which points within 1 m were
given full weight and points 2 m away had 1/4 weight) was
used to create 1 Ü 1 m grids within each plot. An additional
routine produced grids from the 1Ü 1 m grid for the 2 Ü 2 m
through the 10 Ü 10 m grids.

Access paths between plots were approximately 2 m wide
in the north–south direction and approximately 3 m wide in
the east–west direction. The access paths provided distinct
borders between plots. A handheld GPS was used to
determine the path locations. The paths produced edge
effects in the plots due to additional light, water, and
fertilizer. To remove path and edge effects from the remotely
sensed data, a path mask was developed. The width of the

mask included the sum of the access path, edge effect buffer,
and GPS error. Edge effect widths were 1 m (one row) on
either side of the east–west access paths and 0.3 m on either
side of the north–south access paths. The GPS error portion
of the mask included two averaged standard deviations (1.56
m) of typical GPS location data on each side of the path.
Thus, the mask was 8.1 m wide in the east–west direction and
5.7 m wide in the north–south direction, and only 45% of the
total field area was included in the analysis. The mask was
applied after the inverse distance weighting procedure.

Sixty half–field and full–field images were collected
during the 1999 cotton–growing season and resulted in 39
full–field images. To facilitate analysis, a sub–set of the data
was selected with the following criteria: (1) one image
collected prior to initiation of water treatments, (2) one image
that shows visually apparent crop stress after treatments were
applied, (3) two images collected when crop stress was not
visually apparent, and (4) all images under clear skies. The
dates selected to meet this criteria were based upon how the
crop was managed and not on the actual soil moisture and
plant nitrogen content.

Water treatments were started when the cotton had
approximately  50% canopy cover. A pretreatment image that
had at least 50% canopy cover was limited to late June and
early July. Two half–field images taken on 30 June (DOY
181) and 1 July (DOY 182) were selected and combined for
the pretreatment data set (DOY 181–182). Images taken on
6 August (DOY 218) and 16 August (DOY 228) were selected
as days with no visual stress, and 19 August (DOY 231) was
selected as a day when nitrogen stress was visually apparent
in the low nitrogen treatment plots and when data for the
entire field were collected. Even though visual nitrate stress
was not apparent on other days, measurements showed that
there were differences between treatments in petiole nitrate
for all days selected for this study (Haberland, 2001).

The primary statistics used in the study were ANOVA F
and P (probability) values, means, and CV. The ANOVA F
value (test for significance) was used to determine field
effects in the Latin square and confirm differences between
treatments.  The ANOVA F statistic compares the variability
between groups to the variability within groups. The F value
is significant and the null hypothesis is rejected (treatments
are different) if it exceeds a critical F value that is based on
the sample size. The P statistic reports the probability that
two treatments are from the same population. Means were
used for general comparisons, while CV was used as a
measure of water and nitrogen stress variability.

SOILS AND IN–SITU MEASUREMENTS
To determine soil properties, three soil pits were exca-

vated, one each in the southwest, northeast, and southeast
corners of the field. The soil in all three pits was a Casa
Grande (fine loamy, mixed, hyperthermic Typic Natragrid).
Casa Grande soil is a deep, well–drained, slowly permeable
soil formed from old alluvium.

Measurement of petiole nitrate was conducted on a
weekly basis during the growing season with 30 leaves
collected per plot (Haberland, 2001). The fraction of soil
moisture depletion (fDEP = 0 at field capacity and fDEP = 1
at the permanent wilting point) was estimated with TDR
measurements after DOY 201 (Colaizzi, 2001).
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RESULTS AND DISCUSSION
First, the GPS error is assessed. Second, nitrogen and

water stress images collected with the AGIIS system are
presented. Third, statistical differences between treatments
are evaluated. Fourth, the relationship between CV of stress
indices and nitrogen and water stress is shown.

GPS ERROR

The GPS antenna was located on the south tower as the
linear move traversed the field in an east–west direction
collecting 39 days of location data. A regression line was
fitted to the points and was assumed to represent the actual
east–west position of the GPS antenna. The GPS data were
then compared to the regression. The frequency distribution
of the GPS data around the regression line, along with the
cumulative distribution, is provided in figure 3.

The standard deviation between the regression line and the
GPS data was 0.78 m with a standard error of 0.09 m. Two
standard deviations (1.56 m) were included in the mask to
ensure that pathway and edge effect data points were
minimized.  Assuming a normal distribution, only about 4%
of the remotely sensed readings that occurred in the paths or
the edge effect portions of the plots were included in the
analysis.

