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REMOTE SENSING BASED ENERGY

BALANCE ALGORITHMS FOR MAPPING ET�:
CURRENT STATUS AND FUTURE CHALLENGES

P. H. Gowda,  J. L. Chávez,  P. D. Colaizzi,  S. R. Evett,  T. A. Howell,  J. A. Tolk

ABSTRACT. Evapotranspiration (ET) is an essential component of the water balance and a major consumptive use of irrigation
water and precipitation on cropland. Remote sensing based agrometeorological models are presently most suited for
estimating crop water use at both field and regional scales. Numerous ET models have been developed in the last three decades
to make use of visible, near‐infrared (NIR), shortwave infrared (SWIR), and most importantly, thermal data acquired by
sensors on airborne and satellite platforms. In this article, a literature review is done to evaluate numerous remote sensing
based algorithms for their ability to accurately estimate regional ET. The remote sensing based models generally have the
potential to accurately estimate regional ET; however, there are numerous opportunities to further improve them. The spatial
and temporal resolution of currently available remote sensing data from the existing set of earth‐observing satellite platforms
are not sufficient enough to be used in the estimation of spatially distributed ET for on‐farm irrigation scheduling purposes,
especially at the field scale (~10 to 200 ha). This will be constrained further if the thermal sensors on future Landsat satellites
are abandoned. Research opportunities exist to improve the spatial and temporal resolution of ET by developing algorithms
to increase the spatial resolution of surface temperature data derived from ASTER/MODIS thermal images using
same/other‐sensor high‐resolution visible, NIR, and SWIR images.

Keywords. ET mapping, Irrigation scheduling, Surface energy balance, Water management.

vapotranspiration (ET) has been long been
recognized as playing an essential role in
determining exchanges of energy and mass
between the hydrosphere, atmosphere, and

biosphere (Sellers et al., 1996). In agriculture, it represents a
major consumptive use of irrigation water and precipitation.
Any attempt to improve water use efficiency must be based
on reliable estimates of ET, which includes water
evaporation from land and water surfaces and transpiration
by vegetation. ET varies spatially and seasonally according
to weather and vegetation cover conditions (Hanson, 1991).

At the field scale, ET can be measured over a homogenous
surface using conventional techniques such as Bowen ratio
(BR), eddy covariance (EC), and lysimeter systems.
However, these systems do not provide spatial trends at the
regional scale, especially in heterogeneous landscapes with
advective climatic conditions. Remote sensing based ET
models are better suited for estimating crop water use at both
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field and regional scales (Allen et al., 2007a). This article
discusses some of the common remote sensing based land
surface energy balance (EB) algorithms for mapping regional
ET and their limitations, data needs, knowledge gaps, and
future opportunities and challenges with respect to
agriculture.

REMOTE SENSING BASED EB ALGORITHMS
EB algorithms are based on the rationale that ET is a

change of the state of water using available energy in the
environment for vaporization (Su et al., 2005). Remote
sensing based EB algorithms convert satellite sensed
radiances into land surface characteristics such as albedo,
leaf area index, vegetation indices, surface roughness,
surface emissivity, and surface temperature to estimate ET as
a “residual” of the land surface energy balance equation:

LE = Rn - G - H (1)

where Rn is the net radiation resulting from the budget of
shortwave and longwave incoming and emitted radiation, LE
is the latent heat flux from evapotranspiration, G is the soil
heat flux, and H is the sensible heat flux (all in W m-2 units).
LE is converted to ET (mm h-1 or mm d-1) by dividing it by
the latent heat of vaporization (λv, ~2.45 MJ kg-1). Net
radiation and soil heat flux, which is a function of Rn and
vegetation indices (Chávez et al., 2005; Daughtry et al.,
1990), may be estimated using meteorological measure-
ments (Allen et al., 1998) and by incorporating spatially
distributed reflected and emitted radiation (Jackson et al.,
1985; Jackson et al., 1987; Kustas et al., 1989; Daughtry et
al., 1990) as:
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where α is surface albedo; Rs is incoming shortwave
radiation (W m-2) measured with pyranometers or calculated
using the solar constant, the cosine of the solar incidence
angle, the inverse squared relative earth‐sun distance, and
atmospheric transmissivity based on the ground elevation of
the area of interest (image) with respect to mean sea level; �
is the Stefan‐Boltzmann constant (5.67E-08 W m-2 K-4); ε
is emissivity; and T is temperature (K) with subscripts a and
s for air and surface, respectively. Ts is the remotely sensed
radiometric surface temperature, which is obtained after
correcting the brightness temperature imagery for
atmospheric effects and surface emissivity. Other authors
(Trezza, 2002; Allen et al. 2007a) have included an extra
term in equation 2 to account for reflection of incoming
longwave radiation in the form: -(1 - εs)Ta

