Tables of Thermal Properties of Gases Comprising Tables of Thermodynamic and Transport Properties of Air, Argon, Carbon Dioxide, Carbon Monoxide Hydrogen, Nitrogen, Oxygen, and Steam by Joseph Hilsenrath, Charles W. Beckett, William S. Benedict, Lilla Fano, Harold J. Hoge Joseph F. Masi, Ralph L. Nuttall, Yeram S. Touloukian, Harold W. Woolley # National Bureau of Standards Circular 564 Issued November 1, 1955 ### PREFACE Progress in all fields of science and technology rests on a knowledge of the properties of matter. This collection of tables is one of a series of compilations published by the National Bureau of Standards in furtherance of its mission to compile and disseminate data on the physical properties of substances of technical and scientific interest. The advances in high-speed flight—both in research and engineering—are particularly dependent on precise knowledge of the behavior of materials of construction, of the theory of flight, of the physical and chemical properties of fuels and oxidizers, and of the very atmosphere through which flight is sustained. The importance of basic thermodynamic and transport data for air and its constituent gases in the conduct of aerodynamic research has long been recognized. In 1948, Raymond J. Seeger, then Chief of the Aeroballistics Research Department, at the Naval Ordnance Laboratory, suggested to Ferdinand G. Brickwedde, Chief of the Heat and Power Division at the National Bureau of Standards, and to Hugh L. Dryden, Director of Research of the National Advisory Committee for Aeronautics, that a program of research and compilation be initiated in this field. After consultation with interested persons, F. G. Brickwedde proposed a program of research and outlined a plan for the compilation of tables of thermodynamic and transport properties of gases. This outline was circulated to a number of research laboratories and independent research workers for comment. As a result, plans for the compilation were improved, the program was formulated, and arrangements were made for a cooperative program with the National Advisory Committee for Aeronautics. The work was organized around members of the Thermodynamics Section of the Heat and Power Division who were at that time engaged in experimental research on the thermodynamic properties of gases. The responsibility for coordinating the efforts of the staff and supervising the work in general was delegated to Joseph Hilsenrath. A decision was reached to distribute tables initially in looseleaf form in order to gain user reaction and suggestions, to stimulate the receipt of prepublication research results, and to supply research workers with the data without undue delay. The series was called the NBS-NACA Tables of Thermal Properties of Gases. In all, 43 separate tables were prepared and distributed between the inception of the project and October 1951. The compilation of these tables was greatly facilitated by advances in the mechanization of thermodynamic calculations. From the beginning of this work, the staffs of the NBS Computation Laboratory and the Thermodynamics Section have worked together closely. Valuable assistance was rendered early in the work—and indeed throughout—by the hand-computing group of the Computation Laboratory. Later many of the operations involved in the calculation of the tables were performed by the IBM group which handled subtabulations, conversions, numerical integrations, and the automatic-typing, by means of a card-controlled typewriter, of the more than 300 pages of tables presented here. In the course of the calculation of thermodynamic properties, a number of codes were devised for use on the Bureau of Standards Eastern Automatic Computer (SEAC). Codes are now available for the rapid calculation of: the harmonic-oscillator approximation to the ideal-gas thermodynamic functions; the corrections to the rigid-rotator harmonic-oscillator approximation including non-classical rotation and first-order corrections for rotational stretching, rotation-vibration interaction, and vibrational anharmonicity; and the calculation of tables of compressibility, density, and volume from virial coefficients. The advantage of the use of high-speed electronic computers for the calculation of thermodynamic functions is evidenced by the time-about 5 minutes -- which was required to compute the some 320 entries in the table of ideal-gas thermal functions for steam (table 9-9). The following members of the Thermodynamics Section were assigned to the project: William S. Benedict, Harold J. Hoge, Joseph F. Masi, Ralph L. Nuttall, and Harold W. Woolley. The group was joined by Charles W. Beckett in 1950, and by Lilla Fano in 1951. Yeram S. Touloukian, on leave from Purdue University, spent the summers of 1951 and 1952 on the project. The division of responsibility was approximately as follows: Benedict and Hilsenrath correlated the data on air, Beckett and Fano on argon and water, Woolley on hydrogen, nitrogen, and oxygen, Touloukian on carbon monoxide, Masi on carbon dioxide, Hoge correlated the vapor pressure, and Nuttall correlated the thermal conductivities. The viscosity tables were computed by Nuttall, Hilsenrath, and Touloukian. Since a number of the authors have left the National Bureau of Standards, their present addresses are given below: William S. Benedict, Institute for Cooperative Research, Johns Hopkins University, Baltimore, Maryland; Harold J. Hoge, U. S. Army Quartermaster Research and Development Laboratories, Natick, Massachusetts; Joseph F. Masi, Callery Chemical Company, Callery, Pennsylvania; Ralph L. Nuttall, Argonne National Laboratories, Lemont, Illinois; and Yeram S. Touloukian, Department of Mechanical Engineering, Purdue University, Lafayette, Indiana. The project has had a number of contributors and assistants from time to time. Among the former are: F. Charles Morey, who correlated the viscosity data for air; John Hubbell, who participated in the calculation of the steam data; Robert L. Powell, who correlated the viscosity of oxygen; and Robert Lindsay, who supervised the calculation of some of the air tables. The latter group includes Mary M. Dunlap, H. W. Flieger, F. R. Grover, G. G. King, L. C. Mihaly, J. T. Prather, P. P. Rumps, S. B. Schwartz, M. L. Snow, and Norma Young. One assistant, F. D. Queen, merits special mention. He has the distinction of having served the longest term on the project and for periods of time was indeed the only full-time worker. He was at times computer, draftsman, typist, and literature searcher. His detailed knowledge of the work and its progress was of immeasurable help to the project, and the authors are indeed in his debt. Most valuable assistance was received from the Division of Applied Mathematics Computation Laboratory Staff under the supervision of Milton Abramowitz and Irene Stegun, and in particular from the IBM group which included L. Gordon, P. J. O'Hara, B. S. Prusch, M. Stein, and Ruth Zucker. The SEAC coding was performed by Ethel C. Marden of the Computation Laboratory. The preparation of the manuscript was expedited by the editorial assistance of Edith N. Reese, and the typescript was prepared by Hattie M. Napier. A project of this magnitude could not be brought to fruition without the cooperation of many persons within the Bureau and outside. The authors wish particularly to acknowledge the helpful advice or data furnished by the following: N. A. Hall, University of Minnesota; J. O. Hirschfelder, University of Wisconsin; H. L. Johnston, Ohio State University; F. G. Keyes, Massachusetts Institute of Technology; E. J. LeFevre, Mechanical Engineering Research Organization, Scotland; A. Michels, University of Amsterdam; and D. D. Wagman, NBS Thermochemistry Section. Others who contributed advice or data include J. D. Ackerman, T. F. Ball, H. C. Beaman, J. W. Beams, J. A. Beattie, E. W. Comings, S. Corrsin, C. F. Curtiss, M. C. Demler, W. S. Diehl, P. Diserens, H. W. Emmons, W. H. Evans, I. Glassman, J. A. Goff, L. Goldstein, R. P. Harrington, G. A. Hawkins, W. F. Hilton, J. N. Huff, M. Jakob, E. D. Kane, G. C. Kennedy, J. Kestin, A. M. Kuethe, J. M. Lenoir, A. S. Leonard, P. E. Liley, J. P. Longwell, R. J. Lunbeck, J. W. McBride, R. Morrison, H. T. Nagamatsu, R. L. Olinger, Donna Price, S. Reed, N. C. Rice, J. S. Rowlinson, A. E. Schmidlin, W. R. Sears, A. H. Senner, J. H. Shenk, L. E. Simon, R. Smelt, D. W. Stops, M. J. Thompson, M. Tribus, L. R. Turner, C. N. Warfield, S. Way, and P. Wegener. Helpful editorial suggestions were made by T. B. Douglas, Irwin Oppenheim, H. F. Stimson, D. D. Wagman, and W. H. Evans. Extensive checks were incorporated in the machine codes and IBM techniques in an effort to eliminate computational errors in the tables. After the tables were typed, a systematic check was made to eliminate random typographical errors. The authors will appreciate criticism and comments and notification of any error or oversight which the reader may find. A. V. Astin, Director # CONTENTS | | | Pag | |-------------------|---|-----| | | | | | Chapter 1: Introd | duction | . 1 | | Fundamenta | d Constants | . 2 | | Thermodyna | amic Properties of the Real Gas | . 2 | | Thermodyna | amic Properties of the Ideal Gas | . 3 | | The Transpo | ort Properties | . 3 | | | sures | | | | of Dissociation on the Thermodynamic Properties | | | | Phenomena in Gases | | | | ency and Reliability of the Tables | | | | Factors | | | | n | | | | | | | Table 1-A. | Summary of Temperature and Pressure Ranges of the Tables | | | Table 1-B. | Summary of the Formulas with Which the Viscosity Tables | • | | | Were Computed | 10 | | Table 1-C. | Summary of the Formulas with Which the Thermal Conductivity | 10 | | | Tables Were Computed | | | Table 1-D. | Approximate Uncertainties in the Tabulated Ideal-Gas Properties | | | References. | · · · · · · · · · · · · · · · · · · · | | | | hermodynamic
Properties of Air | | | | tion of the Experimental Data | | | | ity of the Tables | | | | ••••••••••••••••••••••••••••••••••••••• | | | Table 2-a. | Values of the Gas Constant, R, for Air | | | Table 2-b. | Conversion Factors for the Air Tables | | | Table 2-1. | Compressibility Factor for Air | | | Table 2-2. | | | | Table 2-2. | Density of Air | | | Table 2-3. | Specific Heat of Air | | | | Enthalpy of Air | | | Table 2-5. | Entropy of Air | 51 | | Table 2-6. | Specific-Heat Ratio of Air | 57 | | Table 2-7. | Sound Velocity at Low Frequency in Air | 63 | | Table 2-8. | Viscosity of Air at Atmospheric Pressure | 69 | | Table 2-9. | Thermal Conductivity of Air at Atmospheric Pressure | 70 | | Table 2-10. | Prandtl Number of Air at Atmospheric Pressure · · · · · | 71 | | Table 2-11. | Ideal-Gas Thermodynamic Functions for Air | 72 | | Table 2-12. | Coefficients for the Equation of State for Air | 74 | Page | C) | tour 2. The Them | modynamic Properties of Argon | | |------|------------------|---|--------| | Cnap | The Connelation | n of the Experimental Data | | | | The Polishility | of the Tables | | | | Poforences | 82 | | | | Table 3-a. | Values of the Gas Constant, R, for Argon | | | | Table 3-a. | Conversion Factors for the Argon Tables | | | | Table 3-1. | Compressibility Factor for Argon | | | | Table 3-1. | Density of Argon | | | | Table 3-2. | Specific Heat of Argon | | | | Table 3-4. | Enthalpy of Argon | | | | Table 3-5. | Entropy of Argon | | | | Table 3-6. | Specific-Heat Ratio of Argon | | | | Table 3-7. | Sound Velocity at Low Frequency in Argon | | | | | Viscosity of Argon at Atmospheric Pressure | | | | Table 3-8. | Thermal Conductivity of Argon at Atmospheric Pressure 129 | | | | Table 3-9. | Prandtl Number of Argon at Atmospheric Pressure | į | | | Table 3-10. | Vapor Pressure of Argon | | | | Table 3-11. | Vapor Pressure of Liquid Argon | | | | | Constants for Log ₁₀ P(Solid)=A-B/T | | | | Table 3-11/b. | Constants for Log ₁₀ F(Solid)=A-B/1 | | | | Table 3-12. | Ideal-Gas Thermodynamic Functions for Argon | | | | Table 3-13. | Coefficients for the Equation of State for Argon | | | | Table 3-14. | A Comparison of Experimental and Calculated Second Virial | | | | | Coefficients, B, for Argon | , | | | Table 3-15. | A Comparison of Experimental and Calculated Third, C, and Fourth, | , | | | | D, Virial Coefficients for Argon | 2 | | Chap | ter 4: The The | rmodynamic Properties of Carbon Dioxide | , | | | The Correlation | on of the Experimental Data | ,
, | | | The Reliability | of the Tables | , | | | References . | 144 | , | | | Table 4-a. | Values of the Gas Constant, R, for Carbon Dioxide | ,
, | | | Table 4-b. | Conversion Factors for the Carbon Dioxide Tables | | | | Table 4-1. | Compressibility Factor for Carbon Dioxide | , | | | Table 4-2. | Density of Carbon Dioxide |) | | | Table 4-3. | Specific Heat of Carbon Dioxide | L | | | Table 4-4. | Enthalpy of Carbon Dioxide | 7 | | | Table 4-5. | Entropy of Carbon Dioxide | 3 | | | Table 4-6. | Specific-Heat Ratio of Carbon Dioxide | 3 | | | Table 4-7. | Sound Velocity at Low Frequency in Carbon Dioxide | ٥ | | | Table 4-8. | Viscosity of Carbon Dioxide at Atmospheric Pressure | 1 | | | Table 4-9. | Thermal Conductivity of Carbon Dioxide at Atmospheric Pressure 19 | 2 | | | Table 4-10 | Prandtl Number of Carbon Dioxide at Atmospheric Pressure 19 | 3 | | | | . | age | |--------|-----------------|--|-----| | | Table 4-11. | Vapor Pressure of Liquid Carbon Dioxide | 94 | | | Table 4-11/a. | Vapor Pressure of Solid Carbon Dioxide | 96 | | | Table 4-12. | Ideal-Gas Thermodynamic Functions for Carbon Dioxide 1 | 98 | | Chap | ter 5: The Ther | modynamic Properties of Carbon Monoxide | 01 | | | The Correlation | \mathbf{n} of the Experimental Data $\ldots \ldots \ldots \ldots \ldots 2$ | 01 | | | The Reliability | of the Tables | 02 | | | References | | 80 | | | Table 5-a. | Comparison of Recently Published Results with This Correlation 2 | 04 | | | Table 5-b. | Values of the Gas Constant, R, for Carbon Monoxide | 10 | | | Table 5-c. | Conversion Factors for the Carbon Monoxide Tables | 11 | | | Table 5-1. | Compressibility Factor for Carbon Monoxide | 13 | | | Table 5-2. | Density of Carbon Monoxide | 19 | | | Table 5-3. | Specific Heat of Carbon Monoxide | 25 | | | Table 5-4. | Enthalpy of Carbon Monoxide | | | | Table 5-5. | Entropy of Carbon Monoxide | | | | Table 5-6. | Specific-Heat Ratio of Carbon Monoxide | | | | Table 5-7. | Sound Velocity at Low Frequency in Carbon Monoxide | | | | Table 5-8. | Viscosity of Carbon Monoxide at Atmospheric Pressure | | | | Table 5-9. | Thermal Conductivity of Carbon Monoxide at Atmospheric Pressure . 2 | | | | Table 5-10. | Prandtl Number of Carbon Monoxide at Atmospheric Pressure 2 | | | | Table 5-11. | Vapor Pressure of Carbon Monoxide | | | | Table 5-11/a. | Vapor Pressure of Liquid Carbon Monoxide | | | | Table 5-11/b. | Constants for Log ₁₀ P (Solid) = A-B/T | | | | Table 5-12. | Ideal-Gas Thermodynamic Functions for Carbon Monoxide | | | | Table 5 -13. | Coefficients for the Equation of State for Carbon Monoxide | | | Chap | | modynamic Properties of Hydrogen | | | O.LL.P | | n of the Experimental Data | | | | | of the Tables | | | | | | | | | Table 6-a. | Values of the Gas Constant, R, for Molecular Hydrogen | | | | Table 6-b. | Conversion Factors for the Molecular Hydrogen Tables | | | | Table 6-c. | Conversion Factors for the Atomic Hydrogen Tables | | | | Table 6-1. | Compressibility Factor for Hydrogen | | | | Table 6-2. | Density of Hydrogen | | | | Table 6-3. | Specific Heat of Hydrogen | | | | Table 6-4. | Enthalpy of Hydrogen | | | | Table 6-5. | Entropy of Hydrogen | | | | Table 6-6. | | 82 | | | Table 6-7. | The second secon | 83 | | | Table 6-8. | Viscosity of Hydrogen at Atmospheric Pressure | | | | Table 6-9. | Thermal Conductivity of Hydrogen at Atmospheric Pressure | | | | Table 6-10. | Prandtl Number of Hydrogen at Atmospheric Pressure | | | | | | | | | | | | Page | |-------|-----------------|--|---|-------------| | | Table 6-11. | Vapor Pressure of Equilibrium Hydrogen | | 287 | | | | Vapor Pressure of Liquid Equilibrium Hydrogen | | 288 | | | Table 6-11/b. | Constants for Log ₁₀ P(Solid) = A - B/T + CT | | 289 | | | Table 6-12. | Ideal-Gas Thermodynamic Functions for Molecular Hydrogen | • | 290 | | | | Ideal-Gas Thermodynamic Functions for Atomic Hydrogen | | 293 | | | Table 6-13. | Coefficients (and Temperature Derivatives) for the Equation of | | | | | 14510 0 10, | State for Hydrogen | | 296 | | Chant | er 7: The Thern | nodynamic Properties of Nitrogen | | 297 | | Ondp. | The Correlation | of the Experimental Data | • | 297 | | | The Reliability | of the Tables | • | 299 | | | References | | • | 309 | | | Table 7-a. | Values of the Gas Constant, R, for Molecular Nitrogen | • | 313 | | | Table 7-b. | Conversion Factors for the Molecular Nitrogen Tables | • | 314 | | | Table 7-c. | Conversion Factors for the Atomic Nitrogen Tables | | 316 | | | Table 7-1. | Compressibility Factor for Nitrogen | | 317 | | | Table 7-2. | Density of Nitrogen | | 323 | | | Table 7-3. | Specific Heat of Nitrogen | | 329 | | | Table 7-4. | Enthalpy of Nitrogen | | 335 | | | Table 7-5. | Entropy of Nitrogen | | 341 | | | Table 7-6. | Specific-Heat Ratio of Nitrogen | | 347 | | | Table 7-7. | Sound Velocity at Low Frequency in Nitrogen | | 351 | | | Table 7-8. | Viscosity of Nitrogen | • | 357 | | | Table 7-9. | Thermal Conductivity of Nitrogen at Atmospheric Pressure | • | 358 | | | Table 7-10. | Prandtl Number of Nitrogen at Atmospheric Pressure | • | 359 | | | Table 7-11. | Vapor Pressure of Nitrogen | | 3 60 | | | Table 7-11/a. | Vapor Pressure of Liquid Nitrogen | | 361 | | | Table 7-11/b. | Constants for $Log_{10}P$ (Solid) = A - B/T | • | 361
| | | Table 7-12. | Ideal-Gas Thermodynamic Functions for Molecular Nitrogen | • | 362 | | | Table 7-12/a. | Ideal-Gas Thermodynamic Functions for Atomic Nitrogen | | 365 | | | Table 7-13. | Coefficients for the Equation of State for Nitrogen | | 368 | | Chap | ter 8: The Ther | modynamic Properties of Oxygen | • | 369 | | | The Correlation | n of the Experimental Data | • | 369 | | | The Reliability | of the Tables | • | 371 | | | References | | • | 381 | | | Table 8-a. | Values of the Gas Constant, R, for Molecular Oxygen | | | | | Table 8-b. | Conversion Factors for the Molecular Oxygen Tables | • | | | | Table 8-c. | Conversion Factors for the Atomic Oxygen Tables | • | 387 | | | Table 8-1. | Compressibility Factor for Oxygen | • | 388 | | | Table 8-2. | Density of Oxygen | • | 394 | | | Table 8-3. | Specific Heat of Oxygen | • | 400 | | | Table 8-4. | Enthalpy of Oxygen | • | 406 | | | m-1-1- 0 E | Entropy of Overgan | | 412 | | | | rage | |------|--------------------|--| | | Table 8-6. | Specific-Heat Ratio of Oxygen | | | Table 8-7. | Sound Velocity at Low Frequency in Oxygen | | | Table 8-8. | Viscosity of Oxygen at Atmospheric Pressure 424 | | | Table 8-9. | Thermal Conductivity of Oxygen at Atmospheric Pressure 425 | | | Table 8-10. | Prandtl Number of Oxygen at Atmospheric Pressure 426 | | | Table 8-11. | Vapor Pressure of Oxygen | | | Table 8-11/a. | Vapor Pressure of Oxygen | | | Table 8-12. | Ideal-Gas Thermodynamic Functions for Molecular Oxygen 430 | | - | Table 8-12/a. | Ideal-Gas Thermodynamic Functions for Atomic Oxygen 433 | | | Table 8-13. | Coefficients for the Equation of State for Oxygen | | Chap | oter 9: The Therr | modynamic Properties of Steam | | | Calculation of the | ne Tables | | | The Consistency | y and Reliability of the Tables | | | References | | | | Table 9-a. | Values of the Gas Constant, R, for Steam | | | Table 9-b. | Conversion Factors for the Steam Tables | | | Table 9-1. | Compressibility Factor for Steam | | | Table 9-2. | Density of Steam | | | Table 9-3. | Specific Heat of Steam | | | Table 9-4. | Enthalpy of Steam | | | Table 9-5. | Entropy of Steam | | | Table 9-6. | Viscosity of Steam at Atmospheric Pressure | | | Table $9-6/a$. | Viscosity of Steam at Elevated Pressure | | | Table 9-7. | Thermal Conductivity of Steam | | | Table 9-8. | Free Energy Function of Steam | | | Table 9-9. | Vapor Pressure of Ice | | | Table 9-9/a. | Vapor Pressure of Water | | | Table 9-10. | Ideal-Gas Thermodynamic Functions for Steam 472 | | Appe | ndix: Temperatu | re Interconversion Table | | | Conversion Fac | tors for Units of Length | | | Conversion Fac | tors for Units of Area | | | | tors for Units of Volume | | | | tors for Units of Mass | | | | tors for Units of Density | | | | tors for Units of Pressure | | | | | | | | | | | | tors for Units of Molecular Energy | | | • | tors for Units of Specific Energy | | | | cors for Units of Specific Energy per Degree | | | Conversion Fact | ors for Units of Viscosity | ### TABLES OF THERMAL PROPERTIES OF GASES Joseph Hilsenrath, Charles W. Beckett, William S. Benedict, Lilla Fano, Harold J. Hoge, Joseph F. Masi, Ralph L. Nuttall, Yeram S. Touloukian, Harold W. Woolley Tables are given at close temperature intervals for the thermodynamic and transport properties of air, argon, CO₂, CO, H₂, N₂, O₂, and steam. The thermodynamic properties - compressibility factor, density, entropy, enthalpy, specific heat, specific - heat ratio and sound velocity-are tabulated for the real gas at pressures up to 100 atmospheres and to temperatures of 600°K for hydrogen, 1500°K for carbon dioxide, 850°K for steam, and 3000°K for the remainder. The ideal - gas thermodynamic functions are tabulated uniformly to 5000°K. Also tabulated are the vapor pressures and transport properties - thermal conductivity, viscosity, and Prandtl number. These were fitted either semi-theoretically or empirically to the experimental values and are tabulated over the range of the available experimental data. Comparisons of the tabulated values with the existing experimental data are shown in deviation plots which exhibit the range and distribution of the experimental data as well as their agreement with the tabulated values. ### CHAPTER 1 ### INTRODUCTION The computation of sets of mutually consistent tables of thermodynamic properties of air, argon, carbon dioxide, carbon monoxide, hydrogen, nitrogen, oxygen, and steam has been accomplished through the representation of the pressure-volume-temperature (PVT) data by an equation of state, which was then used to calculate the gas imperfection corrections to the thermodynamic properties of the ideal gas. Since, usually, the experimental PVT data are abundant, cover a wide range of temperatures and pressures, and are precise, the equation of state is an effective and efficient starting point for the calculation of the values of the thermodynamic properties. In representing the PVT data for these tables, the objective was to cover adequately the limited range of pressure from zero to 100 atmospheres and of temperature from 100 to 200°K upward through the experimental range with a suitable extrapolation to higher temperatures. The properties tabulated include, with a few exceptions, the thermodynamic properties of the real gas: compressibility factor, density, entropy, enthalpy, specific heat, specific-heat ratio, and sound velocity at low frequency; the transport properties: viscosity, thermal conductivity, and Prandtl number; the vapor pressure of the liquid and the solid; and, for the ideal gas, the heat capacity, entropy, enthalpy, and free energy function. The vapor pressures and transport properties were correlated independently and are tabulated over the range of the experimental data. The ranges covered in the various tables are shown in the summary table 1-A. ### **Fundamental Constants** The fundamental constants used in this compilation are those given in NBS Circular 461 [1]*. In the light of more recent information [2,3], these values should be readjusted. Such a readjustment will have no significant effect upon the tables themselves, though it will affect the fifth figure of some of the conversion factors. The values of the gas constant, R, are based on the value 1.98719 cal mole $^{-1}$ °K $^{-1}$, the calorie is the thermochemical calorie defined as 4.1840 absolute joules, and, unless otherwise specified, the mole is the gram-mole. The subscript 0 (except in the symbol E_0^0) is used to denote values at standard conditions (T = 273.16°K and P = 1 atmosphere). # Thermodynamic Properties of the Real Gas The computation of the thermodynamic properties of the real gases was accomplished through the representation of the data of state (PVT data) by one of a number of equations of state. Except for the data for steam, which were fitted to an empirical equation, the virial equation of state was employed in this compilation. The virial equation expresses the compressibility factor, Z = PV/RT, as an infinite series either in powers of the density or the pressure. The virial equation, derived from statistical mechanics and confirmed by experiment, can be written either as $$PV/RT = \sum_{i=0}^{\infty} a_i \rho^i$$ or $PV/RT = \sum_{i=0}^{\infty} b_i P^i$. These equations represent, respectively, the density and the pressure virial expansions. The virial coefficients, a_i and b_i , can be calculated, in principle, from a knowledge of the intermolecular forces. In most cases, the representation of real-gas properties was accomplished using a three- or four-term virial expansion and the Lennard-Jones intermolecular potential energy: $E(r) = 4 \in [(r_0/r)^{12} - (r_0/r)^6],$ where r is the intermolecular distance, ϵ is the maximum binding energy between the molecules, and r_0 is the distance at which the attractive and repulsive potentials are equal. The fitting of the virial coefficients to the data of state was facilitated by the use of tabulations of second and third virial coefficient functions for nonpolar gases prepared by Hirschfelder, et al., [4,5]. The corrections for gas imperfection to the thermodynamic properties were computed from the virial coefficients using the usual thermodynamic relationships. These corrections were combined with the values of the thermodynamic functions for the ideal gas to give the tabulated properties of the real gas over the desired pressure and temperature range. Experimental measurements of thermodynamic properties such as the specific heat, Joule-Thomson coefficient, sound velocity, etc., were considered to varying degrees for each gas in choosing the force constants. It should be emphasized, however, that the values tabulated here for derived thermodynamic properties were obtained through the thermodynamic relationships from the equations of state. This method ensures a set of mutually consistent tables. The concordance of these derived properties with the scanty experimental data is, in general, quite good as is illustrated by the deviation plots. ^{*}Numbers in brackets indicate references listed at the end of the chapter. The values of sound velocity at low frequency, given in dimensionless form as a/a_0 , are obtained from the usual thermodynamic relations involving the specific heat, the compressibility, and its derivatives. The tabulated sound velocities are for equilibrium conditions involving excitation of vibrational and rotational energies. Hence, the tables apply only at low frequency. The special problems presented by the available data for each gas dictated certain modifications in the correlating and calculating procedures from gas to gas. A full account of these details is beyond the scope of this volume. Discussions of the general and particular methods used are to be found in the literature or in National Advisory Committee for Aeronautics technical reports cited later. # Thermodynamic
Properties of the Ideal Gas The values of the ideal-gas thermodynamic properties of the molecular and atomic species tabulated herein were computed from spectroscopic data using statistical mechanical formulas. The details of the computation are given in references cited here [6,7,8,9] and in the succeeding chapters. The values of the functions have been tabulated in dimensionless form as follows: C_P^O/R , S^O/R , $(H^O-E_0^O)/RT_0$, and $(F^O-E_0^O)/RT$. The zero reference point of the enthalpy and free energy function is taken as the internal energy, E_0^O , of the ideal gas at absolute zero. The enthalpy function is divided here by a constant RT_0 , where $T_0=273.16^\circ K(491.688^\circ R)$. The values tabulated are for the normal isotopic composition for all gases. The values of S^O/R and $(F^O-E_0^O)/RT$ are for the ideal gas at one atmosphere pressure. The effect of nuclear spin and isotopic mixing have not been included. The entropy of mixing for the constituent gases has been included in the tables for air. ### The Transport Properties The transport properties, values of which are tabulated in dimensionless form in this work, are the absolute viscosity, η / η 0, the thermal conductivity, k/k0, and the Prandtl number, $N_{Pr} = \eta C_p/k$. The viscosities of the nonpolar gases at low pressures were calculated on the basis of the Lennard-Jones 6-12 intermolecular potential, for which Hirschfelder, Bird, and Spotz [10, 11] have calculated the collision integrals given by Chapman and Cowling [12]. The force parameters for the Lennard-Jones potential were fitted to the experimental viscosity data. The remainder of the viscosity tables were calculated from empirical formulas (see summary table 1-B) which had been fitted to the experimental data. For nitrogen and steam, where the pressure dependence of the viscosity has been investigated over a range of pressure and temperature, the tables are based on the Enskog theory [13]. The values of the thermal conductivity are tabulated at atmospheric pressure except in the case of steam. The tables were computed from empirical formulas (see summary table 1-C) fitted to the experimental data. The Prandtl numbers were computed directly from the tabulated viscosity, thermal conductivity, and specific heat. ### Vapor Pressures The tables of vapor pressures were prepared from experimental data by the use of empirical equations. In some cases, an equation of the form $\log_{10}P = A + B/T$ was adequate, but, generally, the equation contained an additional term or terms to give a closer fit. Deviations from the equation were plotted; a smooth curve was drawn through the deviations; and values read from this smooth curve were added to the equation to give the values tabulated. Mathematical smoothing procedures were used, where necessary, to avoid small irregularities in the tabulated values. Since the differences in reported values of vapor pressures seem to be more the result of uncertainties in the temperature measurement than anything else, the deviation plots for the vapor-pressure tables have been prepared in terms of temperature deviations. ### The Effect of Dissociation on the Thermodynamic Properties The effect of dissociation has been included only in the tables for air. The tables for the other gases have been extended to high temperatures without considering dissociation effects, so that these tables might serve as building-blocks from which properties of equilibrium mixtures at high temperatures can be computed by methods given in standard works [7,14,15]. A discussion of the effects of dissociation on the thermodynamic properties of pure diatomic gaseous substances is given by Woolley [16]. For the simple case of the diatomic gaseous elements, a graphical method of calculation is presented in reference 16 together with results of its application to H_2 , O_2 , and N_2 . These results are presented in figures 6b, 6c, 7e, 7f, 8e, and 8f for the entropy, enthalpy, and compressibility factor. ### Relaxation Phenomena in Gases The thermodynamic properties tabulated here are based on the assumption that thermodynamic equilibrium exists in the gas. This is a valid assumption for many research and engineering applications. In hypersonic wind tunnels, however, the instantaneous equipartition of energy among the degrees of freedom in a molecule cannot be taken for granted. This delay in the redistribution of energy between the vibrational and translational degrees of freedom is a relaxation phenomenon and has been the subject of investigation by Griffiths [17], Kantrowitz [18], Huber and Kantrowitz [19], Walker [20], and others. ### The Consistency and Reliability of the Tables As indicated earlier, the internal or mutual consistency of the tables of thermodynamic properties was achieved through the application of the thermodynamic identities which relate the properties of both the real and ideal gas. Although direct measurements of Joule-Thomson coefficients, heat capacity, etc., were given weight in the course of correlation for various gases, the resulting tables depend very largely for their reliability and consistency on the accuracy of the data of state and the ideal-gas thermodynamic functions. A precise indication of the uncertainties of the tabulated values is difficult to achieve for the data of state outside of the experimental range and for the derived properties over the entire range. The uncertainties can be ascribed to two major causes: the uncertainties in the values of the ideal-gas properties and those in the corrections for the gas imperfection. It has been found convenient to express these uncertainties separately. Approximate uncertainties for the ideal-gas properties are given in the summary table 1-D. The uncertainties in the corrections for gas imperfection are given in each chapter together with the deviation plots for the experimental range. The magnitude of the corrections for gas imperfection (Z-1), ($C_p-C_p^0$), etc., can be found simply by subtraction of the tabulated values, except for the entropy where the effect of $\ln P$ on the tabulated entropy must be taken into account. The specified reliabilities of the tables have been arrived at in two general ways. Where tables have been computed from empirical or semi-theoretical equations fitted directly to the experimental data, the departures of the experimental data from the tabulation form the basis for the estimate of reliability. Such tables include compressibility, density, viscosity, and thermal conductivity. The remaining tables - entropy, enthalpy, specific heat, specific-heat ratio, and sound velocity at low frequency - having been computed through the thermodynamic relationships from the equation of state, depend for their reliability on the accuracy and extent of the data of state and the validity of the numerical differentiations involved, and not solely on the agreement with the direct experimental data. The deviation plots for the derived properties serve to corroborate the verity of the tabulation. The degree to which the adopted equations of state fit the experimental data varies with the gas. For argon, for example, the data are abundant and accurate and they are fitted to within a few hundredths of 1 percent in PV/RT; whereas the data for carbon monoxide are fitted to a few tenths of 1 percent. The reliability of the data of state tables in the extrapolated region and the reliability of the pressure corrections to the thermodynamic properties over the entire range are further dependent upon the temperature range covered by the experimental data and upon the mode of calculation. The corrections for nonideality which depend on the derivatives of the virial coefficients are less precise than the corresponding corrections for the data of state. Thus, in the case of entropy and enthalpy, where the nonideality correction depends on the first derivative of the virial coefficients, the uncertainty in this correction may be twice as large as in the case of the data of state; whereas, in the case of heat capacity, it may be three to five times as large. The above uncertainties are only rough estimates and are independent of the uncertainties of the ideal-gas values. For economy in machine tabulation, more decimal places are tabulated in some regions than is warranted by the correlation. The reader should consult the deviation plots and statements of reliability before using the tabulated values. ### **Conversion Factors** The compressibility factor is dimensionless. Values of the gas constant R are listed for each gas in the frequently used units in order to facilitate the use of the tables in calculating, by means of the equation Z = PV/RT, the pressure P, the volume V (or the density), or the temperature T, when any two of these are known. The rest of the tables also are given in dimensionless form. Conversion factors for frequently used units are given in each chapter immediately preceding the tables of thermal properties for each gas. ## Interpolation The ease with which interpolations may be made is an important factor in the practical use of a table. Seldom is it possible to avoid interpolation altogether. Since linear interpolation is relatively simple and rapid as compared with higher-order interpolation, even when tables of interpolation coefficients are at hand, the goal has been to subtabulate to the point where linear interpolation yields valid results. Although this objective was achieved in the direction of temperature, the pressure entries had to be curtailed to keep the tables within a manageable size. The tabulations in pressure were therefore arranged to permit a four-point Lagrangian interpolation formula to be used where the precision of the table justified it. It is for this reason that entries are found for the pressures 1,4,7,10,40,70,100 atmospheres, etc. In the tables for vapor pressure, with the exception of those for