REMOTELY SENSED IMAGES

Images of PCT were generated for 1, 3, 5, and 7 m grids
for DOY 231 and are shown in figure 4 with optimal water
treatments outlined. The difference in PCT for optimal and
low water treatments is readily apparent regardless of scale
or nitrogen treatment.

Images of CCCI were generated for 1, 3, 5, and 7 m grids
for DOY 231 and are shown in figure 5 with optimal nitrogen
treatment plots outlined. The difference between nitrogen
treatments is apparent, and scale had minimal effect on visual
interpretation  of images, as with the PCT data in figure 4. It
is also apparent that data collected with AgIIS can be used to
produce images and distinguish stressed from non–stressed
areas of the field.

It took approximately one year to calibrate and assemble
the 1 m resolution data in images. Kriging and other

statistical analysis associated with this study took another six
months. However, if the analysis of mean and coefficient of
variation were automated within a GIS software program,
then the data turnaround time could be less than 24 hours.
Kriging or other more complicated statistical analysis would
have a longer turnaround time.

COMPARISON OF REMOTELY SENSED DATA WITH IN–SITU

MEASUREMENTS

The field–measured fDEP and petiole nitrate along with
remotely sensed PCT and CCCI values are presented in table
4. There was very little difference between PCT measure-
ments in optimal and low water treatments on DOY 181–182,
and there was no TDR in–situ data to compare to the remotely
sensed data. Although a theta probe indicated that the soil
was dry at 5 cm depth, the plants did not appear stressed. The
reason that the plant temperature was high relative to air
temperature (PCT in table 3) on DOY 181–182 was that half
of the image was soil and soil is much hotter than plants.

The optimal water plots (NW and nW) had greater fDEP
(table 4) on DOY 218 than the low water plots because the
low water plots had just been irrigated. There was an
unexpected negative correlation between PCT and fDEP, and
thus PCT was not a reliable indicator of fDEP in the range of
fDEP = 0.2 to 0.3. There were minimal fDEP and PCT
differences on DOY 228 between treatments. The plants were
relatively cooler (3³C) on DOY 228 than on DOY 218 for
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Figure 3. Frequency distribution of GPS latitude from regression line.

Table 4. Treatment means for canopy chlorophyll concentration index (CCCI), petiole nitrate content, difference between plant canopy and air
temperature (PCT), and fraction of soil moisture depletion (fDEP) for four field composites, with correlation coefficient.

DOY

181–182 218 228 231

Treatment CCCI PNC[a] CCCI PNC CCCI PNC CCCI PNC

NW 0.57 10,800 0.77 6,000 1.06 4,000 0.96 3,000
nW 0.55 8,200 0.76 1,200 0.87 1,000 0.72 1,000
Nw 0.55 11,200 0.73 4,000 1.06 5,000 1.06 4,000
nw 0.57 7,800 0.69 1,200 0.94 1,000 0.83 500

Correlation –0.13 0.53 0.93 0.91

PCT[b] fDEP PCT fDEP PCT fDEP PCT fDEP
NW 10.31 n/a –3.66 0.31 –6.75 0.32 –5.23 0.39
nW 10.1 n/a –3.97 0.29 –6.79 0.26 –4.99 0.29
Nw 9.74 n/a –3.21 0.19 –6.64 0.32 –2.15 0.58
nw 9.89 n/a –2.93 0.21 –6.08 0.32 –2.19 0.57

Correlation –0.08 –0.83 0.45 0.94

[a]PNC = petiole nitrate content (mg kg–1).
[b]PCT = Ts –Ta (°C).
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Figure 4. Field images of difference between plant canopy and air temperature (PCT) at four different grid sizes for day of year 231.

both water treatments even though the fDEP was less for the
low water plots on DOY 218, and the fDEP was essentially
the same for the optimal water treatments. The hotter temper-
ature on DOY 218 could have been caused by incomplete
canopy cover on DOY 218 and complete canopy cover on
DOY 228. There was a large difference in fDEP on DOY 231
between treatments and a corresponding difference between
PCT measurements: the difference between crop and air tem-
perature was greater in the unstressed treatments (adequate
transpiration and crop cooling) than in the stressed treatments
(transpiration less than maximum). In summary, PCT was a
good indicator of plant stress in the case of very high stress,
but not in other cases.