4.
Some early applications of remote sensing based EB

models include Brown and Rosenberg (1973), Stone and
Horton (1974), Idso et al. (1975), Heilman et al. (1976), and
Jackson et al. (1977). Most of these studies used airborne
scanners, as first demonstrated by Bartholic et al. (1972).
Price (1982) and Seguin and Itier (1983) were among some
of the first to use thermal data obtained from satellites to
estimate ET. They proposed to use surface temperature
derived from remotely sensed data to estimate regional ET in
the form:

ah
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TTC
GRLE
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where ρa is air density (kg m-3), Cp is specific heat capacity
of the air (J kg-1 K-1), and rah is aerodynamic resistance for
heat transfer (s m-1). Ts and Ta are expressed in K. For
example, Brown and Rosenberg (1973) and Brown (1974)
used the surface radiometric temperature and air temperature
difference (Ts - Ta) and the aerodynamic resistance (rah) to
estimate H, where the canopy or surface temperature was
obtained from remotely sensed radiometric temperature
using thermal scanners having a bandwidth mostly in the
range of 10 to 12 μm. Later, Rosenberg et al. (1983)
incorporated the term surface aerodynamic temperature (To)
in the H model, instead of Ts, considering that the temperature
gradient (for H) was a gradient between the air temperature
within the canopy (at a height equal to the zero plane
displacement  plus the roughness length for heat transfer) and
the air temperature above the canopy (at a height where wind
speed was measured or height for rah). They indicated that for
partially vegetated areas and water‐stressed biomass, the
radiometric and aerodynamic temperatures of the surface
were not equal.

Accurate estimates of H are very difficult to achieve using
a direct, absolute equation for H (eq. 3) when Ts is used
instead of To and atmospheric effects and surface emissivity
are not considered properly. In such cases, H prediction errors
have been reported to be around 100 W m-2 (Chávez and
Neale, 2003). Consequently, more recent EB models differ
mainly in the manner in which H is estimated. These models
include the Two‐Source Model (TSM; Kustas and Norman,
1996), where the energy balance of soil and vegetation are
modeled separately and then combined to estimate total LE;
the Surface Energy Balance Algorithm for Land (SEBAL;

Bastiannesen et al., 1998) that uses hot and cold pixels within
the satellite images to develop an empirical temperature
difference equation; and the Surface Energy Balance Index
(SEBI; Menenti and Choudhury, 1993) based on the contrast
between wet and dry areas. Other models include the
Simplified Surface Energy Balance Index (S‐SEBI; Roerink
et al., 2000), the Surface Energy Balance System (SEBS; Su,
2002), the excess resistance (kB-1; Kustas and Daughtry,
1990; Su, 2002), the aerodynamic temperature
parameterization  models proposed by Crago et al. (2004) and
Chávez et al. (2005), the beta (β) approach (Chehbouni et al,
1996), and most recently the ET Mapping Algorithm
(ETMA; Loheide and Gorelick, 2005) and Mapping Eva-
potranspiration with Internalized Calibration (METRIC�;
Allen et al., 2007a). The sections below discuss the main
models in detail.

SEBI, SEBS, AND S‐SEBI
SEBI, proposed by Menenti and Choudhury (1993), is

based on the Crop Water Stress Index (CWSI; Jackson et al.,
1981) concept in which the surface meteorological scaling of
CWSI is replaced with planetary boundary layer (PBL)
scaling. It uses the contrast between wet and dry areas
appearing within a remotely sensed scene to derive ET from
the relative evaporative fraction (Λr). The Λr is calculated by
relating surface temperature observations to theoretical
upper and lower bounds on the difference between Ts and Ta
(Menenti et al., 2003). Evaporative fraction (Λ), as utilized
by Bastiaanssen et al. (1998), is defined as the ratio of latent
heat flux to the available energy (AE = Rn - G) and is assumed
to remain nearly constant during the day.