steam, the logarithms of the pressures have been included to facilitate interpolation. A convenient rule of thumb for determining the adequacy of linear interpolation is the following: "The maximum error introduced in linear interpolation is approximately 1/8 of the second difference." Where this error greatly exceeds the uncertainty in the table, Lagrangian or other forms of interpolation should be used. For the convenience of the user, first differences have been tabulated in smaller type in the temperature direction. ### References The references consulted in the course of the work have been listed at the end of each chapter, generally in the order cited, and numbered consecutively starting with 1 in each chapter. In some instances, references to works considered in the figures and deviation plots were not cited in the text; in such cases, they have been included in the reference lists at the end of each chapter. It is not intended, however, that these lists be considered complete bibliographies. Table 1-A. SUMMARY OF TEMPERATURE AND PRESSURE RANGES OF THE TABLES | Property | Table | Tabulated Temperature Range (^o K) | | | | | | | |-------------------------|--------|---|------------|-------------|------------|------------|--|--| | | Number | . 01 atm | 0.1 atm | 1 atm | 10 atm | 100 atm | | | | Air | | | | | | | | | | Compressibility Factor | 2-1 | 50 - 2300 | 80 - 3000 | 100 - 3000 | 110 - 3000 | 180 - 3000 | | | | Density | 2-2 | 50 - 2300 | 80 - 3000 | 100 - 3000 | 110 - 3000 | 180 - 3000 | | | | Specific Heat | 2-3 | 50 - 2300 | 90 - 2800 | 100 - 3000 | 110 - 3000 | 180 - 3000 | | | | Enthalpy | 2-4 | 50 - 2300 | 80 - 2800 | 100 - 3000 | 110 - 3000 | 180 - 3000 | | | | Entropy | 2-5 | 50 - 2300 | 80 - 2800 | 100 - 3000 | 110 - 3000 | 180 - 3000 | | | | Specific-Heat Ratios | 2-6 | 50 - 2100 | 90 - 3000 | 110 - 3000 | 110 - 3000 | 1 | | | | Velocity of Sound | 2-7 | 50 - 2100 | 80 - 3000 | 100 - 3000 | 110 - 3000 | 200 - 3000 | | | | Viscosity | 2-8 | | | 100 - 1900 | | | | | | Thermal Conductivity | 2-9 | | | 80 - 1000 | | | | | | Prandtl Number | 2-10 | | | 100 - 1000 | | | | | | Ideal-Gas Thermodynamic | 0.11 | | | | | | | | | Functions* | 2-11 | • | 1 | 10 - 3000 | 1 | I | | | | Argon | | | | | | | | | | Compressibility Factor | 3-1 | 70 - 5000 | 80 - 5000 | 100 - 5000 | 120 - 5000 | 180 5000 | | | | Density | 3-2 | 70 - 5000 | 80 - 5000 | 100 - 5000 | 120 - 5000 | 180 - 5000 | | | | Specific Heat | 3-3 | 100 - 3000 | 100 - 3000 | 100 - 3000 | 150 - 3000 | 200 - 3000 | | | | Enthalpy | 3-4 | 100 - 3000 | 100 - 3000 | 100 - 3000 | 120 - 3000 | 250 - 3000 | | | | Entropy | 3-5 | 100 - 3000 | 100 - 3000 | 100 - 3000 | 120 - 3000 | 180 - 3000 | | | | Specific-Heat Ratios | 3-6 | 100 - 3000 | 100 - 3000 | 100 - 3000 | 180 - 3000 | 240 - 3000 | | | | Velocity of Sound | 3-7 | 100 - 3000 | 100 - 3000 | 100 - 3000 | 180 - 3000 | 240 - 3000 | | | | Viscosity | 3-8 | i | | 50 - 1500 | | | | | | Thermal Conductivity | 3-9 | | Ì | 90 - 600 | | | | | | Prandtl Number | 3-10 | | | 100 - 1500 | | | | | | Vapor Pressure | 3-11 | | 1 | | | | | | | Ideal-Gas Thermodynamic | | | | | | | | | | Functions* | 3-12 | 1 | İ | 10 - 5000 | l | l | | | | Carbon Dioxide | | | | | | | | | | Compressibility Factor | 4-1 | 200 - 1500 | 200 - 1500 | 220 - 1500 | 240 - 1500 | 320 - 1500 | | | | Density | 4-2 | 200 - 1500 | 200 - 1500 | 220 - 1500 | 240 - 1500 | 320 - 1500 | | | | Specific Heat | 4-3 | 200 - 1500 | 200 - 1500 | 220 - 1500 | 240 - 1500 | 320 - 1500 | | | | Enthalpy | 4-4 | 200 - 1500 | 200 - 1500 | 220 - 1500 | 240 - 1500 | 320 - 1500 | | | | Entropy | 4-5 | 200 - 1500 | 200 - 1500 | 220 - 1500 | 240 - 1500 | 320 - 1500 | | | | Specific-Heat Ratios | 4-6 | 200 - 1500 | 200 - 1500 | 220 - 1500 | 240 - 1500 | 320 - 1500 | | | | Velocity of Sound | 4-7 | 200 - 1500 | 200 - 1500 | 220 - 1500 | 240 - 1500 | 320 1500 | | | | Viscosity | 4-8 | | | 190 - 1700 | | ŀ | | | | Thermal Conductivity | 4-9 | | | 180 - 600 | | | | | | Prandtl Number | 4-10 | | 1 | 220 - 600 | | | | | | Vapor Pressure | 4-11 | | | | | | | | | Ideal-Gas Thermodynamic | | | 1 | | | | | | | Functions* | 4-12 | J | I | l 50 - 5000 | 1 | 1 | | | ^{*} Ideal-Gas Entropy, Enthalpy, Specific Heat, and Free Energy Function. (Values of the free energy function for air and argon are not tabulated.) Table 1-A. SUMMARY OF TEMPERATURE AND PRESSURE RANGES OF THE TABLES (Cont.) | Property | Table | | Tabulated Temperature Range (^o K) | | | | | | |-------------------------|--------|------------|---|------------|------------|------------|--|--| | 1 Toporty | Number | . 01 atm | 0.1 atm | 1 atm | 10 atm | 100 atm | | | | Carbon Monoxide | | | | | • | | | | | Compressibility Factor | 5-1 | 200 - 3000 | 200 - 3000 | 200 - 3000 | 200 - 3000 | 280 - 3000 | | | | Density | 5-2 | 200 - 3000 | 200 - 3000 | 200 - 3000 | 200 - 3000 | 280 - 3000 | | | | Specific Heat | 5-3 | 200 - 3000 | 200 - 3000 | 200 - 3000 | 200 - 3000 | 280 - 3000 | | | | Enthalpy | 5-4 | 200 - 3000 | 200 - 3000 | 200 - 3000 | 200 - 3000 | 280 - 3000 | | | | Entropy | 5-5 | 200 - 2800 | 200 - 2800 | 200 - 2800 | 200 - 2800 | 280 - 2800 | | | | Specific-Heat Ratios | 5-6 | 200 - 3000 | 200 - 3000 | 200 - 3000 | 200 - 3000 | 280 - 3000 | | | | Velocity of Sound | 5-7 | 200 - 3000 | 200 - 3000 | 200 - 3000 | 200 - 3000 | 280 - 3000 | | | | Viscosity | 5-8 | | | 50 - 1500 | | | | | | Thermal Conductivity | 5-9 | | | 70 - 600 | | | | | | Prandtl Number | 5-10 | | | 200 - 600 | | | | | | Vapor Pressure | 5-11 | | | | | | | | | Ideal-Gas Thermodynamic | | | | | | | | | | Functions* | 5-12 | ŀ | I | 60 - 5000 | 1 | | | | | Hydrogen | | | | | | | | | | Compressibility Factor | 6-1 | 20 - 600 | 20 - 600 | 30 - 600 | 40 - 600 | 60 - 600 | | | | Density | 6-2 | 20 - 600 | 20 - 600 | 30 - 600 | 40 - 600 | 60 - 600 | | | | Specific Heat | 6-3 | | | 30 - 600 | 40 - 600 | 60 - 600 | | | | Enthalpy | 6-4 | 60 - 600 | 60 - 600 | 60 - 600 | 60 - 600 | 60 - 600 | | | | Entropy | 6-5 | 60 - 600 | 60 - 600 | 60 - 600 | 60 - 600 | 60 - 600 | | | | Specific-Heat Ratios | 6-6 | | | 30 - 600 | 40 - 600 | 60 - 600 | | | | Velocity of Sound | 6-7 | | | 30 - 600 | 40 - 600 | 60 - 600 | | | | Viscosity | 6-8 | 1 | | 10 - 1100 | | 1 | | | | Thermal Conductivity | 6-9 | İ | | 10 - 700 | | | | | | Prandtl Number | 6-10 | | | 60 - 800 | | <u> </u> | | | | Vapor Pressure | 6-11 | | | | | } | | | | Ideal-Gas Thermodynamic | 0 11 | | | | | | | | | Functions (Molecular)* | 6-12 | | | 10 - 5000 | | | | | | Ideal-Gas Thermodynamic | | | | | | | | | | Functions (Atomic)* | 6-12/a | I | 1 | 10 - 5000 | 1 | ı | | | | Nitrogen | | | | | | | | | | Compressibility Factor | 7-1 | 100 - 3000 | 100 - 3000 | 100 - 3000 | 110 - 3000 | 200 - 3000 | | | | Density | 7-2 | 100 - 3000 | 100 - 3000 | 100 - 3000 | 110 - 3000 | 200 - 3000 | | | | Specific Heat | 7-3 | 100 - 3000 | 100 - 3000 | 100 - 3000 | 140 - 3000 | 200 - 300 | | | | Enthalpy | 7-4 | 100 - 3000 | 100 - 3000 | 100 - 3000 | 140 - 3000 | 200 - 3000 | | | | Entropy | 7-5 | 100 - 3000 | 100 - 3000 | 100 - 3000 | 110 - 3000 | 200 - 300 | | | | Specific-Heat Ratios | 7-6 | 100 - 3000 | 100 - 3000 | 100 - 3000 | 140 - 3000 | 200 - 300 | | | | Velocity of Sound | 7-7 | 100 - 3000 | 100 - 3000 | 100 - 3000 | 150 - 3000 | 200 - 300 | | | | Viscosity | 7-8 | | | 100 - 1500 | 300 - 1500 | 300 - 150 | | | | Thermal Conductivity | 7-9 | | | 100 - 1200 | | | | | | Prandtl Number | 7-10 | 1 | | 100 - 1200 | | | | | | Vapor Pressure | 7-11 | | | | l | i | | | | Ideal-Gas Thermodynamic | | | | • | 1 | 1 | | | | Functions (Molecular)* | 7-12 | | 1 | 10 - 5000 | 1 | 1 | | | | Ideal-Gas Thermodynamic | | | 1 | | 1 | 1 | | | | Functions (Atomic)* | 7-12/a | 1 | 1 | 10-5000 | ľ | 1 | | | ^{*}Ideal-Gas Entropy, Enthalpy, Specific Heat, and Free Energy Function. Table 1-A. SUMMARY OF TEMPERATURE AND PRESSURE RANGES OF THE TABLES (Cont.) | Property | Table | Tabulated Temperature Range (OK) | | | | | | | |-------------------------|--------|----------------------------------|------------|-------------|--------------|---------------------|--|--| | | Number | . 01 atm | 0.1 atm | 1 atm | 10 atm | 100 atm | | | | Oxygen | | | | | | | | | | Compressibility Factor | 8-1 | 100 - 3000 | 100 - 3000 | 100 - 3000 | 1 150 - 3000 | ı 200 - 3000 | | | | Density | 8-2 | 100 - 3000 | 100 - 3000 | 100 - 3000 | 150 - 3000 | 200 - 3000 | | | | Specific Heat | 8-3 | 100 - 3000 | 100 - 3000 | 120 - 3000 | | 200 - 3000 | | | | Enthalpy | 8-4 | 100 - 3000 | 100 - 3000 | | 150 - 3000 | 200 - 3000 | | | | Entropy | 8-5 | 100 - 3000 | 100 - 3000 | 100 - 3000 | 150 - 3000 | 200 - 3000 | | | | Specific-Heat Ratios | 8-6 | 100 - 3000 | 100 - 3000 | 120 - 3000 | 160 - 3000 | 220 - 3000 | | | | Velocity of Sound | 8-7 | 100 - 3000 | 100 - 3000 | 120 - 3000 | 160 - 3000 | 220 - 3000 | | | | Viscosity | 8-8 | | 1 | 100 - 2000 | | | | | | Thermal Conductivity | 8-9 | ļ | | 80 - 600 | | | | | | Prandtl Number | 8-10 | | | 100 - 600 |] | 1 | | | | Vapor Pressure | 8-11 | | | | | 1 | | | | Ideal-Gas Thermodynamic | | i | | | 1 | i | | | | Functions (Molecular)* | 8-12 | | | 10 - 5000 | İ | | | | | Ideal-Gas Thermodynamic | | | ļ | 10 0000 | 1 | 1 | | | | Functions (Atomic)* | 8-12/a | | | 10-5000 | | | | | | | | | | | · | | | | | | | 1 atm | 10 atm | 100 atm | 200 atm | 300 atm | | | | Steam | | | | | | | | | | Compressibility Factor | 9-1 | 3 80 - 850 | 460 - 850 | 1 590 - 850 | 650 - 850 | 1680 - 850 | | | | Density | 9-2 | 380 - 850 | 460 - 850 | 590 - 850 | 650 - 850 | 680 - 850 | | | | Specific Heat | 9-3 | 380 - 850 | 460 - 850 | 590 - 850 | , | 000 | | | | Enthalpy | 9-4 | 380 - 850 | 460 - 850 | 590 - 850 | | | | | | Entropy | 9-5 | 380 - 850 | 460 - 850 | 590 - 850 | | | | | | Viscosity | 9-6 | 280 - 1500 | | 600 - 1100 | 650 - 1100 | 700 - 1100 | | | | Thermal Conductivity | 9-7 | 380 - 800 | 450 - 800 | 590 - 800 | 640 - 800 | 650 - 800 | | |
| Free Energy Function | 9-8 | 380 - 850 | 460 - 850 | 590 - 850 | - 10 000 | 555 - 555 | | | | Vapor Pressure | 9-9 | | · | | | | | | | Ideal-Gas Thermodynamic | | | | | | | | | | | | | | | | | | | ^{*}Ideal-Gas Entropy, Enthalpy, Specific Heat, and Free Energy Function. Table 1-B. SUMMARY OF THE FORMULAS WITH WHICH THE VISCOSITY TABLES WERE COMPUTED | Gas | Table
No. | Pressure (1) | Formulas (2) | Constants | 7 0×107 | References to
Experimental Data (3 | |-----------------|--------------|-------------------------------------|---|---|---------|---------------------------------------| | | | atm. | | | poise | | | Åir | 2-8 | 1, | $\eta \times 10^7 = \frac{AT^{3/2}}{T+B}$ | A = 145.8
B = 110.4 | 1716 | 2[43-48, 55-68] | | Argon | 3-8 | i | | €/k = 119.5°K
r _o = 3.421 Å
M = 39.944 g mole ⁻¹ | 2125 | 3[10 - 16] | | CO ₂ | 4-8 | 1 | (see footnote 4) | €/k = 200°K
r _o = 3.952 Å
M = 44.010 g mole ⁻¹ | 1370.1 | 4[42 - 45] | | co | 5-8 | 1 | $\eta \times 10^7 = \frac{266.93 \text{V} \sqrt{\text{MT}}}{\text{r}_0^2 \text{W}^{(2)}(2)}$ | €/k = 110.3°K
r _o = 3.590 Å
M = 28.010 g mole ⁻¹ | 1656.8 | 5[19 - 23] | | N ₂ | 7-8 | 1 | | $\epsilon/k = 91.46^{\circ}K$
$r_0 = 3.681 \text{ Å}$
$M = 28.016 \text{ g mole}^{-1}$ | 1662. 5 | 7[36 - 50] | | 02 | 8-8 | 1 | | €/k = 100°K
r _o = 3.499 Å
M = 32 g mole ⁻¹ | 1919. 2 | 8[24 - 29] | | ^H 2 | 6-8 | 1 | $\eta / \eta_0 = \frac{AT^{3/2}}{(T+B)} \frac{(T+C)}{(T+D)}$ | A = 0.1017
B = 19.55
C = 650.39
D = 1175.9 | 841.1 | 6[48 - 63] | | Steam | 9-6 | 1 . | η = AT - B, for T \leq 800°K $\eta = \frac{\text{CT}^{3/2}}{\text{D-T+ET}^2}, \text{for T} \geq 800°\text{K}$ (η is in micropoise) | A = 0.361
B = 10.2
C = 39.37
D = 33.15
E = 0.001158 | | 9[24 - 30] | | ¹ 2 | 7-8 | 10,20,30,40, | (see footnotes 5 and 6) $\eta/\eta' = 1 + A(b\rho) + B(b\rho)^2$, | A = 0.175
B = 0.8651
M = 28.016 g mole ⁻¹
ρ, in g cm ⁻³ , from table 7-2 | | 7[48, 51, 52, 59] | | Steam | 9-6/a | 20,40,60,80,
100,200,
250,300 | where $b \times 10^7 = 1.783 \text{ M}^{-1/4} (\sqrt{\text{T}} / \eta^1)^{3/2}$ | A = 0.175
B = 0.8651
M = 18.016 g mole ⁻¹
\$\rho\$, in g cm ⁻³ , from table 9-2
and reference [9] 1 | | 9[31 - 33] | ⁽¹⁾ Pressures for which the tables are explicitly tabulated. ⁽²⁾ T is the temperature in degrees Kelvin. ⁽³⁾ Number outside of bracket indicates chapter number; numbers inside brackets indicate references in the particular chapter cited. ⁽⁴⁾ V and W⁽²⁾(2) are functions tabulated for the Lennard-Jones 6-12 intermolecular potential by Hirschfelder, Bird, and Spotz, 1[11]. ⁽⁵⁾ η ' is the viscosity in poise at T°K and 1 atmosphere. ⁽⁶⁾ Above 600°K, values in table 7-8 were adjusted empirically to provide a better fit to the experimental data. Table 1-C. SUMMARY OF THE FORMULAS WITH WHICH THE THERMAL CONDUCTIVITY TABLES WERE COMPUTED | Gas | Table
No. | Pressure (1) | Formulas (2) | Constants | k ₀ x 10 ⁵ | References to Experimental Data (3 | |----------------|--------------|--------------|--|---|---|------------------------------------| | | | atm. | | | cal cm ⁻¹ sec ⁻¹ °K ⁻¹
(or °C ⁻¹) | | | Air | 2-9 | 1 | | a = U.6325 x 10 ⁻⁵ | 5.77 | 2[49 - 54] | | | | | | b = 245.4 | | | | | | | | c = 12 | | | | Argon | 3-9 | 1 | | $a = 0.3790 \times 10^{-5}$ | 3. 905 | 3[19 - 22] | | | | İ | | b = 179.59 | | | | | | | • | c = 10 | | | | co2 | 4-9 | 1 | | $a = 4.608 \times 10^{-5}$ | 3. 477 | 4[46 - 51] | | | | | | .b = 6212.0 | | -2 | | | | } | $k/k_0 = \frac{1}{k_0} \left[\frac{a\sqrt{T}}{k_0 + 10^{-6}/T} \right]$ | c = 10 | | | | со | 5-9 | 1 | $1 + \frac{b \times 10^{-c/T}}{T}$ | a = 0.5862 x 10 ⁻⁵ | 5. 549 | 5[04 00] | | | |] | r ,) | b = 217.6 | 3.348 | 5[24 - 28] | | • | | | | c = 7.75 | | | | N | 7-9 | | | Ē | • | | | N ₂ | below | 1 | | a = 0.604 x 10 ⁻⁵
b = 224.0 | 5. 77 | 7[53 - 58] | | | 300°K | | | c = 12 | | | | | | | | C - 12 | | | | O_2 | 8-9 | 1 | | $a = 0.6726 \times 10^{-5}$ | 5.867 | 8[30 - 36] | | | | | | b = 265.9 | | | | | | | | c = 10 | | | | н ₂ | 6-9 | 1 | h/h = 1/h (/a + h/T)/// -> / | a = 0.4780 | 40. 21 | 6[64 - 73] | | - | | | $k/k_0 = 1/k_0[(a+bT)(C_p - c) +$ | b = 0.000505 | 10.11 | 0[01 10] | | | | | $d] = \frac{\eta}{1 + \frac{e}{T} \cdot 10^{-10/T}}$ | c = 4.968 | | | | | | | $1 + \overline{T} 10^{-10}$ | d = 3.722 | | | | | | | | e = 5.9 | | | | | | | | C_p , in cal mole $^{-1}$ $^{\circ}$ C^{-1} , | | | | | | | | from table 6-3 | | | | N ₂ | 7-9 | 1 | $k/k_0 = 1 + at - bt^2 + ct^3$ | $a = 3.13 \times 10^{-3}$ | | 7[74] | | | above | | where | $b = 1.33 \times 10^{-6}$ | | | | | 300°K | | t=temperature in degrees
Celsius | $c = 2.63 \times 10^{-10}$ | • | | | Steam | 9-7 | 0,1,4,7, | $k/k_0^0 = \frac{1}{k_0^0}[k^0 + a(10^{bP}/T^4 - 1)]$ | $a = 1.097 \times 10^{-5}$ | | 0.04 | | | | 10, 40, 70, | -1-0 k ₀ | $a = 1.097 \times 10^{-9}$
$b = 0.934 \times 10^{9}$ | | 9[21 - 23] | | | | 100 | _ c √市 | $c = 1.5466 \times 10^{-5}$ | | | | | | | and $k^0 = \frac{c \sqrt{T}}{1 + \frac{d}{T} 10^{-12/T}}$ | d = 1737.3 | | | | | | | (k ^O = thermal conductivity
at zero pressure). | | | | | | | | $(k_0^0 = 3.789 \times 10^{-5} \text{ cal cm}^{-1})$ | | | | | | | | $(k_0^0 = 3.789 \times 10^{-5} \text{ cal cm}^{-1}$
$\text{sec}^{-1} \cdot \text{K}^{-1}, \text{thermal}$ | | | | | | | | conductivity at zero pressure and 273.16°K). | | | | ⁽¹⁾ Pressures for which the tables are explicitly tabulated. ⁽²⁾ T is the temperature in degrees Kelvin (unless otherwise stated). ⁽³⁾ Number outside of brackets indicates chapter number; numbers inside brackets indicate references in the particular chapter cited. Table 1-D. APPROXIMATE UNCERTAINTIES IN THE TABULATED IDEAL-GAS PROPERTIES* | | $C_{\mathbf{p}}^{\mathbf{o}}/R$ | | | | | | S^{O}/R | | | | | |------------------|---------------------------------|------------|-------------|-------------|--|-------------------|------------|-------------|-------------|--|--| | | | , | ток | | | T ^o K- | | | | | | | | 100 - 500 | 500 - 1000 | 1000 - 3000 | 3000 - 5000 | | 100 - 500 | 500 - 1000 | 1000 - 3000 | 3000 - 5000 | | | | Air | ±
. 0003 | ±
.0006 | ±
.002 | ±
. 05 | | ±
. 0003 | ±
.0006 | ±
.002 | ±
.02 | | | | co ₂ | . 001 | . 004 | , 03 | . 2 | | . 0005 | . 003 | . 02 | . 06 | | | | со | . 001 | . 001 | . 001 | . 01 | | . 001 | . 001 | . 001 | . 004 | | | | н ₂ | . 001 | . 001 | . 002 | . 06 | | . 001 | . 001 | . 002 | . 02 | | | | N ₂ | . 0003 | . 0006 | . 002 | . 01 | | . 0003 | . 0006 | . 002 | . 005 | | | | 02 | . 0003 | . 0004 | . 001 | . 2 | | . 0003 | . 0004 | . 001 | . 06 | | | | н ₂ о | . 002 | . 004 | . 03 | . 2 | | . 001 | . 004 | . 02 | . 06 | | | $-(\mathbf{F}^{\circ} - \mathbf{E}_{0}^{\circ})/\mathbf{R}\mathbf{T}$ $(H^{\circ}-E_{0}^{\circ})/RT**$ TOK-- т^ок -500 - 1000 | 1000 - 3000 | 3000 - 5000 3000 - 5000 100 - 500 500 - 1000 1000 - 3000 100 - 500 . 001 .004 . 0003 .0005 . 0005 .001 . 01 Air .0003 . 0003 . 04 .0002 .001 . 004 . 02 CO_2 .002 .01 .0005 .001 .001 . 001 . 001 .0001 .0002 .003 CO .001 . 001 . 01 . 001 .001 . 004 .0001 . 0001 H_2 .0003 .0005 .001 .002 .0003 . 0005 .001 .003 N_2 .0003 .0007 . 01 $\mathbf{o_2}$. 04 .0003 .0003 . 0007 .0003 . 02 . 04 .0004 .002 . 006 H₂O .001 . 003 . 01 These values are suggested in cognizance of various sources of uncertainty, including rounding in earlier tables, spectroscopic constants, unknown electronic states, and effects associated with the dissociation energy region. ^{*}The uncertainties in the ideal-gas properties of argon are of the order of the uncertainties in the atomic weight and the fundamental constants. Thus: 0.0001 in C_p^O/R and 0.001 in the other functions. **To obtain the uncertainties for $(H^O-E_0^O)/RT_0$, multiply the tabulated uncertainties by T/T_0 . ### References - [1] F. D. Rossini, K. S. Pitzer, W. J. Taylor, J. P. Ebert, J. E. Kilpatrick, C. W. Beckett, M. G. Williams, and H. G. Werner, Natl. Bur. Standards (U.S.) Circ. 461, Selected values of properties of hydrocarbons, (Supt. of Documents, Govt. Printing Office, Washington 25, D. C., 1947). - [2] F. D. Rossini, F. T. Gucker, Jr., H. L. Johnston, L. Pauling, and G. W. Vinal, J. Am. Chem. Soc. 74, 2699 (1952). - [3] J. W. M. DuMond and E. R. Cohen, Revs. Mod. Phys. 23, 691 (1953). - [4] R. B. Bird, E. L. Spotz, and J. O. Hirschfelder, J. Chem. Phys. 18, 1395 (1950). - [5] J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, The molecular theory of gases and liquids (John Wiley and Sons, Inc., New York, N.Y., 1954). - [6] L. S. Kassel, Chem. Revs. 18, 277 (1936). - [7] J. E. Mayer and M. G. Mayer, Statistical mechanics (John Wiley and Sons, Inc., New York, N.Y., 1940). - [8] D. D. Wagman, J. E. Kilpatrick, W. J. Taylor, K. S. Pitzer, and F. D. Rossini, J. Research Natl. Bur. Standards 34, 143 (1945) RP1634. - [9] H. W. Woolley, R. B. Scott, and F. G. Brickwedde, J. Research Natl. Bur. Standards 41, 379 (1948) RP1932. - [10] J. O. Hirschfelder, R. B. Bird, and E. L. Spotz, J. Chem. Phys. 16, 968 (1948). - [11] J. O. Hirschfelder, R. B. Bird, and E. L. Spotz, Trans. Am. Soc. Mech. Engrs. 71, 921 (1949). - [12] S. Chapman and T. G. Cowling, The mathematical theory of non-uniform gases (Cambridge University Press, Cambridge, Eng., 1939). - [13] D. Enskog, Kgl. Svenska Vetenskapsakad. Handlr. 63, No. 4, 44 (1922); also Physik. Ber. 3, 1274 (1922). - [14] V. N. Huff, S. Gordon, and V. E. Morrell, Natl. Advisory Comm. Aeronaut. Rept. 1037 (1951).
- [15] G. Damköhler, Z. Elektrochem. 48, 62 (1942). - [16] H. W. Woolley, Natl. Advisory Comm. Aeronaut. Tech. Note 3270 (1955). - [17] W. Griffith, J. Appl. Phys. 21, 1319 (1950). - [18] A. Kantrowitz, J. Chem. Phys. 14, 150 (1946). - [19] P. W. Huber and A. Kantrowitz, J. Chem. Phys. 15, 275 (1947). - [20] R. Walker, Natl. Advisory Comm. Aeronaut. Tech. Note 2537 (1951). ### CHAPTER 2 ### THE THERMODYNAMIC PROPERTIES OF AIR In spite of the important role of air as an atmosphere and as a technical gas, there are surprisingly few direct determinations of the thermodynamic properties of air. Such charts [1-6] as have been published on air have been limited in the range of temperature or pressure or both. Although convenient tables are available for air as an ideal gas [7,8], no published tables are available which contain a complete consistent collection of values of the thermodynamic properties of air treated as a real gas over a range of temperatures and pressures demanded in present-day research and development. The thermodynamic properties of air are tabulated here from 100° to 3000°K in the pressure range 0.01 to 100 atmospheres. This range can be divided into two distinct regions. In the region below 1500°K, the composition of the air was considered fixed and the corrections for gas imperfection are significant. Here the experimental data of state and other pertinent data are required for an adequate representation. Above 1500°K, in this pressure range, the corrections for gas imperfection are small and the predominant influence on the thermodynamic properties is the degree to which the constituents of air have become dissociated. In this region, the properties of air are based on the contributions from each of the molecular and atomic species present in the equilibrium composition at each temperature and pressure. Below 1500°K, the tables were computed from the virial equation of state. In this region, the composition was taken as follows: 0.7809 N₂, 0.2095 O₂, 0.0093 A, 0.0003 CO₂ moles per mole of air, yielding an average molecular weight of 28.966. In the region of dissociation, the tables for air are based on the tables of equilibrium composition for air given by Hirschfelder and Curtiss [9], who tabulated compositions and skeletal thermodynamic tables for air to 5000°K. The decision to terminate the present tables at 2300°K at pressures below 0.1 atmosphere and at 3000°K for higher pressures was dictated by the uncertainty in the energy of dissociation of nitrogen, which rendered the above-mentioned tables of compositions doubtful above 3000°K. # The Correlation of the Experimental Data The pressure-volume-temperature relations for air were investigated in the late nineteenth century by Amagat [10] and Witkowski [11]; in the early twentieth century by Koch [12], Holborn and Schultze [13], Holborn and Otto [14], and Penning [15]; and in modern times by Michels, et al., [16,17,34], and Kiyama [18]. The data of Holborn and Otto [14], corrected in the manner suggested by Cragoe [19], were correlated with the existing Joule-Thomson data to form the basis for these tables. The more recent data [16,17,18] became available after the tables were computed and were not included in the fitting. A comparison of some of the experimental data with the present tabulation is given in figure 2a. The data of state were represented by a virial equation in density employing second, third, and fourth virial coefficients. The second and third virials were obtained for the Lennard-Jones 6-12 potential function by a modification of a procedure outlined by Woolley [20]. The fourth virial coefficients, which were found to have only a small influence in the tabulated region, were estimated from a curve given in reference 21. The virial coefficients are given in table 2-12. Since the tables were desired in terms of a pressure rather than a density argument, an iterative process was resorted to by means of which, at each tabulated temperature and pressure, trial values of ρ and Z were used successively until the values converged upon the desired pressure with the desired accuracy. A comparison of the Joule-Thomson data--and, in fact, of all the experimental data--for air was made by Din in connection with the preparation, for the British Mechanical Engineering Research Laboratory, of a new thermodynamic diagram for air [22]. This unpublished work, like the present correlation, uses Joule-Thomson data to compensate for the lack of PVT data at higher pressures. The data of Roebuck [23, 24] were found to be more consistent with the data of state than were the results of Hausen [25]. This fact is also illustrated in figure 2c where the specific heats derived from expansion experiments of Hausen and of Roebuck are compared with the values resulting from this correlation. During the course of the correlation, values for the derived properties such as specific heat, sound velocity at low frequency, etc., were computed and checked against the existing experimental data for these properties. Comparisons were made with experimental specific-heat measurements of Dailey and Felsing [26], Eucken and V. Lüde [27], and Kistiakowsky and Rice [28]; the sound velocity measurements of Hodge [29] and of Van Itterbeek and Van Doninck [30]; the isothermal porous-plug experiments of Eucken, Clusius, and Berger [31]; and the calorimetric measurements of the enthalpy-pressure coefficient by Andersen [32] and the energy-pressure coefficients by Rossini and Frandsen [33]. The dimensionless representation has been accomplished for certain properties by expressing them relative to the value at standard conditions (${}^{\circ}$ C and 1 atmosphere). Thus, for density, the property is expressed as ${}^{\rho}$ / ${}^{\rho}$ 0, for sound velocity as a/a0, for thermal conductivity as k/k0, and for viscosity as ${}^{\eta}$ 1/ ${}^{\circ}$ 0. The reference values, ${}^{\rho}$ 0, a0, k0, and ${}^{\eta}$ 0, result, in general, from the correlating equations which were fitted to represent the experimental data over as wide a range as possible. Values for these quantities are given in various units in table 2-b. The values of ${}^{\rho}$ 0 and k0 are in close agreement with the experimental data as shown in figures 2a and 2f. The value of ${}^{\eta}$ 0 is the average of values reported in 20 separate investigations [43-48,55-68]. The value of 331.45 m/sec for a0 is in close agreement with the precise direct determinations of 331.41 by Hebb [69] and 331.60±0.05 by Kneser [70]. ### The Reliability of the Tables The effects of dissociation are included in the tables for air above 1500° where this effect becomes significant. They are applicable only when the air has been at an elevated temperature long enough to achieve chemical equilibrium. Although such equilibrium is achieved in many processes, it may not be reached in certain dynamic situations such as occur in shock waves, etc. The present tables are consistent in the low temperature region with the recent calculations of Hall and Ibele [35, 36], which did not include the effects of dissociation. If the properties for air for the fixed composition (without dissociation) are desired, the tables of Hall and Ibele should be consulted. Above 2000°K, the tables for the compressibility factor should be reliable to 0.0003 up to 10 atmospheres and to 0.002 up to 100 atmospheres. Above 500°K, the tabulated values depend largely on theoretical calculations; it is believed that the uncertainty of any entry does not exceed 20 percent in (Z-1). The departure of the experimental data from the tables is illustrated in figure 2a. Corresponding uncertainties and corrections apply to the table of densities (table 2-2). The data of Michels and co-workers [16,17,34] became available after the tables had been computed. The agreement, however, is very good except at the low temperatures where the new data may be used to modify the tabulated values in accordance with the deviations shown in figure 2a. Above 200°K, the tables agree also with those calculated from the Beattie-Bridgeman equation [37] and with those of Claitor and Crawford [6]. Figure 2a. Departures of experimental compressibility factors from the tabulated values for air (table 2-1) In the case of specific heat (table 2-3) for the temperature range $100 - 300^{\circ}K$ at all pressures except the highest entry and for the temperature range $300 - 800^{\circ}K$ at all pressures, the uncertainty does not exceed 20 percent in $C_p - C_p^0$. For the highest pressure entries at temperatures below $300^{\circ}K$, the uncertainty may approach 30 percent in $C_p - C_p^0$. Direct measurements of C_p are few; figures 2b and 2c present a comparison of the tabulated values with existing data, either measured directly or derived, through assumptions for the equation of state, from the thermal measurements cited. The values contained in the tables of enthalpy (table 2-4) and entropy (table 2-5) have been rounded so that the uncertainty probably does not exceed two or three parts in the last place tabulated, except at the extremes--low temperature and high pressure, or vice versa--where it may reach two parts in the next to last place. Similarly, the uncertainty in the specific-heat ratios (table 2-6) does not exceed two or three parts in the last place tabulated except at the extremes where it may reach two parts in the next to last place. Figure 2b. Departures of low-pressure experimental specific heats from the tabulated values for air (table 2-3) Figure 2c. Departures of specific heats (calculated from Joule-Thomson data) from the tabulated values for air (table 2-3) The uncertainty in the sound velocity at low frequency (table 2-7) can be expressed in terms of the effect of the gas imperfection. Thus, in the temperature range from $100\text{-}270^\circ\text{K}$ at all pressures except the highest entry and in the temperature range $270\text{-}800^\circ\text{K}$ at all
pressures, the error in (a/a_0) - (a^0/a_0) .01 atm should not exceed 3 percent; the high-pressure entries below 270°K may be in error by 10 percent in that quantity. A comparison with the experimental results of Hodge [29] is given in figure 2d. The departures are within his estimated experimental uncertainty of 0.2 percent. At higher temperatures, the results are purely theoretical and should be accurate to 0.1 percent if the assumption of equilibrium composition is valid. Such accuracy, however, is unlikely since equilibrium is probably not attained and chemical dispersion effects undoubtedly occur (in the region of changing composition). Physical dispersion effects may also give rise to considerable differences between experimental and tabulated results, especially at high values of frequency/pressure. The tabulated values will, in all such cases, be a lower limit to the actual velocity. Figure 2d. Departures of experimental sound velocities at 27°C from the tabulated values for air (table 2-7) The values of viscosity (table 2-8) and the thermal conductivity (table 2-9) were computed from the empirical equations given in summary tables 1-B and 1-C. These equations are based on the existing experimental data upon which the present tabulations depend for their reliability. The departures of the experimental data from the tabulated values are given in figures 2e and 2f from which the reliability of the viscosities can be assessed as being within 2 percent and the thermal conductivity within 4 percent. The Prandtl number, $N_{pr} = \eta \ C_p/k$, and certain of its fractional powers are listed (table 2-10) for dry air at 1 atmosphere. The nomogram in figure 2g will facilitate the calculations of other fractional powers not tabulated. Figure 2e. Departure of experimental viscosity data from the tabulated values for air (table 2-8) Figure 2f. Departures of low-pressure experimental thermal conductivities from the tabulated values for air (table 2-9) Figure 2g. Nomogram for the calculation of fractional powers of the Prandtl number ### References - [1] A. Seligman, Z. ges. Kälte-Ind. 29, 77 (1922); 31, 129 (1924). - [2] H. Hausen, Forsch. Gebiete Ingenieurw., No. 274, (1926). - [3] R. V. Gerhart, F. C. Brunner, H. S. Mickley, B. H. Sage, and W. N. Lacey, Mech. Eng. 64, 270 (1942). - [4] V. C. Williams, Trans. Am. Inst. Chem. Engrs. 39, 93 (1943). - [5] J. H. Rushton, Refrig. Eng. 53, 24 (1947). - [6] L. C. Claitor and D. B. Crawford, Trans. Am. Soc. Mech. Engrs. 71, 885 (1949). - [7] J. H. Keenan and J. Kaye, Gas tables (John Wiley and Sons, Inc., New York, N.Y., 1948). - [8] V. N. Huff, S. Gordon, and V. E. Morrell, Natl. Advisory Comm. Aeronaut. Rept. 1037 (1951). - [9] J. O. Hirschfelder and C. F. Curtiss, Dept. of Chem., Univ. Wisconsin (Naval Research Lab.) Report CM-518, (1948). - [10] E. H. Amagat, Ann. chim. et phys. [6] 29, 68 (1893). - [11] A. W. Witkowski, Phil. Mag. [5] 41, 288 (1896); [5] 42, 1 (1896). - [12] P. P. Koch, Ann. Physik [4] 27, 311 (1908). - [13] L. Holborn and H. Schultze, Ann. Physik [4] 47, 1089 (1915). - [14] L. Holborn and J. Otto, Z. Physik 33, 1 (1925). - [15] F. M. Penning, Communs. Phys. Lab. Univ. Leiden, No. 166, (1923). - [16] A. Michels, T. Wassenaar, and Th. N. Zwietering, Physica 18, 67 (1952). - [17] T. Wassenaar, Dissertation, Amsterdam (1952). - [18] R. Kiyama, Rev. Phys. Chem. Japan 19, 38 (1945). - [19] C. S. Cragoe, in Am. Inst. Phys., Temperature, its measurement and control in science and industry, p. 97 (Reinhold Publishing Corp., New York, N.Y., 1941). - [20] H. W. Woolley, J. Chem. Phys. 21, 236 (1953). - [21] R. B. Bird, E. L. Spotz, and J. O. Hirschfelder, J. Chem. Phys. 18, 1395 (1950). - [22] F. Din, private communication. - [23] J. R. Roebuck, Proc. Am. Acad. Arts Sci. 60, 537 (1925). - [24] J. R. Roebuck, Proc. Am. Acad. Arts Sci. 64, 287 (1930). - [25] H. Hausen, Z. tech. Phys. 7, 371 and 444 (1926). - [26] B. P. Dailey and W. A. Felsing, J. Am. Chem. Soc. 65, 42 (1943). - [27] A. Eucken and K. Von Lüde, Z. physik. Chem. [B] 5,413 (1929). - [28] C. B. Kistiakowsky and W. W. Rice, J. Chem. Phys. 7, 281 (1939). - [29] A. H. Hodge, J. Chem. Phys. 5, 974 (1937). - [30] A. Van Itterbeek and W. Van Doninck, Ann. phys. [11] 19, 88 (1944). - [31] A. Eucken, K. Clusius, and W. Berger, Z. tech. Phys. 13, 267 (1932). - [32] J. R. Andersen, Trans. Am. Soc. Mech. Engrs. 72, 759 (1950). - [33] F. D. Rossini and M. Frandsen, Bur. Standards J. Research 9, 733 (1932) RP503. - [34] A. Michels, T. Wassenaar, and W. van Seventer, Appl. Sci. Research [A] 4, 52 (1954). - [35] N. A. Hall and W. E. Ibele, Univ. Minn. Inst. Technol. Eng. Exp. Sta. Tech. Paper No. 85 (1951). - [36] N. A. Hall and W. E. Ibele, Trans. Am. Soc. Mech. Engrs. 76, 1039 (1954). - [37] J. A. Beattie, Phys. Rev. [2] 35, 643 (1930). - [38] V. Vasilesco, Ann. phys. [11] 20, 292 (1945). - [39] W. G. Shilling and A. E. Laxton, Phil. Mag. [7] 10, 721 (1930). - [40] A. Fortier, Compt. rend. 203, 711 (1936); 208, 506 (1939). - [41] W. J. Fisher, Phys. Rev. [1] 28, 73 (1909). - [42] J. H. Grindley and A. H. Gibson, Proc. Roy. Soc. (London) [A] 80, 114 (1908). - [43] B. P. Sutherland and O. Maass, Can. J. Research 6, 428 (1932). - [44] M. Trautz and W. Ludewigs, Ann. Physik [5] 3, 409 (1929). - [45] R. S. Edwards and A. O. Rankine, Proc. Roy. Soc. (London) [A] 117, 245 (1927). - [46] T. Titani, Bull. Chem. Soc. Japan 4, 68 (1929). - [47] H. L. Johnston and K. E. McCloskey, J. Phys. Chem. 44, 1038 (1940). - [48] R. Wobser and F. Müller, Kolloid-Beih. 52, 165 (1941). - [49] W. J. Taylor and H. L. Johnston, J. Chem. Phys. 14, 219 (1946). - [50] G. G. Sherratt and E. Griffiths, Phil. Mag. [7] 27, 68 (1939). - [51] S. W. Milverton, Phil. Mag. [7] 17, 397 (1934). - [52] W. B. Mann and B. G. Dickins, Proc. Roy. Soc. (London) [A] 134, 77 (1931). - [53] E. Schneider, Ann. Physik [4] 79, 177 (1926). - [54] A. Eucken, Physik. Z. 12, 1101 (1911). - [55] G. Kellstrom, Arkiv. Mat. Astron. Fysik [A] 27, 1 (1941). - [56] I. M. Rapp, Phys. Rev. [2] 2, 363 (1913). - [57] W. N. Bond, Nature 137, 1031 (1936). - [58] V. D. Majumdar and M. B. Vajifdar, Proc. Indian Acad. Sci. [A] 8, 171 (1938). - [59] J. A. Bearden, Phys. Rev. [2] 56, 1023 (1939). - [60] G. B. Banerjea and B. Plattanaik, Z. Physik 110, 676 (1938). - [61] H. Vogel, Ann. Physik. [4] 43, 1235 (1914). - [62] J. P. Rigden, Phil. Mag. [7] 25, 961 (1938). - [63] W. V. Houston, Phys. Rev. [2] <u>52</u>, 751 (1937). - [64] E. L. Harrington, Phys. Rev. [2] 55, 230 (1939). - [65] K. S. Van Dyke, Phys. Rev. [2] 21, 250 (1923). - [66] L. Gilchrist, Phys. Rev. [2] 1, 124 (1913). - [67] A. Gille, Ann. Physik. [4] 48, 799 (1915). - [68] J. L. Hogg, Proc. Am. Acad. Arts Sci. 40, 609 (1905). - [69] T. C. Hebb, Phys. Rev. [2] 14, 74 (1919). - [70] H. O. Kneser, Ann. Physik [5] 34, 665 (1939). Table 2-a. VALUES OF THE GAS CONSTANT, R, FOR AIR. Values of R for Air for Temperatures in Degrees Kelvin | Pressure