There was a difference in petiole nitrate between optimal
and low water treatments on DOY 181–182. However, there
was no corresponding difference in CCCI between treat-

ments (table 4). A lack of correlation is not surprising with
50% canopy cover because it is likely that the soil reflectance
masked differences in leaf chlorophyll concentration. Even
with a large difference in petiole nitrate content on DOY 218,
there was no corresponding difference in CCCI. One factor
that may have limited the effectiveness of the CCCI
measurement was that the canopy cover was not quite full on
all treatments on this date (Haberland, 2001). On DOY 228
and 231 all the low nitrogen treatment plots (nw and nW) had
less petiole nitrate than their counterparts (NW and Nw).
There was also a 10% to 20% difference between CCCI
readings on the optimal and low nitrogen treatments on these
two days. In summary, the CCCI distinguished between
nitrogen treatments only in the case of full canopy cover
(DOY 228 and 231).
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Figure 5. Field images of canopy chlorophyll concentration index (CCCI) at four different grid sizes for day of year.

LATIN SQUARE STATISTICAL ANALYSIS
PCT and CCCI data from the 16 plots and 4 selected days

were used to determine statistical differences between
treatments.  ANOVA was performed on the data by treatment
and by DOY to determine if treatment effects were signifi-
cant. Because the experimental design was a Latin square, the
ANOVA also provided information on row and column
effects. The rows were oriented east–west, and the columns
were oriented north–south. The ANOVA results for modeling
treatment by row and treatment by column for PCT and CCCI
for the 1 Ü 1 m grids are provided in table 5.

Table 5. ANOVA F statistic for difference between plant canopy
 and air temperature (PCT) and canopy chlorophyll concentration

index (CCCI) for the 1 Ü 1 m grid.

Deg  of
DOY

Deg. of
Freedom 181–182 218 228 231

PCT
Treatment 3 37 159 110 2350
Row 3 172 15 15 242
Column 3 2869 427 255 843

CCCI
Treatment 3 151 3641 4308 10347
Row 3 53 991 372 1697
Column 3 852 3063 1659 595
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The PCT and CCCI data showed significant differences
between treatments (P > 0.000x) at all grid sizes even before
treatments were applied (DOY 181–182). Significant P
values are common for very large data sets such as the 1–m
grids (exceeded 20,000 points). To understand what is
occurring, it is often necessary to compare the relative size
of the F statistic between the different models (treatment,
row, and column effects). It appears that with high–resolution
remote sensing data, ANOVA alone may not be sufficient for
evaluation of the significance of differences in all cases.

The data in table 5 for DOY 181–182 (no treatment day)
show that the column effects greatly exceeded the treatment
effects for both PCT and CCCI. For PCT, even the row effects
were more dominant than the treatment effects. That the
results for the treatments were significant is misleading, as
the column effects were the dominant effects and there were
no water management differences between treatments.
Excavation of soil pits and field observation indicated that
there was a slight variation in soil along a southwest to
northeast gradient, and the column/row effects for individual
plots (Kostrzewski, 2000) supported this variation. It is also
possible that the large column effects were caused by the fact
that the linear moved across the field in the east–west
direction, and data collection was taken over a period of 2
hours. Thus, the column of data at the east end of the field was
taken under slightly different environmental conditions than
the column at the west end of the field.

Column effects were 2 to 3 times greater than treatment
effects for PCT on DOY 218 and 228. Only on DOY 231,
when water stress was visually apparent and was high (fDEP
= 0.6) on the water–stressed plots, were the treatment effects
dominant. This further demonstrates the difficulty in using
PCT values for directly determining water stress.

CCCI treatment effects were less than column effects on
DOY 181–182, approximately the same as column effects on
DOY 218, and much greater than column effects on DOY 228
and 231. This is also in agreement with the average CCCI

differences between treatments presented in table 4: treat-
ment effects were dominant only on DOY 228 and 231.

COEFFICIENT OF VARIATION OF REMOTELY SENSED INDICES
The effect of grid size and level of stress on the coefficient

of variation of remotely sensed data was evaluated. Lower
resolution grid cells were constructed based on the mean of
the 1 Ü 1 m grid cells that were contained by the larger cells;
this method of averaging is representative of remotely sensed
data collection at different spatial scales (2 Ü 2 m to 10 Ü 10
m). The determination of the maximum spatial scale that
provides sufficient information for assessment of spatial
variability should aid in the selection of the appropriate scale
of future remote sensing platforms.

