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Abstract: Mapping and monitoring leaf area index (LAI) is important for spatially distributed 
modeling of surface energy balance, evapotranspiration and vegetation productivity. Remote sensing 
can facilitate the rapid collection of LAI information on individual fields over large areas in a time and cost-
effective manner. However, there are no LAI models available for the major summer crops in the Texas 
Panhandle. The main objective of this study was to develop statistical relationship between LAI and 
Landsat Thematic Mapper (TM) based spectral vegetation indices (SVI) for major crops in the Texas 
Panhandle. LAI was measured in 48 randomly selected commercial fields in Moore and Ochiltree 
counties. Data collection was made to coincide with Landsat 5 satellite overpasses on the study area. 
Numerous derivations of SVIs were examined for estimating LAI using ordinary least square 
regression models such as linear, quadratic, power and exponential models. The R2 values for the 
selected models varied from 0.76 to 0.84 with the power function model based on the normalized 
difference between TM bands 4 and 3 (NDVI) producing the best results. Analysis of the results 
indicated that the SVI-LAI models based on the simple ratio i.e. the ratio of TM bands 4 and 3, and 
NDVI are most sensitive to LAI.   
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INTRODUCTION 
Leaf area index (LAI) is a measure of foliage density that plays a major role in photosynthesis, 
groundwater-surface water interactions through evapotranspiration (ET) (Sumner and Jacobs, 
2004), atmospheric gas exchange (Burkart et al., 2004), nutrient uptake (Leonard et al., 1987) 
and crop productivity (Thenkabail et al., 1994). Obviously, it is one of the sensitive input 
parameters to plant growth, atmospheric circulation (Sellers et al., 1997; Ruimy et al., 1994), 
energy balance (Bonan, 1995), and water quality simulation models (Gowda et al., 1999) at field 
to landscape to global scales. Accurate estimates of LAI are also useful in estimating soil water 
content from microwave remote sensing data by subtracting the effects of crop water content on 
reflectance (Anderson et al., 2004).  
 
Traditional in-situ techniques to measure LAI involve destructive sampling of leaves and are 
time intensive. However, in recent years, numerous indirect in-situ methods have been developed 
to measure LAI including the scanner method (Yang et al., 2002; Kang et al., 2005), electronic 
leaf area meter (Delta-T Devices Ltd, Cambridge1, UK; Rouphael and Colla, 2005) and LAI-
2000, Plant Canopy Analyzer1 (Welles and Norman, 1991). Although these in-situ techniques 
can be accurate, it is not practical to use them to monitor LAI spatially and temporally over large 
geographic areas. One approach is to employ satellite remote sensing techniques to estimate LAI. 
The use of satellite data is a practical alternative to in-situ measurements, provided that suitable 
spectral vegetation indices (SVI) can be developed.  
 
In the last three decades, numerous SVIs have been developed to estimate LAI from Landsat 
Multi-Spectral Scanner (MSS) (Wiegand et al., 1979 for winter wheat), Thematic Mapper (TM) 
(Thenkabail et al., 1994 for corn and soybean) and Enhanced Thematic Mapper Plus (ETM+) 
(Xavier and Vettorazzi, 2004 for mixed crops mainly sugarcane; Walthall et al., 2004 for corn 
and soybean) sensors. Table 1 presents spatial and spectral resolutions of the Landsat 5 TM data. 
 
Table 1. Landsat 5 Thematic Mapper(TM) sensor specifications. 
 

Band Wavelength Region (µm)† Spatial Resolution (m) 
1 0.45 – 0.52 (Blue) 30 
2 0.52 – 0.60 (Green) 30 
3 0.63 – 0.69 (Red) 30 
4 0.76 – 0.90 (NIR) 30 
5 1.55 – 0.75 (MIR) 30 
6 10.4 – 12.5 (TIR) 120 
7 2.08 – 2.35 (MIR) 30 

†NIR – Near Infrared, MIR – Mid Infrared, TIR – Thermal Infrared. 
 