Density | atm | kg/cm ² | mm Hg | lb/in ² | |-------------------------|-----------|--------------------|----------|--------------------| | g/cm ³ | 2. 83286 | 2. 92699 | 2152.97 | 41.6317 | | mole/cm ³ | 82. 0567 | 84. 7832 | 62363. 1 | 1205.91 | | mole/liter | 0.0820544 | 0.0847809 | 62. 3613 | 1. 20587 | | lb/ft ³ | 0.0453777 | 0.0468855 | 34. 4871 | 0. 666871 | | lb mole/ft ³ | 1. 31441 | 1.35808 | 998.952 | 19.316 6 | Values of R for Air for Temperatures in Degrees Rankine | Values of R f | or Air for Tem | peratures in D | egrees Rankine | | v | |-------------------------|----------------|--------------------|----------------|--------------------|---------| | Pressure
Density | atm | kg/cm ² | mm Hg | lb/in ² | 100/64 | | g/cm ³ | 1.57381 | 1.62611 | 1196. 09 | 23. 1287 | | | mole/cm ³ | 45. 5871 | 47.1018 | 34646. 2 | 669.947 | | | mole/liter | 0.0455858 | 0.0471005 | 34. 6452 | 0.669928 | | | lb/ft ³ | 0. 0252098 | 0.0260475 | 19. 1595 | 0. 370484 | 93 | | lb mole/ft ³ | 0.730228 | 0.754489 | 554.973 | 10.7314 | 154 5.3 | 145.32 Table 2-b. CONVERSION FACTORS FOR THE AIR TABLES # Conversion Factors for Table 2-2 | To Convert
Tabulated
Value of | То | Having the Dimensions
Indicated Below | Multiply
by | | | |-------------------------------------|----|--|---|--|--| | ρ/ρ0 | ρ | g cm ⁻³ mole cm ⁻³ | 1. 29304x10 ⁻³ 4. 46400 x 10 ⁻⁵ | | | | · | | g liter ⁻¹ | 1. 29308 | | | | | | lb in ⁻³ | 4.67143×10^{-5} | | | | | | lb ft ⁻³ | 8.07223×10^{-2} | | | # Conversion Factors for Tables 2-4 and 2-11 | To Convert Tabulated Value of | Tabulated To Having the D | | Multiply
by | |---|---------------------------|--|---| | (H° - E°)/RT ₀ ,
(H - E°)/RT ₀ | | cal mole ⁻¹ cal g ⁻¹ joules g ⁻¹ Btu (lb mole) ⁻¹ Btu lb ⁻¹ | 542.821
18.7399
78.4079
976.437
33.7098 | # Conversion Factors for Tables 2-3, 2-5, and 2-11 | To Convert
Tabulated
Value of | То | Having the Dimensions Indicated Below | Multiply
by | |-------------------------------------|-----------------------------------|---|----------------| | C_p^0/R , S^0/R , | C _p , s ^o , | cal mole ⁻¹ oK ⁻¹ (or oC ⁻¹) | 1.98719 | | C _p /R, S/R | C _p , s | cal g ⁻¹ oK ⁻¹ (or oC ⁻¹) | 0.0686042 | | | | joules g ^{-1 o} K ⁻¹ (or ^o C ⁻¹) | 0.287041 | | | | Btu (lb mole) ⁻¹ OR ⁻¹ (or OF ⁻¹) | 1.98588 | | | | Btu lb ⁻¹ OR ⁻¹ (or OF ⁻¹) | 0.0685590 | The molecular weight of air is 28.966 g mole⁻¹. Unless otherwise specified the mole is the gram-mole; the calorie is the thermochemical calorie; and the joule is the absolute joule. Table 2-b. CONVERSION FACTORS FOR THE AIR TABLES -
Cont. Conversion Factors for Table 2-7 | To Convert Tabulated Value of | To | Having the Dimensions Indicated Below | Multiply
by | | | |-------------------------------|----|---|------------------|--|--| | a ₀ | a | m sec ⁻¹
ft sec ⁻¹ | 331.45
1087.4 | | | | | | | | | | Conversion Factors for Table 2-8 | To Convert Tabulated To Value of | Having the Dimensions Indicated Below | Multiply
by | | |----------------------------------|--|--|--| | η/η ₀ η | poise or g sec ⁻¹ cm ⁻¹ kg hr ⁻¹ m ⁻¹ slug hr ⁻¹ ft ⁻¹ lb sec ⁻¹ ft ⁻¹ | 1.716×10 ⁻⁴ 6.178 × 10 ⁻² 1.290 × 10 ⁻³ 1.153 × 10 ⁻⁵ 4.151 × 10 ⁻² | | Conversion Factors for Table 2-9 | To Convert Tabulated Value of | То | Having the Dimensions
Indicated Below | Multiply
by | |-------------------------------|----|---|--| | k/k ₀ | k | cal cm ⁻¹ sec ^{-1 o} K ⁻¹ Btu ft ⁻¹ hr ^{-1 o} R ⁻¹ watts cm ^{-1 o} K ⁻¹ | 5.770 x 10 ⁻⁵ 1.395 x 10 ⁻² 2.414 x 10 ⁻⁴ | Table 2-1. COMPRESSIBILITY FACTOR FOR AIR | | | | | | | | , | | | |---------------------------------|---|--------------------------|---|----------------------------|---|--------------------------------------|---|--------------------------------|--------------------------------------| | °K_ | .01 | atm | | atm | .4 | atm | .7 | atm | °R | | 50
60
70
80
90 | .99871
.99923
.99950
.99966
.99975 | 52
27
16
9
6 | .99657
,99751 | 94
62 | .98992 | 256 | .98220 | 452 | 90
108
126
144
162 | | 100
110
120
130
140 | .99981
.99986
.99989
.99991
.99993 | 5
3
2
2
1 | .99813
.99856
.99887
.99910
.99928 | 43
31
23
18
13 | .99248
.99423
.99548
.99640
.99709 | 175
125
92
<i>6</i> 9
54 | .98672
.98985
.99206
.99368
.99490 | 313
221
162
122
95 | 180
198
216
234
252 | | 150
160
170
180
190 | .99994
.99995
.99996
.99997 | 1
1
1 | .99941
.99951
.99960
.99967 | 10
9
7
5
5 | .99763
.99805
.99839
.99866
.99888 | 42
34
27
22
19 | .99585
.99659
.99718
.99766
.99805 | 74
59
48
39
32 | 270
288
306
324
342 | | 200
210
220
230
240 | .99998
.99998
.99998
.99999 | 1 | .99977
.99980
.99984
.99986
.99989 | 3
4
2
3
2 | .99907
.99922
.99935
.99945
.99954 | 15
13
10
9
8 | .99837
.99863
.99886
.99905 | 26
23
19
16
13 | 360
378
396
414
432 | | 250
260
270
280
290 | .99999
.99999
.99999
1.00000 | 1 | .99991
.99992
.99994
.99995
.99996 | 1
2
1
1 | .99962
.99969
.99975
.99980
.99984 | 7
6
5
4 | .99934
.99946
.99956
.99965
.99972 | 12
10
9
7
7 | 450
468
486
504
522 | | 300
310
320
330
340 | 1.00000
1.00000
1.00000
1.00000 | | .99997
.99998
.99999
.99999 | 1
1 | .99988
.99991
.99994
.99997
.99999 | 3
3
2
2 | .99979
.99985
.99990
.99994
.99998 | 6
5
4
4
3 | 540
558
576
594
612 | | 350
360
370
380
390 | 1.00000
1.00000
1.00000
1.00000
1.00000 | | 1.00000
1.00001
1.00001
1.00001
1.00002 | 1 | 1.00001
1.00003
1.00004
1.00005
1.00007 | 2
1
1
2
1 | 1.00001
1.00004
1.00007
1.00010
1.00012 | 3
3
2
2 | 630
648
666
684
702 | | 400
410
420
430
440 | 1.00000
1.00000
1.00000
1.00000 | | 1.00002
1.00002
1.00002
1.00003
1.00003 | 1 | 1.00008
1.00009
1.00010
1.00010 | 1 1 1 | 1.00014
1.00015
1.00017
1.00018
1.00019 | 1
2
1
1 | 720
738
756
774
792 | | 450
460
470
480
490 | 1.00000
1.00000
1.00000
1.00000
1.00000 | | 1.00003
1.00003
1.00003
1.00003
1.00003 | | 1.00012
1.00012
1.00013
1.00013
1.00013 | 1 | 1.00020
1.00021
1.00022
1.00022
1.00023 | 1
1
1 | 810
828
846
864
882 | | 500
510
520
530
540 | 1.00000
1.00000
1.00000
1.00000
1.00000 | | 1.00003
1.00003
1.00003
1.00003 | 1 | 1.00014
1.00014
1.00014
1.00014
1.00015 | 1 | 1.00024
1.00024
1.00025
1.00025
1.00026 | 1 | 900
918
936
954
972 | | 550
560
570
580
590 | 1.00000
1.00000
1.00000
1.00000 | | 1.00004
1.00004
1.00004
1.00004
1.00004 | | 1.00015
1.00015
1.00015
1.00015
1.00015 | | 1.00026
1.00026
1.00026
1.00027
1.00027 | 1 | 990
1008
1026
1044
1062 | | 600
610
620
630
640 | 1.00000
1.00000
1.00000
1.00000 | | 1.00004
1.00004
1.00004
1.00004 | | 1.00015
1.00015
1.00015
1.00015
1.00015 | | 1.00027
1.00027
1.00027
1.00027
1.00027 | | 1080
1098
1116
1134
1152 | | 650 | 1.00000 | | 1.00004 | | 1.00015 | • | 1.00027 | | 1170 | Table 2-1. COMPRESSIBILITY FACTOR FOR AIR - Cont. | *K | | ıtm | ,I at | m . | .4 atr | n | .7 0 | ıtm | °R | |--------------------------------------|---|---------------------------------|---|---------------------------------|---|---------------------------------|---|---------------------------------|--------------------------------------| | 650
660
670
680
690 | 1.00000
1.00000
1.00000
1.00000 | | 1.00004
1.00004
1.00004
1.00004 | | 1.00015
1.00015
1.00015
1.00015
1.00015 | | 1.00027
1.00027
1.00027
1.00027
1.00027 | | 1170
1188
1206
1224
1242 | | 700
710
720
730
740 | 1.00000
1.00000
1.00000
1.00000
1.00000 | | 1.00004
1.00004
1.00004
1.00004 | | 1.00015
1.00015
1.00015
1.00015
1.00015 | | 1.00027
1.00027
1.00027
1.00027
1.00027 | - 1 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | 1.00000
1.00000
1.00000
1.00000
1.00000 | | 1.00004
1.00004
1.00004
1.00004 | | 1.00015
1.00015
1.00015
1.00015
1.00015 | | 1.00026
1.00026
1.00026
1.00026
1.00026 | | 1350
1368
1386
1404
1422 | | 800
850
900
950
1000 | 1.00000
1.00000
1.00000
1.00000 | | 1.00004
1.00004
1.00004
1.00003
1.00003 | - 1 | 1.00015
1.00014
1.00014
1.00014
1.00013 | - 1
- 1
- 1 | 1.00026
1.00025
1.00025
1.00024
1.00023 | - 1
- 1
- 1 | 1440
1530
1620
1710
1800 | | 1050
1100
1150
1200
1250 | 1.00000
1.00000
1.00000
1.00000
1.00000 | | 1.00003
1.00003
1.00003
1.00003
1.00003 | | 1.00012
1.00012
1.00011
1.00011
1.00011 | - 1 | 1.00023
1.00022
1.00021
1.00021
1.00020 | - 1
- 1
- 1
- 1 | 1890
1980
2070
2160
2250 | | 1300
1350
1400
1450
1500 | 1.00000
1.00000
1.00000
1.00000
1.00001 | 1 2 | 1.00003
1.00003
1.00003
1.00003
1.00003 | 1 | 1.00011
1.00010
1.00010
1.00010
1.00010 | - 1 | 1.00019
1.00019
1.00018
1.00018
1.00018 | - 1
- 1 | 2340
2430
2520
2610
2700 | | 1550
1600
1650
1700
1750 | 1.00003
1.00005
1.00008
1.00011
1.00016 | 2
3
3
5 | 1.00004
1.00004
1.00005
1.00006
1.00007 | 1
1
1
3 | 1.00010
1.00010
1.00010
1.00011
1.00011 | 1 2 | 1.00017
1.00017
1.00017
1.00017
1.00017 | 2 | 2790
2880
2970
3060
3150 | | 1800
1850
1900
1950
2000 | 1.00025
1.00041
1.00068
1.00109
1.00167 | 16
27
41
58
75 | 1.00010
1.00014
1.00023
1.00037
1.00054 | 4
9
14
17
23 | 1.00013
1.00015
1.00019
1.00025
1.00034 | 2
4
6
9
13 | 1.00019
1.00020
1.00023
1.00027
1.00033 | 1
3
4
6
11 | 3240
3330
3420
3510
3600 | | 2050
2100
2150
2200
2250 | 1.00242
1 00342
1.00475
1.00653
1.00889 | 100
133
178
236
307 | 1.00077
1.00111
1.00156
1.00215
1.00283 | 34
45
59
68
88 | 1.00047
1.00065
1.00086
1.00113
1.00148 | 18
21
27
35
46 | 1.00044
1.00058
1.00072
1.00091
1.00119 | 14
14
19
28
36 | 3690
3780
3870
3960
4050 | | 2300
2350
2400
2450
2500 | 1.01196 | | 1.00371
1.00494
1.00654
1.00847
1.01079 | 123
160
193
232
278 | 1.00194
1.00255
1.00335
1.00431
1.00548 | 61
80
96
117
141 | 1.00155
1.00202
1.00261
1.00333
1.00422 | 47
59
72
89
108 | 4140
4230
4320
4410
4500 | | 2550
2600
2650
2700
2750 | | | 1.01357
1.01693
1.02097
1.02572
1.03118 | 336
404
475
546
623 | 1.00689
1.00861
1.01069
1.01313
1.01590 | 172
208
244
277
320 | 1.00530
1.00661
1.00821
1.01008
1.01220 | 131
160
187
212
248 |
4590
4680
4770
4860
4950 | | 2800
2850
2900
2950
3000 | | | 1.03741
1.04444
1.05228
1.06086
1.07007 | 703
784
858
921 | 1.01910
1.02280
1.02702
1.03169
1.03718 | 370
422
467
549 | 1.01468
1.01756
1.02089
1.02476
1.02920 | 288
333
387
444 | 5130
5220 | | | r | | , | | | | | | | |------------|--------------------|----------|--------------------|-----------|--------------------|------------|--------------------|------------|--------------| | *K | l l | atm | 4 | atm | 7 | atm | 10 | atm | *R | | | | | | | | | | | | | 100 | .98090 | 452 | | | | • | | | 180 | | 110 | .98542 | 319 | .93853 | 1415 | .8855 | 281 | .8234 | 469 | 198 | | 120 | .98861 | 234 | .95268 | 1009 | .9136 | 194 | .8703 | 307 | 216 | | 130 | .99095 | 176 | .96277 | 745 | .9330 | 137 | .9010 | 211 | 234 | | 140 | .99271 | 136 | .97022 | 569 | .9467 | 105 | .9221 | 157 | 252 | | 150 | .99407 | 106 | .97591 | 439 | .95716 | 798 | .9378 | 118 | 270 | | 160 | .99513 | 84 | .98030 | 348 | .96514 | 623 | .9496 | 92 | 288 | | 170 | .99597 | 69 | .98378 | 278 | .97137 | 499 | .95880 | 727 | 306 | | 180 | .99666 | 55 | .98656 | 226 | .97636 | 403 | .96607 | 584 | 324 | | 190 | .99721 | 46 | .98882 | 185 | .98039 | 328 | .97191 | 475 | 342 | | 200
210 | .99767
.99806 | 39 | .99067
.99221 | 154 | .98367 | 267 | .97666 | 392 | 360 | | 220 | .99837 | 31
27 | .99347 | 126 | .98634
.98857 | 223 | .98058 | 325 | 378 | | 230 | .99864 | 27 | .99454 | 107
92 | .99045 | 188 | .98383
.98656 | 273 | 396
414 | | 240 | .99886 | 20 | .99546 | 78 | .99205 | 160
147 | .98886 | 230
196 | 432 | | 250 | .99906 | 17 | .99624 | 66 | .99352 | 117 | .99082 | 1/7 | 450 | | 260 | .99923 | 14 | .99690 | 58 | .99469 | 101 - | .99249 | 167
144 | 468 | | 270 | .99937 | 12 | .99748 | 50 | .99570 | | .99393 | 123 | 486 | | 280 | .99949 | 11 | .99798 | 43 | .99656 | 76 | .99516 | 107 | 504 | | 290 | 99960 | 10 | .99841 | 38 | 109 .99732 | 65 | 109.99623 | 94 | 522 | | 295 | , 49965 | | .99860 | | | | ርር ነው | | | | 300 | .99970 | 8 . | .99879 | 33 | 82.99797 | 58 | รอ .99717 | 81. | 540 | | 310 | .99978 | . 7 | .99912 | 28 | .99855 | 50 | .99798 | 71 | 558 | | 320 | .99985 | 6 | .99940 | 26 | .99905 | 44 | .99869 | 63 | 57 6 | | 330 | .99991 | 6 | .99966 | 23 | .99949 | 38 | .99932 | 55 | 594 | | 340 | .99997 | 5 | .99989 | 19 | .99987 | 34 | .99987 | 48 | 612 | | 350 | 1.00002 | 4 | 1.00008 | 17 | 1.00021 | 30 | 1.00035 | 43 | 630 | | 360 | 1.00006 | 4 | 1.00025 | 16 | 1.00051 | 27 | 1.00078 | 37 | 648 | | 370 | 1.00010 | 4 | 1.00041 | 14 | 1.00078 | 24 | 1.00115 | 34 | 666 | | 380 | 1.00014 | 3 | 1.00055 | 14 | 1.00102 | 20 | 1.00149 | 29 | 684 | | 390 | 1.00017 | 2 | 1.00069 | 10 | 1.00122 | 19 | 1.00178 | 27 | 702 | | 400 | 1.00019 | 3 | 1.00079 | 10 | 1.00141 | 16 | 1.00205 | 23 | 720 | | 410 | 1.00022 | 2 | 1.00089 | . 8 | 1.00157 | 15 | 1.00228 | 20 | 738 | | 420 | 1.00024 | 2 | 1.00097 | 8 | 1.00172 | 13 | 1.00248 | 19 | 756 | | 430 | 1.00026 | 1 | 1.00105 | 6 | 1.00185 | 11 | 1.00267 | 16 | 774 | | 440 | 1.00027 | 2 | 1.00111 | 5 | 1.00196 | 11 | 1.00283 | 14 | 792 | | 450 | 1.00029 | 1 | 1,00116 | 5 | 1.00207 | 9 | 1.00297 | 13 | 810 | | 460 | 1.00030 | 1 | 1.00121 | 5 | 1.00216 | 8 | 1.00310 | 11 | 828 | | 470 | 1.00031 | 1 | 1.00126 | 4 | 1.00224 | 7 | 1.00321 | 10 | 846 | | 480 | 1.00032 | 1 | 1.00130 | 4 | 1.00231 | 6 | 1.00331 | 9 | 864 | | 490 | 1.00033 | 1 | 1.00134 | 3 | 1.00237 | .5 | 1.00340 | 8 | 882 | | 500 | 1.00034 | 1 | 1.00137 | 3 | 1.00242 | 5 | 1.00348 | 7 | 900 | | 510 | 1.00035 | | 1.00140 | 2 | 1.00247 | 4 | 1.00355 | 6 | 918 | | 520 | 1.00035 | 1 | 1.00142 | 2 | 1.00251 | 4 | 1.00361 | 5 | 936 | | 530
540 | 1.00036
1.00037 | 1 | 1.00144
1.00146 | 2 | 1.00255 | 3 | 1.00366 | 4 | 954 | | | | | 1.00140 | 2 | 1.00258 | 3 | 1.00370 | 4 | 972 | | 550 | 1.00037 | | 1.00148 | ` 2 | 1.00261 | 2 | 1.00374 | 3 | 990 | | 560 | 1.00037 | 1 | 1.00150 | 1 | 1.00263 | 2 | 1.00377 | 3 | 1008 | | 570 | 1.00038 | | 1.00151 | 1 | 1.00265 | 1 | 1.00380 | 2 | 1026 | | 580 | 1.00038 | | 1.00152 | | 1.00266 | 1 | 1.00382 | 2 | 1044 | | 590 | 1.00038 | | 1.00152 | | 1.00267 | | 1.00384 | 1 | 1062 | | 600 | 1.00038 | | 1.00152 | 1 | 1.00267 | | 1.00385 | 1 | 1080 | | 610 | 1.00038 | | 1.00153 | | 1.00267 | 1 | 1.00386 | 1 | 1098 | | 620 | 1.00038 | | 1.00153 | 1 | 1.00268 | | 1.00387 | 1 | 1116 | | 630
640 | 1.00038
1.00038 | | 1.00154
1.00154 | | 1.00268
1.00269 | 1 | 1.00388
1.00388 | | 1134
1152 | | 650 | 1.00038 | 1 | 1.00154 | | 1.00269 | | 1.00388 | | 1170 | | 660 | 1.00039 | 1 | 1.00154 | | 1.00270 | . 1 | 1.00388 | | 1170 | | 670 | 1.00039 | - 1 | 1.00154 | - 1 | 1.00270 | - 1 | 1.00388 | - 1 | 1206 | | 680 | 1.00038 | - | 1.00153 | • | 1.00269 | • | 1.00387 | · - 1 | 1224 | | 690 | 1.00038 | | 1.00153 | | 1.00269 | - 1 | 1.00386 | - î | 1242 | | 700 | 1,00038 | | 1.00153 | | 1.00268 | | 1.00385 | | 1260 | | 700 | 1,00030 | | T.00T33 | | 1.00200 | | 1.00203 | | 1200 | Table 2-1. COMPRESSIBILITY FACTOR FOR AIR - Cont. | 1 20,10 2 | | -, - | | | | | 1 | | •R | |--------------------------------------|---|---------------------------------|---|---------------------------------|---|---------------------------------|---|--------------------------------------|--------------------------------------| | *K | l_ | atm | 4 | atm | 7 at | m
 | 10 0 | ntr. | | | 700
710
720
730
740 | 1.00038
1.00038
1.00038
1.00038
1.00038 | | 1.00153
1.00153
1.00152
1.00152
1.00152 | - 1
- 1 | 1.00268
1.00268
1.00267
1.00266
1.00265 | - 1
- 1
- 1
- 1 | 1.00385
1.00384
1.00383
1.00382
1.00380 | - 1
- 1
- 1
- 2
- 1 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | 1.00038
1.00038
1.00038
1.00038 | - 1 | 1.00151
1,00151
1.00150
1.00149
1.00149 | - 1
- 1
- 1 | 1.00264
1.00263
1.00262
1.00261
1.00260 | - 1
- 1
- 1
- 1 | 1.00379
1.00378
1.00376
1.00374
1.00373 | - 1
- 2
- 2
- 1
- 2 | 1350
1368
1386
1404
1422 | | 800
850
900
950
1000 | 1.00037
1.00036
1.00035
1.00034
1.00033 | - 1
- 1
- 1
- 1
- 1 | 1.00148
1.00144
1.00140
1.00136
1.00132 | - 4
- 4
- 4
- 4 | 1.00259
1.00252
1.00246
1.00239
1.00231 | - 7
- 6
- 7
- 8
- 6 | 1.00371
1.00361
1.00351
1.00341
1.00331 | - 10
- 10
- 10
- 10
- 10 | 1440
1530
1620
1710
1800 | | 1050
1100
1150
1200
1250 | 1.00032
1.00031
1.00030
1.00029
1.00028 | - 1
- 1
- 1
- 1 | 1.00128
1.00124
1.00120
1.00117
1.00113 | - 4
- 4
- 3
- 4
- 3 | 1.00225
1.00218
1.00211
1.00205
1.00199 | - 7
- 7
- 6
- 6
- 6 | 1.00321
1.00311
1.00302
1.00293
1.00284 | - 10
- 9
- 9
- 9
- 9 | 1890
1980
2070
2160
2250 | | 1300
1350
1400
1450
1500 | 1.00028
1.00027
1.00026
1.00025
1.00024 | - 1
- 1
- 1 | 1.00110
1.00107
1.00104
1.00101
1.00098 | - 3
- 3
- 3
- 3
- 2 | 1.00193
1.00187
1.00182
1.00176
1.00171 | - 6
- 5
- 6
- 5
- 4 | 1.00275
1.00267
1.00259
1.00252
1.00245 | - 8
- 8
- 7
- 7
- 6 | 2340
2430
2520
2610
2700 | | 1550
1600
1650
1700
1750 | 1.00024
1.00023
1.00023
1.00023
1.00023 | + 1 | 1.00096
1.00094
1.00092
1.00090
1.00088 | - 2
- 2
- 2
- 2
- 1 | 1.00167
1.00163
1.00160
1.00157
1.00154 | - 4
- 3
- 3
- 3
- 2 | 1.00239
1.00233
1.00228
1.00223
1.00218 | - 6
- 5
- 5
- 5 | 2790
2880
2970
3060
3150 | | 1800
1850
1900
1950
2000 | 1.00024
1.00025
1.00027
1.00030
1.00035 | 1
2
3
5 | 1.00087
1.00086
1.00085
1.00085 | - 1
- 1 | 1.00152
1.00149
1.00146
1.00143
1.00140 | - 3
- 3
- 3
- 3 | 1.00213
1.00208
1.00204
1.00200
1.00196 | - 5
- 4
- 4
- 4
- 1 | 3240
3330
3420
3510
3600 | | 2050
2100
2150
2200
2250 | 1.0005
1.0006
1.0007
1.0008
1.0011 | 1
1
1
3
3 | 1.0009
1.0010
1.0010
1.0010
1.0011 | 1
1
2 | 1.0014
1.0014
1.0014
1.0014
1.0015 | 1
1 | 1.0019
1.0019
1.0019
1.0019
1.0019 | 1 | 3690
3780
3870
3960
4050 | | 2300
2350
2400
2450
2500 | 1.0014
1.0018
1.0023
1.0029
1.0036 | 4
5
6
7
9 | 1.0013
1.0015
1.0017
1.0020
1.0024 | 2
2
3
4
4 | 1.0016
1.0018
1.0019
1.0021
1.0024 | 2
1
2
3
3 | 1.0020
1.0021
1.0022
1.0024
1.0026 | 1
1
2
2
3 | 4140
4230
4320
4410
4500 | | 2550
2600
2650
2700
2750 | 1.0045
1.0056
1.0070
1.0086
1.0104 | 11
14
16
18
20 | 1.0028
1.0034
1.0041
1.0048
1.0058 | 6
7
7
10
10 | 1.0027
1.0031
1.0036
1.0042
1.0049 | 4
5
6
7
8 | 1.0029
1.0032
1.0036
1.0041
1.0046 | 3
4
5
5
7 | 4590
4680
4770
4860
4950 | | 2800
2850
2900
2950
3000 | 1.0124
1.0149
1.0178
1.0212
1.0252 | 25
29
34
40 | 1.0068
1.0081
1.0096
1.0113
1.0133 | 13
15
17
20 | 1.0057
1.0068
1.0079
1.0092
1.0107 | 11
11
1 3
15 | 1.0053
1.0061
1.0071
1.0082
1.0095 | 8
10
11
13 | 5040
5130
5220
5310
5400 | | °K | 10 atm | 40 atm | 70 atm | 100 atm | *R | |----|--------|--------|--------|---------|----| | | | |
 | | | 150
160 | .9378
.9496 | 118
92 | .6832
.7689 | 857
529 | | | | | 270
288 | |------------|--------------------|-------------|--------------------|------------|------------------|------------|------------------|------------|--------------| | 170 | 95880 | 72
727 | .8218 | 371 | | | | | 306 | | 180 | .96607 | 584 | .8589 | 277 | .7550 | 537 | .6950
.7600 | 650
505 | 324
342 | | 190 | .97191 | 475 | .8866 | 214 | .8087 | 394 | .7600 | 505 | 742 | | 200 | .97666 | 392 | .9080 | 169 | .8481 | 302 | .8105 | 389 | 360 | | 210 | .98058 | 325 | .9249 | 137 | .8783 | 237 | .8494 | 307 | 378 | | 220 | .98383 | 273 | .9386 | 111 | .9020 | 192 | .8801
.9048 | 247
202 | 396
414 | | 230 | .98656 | 230 | .9497
.9590 | 93
78 | .9212
.9368 | 156
130 | .9250 | 167 | 432 | | 240 | .98886 | 196 | .7570 | /0 | .,,,,, | 150 | | | | | 250 | .99082 | 167 | .96680 | 654 | .9498 | 108 | .9417 | 140 | 450
468 | | 260 | .99249 | 144 | .97334 | 560 | .9606 | 92 | .9557
.9675 | 118
100 | 486 | | 270 | .99393 | 123 | .97894
.98371 | 477
411 | .9698
.9776 | 78
66 | .9775 | 85 | 504 | | 280
290 | .99516
.99623 | 107
94 ← | 98782 | 353 | .9842 | 58 | .9860 | 73 | 522 | | 270 | .49670 | 100 | .989 <i>5</i> 8 | | | | 0022 | | 540 | | 300 | .99717, | | g z .99135 | 308 | .9900
.9949 | 49
43 | .9933
.9996 | 63
55 | 558 | | 310 | .99798 | 71 | .99443
.99710 | 267
233 | .9992 | 45
37 | 1.0051 | 48 | 576 | | 320
330 | .99869
.99932 | 63
55 | .99943 | 207 | 1.0029 | 33 | 1.0099 | 41 | 594 | | 340 | .99987 | 48 | 1.00150 | 176 | 1.0062 | 28 | 1.0140 | 36 | 612 | | 250 | 1 00035 | | 1.00326 | 157 | 1.0090 | 25 | 1.0176 | 31 | 630 | | 350
360 | 1.00035
1.00078 | 43
37 | 1.00483 | 139 | 1.0115 | 22 | 1.0207 | 28 | 648 | | 370 | 1.00115 | 34 | 1.00622 | 122 | 1.0137 | 19 | 1.0235 | 24 | 666 | | 380 | 1.00149 | 29 | 1.00744 | 107 | 1.0156 | 17 | 1.0259
1.0280 | 21
19 | 684
702 | | 390 | 1.00178 | 27 | 1.00851 | 95 | 1,0173 | 15 | 1.0200 | 17 | | | 400 | 1,00205 | 23 | 1.00946 | 84 | 1.0188 | 13 | 1.0299 | 16 | 720 | | 410 | 1.00228 | 20 | 1.01030 | 75 | 1.0201 | 11 | 1.0315 | 14
12 | 738
756 | | 420 | 1.00248 | 19 | 1.01105 | 65 | 1.0212
1.0222 | 10
9 | 1.0329
1.0341 | 11 | 774 | | 430 | 1.00267
1.00283 | 16
14 | 1.01170
1.01228 | 58
51 | 1.0231 | 8 | 1.0352 | 10 | 792 | | 440 | 1.00203 | 14 | 1,01220 | | | | | | 010 | | 450 | 1.00297 | 13 | 1.01279 | 45 | 1.0239 | 7 | 1.0362
1.0370 | 8
7 | 810
828 | | 460 | 1.00310 | 11 | 1.01324 | 39 | 1.0246
1.0252 | 6
5 | 1.0370 | 6 | 846 | | 470
480 | 1.00321
1.00331 | 10
9 | 1.01363
1.01398 | 35
30 | 1.0257 | 4 | 1.0383 | | . 864 | | 490 | 1.00340 | 8 | 1.01428 | 26 | 1.0261 | 4 | 1.0388 | 5 | 882 | | | | | 1 01454 | | 1.0265 | 3 | 1.0393 | 4 | 900 | | 500
510 | 1.00348
1.00355 | 7
6 | 1.01454
1.01477 | 23
20 | 1.0268 | ź | 1.0397 | 3 | 918 | | 520 | 1.00361 | 5 | 1.01497 | 18 | 1.0271 | 3 | 1.0400 | 2 | 936 | | 530 | 1.00366 | 4 | 1.01515 | 14 | 1.0274 | 2 | 1.0402 | 2
2 | 954
972 | | 540 | 1.00370 | 4 | 1.01529 | 12 | 1.0276 | 1 | 1.0404 | 2 | 712 | | 550 | 1.00374 | 3 | 1.01541 | 10 | 1.0277 | 2 | 1.0406 | 1 | 990 | | 560 | 1.00377 | 3 | 1.01551 | 8 | 1.0279 | 1 | 1.0407 | 1 | 1008
1026 | | 570 | 1.00380 | 2 | 1.01559 | 6 | 1.0280 | 1 | 1.0408
1.0408 | | 1044 | | 580 | 1.00382 | 2 | 1.01565 | 5
4 | 1.0281
1.0281 | | 1.0408 | | 1062 | | 590 | 1.00384 | 1 | 1.01570 | • | | | | | 1000 | | 600 | 1.00385 | 1 | 1.01574 | 3 | 1.0281 | | 1.0408
1.0408 | | 1080
1098 | | 610 | 1.00386 | 1 | 1.01577
1.01578 | 1 | 1.0281
1.0281 | | 1.0408 | - 1 | 1116 | | 620 | 1.00387
1.00388 | 1 | 1.01578 | - 1 | 1.0281 | - 1 | 1.0407 | - 1 | 1134 | | 630
640 | 1.00388 | | 1.01577 | - 1 | 1.0280 | | 1.0406 | - 1 | 1152 | | | 1.00388 | | 1.01576 | - 3 | 1.0280 | - 1 | 1.0405 | - 1 | 1170 | | 650
660 | 1.00388 | | 1.01573 | - 2 | 1.0279 | - 1 | 1.0404 | - 2 | 1188 | | 670 | 1.00388 | - 1 | 1.01571 | - 4 | 1.0278 | - 1 | 1.0402
1.0400 | - 2 | 1206
1224 | | 680 | 1.00387 | - 1 | 1.01567 | - 4 | 1.0277
1.0276 | - 1
- 1 | 1.0400 | - 1
- 2 | 1242 | | 690 | 1.00386 | - 1 | 1.01563 | - 5 | 1.02/0 | - 1 | | - | | | 700 | 1.00385 | | 1.01558 | | 1.0275 | | 1.0397 | | 1260 | | | | | | | | | | | | | *K | 10 atm | 40 atm | 70 atm | 100 atm | *R | |------|--------------|--------------|------------|-------------|------| | 700 | 1.00385 - 1 | 1.01558 - 5 | 1.0275 - 1 | 1.0397 - 1 | 1260 | | 710 | 1.00384 - 1 | 1.01553 - 6 | 1.0274 - 1 | 1.0396 - 2 | 1278 | | 720 | 1.00383 - 1 | 1.01547 - 6 | 1.0273 - 1 | 1.0394 - 2 | 1296 | | 730 | 1.00382 - 2 | 1.01541 - 6 | 1.0272 - 1 | 1.0392 - 1 | 1314 | | 740 | 1.00380 - 1 | 1.01535 - 7 | 1.0271 - 1 | 1.0391 - 2 | 1332 | | 750 | 1.00379 - 1 | 1.01528 - 7 | 1.0270 - 1 | 1.0389 - 2 | 1350 | | 760 | 1.00378 - 2 | 1.01521 - 6 | 1.0269 - 2 | 1.0387 - 2 | 1368 | | 770 | 1.00376 - 2 | 1.01515 - 7 | 1.0267 - 1 | 1.0385 - 2 | 1386 | | 780 | 1.00374 - 1 | 1.01508 - 8 | 1.0266 - 1 | 1.0383 - 2 | 1404 | | 790 | 1.00373 - 2 | 1.01500 - 7 | 1.0265 - 2 | 1.0381 - 2 | 1422 | | 800 | 1.00371 - 10 | 1.01493 - 40 | 1.0263 - 7 | 1.0379 - 12 | 1440 | | 850 | 1.00361 - 10 | 1.01453 - 42 | 1.0256 - 8 | 1.0367 - 11 | 1530 | | 900 | 1.00351 - 10 | 1.01411 - 43 | 1.0248 - 8 | 1.0356 - 12 | 1620 | | 950 | 1.00341 - 10 | 1.01368 - 43 | 1.0240 - 7 | 1.0344 - 11 | 1710 | | 1000 | 1.00331 - 10 | 1.01325 - 40 | 1.0233 - 8 | 1.0333 - 11 | 1800 | | 1050 | 1.00321 - 10 | 1.01285 - 40 | 1.0225 - 7 | 1.0322 - 10 | 1890 | | 1100 | 1.00311 - 9 | 1.01245 - 38 | 1.0218 - 7 | 1.0312 - 10 | 1980 | | 1150 | 1.00302 - 9 | 1.01207 - 37 | 1.0211 - 6 | 1.0302 - 10 | 2070 | | 1200 | 1.00293 - 9 | 1.01170 - 36 | 1.0205 - 7 | 1.0292 - 9 | 2160 | | 1250 | 1.00284 - 9 | 1.01134 - 34 | 1.0198 - 6 | 1.0283 - 8 | 2250 | | 1300 | 1.00275 - 8 | 1.01100 - 32 | 1.0192 - 5 | 1.0275 - 8 | 2340 | | 1350 | 1.00267 - 8 | 1.01068 - 31 | 1.0187 - 6 | 1.0267 - 8 | 2430 | | 1400 | 1.00259 - 7 | 1.01037 - 30 | 1.0181 - 5 | 1.0259 - 8 | 2520 | | 1450 | 1.00252 - 7 | 1.01007 - 29 | 1.0176 - 5 | 1.0251 - 7 | 2610 | | 1500 | 1.00245 - 6 | 1.00978 - 3 | 1.0171 - 5 | 1.0244 - 6 | 2700 | | 1550 | 1.00239 - 6 | 1.0095 - 2 | 1.0166 - 4 | 1.0238 - 6 | 2790 | | 1600 | 1.00233 - 5 | 1.0093 - 2 | 1.0162 - 4 | 1.0232 - 6 | 2880 | | 1650 | 1.00228 - 5 | 1.0091 - 3 | 1.0158 - 4 | 1.0226 - 6 | 2970 | | 1700 | 1.00223 - 5 | 1.0088 - 2 | 1.0154 - 4 | 1.0220 - 6 | 3060 | | 1750 | 1.00218 - 5 | 1.0086 - 3 | 1.0150 - 4 | 1.0214 - 6 | 3150 | | 1800 | 1.00213 - 5 | 1.0083 - 2 | 1.0146 - 4 | 1.0208 - 5 | 3240 | | 1850 | 1.00208 - 4 | 1.0081 - 2 | 1.0142 - 4 | 1.0203 - 5 | 3330 | | 1900 | 1.00204 - 4 | 1.0079 - 2 | 1.0138 - 3 | 1.0198 - 5 | 3420 | | 1950 | 1.00200 - 4 | 1.0077 - 1 | 1.0135 - 3 | 1.0193 - 5 | 3510 | | 2000 | 1.00196 - 1 | 1.0076 - 2 | 1.0132 - 3 | 1.0188 - 4 | 3600 | | 2050 | 1.0019 | 1.0074 - 1 | 1.0129 - 3 | 1.0184 - 4 | 3690 | | 2100 | 1.0019 | 1.0073 - 2 | 1.0126 - 2 | 1.0180 - 4 | 3780 | | 2150 | 1.0019 | 1.0071 - 1 | 1.0124 - 3 | 1.0176 - 4 | 3870 | | 2200 | 1.0019 | 1.0070 - 1 | 1.0121 - 2 | 1.0172 - 3 | 3960 | | 2250 | 1.0019 | 1.0069 - 2 | 1.0119 - 3 | 1.0169 - 4 | 4050 | | 2300 | 1.0020 1 | 1.0067 | 1.0116 - 1 | 1.0165 - 2 | 4140 | | 2350 | 1.0021 1 | 1.0067 | 1.0115 - 2 | 1.0163 - 3 | 4230 | | 2400 | 1.0022 2 | 1.0067 - 1 | 1.0113 - 2 | 1.0160 - 3 | 4320 | | 2450 | 1.0024 2 | 1.0066 | 1.0111 - 1 | 1.0157 - 2 | 4410 | | 2500 | 1.0026 3 | 1.0066 | 1.0110 - 1 | 1.0155 - 2 | 4500 | | 2550 | 1.0029 3 | 1.0066 1 | 1.0109 - 1 | 1.0153 - 2 | 4590 | | 2600 | 1.0032 4 | 1.0067 1 | 1.0108 - 1 | 1.0151 - 2 | 4680 | | 2650 | 1.0036 5 | 1.0067 1 | 1.0107 | 1.0149 - 1 | 4770 | | 2700 | 1.0041 5 | 1.0068 1 | 1.0107 | 1.0148 - 2 | 4860 | | 2750 | 1.0046 7 | 1.0069 2 | 1.0107 1 | 1.0146 - 1 | 4950 | | 2800 | 1.0053 8 | 1.0071 4 | 1.0108 1 | 1.0145 1 | 5040 | | 2850 | 1.0061 10 | 1.0075 4 | 1.0109 2 | 1.0146 1 | 5130 | | 2900 | 1.0071 11 | 1.0079 6 | 1.0111 4 | 1.0147 2 | 5220 | | 2950 | 1.0082 13 | 1.0085 7 | 1.0115 4 | 1.0149 2 | 5310 | | 3000 | 1.0095 | 1.0092 | 1.0119 | 1.0151 | 5400 | | K | .01 | atm | ا ا، | atm | .4 a | tm | .7 | atm | °R | |------------|--------------------|------------------------------------|------------------|----------------|--------------------|------------------|---------------------------------------|----------------|--------------| | | | | · | | • | | · · · · · · · · · · · · · · · · · · · | | | | 50 | .054668 | -9135 | | | | | | | 90 | | 60
70 | .045533 | 6515
4883 | | | | | | | 108
126 | | 80 | .034135 | -400 <i>3</i>
-3795 | .34241 | -3833 | | | | | 144 | | 90 | .030340 | - 3036 | .30408 | -3057 | 1.22563 | -12540 | 2.1617 | -2251 | 162 | | .00 | .027304 | -2483 | .27351 | -2498 | 1.10023 | -10179 | 1.9366 | -1816 | 180 | | 10 | .024821 | -248 <i>3</i>
-20 69 | .24853 | -2496
-2078 | .99844 | - 8435 | 1.7550 | -1498 | 19 | | 20 | .022752 | -1751 | .22775 | -1757 | .91409 | - 7109 | 1.6052 | -1259 | 21 | | 30 . | .021001 | -1500 | .21018 | -1505 | .84300 | - 6076 | 1.4793 | -1074 | 23 | | 40 | .019501 | -1301 | .19513 | -1303 | .78224 | - 52 54 | 1.3719 | - 926 | 25 | | 50 | .018200 | -1137 | .18210 | -1140 | .72970 | - 4590 | 1.2793 | - 809 | 27 | | .60 | .017063 | -1004 | .17070 | -1005 | .68380 | - 4044 | 1.1984 | - 711 | 288 | | 70
80 | .016059
.015167 | - 892 | .16065
.15171 | - 894
- 799 | .64336
.60745 | - 3591
- 3209 | 1.1273
1.0641 | - 632
- 564 | 306
324 | | 90 | .014368 | - 799
- 718 | .14372 | - 719
- 719 | .57536 | - 2888 | 1.0077 | - 507 | 34 | | 00 | 03.27.50 | | 12/52 | | 54740 | | 0570 | *** | 24 | | 00
10 | .013650
.013000 | - 650
- 591 | .13653
.13002 | - 651
- 591 | .54648
.52038 | - 2610
- 2372 | .9570
.9112 | - 458
- 416 | 361
378 | | 20 | .012409 | - 540 | .12411 | - 540 | .49666 | - 2164
 .8696 | - 380 | 39 | | 30 | .011869 | - 494 | .11871 | - 495 | .47502 | - 1983 | .8316 | - 348 | 41 | | 40 | .011375 | - 455 | .11376 | - 455 | .45519 | - 1824 | .7968 | - 319 | 43 | | 50 | .010920 | - 420 | .10921 | - 421 | .43695 | - 1684 | .7649 | - 295 | 450 | | 60 | .010500 | - 389 | .10500 | - 389 | .42011 | - 1558 | .7354 | - 273 | 46 | | 70 | .010111 | - 361 | .10111 | - 361 | .40453 | - 1447 | .7081 | - 254 | 486
504 | | 80
90 | .009750
.009413 | - 337
- 313 | .09750
.09414 | - 336
- 314 | .39006
.37660 | - 1346
- 1257 | .6827
.6591 | - 236
- 220 | 52 | | | | | | | | | (271 | | F 44 | | 00 | .009100 | - 294 | .09100
.08806 | - 294
- 275 | .36403
.35227 | - 1176
- 1101 | .6371
.6165 | - 206
- 193 | 541
558 | | 10
20 | .008806 | - 275
- 259 | .08531 | - 259 | .34126 | - 1036 | .5972 | - 181 | 57 | | 30 | .008272 | - 243 | .08272 | - 243 | .33090 | - 973 | .5791 | - 170 | 59 | | 40 | .008029 | - 229 | .08029 | - 229 | .32117 | - 919 | .5621 | - 161 | 61 | | 50 | .007800 | -, 217 | .07800 | - 217 | .31198 | - 867 | .5460 | - 152 | 63 | | 60 | .007583 | - 205 | .07583 | - 205 | .30331 | - 820 | .5308 | - 144 | 64 | | 70 | .007378 | - 194 | .07378 | - 194 | .29511 | - 777 | .5164
.5028 | - 136
- 129 | 66
68 | | 80
90 | .007184
.007000 | - 184
- 175 | .07184
.07000 | - 184
- 175 | .28734
.27997 | - 737
- 700 | .4899 | - 129 | 70 | | | | | | | | | 4777 | | 70 | | 00
10 | .006825 | - 167 | .06825
.06658 | - 167
- 158 | .27297
.26630 | - 667
- 634 | .4777
.4660 | - 117
- 111 | 721
73 | | 20 | .006658
.006500 | - 158
- 151 | .06500 | - 156
- 152 | .25996 | - 604
- 604 | .4549 | - 106 | 75 | | 30 | .006349 | - 145 | .06348 | - 144 | .25392 | - 578 | .4443 | - 101 | 77 | | 40 | .006204 | - 138 | .06204 | - 138 | .24814 | - 551 | .4342 | - % | 79 | | 50 | .006066 | - 131 | .06066 | - 132 | .24263 | - 528 | .4246 | - 93 | 81 | | 60 | .005935 | - 127 | .05934 | - 126 | .23735 | - 505 | .4153 | - 88 | 82 | | 70 | .005808 | - 121 | .05808
.05687 | - 121 | .23230
.22746 | - 484
- 464 | .4065
.3980 | - 85
- 81 | 84
86 | | 80
90 | .005687
.005571 | - 116
- 111 | .05571 | - 116
- 111 | .22282 | - 464
- 446 | .3899 | - 78 | 88 | | | | | | | 23.02/ | | 2021 | | 00 | | 00
10 | .005460
.005353 | - 107
- 103 | .05460
.05353 | - 107
- 103 | .21836
.21408 | - 428
- 412 | .3821
.3746 | - 75
- 72 | 90
91 | | 20 | .005250 | - 99 | .05250 | - 99 | .20996 | - 396 | .3674 | - 69 | 93 | | 30 | .005151 | - 96 | .05151 | - 96 | .20600 | - 382 | .3605 | - 67 | 95 | | 40 | .005055 | - 92 | .05055 | - 92 | .20218 | - 367 | .3538 | - 64 | 97 | | 50 | .004963 | - 88 | .04963 | - 88 | .19851 | - 355 | .3474 | - 62 | 99 | | 60 | .004875 | - 86 | .04875 | - 86 | .19496 | - 342 | .3412 | - 60 | 100 | | 70 | .004789 | - 82 | .04789 | - 83 | .19154 | ~ 330 | .3352 | - 58
E4 | 102:
104: | | 80
90 | .004707
.004627 | - 80
- 77 | .04706
.04627 | - 79
- 77 | .18824
.18505 | - 319
- 309 | .3294
.3238 | - 56
- 54 | 106 | | | | | | | | | | | 108 | | 500
510 | .004550
.004475 | - 75
- 72 | .04550
.04475 | - 75
- 72 | .18196 ·
.17898 | - 298
- 289 | .3184
.3132 | - 52
- 51 | 108 | | 20 | .004473 | - 72
- 70 | .04403 | - 72
- 70 | .17609 | - 279 | .3081 | - 49 | 111 | | 30 | .004333 | - 68 | .04333 | - 68 | .17330 | - 271 | .3032 | - 47 | 113 | | 40 | .004265 | - 65 | .04265 | - 65 | .17059 | - 262 | .29850 | - 459 | 115 | | اره | | | 1 | | | | 1 | | T | |------------|--------------------|----------------|--------------------|------------------|------------------|----------------|------------------|--------------------------|--------------| | °K | .01 | atm | .1 | atm | .4 | atm | .7 | atm | °R | | 650 | .004200 | - 64 | .04200 | - 64 | .16797 | - 255 | .29391 | - 446 | 1170 | | 660 | .004136 | - 62 | .04136 | - 62 | .16542 | - 247 | .28945 | - 432 | 1188 | | 670 | .004074 | - 60 | .04074 | - 60 | .16295 | - 239 | .28513 | - 419 | 1206 | | 680
690 | .004014
.003956 | - 58
- 56 | .04014
.03956 | - 58
- 56 | .16056
.15823 | - 233
- 226 | .28094
.27687 | - 407
- 396 | 1224
1242 | | 700 | .003900 | - 55 | .03900 | | | | | | | | 710 | .003845 | - 55
- 54 | .03845 | - 55
- 54 | .15597
.15377 | - 220
- 213 | .27291
.26908 | - 383
- 375 | 1260
1278 | | 720 | .003791 | - 51 | .03791 | - 52 | .15164 | - 208 | .26533 | - 363 | 1296 | | 730
740 | .003740 | - 51 | .03739 | - 50 | .14956 | - 202 | .26170 | - 354 | 1314 | | 740 | .003689 | 49 | .03689 | 49 | .14754 | - 197 | .25816 | - 344 | 1332 | | 750 | .003640 | - 48 | .03640 | - 48 | .14557 | - 191 | .25472 | - 335 | 1350 | | 760
770 | .003592
.003545 | - 47
- 45 | .03592
.03545 | - 47
- 45 | .14366 | - 187 | .25137 | - 326 | 1368 | | 780 | .003500 | - 45
- 44 | .03500 | - 45
- 45 | .14179
.13997 | - 182
- 177 | .24811
.24493 | ~ 318
- 311 | 1386
1404 | | 790 | .003456 | - 44 | .03455 | - 43 | .13820 | - 173 | .24182 | - 302 | 1422 | | | | | | | | | | | | | 800
850 | .003412
.003212 | - 200 | .034122 | - 2007 | .13647 | - 802 | .23880 | - 1404 | 1440 | | 900 | .003033 | - 179
- 159 | .032115 | - 1784
- 1596 | .12845
.12131 | - 714
- 638 | .22476
.21227 | - 12 49
- 1117 | 1530
1620 | | 950 | .002874 | - 144 | .028735 | - 14 3 7 | .11493 | - 575 | .20110 | - 1117
- 1005 | 1710 | | .000 | .002730 | - 130 | .027298 | - 1300 | .10918 | - 520 | .19105 | - 910 | 1800 | | .050 | .002600 | - 118 | .025998 | - 1182 | .10398 | - 472 | .18195 | - 827 | 1890 | | 100 | .002482 | - 108 | .024816 | - 1079 | .09926 | - 432 | .17368 | - 755 | 1980 | | 150
200 | .002374 | - 99 | .023737 | 989 | .09494 | - 395 | .16613 | - 692 | 2070 | | 250
250 | .002275
.002184 | - 91
- 84 | .022748
.021838 | - 910
- 840 | .09099
.08735 | - 364
- 336 | .15921
.15284 | - 637
- 587 | 2160
2250 | | 300 | .002100 | - 78 | .020998 | - 777 | .08399 | - 311 | .14697 | - 545 | 2340 | | 350 | .002022 | - 72 | .020221 | - 722 | .08088 | - 2 89 | .14152 | - 545
- 505 | 2430 | | 400 | .001950 | - 67 | .019499 | - 673 | .07799 | - 269 | .13647 | - 471 | 2520 | | 450
500 | .001883
.001820 | - 63
- 59 | .018826
.018199 | - 627
- 585 | .07530
.07279 | - 251
- 235 | .13176
.12737 | - 439
- 411 | 2610
2700 | | 550 | .001761 | - 55 | .017614 | | | | | | | | 600 | .001706 | - 55
- 52 | .017064 | - 550
- 518 | .07044
.06824 | 220
207 | .12326
.11941 | - 385
- 362 | 2790
2880 | | 650 | .001654 | - 48 | .016546 | - 488 | .06617 | - 194 | .11579 | - 340 | 2970 | | 700
750 | .001606 | - 46 | .016058 | - 460 | .06423 | - 184 | .11239 | - 321 | 3060 | | 750 | .001560 | - 44 | .015598 | - 434 | .06239 | - 173 | .10918 | 304 | 3150 | | 800 | .001516 | - 41 | .015164 | - 410 | .06066 | - 164 | .10614 | - 287 | 3240 | | 850
900 | .001475
.001436 | 39
38 | .014754
.014364 | - 390
- 370 | .05902
.05746 | - 156
- 148 | .10327
.10055 | - 272 | 3330 | | 950 | .001398 | - 35 | .013994 | - 352 | .05598 | - 148
- 140 | .09797 | - 258
- 246 | 3420
3510 | | 000 | .001363 | - 35 | .013642 | - 336 | .05458 | - 134 | .09551 | - 234 | 3600 | | 050 | .001328 | - 32 | .013306 | - 321 | .05324 | - 128 | .09317 | - 223 | 3690 | | 100 | .001296 | - 32 | .012985 | - 308 | .05196 | - 122 | .09094 | - 212 | 3780 | | 150
200 | .001264
.001233 | - 31.