The Dunnet (Kuehl, 1994) test was used to determine if
there was a statistical difference in average treatment PCT or
CCCI values with large and small grid sizes. As expected
with the method of constructing grids based on simple
averaging, out of 144 comparison tests, not one was
significant.

The coefficient of variation of PCT vs. grid size is shown
in figure 6 for DOY 181–182, 218, 228, and 231. The four
plot numbers that are included in each treatment are also
shown in the legend, and the data from the four plots within
each treatment were pooled for this analysis. Figure 6
combined with information in table 4 indicates that the
coefficient of variation increases with soil water depletion
and plant water stress.

On DOY 181–182, CV was low in all treatments at all
scales (fig. 6), and CV did not change significantly with
scale. For DOY 218, the optimal water plots (NW and nW)
had greater fDEP (table 4) than the low water plots (Nw and
nw). Three of the treatments had higher CV of PCT in the 1,
2, and 3–m grid sizes on DOY 218: the two optimal water
plots (NW and nW) and the optimal nitrogen and low water
plot (Nw). Thus, the CV of PCT showed stress in the same
plots in which the in–situ measurements indicated stress
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Figure 6. Coefficient of variation of difference between plant canopy and air temperature (PCT) vs. grid resolution.
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Figure 7. Coefficient of variation of canopy chlorophyll concentration index (CCCI) vs. grid resolution.

(table 4). The increase in CV in the optimal nitrogen and low
water plot is possibly explained by the fact that the optimal
nitrogen treatments had increased plant biomass and were
thus more susceptible to water stress; field biomass measure-
ments indicated that the plants in the nW plots had less bio-
mass than the NW treatments. However, the fDEP values in
table 4 do not support the contention that the nW treatment
had less fDEP than the NW treatment. On DOY 228, the low
nitrogen and optimal water treatment had less fDEP than the
other plots (0.26 vs. 0.32) and also had a slightly lower CV
than the other plots at the 1 and 2 m grid scales. The low water
plots on DOY 231 were stressed beyond the treatment design
of a maximum 50% fDEP (table 4). This stress difference is
reflected in the CVs in figure 6, in which the CVs for the low
water plots are significantly higher for all resolutions. In
summary, the CV of PCT shows promise as a reliable indica-
tor of plant water status, even though the mean value of PCT
was not.

The CV of CCCI vs. grid size is shown in figure 7 for DOY
181–182, 218, 228, and 231, respectively. The explanation
for the fact that the CCCI CVs were much lower than the PCT
CVs is unknown. Except for DOY 181–182, with less than
full canopy and dominant soil effects, all CVs of CCCI at
nearly all grid scales were nearly twice as high in the low
nitrogen treatments as in the optimal nitrogen treatments.
The CV of CCCI is a more robust indicator of nitrogen status
than the mean CCCI.

The fact that CV of CCCI was higher at all grid sizes and
CV of PCT was generally higher only at high resolution may
be due to either or both of the following explanations:
variation of nitrogen occurs over a greater length scale than
variation of PCT, and/or there is such a large difference in CV
of CCCI between the treatments that it is still apparent at
larger scales. If detection of change in CV of PCT is a design
criteria for a remote sensing system, then grid scales of 3 m
or finer may be acceptable. Likewise, 7 m resolution may
acceptable  for detection of CV of CCCI. However, it is likely

that determination of the minimum acceptable scale is soil
dependent and should be evaluated for each soil type.

CONCLUSIONS
The mean value of the difference between canopy and air

temperature (PCT) was not an effective method to detect
water status except in the case of extreme stress on DOY 231.
However, the coefficient of variation (CV) of PCT detected
small differences in soil water depletion (6% to 10%) in the
20% to 30% soil water depletion range. Except for extreme
stress, detection of water status with CV of PCT was only
apparent at a scale of 3 m or finer.

Except for DOY 181–182, with less than full canopy and
dominant soil effects, all CVs of the canopy chlorophyll
concentration index (CCCI) at nearly all grid scales were
nearly twice as high in the low nitrogen treatments as in the
optimal nitrogen treatments. Differences in CV of CCCI
between treatments were generally less at grid scales greater
than 7 m.

ANOVA was not an effective statistical method to
evaluate differences between treatments because of the large
number of data points in each plot.
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