                                                 
1 Mention of trade or manufacturer names in this article is made for information only and does not imply an 
endorsement, recommendation, or exclusion by the United States Department of Agriculture – Agricultural Research 
Service. 

 2



These studies and others have shown that there is a strong contrasting relationship between 
spectral reflectance measurements of canopy cover in red and infrared wavelengths. 
Consequently, a simple ratio (SR), normalized difference vegetation index (NDVI), and soil 
adjusted vegetation index (SAVI) (Huete et al., 1994) are the three most commonly used SVIs to 
estimate LAI. All three use ratios of red (R) and near-infrared (NIR) reflectance: SR = NIR/R; 
NDVI = (NIR-R)/(NIR+R) and SAVI = (1+L) (NIR – R)/(NIR+R+L) where L is a coefficient 
introduced to reduce variation in background (soil and crop residue) reflectance and its value 
varies from 0 to 1. However, these indices are not sensitive at LAI values greater than 3.0 m2 m-

2. The normalized difference water index (NDWI; Anderson et al., 2004) uses normalized 
difference between NIR and shortwave infrared (SWIR) reflectance and the green index (GI; 
Gitleson et al., 2003) that uses green in place of red reflectance appear to be remain sensitive for 
LAI values between 3.0 and 6.0 (Walthall et al., 2004). The GI is given as: GI = (NIR / G)-1 
where G is the spectral reflectance in green wavelength. Most of LAI-SVI statistical 
relationships reported in the literature are based on ordinary least square regression (SAS Institute 
Inc., 2003) and follow one or more of the following models: (1) linear; LAI = a + bX; (2) 
exponential; LAI = a ebX

; (3) power or logarithmic; LAI = aXb; and quadratic; LAI = aX2 +bX+ c; 
where, X is either SVIs or reflectance/raw digital number derived from remote sensing data.  
 
While satellite remote sensing based SVIs have been used for mapping and monitoring LAI, the 
strengths and transferability of empirical LAI-SVI relationships to other regions may potentially 
be affected by exogenous factors such as sun-surface sensor geometry, background reflectance, 
and atmosphere-induced variations on canopy reflectance (Turner et al., 1999; Chen and Cihlar, 
1996; Jacquemond et al., 1995; Meyer et al., 1993). There have been few tests to compensate for 
exogenous effects factors on LAI-SVI relationships and results are mixed. Further, most studies 
in the past considered one vegetation type. Moreover, comparisons across studies have been 
limited by differences in sensor characteristics and image processing methods (Turner et al., 
1999).  
 
Overall, canopy cover reflectance is a multiple function of many variables that are different over 
time and space. Therefore, it may not be a viable option to develop a single SVI-based LAI 
model for one region and apply it to different regions. Further, spectrally based LAI models for 
agricultural crops in semi-arid regions are scarce and, currently, there are no such models 
available for the Texas Panhandle. Development of region-specific SVI indices will minimize 
errors in estimating LAI for use in as input to groundwater (to predict evapotranspiration), 
agronomic, ecological and climatic models. The main objective of this study is to develop a set 
of Landsat TM-based SVIs to estimate LAI for major agricultural crops in the Texas Panhandle. 
 
METHODS AND MATERIALS 
Study Area: This study was conducted with LAI data collected from 48 commercially operated 
farms (24 each in Ochiltree and Moore counties) in the Texas Panhandle underlain by the 
Ogallala aquifer (Fig. 1), which is being depleted by excessive pumping for irrigation. Moore 
County is in the north-central part of the Panhandle and has a total area of 236,826 ha. Two-
thirds of the land is in the nearly level, smooth uplands of the High Plains (USDA-SCS, 1975) 
and most of it under row crop production. Corn, sorghum, cotton and soybean are the major 
summer crops in both Ochiltree and Moore counties. In 2004, it ranked fifth in corn production 
in Texas and accounted for about 5.7 percent of total corn produced in the state (NASS, 2005). 
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The area of Ochiltree County is 234,911 ha with more than 45 percent of the land in 2004 under 
row crop production. In 2004, the Ochiltree County ranked eighth in Texas for sorghum 
production and accounted for about 2.4 percent of the total sorghum produced in the state 
(NASS, 2005). Annual average precipitation is about 481 and 562 mm for Moore and Ochiltree 
counties, respectively. Crop water needs are supplemented with groundwater from the 
underlying Ogallala aquifer. Nearly level to gently sloping fields with clay loam soils of the 
Sherm series occupy nearly all of the crop land in both Moore and Ochiltree counties. 
 