- 30 | .012677 | - 295 | .05074 | - 116 | .08882 | - 204 | 3870 | | 250 | .001203 | - 30
- 30 | .012382
.012099 | - 283
- 274 | .04958
.04846 | - 112
- 108 | .08678
.08483 | 195
188 | 3960
4050 | | 300 | .001173 | | .011825 | - 266 | .04738 | - 103 | .08295 | - 180 | 4140 | | 350 | | | .011559 | - 258 | .04635 | - 100 | .08115 | - 174 | 4230 | | 400 | | | .011301 | - 252 | .04535 | - 97 | .07941 | - 167 | 4320 | | 450
500 | | | .011049
.010803 | - 246
- 241 | .04438
.04344 | - 94
- 91 | .07774
.07612 | - 162
- 158 | 4410
4500 | | 550 | | | | | | | | | | | 500
500 | | | .010562
.010325 | - 237
- 235 | .04253
.04164 | - 89
87 | .07454
.07301 | - 153
- 149 | 4590
4680 | | 650 | | | .010090 | - 233 | .04077 | 85 | .07152 | - 149
- 145 | 4770 | | 700
750 | | | .009857
.009627 | - 230
- 229 | .03992 | - 83 | .07007
.06865 | - 142 | 4860 | | | | | | | | | | - 139 | 4950 | | 800
850 | | | .009398
.009171 | - 227
- 225 | .03827 | - 81 | .06726 | - 137 | 5040 | | 900 | | | .009171 | - 225
- 223 | .03746
.03666 | - 80
- 79 | .06589
.06455 | - 134
- 134 | 5130
5220 | |)50
)00 | | | .008723 | - 219 | .03587 | - 78 | .06321 | - 132 | 5310 | | | | | .008504 | | .03509 | ,, | .06189 | - 132 | 5400 | | °K | ì | atm | 4 | atm | 7 (| otm | 10 | atm | °R | |------------|------------------|----------------|------------------|----------------|----------------|--------------------|------------------|----------------|-------------| | L | | | <u> </u> | | | | <u> </u> | | | | 100 | 2.7830 | -2646 | | | | | | | 180 | | 110 | 2.5184 | -2173 | 10.577 | -1026 | 19.618 | -2187 | 30.139 | -4001 | 198 | | 120 | 2.3011 | -1820 | 9.551 | - 827 | 17.431 | -1675 | 26.138 | -2831 | 216 | | 130 | 2.1191 | 1549 | 8.724 | - 685 | 15.756 | -1338 | 23.307 | -2161 | 234 | | 140 | 1.9642 | -1334 | 8.039 | - 580 | 14.418 | -1108 | 21,146 | -1740 | 252 | | 150 | 1.8308 | -1163 | 7.459 | - 498 | 13,310 | - 935 | 19.406 | -1439 | 270 | | 160 | 1.7145 | -1022 | 6.961 | - 432 | 12.375 | - 803 | 17.967 | -1219 | 288 | | 170 | 1.6123 | 906 | 6.529 | - 380 | 11.572 | - 699 | 16.748 | -1049 | 306 | | 180 | 1.5217 | - 809 | 6.149 | - 337 | 10.873 | - 614 | 15.699 | - 916 | 324
342 | | 190 | 1.4408 | - 727 | 5,812 | - 301 | 10.259 | - 546 | 14.783
 - 807 | | | 200 | 1.3681 | - 656 | 5.511 | - 271 | 9.713 | - 487 | 13.976 | - 719 | 360
378 | | 210 | 1.3025 | - 596 | 5.240 | - 244 | 9.226 | - 440 | 13.257
12.613 | - 644
- 582 | 396 | | 220 | 1.2429 | - 544 | 4.996 | - 223 | 8.786
8.388 | - 398
- 362 | 12.031 | - 528 | 414 | | 230
240 | 1.1885
1.1390 | - 495 | 4.773
4.570 | - 203
- 186 | 8.026 | - 332 | 11.503 | - 482 | 432 | | 240 | 1,1370 | - 460 | | 190 | | - <i>JJ</i> L | | | | | 250 | 1.0930 | - 422 | 4.384 | - 172 | 7.694 | - 305 | 11.021 | - 442 | 450 | | 260 | 1.0508 | - 391 | 4.212 | - 158 | 7.389 | - 281 | 10.579
10.172 | - 407 | 468
486 | | 270 | 1.0117 | - 362 | 4.054 | - 147 | 7.108 | - 2 6 0 | 9.797 | - 375
- 348 | 504 | | 280 | .9755 | - 338 | 3.907
3.771 | - 136 | 6.848
6.607 | - 241
- 224 | 9.449 | - 324 | 522 | | 290 | .9417 | - 315 | J.111 | - 127 | | - 447 | | | | | 300 | .9102 | - 294 | 3.644 | - 119 | 6.383 | - 210 | 9.125 | - 301 | 540 | | 310 | .8808 | - 276 | 3.525 | - 111 | 6.173 | - 196 | 8.824 | - 282 | 558
576 | | 320 | .8532 | - 259 | 3.414 | - 104 | 5.977 | - 183 | 8.542
8.278 | - 264
- 248 | 594 | | 330 | .8273 | - 244 | 3.310 | - 98 | 5.794
5.621 | - 173
- 162 | 8.030 | - 246
- 233 | 612 | | 340 | .8029 | - 229 | 3,212 | - 92 | - | 102 | | | | | 350 | .7800 | - 217 | 3.1196 | - 872 | 5.459 | - 154 | 7.797 | - 220 | 630
648 | | 360 | .7583 | - 206 | 3.0324 | - 824 | 5.305
5.161 | - 144
- 137 | 7.577
7.370 | - 207
- 197 | 666 | | 370 | .7377 | - 194 | 2.9500
2.8719 | - 781
- 740 | 5.024 | - 130 | 7.173 | - 186 | 684 | | 380
390 | .7183
.6999 | - 184
- 176 | 2.7979 | - 702 | 4.894 | - 123 | 6.987 | - 176 | 702 | | 400 | .6823 | 1// | 2,7277 | - 668 | 4.771 | - 118 | 6.811 | 168 | 720 | | 410 | .6657 | - 166
159 | 2.6609 | - 636 | 4.653 | - 111 | 6.643 | - 159 | 738 | | 420 | .6498 | - 151 | 2.5973 | - 606 | 4.542 | - 106 | 6.484 | - 152 | 756 | | 430 | .6347 | - 144 | 2.5367 | - 578 | 4.436 | - 102 | 6.332 | - 145 | 774 | | 440 | .6203 | - 138 | 2.4789 | - 552 | 4.334 | - 96 | 6.187 | - 139 | 792 | | 450 | .6065 | - 132 | 2,4237 | - 528 | 4,238 | - 93 | 6,048 | - 132 | 810 | | 460 | .5933 | - 126 | 2.3709 | - 506 | 4.145 | - 88 | 5.916 | - 126 | 828 | | 470 | .5807 | - 122 | 2.3203 | - 484 | 4.057 | - 85 | 5.790 | - 122 | 846 | | 480 | .5685 | - 116 | 2.2719 | - 465 | 3.972 | - 81 | 5.668 | - 116 | 864
882 | | 490 | .5569 | - 111 | 2.2254 | ~ 44 5 | 3.891 | - 78 | 5,552 | - 111 | 002 | | 500 | .5458 | - 107 | 2.1809 | - 429 | 3.813 | - 75 | 5.441 | - 107 | 900 | | 510 | .5351 | - 103 | 2.1380 | - 411 | 3.738 | - 72 | 5.334 | - 103 | 918 | | 520 | .5248 | - 99 | 2.0969 | - 396 | 3.666 | - 70 | 5.231 | - 99 | 936 | | 530 | .5149 | - 95 | 2.0573 | - 382 | 3.596 | - 66 | 5.132
5.037 | - 95
- 92 | 954
972 | | 540 | .5054 | - 92 | 2.0191 | - 367 | 3.530 | - 65 | 5.051 | - 72 | | | 550 | .4962 | - 89 | 1.9824 | - 355 | 3.465 | - 62 | 4.945 | - 89 | 990
1008 | | 560 | .4873 | 86 | 1.9469 | - 341 | 3.403 | - 59 | 4.856
4.771 | - 85
- 82 | 1026 | | 570 | .4787 | - 82 | 1.9128 | - 330 | 3.344
3.286 | - 58
- 56 | 4.689 | 82
80 | 1044 | | 580
590 | .4705
.4625 | - 80
- 77 | 1.8798
1.8479 | - 319
- 308 | 3.230 | - 54 | 4.609 | - 17 | 1062 | | | | | 1 0171 | *** | 3,176 | - 52 | 4,532 | - 74 | 1080 | | 600 | .4548
.4474 | 74
73 | 1.8171
1.7873 | - 298
- 288 | 3.124 | - 52
- 50 | 4.458 | - 72 | 1098 | | 610
620 | .4474 | - 73
- 69 | 1.7585 | - 280 | 3.074 | - 49 | 4.386 | - 70 | 1116 | | 630 | .4332 | - 68 | 1.7305 | - 270 | 3.025 | - 47 | 4.316 | - 67 | 1134 | | 640 | .4264 | - 66 | 1.7035 | - 262 | 2,9778 | - 458 | 4.249 | - 65 | 1152 | | 650 | .4198 | | 1.6773 | | 2.9320 | | 4.184 | | 1170 | | | | | | | | | | | | | *K | i atm | 4 atm | 7 atm | 10 atm | °R | |--------------------------------------|--|---|--|--|--------------------------------------| | 650 | .4198 - 63 | 1.6773 - 254 | 2.9320 - 445 | 4.184 - 64 | 1170 | | 660 | .4135 - 62 | 1.6519 - 247 | 2.8875 - 431 | 4.120 - 61 | 1188 | | 670 | .4073 - 60 | 1.6272 - 239 | 2.8444 - 418 | 4.059 - 60 | 1206 | | 680 | .4013 - 58 | 1.6033 - 232 | 2.8026 - 406 | 3.999 - 58 | 1224 | | 690 | .3955 - 57 | 1.5801 - 226 | 2.7620 - 394 | 3.941 - 56 | 1242 | | 700 | .3898 - 55 | 1.5575 - 219 | 2.7226 - 384 | 3.885 - 55 | 1260 | | 710 | .3843 - 53 | 1.5356 - 213 | 2.6842 - 372 | 3.830 - 53 | 1278 | | 720 | .3790 - 52 | 1.5143 - 208 | 2.6470 - 362 | 3.777 - 52 | 1296 | | 730 | .3738 - 50 | 1.4935 - 202 | 2.6108 - 353 | 3.725 - 50 | 1314 | | 740 | .3688 - 49 | 1.4733 - 196 | 2.5755 - 343 | 3.675 - 49 | 1332 | | 750 | .3639 - 48 | 1.4537 - 191 | 2.5412 - 334 | 3.626 - 48 3.578 - 46 3.532 - 45 3.487 - 44 3.443 - 63 | 1350 | | 760 | .3591 - 47 | 1.4346 - 186 | 2.5078 - 326 | | 1368 | | 770 | .3544 - 45 | 1.4160 - 182 | 2.4752 - 317 | | 1386 | | 780 | .3499 - 45 | 1.3978 - 177 | 2.4435 - 309 | | 1404 | | 790 | .3454 - 43 | 1.3801 - 172 | 2.4126 - 301 | | 1422 | | 800 | .3411 - 200 | 1.3629 - 801 | 2.3825 - 1400 | 3.400 - 200 | 1440 | | 850 | .3211 - 179 | 1.2828 - 713 | 2.2425 - 1245 | 3.200 - 177 | 1530 | | 900 | .3032 - 159 | 1.2115 - 637 | 2.1180 - 1113 | 3.023 - 159 | 1620 | | 950 | .28726 - 1436 | 1.1478 - 573 | 2.0067 - 1002 | 2.864 - 143 | 1710 | | 1000 | .27290 - 1299 | 1.0905 - 519 | 1.9065 - 907 | 2.721 - 129 | 1800 | | 1050 | .25991 - 1182 | 1.0386 - 472 | 1.8158 - 824 | 2.592 - 118 2.474 - 107 2.367 - 99 2.268 - 90 2.178 - 84 | 1890 | | 1100 | .24809 - 1078 | .9914 - 431 | 1.7334 - 752 | | 1980 | | 1150 | .23731 - 989 | .9483 - 394 | 1.6582 - 690 | | 2070 | | 1200 | .22742 - 909 | .9089 - 364 | 1.5892 - 635 | | 2160 | | 1250 | .21833 - 840 | .8725 - 335 | 1.5257 - 586 | | 2250 | | 1300 | .20993 - 777 | .8390 - 311 | 1.4671 - 542 | 2.094 - 77 2.017 - 72 1.945 - 67 1.878 - 69 1.815 - 66 | 2340 | | 1350 | .20216 - 722 | .8079 - 288 | 1.4129 - 504 | | 2430 | | 1400 | .19494 - 672 | .7791 - 268 | 1.3625 - 469 | | 2520 | | 1450 | .18822 - 627 | .7523 - 251 | 1.3156 - 438 | | 2610 | | 1500 | .18195 - 587 | .7272 - 234 | 1.2718 - 410 | | 2700 | | 1550 | .17608 - 550 | .7038 - 220 | 1.2308 - 384 | 1.750 - 48 | 2790 | | 1600 | .17058 - 517 | .6818 - 207 | 1.1924 - 361 | 1.702 - 52 | 2880 | | 1650 | .16541 - 487 | .6611 - 194 | 1.1563 - 340 | 1.650 - 48 | 2970 | | 1700 | .16054 - 458 | .6417 - 183 | 1.1223 - 320 | 1.602 - 45 | 3060 | | 1750 | .15596 - 434 | .6234 - 173 | 1.0903 - 303 | 1.557 - 44 | 3150 | | 1800 | .15162 - 410 | .6061 – 164 | 1.0600 - 286 | 1.513 - 40 | 3240 | | 1850 | .14752 - 388 | .5897 – 155 | 1.0314 - 271 | 1.473 - 39 | 3330 | | 1900 | .14364 - 369 | .5742 – 147 | 1.0043 - 257 | 1.434 - 37 | 3420 | | 1950 | .13995 - 350 | .5595 – 140 | .9786 - 245 | 1.397 - 35 | 3510 | | 2000 | .13645 - 335 | .5455 – 134 | .9541 - 232 | 1.362 - 33 | 3600 | | 2050 | .13310 - 318 | .5321 - 127 | .9309 - 222 | 1.329 - 32 | 3690 | | 2100 | .12992 - 304 | .5194 - 121 | .9087 - 211 | 1.297 - 30 | 3780 | | 2150 | .12688 - 289 | .5073 - 115 | .8876 - 202 | 1.267 - 28 | 3870 | | 2200 | .12399 - 280 | .4958 - 111 | .8674 - 194 | 1.239 - 28 | 3960 | | 2250 | .12119 - 267 | .4847 - 106 | .8480 - 185 | 1.211 - 26 | 4050 | | 2300 | .11852 - 256 | .4741 - 102 | .8295 - 178 | 1.185 - 26 | 4140 | | 2350 | .11596 - 248 | .4639 - 97 | .8117 - 170 | 1.159 - 24 | 4230 | | 2400 | .11348 - 238 | .4542 - 94 | .7947 - 164 | 1.135 - 23 | 4320 | | 2450 | .11110 - 230 | .4448 - 91 | .7783 - 158 | 1.112 - 23 | 4410 | | 2500 | .10880 - 223 | .4357 - 87 | .7625 - 151 | 1.089 - 22 | 4500 | | 2550 | .10657 - 216 | .4270 - 85 | .7474 - 147 | 1.067 - 20 | 4590 | | 2600 | .10441 - 211 | .4185 - 82 | .7327 - 142 | 1.047 - 21 | 4680 | | 2650 | .10230 - 206 | .4103 - 79 | .7185 - 137 | 1.026 - 19 | 4770 | | 2700 | .10024 - 199 | .4024 - 77 | .7048 - 133 | 1.007 - 19 | 4860 | | 2750 | .09825 - 195 | .3947 - 74 | .6915 - 129 | .988 - 18 | 4950 | | 2800
2850
2900
2950
3000 | .09630 - 192
.09438 - 189
.09249 - 187
.09062 - 186
.08876 | .3873 - 73
.3800 - 71
.3729 - 69
.3660 - 68
.3592 | .6786 - 126
.6660 - 122
.6538 - 119
.6419 - 117 | .970 - 18
.952 - 17
.935 - 17
.918 - 17 | 5040
5130
5220
5310
5400 | | *K 10 atm 40 atm 70 atm 100 atm | % | |---------------------------------|----------| |---------------------------------|----------| | 150 | 19,406 | 3.430 | 104 4 | 170 | | | | | 270 | |-----|--------|-------------------|--------|-------------------|----------------|--------|--------|-----------------|------| | | | -1439 | 106.6 | -178 | | | | | | | 160 | 17.967 | -1219 | 88.76 | -1060 | | | | | 288 | | 170 | 16.748 | 1049 | 78.16 | - 753 | | | | | 306 | | 180 | 15.699 | - 916 | 70.63 | - 581 | 140.6 | -162 | 218.3 | -293 | 324 | | 190 | 14.783 | - 807 | 64.82 | - 4 69 | 124.37 | -1171 | 189.0 | -206 | 342 | | | 30.07/ | | 40.70 | | | | 1/0 40 | | | | 200 | 13.976 | - 719 | 60.13 | ~ 391 | 112.66 | - 905 | 168.40 | -1535 | 360 | | 210 | 13.257 | 644 | 56.22 | - 334 | 103.61 | - 731 | 153.05 | ~1206 | 378 | | 220 | 12.613 | 582 | 52.88 | - 28 9 | 96.30 | - 611 | 140.99 | - 981 | 396 | | 230 | 12.031 | - 528 | 49.99 | - 255 | 90.19 | - 520 | 131.18 | - 821 | 414 | | 240 | 11.503 | - 482 | 47.44 | - 226 | 84.99 | - 451 | 122.97 | - 702 | 432 | | | | | | | | | | | | | 250 | 11.021 | - 442 | 45.18 | - 203 | 80.48 | - 397 | 115.95 | - 609 | 450 | | 260 | 10.579 | - 407 | 43,15 | - 184 | 76.51 | - 353 | 109.86 | - 535 | 468 | | 270 | 10.172 | - 375 | 41.31 | - 167 | 72 . 98 | - 317 | 104.51 | - 477 | 486 | | 280 | 9.797 | - 348 | 39.64 | - 152 | 69.81 | - 286 | 99.74 | - 427 | 504 | | 290 | 9.449 | - 324 | 38.12 | - 140 | 66.95 | -
261 | 95.47 | - 386 | 522 | | | | | | | | | | | | | 300 | 9.125 | - 301 | 36.72 | - 130 | 64.34 | - 238 | 91.61 | - 352 | 540 | | 310 | 8.824 | - 282 | 35.42 | - 120 | 61.96 | - 219 | 88.09 | - 321 | 558 | | 320 | 8.542 | - 264 | 34.22 | - 111 | 59.77 | - 203 | 84.88 | - 296 | 576 | | 330 | 8.278 | - 248 | 33.11 | - 104 | 57.74 | - 188 | 81.92 | - 274 | 594 | | 340 | 8.030 | - 233 | 32.07 | - 97 | 55.86 | - 175 | 79.18 | - 253 | 612 | | | | | | | | | | | | | 350 | 7.797 | - 220 | 31.097 | - 911 | 54.11 | - 163 | 76.65 | - 236 | ,630 | | 360 | 7.577 | - 207 | 30.186 | - 856 | 52.48 | - 153 | 74.29 | - 220 | 648 | | 370 | 7.370 | - 197 | 29.330 | - 807 | 50.95 | - 143 | 72.09 | - 206 | 666 | | 380 | 7.173 | - 186 | 28.523 | - 760 | 49.52 | - 135 | 70.03 | - 194 | 684 | | 390 | 6.987 | - 176 | 27.763 | - 720 | 48.17 | - 128 | 68.09 | - 182 | 702 | | | | | | | | | | | | | 400 | 6.811 | - 168 | 27.043 | - 682 | 46.89 | - 120 | 66.27 | - 172 | 720 | | 410 | 6.643 | - 15 9 | 26.361 | - 646 | 45.69 | - 114 | 64.55 | - 162 | 738 | | 420 | 6.484 | - 152 | 25.715 | - 614 | 44.55 | - 108 | 62,93 | - 154 | 756 | | 430 | 6.332 | - 145 | 25,101 | - 585 | 43.47 | - 102 | 61.39 | - 146 | 774 | | 440 | 6.187 | - 139 | 24.516 | - 557 | 42.45 | - 98 | 59,93 | - 138 | 792 | | | | | | | | | | | | | 450 | 6.048 | - 132 | 23.959 | - 531 | 41.47 | - 92 | 58.55 | - 132 | 810 | | 460 | 5.916 | - 126 | 23,428 | - 507 | 40.55 | - 89 | 57.23 | - 126 | 828 | | 470 | 5.790 | - 122 | 22.921 | - 486 | 39.66 | 85 | 55.97 | - 120 | 846 | | 480 | 5.668 | - 116 | 22,435 | - 464 | 38.81 | - 80 | 54.77 | - 114 | 864 | | 490 | 5,552 | - 111 | 21.971 | - 445 | 38.01 | - 78 | 53.63 | - 110 | 882 | | | | | | | | | | | | | 500 | 5,441 | - 107 | 21.526 | - 427 | 37.23 | - 74 | 52.53 | - 104 | 900 | | 510 | 5,334 | - 103 | 21.099 | - 410 | 36.49 | - 71 | 51.49 | - 101 | 918 | | 520 | 5,231 | - 99 | 20.689 | - 394 | 35.78 | - 69 | 50.48 | - 96 | 936 | | 530 | 5.132 | - 95 | 20.295 | - 378 | 35.09 | - 65 | 49.52 | - 93 | 954 | | 540 | 5.037 | - 92 | 19.917 | - 365 | 34.44 | - 63 | 48.59 | - 89 | 972 | | | | | | | | | | | | | 550 | 4.945 | 89 | 19.552 | - 351 | 33.81 | - 61 | 47.70 | - 86 | 990 | | 560 | 4.856 | 85 | 19.201 | - 338 | 33.20 | - 59 | 46.84 | - 82 | 1008 | | 570 | 4.771 | → 82 | 18.863 | - 326 | 32.61 | - 56 . | 46.02 | ~ 80 | 1026 | | 580 | 4.689 | - 80 | 18,537 | - 315 | 32.05 | - 55 | 45.22 | - 77 | 1044 | | 590 | 4.609 | - 77 | 18.222 | - 305 | 31.50 | - 52 | 44.45 | - 74 | 1062 | | | | | • | | | | | | | | 600 | 4.532 | - 74 | 17.917 | - 294 | 30.977 | - 508 | 43.71 | - n | 1080 | | 610 | 4.458 | - 72 | 17.623 | - 284 | 30.469 | - 490 | 43.00 | - 69 | 1098 | | 620 | 4.386 | → 70 | 17.339 | - 276 | 29.979 | - 475 | 42.31 | - 67 | 1116 | | 630 | 4.316 | - 67 | 17.063 | - 266 | 29.504 | 460 | 41.64 | - 65 | 1134 | | 640 | 4.249 | - 65 | 16.797 | - 258 | 29.044 | - 445 | 40.99 | - 63 | 1152 | | | | | | | | | | | | | 650 | 4.184 | - 64 | 16.539 | - 250 | 28.599 | - 432 | 40.36 | - 60 | 1170 | | 660 | 4.120 | - 61 | 16.289 | - 243 | 28.167 | - 418 | 39.76 | - 59 | 1188 | | 670 | 4.059 | ~ 60 | 16.046 | - 236 | 27.749 | - 405 | 39.17 | - 57 | 1206 | | 680 | 3.999 | 58 | 15.810 | - 228 | 27.344 | - 394 | 38.60 | - 55 | 1224 | | 690 | 3.941 | - 56 | 15.582 | - 222 | 26.950 | - 383 | 38.05 | - 54 | 1242 | | | | | | | | | | | | | 700 | 3.885 | | 15.360 | | 26,567 | | 37.51 | | 1260 | _ | |--------------------------------------|---|----------------------------|---|--|---|--|--|--------------------------------------| | °K | 10 atm | 40 | atm | 70 | atm | 100 | atm | °R | | 700
710
720
730
740 | 3.885 - 55
3.830 - 53
3.777 - 52
3.725 - 50
3.675 - 49 | 15.144
14.935
14.731 | - 216
- 209
- 204
- 198
- 193 | 26.567
26.196
25.834
25.483
25.142 | - 371
- 362
- 351
- 341
- 333 | 37.51
36.99
36.48
35.98
35.50 | 52
51
50
48
46 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | 3.626 - 48
3.578 - 46
3.532 - 45
3.487 - 44
3.443 - 43 | 14.153
13.970
13.791 | - 187
- 183
- 179
- 173
- 169 | 24.809
24.486
24.171
23.864
23.565 | - 323
- 315
- 307
- 299
- 291 | 35.04
34.58
34.14
33.71
33.29 | - 46
- 44
- 43
- 42
- 41 | 1350
1368
1386
1404
1422 | | 800
850
900
950
1000 | 3.400 - 200
3.200 - 177
3.023 - 159
2.864 - 143
2.721 - 129 | 12.663
11.964
11.339 | 786
699
625
562
509 | 23.274
21.921
20.720
19.643
18.675 | - 1353
1201
1077
968
877 | 32.879
30.979
29.290
27.779
26.419 | - 1900
- 1689
- 1511
- 1360
- 1232 | 1440
1530
1620
1710
1800 | | 1050
1100
1150
1200
1250 | 2.592 - 118 2.474 - 107 2.367 - 95 2.268 - 90 2.178 - 84 | 9,805
9,382
8,994 | - 463
423
388
356
330 | 17.798
17.001
16.273
15.605
14.990 | - 797
- 728
- 668
- 615
- 568 | 25.187
24.066
23.042
22.103
21.237 | - 1121
- 1024
- 939
- 866
- 799 | 1890
1980
2070
2160
2250 | | 1300
1350
1400
1450
1500 | 2.094 - 77
2.017 - 72
1.945 - 65
1.878 - 65
1.815 - 65 | 8.003
7.720
7.456 | - 305
- 283
- 264
- 247
- 230 | 14.422
13.895
13.406
12.951
12.525 | 527
489
455
426
398 | 20.438
19.696
19.007
18.365
17.766 | - 742
- 689
- 642
- 599
- 563 | 2340
2430
2520
2610
2700 | | 1550
1600
1650
1700
1750 | 1.750 - 40
1.702 - 55
1.650 - 40
1.602 - 40
1.557 - 40 | 6.762
6.558
6.367 | - 217
- 204
- 191
- 180
- 171 | 12.127
11.753
11.401
11.070
10.758 | - 374
- 352
- 331
- 312
- 295 | 17.203
16.675
16.179
15.712
15.272 | - 528
- 496
- 467
- 440
- 415 | 2790
2880
2970
3060
3150 | | 1800
1850
1900
1950
2000 | 1.513 - 40 1.473 - 30 1.434 - 30 1.397 - 30 1.362 - 30 | 5.855
5.702
5.557 | - 161
- 153
- 145
- 138
- 132 | 10.463
10.185
9.921
9.669
9.430 | 278
264
252
239
227 | 14.857
14.463
14.089
13.734
13.398 | - 394
- 374
- 355
- 336
- 322 | 3240
3330
3420
3510
3600 | | 2050
2100
2150
2200
2250 | 1.329 - 3
1.297 - 3
1.267 - 2
1.239 - 2
1.211 - 2 | 5.162
5.043
4.929 | - 125
- 119
- 114
- 109
- 104 | 9,203
8,986
8,779
8,582
8,393 | - 217
- 207
- 197
- 189
- 180 | 13.076
12.770
12.478
12.199
11.931 | - 306
- 292
- 279
- 268
- 255 | 3690
3780
3870
3960
4050 | | 2300
2350
2400
2450
2500 | 1.185 - 2
1.159 - 2
1.135 - 2
1.112 - 2
1.089 - 2 | 4.616
4.520
4.428 | - 100
- 96
- 92
- 89
- 85 | 8.213
8.039
7.873
7.714
7.560 | - 174
- 166
- 159
- 154
- 147 | 11.676
11.430
11.195
10.970
10.753 | - 246
235
225
217
209 | 4140
4230
4320
4410
4500 | | 2550
2600
2650
2700
2750 | 1.067 - 2
1.047 - 2
1.026 - 1
1.007 - 1
.988 - 1 | 4.172
4.093
4.017 | - 82
- 79
- 76
- 73
- 72 | 7.413
7.271
7.135
7.003
6.875 | - 142
- 136
- 132
- 128
- 123 | 10.544
10.343
10.150
9.963
9.784 | - 201
- 193
- 187
- 179
- 174 | 4590
4680
4770
4860
4950 | | 2800
2850
2900
2950
3000 | .970 - 1
.952 - 1
.935 - 1
.918 - 1 | 7 3.803
7 3.736 | - 69
- 67
- 66
- 63 | 6.752
6.633
6.517
6.404
6.295 | - 119
- 116
- 113
- 109 | 9.610
9.441
9.277
9.118
8.964 | - 169
- 164
- 159
- 154 | 5040
5130
5220
5310
5400 | | | | IFIC BEA. | or imi | | | | | | Cp/R | |---------------------------------|--|----------------------------|--|------------------------------------|--|--------------------------------------|--|--|---------------------------------| | °K | .01 | atm | .1 | atm | .4 | atm | .7 | atm | °R | | 50
60
70
80
90 | 3.5001
3.4960
3.4940
3.4930
3.4925 | - 41
20
10
5
3 | 3.5030 | - 32 | 3.5398 | 135 | 3.5787 | - 250 | 90
108
126
144
162 | | 100
110
120
130
140 | 3.4922
3.4920
3.4919
3.4918
3.4918 | - 2
- 1
- 1 | 3.4998
3.4979
3.4965
3.4955
3.4948 | - 19
- 14
- 10
- 7
- 4 | 3.5263
3.5179
3.5122
3.5081
3.5051 | - 84
- 57
- 41
- 30
- 21 | 3.5537
3.5384
3.5283
3.5210
3.5157 | - 153
- 101
- 73
- 53
- 40 | 180
198
216
234
252 | | 150
160
170
180
190 | 3.4918
3.4918
3.4918
3.4919
3.4920 | 1
1
3 | 3.4944
3.4940
3.4937
3.4935
3.4935 | - 4
- 3
- 2 | 3.5030
3.5013
3.5000
3.4989
3.4982 | - 17
- 13
- 11
- 7
- 4 | 3.5117
3.5087
3.5063
3.5044
3.5029 | - 30
- 24
- 19
- 15
- 9 | 270
288
306
324
342 | | 200
210
220
230
240 | 3.4923
3.4925
3.4928
3.4933
3.4938 | 2
3
5
5 | 3.4935
3.4936
3.4938
3.4942
3.4946 | 1
2
4
4
7 | 3.4978
3.4974
3.4971
3.4972
3.4973 | - 4
- 3
1
1
5 |
3.3020
3.5011
3.5005
3.5002
3.5000 | - 9
- 6
- 3
- 2 | 360
378
396
414
432 | | 250 | 3.4946 | 8 | 3.4953 | 7 | 3.4978 | 5 | 3.5003 | 2 | 450 | | 260 | 3.4954 | 10 | 3.4960 | 10 | 3.4983 | 7 | 3.5005 | 6 | 468 | | 270 | 3.4964 | 12 | 3.4970 | 11 | 3.4990 | 10 | 3.5011 | 8 | 486 | | 280 | 3.4976 | 14 | 3.4981 | 14 | 3.5000 | 12 | 3.5019 | 11 | 504 | | 290 | 3.4990 | 16 | 3.4995 | 15 | 3.5012 | 14 | 3.5030 | 13 | 522 | | 300 | 3.5006 | 19 | 3.5010 | 20 | 3.5026 | 18 | 3.5043 | 16 | 540 | | 310 | 3.5025 | 20 | 3.5030 | 20 | 3.5044 | 19 | 3.5059 | 17 | 558 | | 320 | 3.5045 | 24 | 3.5050 | 23 | 3.5063 | 22 | 3.5076 | 22 | 576 | | 330 | 3.5069 | 25 | 3.5073 | 25 | 3.5085 | 24 | 3.5098 | 23 | 594 | | 340 | 3.5094 | 28 | 3.5098 | 28 | 3.5109 | 28 | 3.5121 | 27 | 612 | | 350 | 3.5122 | 31 | 3.5126 | 30 | 3.5137 | 30 | 3.5148 | 30 | 630 | | 360 | 3.5153 | 33 | 3.5156 | 33 | 3.5167 | 32 | 3.5178 | 31 | 648 | | 370 | 3.5186 | 38 | 3.5189 | 38 | 3.5199 | 38 | 3.5209 | 37 | 666 | | 380 | 3.5224 | 39 | 3.5227 | 39 | 3.5237 | 38 | 3.5246 | 38 | 684 | | 390 | 3.5263 | 42 | 3.5266 | 42 | 3.5275 | 41 | 3.5284 | 41 | 702 | | 400 | 3.5305 | 44 | 3.5308 | 44 | 3.5316 | 43 | 3.5325 | 42 | 720 | | 410 | 3.5349 | 48 | 3.5352 | 47 | 3.5359 | 48 | 3.5367 | 47 | 738 | | 420 | 3.5397 | 50 | 3.5399 | 50 | 3.5407 | 50 | 3.5414 | 50 | 756 | | 430 | 3.5447 | 53 | 3.5449 | 53 | 3.5457 | 51 | 3.5464 | 51 | 774 | | 440 | 3.5500 | 55 | 3.5502 | 55 | 3.5508 | 56 | 3.5515 | 55 | 792 | | 450 | 3.5555 | 58 | 3.5557 | 58 | 3.5564 | 57 | 3.5570 | 57 | 810 | | 460 | 3.5613 | 60 | 3.5615 | 60 | 3.5621 | 60 | 3.5627 | 60 | 828 | | 470 | 3.5673 | 62 | 3.5675 | 62 | 3.5681 | 61 | 3.5687 | 61 | 846 | | 480 | 3.5735 | 64 | 3.5737 | 64 | 3.5742 | 64 | 3.5748 | 63 | 864 | | 490 | 3.5799 | 66 | 3.5801 | 66 | 3.3806 | 66 | 3.5811 | 66 | 882 | | 500 | 3.5865 | 68 | 3.5867 | 68 | 3.5872 | 67 | 3.5877 | 67 | 900 | | 510 | 3.5933 | 70 | 3.5935 | 70 | 3.5939 | 70 | 3.5944 | 70 | 918 | | 520 | 3.6003 | 72 | 3.6005 | 72 | 3.6009 | 72 | 3.6014 | 71 | 936 | | 530 | 3.6075 | 74 | 3.6077 | 73 | 3.6081 | 74 | 3.6085 | 74 | 954 | | 540 | 3.6149 | 75 | 3.6150 | 75 | 3.6155 | 74 | 3.6159 | 75 | 972 | | 550 | 3.6224 | 76 | 3.6225 | 76 | 3.6229 | 76 | 3.6234 | 75 | 990 | | 560 | 3.6300 | 77 | 3.6301 | 77 | 3.6305 | 77 | 3.6309 | 77 | 1008 | | 570 | 3.6377 | 79 | 3.6378 | 79 | 3.6382 | 79 | 3.6386 | 78 | 1026 | | 580 | 3.6456 | 79 | 3.6457 | 79 | 3.6461 | 79 | 3.6464 | 79 | 1044 | | 590 | 3.6535 | 80 | 3.6536 | 80 | 3.6540 | 79 | 3.6543 | 79 | 1062 | | 600 | 3.6615 | 81 | 3.6616 | 81 | 3.6619 | 81 | 3.6622 | 81 | 1080 | | 610 | 3.6696 | 82 | 3.6697 | 82 | 3.6700 | 82 | 3.6703 | 82 | 1098 | | 620 | 3.6778 | 82 | 3.6779 | 82 | 3.6782 | 82 | 3.6785 | 82 | 1116 | | 630 | 3.6860 | 83 | 3.6861 | 83 | 3.6864 | 83 | 3.6867 | 83 | 1134 | | 640 | 3.6943 | 84 | 3.6944 | 84 | 3.6947 | 84 | 3.6950 | 83 | 1152 | | 650 | 3.7027 | | 3.7028 | | 3.7031 | ¥ | 3.7033 | | 1170 | | Table 2 | -s, speci | FIC REAL | OF AIR - | - Cont. | | | | | <u> </u> | |--------------|------------------|------------|-------------------------|-----------------|------------------|------------|------------------|------------|--------------| | *K | .01 | atm | .1 | atm | ,4 a | tm | .7 | atm | °R | | 650 | 3.7027 | 84 | 3.7028 | 84 | 3.7031 | 84 | 3.7033 | 84 | 1170
1188 | | 660 | 3.7111 | 84 | 3.7112 | 83 | 3.7115
3.7198 | 83
84 | 3.7117
3.7201 | 84
84 | 1206 | | 670
680 | 3.7195
3.7279 | 84
84 | 3.7195
3.7280 | 85
84 | 3.7282 | 84 | 3.7285 | 84 | 1224 | | 690 | 3.7363 | 84 | 3.7364 | 84 | 3.7366 | 84 | 3.7369 | 84 | 1242 | | 700 | 3.7447 | 84 | 3.7448
3.7532 | 84
83 | 3.7450
3.7534 | 84
83 | 3.7453
3.7536 | 83
83 | 1260
1278 | | 710
720 | 3.7531
3.7614 | 83
84 | 3.7615 | 84 | 3.7617 | 84 | 3.7619 | 84 | 1296 | | 730 | 3.7698 | 84 | 3.7699 | 84 | 3.7701 | 84 | 3.7703 | 84 | 1314 | | 740 | 3.7782 | 83 | 3.7783 | 83 | 3.7785 | 83 | 3.7787 | 83 | 1332 | | 750
760 | 3.7865
3.7947 | 82
83 | 3.7866
3.7948 | 82
83 | 3.7868
3.7950 | 82
82 | 3.7870
3.7952 | 82
82 | 1350
1368 | | 770 | 3.8030 | 82 | 3.8031 | 82 | 3.8032 | 82 | 3.8034 | 82 | 1386 | | 780 | 3.8112 | 82 | 3.8113 | 82 | 3.8114 | 82 | 3.8116 | 82 | 1404 | | 790 | 3.8194 | 9 | 3.8195 | 8 | 3.8196 | 8 | 3.8198 | 8 | 1422 | | 800 | 3,828 | 40 | 3.828 | 41 | 3.828 | 41 | 3.828 | 41 | 1440 | | 850 | 3.868 | 38 | 3.869 | 37 | 3.869 | 37 | 3.869 | 3 7 | 1530 | | 900 | 3,906 | 38 | 3.906 | 36 | 3.906 | 38 | 3.906 | 38 | 1620 | | 950
1000 | 3.944
3.979 | 35
34 | 3.944
3.979 | 35
34 | 3.944
3.979 | 35
34 | 3.944
3.979 | 35
34 | 1710
1800 | | 1050 | 4,013 | 33 | 4.013 | 33 | 4.013 | 33 | 4.013 | . 33 | 1890 | | 1100 | 4.046 | 32 | 4.046 | 32 | 4.046 | 32 | 4.046 | 32 | 1980
2070 | | 1150 | 4.078
4.109 | 31 | 4.078
4.109 | 31
31 | 4.078
4.109 | 31
31 | 4.078
4.109 | 31
31 | 2160 | | 1200
1250 | 4.140 | 31
31 | 4.140 | 31 | 4.140 | 31 | 4.140 | 31 | 2250 | | 1300 | 4.171 | . 30 | 4.171 | 30 | 4.171 | 30 | 4.171 | 30 | 2340 | | 1350 | 4.201 | 31 | 4.201
4.230 | 29 | 4.201
4.230 | 29
30 | 4.201
4.230 | 29
30 | 2430
2520 | | 1400
1450 | 4.232
4.265 | 33
36 | 4.260 | 30
29 | 4.260 | 29 | 4,260 | 29 | 2610 | | 1500 | 4.301 | 38 | 4.289 | 33 | 4.289 | 32 | 4.289 | 32 | 2700 | | 1550 | 4.339 | 41 | 4.322 | 34 | 4.321
4.352 | 31 | 4.321
4.352 | 31
34 | 2790
2880 | | 1600
1650 | 4.380
4.427 | 47
52 | 4.356
4.393 | 37
38 | 4.332
4.387 | 35
34 | 4.386 | 33 | 2970 | | 1700 | 4.479 | 52
67 | 4.431 | 42 | 4.421 | 36 | 4.419 | 34 | 3060 | | 1750 | 4.546 | 86 | 4.473 | 48 | 4.457 | 40 | 4.453 | 37 | 3150 | | 1800 | 4.632 | 111 | 4.521
4.577 | 56 | 4.497
4.539 | 42
47 | 4.490
4.529 | 39
44 | 3240
3330 | | 1850
1900 | 4.743
4.888 | 145
188 | 4.644 | 67
88 | 4.586 | 47
57 | 4.753 | 48 | 3420 | | 1950 | 5.076 | 250 | 4.732 | 107 | 4.643 | 68 | 4.621 | 55 | 3510 | | 2000 | 5.326 | 34 | 4.839 | 121 | 4.711 | 73 | 4.676 | 62 | 3600 | | 2050 | 5.67 | 44 | 4.960 | 136 | 4.784 | 82 | 4.738 | 68 | 3690 | | 2100 | 6.11 | 51 | 5.096 | 182 | 4.866 | 107 | 4.806 | 84 | 3780 | | 2150 | 6.62 | 59 | 5.278 | 217 | 4.973
5.095 | 122
155 | 4.890
4.993 | 103
121 | 3870
3960 | | 2200
2250 | 7.21
7.87 | 66
70 | 5.495
5.770 | 275
326 | 5.250 | 175 | 5.114 | 142 | 4050 | | 2300 | 8.57 | | 6.096 | 360 | 5.425 | 200 | 5.256 | 163 | 4140 | | 2350 | | | 6.456 | 436 | 5.625 | 234 | 5.419
5.604 | 185
212 | 4230
4320 | | 2400
2450 | | | 6.892
7 . 420 | 528
595 | 5.859
6.130 | 271
324 | 5.816 | 212
248 | 4410 | | 2500 | | | 8.015 | 575
58 | 6.454 | 34 | 6.064 | 26 | 4500 | | 2550 | | | 8.60 | 81. | 6.79 | 37 | 6.32 | 28
31 | 4590
4680 | | 2600 | | | 9.41
10.22 | 81.