SEBS (Su, 2002) was developed using the SEBI concept.
It uses a dynamic model for aerodynamic roughness length
for heat (Su et al., 2001), bulk atmospheric similarity (BAS;
Brutsaert, 1975) and Monin‐Obukhov similarity (MOS)
theories for PBL to estimate regional ET, and atmospheric
surface layer scaling for estimating ET at local scale. SEBS
requires theoretically defined wet and dry boundary
conditions to estimate H. Under dry conditions, the
calculation of Hdry is set to the AE as evaporation becomes
zero due to the limitation of water availability and Hwet is
calculated using Penman‐Monteith parameterization
(Monteith, 1981). The main limitation with SEBS is that it
requires aerodynamic roughness height. A potential
weakness in the SEBS approach is the neglect of heat flux
absorption along the temperature profile when extrapolating
to and from the blending layer. The absorption, over a dry
condition, can be large, and it disrupts the assumption of a
smooth T gradient that conveys the H flux estimate all the
way to the blending height. This results in an overstatement
of the surface temperature for the dry condition and must be
accounted for somehow empirically.

S‐SEBI (Roerink et al., 2000) is a simplified method
derived from SEBS to estimate surface fluxes from remote
sensing data. Consequently, this model is based on Λ and the
contrast between the areas with extreme wet and dry
temperature.  The disadvantage of this method may be that it
requires extreme Ts values, which cannot always be found on
every image. However, the major advantages are that it is a
simpler method that does not need additional meteorological
data, and it does not require roughness length as in the case
of SEBS.
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TSM
The TSM considers the energy balance of the substrate

(e.g., soil) and vegetation components separately, and then
combines these components to estimate total ET. Norman et
al. (1995) and Kustas and Norman (1996) developed
operational methodology for the two‐source approach
proposed by Shuttleworth and Guerney (1990). This
methodology generally does not require additional
meteorological  information over single‐source models;
however, it requires some parameterizations governing the
partitioning of composite radiometric surface temperature
into soil and vegetation components, turbulent exchange of
mass and energy at the soil level, and coupling/decoupling of
energy exchange between vegetation and substrate
(i.e.,�parallel  or series resistance networks). The energy
exchange in the soil‐plant‐atmosphere continuum is based on
resistances to heat and momentum transport, and sensible
heat fluxes are estimated by the temperature gradient‐
resistance system. Radiometric temperatures, resistances,
sensible heat fluxes, and latent heat fluxes of the canopy and
soil components are derived by iterative procedures
constrained by composite directional radiometric surface
temperature,  vegetation cover fraction, and maximum
potential canopy transpiration flux.

Although this method is more physically based, it still
incorporates a number of semi‐empirical submodels, such as
the clumping factor (a function of LAI and soil fraction
cover), extinction coefficients for canopy and wind function,
solar transmittance in the canopy, canopy emissivity, etc.
Because of the semi‐empirical submodels, the underlying
assumptions, and the number of inputs/steps in the TSM
algorithm, it may be subject to errors if not carefully applied.

SEBAL
Bastiaanssen et al. (1998, 2005) described SEBAL in

detail. Briefly, SEBAL is essentially a single‐source model
that solves the EB for LE as a residual. Rn and G are
calculated based on Ts and reflectance‐derived values for
albedo, vegetation indices, LAI, and surface emissivity. H is
estimated using the bulk aerodynamic resistance model and
a procedure that assumes a linear relationship between the
aerodynamic near‐surface temperature‐air temperature
difference (dT) and Ts calculated from extreme pixels.
Basically, extreme pixels showing cold and hot spots are
selected to develop a linear relationship between dT and Ts,
where the dT parameter eliminates the need for Ta and
knowledge of To. It also provides for some bias compensation
for errors in Rn and G. At the pixel with cold condition, H is
assumed non‐existent (i.e., Hcold = 0), and at the hot pixel, LE
is commonly set to zero, which in turn allows Hhot = (Rn -
G)hot. Then dTcold = 0, and dThot can be obtained by inverting
the bulk aerodynamic resistance equation. The dT artifice is
expected to compensate for bias in surface temperature
estimates due to atmospheric correction, and it does not
assume that radiometric and aerodynamic temperatures are
equivalent. SEBAL has been tested extensively in different
parts of the world (Bastiannesen et al., 2005).