Field Data Collection: Two Landsat TM scenes were acquired, one on June 27, 2005 for 
Ochiltree County and the other on July 4, 2005 for Moore County, for developing the Landsat 
TM-based LAI models. Developing the LAI models consist of three steps: 1) ground-truth data 
collection, 2) atmospheric correction of Landsat TM imagery for deriving surface reflectance 
values for ground-truth location, and 3) development of SVI-LAI statistical relationships using 
the ordinary least square technique. On the day of the Landsat 5 satellite overpass, ground-truth 
data were collected from 48 randomly selected commercial fields (24 each in Ochiltree and 
Moore counties) in the study area. Ground-truth data included geographic coordinates using a 
handheld Global Positioning System (GARMIN GPSMAP 76, Garmin Ltd), plant type and 
density, width of plant rows and extraction of one representative plant for LAI measurement in 
the laboratory. The LAI was measured using the electronic leaf area meter (Delta-T Devices Ltd, 
Cambridge, UK; Rouphael and Colla, 2005). 
 

 
Figure 1. Location of Moore and Ochiltree counties in the Texas Panhandle, USA. 
 
Each pixel in the Landsat 5 image has a spatial resolution of 30 m after resampling. Ground truth 
pixel locations on the image were identified using the GPS coordinates. For model development, 
mean reflectance data from 9-pixels (ground-truth pixel and surrounding 8 pixels) were used, as 
it was difficult to precisely identify the ground truth location in the field. Atmospherically 
corrected surface reflectance (ρSUR) for each TM band was used to develop SVIs. As a first step 
to compute ρSUR, the digital numbers in each TM band image except thermal band 6 were 
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converted into spectral radiance (Lb), using the equation: Lb = Gain x DN + Bias, where Gain 
and Bias were extracted from the image header files from the satellite data provider. The top-of-
the-atmosphere reflectance (ρTOA) was calculated for each pixel in the image using the procedure 
outlined in Chander and Markham (2003). In this procedure, the ρTOA for each pixel was 
calculated by dividing spectral radiance by the incoming energy (radiance) in the same short-
wave band. The incoming radiance is a function of mean solar exo-atmospheric irradiance, solar 
incidence angle, and square of the relative earth-to-sun distance (Thenkabail, 2003). The ρSUR 
was computed after applying atmospheric interference corrections for short-wave absorption and 
scattering using narrow band transmittance calibrated for each band with the MODTRAN, a 
radiative transfer model (Berk et al., 2003). 
 
The LAI-SVI relationships were evaluated using ordinary least square regression analysis with 
measured LAI as the independent variable. A set of SVIs evaluated to develop LAI-SVI 
statistical relationships included difference indices, sum indices, product indices, ratio indices, 
and normalized difference indices. The least square regression models used to evaluate each of 
the SVIs were linear, exponential, power, and quadratic. Finally, the most significant models 
were identified and reported for the study area. The cutoff R2 value of 0.75 was used to identify 
the most significant models. 
 
RESULTS AND DISCUSSION 
LAI measurements were made in 16 commercial fields that planted to corn, 11 fields each to 
cotton and sorghum, and 8 fields to soybean, respectively. The measured LAI values varied from 
0.09 to 6.21 m2 m-2 with a standard deviation of 1.91 m2 m-2. High variability in the LAI 
measurements was due to presence of different crops at different growth stages.  
 