89 | 7.16
7.57 | 41
45 | 6.60
6.91 | 31
35 | 4770 | | 2650
2700 | | | 11.11 | 96 | 8.02 | 48 | 7.26 | 37 | 4860 | | 2750 | | | 12.07 | 101 | 8.50 | 52 | 7.63 | 39 | 4950 | | 2800 | | | 13.08 | | 9.02 | | 8.02 | | 5040 | | °K | 1 | atm | 4 | atm | 7 0 | otm | 10 | atm | *R | |---------------------------------|--|---|--|----------------------------------|--|------------------------------|--|----------------------------|--------------------------------------| | L | <u> </u> | | <u>. L </u> | | -1 | | . ! | | J | | 100
110
120
130
140 | 3.5824
3.5596
3.5447
3.5340
3.5263 | - 228
- 149
- 107
- 77
- 58 | 3.8166
3.7334
3.6790
3.6418 | - 832
- 544
- 372
- 271 | 4.163
3.982
3.857
3.778 | -181
-125
- 79
- 56 | 4.807
4.325
4.081
3.939 | 482
244
142
95 | 180
198
216
234
252 | | 150 | 3.5205 | - 44 | 3.6147 | - 196 | 3.7219 | - 403 | 3.8440 | 660 | 270 | | 160 | 3.5161 | - 35 | 3.5951 | - 158 | 3.6816 | - 302 | 3.7780 | 483 | 288 | | 170 | 3.5126 | - 27 | 3.5793 | - 123 | 3.6514 | - 235 | 3.7297 | 365 | 306 | | 180 | 3.5099 | - 21 | 3.5670 | - 97 | 3.6279 | - 183 | 3.6932 | 288 | 324 | | 190 | 3.5078 | - 16 | 3.5573 | - 78 | 3.6096 | - 146 | 3.6644 | 217 | 342 | | 200 | 3.5062 | - 13 | 3.5495 | - 63 | 3.5950 | - 119 | 3.6427 | - 183 | 360 | | 210 | 3.5049 | - 11 | 3.5432 | - 53 | 3.5831 | - 100 | 3.6244 | - 149 | 378 | | 220 | 3.5038 | - 6 | 3.5379 | - 42 | 3.5731 | - 80 | 3.6095 | - 123 | 396 | | 230 | 3.5032 | - 4 | 3.5337 | - 35 | 3.5651 | - 67 | 3.5972 | - 101 | 414 | | 240 | 3.5028 | - 1 | 3.5302 | - 25 | 3.5584 | - 53 | 3.5871 | - 82 | 432 | | 250 | 3.5027 | 1 | 3.5277 | - 22 | 3.5531 | 46 | 3.5789 | ~ 70 | 450 | | 260 | 3.5028 | 3 | 3.5255 | - 15 | 3.5485 | 35 | 3.5719 | ~ 56 | 468 | | 270 | 3.5031 | 7 | 3.5240 | - 12 | 3.5450 | 30 | 3.5663 | ~ 49 | 486 | | 280 | 3.5038 | 9 | 3.5228 | - 6 | 3.5420 | 22 | 3.5614 | ~ 38 | 504 | | 290 | 3.5047 | 12 | 3.5222 | - 2 | 3.5398 | 15 | 3.5576 | ~ 30 | 522 | | 300
310
320
330
340 | 3.5059
3.5074
3.5091
3.5112
3.5134 | 15
17
21
22
26 | 3.5220
3.5223
3.5229
3.5240
3.5254 | 3
6
11
14
19 | 3.5383
3.5374
3.5369
3.5371
3.5375 | - 9
- 5
2
4
11 | 3.5546
3.5525
3.5508
3.5500
3.5497 | - 21
- 17
- 8
- 3 | 540
558
576
594
612 | | 350 | 3.5160 | 28 | 3.5273 | 21 | 3.5386 | 15 | 3.5500 | 7 | 630 | | 360 | 3.5188 | 31 | 3.5294 | 25 | 3.5401 | 18 | 3.5507 | 12 | 648 | | 370 | 3.5219 | 36 | 3.5319 | 30 | 3.5419 | 24 | 3.5519 | 17 | 666 | | 380 | 3.5255 | 37 | 3.5349 | 32 | 3.5443 | 26 | 3.5536 | 21 | 684 | | 390 | 3.5292 | 41 | 3.5381 | 35 | 3.5469 | 31 | 3.5557 | 26 | 702 | | 400 | 3.5333 | 43
 3.5416 | 38 | 3.5500 | 33 | 3.5583 | 28 | 720 | | 410 | 3.5376 | 46 | 3.5454 | 43 | 3.5533 | 39 | 3.5611 | 34 | 738 | | 420 | 3.5422 | 49 | 3.5497 | 45 | 3.5572 | 40 | 3.5645 | 37 | 756 | | 430 | 3.5471 | 52 | 3.5542 | 47 | 3.5612 | 44 | 3.5682 | 40 | 774 | | 440 | 3.5523 | 54 | 3.5589 | 51 | 3.5656 | 48 | 3.5722 | 45 | 792 | | 450 | 3.5577 | 57 | 3.5640 | 54 | 3.5704 | 51 | 3.5767 | 48 | 810 | | 460 | 3.5634 | 59 | 3.5694 | 56 | 3.5755 | 54 | 3.5815 | 50 | 828 | | 470 | 3.5693 | 61 | 3.5750 | 59 | 3.5809 | 55 | 3.5865 | 54 | 846 | | 480 | 3.5754 | 63 | 3.5809 | 60 | 3.5864 | 58 | 3.5919 | 56 | 864 | | 490 | 3.5817 | 65 | 3.5869 | 63 | 3.5922 | 61 | 3.5975 | 57 | 882 | | 500 | 3.5882 | 67 | 3.5932 | 65 | 3.5983 | 63 | 3.6032 | 61 | 900 | | 510 | 3.5949 | 70 | 3.5997 | 68 | 3.6046 | 65 | 3.6093 | 63 | 918 | | 520 | 3.6019 | 71 | 3.6065 | 69 | 3.6111 | 68 | 3.6156 | 66 | 936 | | 530 | 3.6090 | 73 | 3.6134 | 72 | 3.6179 | 69 | 3.6222 | 68 | 954 | | 540 | 3.6163 | 75 | 3.6206 | 72 | 3.6248 | 71 | 3.6290 | 69 | 972 | | 550 | 3.6238 | 75 | 3.6278 | 74 | 3.6319 | 71 | 3.6359 | 71 | 990 | | 560 | 3.6313 | 77 | 3.6352 | 75 | 3.6390 | 75 | 3.6430 | 72 | 1008 | | 570 | 3.6390 | 78 | 3.6427 | 77 | 3.6465 | 76 | 3.6502 | 74 | 1026 | | 580 | 3.6468 | 79 | 3.6504 | 78 | 3.6541 | 75 | 3.6576 | 74 | 1044 | | 590 | 3.6547 | 79 | 3.6582 | 78 | 3.6616 | 77 | 3.6650 | 76 | 1062 | | 600
610
620
630
640 | 3.6626
3.6707
3.6788
3.6870
3.6953 | 81
82
83
83 | 3.6660
3.6742
3.6820
3.6900
3.6982 | 82
78
80
82
82 | 3.6693
3.6772
3.6851
3.6930
3.7011 | 79
79
79
81
82 | 3.6726
3.6803
3.6880
3.6958
3.7038 | 77
77
78
80
81 | 1080
1098
1116
1134
1152 | | 650 | 3.7036 | | 3.7064 | | 3.7093 | | 3.7119 | | 1170 | | ° K | 1 | atm | 4 | atm | 7 at | m | 10 | atm | •R | |--------------------------------------|--|---------------------------|--|----------------------------|--|-----------------------------|--|--------------------------|--------------------------------------| | 650
660
670
680
690 | 3.7036
3.7120
3.7204
3.7288
3.7371 | 84
84
84
83 | 3.7064
3.7147
3.7230
3.7313
3.7396 | 83
83
83
83
83 | 3.7093
3.7174
3.7256
3.7338
3.7420 | 81.
82
82
82
82 | 3.7119
3.7200
3.7281
3.7362
3.7443 | 82
81
81
81 | 1170
1188
1206
1224
1242 | | 700 | 3.7455 | 83 | 3.7479 | 83 | 3.7502 | 83 | 3.7525 | 81. | 1260 | | 710 | 3.7538 | 83 | 3.7562 | 81 | 3.7585 | 80 | 3.7606 | 81. | 1278 | | 720 | 3.7621 | 84 | 3.7643 | 84 | 3.7665 | 84 | 3.7687 | 82 | 1296 | | 730 | 3.7705 | 84 | 3.7727 | 83 | 3.7749 | 82 | 3.7769 | 82 | 1314 | | 740 | 3.7789 | 83 | 3.7810 | 82 | 3.7831 | 81 | 3.7851 | 81. | 1332 | | 750
760
770
780
790 | 3.7872
3.7954
3.8036
3.8118
3.8200 | 82
82
82
82
8 | 3.7892
3.7973
3.8055
3.8137
3.8218 | 81
82
82
81
8 | 3.7912
3.7993
3.8074
3.8155
3.8236 | 81
81
81
8 | 3.7932
3.8013
3.8094
3.8174
3.8254 | 81
80
80
9 | 1350
1368
1386
1404
1422 | | 800 | 3.828 | 39 | 3.830 | 41 | 3.832 | 40 | 3.834 | 39 | 1440 | | 850 | 3.869 | 37 | 3.871 | 37 | 3.872 | 37 | 3.873 | 37 | 1530 | | 900 | 3.906 | 38 | 3.908 | 38 | 3.909 | 38 | 3.910 | 38 | 1620 | | 950 | 3.944 | 35 | 3.946 | 34 | 3.947 | 35 | 3.948 | 35 | 1710 | | 1000 | 3.979 | 34 | 3.980 | 34 | 3.982 | 33 | 3.983 | 33 | 1800 | | 1050 | 4.013 | 33 | 3.014 | 33 | 4.015 | 33 | 4.016 | 33 | 1890 | | 1100 | 4.046 | 32 | 4.047 | 32 | 4.048 | 32 | 4.049 | 32 | 1980 | | 1150 | 4.078 | 31 | 4.079 | 31 | 4.080 | 31 | 4.081 | 30 | 2070 | | 1200 | 4.109 | 31 | 4.110 | 31 | 4.111 | 30 | 4.111 | 31 | 2160 | | 1250 | 4.140 | 31 | 4.141 | 31 | 4.141 | 31 | 4.142 | 31 | 2250 | | 1300 | 4.171 | 30 | 4.172 | 30 | 4.172 | 30 | 4.173 | 30 | 2340 | | 1350 | 4.201 | 29 | 4.202 | 29 | 4.202 | 29 | 4.203 | 29 | 2430 | | 1400 | 4.230 | 30 | 4.231 | 30 | 4.231 | 30 | 4.232 | 29 | 2520 | | 1450 | 4.260 | 29 | 4.261 | 29 | 4.261 | 29 | 4.261 | 29 | 2610 | | 1500 | 4.289 | 32 | 4.290 | 30 | 4.290 | 30 | 4.290 | 30 | 2700 | | 1550 | 4.321 | 31 | 4.320 | 31 | 4.320 | 31 | 4.320 | 31 | 2790 | | 1600 | 4.352 | 33 | 4.351 | 31 | 4.351 | 31 | 4.351 | 31 | 2880 | | 1650 | 4.385 | 33 | 4.382 | 32 | 4.382 | 31 | 4.382 | 32 | 2970 | | 1700 | 4.418 | 33 | 4.414 | 32 | 4.413 | 32 | 4.414 | 31 | 3060 | | 1750 | 4.451 | 36 | 4.446 | 34 | 4.445 | 34 | 4.445 | 33 | 3150 | | 1800 | 4.487 | 37 | 4.480 | 33 | 4.479 | 32 | 4.478 | 31 | 3240 | | 1850 | 4.524 | 42 | 4.513 | 36 | 4.511 | 33 | 4.509 | 34 | 3330 | | 1900 | 4.566 | 45 | 4.549 | 37 | 4.544 | 36 | 4.543 | 34 | 3420 | | 1950 | 4.611 | 51 | 4.586 | 40 | 4.580 | 37 | 4.577 | 36 | 3510 | | 2000 | 4.662 | 57 | 4.626 | 44 | 4.617 | 40 | 4.613 | 39 | 3600 | | 2050 | 4.719 | 62 | 4.670 | 45 | 4.657 | 42 | 4.652 | 40 | 3690 | | 2100 | 4.781 | 75 | 4.715 | 52 | 4.699 | 45 | 4.692 | 42 | 3780 | | 2150 | 4.856 | 91 | 4.767 | 56 | 4.744 | 47 | 4.734 | 46 | 3870 | | 2200 | 4.947 | 108 | 4.823 | 67 | 4.791 | 59 | 4.780 | 53 | 3960 | | 2250 | 5.055 | 124 | 4.890 | 79 | 4.850 | 68 | 4.833 | 60 | 4050 | | 2300 | 5.179 | 142 | 4.969 | 87 | 4.918 | 72 | 4.893 | 63 | 4140 | | 2350 | 5.321 | 163 | 5.056 | 93 | 4.990 | 77 | 4.956 | 70 | 4230 | | 2400 | 5.484 | 186 | 5.149 | 106 | 5.067 | 85 | 5.026 | 76 | 4320 | | 2450 | 5.670 | 212 | 5.255 | 118 | 5.152 | 95 | 5.102 | 84 | 4410 | | 2500 | 5.882 | 24 | 5.373 | 134 | 5.247 | 106 | 5.186 | 96 | 4500 | | 2550 | 6.12 | 28 | 5.507 | 154 | 5.353 | 121 | 5.282 | 107 | 4590 | | 2600 | 6.40 | 31 | 5.661 | 170 | 5.474 | 133 | 5.389 | 117 | 4680 | | 2650 | 6.71 | 35 | 5.831 | 186 | 5.607 | 146 | 5.506 | 128 | 4770 | | 2700 | 7.06 | 39 | 6.019 | 228 | 5.753 | 159 | 5.634 | 141 | 4860 | | 2750 | 7.45 | 42 | 6.247 | 208 | 5.912 | 176 | 5.775 | 155 | 4950 | | 2800
2850
2900
2950
3000 | 7.87
8.35
8.86
9.40
9.96 | 48
51
54
56 | 6.455
6.708
6.993
7.290
7.605 | 253
285
297
315 | 6.088
6.282
6.497
6.733
6.991 | 194
215
236
258 | 5.930
6.106
6.300
6.508
6.724 | 176
194
208
216 | 5040
5130
5220
5310
5400 | | °K | IO atm | 40 atm | 70 atm | 100 atm | ° R | |----|--------|--------|--------|---------|------------| |----|--------|--------|--------|---------|------------| | 150 | 3.844 | - 66 | | | | | | | 270 | |-----|---------------|--------------|-------|--------------|-------|-------------------------|----------------|----------------|--------------| | 160 | 3.778 | - 00
- 48 | 5.876 | 784 | | | | | 288 | | 170 | 3.730 | - 46
- 37 | 5.092 | /84
411 | | | | | 200
306 | | 180 | 3.693 | - 37
- 29 | 4.681 | -411
-255 | 6,621 | -965 | 8.46 | 140 | | | 190 | 3.664 | - 27
21 | 4.426 | -255
-170 | 5.656 | -524 | 6.98 | -148 | 324
342 | | 170 | 2.004 | - 4 | 7.720 | -170 | 5.050 | -224 | 0,70 | - 90 | 342 | | 200 | 3,643 | - 19 | 4,256 | -127 | 5.132 | -342 | 6.079 | ~ 601 | 360 | | 210 | 3.624 | - 14 | 4.129 | - 93 | 4.790 | -231 | 5.478 | - 385 | 378 | | 220 | 3.610 | - 13 | 4.036 | | 4.559 | | 5.093 | | 396 | | 230 | 3.597 | - 10 | 3.963 | - 73
- 57 | 4.392 | -167
-127 | 4.821 | - 272
- 202 | 414 | | 240 | 3.587 | - 10
- 8 | 3.906 | - 46 | 4.265 | - 99 | 4.619 | - 202
- 156 | 432 | | 240 | 2.507 | - • | 2.700 | - 40 | 4.203 | - 77 | 4.017 | - 136 | 432 | | 250 | 3.579 | - 7 | 3.860 | - 38 | 4.166 | - 76 | 4,463 | - 119 | 450 | | 260 | 3.572 | - 6 | 3.822 | - 32 | 4.090 | - 65 | 4.344 | - 96 | 468 | | 270 | 3.566 | - 5 | 3.790 | - 27 | 4.025 | - 65
- 55 | 4.248 | - 81 | 486 | | 280 | 3.561 | - 3 | 3.763 | - 22 | 3.970 | - 44 | 4.167 | | 504 | | 290 | 3.558 | - 3
- 3 | 3.741 | - 19 | 3.926 | - 41
- 37 | 4.101 | - 66
- 55 | 522 | | 270 | J. JJG | - , | 2.141 | - 19 | 3.720 | - 31 | 4,101 | - 55 | 322 | | 300 | 3.555 | - 2 | 3,722 | - 16 | 3.889 | - 12 | 4.046 | - 46 | 540 | | 310 | 3.553 | - 2 | 3.706 | - 14 | 3.857 | - 26 | 4.000 | - 40 | 558 | | 320 | 3.551 | - 1 | 3.692 | - 12 | 3.831 | - 23 | 3.960 | - 33 | 576 | | 330 | 3.550 | - | 3.680 | - 9 | 3,808 | - 20 | 3.927 | - 30 | 594 | | 340 | 3.550 | | 3.671 | - 9 | 3.788 | - 17 | 3.897 | - 25 | 612 | | 240 | 2.330 | | 2.071 | - 7 | 2.700 | - 17 | 2.077 | - 25 | 012 | | 350 | 3.550 | 1 | 3,662 | - 6 | 3,771 | - 15 | 3.872 | - 23 | 630 | | 360 | 3.551 | 1 | 3.656 | - 6 | 3.756 | - 12 | 3.849 | - 18 | 648 | | 370 | 3.552 | 2 | 3.650 | - 4 | 3,744 | - 12 | 3.831 | - 17 | 666 | | 380 | 3.554 | 2 | 3.646 | - 4 | 3.732 | - 8 | 3.814 | - 14 | 684 | | 390 | 3.556 | 2 | 3.642 | - 2 | 3.724 | - 7 | 3.800 | - 12 | 702 | | | | | | _ | | • | | | | | 400 | 3.558 | 3 | 3.640 | - 2 | 3.717 | - 7 | 3.788 | - 11 | 720 | | 410 | 3.561 | 4 | 3.638 | 1 | 3.710 | - 5 | 3.777 | - 9 | 738 | | 420 | 3.565 | 3 | 3.637 | | 3,705 | - 4 | 3,768 | - 7 | 756 | | 430 | 3.568 | 4 | 3.637 | | 3.701 | - 3 | 3,761 | - 6 | 774 | | 440 | 3.572 | 5 | 3.637 | 1 | 3,698 | - ž | 3.755 | - 5 | 792 | | | | | | | | | | _ | | | 450 | 3.577 | 5 | 3,638 | 2 | 3.696 | - 1 | 3.750 | - 4 | 810 | | 460 | 3,582 | 5 | 3.640 | 2 | 3.695 | | 3.746 | - 3 | 828 | | 470 | 3.587 | 5 | 3.642 | 3 | 3.695 | | 3.743 | - 2 | 846 | | 480 | 3.592 | 6 | 3.645 | 3 | 3.695 | | 3.741 | - 1 | 864 | | 490 | 3.598 | . 5 | 3.648 | 4 | 3.695 | 2 | 3.740 | - 1 | 882 | | | | | | | | | | | | | 500 | 3.603 | 6 | 3.652 | 4 | 3.697 | 2 | 3.739 | | 900 | | 510 | 3.609 | 7 | 3.656 | 4 | 3,699 | 2 | 3.739 | 1 | 918 | | 520 | 3.616 | 6 | 3.660 | 5 | 3.701 | 3 | 3.740 | 1 | 936 | | 530 | 3.622 | 7 | 3,665 | 5 | 3.704 | 4 | 3.741 | 2 | 954 | | 540 | 3.629 | 7 | 3.670 | 5 | 3.708 | 3 | 3.743 | 2 | 972 | | 550 | 2 424 | _ | 2 475 | _ | 2 711
 | 2 745 | | 990 | | | 3.636 | 7 | 3.675 | 5 | 3.711 | 4 | 3.745
3.749 | 3 | | | 560 | 3.643 | 7 | 3.680 | 6 | 3.715 | 5 | 3.748 | 3 | 1008 | | 570 | 3.650 | 8 | 3.686 | 6 | 3.720 | 4 | 3.751 | 4 | 1026
1044 | | 580 | 3.658 | 7 | 3.692 | 6 | 3.724 | 5 | 3.755 | 3 | | | 590 | 3.6 65 | 8 | 3.698 | 7 | 3.729 | 6 | 3.758 | 5 | 1062 | | 600 | 3,673 | 7 | 3,705 | 6 | 3,735 | 5 | 3,763 | 4 | 1080 | | 610 | 3.680 | 8 | 3.711 | 7 | 3.740 | 6 | 3.767 | 5 | 1098 | | 620 | 3.688 | 8 | 3.718 | 7 | 3.746 | 5 | 3.772 | 5 | 1116 | | 630 | 3.696 | - | 3.725 | , ' | 3.751 | | 3.777 | 5 | 1134 | | 640 | 3.704 | 8 | 3.732 | 7 | 3.757 | 6
7 | 3.782 | 5 | 1152 | | 070 | J. 104 | 8 | 2.134 | , | 2,131 | , | J. 10L | , | 1176 | | 650 | 3.712 | 8 | 3,739 | 7 | 3.764 | 6 | 3,787 | 6 | 1170 | | 660 | 3.720 | 8 | 3.746 | 7 | 3.770 | 7 | 3,793 | 6 | 1188 | | 670 | 3.728 | 8 | 3.753 | 7 | 3.777 | 6 | 3.799 | 5 | 1206 | | 680 | 3.736 | 8 | 3.760 | 8 | 3.783 | ž | 3.804 | 6 | 1224 | | 690 | 3.744 | 9 | 3.768 | ž | 3.790 | ż | 3.810 | 7 | 1242 | | | | - | | - | | • | | • | | | 700 | 3.753 | | 3.775 | | 3.797 | | 3.817 | | 1260 | | | | | | | | | | | | Table 2-3. SPECIFIC HEAT OF AIR - Cont. | | -J. Brizo | IFIC IMMI | | | | | | | | |--------------|----------------|-----------|----------------|----------|----------------|------------------|----------------|----------|--------------| | °K | 10 | atm | 40 | atm | 70 | atm | 100 | ıtm | ° R | | | | | | | | | | | | | 700 | 3.753 | .8 | 3. 775 | 8 | 3.797 | 6 | 3.817 | 6 | 1260 | | 710 | 3.761 | 8 | 3.783 | 7 | 3.803 | 7 | 3.823 | 6 | 1278 | | 720 | 3.769 | 8 | 3.790 | 8 | 3.810 | 7 | 3.829 | 6 | 1296 | | 730 | 3.777 | 8 | 3.798 | 7 | 3.817 | 7 | 3.835 | 7 | 1314 | | 740 | 3. 785 | 8 | 3.805 | 8 | 3.824 | 7 | 3.842 | 6 | 1332 | | 750 | 3.793 | 8 | 3.813 | 7 | 3.831 | 7 | 3.848 | 6 | 1350 | | 760
770 | 3.801
3.809 | 8
8 | 3.820
3.828 | 8 | 3.838
3.845 | 7 | 3.854
3.861 | 7
7 | 1368
1386 | | 780 | 3.817 | 8 | 3.835 | 7
8 | 3.852 | 7
7 | 3.868 | 6 | 1404 | | 790 | 3.825 | 9 | 3.843 | 8 | 3.859 | 8 | 3.874 | 8 | 1422 | | | | | | | | | | | | | 800 | 3.834 | 39 | 3.851 | 39 | 3.867 | 35 | 3.882 | 33 | 1440 | | 850 | 3.873 | 37 | 3.890 | 34 | 3.902 | 34 | 3.915 | 32 | 1530 | | 9.00 | 3.910 | 36 | 3.924 | 36 | 3.936 | 34 | 3.947 | 33 | 1620 | | 950 | 3.948 | 35 | 3.960 | 33 | 3.970 | 33 | 3.980 | 32 | 1710 | | 1000 | 3.983 | 33 | 3.993 | 32 | 4.003 | 31 | 4.012 | 30 | 1800 | | 1050 | 4.016 | 33 | 4.025 | 32 | 4.034 | 31 | 4.042 | 30 | 1890 | | 1100 | 4.049 | 32 | 4.057 | 31 | 4.065 | 30 | 4.072 | 31 | 1980 | | 1150 | 4.081 | 30 | 4.088 | 30 | 4.095 | 30 | 4.103 | 27 | 2070 | | 1200
1250 | 4.111
4.142 | 31
31 | 4.118
4.148 | 30
31 | 4.125
4.154 | 29 | 4.130
4.159 | 29 | 2160
2250 | | | |)1 | | 31 | | 30 | | 30 | | | 1300 | 4.173 | 30 | 4.179 | 29 | 4.184 | 29 | 4.189 | 28 | 2340 | | 1350 | 4.203 | 29 | 4.208 | 28 | 4.213 | 28 | 4.217 | 28 | 2430 | | 1400 | 4.232 | 29 | 4.236 | 30 | 4.241 | 29 | 4.245 | 28 | 2520 | | 1450
1500 | 4.261
4.290 | 29 | 4.266
4.294 | 28 | 4.270
4.298 | 28 | 4.273
4.302 | 29 | 2610
2700 | | | | 30 | | 30 | | 29 | | 29 | | | 1550 | 4,320 | 31 | 4,324 | 30 | 4.327 | 30 | 4.331 | 30 | 2790 | | 1600 | 4.351 | 31 | 4.354 | 31 | 4.357 | 31 | 4.361 | 30 | 2880 | | 1650 | 4,382 | 52 | 4.385 | 31 | 4.388 | 31 | 4.391 | 30 | 2970 | | 1700 | 4.414 | 31 | 4.416 | 31 | 4.419 | 30 | 4.421 | 30 | 3060 | | 1750 | 4,445 | 33 | 4.447 | 30 | 4.449 | . 30 | 4.451 | 30 | 3150 | | 1800 | 4.478 | 31 | 4.477 | 31 | 4.479 | 30 | 4.481 | 30 | 3240 | | 1850 | 4.509 | 34 | 4.508 | 32 | 4.509 | 31 | 4.511 | 31 | 3330 | | 1900 | 4.543 | 34 | 4.540 | 31 | 4.540 | 32 | 4.542 | 31 | 3420 | | 1950 | 4.577 | 36 | 4.571 | 32 | 4.572 | 32 | 4.573 | 32 | 3510 | | 2000 | 4.613 | 39 | 4.603 | 35 | 4.604 | 33 | 4.605 | 33 | 3600 | | 2050 | 4.652 | 40 | 4.638 | 36 | 4.637 | 3 3 | 4.638 | 33 | 3690 | | 2100 | 4.692 | 42 | 4.674 | 35 | 4.670 | 33 | 4.671 | 31 | 3780 | | 2150 | 4.734
4.780 | 46 | 4.709 | 36 | 4.703 | 35 | 4.702 | 32 | 3870 | | 2200
2250 | 4.780 | 53
60 | 4.745
4.785 | 40
43 | 4.738
4.775 | 37
3 9 | 4.734
4.769 | 35
37 | 3960
4050 | | | | | | | | | | | | | 2300 | 4.893 | 63 | 4.828 | 46 | 4.814 | 41 | 4.806 | ` 39 | 4140 | | 2350
2400 | 4.956
5.026 | 70
74 | 4.874
4.922 | 48 | 4.855
4.897 | 42 | 4.845
4.886 | 41 | 4230
4320 | | 2450 | 5.102 | 76
84 | 4.922 | 51
55 | 4.897
4.941 | 44
46 | 4.928 | 42
43 | 4410 | | 2500 | 5.186 | 96 | 5.028 | 59 | 4.987 | 46
49 | 4.971 | 45
45 | 4500 | | 2550 | 5.282 | 107 | 5.087 | € | 5.036 | 52 | 5.016 | 46 | 4590 | | 2600 | 5.389 | 117 | 5.152 | 68 | 5.088 | 52
55 | 5.062 | 53 | 4680 | | 2650 | 5.506 | 128 | 5.220 | 75 | 5,143 | 60 | 5.115 | 57 | 4770 | | 2700 | 5.634 | 141 | 5.295 | 82 | 5.203 | 67 | 5.172 | 61 | 4860 | | 2750 | 5.775 | 155 | 5.377 | 90 | 5.270 | 71 | 5.233 | 64 | 4950 | | 2800 | 5.930 | 176 | 5.467 | 96 | 5.341 | 75 | 5,297 | 66 | 5040 | | 2850 | 6.106 | 194 | 5.563 | 105 | 5.416 | 80 | 5.363 | 71 | 5130 | | 2900 | 6.300 | 208 | 5.668 | 114 | 5.496 | 87 | 5.434 | 78 | 5220 | | 2950 | 6.508 | 216 | 5.782 | 124 | 5.583 | 95 | 5.512 | 90 | 5310 | | 3000 | 6.724 | | 5.906 | | 5.678 | | 5.602 | | 5400 | Table 2-4. ENTHALPY OF AIR* | | т | | | | | | , | | | |------------|------------------|--------------|------------------|--------------|------------------|------------------------------|------------------|--------------|--------------------| | °K | .01 | atm | ا. | atm | .4 | atm | .7 | atm | °R | | | | | | | | | | | | | 50 | .6346 | 1279 | | | | | | | 90 | | 60 | .7625 | 1280 | | | | | | | 108 | | 70
80 | .8905
1.0185 | 1280 | 1.0160 | 3004 | | | | | 126 | | 90 | 1.1464 | 1279
1278 | 1.1444 | 1284
1281 | 1.1376 | 1291 | 1,1307 | 1304 | 144
162 | | 100 | 1.2742 | 1279 | 1,2725 | 1281 | 1.2667 | 1291 | 1.2611 | 1298 | 180 | | 110 | 1.4021 | 1278 | 1.4006 | 1280 | 1.3958 | 1286 | 1.3909 | 1293 | 198 | | 120 | 1.5299 | 1278 | 1.5286 | 1280 | 1.5244 | 1286 | 1.5202 | 1291 | 216 | | 130
140 | 1.6577
1.7855 | 1278
1278 | 1.6566
1.7845 | 1279
1279 | 1.6530
1.7813 | 12 83
1282 | 1.6493
1.7781 | 1288
1285 | 234
252 | | 150 | 1.9133 | 1279 | 1,9124 | | 1.9095 | | | | | | 160 | 2.0412 | 1278 | 2.0404 | 1280
1279 | 2.0378 | 1283
1281 | 1.9066
2.0352 | 1286
1284 | 270
288 | | 170 | 2.1690 | 1278 | 2.1683 | 1279 | 2.1659 | 1281 | 2.1636 | 1283 | 306 | | 180 | 2.2968 | 1278 | 2.2962 | 1278 | 2.2940 | 1281 | 2,2919 | 1282 | 324 | | 190 | 2.4246 | 1279 | 2.4240 | 1280 | 2.4221 | 1261 | 2.4201 | 1282 | 342 | | 200 | 2.5525 | 1279 | 2.5520 | 1278 | 2.5502 | 1280 | 2.5483 | 1282 | 360 | | 210 | 2.6804 | 1279 | 2.6798 | 1280 | 2.6782 | 1280 | 2.6765 | 1282 | 378 | | 220
230 | 2.8083
2.9362 | 1279
1279 | 2.8078
2.9357 | 1279
1280 | 2.8062
2.9342 | 1280 | 2.8047 | 1281 | 3 9 6 | | 240 | 3.0641 | 1279 | 3.0637 | 1279 | 3.0623 | 12 81
12 81 | 2.9328
3.0610 | 1282
1281 | 414
432 | | 250 | 3,1920 | 1279 | 3.1916 | 1279 | 3.1904 | 1280 | 3,1891 | 100 | 450 | | 260 | 3.3199 | 1280 | 3.3195 | 1280 | 3.3184 | 1281 | 3.3172 | 1281
1282 | 468 | | 270 | 3.4479 | 1280 | 3.4475 | 1281 | 3.4465 | 1281 | 3.4454 | 1282 | 486 | | 280 | 3.5759 | 1281 | 3.5756 | 1281 | 3.5746 | 1282 | 3.5736 | 1282 | 504 | | 290 | 3.7040 | 1281 | 3.7037 | 1281 | 3.7028 | 1281 | 3.7018 | 1283 | 522 | | 300 | 3.8321 | 1282 | 3.8318 | 1282 | 3.8309 | 1283 | 3.8301 | 1283 | 540 | | 310
320 | 3.9603
4.0885 | 1282 | 3.9600
4.0883 | 1283 | 3.9592 | 1283 | 3.9584 | 1283 | 558 | | 330 | 4.2169 | 1284
1284 | 4.2167 | 1284
1284 | 4.0875
4.2159 | 1284
1285 | 4.0867
4.2152 | 1285
1286 | 576
5 94 | | 340 | 4.3453 | 1285 | 4.3451 | 1285 | 4.3444 | 1286 | 4.3438 | 1286 | 612 | | 350 | 4.4738 | 1286 | 4.4736 | 1286 | 4,4730 | 1286 | 4,4724 | 1287 | 630 | | 360 | 4.6024 | 1288 | 4.6022 | 1288 | 4.6016 | 1289 | 4.6011 | 1288 | 648 | | 370 | 4.7312 | 1289 | 4.7310 | 1289 | 4.7305 | 1289 | 4.7299 | 1290 | 666 | | 380
390 | 4.8601
4.9891 | 1290 | 4.8599
4.9889 | 1290 | 4.8594 | 1291 | 4.8589 | 1291 | 684 | | | | 1291 | | 1291 | 4.9885 | 1291 | 4.9880 | 1292 | 702 | | 400 | 5.1182 | 1294 | 5.1180 | 1.295 | 5.1176 | 1294 | 5.1172 | 1294 | 720 | | 410
420 | 5.2476
5.3771 | 1295
1296 | 5.2475
5.3770 | 1295 | 5.2470 | 1296 | 5.2466 | 1296 | 738 | | 430 | 5.5067 | 1299 | 5.5066 | 1296
1299 | 5.3766
5.5062 | 1296
1 30 0 | 5.3762
5.5059 | 1297
1299 | 756
774 | | 440 | 5.6366 | 1301 | 5.6365 | 1301 | 5.6362 | 1901 | 5.6358 | 1302 | 792 | | 450 | 5.7667 | 1302 | 5.7666 | 1302 | 5.7663 | 1902 | 5.7660 | 1302 | 810 | | 460 | 5.8969 | 1305 | 5.8968 | 1305 | 5.8965 | 1305 | 5.8962 | 1305 | 828 | | 470 | 6.0274 | 1307 | 6.0273 | 1307 | 6.0270 | 1307 | 6.0267 | 1307 | 846 | | 480
490 | 6.1581
6.2891 | 1310
1311 | 6.1580
6.2890 | 1310
1311 | 6.1577
6.2888 | 1311
1311 | 6.1574
6.2885 | 1311
1312 | 864
882 | | 500 | 6.4202 | | 6.4201 | | | | | | | | 510 | 6.4202
6.5517 | 1315
1316 | 6.4201
6.5517 | 1316
1316 | 6.4199
6.5515 | 1316
1316 | 6.4197
6.5512 | 1315 | 900
918 | | 520 | 6.6833 | 1320 | 6.6833 | 1320 | 6.6831 | 1320 | 6.6830 | 1318
1320 | 936 | | 530 | 6.8153 | 1322 | 6.8153 | 1322 | 6.8151 | 1322 | 6.8150 · | 1322 | 954 | | 540 | 6.9475 | 1324 | 6.9475 | 1324 | 6.9473 | 1325 | 6.9472 | 1324 | 972 | | 550 | 7.0799 | 1328 | 7.0799 | 1328 | 7.0798 | 1328 | 7.0796 | 1328 | 990 | | 560 | 7.2127 | 1330 | 7.2127 | 1330 | 7.2126 | 1330 | 7.2124 | 1331 | 1008 | | 570
580 | 7.3457
7.4790 | 1333
1336 | 7.3457
7.4790 | 1333 | 7.3456
7.4789 | 1333 | 7.3455 | 1333 | 1026 | | 590 | 7.6126 | 1339 | 7.6126 | 1336
1339 | 7.6125 | 1336
1339 | 7.4788
7.6125 |
1337
1339 | 1044
1062 | | 600 | 7,7465 | 1342 | 7.7465 | 1342 | 7.7464 | 1343 | 7.7464 | 1342 | 1080 | | 610 | 7.8807 | 1345 | 7.8807 | 1345 | 7.8807 | 1344 | 7.8806 | 1345 | 1098 | | 620 | 8.0152 | 1348 | 8.0152 | 1348 | 8.0151 | 1349 | 8.0151 | 1348 | 1116 | | 630 | 8.1500 | 1351 | 8.1500 | 1351 | 8.1500 | 1351 | 8.1499 | 1352 | 1134 | | 640 | 8.2851 | 1354 | 8.2851 | 1354 | 8.2851 | 1354 | 8.2851 | 1354 | 1152 | | 650 | 8.4205 | | 8.4205 | | 8.4205 | | 8.4205 | | 1170 | ^{*} The enthalpy function is divided here by a constant RT_0 where $T_0 = 273.16$ K (491.688 $^{\circ}R$). Table 2-4. ENTHALPY OF AIR - Cont.* | | 7-4. D MAIL | ALLI I OF | 1111 | | | | | | -0-7 | |--------------|--------------------|------------|------------------|---------------|------------------|--------------|------------------|------------|--------------| | °K | .01 | atm | 1, | atm | .4 | atm | .7 | atm | °R | | | | | | | | | | | | | 650 | 8,4205 | 1357 | 8.4205 | 1357 | 8.4205 | 1357 | 8,4205 | 1357 | 1170 | | 660 | 8.5562 | 1360 | 8,5562 | 1360 | 8.5562 | 1360 | 8.5562 | 1360 | 1188 | | 670 | 8.6922 | 1363 | 8,6922 | 1363 | 8,6922 | 1363 | 8.6922 | 1363 | 1206 | | 680 | 8.8285 | 1366 | 8.8285 | 1366 | 8.8285 | 1366 | 8.8285 | 1367 | 1224 | | 690 | 8.9651 | 1370 | 8.9651 | 1370 | 8,9651 | 1371 | 8.9652 | 1370 | 1242 | | 700 | 9.1021 | 1372 | 9,1021 | 1372 | 9.1022 | 1372 | 9.1022 | 1372 | 1260 | | 710 | 9.2393 | 1375 | 9.2393 | 1375 | 9.2394 | 1375 | 9.2394 | 1375 | 1278 | | 720 | 9.3768 | 1379 | 9,3768 | 1379 | 9.3769 | 1379 | 9.3769 | 1380 | 1296 | | 730 | 9.5147 | 1381 | 9.5147 | 1381 | 9.5148 | 1380 | 9.5149 | 1380 | 1314 | | 740 | 9.6528 | 1385 | 9.6528 | 1385 | 9.6528 | 1386 | 9.6529 | 1.386 | 1332 | | 750 | 9.7913 | 1388 | 9.7913 | 1388 | 9.7914 | 1388 | 9.7915 | 1389 | 1350 | | 760 | 9.9301 | 1391 | 9.9301 | 1391 | 9.9302 | 1391 | 9.9304 | 1391 | 1368 | | 770 | 10.0692 | 1393 | 10.0692 | 1 3 93 | 10.0693 | 1393 | 10.0695 | 1392 | 1386 | | 780 | 10.2085 | 1397 | 10.2085 | 1 39 7 | 10.2086 | 1397 | 10.2087 | 1398 | 1404 | | 790 | 10.3482 | 140 | 10.3482 | 140 | 10.3483 | 140 | 10.3485 | 140 | 1422 | | | | | | | | | | | | | 800 | 10.488 | 704 | 10.488 | 704 | 10.488 | 704 | 10.488 | 704 | 1440 | | 850 | 11.192 | 712 | 11.192 | 712 | 11.192 | 712 | 11.192 | 712 | 1530 | | 900 | 11.904 | 719 | 11.904 | 719 | 11.904 | 719 | 11.904 | 719 | 1620 | | 950 | 12.623 | 725 | 12.623 | 725 | 12.623 | 725 | 12.623 | 725 | 1710 | | 1000 | 13.348 | 731 | 13.348 | 731 | 13.348 | 731 | 13.348 | 731 | 1800 | | 1050 | 14.079 | 738 | 14.079 | 738 | 14.079 | 738 | 14.079 | 738 | 1890 | | 1100 | 14.817 | 744 | 14.817 | 744 | 14.817 | 744 | 14.817 | 744 | 1980 | | 1150 | 15.561 | 749 | 15.561 | 749 | 15.561 | 749 | 15.561 | 749 | 2070 | | 1200 | 16.310 | 755 | 16.310 | 755 | 16.310 | 755 | 16.310 | 755 | 2160 | | 1250 | 17.065 | 761 | 17.065 | 761 | 17.065 | 761 | 17.065 | 761 | 2250 | | 1300 | 17.826 | 766 | 17.826 | 766 | 17.826 | 766 | 17.826 | 766 | 2340 | | 1350 | 18.592 | 772 | 18.592 | 771 | 18.592 | 771 | 18.592 | 771 | 2430 | | 1400 | 19.364 | 778 | 19.363 | 777 | 19.363 | 777 | 19.363 | 777 | 2520 | | 1450
1500 | 20.142
20.926 | 784
791 | 20.140
20.922 | 782
788 | 20.140
20.922 | 782
788 | 20.140
20.922 | 782
788 | 2610
2700 | | | - | | | | | | | | 2700 | | 1550 | 21.717 | 798 | 21.710 | 794 | 21.710 | 794 | 21.710 | 794 | 2790 | | 1600 | 22.515 | 806 | 22.504 | 801 | 22.504 | 800 | 22.504 | 800 | 2880
2970 | | 1650 | 23.321 | 80.5 | 23.305 | 808 | 23.304
24.110 | 806 | 23.304
24.110 | 806
812 | 3060 | | 1700
1750 | 24.136
24.962 | 826
840 | 24.113
24.928 | 815
823 | 24.922 | 81.2
81.9 | 24.922 | 81.8 | 3150 | | | | | | | 25,741 | | 25.740 | 805 | 3240 | | 1800 | 25.802 | 858
881 | 25.751 | 833 | 26.568 | 827 | 26.565 | 825
833 | 3330 | | 1850
1900 | 26.660
27.541 | 861 | 26.584
27.428 | 844 | 27.403 | 835
845 | 27.398 | 841 | 3420 | | 1950 | 28,452 | 911
951 | 28,286 | 858
876 | 28,248 | 856 | 28.239 | 851 | 3510 | | 2000 | 29.403 | 1005 | 29.162 | 897 | 29.104 | 869 | 29.090 | 861 | 3600 | | 2050 | 30,408 | 1077 | 30.059 | 920 | 29.973 | 883 | 29,951 | 873 | 3690 | | 2100 | 31.485 | 1164 | 30,979 | 949 | 30.856 | 900 | 30.824 | 887 | 3780 | | 2150 | 32.649 | 1264 | 31.928 | 985 | 31,756 | 921 | 31.711 | 904 | 3870 | | 2200 | 33,913 | 1379 | 32.913 | 1030 | 32,677 | 946 | 32.615 | 925 | 3960 | | 2250 | 35.292 | 1504 | 33.943 | 1085 | 33.623 | 977 | 33.540 | 949 | 4050 | | 2300 | 36.796 | | 35.028 | 1148 | 34.600 | 1011 | 34.489 | 977 | 4140 | | 2350 | | | 36,176 | 1220 | 35,611 | 1050 | 35.466 | 1008 | 4230 | | 2400 | | | 37.396 | 1308 | 36,661 | 1097 | 36.474 | 1045 | 4320 | | 2450 | | | 38.704 | 1412 | 37.758 | 1151 | 37.519 | 1087 | 4410 | | 2500 | | | 40.116 | 1520 | 38.909 | 1212 | 38.606 | 1133 | 4500 | | 2550 | | | 41.636 | 1645 | 40.121 | 1276 | 39.739 | 1182 | 4590 | | 2600 | | | 43.281 | 1797 | 41.397 | 1348 | 40.921 | 1236 | 4680 | | 2650 | | | 45.078 | 1951 | 42.745 | 1426 | 42.157 | 1296 | 4770 | | 2700 | | | 47.029 | 2120 | 44.171 | 1511 | 43.453 | 1363 | 4860 | | 2750 | | | 49.149 | 2301 | 45.682 | 1603 | 44.816 | 1432 | 4950 | | 2800 | | | 51.450 | | 47.285 | | 46,248 | | 5040 | | | | | | | | | | | | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688 °R). Table 2-4. ENTHALPY OF AIR - Cont.* | *K | ı | atm | 4 | atm | 7 | atm | 10 | atm | •̂R | |------------|------------------|--------------|------------------|--------------|------------------|-----------------------|-----------------------|-----------------------------------|--------------------| | | | | | | • | | | | | | 100 | 1.2552 | 1307 | | | | | | | 180 | | 110 | 1.3859 | 1297 | 1.3331 | 1381 | 1.2731 | 1489 | 1.2013 | 1661 | 198 | | 120 | 1.5156 | 1299 | 1.4712 | 1355 | 1.4220 | 1433 | 1.3674 | 1545 | 216 | | 130 | 1.6455 | 1291 | 1.6067 | 1343 | 1.5653
1.7057 | 1404 | 1.5219
1.6680 | 1461
1432 | 234
252 | | 140 | 1.7746 | 1290 | 1.7410 | 1326 | 1.7057 | 1364 | 1.00 QÅ | 14.32 | 232 | | 150 | 1.9036 | 1289 | 1.8736 | 1320 | 1.8421 | 1355 | 1.8112 | 1990 | 270 | | 160 | 2.0325 | 1287 | 2.0056 | 1313 | 1,9776 | 1342 | 1.9502 | 1369 | 288 | | 170 | 2.1612 | 1285 | 2.1369 | 1308 | 2.1118 | 1332 | 2.0871 | 1355 | 306 | | 180 | 2.2897 | 1284 | 2.2677 | 1303 | 2.2450 | 1325 | 2.2226 | 1345 | 324 | | 190 | 2.4181 | 1284 | 2.3980 | 1301 | 2.3775 | 1319 | 2.3571 | 1 3 37 | 342 | | 200 | 2.5465 | 1283 | 2.5281 | 1298 | 2.5094 | 1314 | 2.4908 | 1330 | 360 | | 210 | 2.6748 | 1283 | 2.6579 | 1296 | 2.6408 | 1310 | 2.6238 | 1324 | 378 | | 220 | 2.8031 | 1283 | 2.7875 | 1294 | 2.7718 | 1307 | 2.7562 | 1319 | 396 | | 230 | 2.9314 | 1283 | 2.9169 | 1293 | 2.9025