METRICTM

A full description of METRICTM can be found in Allen et
al. (2007a). The main difference between SEBAL and
METRICTM is that the latter does not assume H = 0 or LE =

Rn - G at the wet pixel. Instead, it calculates the ET of the hot
pixel by performing a soil water budget, using
meteorological  data from a nearby weather station, to verify
that ET is indeed zero for that pixel. For the wet pixel, LE is
set equal to 1.05 ETr λv, where ETr is the hourly (or shorter
time interval) tall crop reference (like alfalfa) ET calculated
using the standardized ASCE Penman‐Monteith equation
applied to local meteorological observations. The second
difference is that METRICTM selects extreme pixels purely
in an agricultural setting, where particularly the cold pixel
needs to have biophysical characteristics (hc, LAI) similar to
the reference crop (alfalfa). The third difference is that
METRIC uses the alfalfa reference evapotranspiration
fraction (ETrF) mechanism to extrapolate instantaneous LE
flux to daily ET rates instead of using the Λ. The ETrF is the
ratio of ETi (remotely sensed instantaneous ET) to the
reference ETr that is computed from weather station data at
overpass time. The benefits of using ETr are the calibration
around biases in Rn and G estimates at both ends of the
temperature range (i.e., at the cold and hot pixels) as well as
calibration around biases in Ts. An additional benefit of using
ETr and ETrF is the ability to account for general advection
impacts on ET. Disadvantages are the requirement for
relatively high‐quality weather data on an hourly or shorter
time step and reliance on the accuracy of the ETr estimate.

LIMITATIONS AND FUTURE CHALLENGES
TS VS. TO

It was recognized that Ts is sensitive to crop conditions and
management practices (Kimes et al., 1980; Kimes, 1983)
regardless of the type of platform used (i.e., ground, airborne,
or satellite) or sensor characteristics (i.e., bandpass response,
field of view, internal calibration). Most single‐source EB
methods use Ts as a surrogate for To, although they may not be
equal. Greater differences between Ts and To may be found with
larger BRs (i.e., when the sensible heat flux is much larger in
proportion to latent heat flux) and with partial vegetation
(Hatfield et al., 1984; Jackson et al., 1987) and dry or water‐
stressed vegetation (Kalma and Jupp, 1990). Alves et al. (2000)
found that the Ts for dry conditions greatly departed from the To,
which in turn will result in considerable errors in the estimation
of sensible heat flux unless an inverted calibration scheme such
as in SEBI, SEBAL, METRIC, etc., is employed.

SPATIAL AND TEMPORAL RESOLUTION

In many EB models, Ts is one of the key boundary
conditions for estimating spatially distributed ET. In other
EB models, Ts is used more as an index for spatial distribution
of H rather than as an absolute boundary condition.
Numerous remote sensing satellites provide thermal images
that can be used to derive Ts. However, the spatial resolutions
of these thermal images are nearly always coarser than that
acquired in other wavelengths such as visible, near‐infrared
(NIR), and shortwave‐infrared (SWIR). For example, the
Moderate Resolution Imaging Spectrometer (MODIS)
provide thermal images that are at 1000 m resolution (at near
nadir), compared with 250 m resolution for images acquired
in other bandwidths on the same satellite platform. Further,
the time interval between successive satellite overpasses
(repeat cycle) over the same geographic area varies from
satellite to satellite. For more frequent coverage, the spatial
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resolution of the acquired images becomes coarser. For
example, the Landsat 5 satellite has a repeat cycle of 16 days
with 30 to 120 m spatial resolution, compared with daily
coverage of MODIS with 250 to 1000 m.

The ET maps derived from remote sensing data acquired
by satellite‐based sensors with daily coverage such as
MODIS and Advanced Very High Resolution Radiometer
(AVHRR) are not sufficient to satisfy most agricultural
management  needs as their pixel size is larger than individual
fields, causing significant errors in ET estimation at the field
scale (Tasumi et al., 2006). The errors in the estimated ET are
partly due to the presence of contaminated pixels, i.e., pixels
with multiple land uses/vegetation types with significant
differences in cover, roughness, and/or moisture content
(Kustas et al., 2004). This condition is more common in arid
and semi‐arid regions where fully irrigated fields are usually
surrounded by extremely dry landscape. However, a research
opportunity exist to utilize simultaneously acquired high‐
resolution visible, VNIR, and SWIR images from MODIS as
well as data from other sensors such as AVHRR, Advanced
Spaceborne Thermal Emission and Reflection Radiometer
(ASTER), or Landsat 5 TM for spatial sharpening of
relatively low‐resolution thermal imagery (Agam et al.,
2007; Kustas et al., 2003) that would be useful for developing
high‐resolution ET maps for irrigation scheduling purposes.
Limited research has been done to evaluate the scale
influences on the estimation of ET using multiple aircraft and
satellite sensors (McCabe and Wood, 2006).