Table 2 presents a set of significant LAI-SVI models and associated R2, adjusted R2, root mean 
square error (RMSE), and F statistic for major summer crops in the Panhandle of Texas. 
Adjusted R2 measures the improvement in the performance of the model by adding another 
independent variable to the least square regression model.  
 
Seven out of 13 reported models (Table 2) use either SR (R43=TM band 4/ TM band 3) or NDVI 
i.e. normalized difference of TM bands 4 and 3. The remaining models use SVI that derived 
using either TM band 3 (R) or 4 (NIR) in combination with other TM bands such as 1, 2 or 7. 
This indicates that the R and NIR bandwidths are sensitive to the LAI and is consistent with 
previous reports (Thenkabail et al., 1994; Huete et al., 1994; Walthall et al., 2004). Chlorophyll 
pigments in plant leaf absorb energy in the red band of the electromagnetic spectrum resulting in 
relatively low red reflectance and transmittance while lignin in plant cell walls cause scattering 
of near-infrared energy resulting in relatively high near-infrared reflectance and transmittance 
(Gates et al., 1965). 
 
Based on the RMSE and F statistic, exponential and power models (Table 2) based on the 
normalized difference between the TM bands 4 and 3 were found to be the best models for 
estimating LAI. The power model that uses NDVI43 accounted for 84 percent of the variability 
in the measured LAI data with a relatively small RMSE of 0.50.  
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Table 2. Landsat 5 Thematic Mapper (TM) based Leaf area index (LAI) models for major crops 
in the Texas Panhandle.  

 

No. Model1 R2 Adj. R2 RMSE F 

Linear 

1 LAI = -5.789 + 11.848 * R13 0.76  0.96 138.00 

2 LAI = -1.296 + 0.437 * R41 0.76  0.95 138.15 

3 LAI = -0.301 + 0.425 * R43 0.77  0.93 147.53 

4 LAI = -0.306 + 0.811 * R47 0.79  0.90 160.77 

5 LAI = -3.488 + 9.291 * NDVI43 0.77  0.94 142.92 

Quadratic 

6 LAI = -2.581 + 0.777 * R41 – 0.018 * (R13)2 0.77 0.76 0.94 72.95 

7 LAI = -3.143 + 1.365 * R42 – 0.055 * (R42)2 0.80 0.79 0.89 83.51 

8 LAI = -1.195 + 0.775 * R43 -0.023 * (R43)2 0.80 0.79 0.89 83.12 

9 LAI = -1.095 + 1.412 * R47 – 0.076 * (R47)2 0.80 0.79 0.88 86.19 

10 LAI = 1.066 – 6.973 * NDVI43 + 13.277 * 
(NDVI43)2 0.79 0.78 0.89 82.88 

Exponential 

11 LAI = 0.029 e6.137 * NDVI43 0.81  0.55 182.41 

Power 

12 LAI = 0.099 * (R43)1.632 0.75  0.63 129.75 

13 LAI = 8.768 * (NDVI43)3.616 0.84  0.50 228.10 
1 R13, R41, R42, R43, and R47 = Ratio of bands 1 and 3, 4 and 1, 4 and 2, 4 and 3, and 4 and 7, respectively; 
NDVI43 = normalized difference between bands 4 and 3. 

 
CONCLUSIONS 

Leaf area index (LAI) is important for spatially distributed modeling of surface energy balance, 
evapotranspiration and vegetation productivity. The Landsat 5 Thematic Mapper (TM)-based 
spectral vegetation indices (SVIs) were evaluated using the ordinary least regression technique 
for their ability to estimate LAI for major crops in the Panhandle of Texas. A set of most 
significant SVI-LAI models was identified. The R2 values for the selected models varied from 
0.76 to 0.84 with the power model based on the NDVI producing the best agreement with field-
measured LAI. Analysis of the results indicated that SR and NDVI were sensitive to LAI, which 
is consistent with the literature. Overall, the remote sensing approach is promising for the rapid 
collection of LAI information on individual fields over large areas in the Northern High Plains of 
Texas in a time and cost-effective manner. 
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