3.0329 | 1304
1302 | 2.8881
3.0196 | 1315
1312 | 414
432 | | 240 | 3.0597 | 1282 | 3.0462 | 1292 | | 1302 | | 1512 | | | 250 | 3.1879 | 1282 | 3.1754 | 1291 | 3.1631 | 1300 | 3.1508 | 1309 | 450 | | 260 | 3.3161 | 1282 | 3.3045 | 1290 | 3.2931 | 1298 | 3.2817 | 1307 | 468 | | 270 | 3.4443 | 1283 | 3.4335 | 1290 | 3.4229 | 1297 | 3.4124 | 1305 | 486 | | 280 | 3.5726 | 1283 | 3.5625 | 1290 | 3.5526 | 1296 | 3.5429
3.6732 | 1303 | 504
522 | | 290 | 3.7009 | 1283 | 3.6915 | 1289 | 3.6822 | 1296 | | 1302 | | | 300 | 3.8292 | 1284 | 3.8204 | 1290 | 3.8118 | 1295 | 3.8034 | 1301 | 540 | | 310 | 3.9576 | 1284 | 3.9494 | 1290 | 3.9413 | 1295 | 3.9335 | 1,300 | 558 | | 320 | 4.0860
4.2145 | 1285 | 4.0784 | 1290 | 4.0708 | 1295 | 4.0635
4.1935 | 1300
1300 | 576
594 | | 330
340 | 4.2145 | 1286
1286 | 4.2074
4.3364 | 1290
1291 | 4.2003
4.3298 | 1295
1295 | 4.3235 | 1300 | 612 | | | | | | | | | | | | | 350 | 4.4717 | 1288 | 4.4655 | 1292 | 4.4593 | 1296 | 4.4535 | 1300 | 630 | | 360 | 4.6005 | 1291 | 4.5947 | 1293 | 4.5889 | 1296 | 4.5835
4.7135 | 1300 | 648
666 | | 370
380 | 4.7296
4.8584 | 1288
1291 | 4.7240
4.8534 | 1294
1295 | 4.7185
4.8482 | 1297
1298 | 4.7135 | 1301
1301 | 684 | | 390 | 4.9875 | 1292 | 4.9829 | 1296 | 4.9780 | 1299 | 4.9737 | 1302 | 702 | | 400 | 5.1167 | 1295 | 5.1125 | 1297 | 5,1079 | 1300 | 5.1039 | 1303 | 720 | | 410 | 5.2462 | 1296 | 5,2422 | 1299 | 5.2379 | 1302 | 5.2342 | 1304 | 738 | | 420 | 5.3758 | 1297 | 5.3721 | 1300 | 5.3681 | 1303 | 5.3646 | 1306 | 756 | | 430 | 5.5055 | 1300 | 5.5021 | 1301 | 5.4984 | 1304 | 5.4952 | 1307 | 774 | | 440 | 5.6355 | 1302 | 5,6322 | 1304 | 5.6288 | 1306 | 5.6259 | 1308 | 792 | | 450 | 5 .76 57 | 1302 | 5.7626 | 1306 | 5.7594 | 1308 | 5.7567 | 1310 | 810 | | 460 | 5.8959 | 1306 | 5.8932 | 1308 | 5.8902 | 1310 | 5.8877 | 1312 | 828 | | 470 | 6.0265 | 1306 | 6.0240 | 1310 | 5.0212 | 1312 | 6.0189 | 1314 | 846 | | 480 | 6.1571 | 1312 | 6.1550 | 1312 | 5.1524 | 1314 | 6.1503
6.2819 | 1316 | 864
882 | | 490 | 6.2883 | 1312 | 6.2862 | 1314 | 5.2838 | 1316 | | 1318 | | | 500 | 6.4195 | 1315 | 6.4176 | 1316 | 6.4154 | 1319 | 6.4137 | 1320 | 900 | | 510 | 6.5510 | 1318 | 6.5492 | 1319 | 6.5473 | 1321 | 6.5457 | 1322 | 918 | | 520
530 | 6.6828 | 1320 | 6.6811
6.8133 | 1322 | 6.6794
6.8117 | 1323
1326 | 6.6779
6.8104 | 1325
1327 | 936
954 | | 540 | 6.8148
6.9470 | 1322
1325 | 6.9457 | 1324
1327 | 6.9443 | 1328 | 6.9431 | 1330 | 972 | | | , - | | | | | | | | | | 550 | 7.0795 | 1328 | 7.0784 | 1329 | 7.0771 | 1331 | 7.0761
7.2093 | 1332 | 990
1008 | | 560 | 7.2123 | 1331 | 7.2113 | 1332 | 7.2102
7.3436 | 1334 | 7.2093
7.3428 | 1335
1338 | 1026 | | 570
580 | 7.3454
7.4787 | 1333
1337 | 7.3445
7.4780 | 1335
1338 | 7.4773 | 1337
1 33 9 | 7.4766 | 1340 | 1044 | | 590 | 7.6124 | 1339 | 7.6118 | 1341 | 7.6112 | 1342 | 7.6106 | 1343 | 1062 | | 600 | 7.7463 | 1342 | 7.7459 | 1344 | 7.7454 | 1345 | 7,7449 | 1346 | 1080 | | 610 | 7.8805 | 1345 | 7.8803 | 1347 | 7.8799 | 1348 | 7.8795 | 1349 | 1098 | | 620 | 8.0150 | 1349 | 8.0150 | 1349 | 8.0147 | 1.351 |
8.0144 | 1352 | 1116 | | 630 | 8.1499 | 1352 | 8.1499 | 1352 | 8.1498 | 1354 | 8.1496 | 1354 | 1134 | | 640 | 8.2851 | 1354 | 8.2851 | 1355 | 8.2852 | 1367 | 8.2850 | 1357 | 1152 | | 650 | 8.4205 | 1357 | 8.4206 | 1358 | 8.4209 | 1360 | 8.4207 | 1360 | 1170 | | 660 | 8.5562 | 1360 | 8.5564 | 1361 | 8.5569 | 1362 | 8.5567 | 1363 | 1188 | | 670
680 | 8.6922
9.8285 | 1363 | 8.6925
8.8289 | 1364 | 8.6931
8.8296 | 1365 | 8.6930
8.8296 | 1366
1349 | 1206
1224 | | 680
690 | 8.8285
8.9652 | 1367
1371 | 8,8289
8,9656 | 1367
1371 | 8.8296
8.9664 | 1368
1371 | 8.9665 | 13 69
1 3 72 | 1242 | | | | 13/1 | | 2312 | | -/1- | _ | 2516 | | | 700 | 9.1023 | | 9.1027 | | 9.1035 | | 9.1037 | | 1260 | | * 7 | The enthalp | y function i | s divided | here by a c | onstant R | To where To | = 273.16 ⁰ | K (491.68 | 8 ^O R). | Table 2-4. ENTHALPY OF AIR - Cont.* (H-E⁰₀)/RT | | | | | | | | | | _0,, -, - | |--------------|-------------------|----------------------|-------------------|--------------|--------------------|--------------|--------------------|--------------|--------------| | *K | 1 | atm | 4 | atm | 7 | atm | 10 | atm | * R | | | | | | | | | | | | | 700 | 9.1023 | 1372 | 9.1027 | 1374 | 9.1035 | 1374 | 9.1037 | 1375 | 1260 | | 710 | 9.239 5 | 1375 | 9.2401 | 1377 | 9.2409 | 1377 | 9.2412 | 1378 | 1278 | | 720 | 9.3770 | 1380 | 9.3778 | 1380 | 9.3786 | 1380 | 9.3790 | 1.381 | 1296 | | 730 | 9.5150 | 1.380 | 9.5158 | 1383 | 9.5166 | 1383 | 9.5171 | 1384 | 1314 | | 740 | 9.6530 | 1386 | 9.6541 | 1386 | 9.6549 | 1386 | 9.6555 | 1387 | 1332 | | 750
760 | 9.7916 | 1389 | 9.7927 | 1389 | 9.7935 | 1389 | 9.7942 | 1390 | 1350 | | 760
770 | 9.9305
10.0696 | 1391 | 9.9316
10.0708 | 1392 | 9.9324 | 1392 | 9.9332 | 1393 | 1368 | | 780 | 10.2088 | 1392
1398 | 10.2103 | 1395
1398 | 10.0716
10.2111 | 1395
1398 | 10.0725
10.2121 | 1396 | 1386
1404 | | 790 | 10.3486 | 140 | 10.3501 | 140 | 10.3509 | 140 | 10.3520 | 1399
140 | 1422 | | | | | | | | | | | | | 800 | 10,489 | 703 | 10.490 | 702 | 10,491 | 705 | 10.492 | 705 | 1440 | | 850 | 11.192 | 712 | 11.192 | 714 | 11.196 | 712 | 11.197 | 712 | 1530 | | 900 | 11.904 | 719 | 11.906 | 719 | 11.908 | 719 | 11.909 | 719 | 1620 | | 950 | 12,623 | 725 | 12.625 | 725 | 12.627 | 725 | 12.628 | 726 | 1710 | | 1000 | 13.348 | 731 | 13.350 | 731 | 13.352 | 732 | 13.354 | 732 | 1800 | | 1050 | 14.079 | 738 | 14.081 | 738 | 14.084 | 738 | 14.086 | 738 | 1890 | | 1100
1150 | 14.817 | 744 | 14.819 | 744 | 14.822 | 744 | 14.824 | 744 | 1980 | | 1200 | 15.561
16.310 | 749 | 15.563
16.312 | 749 | 15.566 | 750 | 15.568 | 750 | 2070 | | 1250 | 17.065 | 755
761 | 17.067 | 755
761 | 16,316
17,071 | 755
743 | 16.318
17.073 | 755
743 | 2160
2250 | | | | | | 101 | | 761 | | 761 | | | 1300 | 17.826 | 766 | 17.828 | 766 | 17.832 | 766 | 17.834 | 767 | 2340 | | 1350
1400 | 18.592 | 771 | 18.594 | `771 | 18.598 | 772 | 18.601 | 772 | 2430 | | 1450 | 19.363
20.140 | 777
782 | 19.365
20.142 | 777 | 19.370
20.147 | 777 | 19.373
20.150 | 777 | 2520 | | 1500 | 20.922 | 788 | 20.924 | 782
788 | 20.929 | 782
788 | 20.130 | 782
788 | 2610
2700 | | 1550 | 21.710 | 794 | 21.712 | 794 | 21.717 | 794 | 21.720 | 794 | 2790 | | 1600 | 22.504 | 800 | 22,506 | 800 | 22.511 | 799 | 22.514 | 799 | 2880 | | 1650 | 23.304 | 806 | 23.306 | 806 | 23.310 | 806 | 23,313 | 805 | 2970 | | 1700 | 24.110 | 812 | 24.112 | 811 | 24.116 | 811 | 24.118 | 81.1 | 3060 | | 1750 | 24.922 | 818 | 24.923 | 817 | 24.927 | 817 | 24.929 | 817 | 3150 | | 1800 | 25.740 | 825 | 25.740 | 823 | 25.744 | 822 | 25.746 | 822 | 3240 | | 1850 | 26.565 | 832 | 26.563 | 829 | 26.566 | 828 | 26.568 | 828 | 3330 | | 1900 | 27.397 | 840 | 27.392 | 836 | 27.394 | 835 | 27.396 | 835 | 3420 | | 1950 | 28.237 | 849 | 28.228 | 843 | 28.229 | 841 | 28.231 | 841 | 3510 | | 2000 | 29.086 | 858 | 29,071 | 851 | 29.070 | 848 | 29.072 | 848 | 3600 | | 2050 | 29.944 | 869 | 29.922 | 859 | 29.918 | 856 | 29.920 | 855 | 3690 | | 2100 | 30.813 | 882 | 30.781 | 868 | 30.774 | 864 | 30.775 | 863 | 3780 | | 2150 | 31.695 | 897 | 31.649 | 878 | 31.638 | 872 | 31.638 | 871 | 3870 | | 2200 | 32.592 | 915 | 32.527 | 889 | 32.510 | 882 | 32.509 | 880 | 3960 | | 2250 | 33.507 | 936 | 33.416 | 902 | 33.392 | 894 | 33.389 | 890 | 4050 | | 2300 | 34.443 | 961 | 34.318 | 917 | 34.286 | 901 | 34.279 | 901 | 4140 | | 2350 | 35.404 | 989 | 35.235 | 934 | 35.187 | 920 | 35.180 | 913 | 4230 | | 2400 | 36.393 | 1020 | 36.169 | 952 | 36.107 | 935 | 36.093 | 927 | 4320 | | 2450 | 37.413 | 1057 | 37.121 | 972 | 37.042 | 952 | 37.020 | 941 | 4410 | | 2500 | 38.470 | 1098 | 38.093 | 995 | 37.994 | 970 | 37.961 | 958 | 4500 | | 2550
2600 | 39.568 | 1145 | 39.088 | 1022 | 38.964 | 991 | 38.919 | 976 | 4590 | | 2650 | 40.713
41.912 | 1199 | 40,110 | 1052 | 39.955 | 1014 | 39.895 | 997 | 4680 | | 2700 | 43.172 | 1260
1 327 | 41.162
42.246 | 1084 | 40.969
42.008 | 1039 | 40.892
41.911 | 1019 | 4770 | | 2750 | 44.499 | 1402 | 43.365 | 1119
1163 | 43.075 | 1067
1098 | 42.955 | 1044
1071 | 4860
4950 | | 2800 | 45,901 | 1484 | 44.528 | 1204 | 44.173 | 1132 | 44.026 | 1101 | 5040 | | 2850 | 47.385 | 1575 | 45.732 | 1253 | 45.305 | 1169 | 45.127 | 1135 | 5130 | | 2900 | 48.960 | 1671 | 46.985 | 1307 | 46.474 | 1211 | 46.262 | 1173 | 5220 | | 2950 | 50.631 | 1772 | 48.292 | 1363 | 47.685 | 1255 | 47.435 | 121/5 | 5310 | | 3000 | 52.403 | | 49.655 | | 48.940 | | 48.650 | | 5400 | | | | | | | | | | | | ^{*}The enthalpy function is divided here by a constant RT₀ where $T_0 = 273.16^{\circ}$ K (491.688 $^{\circ}$ R). Table 2-4. ENTHALPY OF AIR - Cont.* (H-E°)/RT0 | °K | 10 atm | 40 atm | 70 atm | 100 atm | *R | | |----|--------|--------|--------|-------------|----|---| | | | | | | | 1 | | 150 | 1.8112 | | | | | | | | | |-----|--------|-------|--------|---------------|-----------------|------|--------|-------|------| | | | 1390 | | | | | | | 270 | | 160 | 1.9502 | 1369 | 1.5895 | 1992 | | | | | 288 | | 170 | 2.0871 | 1355 | 1.7887 | 1784 | | | | | 306 | | 180 | 2,2226 | 1345 | 1.9671 | 1663 | 1,6603 | 2225 | 1.3546 | 2815 | 324 | | 190 | 2.3571 | 1337 | 2.1334 | 1588 | 1.8828 | 1966 | 1.6361 | 2373 | 342 | | | | | | | | | | -5.5 | ,,, | | 200 | 2.4908 | 1330 | 2,2922 | 1533 | 2.0794 | 1811 | 1.8734 | 2104 | 360 | | 210 | 2.6238 | 1324 | 2.4455 | 1494 | 2.2605 | 1710 | 2.0838 | 1933 | 378 | | 220 | 2.7562 | 1319 | 2.5949 | 1464 | 2,4315 | 1637 | 2.2771 | 1812 | 396 | | 230 | 2.8881 | 1315 | 2.7413 | 1439 | 2,5952 | 1588 | 2.4583 | | 414 | | 240 | 3.0196 | 1312 | 2.8852 | 1422 | 2,7540 | 1538 | 2.6319 | 1736 | | | | | | | | 211340 | 1330 | 2.0317 | 1653 | 432 | | 250 | 3.1508 | 1309 | 3,0274 | 1403- | 2,9078 | 1489 | 2,7972 | 1608 | 450 | | 260 | 3.2817 | 1307 | 3.1677 | 1.390 | 3.0567 | 1492 | 2.9580 | | | | 270 | 3.4124 | 1305 | 3.3067 | | | | | 1576 | 468 | | 280 | 3,5429 | 1303 | 3.4454 | 1387 | 3.2059 | 1477 | 3.1156 | 1539 | 486 | | 290 | | | | 1 3 75 | 3.3536 | 1449 | 3.2695 | 1516 | 504 | | 270 | 3.6732 | 1302 | 3.5829 | 1365 | 3.4985 | 1426 | 3.4211 | 1488 | 522 | | 300 | 3,8034 | 1301 | 3.7194 | | 2 / 433 | | | | | | 310 | 3.9335 | | | 1360 | 3.6411 | 1415 | 3.5699 | 1474 | 540 | | | | 1300 | 3.8554 | 1355 | 3.7826 | 1407 | 3.7173 | 1459 | 558 | | 320 | 4.0635 | 1300 | 3.9909 | 1349 | 3.9233 | 1399 | 3.8632 | 1446 | 576 | | 330 | 4.1935 | 1300 | 4.1258 | 1345 | 4.0632 | 1391 | 4.0078 | 1434 | 594 | | 340 | 4.3235 | 1300 | 4.2603 | 1341 | 4.2023 | 1384 | 4.1512 | 1423 | 612 | | | | | | | | | | | UIL | | 350 | 4.4535 | 1300 | 4.3944 | 1337 | 4.3407 | 1376 | 4.2935 | 1413 | 630 | | 360 | 4.5835 | 1300 | 4.5281 | 1337 | 4.4783 | 1373 | 4.4348 | 1405 | 648 | | 370 | 4,7135 | 1301 | 4.6618 | 1336 | 4.6156 | 1368 | 4.5753 | | | | 380 | 4.8436 | 1301 | 4.7954 | | 4.7524 | | | 1397 | 666 | | 390 | 4.9737 | 1302 | 4.9289 | 1335 | | 1366 | 4.7150 | 1390 | 684 | | ,,, | 4.7131 | 1,502 | 4.7207 | 1334 | 4.8890 | 1362 | 4.8540 | 1386 | 702 | | 400 | 5.1039 | 1303 | 5.0623 | 1333 | 5.0252 | 1360 | 4.9926 | | 700 | | 410 | 5.2342 | 1304 | 5.1956 | | | | | 1385 | 720 | | 420 | 5.3646 | 1306 | | 1333 | 5.1612 | 1358 | 5.1311 | 1381 | 738 | | 430 | | | 5.3289 | 1332 | 5.2970 | 1355 | 5.2692 | 1379 | 756 | | | 5.4952 | 1307 | 5.4621 | 1331 | 5.4325 | 1355 | 5.4071 | 1375 | 774 | | 440 | 5.6259 | 1308 | 5.5952 | 1330 | 5.5680 | 1353 | 5.5446 | 1374 | 792 | | 450 | E 7547 | | F 7000 | | | | | | | | | 5.7567 | 1310 | 5.7282 | 1331 | 5.7033 | 1353 | 5.6820 | 1372 | 810 | | 460 | 5.8877 | 1312 | 5.8613 | 1332 | 5.8386 | 1352 | 5.8192 | 1371 | 828 | | 470 | 6.0189 | 1314 | 5.9945 | 1334 | 5.9738 | 1352 | 5.9563 | 1370 | 846 | | 480 | 6.1503 | 1316 | 6.1279 | 1335 | 6.1090 | 1352 | 6.0933 | 1369 | 864 | | 490 | 6.2819 | 1318 | 6.2614 | 1337 | 6.2442 | 1353 | 6.2302 | 1368 | 882 | | | | | ••••• | 2551 | 0.2442 | 1303 | 0.2302 | 1,968 | 002 | | 500 | 6.4137 | 1320 | 6.3951 | 1338 | 6.3795 | 1354 | 6.3670 | 1368 | 900 | | 510 | 6.5457 | 1322 | 6.5289 | 1399 | 6.5149 | 1355 | 6.5038 | 1370 | 918 | | 520 | 6.6779 | 1325 | 6.6628 | 1341 | 6.6504 | 1356 | 6.6408 | 1369 | 936 | | 530 | 6.8104 | 1327 | 6,7969 | 1342 | 6.7860 | | | | | | 540 | 6,9431 | 1330 | 6.9311 | 1344 | | 1358 | 6,7777 | 1371 | 954 | | 3.0 | 0,7751 | 1350 | 0.7311 | 1344 | 6,9218 | 1357 | 6.9148 | 1370 | 972 | | 550 | 7.0761 | 1332 | 7.0655 | 1347 | 7.0575 | 1361 | 7.0518 | 1373 | 990 | | 560 | 7.2093 | 1335 | 7.2002 | 1348 | 7.1936 | | | | | | 570 | 7.3428 | 1338 | 7.3350 | | | 1360 | 7.1891 | 1373 | 1008 | | 580 | 7.4766 | | | 1350 | 7.3296 | 1362 | 7.3264 | 1373 | 1026 | | | | 1340 | 7.4700 | 1353 | 7 .4 658 | 1364 | 7.4637 | 1376 | 1044 | | 590 | 7.6106 | 1343 | 7.6053 | 1355 | 7.6022 | 1366 | 7.6013 | 1377 | 1062 | | 600 | 7.7449 | 1346 | 7.7408 | 1-5- | 7 7200 | | 7 7 | | | | 610 | | | | 1357 | 7.7388 | 1369 | 7.7390 | 1379 | 1080 | | | 7.8795 | 1349
| 7.8765 | 1360 | 7.8757 | 1370 | 7.8769 | 1380 | 1098 | | 620 | 8.0144 | 1352 | 8.0125 | 1363 | 8.0127 | 1372 | 8.0149 | 1362 | 1116 | | 630 | 8.1496 | 1354 | 8.1488 | 1365 | 8.1499 | 1375 | 8.1531 | 1383 | 1134 | | 640 | 8.2850 | 1357 | 8,2853 | 1367 | 8.2874 | 1377 | 8.2914 | 1384 | 1152 | | 650 | 0.400~ | | 0.4655 | | | | | | | | | 8.4207 | 1360 | 8.4220 | 1370 | 8.4251 | 1379 | 8.4298 | 1386 | 1170 | | 660 | 8.5567 | 1363 | 8.5590 | 1373 | 8.5630 | 1381 | 8.5684 | 1389 | 1188 | | 670 | 8.6930 | 1366 | 8.6963 | 1375 | 8.7011 | 1384 | 8.7073 | 1391 | 1206 | | 680 | 8.8296 | 1369 | 8.8338 | 1378 | 8.8395 | 1385 | 8.8464 | 1394 | 1224 | | 690 | 8.9665 | 1372 | 8.9716 | 1380 | 8.9780 | 1388 | 8.9858 | 1395 | 1242 | | | | | | | | -> | 0.7050 | 1373 | 1545 | | 700 | 9.1037 | | 9.1096 | | 9.1168 | | 9.1253 | | 1260 | | | | | | | | | | | 1200 | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16 °K (491.688 °R). Table 2-4. ENTHALPY OF AIR - Cont.* (H-E₀)/RT₀ | 710 9,2412 1378 9,2479 1386 9,2559 1393 9,2655 1403 1277 720 9,3790 1381 9,3865 1389 9,3952 1397 9,4058 1405 1294 730 9,5171 1384 9,5254 1392 9,5349 1399 9,5463 1407 1314 1740 9,6555 1387 9,6646 1394 9,5748 1401 9,9670 1408 1332 750 9,7942 1390 9,8040 1397 9,8149 1404 9,8278 1410 1355 760 9,7942 1393 9,9437 1400 9,9553 1406 9,9588 1411 1361 1377 170 10.0725 1396 10.0837 1403 1403 1409 140,1099 143 1388 1401 10.0725 1396 10.0837 1403 1405 10.0959 143 1388 1401 10.0725 1396 10.0837 1403 10.0959 141 10.999 143 1388 1407 190 10.2240 1405 10.2368 1411 10.2512 1414 1407 1407 140 120 120 120 120 120 120 120 120 120 12 | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | *R | |--|--------------|-----------------|------|--------|------|----------|------------|--------|------|------| | 100 9,2412 1378 9,2479 1386 9,2559 1393 9,2655 1403 1277 1270 9,3790 1381 9,3865 1389 9,3952 1377 9,4058 1405 1294 1274 1274 1275 1274 1275 | | | | | | <u> </u> | · | • | | .1 | | 720 9,3790 1381 9,3865 1389 9,3952 1397 9,4058 1405 1277 30 9,5171 1384 9,5254 1392 9,5349 1399 9,5463 1407 1314 740 9,6555 1387 9,6646 1394 9,6748 1401 9,6870 1408 1332 750 9,7942 1390 9,8040 1397 9,8149 1404 9,8278 1410 1336 760 9,9332 1393 9,9437 1400 9,9553 1406 9,6888 1411 1366 770 10.0725 1396 10.0837 1403 10.0959 1409 10.1099 1413 1386 1410 12.512 144 140 170 10.3520 140 10.3645 140 10.3779 141 10.5926 141 142 142 140 10.3645 140 10.3645 140 10.3779 141 10.3926 141 142 142 140 140 140 140 140 140 140 140 140 140 | | | 1375 | | 1383 | | 1391 | | 1402 | 1260 | | 730 9.5171 1384 9.5254 1392 9.5349 1399 9.5463 1407 1314 740 9.6555 1387 9.6646 1394 9.6748 1401 9.6870 1408 1335 750 9.7942 1390 9.8040 1397 9.8149 1404 9.8278 1411 1366 770 10.0725 1396 10.0837 1403 1405 10.0955 1409 10.1099 1413 1386 1411 10.0725 1396 10.0837 1403 10.0356 1411 10.099 1413 1386 10.2320 140 10.3520 140 10.3681 141 10.2512 144 1407 1407 1407 140 10.3520 140 10.3681 141 10.2512 144 1407 140 10.3520 140 10.3681 141 10.2512 144 1407 140 10.3520 140 10.3681 141 10.3779 141 10.3926 141 142 142 142 142 142 142 142 142 142 | | | | | 1386 | | | | | 1278 | | 740 9,6555 1387 9,6646 1394 9,6748 1401 9,6870 1408 1332 750 9,7942 1390 9,8040 1397 9,8149 1404 9,8278 1410 1367 760 9,9332 1393 9,9437 1400 9,9553 1406 9,9688 1411 1366 770 10,0725 1396 10,0837 1403 10,0959 1409 10,1099 1413 1367 780 10,2121 1399 10,2240 1403 10,0959 1409 10,1099 1413 1367 790 10,3520 140 10,3645 140 10,3779 141 10,3526 141 1422 800 10,492 705 10,505 708 10,519 711 10,3526 141 1422 800 11,197 712 11,213 713 11,223 713 11,248 720 1337 850 11,197 712 11,213 713 11,224 713 11,248 720 1337 950 12,628 726 12,649 728 12,670 729 12,693 721 1010 13,354 728 13,477 724 13,400 726 13,424 727 1100 13,354 728 13,377 724 13,400 726 13,424 727 1800 13,554 728 13,477 724 13,400 726 13,424 727 1800 12,693 721 1011 100 14,824 744 14,851 76 14,877 747 14,904 748 1981 1100 14,824 744 14,851 76 14,877 747 14,904 748 1981 1200 15,568 750 15,596 751 15,596 751 15,596 751 15,596 751 15,596 751 15,596 751 15,596 751 15,596 751 15,596 751 15,596 751 15,596 751 15,596 751 15,596 751 15,596 751 15,596 752 16,347 757 16,376 758 16,405 759 2161 17,073 761 17,104 762 17,134 763 17,164 764 2251 17,073 761 17,104 762 17,134 763 17,164 764 2251 17,073 761 17,104 762 17,134 763 17,164 764 2251 17,073 761 17,104 762 17,134 763 17,164 764 2251 15,000 19,373 777 19,407 778 19,440 779 19,471 760 2251 15,000 19,373 777 19,407 778 19,440 779 19,471 760 2251 15,000 19,373 777 19,407 778 19,440 779 19,471 760 2251 15,000 19,373 777 19,407 778 19,440 779 19,471 760 2251 15,000 19,373 777 19,407 778 19,440 779 19,471 760 2251 15,000 19,373 777 19,407 778 19,440 779 19,471 760 2251 15,000 20,932 768 20,185 763 20,185 | | | | | | | | | | | | 750 9,7942 1500 9,8040 1577 9,8149 1604 9,8278 1410 1355 760 9,9332 1593 9,9437 1600 9,9553 1406 9,9688 1411 1367 770 10,0725 1596 10,0837 1603 10,0959 1409 10,1099 1403 1386 1411 10,2512 1414 1407 790 10,3520 140 10,3645 140 10,2346 1411 10,2512 1414 1407 1407 1407 1407 1407 1407 1407 | | | | | | | | | | | | 760 9,9332 1993 9,9437 100 9,9553 1406 9,9688 1411 136770 10,0725 1996 10,0837 100,0959 1409 10,10199 143 1381 1381 10,02510 140 10,03645 140 10,2246 141 10,2512 144 140 1790 10,3520 140 10,3645 140 10,3779 141 10,3926 141 142 140 10,3926 141 142 142 140 10,3926 141 142 142 140 10,3926 141 142 142 140 10,3926 141 142 142 142 142 142 142 142 142 142 | /40 | 9.6555 | 1387 | 9.6646 | 1394 | 9.6/48 | 1401 | 9.6870 | 1408 | 1332 | | 770 10.0725 1996 10.0837 1693 10.0959 1409 10.1099 1413 13497 780 10.2121 1999 10.23240 140 10.3645 140 10.3779 141 10.2512 1414 1407 10.3520 140 10.3645 140 10.3779 141 10.3926 141 1422 1409 10.3520 140 10.3645 140 10.3779 141 10.3926 141 1422 1409 10.3520 140 10.3645 140 10.3779 141 10.3926 141 1422 1409 10.3926 141 1422 1409 10.3926 141 1422 1409 10.3926 141 1422 1409 10.3926 141 1422 1409 10.3926 141 1422 1409 10.3926 141 1422 1409 10.3926 141 1422 1409 10.3926 141 1422 1409 10.3926 141 1422 1409 10.3926 141 1422 1409 10.3926 12.628 766 12.649 778 12.670 790 12.693 731 171000 13.354 732 13.377 734 13.407 736 12.693 731 171000 13.354 732 13.377 734 13.407 736 12.693 731 17100 14.824
744 14.851 746 14.877 747 14.904 748 1995 11500 12.6568 750 15.5566 | | | | | | | | | | 1350 | | 10,2121 1399 10,2240 1405 10,2368 1411 10,2512 144 1407 10,3520 140 10,3645 14c 10,3779 141 10,3926 141 1425 14 | | | | | | | | | | | | 10,3520 | | | | | | | | | | | | 950 11.197 712 11.213 715 11.220 717 11.248 720 1537 900 11.909 719 11.928 721 11.947 723 11.968 725 1620 950 12.628 726 12.649 728 12.647 729 12.693 731 1710 11.909 719 11.928 721 11.947 723 11.968 725 1620 1000 13.354 732 13.377 734 13.400 736 13.424 737 1800 11000 13.354 732 13.377 734 13.400 736 13.424 737 1800 11050 14.086 738 14.111 740 14.136 741 14.904 748 1980 1100 14.824 744 14.851 745 14.877 747 14.904 748 1980 1150 15.568 750 15.595 751 15.624 752 15.652 753 2077 1200 16.318 755 16.347 757 16.376 758 16.405 759 2160 1250 17.073 761 17.104 762 17.134 763 17.164 764 2250 17.073 761 17.104 762 17.134 763 17.164 764 2250 17.073 761 17.104 762 17.134 763 17.164 764 2250 15.500 19.373 777 19.407 778 19.407 778 19.407 778 19.407 778 19.407 778 19.407 778 19.407 778 19.407 778 19.407 778 19.407 778 19.407 778 19.407 778 19.407 778 19.407 778 10.2100 19.373 777 19.407 778 10.03 789 21.003 789 21.036 780 2700 1550 20.932 788 20.968 789 21.003 789 21.036 780 2700 1550 20.932 788 20.968 789 21.003 789 21.036 780 2700 1550 23.313 805 23.351 805 23.351 805 23.351 805 23.351 805 23.351 805 23.351 805 23.351 805 23.351 805 23.351 805 23.351 805 23.352 800 22.561 800 22.561 801 2888 1700 24.188 81 24.156 81 24.193 81 24.228 80 29.108 81 24.228 80 29.1 | | | | | | | | | | 1422 | | 950 11.197 712 11.213 715 11.220 717 11.248 720 1537 900 11.909 719 11.928 721 11.947 723 11.968 725 1620 950 12.628 726 12.649 728 12.647 729 12.693 731 1710 11.909 719 11.928 721 11.947 723 11.968 725 1620 1000 13.354 732 13.377 734 13.400 736 13.424 737 1800 11000 13.354 732 13.377 734 13.400 736 13.424 737 1800 11050 14.086 738 14.111 740 14.136 741 14.904 748 1980 1100 14.824 744 14.851 745 14.877 747 14.904 748 1980 1150 15.568 750 15.595 751 15.624 752 15.652 753 2077 1200 16.318 755 16.347 757 16.376 758 16.405 759 2160 1250 17.073 761 17.104 762 17.134 763 17.164 764 2250 17.073 761 17.104 762 17.134 763 17.164 764 2250 17.073 761 17.104 762 17.134 763 17.164 764 2250 15.500 19.373 777 19.407 778 19.407 778 19.407 778 19.407 778 19.407 778 19.407 778 19.407 778 19.407 778 19.407 778 19.407 778 19.407 778 19.407 778 19.407 778 19.407 778 10.2100 19.373 777 19.407 778 10.03 789 21.003 789 21.036 780 2700 1550 20.932 788 20.968 789 21.003 789 21.036 780 2700 1550 20.932 788 20.968 789 21.003 789 21.036 780 2700 1550 23.313 805 23.351 805 23.351 805 23.351 805 23.351 805 23.351 805 23.351 805 23.351 805 23.351 805 23.351 805 23.351 805 23.352 800 22.561 800 22.561 801 2888 1700 24.188 81 24.156 81 24.193 81 24.228 80 29.108 81 24.228 80 29.1 | | 10.400 | | 10 505 | | 10.510 | | 10.524 | | 1440 | | 900 11.909 719 11.928 721 11.947 723 11.968 725 1620 950 12.628 726 12.649 728 12.670 730 12.693 731 1710 1000 13.354 732 13.377 734 13.400 736 13.424 737 1800 1050 14.086 738 14.111 740 14.136 741 14.161 743 1890 1100 14.824 744 14.851 745 14.877 747 14.904 748 1980 1100 14.824 744 14.851 745 15.6624 752 15.652 753 2070 12.500 16.318 755 16.347 757 16.376 758 16.405 759 1260 16.318 755 16.347 757 16.376 758 16.405 759 1260 16.318 755 16.347 757 16.376 758 16.405 759 1260 16.318 755 16.347 757 16.376 758 16.405 759 1261 1300 17.834 767 17.866 768 17.897 769 17.928 769 2340 1350 18.601 772 18.634 773 18.666 774 18.697 774 2431 1340 19.373 777 19.407 778 19.440 779 19.471 780 2521 1450 20.150 782 20.185 783 20.219 784 20.251 785 2610 1500 20.932 788 20.968 789 21.003 789 21.036 780 2701 1550 22.514 789 22.551 800 22.597 800 22.514 789 22.551 800 22.597 800 22.621 801 2886 1650 23.313 805 23.351 805 23.351 805 23.387 800 22.621 801 2886 1650 23.313 805 23.351 805 23.387 800 22.621 801 2886 1850 24.929 807 24.967 807 25.004 807 25.00 | | | | | | | | | | | | 950 12.628 726 12.649 728 12.670 730 12.693 731 171(1000 13.354 732 13.377 734 13.400 736 13.424 737 180(1010 13.354 732 13.377 734 13.400 736 13.424 737 180(1010 14.824 744 14.851 745 14.877 747 14.904 748 198(1100 14.824 744 14.851 745 14.877 747 14.904 748 198(1100 15.568 750 15.596 751 16.624 752 16.655 753 20,77 741 12.500 16.318 755 16.347 757 16.376 758 16.405 759 21.6(1.318 755 16.347 757 16.376 758 16.405 759 21.6(1.318 755 16.347 757 16.376 758 16.405 759 21.6(1.318 755 16.347 757 16.376 758 16.405 759 21.6(1.318 1300 17.834 767 17.866 768 17.134 768 17.164 764 225(1.3100 19.373 777 19.407 778 19.407 778 19.407 778 19.407 778 19.407 778 19.407 778 19.407 778 19.407 778 10.150 70.2150 782 20.185 783 20.219 784 20.251 785 261(1.500 20.932 788 20.968 789 21.003 789 21.036 750 27.0(1.500 20.932 788 20.968 789 21.003 789 21.036