DATA ACCURACY

One main drawback of EB methods such as METRIC,
SEBAL, SEBS, SEBI, S‐SEBI, and ETMA is that they rely
on the presence of extreme Ts (hot and cold or dry and wet)
pixels in the imagery. Without the presence of high water use
crops in the imagery, these methods may under‐scale if not
adjusted to the true potential surface temperature range, thus
leading to errors in the spatial ET estimation. Allen et al.
(2007a) suggested a method to assign an adjusted ET to the
cold extreme condition for when vegetation conditions are
not at potential and for application to MODIS when thermal
pixels are too large to contain only the cold condition. These
methods reduce the need for accurate atmospheric correction
of remote sensing data and surface emissivity to accurately
estimate H. TSM does not require identifying extreme
temperature pixels and appears to perform very well over
heterogeneous surfaces with daily ET estimate errors lower
than 15%. However, it requires atmospheric correction of
images with atmosphere radiative transfer models and local
radiosonde data and assumptions on planetary boundary
layer development. The magnitude of errors in the calibration
of radiometric temperature values depends mainly on the
availability  and accuracy of local atmospheric relative
humidity profile and visibility data close to the time of
remote sensing data acquisition. Other errors with the EB
models may relate to the spatial validity of weather station
data, such as air temperature, dewpoint temperature, and
wind speed, in highly advective arid and semi‐arid regions,
as well as the submodels used to derive LAI, crop height, and
fraction cover from remote sensing data.

DATA PROCESSING TIME AND USER FRIENDLINESS
Timeliness of information products derived from

remotely sensed data remains an unresolved issue since Park

et al. (1968) and others first envisioned applications for
agricultural  management. This has been revisited numerous
times during the intervening four decades (e.g., Jackson,
1984; Moran et al., 1997). To reiterate, the usefulness of
remote sensing in the estimation of irrigation water demand
for direct water management depends on the turnaround time
between image acquisition and the dissemination of derived
ET information. At present, the turnaround time is anywhere
from 1 to 3 weeks depending on the remote sensing platform/
sensor, the algorithm utilized, and the technician's
experience and expertise in applying such algorithms.
However, for most agricultural applications, ET maps should
be delivered within hours, and almost instantaneous
(i.e.,�real‐time)  timeliness is required for irrigation
scheduling. Research should include programs geared
towards rapid processing and analysis of remotely sensed
imagery with the aid of artificial intelligence, to make ET
maps readily available to producers, researchers, and the
general public by publishing daily digital ET maps over the
internet. For many water rights determination applications,
water transfers, hydrology studies, and planning studies,
longer turnaround times are tolerable, and in fact, historical
archives of satellite images are often employed to determine
historical usage and trends (Allen et al., 2007b).

CONCLUSIONS
Reliable regional ET estimates are essential to improve

spatial crop water management. Land surface energy balance
(EB) models, using remote sensing data from ground,
airborne, or satellite platforms at different spatial resolutions,
have been found to be promising for mapping daily and
seasonal ET at a regional scale. In this article, a brief review
of numerous remote sensing based models was made to
assess the current status of research, the underlying principle
for each method, their data requirements, and their strengths
and weaknesses. Although the remote sensing based ET
models have been shown to have the potential to accurately
estimate regional ET, there are opportunities to further
improve these models through (1) developing methods to
accurately estimate aerodynamic temperature, (2) testing the
spatial validity of the meteorological data such as air
temperature and wind speed used in the EB models, and (3)
testing the submodels used to estimate soil heat flux, LAI,
crop height, etc., for their accuracy under various
agrometeorological/environmental  conditions.

The spatial and temporal remote sensing data from the
existing set of earth‐observing satellite sensors are not
sufficient enough to use their ET products for irrigation
scheduling. This will be constrained further by the possible
disappearance of thermal sensors on future Landsat satellites.
However, research opportunities exist to improve the spatial
and temporal resolution of ET by developing data fusion/
subpixel extraction algorithms to improve spatial resolution
of surface temperature data derived from Landsat/ASTER/
MODIS thermal images using same/other‐sensor high‐
resolution visible, NIR, and SWIR images.
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