750 27.0(1.500 20.3313 805 23.351 805 23.351 805 23.357 806 23.422 806 297(1.18 81 24.156 81 24.193 81 24.228 81 24.156 81 24.193 81 24.228 81 297(1.18 81 24.156 81 24.193 81 24.228 81 24.156 81 24.193 81 24.228 81 24.156 81 24.156 81 24.193 81 24.228 81 24.156 81 24.156 81 24.156 81 24.156 81 24.193 81 24.228 81 24.156 81 24.156 81 24.156 81 24.156 81 24.156 | | | | | | | | | | | | 1000 13.354 732 13.377 734 13.400 736 13.424 737 1800 1050 14.086 738 14.111 740 14.136 741 14.161 743 1891 1100 14.824 744 14.851 745 14.877 747 14.904 748 1981 1150 15.568 750 15.596 751 15.624 752 15.652 753 2070 1200 16.318 755 16.347 757 16.376 758 16.405 759 2160 1250 17.073 741 17.104 762 17.134 743 17.164 764 2250 1300 17.834 767 17.866 768 17.897 769 17.928 769 2340 1350 18.601 772 18.634 773 18.666 774 18.697 774 2431 1400 19.373 777 19.407 778 19.440 779 19.471 780 2521 1450 20.150 782 20.185 783 20.219 784 20.251 785 2611 1500 20.932 788 20.968 789 21.003 789 21.036 790 2700 1550 21.720 794 21.757 794 21.792 795 21.826 795 2791 1600 22.514 779 22.551 800 22.587 800 22.621 801 2881 1550 23.313 805 23.351 805 23.387 806 23.422 806 2977 1700 24.118 811 24.156 811 24.193 811 24.228 812 3060 1700 24.128 812 3060 25.746 822 25.784 822 25.821 823 25.857 823 3241 830 25.7454 834 27.472 834 27.509 834 3422 20.000 29.072 848 29.108 846 29.146 846 29.183 846 3600 29.072 848 29.108 846 29.146 846 29.183 846 3600 29.072 848 29.108 846 29.146 846 29.183 846 3600 29.072 848 29.108 846 29.146 846 29.183 846 3600 29.072 848 29.108 846 29.146 846 29.183 846 3600 37.75 843 30.806 859 30.844 858 30.881 858 37.88 37.88 37.88 37.88 37.791 37.797 37.791 47.650 37.901 37 | | | | | | | | | | | | 1100 | 1000 | | | | | | | | | 1800 | | 1100 | 1050 | 14.086 | 738 | 14.111 | 740 | 14.136 | 741 | 14.161 | 743 | 1890 | | 1150 | 1100 | | | | | 14.877 | | | | 1980 | | 1250 17.073 761 17.104 762 17.134 763 17.164 764 225(1) 1300 17.834 767 17.866 768 17.897 769 17.928 769 234(1) 1350 18.601 772 18.634 773 18.666 774 18.697 774 243(1) 1400 19.373 777 19.407 778 19.440 779 19.471 760 252(1) 1450 20.150 762 20.185 763 20.219 764 20.251 765 261(1) 1500 20.932 768 20.968 769 21.003 769 21.036 769 27.004 1550 21.720 794 21.757 794 21.792 795 21.826 795 27.005 765 261(1) 1550 22.514 769 22.551 800 22.587 800 22.621 801 288(1) 1650 23.313 805 23.351 805 23.387 806 23.422 806 297(1) 1700 24.118 811 24.156 811 24.193 811 24.228 812 306(1) 1750 24.929 817 24.967 817 25.004 817 25.040 817 315(1) 1800 25.746 822 25.784 822 25.821 823 25.857 823 324(1) 1800 25.746 828 26.606 828 26.604 828 26.604 828 26.608 829 33(1) 1900 27.396 805 27.434 834 27.472 834 27.509 834 342(1) 1950 28.231 841 28.268 840 28.306 840 28.343 840 351(1) 2000 29.072 848 29.108 846 29.146 846 29.183 846 3600 22.500 30.775 843 30.806 869 30.844 888 30.881 868 378(1) 2150 31.638 871 31.665 865 31.702 864 31.739 846 3600 32.509 860 32.509 860 32.509 860 32.509 860 32.509 860 32.509 860 32.509 860 33.402 880 33.437 878 33.473 876 405(2) 2550 33.389 890 33.402 888 34.315 885 34.349 883 414(2) 2550 35.180 913 35.170 897 35.200 892 35.232 891 423(2) 2550 37.961 958 37.888 925 37.901 917 37.927 914 450(2) 2550 38.919 976 38.813 937 38.818 926 38.841 923 459(2) 2550 37.961 958 37.888 925 37.901 917 37.927 914 450(2) 2550 38.919 976 38.813 937 38.818 926 38.841 923 459(2) 2550 38.919 976 38.813 937 38.818 926 38.841 923 459(2) 2550 38.919 976 38.813 937 38.818 926 38.841 923 459(2) 2550 38.919 976 38.813 937 38.818 926 38.841 923 459(2) 2550 38.919 976 38.813 937 38.818 926 38.841 923 459(2) 2550 38.919 976 38.813 937 38.818 926 38.841 923 459(2) 2550 37.961 958 37.888 925 37.901 917 37.927 914 450(2) 2550 38.919 976 38.813 937 38.818 926 38.841 923 459(2) 2550 37.961 958 37.888 925 37.901 917 37.927 914 450(2) 2550 44.026 1101 43.639 1009 43.556 984 45.539 999 44.530 986 531(2) 2500 46.262 1173 45.666 1068 45.539 1044 45.531 1 | 1150 | | | | 751 | | | | | 2070 | | 1300 17.834 767 17.866 768 17.897 769 17.928 769 2341 1350 18.601 772 18.634 773 18.666 774 18.697 774 2431 1400 19.373 777 19.407 778 19.440 779 19.471 780 2520 1450 20.150 782 20.185 783 20.219 784 20.251 785 2610 1500 20.932 788 20.968 789 21.003 789 21.036 780 2700 1550 21.720 794 21.757 794 21.792 795 21.826 795 2790 1600 22.514 789 22.551 800 22.587 800 22.621 801 2881 1650 23.313 805 23.351 805 23.387 806 23.422 806 2970 1700 24.118 811 24.156 811 24.193 811 24.228 812 3060 1750 24.929 817 24.967 817 25.004 817 25.004 817 3510 1880 25.746 822 25.784 822 25.821 823 25.857 823 3241 1850 26.568 828 26.606 828 26.644 828 26.680 829 3331 1900 27.396 835 27.434 834 27.472 834 27.509 834 3420 1950 29.072 848 29.108 846 29.146 846 29.183 846 3600 29.072 848 29.108 846 29.146 846 29.183 846 3600 29.072 848 29.108 846 29.146 846 29.183 846 3600 2500 29.920 855 29.954 852 29.992 852 30.029 852 3690 2250 33.389 890 33.402 888 33.437 878 33.473 878 33.473 878 33.473 878 33.473 878 33.473 878 33.473 878 33.473 878 350 2200 32.509 880 32.530 872 32.566 871 32.603 870 3961 2250 33.389 890 33.402 888 33.435 885 34.349 883 3788 2250 33.389 890 33.402 888 33.435 885 34.349 883 3788 2250 33.389 890 33.402 888 33.435 885 34.349 883 3788 2250 33.899 990 33.402 888 33.435 885 34.349 883 3788 2250 33.899 990 33.402 888 33.435 885 34.349 883 3788 2250 33.899 990 33.402 888 33.435 885 34.349 883 3788 890 32.500 892 35.232 891 4231 2250 33.899 990 33.402 888 33.435 885 34.349 883 3788 890 32.500 892 35.232 891 4231 2250 33.899 997 39.750 998 39.744 936 39.764 932 4560 39.895 997 39.750 999 39.744 936 39.764 932 46.650 39.895 997 39.750 999 39.744 936 39.764 932 46.650 39.895 997 39.750 999 39.744 936 39.764 932 46.650 39.895 997 39.750 999 39.744 936 39.764 932 46.650 39.895 997 39.750 999 39.744 936 39.764 932 46.650 39.895 997 39.750 999 39.744 936 39.764 932 46.650 39.895 997 39.750 999 39.744 936 39.764 932 46.650 39.895 997 39.750 999 39.744 936 39.764 932 46.650 39.895 997 39.750 999 39.744 936 39.764 932 46.650 39.895 997 3 | 1200 | | | | | | | | | 2160 | | 1350 18.601 772 18.634 773 18.666 774 18.697 774 2431 1400 19.373 777 19.407 778 19.440 779 19.471 780 252 1500 20.150 782 20.185 783 20.219 784 20.251 785 2610 1500 20.932 788 20.968 789 21.003 789 21.036 780 270 1550 21.720 794 21.757 794 21.792 795 21.826 795 279 1600 22.514 799 22.551 800 22.587 800 22.4621 801 2806 297 1700 24.118 811 24.156 811 24.193 811 24.228 812 306 1750 24.929 817 24.967 817 25.004 817 25.040 817 315 1850 25.668 828 26.606 828 26.644 828 26.680 829 333 | 1250 | 17.073 | 761 | 17.104 | 762 | 17.134 | 763 | 17.164 | 764 | 2250 | | 1400 19.373 777 19.407 778 19.440 779 19.471 780 2521 1450 20.150 782 20.185 783 20.219 784 20.251 785 2610 20.932 788 20.968 789 21.003 789 21.036 790 2700 2700 2700 2700 2700 2700 22.514 789 22.551 800 22.587 800 22.621 801 2881 2610 23.313 805 23.351 805 23.387 806 23.422 806 2970 2700 24.118 811 24.156 811 24.193 811 24.228 812 3060 25.746 822 25.784 822 25.821 823 25.857 823 3241 8150 25.688 828 26.606 828 26.646 828 26.646 828 26.646 828 26.646 828 26.646 828 26.646 828 26.646 828 26.646 828 26.646 828 26.646 828 26.4472 834 27.509 834 3420 3510 2000 29.072 848 29.108 846 29.146 846 29.183 846 3600 29.920 855 29.954 852 29.992 852 30.881 858 30.881 858 37.650 30.875 30.881 858 37.650 30.375 30.896 869 30.844 858 30.881 858 37.900 22.509 800 32.530 872 32.566 871 32.603 870 32.530 872 32.566 871 32.603 870 32.530 872 32.566 871 32.603 870 32.530 872 32.566 871 32.603 870 37.020 941 36.973 945 36.992 909 37.021 906 4410 2500 37.961 958 37.888 925 37.901 976 38.813 935 37.888 925 37.901 977 37.927 914 45.000 40.699 962 40.680 947 40.696 942 47.712 2700 41.911 1044 41.661 977 41.627 958 41.638 952 46.620 39.895 997 37.888 925 37.901 940.699 962 40.680 947 40.696 942 47.712 2700 41.911 1044 41.661 977 41.627 958 41.638 952 46.630 968 51.312 2000 42.555 971 42.638 992 42.585 971 42.638 992 42.585 971 42.638 992 42.585 971 42.638 992 42.585 971 42.638 992 42.585 971 42.638 992 42.585 971 42.638 992 42.585 971 42.630 988 51.312 990 43.556 984 43.554 976 946 43.5518 1002 2250 47.4 | 1300 | 17.834 | 767 | 17.866 | 768 | 17.897 | 769 | 17.928 | 769 | 2340 | | 1450 20.150 762 20.185 783 20.219 784 20.251 785 261 1500 20,932 788 20.968 789 21.003 789 21.036 790 270 1550 21,720 794 21,757 794 21,792 795 21,826 795 279 1650 23,313 805 23,351 805 23,387 806 23,422 806 297 1700 24,118 811 24,156 81 24,193 811 24,228 812 306 1750 24,929 817 24,967 817 25,004 817 25,040 827 334 1850 25,568 828 26,606 828 26,644 828 26,680 829 333 1900 27,396 835 27,434 834 27,472 834 27,509 834 342 1950 28,231 841 29,108 < | 1350 | | 772 | | 773 | | 774 | | 774 | 2430 | | 1500 20.932 788 20.968 789 21.003 789 21.036 790 2700 1550 21.720 794 21.757 794 21.792 795 21.826 795 2700 1600 22.514 799 22.551 800 22.587 800 22.621 801 2881 1650 23.313 805 23.351 805 23.387 806 22.621 801 281 1700 24.118 811 24.156 811 24.193 811
24.228 812 3060 1750 24.929 817 24.967 817 25.004 817 25.040 817 3150 1800 25.746 822 25.784 822 25.821 823 25.857 823 3240 1800 25.746 822 25.784 822 25.821 828 26.606 828 26.644 828 26.688 829 3331 402 | | | | | | | | | | | | 1550 21.720 794 21.757 794 21.792 795 21.826 795 2790 1600 22.514 799 22.551 800 22.587 800 22.621 801 2880 1650 23.313 805 23.351 805 23.351 805 23.387 806 23.422 806 2970 1700 24.118 811 24.156 811 24.193 811 24.228 812 3066 1750 24.929 817 24.967 817 25.004 817 25.004 817 31.50 1800 25.746 822 25.784 822 25.821 823 25.857 823 3240 1850 26.568 828 26.606 828 26.644 828 26.680 829 3331 1900 27.396 835 27.434 834 27.472 834 27.509 834 3420 1950 28.231 841 28.268 840 28.306 840 28.343 840 3511 2000 29.072 848 29.108 846 29.146 846 29.183 846 3600 2050 29.920 855 29.954 852 29.992 852 30.029 852 3690 2100 30.775 863 30.806 859 30.844 858 30.881 858 3780 2150 31.638 871 31.665 865 31.702 864 31.739 864 3877 2200 32.509 880 32.530 872 32.566 871 32.603 870 3961 2250 33.389 890 33.402 880 33.437 878 33.473 876 4050 2300 34.279 901 34.282 888 34.315 885 34.349 883 4140 2300 34.279 901 34.282 888 34.315 885 34.349 883 4140 2350 35.180 913 35.170 897 35.200 892 35.232 891 4231 2400 36.093 927 36.067 906 36.092 900 36.123 898 4321 2550 37.020 941 36.973 915 36.992 909 37.021 906 4410 2550 37.961 958 37.888 925 37.901 917 37.927 914 4500 2550 38.919 976 38.813 937 38.818 926 38.841 923 4590 2550 39.895 997 39.750 949 39.744 936 39.764 932 4590 2550 39.895 997 39.750 949 39.744 936 39.764 932 4590 2550 37.961 958 37.888 925 37.901 917 37.927 914 4500 2550 44.026 1101 43.630 1009 43.556 984 43.554 976 5046 2850 44.026 1101 43.630 1009 43.556 984 43.554 976 44.530 988 131 2900 44.026 1101 43.630 1009 43.556 984 43.554 976 5046 2850 47.435 1215 46.714 1070 45.553 1030 46.550 1017 5311 | | | | | | | | | | | | 1600 22.514 799 22.551 800 22.587 800 22.621 801 2881 1650 23.313 805 23.351 805 23.387 806 23.422 806 277 1750 24.929 817 24.967 817 25.004 817 25.040 817 3150 1800 25.746 822 25.784 822 25.821 823 25.857 823 3241 1850 26.568 828 26.606 828 26.644 828 26.680 829 3331 1950 27.496 835 27.434 834 27.472 834 27.509 834 3421 2000 29.072 848 29.108 846 29.146 846 29.183 846 360 2050 29.920 855 29.954 852 29.992 852 30.029 852 3691 2100 30.775 863 30.806 | 1500 | 20.932 | 788 | 20.968 | 789 | 21.003 | 789 | 21.036 | 790 | 2700 | | 1650 23,313 805 23,351 805 23,387 806 23,422 806 297(170) 1700 24,118 811 24,156 81 24,193 81 24,228 812 3060 1750 24,929 817 24,967 817 25,004 817 25,040 817 3150 1850 25,746 822 25,784 82 25,821 823 25,857 823 3240 1850 26,568 828 26,606 828 26,644 828 26,680 829 3331 1900 27,396 835 27,434 834 27,472 834 27,509 834 3421 2000 29,072 848 29,108 846 29,146 846 29,183 846 360 2050 29,920 855 29,954 852 29,992 852 30,029 852 3691 2100 30,775 863 30,806 | 1550 | | 794 | | 794 | | | | | 2790 | | 1700 | | | | | | | | | | | | 1750 24,929 817 24,967 817 25,004 817 25,040 817 3150 1800 25,746 822 25,784 822 25,821 823 25,857 823 3241 1850 26,568 828 26,606 828 26,644 828 26,680 829 3330 1900 27,396 835 27,434 834 27,472 834 27,509 834 3421 2000 29,072 841 28,268 840 28,306 840 28,343 840 3511 2000 29,072 842 29,108 846 29,146 846 29,183 846 3600 2050 29,920 855 29,954 852 29,992 852 30,029 852 3690 2100 30,775 863 30,806 859 30,844 858 30,881 868 378 2150 31,638 871 31,665 865 31,702 864 31,739 864 3870 2250 32,389 890 33,402 880 33,437 878 33,473 876 4050 2300 34,279 90 | | | | | | | | | | | | 1850 26.568 828 26.606 828 26.644 828 26.680 829 333(190) 27.396 835 27.434 834 27.472 834 27.509 834 342(190) 28.3231 841 28.268 840 28.306 840 28.343 840 351(200) 29.972 848 29.108 846 29.146 846 29.183 846 360(200) | 1750 | | | | | | | | | 3150 | | 1850 26.568 828 26.606 828 26.644 828 26.680 829 333(190) 27.396 835 27.434 834 27.472 834 27.509 834 342(190) 28.3231 841 28.268 840 28.306 840 28.343 840 351(200) 29.972 848 29.108 846 29.146 846 29.183 846 360(200) | 1800 | 25 746 | 822 | 25.784 | R22 | 25.821 | 823 | 25.857 | 823 | 3240 | | 1900 27.396 835 27.434 834 27.472 834 27.509 834 3426 1950 28.231 841 28.268 840 28.306 840 28.343 840 3516 2000 29.072 848 29.108 846 29.146 846 29.183 846 3600 2050 29.920 855 29.954 852 29.992 852 30.029 852 3691 2100 30.775 863 30.806 859 30.844 858 30.881 858 3780 2150 31.638 871 31.665 865 31.702 864 31.739 864 3870 3861 858 3780 2250 33.389 880 32.530 872 32.566 871 32.603 870 3960 2250 33.389 890 33.402 880 33.437 878 33.473 876 4050 2300 34.279 901 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3330</td> | | | | | | | | | | 3330 | | 1950 28,231 841 28,268 840 28,306 840 28,343 840 3516 2000 29,072 848 29,108 846 29,146 846 29,183 846 3600 2050 29,920 855 29,954 852 29,992 852 30,029 852 3690 2100 30,775 863 30,806 859 30,844 858 30,881 858 378 2150 31,638 871 31,665 866 31,702 864 31,739 864 3870 2200 32,509 880 32,530 872 32,566 871 32,603 870 3961 2250 33,389 890 33,402 880 34,315 885 34,347 878 33,473 876 4050 2300 34,279 901 34,282 888 34,315 885 34,349 883 4140 2350 35,180 913 35,170 897 35,200 892 35,232 891 423 <td>1900</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>834</td> <td>27.509</td> <td>834</td> <td>3420</td> | 1900 | | | | | | 834 | 27.509 | 834 | 3420 | | 2050 29,920 855 29,954 852 29,992 852 30,029 852 3690 2100 30,775 863 30,806 859 30,844 858 30,881 858 3780 2150 31,638 871 31,665 865 31,702 864 31,739 864 3870 2200 32,509 880 32,530 872 32,566 871 32,603 870 3960 2250 33,389 890 33,402 880 33,437 878 33,473 876 4050 2300 34,279 901 34,282 888 34,315 885 34,349 883 4140 2350 35,180 913 35,170 897 35,200 892 35,232 891 4230 2400 36,093 927 36,067 906 36,092 900 36,123 898 4320 2400 36,093 927 36,067 906 36,092 900 36,123 898 4320 2450 37,020 941 36,973 915 36,992 909 37,021 906 4410 2500 37,961 958 37,888 925 37,901 917 37,927 914 4500 2550 38,919 976 38,813 937 38,818 926 38,841 923 4590 2650 40,892 1019 40,699 962 40,680 947 40,696 942 4770 2700 41,911 1044 41,661 977 41,627 958 41,638 952 4860 2750 42,955 1071 42,638 992 42,585 971 42,590 964 49,500 46,262 1173 45,666 1048 45,539 1014 45,518 1002 5220 2950 47,435 1215 46,714 1070 46,553 1030 46,520 1017 5311 2950 2950 47,435 1215 46,714 1070 46,553 1030 46,520 1017 5311 | 1950 | | 841 | 28.268 | 840 | 28.306 | 840 | | 840 | 3510 | | 2100 30.775 863 30.806 859 30.844 858 30.881 858 3786 2150 31.638 871 31.665 866 31.702 864 31.739 864 3870 2200 32.509 880 32.530 872 32.566 871 32.603 870 3960 2250 33.389 890 33.402 880 33.437 878 33.473 876 4050 2300 34.279 901 34.282 888 34.315 885 34.349 883 4140 2350 35.180 913 35.170 897 35.200 892 35.232 891 4230 2400 36.093 927 36.067 906 36.092 900 36.123 898 4320 2500 37.961 958 37.888 925 37.901 917 37.927 914 4500 2550 38.919 976 38.813 | 2000 | 29.072 | 848 | 29.108 | 846 | 29.146 | 846 | 29.183 | 846 | 3600 | | 2150 31.638 871 31.665 865 31.702 864 31.739 864 3870 2200 32.509 880 32.530 872 32.566 871 32.603 870 396 2250 33.389 890 33.402 880 33.437 878 33.473 876 4050 2300 34.279 901 34.282 888 34.315 885 34.349 883 414 2350 35.180 913 35.170 897 38.200 892 35.232 891 423 2400 36.093 927 36.067 906 36.092 900 36.123 898 432 2450 37.020 941 36.973 915 36.992 909 37.021 906 441 2500 37.961 958 37.888 925 37.901 917 37.927 914 4500 2550 38.919 976 38.813 | 2050 | | 855 | | | | | | | 3690 | | 2200 32,509 880 32,530 872 32,566 871 32,603 870 3961 2250 33,389 890 33,402 880 33,437 878 33,473 876 4050 2300 34,279 901 34,282 888 34,315 885 34,349 883 4140 2350 35,180 913 35,170 897 35,200 892 35,232 891 4230 2400 36,093 927 36,067 906 36,092 900 36,123 898 4320 2450 37,020 941 36,973 915 36,992 909 37,021 906 4410 2500 37,961 958 37,888 925 37,901 917 37,927 914 4500 2550 38,919 976 38,813 937 38,818 926 38,841 923 4590 2600 39,895 997 39,750 | | | | | | | | | | | | 2250 33,389 890 33,402 880 33,437 878 33,473 876 4050 2300 34,279 901 34,282 888 34,315 885 34,349 883 4140 2350 35,180 913 35,170 897 35,200 892 35,232 891 4230 2400 36,093 927 36,067 906 36,092 900 36,123 898 4320 2450 37,020 941 36,973 915 36,992 909 37,021 906 4410 2500 37,961 958 37,888 925 37,901 917 37,927 914 4500 2550 38,919 976 38,813 937 38,818 926 38,841 923 4590 2650 40,892 1019 40,699 962 40,680 947 40,696 942 470 2700 41,911 1044 41,661 | | | | | | | | | | | | 2350 35.180 913 35.170 897 35.200 892 35.232 891 4230 2400 36.093 927 36.067 906 36.092 900 36.123 898 4320 2450 37.020 941 36.973 915 36.992 909 37.021 906 4410 2500 37.961 958 37.888 925 37.901 917 37.927 914 4500 2550 38.919 976 38.813 937 38.818 926 38.841 923 4590 2600 39.895 997 39.750 949 39.744 936 39.764 932 4680 2650 40.892 1019 40.699 962 40.680 947 40.696 942 4770 2700 41.911 1044 41.661 977 41.627 958 41.638 952 4860 2750 42.955 1071 42.638 <td>2250</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4050</td> | 2250 | | | | | | | | | 4050 | | 2350 35.180 913 35.170 897 35.200 892 35.232 891 4230 2400 36.093 927 36.067 906 36.092 900 36.123 898 4320 2450 37.020 941 36.973 915
36.992 909 37.021 906 4410 2500 37.961 958 37.888 925 37.901 917 37.927 914 4500 2550 38.919 976 38.813 937 38.818 926 38.841 923 4590 2600 39.895 997 39.750 949 39.744 936 39.764 932 4680 2650 40.892 1019 40.699 962 40.680 947 40.696 942 4770 2700 41.911 1044 41.661 977 41.627 958 41.638 952 4860 2750 42.955 1071 42.638 <td>2300</td> <td>34,279</td> <td>901</td> <td>34,282</td> <td>888</td> <td>34,315</td> <td>885</td> <td>34,349</td> <td>883</td> <td>4140</td> | 2300 | 34,279 | 901 | 34,282 | 888 | 34,315 | 885 | 34,349 | 883 | 4140 | | 2400 36.093 927 36.067 906 36.092 900 36.123 898 4320 2450 37.020 941 36.973 915 36.992 909 37.021 906 4410 2500 37.961 958 37.888 925 37.901 917 37.927 914 4500 2550 38.919 976 38.813 937 38.818 926 38.841 923 4590 2600 39.895 997 39.750 949 39.744 936 39.764 932 4681 2650 40.892 1019 40.699 962 40.680 947 40.696 942 477 2700 41.911 1044 41.661 977 41.627 958 41.638 952 4861 2750 42.955 1071 42.638 992 42.585 971 42.590 964 4950 2800 44.026 1101 43.630 <td>2350</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4230</td> | 2350 | | | | | | | | | 4230 | | 2500 37.961 958 37.888 925 37.901 917 37.927 914 4500 2550 38.919 976 38.813 937 38.818 926 38.841 923 4590 2600 39.895 997 39.750 949 39.744 936 39.764 932 4680 2650 40.892 1019 40.699 962 40.680 947 40.696 942 4770 2700 41.911 1044 41.661 977 41.627 958 41.638 952 4860 2750 42.955 1071 42.638 992 42.585 971 42.590 964 4950 2800 44.026 1101 43.630 1009 43.556 984 43.554 976 5044 2850 45.127 1136 44.639 1027 44.540 999 44.5518 1002 45.518 1002 5220 2950 47.435 < | 2400 | | | | | 36.092 | | 36.123 | | 4320 | | 2550 38.919 976 38.813 937 38.818 926 38.841 923 459(2600 39.895 997 39.750 949 39.744 936 39.764 932 468(2650 40.892 1019 40.699 962 40.680 947 40.696 942 477(2700 41.911 1044 41.661 977 41.627 958 41.638 952 486(2750 42.955 1071 42.638 992 42.585 971 42.590 964 495(2800 44.026 1101 43.630 1009 43.556 984 43.554 976 504(2800 44.026 1101 43.630 1009 43.556 984 43.554 976 504(2850 45.127 1135 44.639 1027 44.540 999 44.530 988 513(2900 46.262 1173 45.666 1048 45.539 1014 45.518 1002 522(2950 47.435 1215 46.714 1070 46.553 1030 46.520 1017 531(| 2450 | | 941 | | | , | | | | 4410 | | 2600 39.895 997 39.750 949 39.744 936 39.764 932 46.80 2650 40.892 1019 40.699 962 40.680 947 40.696 942 477 2700 41.911 1044 41.661 977 41.627 958 41.638 952 4860 2750 42.955 1071 42.638 992 42.585 971 42.590 964 4950 2800 44.026 1101 43.630 1009 43.556 984 43.554 976 5040 2850 45.127 1135 44.639 1027 44.540 999 44.530 988 5130 2900 46.262 1173 45.666 1048 45.539 1014 45.518 1002 5220 2950 47.435 1215 46.714 1070 46.553 1030 46.520 1017 5310 | 2500 | 37 . 961 | 958 | 37.888 | 925 | 37.901 | 917 | 37.927 | 914 | 4500 | | 2650 40.892 1019 40.699 962 40.680 947 40.696 942 4776 2700 41.911 1044 41.661 977 41.627 958 41.638 952 4866 2750 42.955 1071 42.638 992 42.585 971 42.590 964 4950 2800 44.026 1101 43.630 1009 43.556 984 43.554 976 5040 2850 45.127 1136 44.639 1027 44.540 999 44.530 988 5130 2900 46.262 1173 45.666 1048 45.539 1014 45.518 1002 5220 2950 47.435 1215 46.714 1070 46.553 1030 46.520 1017 5310 | 2550 | | | | | | | | | 4590 | | 2700 41.911 1044 41.661 977 41.627 958 41.638 952 4860 2750 42.955 1071 42.638 992 42.585 971 42.590 964 4950 2800 44.026 1101 43.630 1009 43.556 984 43.554 976 5040 2850 45.127 1136 44.639 1027 44.540 999 44.530 988 5130 2900 46.262 1173 45.666 1048 45.539 1014 45.518 1002 5220 2950 47.435 1215 46.714 1070 46.553 1030 46.520 1017 5310 | | | | | | | | | | | | 2750 42.955 1071 42.638 992 42.585 971 42.590 964 4950 2800 44.026 1101 43.630 1009 43.556 984 43.554 976 5040 2850 45.127 1135 44.639 1027 44.540 999 44.530 988 5130 2900 46.262 1173 45.666 1048 45.539 1014 45.518 1002 5220 2950 47.435 1215 46.714 1070 46.553 1030 46.520 1017 5310 | | | | | | | | | | | | 2850 45.127 1135 44.639 1027 44.540 999 44.530 988 5130 2900 46.262 1173 45.666 1048 45.539 1014 45.518 1002 5220 2950 47.435 1215 46.714 1070 46.553 1030 46.520 1017 5310 | 2700
2750 | | | | | | | | | 4950 | | 2850 45.127 1135 44.639 1027 44.540 999 44.530 988 5130 2900 46.262 1173 45.666 1048 45.539 1014 45.518 1002 5220 2950 47.435 1215 46.714 1070 46.553 1030 46.520 1017 5310 | 2800 | 44,026 | 1101 | 43,630 | 1009 | 43.556 | 984 | 43,554 | 976 | 5040 | | 2900 46.262 1173 45.666 1048 45.539 1014 45.518 1002 5220
2950 47.435 1215 46.714 1070 46.553 1030 46.520 1017 5310 | 2850 | | | 44.639 | | | | | | 5130 | | | 2900 | 46.262 | | 45.666 | 1048 | 45.539 | 1014 | 45.518 | 1002 | 5220 | | 3000 48.650 | 2950 | | 1215 | | 1070 | | 1030 | | 1017 | 5310 | | | 3000 | 48.650 | | 47.784 | | 47.583 | | 47.537 | | 5400 | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688 °R). Table 2-5. ENTROPY OF AIR | °K | .01 | atm | | atm | .4 | atm | .7 | atm | °R | |---------------------------------|--|---------------------------------|--|----------------------------|--|----------------------|--|----------------------------|-------------------------------------| | <u> </u> | | | <u>``</u> | | | | | | | | 50
60
70
80
90 | 22.266
22.903
23.441
23.908
24.319 | 637
538
467
411
370 | 21.600
22.014 | 414
368 | 20,613 | 373 | 20.032 | 384 | 90
108
126
144
162 | | 100 | 24.689 | 331 | 22.382 | 333 | 20.986 | 335 | 20.416 | 338 | 180 | | 110 | 25.020 | 304 | 22.715 | 305 | 21.321 | 306 | 20.754 | 307 | 198 | | 120 | 25.324 | 279 | 23.020 | 279 | 21.627 | 281 | 21.061 | 282 | 216 | | 130 | 25.603 | 259 | 23.299 | 259 | 21.908 | 260 | 21.343 | 261 | 234 | | 140 | 25,862 | 241 | 23.558 | 241 | 22.168 | 242 | 21.604 | 242 | 252 | | 150 | 26.103 | 225 | 23.799 | 226 | 22.410 | 226 | 21.846 | 227 | 270 | | 160 | 26.328 | 212 | 24.025 | 212 | 22.636 | 212 | 22.073 | 213 | 288 | | 170 | 26.540 | 200 | 24.237 | 199 | 22.848 | 200 | 22.286 | 200 | 306 | | 180 | 26.740 | 189 | 24.436 | 189 | 23.048 | 189 | 22.486 | 189 | 324 | | 190 | 26.929 | 179 | 24.625 | 179 | 23.237 | 179 | 22.675 | 180 | 342 | | 200 | 27.108 | 170 | 24.804 | 171 | 23.416 | 171 | 22.855 | 171 | 360 | | 210 | 27.278 | 162 | 24.975 | 163 | 23.587 | 163 | 23.026 | 163 | 378 | | 220 | 27.440 | 156 | 25.138 | 155 | 23.750 | 155 | 23.189 | 155 | 396 | | 230 | 27.596 | 149 | 25.293 | 149 | 23.905 | 149 | 23.344 | 149 | 414 | | 240 | 27.745 | 142 | 25.442 | 142 | 24.054 | 143 | 23.493 | 143 | 432 | | 250 | 27.887 | 137 | 25.584 | 137 | 24.197 | 137 | 23.636 | 138 | 450 | | 260 | 28.024 | 132 | 25.721 | 132 | 24.334 | 132 | 23.774 | 132 | 468 | | 270 | 28.156 | 127 | 25.853 | 127 | 24.466 | 127 | 23.906 | 127 | 486 | | 280 | 28.283 | 123 | 25.980 | 123 | 24.593 | 123 | 24.033 | 123 | 504 | | 290 | 28.406 | 119 | 26.103 | 119 | 24.716 | 119 | 24.156 | 119 | 522 | | 300 | 28.525 | 115 | 26,222 | 115 | 24.835 | 115 | 24.275 | 115 | 540 | | 310 | 28.640 | 111 | 26,337 | 111 | 24.950 | 111 | 24.390 | 111 | 558 | | 320 | 28.751 | 108 | 26,448 | 108 | 25.061 | 108 | 24.501 | 108 | 576 | | 330 | 28.859 | 105 | 26,556 | 105 | 25.169 | 105 | 24.609 | 105 | 594 | | 340 | 28.964 | 101 | 26,661 | 102 | 25.274 | 102 | 24.714 | 102 | 612 | | 350 | 29.065 | 99 | 26.763 | 99 | 25.376 | 99 | 24.816 | 99 | 630 | | 360 | 29.164 | 96 | 26.862 | 96 | 25.475 | 96 | 24.915 | 96 | 648 | | 370 | 29.260 | 94 | 26.958 | 94 | 25.571 | 94 | 25.011 | 94 | 666 | | 380 | 29.354 | 92 | 27.052 | 92 | 25.665 | 92 | 25.105 | 92 | 684 | | 390 | 29.446 | 89 | 27.144 | 89 | 25.757 | 89 | 25.197 | 89 | 702 | | 400 | 29.535 | 87 | 27.233 | 87 | 25.846 | 87 | 25.286 | 87 | 720 | | 410 | 29.622 | 85 | 27.320 | 85 | 25.933 | 85 | 25.373 | 85 | 738 | | 420 | 29.707 | 84 | 27.405 | 83 | 26.018 | 83 | 25.458 | 83 | 756 | | 430 | 29.791 | 82 | 27.488 | 82 | 26.101 | 82 | 25.541 | 82 | 774 | | 440 | 29.873 | 80 | 27.570 | 80 | 26.183 | 80 | 25.623 | 80 | 792 | | 450 | 29.953 | 78 | 27.650 | 78 | 26.263 | 78 | 25.703 | 78 | 810 | | 460 | 30.031 | 76 | 27.728 | 77 | 26.341 | 77 | 25.781 | 77 | 828 | | 470 | 30.107 | 75 | 27.805 | 75 | 26.418 | 75 | 25.858 | 75 | 846 | | 480 | 30.182 | 74 | 27.880 | 74 | 26.493 | 74 | 25.933 | 74 | 864 | | 490 | 30.256 | 73 | 27.954 | 72 | 26.567 | 73 | 26.007 | 73 | 882 | | 500 | 30.329 | 71 | 28.026 | 71 | 26.640 | 71 | 26.080 | 71 | 900 | | 510 | 30.400 | 70 | 28.097 | 70 | 26.711 | 70 | 26.151 | 70 | 918 | | 520 | 30.470 | 68 | 28.167 | 67 | 26.781 | 68 | 26.221 | 68 | 936 | | 530 | 30.538 | 68 | 28.236 | 67 | 26.849 | 68 | 26.289 | 68 | 954 | | 540 | 30.606 | 66 | 28.303 | 66 | 26.917 | 66 | 26.357 | 66 | 972 | | 550
560
570
580
590 | 30.672
30.738
30.802
30.865
30.927 | 66
64
63
62
62 | 28.369
28.434
28.499
28.563
28.625 | 65
65
64
62
61 | 26.983
27.048
27.113
27.176
27.238 | 65
63
62
62 | 26.423
26.489
26.553
26.616
26.679 | 66
64
63
63
61 | 990
1008
1026
1044
1062 | | 600 | 30.989 | 61 | 28.686 | 61 | 27.300 | 61 | 26.740 | 61 | 1080 | | 610 | 31.050 | 60 | 28.747 | 60 | 27.361 | 59 | 26.801 | 60 | 1098 | | 620 | 31.110 | 59 | 28.807 | 59 | 27.420 | 59 | 26.861 | 59 | 1116 | | 630 | 31.169 | 58 | 28.866 | 58 | 27.479 | 58 | 26.920 | 58 | 1134 | | 640 | 31.227 | 57 | 28.924 | 57 | 27.537 | 57 | 26.978 | 57 | 1152 | | 650 | 31.284 | | 28.981 | | 27.594 | | 27,035 | | 1170 | Table 2-5. ENTROPY OF AIR - Cont. | | | | 1 . | | 1 . | | 1 _ | | °R | |--------------|------------------|-------------------------|------------------|------------|------------------|------------|------------------|--------------------------|--------------| | °K | .01 | atm | .1 | atm | .4 | atm | .7 | atm | | | | | | | | 07.504 | | 27 025 | | 1170 | | 650 | 31.284 | 56 | 28.981 | 57 | 27.594 | 57 | 27.035 |
57 | 1188 | | 660 | 31.340 | 56 | 29.038 | 56 | 27.651 | 56 | 27.092 | 56 | 1206 | | 670 | 31.396 | 55 | 29.094 | 55 | 27.707 | 55 | 27.148 | 55 | 1224 | | 680 | 31.451 | 55 | 29.149 | 54 | 27.762 | 55 | 27.203
27.257 | 54
54 | 1242 | | 690 | 31.506 | 54 | 29.203 | 54 | 27.817 | 54 | | | | | 700 | 31.560
31.613 | 53
52 | 29.257
29.310 | 53
53 | 27.871
27.924 | 53
52 | 27.311
27.364 | 5 3
5 3 | 1260
1278 | | 710
720 | 31.665 | 52
52 | 29.363 | 52 | 27.976 | 52 | 27.417 | 52 | 1296 | | 730 | 31,717 | 51. | 29.415 | 51 | 28.028 | 51 | 27.469 | 51 | 1314 | | 740 | 31.768 | 51 | 29.466 | 51 | 28.079 | 51 | 27.520 | 51 | 1332 | | 750 | 31.819 | 50 | 29,517 | 50 | 28.130 | 50 | 27.571 | 50 | 1350 | | 760 | 31.869 | 50 | 29.567 | 50 | 28.180 | 50 | 27.621 | 50 | 1368 | | 770 | 31.919 | 49 | 29.617 | 49 | 28.230 | 49 | 27.671 | 49 | 1386 | | 780 | 31,968 | 49 | 29.666 | 48 | 28.279 | 49 | 27.720 | 49 | 1404 | | 790 | 32.017 | 48 | 29.714 | 48 | 28.328 | 48 | 27.769 | 48 | 1422 | | | | | | | 00.07/ | | 27.017 | 200 | 1440 | | 800 | 32.065 | 2 34 | 29.762 | 234 | 28.376 | 234 | 27.817 | 2 3 3 | 1530 | | 850 | 32.299 | 222 | 29.996 | 222 | 28.610 | 222 | 28.050 | 222 | 1620 | | 900 | 32.521 | 212 | 30.218 | 212 | 28.832 | 212 | 28,272
28,484 | 212
203 | 1710 | | 950
1000 | 32.733
32.936 | 203
1 9 5 | 30.430
30.633 | 203
195 | 29.044
29.247 | 203
195 | 28.687 | 195 | 1800 | | | - | • | | | 29,442 | 188 | 28.882 | 188 | 1890 | | 1050 | 33.131 | 187 | 30,828
31,016 | 188 | 29.630 | 181 | 29.070 | 181 | 1980 | | 1100 | 33.318 | 181 | 31.197 | 181
174 | 29.811 | 174 | 29.251 | 174 | 2070 | | 1150 | 33.499
33.674 | 175
168 | 31.371 | 168 | 29.985 | 168 | 29.425 | 168 | 2160 | | 1200
1250 | 33.842 | 163 | 31.539 | 163 | 30.153 | 163 | 29.593 | 163 | 2250 | | 1300 | 34.005 | 158 | 31,702 | 158 | 30.316 | 158 | 29.756 | 158 | 2340 | | 1350 | 34.163 | 153 | 31.860 | 153 | 30.474 | 153 | 29.914 | 153 | 2430 | | 1400 | 34.316 | 149 | 32.013 | 149 | 30,627 | 149 | 30.067 | 149 | 2520 | | 1450 | 34.465 | 145 | 32.162 | 145 | 30.776 | 145 | 30.216 | 145 | 2610 | | 1500 | 34.610 | 141 | 32.307 | 141 | 30.921 | 141 | 30.361 | 141 | 2700 | | 1550 | 34.751 | 138 | 32.448 | 138 | 31.062 | 138 | 30.502 | 138 | 2790 | | 1600 | 34.889 | 135 | 32.586 | 135 | 31.200 | 134 | 30.640 | 134 | 2880 | | 1650 | 35.024 | 133 | 32.721 | 132 | 31.334 | 131 | 30.774 | 131 | 2970 | | 1700 | 35.157 | 131 | 32.853 | 129 | 31.465 | 129 | 30.905 | 129 | 3060 | | 1750 | 35.288 | 129 | 32.982 | 127 | 31.594 | 126 | 31.034 | 126 | 3150 | | 1800 | 35.417 | 128 | 33,109 | 125 | 31.720 | 124 | 31.160 | 124 | 3240
3330 | | 1850 | 35.545 | 128 | 33.234 | 123 | 31.844 | 122 | 31.284 | 121 | 3420 | | 1900 | 35.673 | 129 | 33.357 | 122 | 31.966 | 120 | 31.405
31.524 | 119
117 | 3510 | | 1950
2000 | 35.802
35.934 | 132
136 | 33.479
33.600 | 121
121 | 32.086
32.204 | 118
117 | 31.641 | 116 | 3600 | | | | | | | 32,321 | 116 | 31,757 | 115 | 3690 | | 2050 | 36.070 | 142 | 33.721 | 121 | 32,437 | 116 | 31.872 | 114 | 3780 | | 2100 | 36.212 | 150 | 33.842
33.964 | 122 | 32.553 | 116 | 31.986 | 114 | 3870 | | 2150 | 36,362 | 159 | 34.088 | 124
126 | 32.669 | 116 | 32,100 | 113 | 3960 | | 2200
2250 | 36.521
36.690 | 169
180 | 34.214 | 130 | 32.785 | 117 | 32.213 | 114 | 4050 | | | | | 34,344 | 135 | 32,902 | 119 | 32.327 | 115 | 4140 | | 2300
2350 | 36.870 | | 34.479 | 140 | 33.021 | 121 | 32.442 | 116 | 4230 | | 2400 | | | 34.619 | 147 | 33.142 | 124 | 32.558 | 118 | 4320 | | 2400
2450 | | | 34.766 | 156 | 33.266 | 127 | 32,676 | 120 | 4410 | | 2500 | | | 34.922 | 164 | 33.393 | 131 | 32,796 | 123 | 4500 | | 2550 | | | 35,086 | 175 | 33,524 | 135 | 32,919 | 126 | 4590 | | 2600 | | | 35.261 | 187 | 33.659 | 140 | 33.045 | 129 | 4680 | | 2650 | | | 35.448 | 199 | 33.799 | 146 | 33.174 | 133 | 4770 | | 2700 | | | 35.647 | 213 | 33.945 | 151 | 33.307 | 1 3 7 | 4860 | | 2750 | | | 35.860 | 226 | 34.096 | 157 | 33.444 | 141 | 4950 | | 2800 | | | 36.086 | | 34.253 | | 33,585 | | 5040 | | *x | , | l atm | 4 | atm | 7 | atm | 10 | atm | *R | |------------|------------------|------------|------------------|-------------|------------------|------------|------------------|------------|--------------| | | | | | | | | | | | | 100 | 20.049 | 340 | | | | | | | 180 | | 110 | 20.389 | 309 | 18.903 | 334 | 18,255 | 355 | 17.786 | 386 | 198 | | 120
130 | 20.698
20.981 | 283 | 19.237 | 300 | 18.610 | 314 | 18.172 | 333 | 216 | | 140 | 21,243 | 262
243 | 19.537
19.810 | 273
252 | 18.924
19.206 | 282 | 18.505 | 296 | 234 | | | | - | 17.010 | 232 | 17.200 | 259 | 18.801 | 268 | 252 | | 150
160 | 21.486 | 227 | 20.062 | 233 | 19.465 | 239 | 19.069 | 245 | 270 | | 170 | 21.713
21.926 | 213
201 | 20.295
20.511 | 216 | 19.704 | 222 | 19.314 | 227 | 288 | | 180 | 22,127 | 190 | 20.715 | 204
193 | 19.926
20.134 | 208
195 | 19.541
19.753 | 212
199 | 306
324 | | 190 | 22.317 | 180 | 20.908 | 183 | 20.329 | 184 | 19.952 | 187 | 342 | | 200 | 22,497 | 171 | 21.091 | 1 | 20 512 | | | | | | 210 | 22.668 | 163 | 21.264 | 173
165 | 20.513
20.688 | 175
166 | 20.139
20.316 | 177 | 360
370 | | 220 | 22.831 | 155 | 21.429 | 157 | 20.854 | 158 | 20.484 | 168
160 | 378
396 | | 230 | | 149 | 21.586 | 151 | 21.012 | 151 | 20.644 | 153 | 414 | | 240 | 23.135 | 143 | 21,737 | 144 | 21.163 | 145 | 20.797 | 147 | 432 | | 250 | 23.278 | 138 | 21.881 | 138 | 21.308 | 140 | 20,944 | 140 | 450 | | 260 | 23.416 | 132 | 22.019 | 133 | 21.448 | 135 | 21.084 | 135 | 468 | | 270
280 | 23.548
23.675 | 127 | 22.152
22.281 | 129 | 21.583 | 130 | 21,219 | 129 | 486 | | 290 | 23.798 | 123
119 | 22.405 | 124
119 | 21.713
21.838 | 125
120 | 21.348
21.473 | 125 | 504 | | | | | | *** | 21.070 | 120 | 21.473 | 121 | 522 | | 300
310 | 23.917
24.032 | 115 | 22.524 | 115 | 21.958 | 116 | 21.594 | 116 | 540 | | 320 | 24,144 | 112
108 | 22.639
22.751 | 112
109 | 22.074
22.186 | 112 | 21.710
21.823 | 113 | 558 | | 330 | 24.252 | 105 | 22.860 | 105 | 22.295 | 109
105 | 21.932 | 109
106 | 576
594 | | 340 | 24.357 | 102 | 22.965 | 102 | 22.400 | 102 | 22.038 | 103 | 612 | | 350 | 24.459 | 99 | 23.067 | 99 | 22.502 | 100 | 22.141 | 200 | 420 | | 360 | 24.558 | 96 | 23.166 | 97 . | 22.602 | 97 | 22.241 | 100
97 | 630
648 | | 370 | 24.654 | 94 | 23.263 | 94 | 22.699 | 95 | 22.338 | 95 | 666 | | 380
390 | 24.748
24.840 | 92
89 | 23.357
23.449 | 92
90 | 22.794
22.886 | 92 | 22.433 | 93 | 684 | | | | ٠, | 23,447 | 70 | 22.000 | 90 | 22.526 | 90 | 702 | | 400
410 | 24.929 | 87 | 23.539 | 88 | 22.976 | 87 | 22.616 | 87 | 720 | | 420 | 25.016
25.101 | 85
84 | 23.627
23.712 | 85 | 23.063 | 86 | 22.703 | 86 | 738 | | 430 | 25.185 | 82 | 23.795 | 83
82 | 23.149
23.233 | 84
82 | 22.789
22.873 | 84
82 | 756
774 | | 440 | 25.267 | 80 | 23.877 | 80 | 23.315 | 80 | 22.955 | 81 | 792 | | 450 | 25.347 | | 23.957 | | 22 225 | | | | | | 460 | 25.424 | 17
17 | 24,035 | 78
77 | 23.395
23.473 | 78
77 | 23.036
23.114 | 78 | 810 | | 470 | 25.501 | 75 | 24.112 | 76 | 23.550 | 71
76 | 23.191 | 77
76 | 828
846 | | 480 | 25.576
25.650 | 74 | 24.188 | 74 | 23.626 | 74 | 23.267 | 74 | 864 | | 490 | 25.650 | 73 | 24.262 | 73 | 23.700 | 73 | 23.341 | 73 | 882 | | 500 | 25.723 | 71 | 24.335 | n | 23.773 | 71 | 23,414 | n | 900 | | 510 | 25.794 | 70 | 24.406 | 69 | 23.844 | 70 | 23.485 | 70 - | 918 | | 520
530 | 25.864
25.933 | 69
67 | 24.475
24.544 | 69 | 23.914 | 68 | 23.555 | 69 | 936 | | 540 | 26.000 | 67 | 24.612 | 68
67 | 23.982
24.050 | 68
67 | 23.624
23.692 | 68
47 | 954
972 | | 550 | 0/ 0/- | | | | | • | 23.072 | 67 | 712 | | 550
560 | 26.067
26.132 | 65
64 | 24.679
24.744 | 65 | 24.117 | 66 | 23.759 | 66 | 990 | | 570 | 26.196 | 63 | 24.808 | 64
63 | 24.183
24.247 | 64
63 | 23.825
23.889 | 64 | 1008
1026 | | 580 | 26.259 | 62 | 24.871 | 62 | 24.310 | 62 | 23.952 | 63
63 | 1026 | | 590 | 26.321 | 62 | 24.933 | 62 | 24.372 | 62 | 24.015 | 62 | 1062 | | 600 | 26,383 | 61 | 24.995 | 61 | 24.434 | 61 | 24.077 | ស | 1080 | | 610 | 26.444 | 60 | 25.056 | 60 | 24.495 | 60 | 24.138 | €0
€T | 1098 | | 620
630 | 26.504
26.563 | 59
50 | 25.116 | 59 | 24.555 | 59 | 24.198 | 59 | 1116 | | 640 | 26.621 | 58
57 | 25.175
25.233 | 58
57 | 24.614
24.672 | 58
58 | 24.257
24.315 | 58 | 1134 | | | | <i>3</i> , | | ٠, | | 26 | 24.313 | 57 | 1152 | | 650 | 26.678 | | 25.290 | | 24.730 | | 24.372 | | 1170 | | | | | | | | | | | | | *K | | l atm | 4 | atm | 7 | atm | 10 | atm | •̂R | |--------------|------------------|---------------|------------------|------------|------------------|------------|------------------|------------------------|--------------| | | | | | | | | | | | | 650 | 26.678 | 57 | 25,290 | 57 | 24.730 | 57 | 24.372 | 57 | 1170 | | 660 | 26.735 | 56 | 25.347 | 56 | 24.787 | 56 | 24.429 | 56 | 1188 | | 670
680 | 26.791 | 55 | 25.403 | 55 | 24.843 | 55 | 24.485 | 55 | 1206 | | 690 | 26.846
26.900 | 54
54 | 25.458
25.513 | 55
54 | 24.898
24.952 | 54
54 | 24.540
24.595 | 55 | 1224 | | | 20.700 | > 4 | 23.313 | 54 | 24.732 | 54 | 24,070 | 54 | 1242 | | 700
710 | 26.954
27.007 | 53 | 25.567
25.620 | 53 | 25.006 | 53 | 24.649 | 53 | 1260 | | 720 | 27.060 | 53
52 | 25.673 | 53
52 | 25.059
25.112 | 53
52 | 24.702
24.755 | 53
52 | 1278
1296 | | 730 | 27.112 | 51 | 25.725 | 51 | 25.164 | 51 | 24.807 | 51 | 1314 | | 740 | 27.163 | 51 | 25.776 | 51 | 25.215 | 51 | 24.858 | 51 | 1332 | | 750 | 27.214 | 50 | 25.827 | 50 | 25.266 | 50 | 24,909 | 50 | 1350 | | 760 | 27.264 | 50 | 25.877 | 50 | 25.316 | 50 | 24.959 | 50 | 1368 | | 770
780 | 27.314 | 49 | 25.927 | 49
 25.366 | 49 | 25,009 | 49 | 1386 | | 780
790 | 27.363
27.412 | 49
48 | 25.976
26.025 | 49 | 25.415 | 49 | 25.058 | 49 | 1404 | | 170 | 21.412 | 40 | 20.025 | 48 | 25.464 | 48 | 25.107 | 48 | 1422 | | 800 | 27.460 | 233 | 26,073 | 233 | 25.512 | 234 | 25.155 | 222 | 1440 | | 850 | 27.693 | 222 | 26.306 | 222 | 25.746 | 222 | 25.388 | 233
222 | 1530 | | 900 | 27.915 | 212 | 26.528 | 213 | 25.968 | 213 | 25.610 | 212 | 1620 | | 950 | 28.127 | 203 | 26.741 | 203 | 26.181 | 203 | 25.822 | 203 | 1710 | | 1000 | 28.330 | 195 | 26.944 | 195 | 26.384 | 195 | 26.025 | 196 | 1800 | | 1050 | 28.525 | 188 | 27.1,39 | 188 | 26.579 | 188 | 26.221 | 187 | 1890 | | 1100 | 28.713 | 181 | 27.327 | 181 | 26.767 | 180 | 26.408 | 180 | 1980 | | 1150
1200 | 28.894
29.068 | | 27.508
27.682 | 174 | 26.947
27.122 | 175 | 26.588 | 175 | 2070 | | 1250 | 29.236 | | 27.850 | 168
163 | 27.290 | 168
163 | 26.763
26.931 | 168
162 | 2160
2250 | | 1300 | 29.399 | 158 | 28.013 | 158 | 27.453 | 158 | 27.093 | 158 | 2340 | | 1350 | 29.557 | | 28,171 | 153 | 27.611 | 153 | 27.251 | 153 | 2430 | | 1400 | 29.711 | 149 | 28,324 | 149 | 27:764 | 1.49 | 27.404 | 149 | 2520 | | 1450 | 29.860 | | 28.473 | 145 | 27.913 | 145 | 27.553 | 145 | 2610 | | 1500 | 30.005 | 141 | 28.618 | .141 | 28.058 | 141 | 27.698 | 141 | 2700 | | 1550 | 30.146 | 138 | 28.759 | 138 | 28.199 | 138 | 27.839 | 138 | 2790 | | 1600 | 30.284 | | 28.897 | 134 | 28.337 | 134 | 27.977 | 134 | 2880 | | 1650 | 30.418 | | 29.031 | 131 | 28.471 | 131 | 28.111 | 131 | 2970 | | 1700
1750 | 30.549
30.678 | | 29.162
29.290 | 128
126 | 28.602
28.730 | 128
126 | 28.242
28.370 | 128
126 | 3060
3150 | | | | | | 120 | | 120 | | 120 | | | 1800 | 30.804 | | 29.416 | 123 | 28.856 | 123 | 28.496 | 123 | 3240 | | 1850
1900 | 30.927
31.048 | | 29.539 | 121 | 28.979 | 121 | 28.619 | 121 | 3330 | | 1950 | 31.167 | | 29.660
29.779 | 119
117 | 29.100
29.219 | 119
116 | 28.740
28.858 | 118
116 | 3420
3510 | | 2000 | 31.284 | | 29.896 | 115 | 29.335 | 115 | 28.974 | 114 | 3600 | | 2050 | 31,400 | 114 | 30,011 | 113 | 29.450 | 113 | 29.088 | 113 | 3690 | | 2100 | 31.514 | | 30.124 | 112 | 29.563 | 111 | 29.201 | 111 | 3780 | | 2150 | 31.627 | | 30.236 | 110 | 29.674 | 110 | 29.312 | 109 | 3870 | | 2200 | 31.740 | | 30.346 | 109 | 29.784 | 108 | 29.421 | 108 | 3960 | | 2250 | 31.852 | 112 | 30.455 | 108 | 29.892 | 107 | 29.529 | 107 | 4050 | | 2300 | 31.964 | | 30.563 | 108 | 29.999 | 107 | 29.636 | 106 | 4140 | | 2350
2400 | 32.077
32.191 | | 30.671
30.779 | 107 | 30.106 | | 29.742 | 105 | 4230 | | 2450 | 32,306 | | 30.778
30.885 | 107
107 | 30.212
30.317 | | 29.847
29.951 | 104
104 | 4320
4410 | | 2500 | 32.423 | | 30.992 | 108 | 30.422 | | 30.055 | 104 | 4500 | | 2550 | 32,542 | 121 | 31.100 | 108 | 30.527 | 105 | 30,159 | 104 | 4590 | | 2600 | 32.663 | | 31,208 | 109 | 30.632 | | 30.263 | 104 | 4680 | | 2650 | 32.788 | 129 | 31.317 | 111 | 30.738 | | 30.367 | 104 | 4770 | | 2700 | 32.917 | | 31.428 | 112 | 30.844 | 107 | 30.471 | 105 | 4860 | | 2750 | 33.050 | 138 | 31.540 | 114 | 30.951 | 108 | 30.576 | 105 | 4950 | | 2800 | 33.188 | | 31.654 | 116 | 31.059 | | 30.681 | 106 | 5040 | | 2850 | 33.331 | | 31.770 | 119 | 31.168 | | 30.787 | 108 | 5130 | | 2900
2950 | 33.481
33.637 | | 31.889
32.011 | 122
125 | 31.279
31.392 | | 30.895
31.004 | 10 9
110 | 5220
5310 | | 3000 | 33.799 | | 32.136 | **** | 31.507 | | 31.114 | 110 | 5400 | | - | | | | | | | | | | | | T | 1 | <u> </u> | | | |----|--------|--------|----------|---------|----| | °K | IO atm | 40 atm | 70 atm | 100 atm | °₽ | | 150 | 19.069 | 245 | | | | | | | 070 | |-----|---------|-----|--------|-----|--------|----------|--------|----------|-------------| | 160 | 19.314 | 227 | 17.475 | 355 | | | | | 270 | | 170 | 19,541 | 212 | 17.830 | 253 | | | | | 288 | | 180 | 19.753 | 199 | 18.083 | 246 | 17.164 | 328 | 16,441 | 400 | 306 | | 190 | 19.952 | 187 | 18.329 | 222 | 17.492 | 275 | 16.861 | 420 | 324
342 | | | | 20, | 20,527 | *** | 11.772 | 213 | 10,001 | 323 | 342 | | 200 | 20.139 | 177 | 18.551 | 204 | 17.767 | 242 | 17.184 | 207 | 360 | | 210 | 20.316 | 168 | 18.755 | 191 | 18.009 | 218 | 17.471 | 287 | 378 | | 220 | 20.484 | 160 | 18,946 | 177 | 18,227 | 199 | 17.718 | 247 | | | 230 | 20.644 | 153 | 19,123 | 167 | 18.426 | 184 | 17.938 | 220 | 396 | | 240 | 20,797 | 147 | 19.290 | 159 | 18.610 | 172 | 18.138 | 200 | 414 | | | | | -//0 | 207 | 10.010 | 1/2 | 10.170 | 186 | 432 | | 250 | 20,944 | 140 | 19,449 | 151 | 18,782 | 163 | 18.324 | | 450 | | 260 | 21.084 | 135 | 19.600 | 143 | 18.945 | 153 | 18.496 | 172 | | | 270 | 21.219 | 129 | 19.743 | 137 | 19.098 | | 18.658 | 162 | 468 | | 280 | 21.348 | 125 | 19.880 | 133 | 19.242 | 144 | | 154 | 486 | | 290 | 21.473 | 121 | 20.013 | 125 | 19.382 | 140 | 18.812 | 148 | 504 | | -,, | 22.115 | 121 | 20.015 | 125 | 17.302 | 131 | 18.960 | 135 | 5 22 | | 300 | 21.594 | 116 | 20.138 | 123 | 19.513 | 128 | 19.095 | 100 | 540 | | 310 | 21.710 | 113 | 20.261 | 118 | 19.641 | 123 | 19,228 | 133 | | | 320 | 21.823 | 109 | 20.379 | 113 | 19.764 | 118 | | 128 | 558 | | 330 | 21.932 | 106 | 20.492 | 110 | 19.882 | | 19.356 | 122 | 576 | | 340 | 22.038 | 103 | 20.602 | 105 | 19.994 | 112 | 19.478 | 115 | 594 | | 710 | £2.000 | 105 | 20.002 | 105 | 17,774 | 108 | 19.593 | 111 | 612 | | 350 | 22.141 | 100 | 20.707 | 103 | 20.102 | 107 | 19.704 | 100 | 420 | | 360 | 22.241 | 97 | 20.810 | 101 | 20.209 | 107 | 19.813 | 109 | 630 | | 370 | 22.338 | 95 | 20.911 | 97 | 20.312 | 100 | | 105 | 648 | | 380 | 22.433 | 93 | 21.008 | 95 | 20.412 | | 19.918 | 103 | 666 | | 390 | 22.526 | 90 | 21.103 | 91 | 20.508 | 96 | 20.021 | 98 | 684 | | 2.0 | | 70 | 21.105 | 71 | 20.500 | 94 | 20.119 | 95 | 702 | | 400 | 22.616 | 87 | 21.194 | 90 | 20.602 | 92 | 20,214 | 94 | 720 | | 410 | 22.703 | 86 | 21.284 | 88 | 20.694 | 72
89 | 20.308 | | | | 420 | 22.789 | 84 | 21.372 | 86 | 20.783 | 87
87 | 20.399 | 91 | 738 | | 430 | 22.873 | 82 | 21.458 | 83 | 20.870 | | 20.487 | 86 | 756 | | 440 | 22.955 | an. | 21.541 | 82 | 20.955 | 85 | | 87 | 774 | | | 22.755 | 94 | #1.74I | 62 | 20.755 | 83 | 20.574 | 84 | 792 | | 450 | 23.036 | 78 | 21.623 | 80 | 21.038 | 81 | 20.658 | | 810 | | 460 | 23.114 | 77 | 21.703 | 78 | 21.119 | 80
er | 20.742 | 84 | | | 470 | 23.191 | 76 | 21.781 | 76 | 21.199 | 78 | 20.742 | 81. | 828
846 | | 480 | 23,267 | 74 | 21.857 | 75 | 21.277 | 76 | 20.902 | 79 | | | 490 | 23.341 | 73 | 21.932 | 74 | 21.353 | 76
75 | 20.980 | 78 | 864
882 | | | | ., | L1.77L | /- | 21.777 | 15 | 20.700 | 76 | 002 | | 500 | 23.414 | 71 | 22.006 | 73 | 21.428 | 73 | 21.056 | 74 | 900 | | 510 | 23,485 | 70 | 22.079 | 71 | 21.501 | 72 | 21,130 | 72 | 918 | | 520 | 23.555 | н | 22,150 | 70 | 21.573 | 70 | 21.202 | 72
70 | 936 | | 530 | 23.624 | 68 | 22.220 | 69 | 21.643 | 69 | 21.272 | 70
69 | 954 | | 540 | 23.692 | 67 | 22,289 | 67 | 21.712 | 68 | 21.341 | 68 | 972 | | | | | | ٠. | | | 21.771 | 90 | 712 | | 550 | 23.759 | 66 | 22.356 | 66 | 21.780 | 67 | 21.409 | 67 | 990 | | 560 | 23.825 | 64 | 22,422 | 65 | 21.847 | 66 | 21.476 | 66 | 1008 | | 570 | 23.889 | 63 | 22.487 | 64 | 21.913 | 65 | 21.542 | 66 | 1026 | | 580 | 23.952 | 63 | 22.551 | 63 | 21.978 | 64 | 21.608 | 65 | 1044 | | 590 | 24.015 | 62 | 22,614 | 63 | 22.042 | 62 | 21.673 | 63 | 1062 | | | | | | - | | _ | 21.075 | 65 | 1002 | | 600 | 24.077 | 61 | 22.677 | 61 | 22,104 | 62 | 21.736 | 62 | 1080 | | 610 | 24.138 | 60 | 22,738 | 60 | 22.166 | 61 | 21.798 | 61 | 1098 | | 620 | 24.198 | 59 | 22.798 | 60 | 22.227 | 60 | 21.859 | 60 | 1116 | | 630 | 24.257 | 58 | 22.858 | 59 | 22.287 | 59 | 21.919 | 60 | 1134 | | 640 | 24.315 | 57 | 22.917 | 58 | 22.346 | 58 | 21,979 | 59 | 1152 | | | | | | | | | | | | | 650 | 24.372 | 57 | 22.975 | 57 | 22.404 | 58 | 22.038 | 58 | 1170 | | 660 | 24.429 | 56 | 23.032 | 56 | 22.462 | 57 | 22.096 | 57 | 1188 | | 670 | 24.485 | 55 | 23.088 | 56 | 22.519 | 56 | 22.153 | 56 | 1206 | | 680 | 24.540 | 55 | 23.144 | 55 | 22.575 | 55 | 22.209 | 56 | 1224 | | 690 | 24.595 | 54 | 23.199 | 54 | 22.630 | 55 | 22.265 | 55 | 1242 | | 700 | 24 / 42 | | | | | | | | | | 700 | 24.649 | | 23.253 | | 22.685 | | 22.320 | | 1260 | | | | | | | | | ** | | | | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | •̂R | |-------------|------------------|----------|------------------|----------|------------------|----------|------------------|----------|--------------| | | | | 22.252 | | 22 / 25 | | 22 220 | | 1260 | | 700 | 24.649 | 53 | 23.253 | 54 | 22.685 | 54 | 22.320 | 54 | 1278 | | 710 | 24.702 | 53 | 23.307 | 53 | 22.739
22.792 | 53 | 22.374
22.427 | 53 | 1296 | | 720 | 24.755 | 52 | 23.360
23.412 | 52
53 | 22.792 | 52
52 | 22.427 | 53
52 | 1314 | | 730
740 | 24.807
24.858 | 51
51 | 23.464 | 52
51 | 22.896 | 52
51 | 22.532 | 52
52 | 1332 | | | 24 000 | | 22 515 | | 22.947 | E3. | 22,584 | 51 | 1350 | | 750
760 | 24.909 | 50 | 23.515
23.566 | 51
50 | 22.998 | 51
50 | 22.635 | 50 | 1368 | | 760
770 | 24.959
25.009 | 50
49 | 23.616 | 50
49 | 23.048 | 50 | 22.685 | 50 | 1386 | | 780 | 25.058 | 49 | 23.665 | 49 | 23.098 | 49 | 22.735 | 49 | 1404 | | 790 | 25.107 | 48 | 23.714 | 48 | 23.147 | 49 | 22.784 | 49 | 1422 | | | , | | | | | | | | | | 800 | 25.155 | 233 | 23.762 | 234 | 23.196 | 236 | 22.833 | 236 | 1440 | | 850 | 25.388 | 222 | 23.996 | 223 | 23.432 | 223 | 23.069 | 224 | 1530 | | 900 | 25.610 | 212 | 24.219 | 212 | 23.655 | 212 | 23,293 | 212 | 1620 | | 950 | 25.822 | 203 | 24.431 | 203 | 23.867 | 204 | 23.505 | 204 | 1710 | | 1000 | 26.025 | 196 | 24.634 | 196 | 24.071 | 196 | 23.709 | 196 | 1800 | | 1050 | 26.221 | 187 | 24.830 | 188 | 24.267 | 187 | 23.905 | 188 | 1890 | | 1100 | 26.408 | 180 | 25.018 | 180 | 24.454 | 181 | 24.093 | 181 | 1980 | | 1150 | 26.588 | 175 | 25.198 | 175 | 24.635 | 174 | 24.274 | 174 |
2070 | | 1200 | 26.763 | 168 | 25.373 | 167 | 24.809 | 167 | 24.448 | 167 | 2160 | | 1250 | 26,931 | 162 | 25.540 | 162 | 24.976 | 162 | 24.615 | 162 | 2250 | | 1300 | 27,093 | 158 | 25.702 | 158 | 25.138 | 158 | 24.777 | 158 | 2340 | | 1350 | 27.251 | 153 | 25.860 | 153 | 25.296 | 152 | 24.935 | 152 | 2430 | | 1400 | 27.404 | 149 | 26.013 | 149 | 25.448 | 149 | 25.087 | 149 | 2520 | | 1450 | 27.553 | 145 | 26.162 | 144 | 25.597 | 144 | 25.236 | 144 | 2610 | | 1500 | 27.698 | 141 | 26.306 | 141 | 25.741 | 141 | 25.380 | 141 | 2700 | | 1550 | 27.839 | 138 | 26.447 | 138 | 25.882 | 138 | 25.521 | 1.38 | 2790 | | 1600 | 27.977 | 134 | 26,585 | 134 | 26,020 | 135 | 25.659 | 135 | 2880 | | 1650 | 28.111 | 131 | 26,719 | 131 | 26.155 | 132 | 25.794 | 132 | 2970 | | 1700 | 28.242 | 128 | 26.850 | 128 | 26.287 | 129 | 25.926 | 129 | 3060 | | 1750 | 28.370 | 126 | 26.978 | 126 | 26.416 | 126 | 26.055 | 126 | 3150 | | 1800 | 28.496 | 123 | 27.104 | 123 | 26.542 | 123 | 26.181 | 123 | 3240 | | 1850 | 28.619 | 121 | 27.227 | 121 | 26.665 | 120 | 26.304 | 120 | 3330 | | 1900 | 28.740 | 118 | 27.348 | 118 | 26.785 | 118 | 26.424 | 118 | 3420 | | 1950 | 28.858 | 116 | 27.466 | 116 | 26.903 | 116 | 26.542 | 116 | 3510 | | 2000 | 28.974 | 114 | 27.582 | 114 | 27.019 | 114 | 26.658 | 114 | 3600 | | 2050 | 29.088 | 113 | 27.696 | 112 | 27.133 | 112 | 26.772 | 112 | 3690 | | 2100 | 29.201 | 111 | 27.808 | 110 | 27.245 | 110 | 26.884 | 110 | 3780 | | 2150 | 29.312 | 109 | 27.918 | 109 | 27.355 | 108 | 26.994 | 108 | 3870 | | 2200 | 29.421 | 108 | 28.027 | 107 | 27.463 | 107 | 27.102 | 107 | 3960 | | 2250 | 29.529 | 107 | 28.134 | 106 | 27.570 | 106 | 27.209 | 105 | 4050 | | 2300 | 29.636 | 106 | 28.240 | 104 | 27.676 | 104 | 27.314 | 104 | 4140 | | 2350 | 29,742 | 105 | 28.344 | 103 | 27.780 | 103 | 27.418 | 102 | 4230 | | 2400 | 29.847 | 104 | 28.447 | 102 | 27.883 | 101 | 27.520 | 101 | 4320 | | 2450 | 29.951 | 104 | 28.549 | 101 | 27.984 | 100 | 27.621 | 100 | 4410 | | 2500 | 30.055 | 104 | 28.650 | 100 | 28.084 | 99 | 27.721 | 99 | 4500 | | 2550 | 30.159 | 104 | 28.750 | 99 | 28.183 | 98 | 27.820 | 98 | 4590 | | 2600 | 30.263 | 104 | 28.849 | 99 | 28.281 | 98 | 27.918 | 97 | 4680 | | 2650 | 30.367 | 104 | 28.948 | 98 | 28.379 | 97 | 28.015 | 96 | 4770 | | 2700 | 30.471 | 105 | 29.046 | 98 | 28.476 | 97 | 28.111 | 96 | 4860 | | 2750 | 30.576 | 105 | 29.144 | 98 | 28.573 | 96 | 28,207 | 95 | 4950 | | 2800 | 30.681 | 106 | 29.242 | 98 | 28.669 | 196 | 28.302 | 95 | 5040 | | 2850 | 30.787 | 108 | 29.340 | 98 | 28.765 | 96 | 28.397 | 94 | 5130 | | 2900 | 30.895 | 109 | 29.438 | 98 | 28.861 | 96 | 28.491 | 94 | 5220 | | 2950 | 31.004 | 110 | 29.536 | 98 | 28.957 | 95 | 28.585 | 93 | 5310
5400 | | 3000 | 31.114 | | 29.634 | | 29.052 | | 28.678 | | 2400 | | *K | .01 | atm | .1 | atm | .4 | atm | .7 | atm | °R | |---------------------------------|--|----------------------------------|--|---------------------------------|--|---------------------------------|--|---------------------------------|---------------------------------| | 50
60
70
80
90 | 1.4048
1.4031
1.4023
1.4019
1.4017 | - 17
- 8
- 4
- 2
- 1 | 1,4046 | - 8 | 1.4139 | - 31 | 1.4237 | - 55 | 90
108
126
144
162 | | 100 | 1.4016 | - 1 | 1.4038 | - 6 | 1.4108 | - 21 | 1.4182 | - 38 | 180 | | 110 | 1.4015 | | 1.4032 | - 3 | 1.4087 | - 14 | 1.4144 | - 25 | 198 | | 120 | 1.4015 | | 1.4029 | - 3 | 1.4073 | - 10 | 1.4119 | - 18 | 216 | | 130 | 1.4015 | | 1.4026 | - 2 | 1.4063 | - 8 | 1.4101 | - 14 | 234 | | 140 | 1.4015 | | 1.4024 | - 2 | 1.4055 | - 6 | 1.4087 | - 11 | 252 | | 150 | 1.4014 | - 1 | 1.4022 | - 1 | 1.4049 | - 5 | 1.4076 | - 9 | 270 | | 160 | 1.4014 | | 1.4021 | - 1 | 1.4044 | - 4 | 1.4067 | - 7 | 288 | | 170 | 1.4014 | | 1.4020 | - 1 | 1.4040 | - 4 | 1.4060 | - 6 | 306 | | 180 | 1.4014 | | 1.4019 | - 1 | 1.4036 | - 3 | 1.4054 | - 6 | 324 | | 190 | 1.4013 | | 1.4018 | - 1 | 1.4033 | - 3 | 1.4048 | - 5 | 342 | | 200
210
220
230
240 | 1.4013
1.4013
1.4012
1.4011
1.4011 | - 1
- 1
- 2 | 1.4017
1.4016
1.4015
1.4014
1.4013 | - 1
- 1
- 1
- 1
- 2 | 1.4030
1.4028
1.4026
1.4024
1.4022 | - 2
- 2
- 2
- 2
- 2 | 1.4043
1.4040
1.4037
1.4034
1.4031 | - 3
- 3
- 3
- 3
- 3 | 360
378
396
414
432 | | 250 | 1.4009 | - 1 | 1.4011 | - 1 | 1.4020 | - 3 | 1.4028 | - 4 | 450 | | 260 | 1.4008 | - 2 | 1.4010 | - 2 | 1.4017 | - 3 | 1.4024 | - 2 | 468 | | 270 | 1.4006 | - 2 | 1.4008 | - 2 | 1.4014 | - 2 | 1.4022 | - 4 | 486 | | 280 | 1.4004 | - 2 | 1.4006 | - 2 | 1.4012 | - 3 | 1.4018 | - 3 | 504 | | 290 | 1.4002 | - 2 | 1.4004 | - 3 | 1.4009 | - 3 | 1.4015 | - 3 | 522 | | 300 | 1.4000 | - 3 | 1.4001 | - 3 | 1.4006 | - 3 | 1.4012 | - 4 | 540 | | 310 | 1.3997 | - 4 | 1.3998 | - 3 | 1.4003 | - 3 | 1.4008 | - 4 | 558 | | 320 | 1.3993 | - 3 | 1.3995 | - 4 | 1.4000 | - 5 | 1.4004 | - 5 | 576 | | 330 | 1.3990 | - 4 | 1.3991 | - 4 | 1.3995 | - 5 | 1.3999 | - 5 | 594 | | 340 | 1.3986 | - 5 | 1.3987 | - 5 | 1.3990 | - 5 | 1.3994 | - 5 | 612 | | 350
360
370
380
390 | 1.3981
1.3976
1.3970
1.3964
1.3958 | - 5
- 6
- 6
- 6 | 1.3982
1.3977
1.3972
1.3966
1.3960 | - 5
- 5
- 6
- 6
- 7 | 1.3985
1.3980
1.3975
1.3969
1.3962 | - 5
- 5
- 6
- 7 | 1.3989
1.3984
1.3978
1.3972
1.3965 | - 5
- 6
- 6
- 7
- 7 | 630
648
666
684
702 | | 400 | 1.3952 | - 7 | 1.3953 | - 7 | 1.3956 | - 8 | 1.3958 | - 7 | 720 | | 410 | 1.3945 | - 8 | 1.3946 | - 8 | 1.3948 | - 7 | 1.3951 | - 8 | 738 | | 420 | 1.3937 | - 7 | 1.3938 | - 7 | 1.3941 | - 8 | 1.3943 | - 8 | 756 | | 430 | 1.3930 | - 8 | 1.3931 | - 8 | 1.3933 | - 8 | 1.3935 | - 8 | 774 | | 440 | 1.3922 | - 9 | 1.3923 | - 9 | 1.3925 | - 9 | 1.3927 | - 9 | 792 | | 450 | 1.3913 | - 9 | 1.3914 | - 9 | 1.3916 | - 9 | 1.3918 | - 9 | 810 | | 460 | 1.3904 | - 9 | 1.3905 | - 9 | 1.3907 | - 9 | 1.3909 | - 9 | 828 | | 470 | 1.3895 | - 9 | 1.3896 | - 9 | 1.3898 | - 11 | 1.3900 | - 10 | 846 | | 480 | 1.3886 | - 10 | 1.3887 | - 10 | 1.3887 | - 9 | 1.3890 | - 10 | 864 | | 490 | 1.3876 | - 10 | 1.3877 | - 10 | 1.3878 | - 10 | 1.3880 | - 10 | 882 | | 500 | 1,3866 | - 10 | 1.3867 | - 10 | 1.3868 | - 10 | 1.3870 | - 11 | 900 | | 510 | 1,3856 | - 10 | 1.3857 | - 11 | 1.3858 | - 11 | 1.3859 | - 10 | 918 | | 520 | 1,3846 | - 11 | 1.3846 | - 10 | 1.3847 | - 10 | 1.3849 | - 11 | 936 | | 530 | 1,3835 | - 11 | 1.3836 | - 11 | 1.3837 | - 11 | 1.3838 | - 10 | 954 | | 540 | 1,3824 | - 11 | 1.3825 | - 11 | 1.3826 | - 11 | 1.3828 | - 11 | 972 | | 550 | 1.3813 | - 11 | 1.3814 | - 11 | 1.3815 | 11 | 1.3817 | - 12 | 990 | | 560 | 1.3802 | - 11 | 1.3803 | - 11 | 1.3804 | 11 | 1.3805 | - 11 | 1008 | | 570 | 1.3791 | - 11 | 1.3792 | - 12 | 1.3793 | 12 | 1.3794 | - 12 | 1026 | | 580 | 1.3780 | - 11 | 1.3780 | - 11 | 1.3781 | 11 | 1.3782 | - 11 | 1044 | | 590 | 1.3769 | - 12 | 1.3769 | - 11 | 1.3770 | 12 | 1.3771 | - 12 | 1062 | | 600 | 1.3757 | - 11 | 1.3758 | - 12 | 1.3758 | - 11 | 1.3759 | - 11 | 1080 | | 610 | 1.3746 | - 12 | 1.3746 | - 11 | 1.3747 | - 12 | 1.3748 | - 11 | 1098 | | 620 | 1.3734 | - 11 | 1.3735 | - 12 | 1.3735 | - 11 | 1.3737 | - 12 | 1116 | | 630 | 1.3723 | - 11 | 1.3723 | - 11 | 1.3724 | - 11 | 1.3725 | - 11 | 1134 | | 640 | 1.3712 | - 12 | 1.3712 | - 12 | 1.3713 | - 12 | 1.3714 | - 12 | 1152 | | 650 | 1.3700 | | 1.3700 | | 1.3701 | | 1.3702 | | 1170 | Table 2-6. SPECIFIC-HEAT RATIO OF AIR - Cont. | °K | .01 | atm | ١ | atm | .4 | atm | .7 | atm | °R | |--------------------------------------|--|--------------------------------------|--|---------------------------------|--|---------------------------------|--|---------------------------------|--------------------------------------| | 650 | 1.3700 | - 11 | 1.3700 | - 11 | 1.3701 | - 11 | 1.3702 | - 12 | 1170 | | 660 | 1.3689 | - 12 | 1.3689 | - 12 | 1.3690 | - 12 | 1.3690 | - 11 | 1188 | | 670 | 1.3677 | - 11 | 1.3677 | - 11 | 1.3678 | - 12 | 1.3679 | - 11 | 1206 | | 680 | 1.3666 | - 11 | 1.3666 | - 11 | 1.3666 | - 11 | 1.3668 | - 12 | 1224 | | 690 | 1.3655 | - 12 | 1.3655 | - 11 | 1.3655 | - 11 | 1.3656 | - 11 | 1242 | | 700
710
720
730
740 | 1.3643
1.3632
1.3621
1.3610
1.3599 | - 11
- 11
- 11
- 11
- 10 | 1.3644
1.3633
1.3622
1.3611
1.3600 | - 11
- 11
- 11
- 11 | 1.3644
1.3633
1.3622
1.3611
1.3600 | - 11
- 11
- 11
- 11 | 1.3645
1.3634
1.3623
1.3612
1.3601 | - 11
- 11
- 11
- 11 | 1260
1278
1296
1314
1332 | | 750 | 1.3589 | - 11 | 1.3589 | - 10 | 1.3589 | - 10 | 1.3590 | - 10 | 1350 | | 760 | 1.3578 | - 10 | 1.3579 | - 11 | 1.3579 | - 11 | 1.3580 | - 11 | 1368 | | 770 | 1.3568 | - 11 | 1.3568 | - 10 | 1.3568 | - 11 | 1.3569 | - 11 | 1386 | | 780 | 1.3557 | - 10 | 1.3558 | - 11 | 1.3557 | - 9 | 1.3558 | - 10 | 1404 | | 790 | 1.3547 | - 1 | 1.3547 | - 1 | 1.3548 | - 1 | 1.3548 | - 1 | 1422 | | 800 | 1.354 | - 5 | 1.354 | - 5 | 1.354 | - 5 | 1.354 | - 5 | 1440 | | 850 | 1.349 | - 5 | 1.349 | - 5 | 1.349 | - 5 | 1.349 | - 5 | 1530 | | 900 | 1.344 | - 4 | 1.344 | - 4 | 1.344 | - 4 | 1.344 | - 4 | 1620 | | 950 | 1.340 | - 4 | 1.340 | - 4 | 1.340 | - 4 | 1.340 | - 4 | 1710 | | 1000 | 1.336 | - 7 | 1.336 | - 7 | 1.336 | - 7 | 1.336 | - 7 | 1800 | | 1100 | 1.329 | - 7 | 1.329 | - 7 | 1.329 | - 7 | 1.329 | - 7 | 1980 | | 1200 | 1.322 | - 6 | 1.322 | - 6 | 1.322 | - 6 | 1.322 | - 6 | 2160 | | 1300 | 1.316 | - 6 | 1.316 | - 6 | 1.316 | - 6 | 1.316 | - 6 | 2340 | | 1400 | 1.310 | - 6 | 1.310 | - 6 | 1.310 | - 6 | 1.310 | - 6 |
2520 | | 1500 | 1.304 | - 6 | 1.304 | - 5 | 1.304 | - 5 | 1.304 | - 5 | 2700 | | 1600 | 1.298 | - 8 | 1.299 | - 7 | 1.299 | - 6 | 1.299 | - 6 | 2880 | | 1700 | 1.290 | -10 | 1.292 | - 6 | 1.293 | - 6 | 1.293 | - 5 | 3060 | | 1800 | 1.280 | -14 | 1.286 | - 9 | 1.287 | - 6 | 1.288 | - 7 | 3240 | | 1900 | 1.266 | -23 | 1.277 | -11 | 1.281 | - 9 | 1.281 | - 8 | 3420 | | 2000 | 1.243 | -20 | 1.266 | -12 | 1.272 | - 9 | 1.273 | - 8 | 3600 | | 2100
2200
2300
2400
2500 | 1.223 | | 1.254
1.239
1.222
1.206
1.190 | -15
-17
-16
-16
-12 | 1.263
1.253
1.243
1.229
1.214 | -10
-10
-14
-15
-13 | 1.265
1.256
1.248
1.235
1.223 | - 9
- 8
-13
-12
-12 | 3780
3960
4140
4320
4500 | | 2600
2700
2800
2900
3000 | | | 1.178
1.171
1.168
1.169
1.173 | - 7
- 3
1
4 | 1.201
1.191
1.184
1.179
1.178 | -10
- 7
- 5
- 1 | 1.211
1.200
1.191
1.185
1.181 | -11
- 9
- 6
- 4 | 4680
4860
5040
5220
5400 | | *K |] . | | 4 | atm | 7 | atm | 10 | atm | *R | |--------------|------------------|--------------|------------------|--------------|------------------|--------------|------------------|----------------|--------------| | | <u> </u> | atm | | | | uiiii | 1 10 | | | | | | | | | 1 (005 | | | | 100 | | 110 | 1.4202 | - 36 | 1.4960 | -230 | 1.6035 | -522 | 1.7672 | -1277 | 198 | | 120
130 | 1.4166 | - 27 | 1.4730 | -152 | 1.5513
1.5139 | -374 | 1.6395
1.5740 | - 655 | 216
234 | | 140 | 1.4139
1.4119 | - 20
- 17 | 1.4578
1.4473 | -105
- 80 | 1.4901 | ~238
~167 | 1.5350 | - 390
- 266 | 252 | | 170 | 1.4117 | - 17 | 1.771) | - 80 | 1.4701 | -10/ | 1.5550 | - 200 | 232 | | 150 | 1.4102 | - 13 | 1.4393 | - 55 | 1.4734 | -120 | 1.5084 | - 188 | 270 | | 160 | 1.4089 | - 10 | 1.4338 | - 48 | 1.4614 | - 93 | 1.4896 | ~ 140 | 288 | | 170 | 1.4079 | - 8 | 1.4290 | - 37 | 1.4521 | - 73 | 1.4756 | - 108 | 306 | | 180
190 | 1.4071
1.4064 | - 7
- 7 | 1.4253
1.4222 | - 31
- 25 | 1.4448
1.4391 | - 57
- 47 | 1.4648
1.4560 | - 88
- 71 | 324
342 | | | | • | | | | • | | | | | 200 | 1.4057 | - 4 | 1.4197 | - 20 | 1.4344 | - 38 | 1.4489 | - 52 | 360 | | 210 | 1.4053 | - 5 | 1.4177 | - 19 | 1.4306 | - 34 | 1.4437 | - 48 | 378
304 | | 220
230 | 1.4048
1.4044 | - 4
- 4 | 1.4158
1.4143 | - 15
- 14 | 1.4272
1.4246 | - 26
- 24 | 1.4389
1.4348 | - 41
- 35 | 396
414 | | 240 | 1,4040 | - 4 | 1.4129 | - 11 | 1.4222 | - 21 | 1.4313 | - 29 | 432 | | | | · | | | | _ | | | | | 250 | 1.4036 | - 4 | 1.4118 | - 11 | 1.4201 | - 18 | 1.4284 | - 25 | 450 | | 260 | 1.4032 | - 3 | 1.4107 | - 10 | 1.4183 | - 17 | 1.4259 | - 23 | 468 | | 270
280 | 1.4029
1.4024 | - 5 | 1.4097
1.4087 | - 10 | 1.4166
1.4150 | - 16 | 1.4236
1.4214 | ~ 22
~ 20 | 486
504 | | 290 | 1.4024 | - 4
- 3 | 1.4078 | - 9
- 8 | 1.4135 | - 15
- 12 | 1.4194 | - 20
- 17 | 522 | | | 1,4020 | _ , | | _ • | | | 1- / / | | | | 300 | 1.4017 | - 4 | 1.4070 | - 8 | 1,4123 | - 12 | 1.4177 | - 16 | 540 | | 310 | 1.4013 | - 5 | 1.4062 | - 9 | 1.4111 | - 11 | 1.4161 | - 15 | 558 | | 320
330 | 1.4008
1.4004 | - 4
- 5 | 1.4053
1.4045 | - 8
- 7 | 1.4100
1.4089 | 11
12 | 1.4146
1.4131 | - 15
- 13 | 576
594 | | 340 | 1,3999 | - 5
- 6 | 1.4038 | - 7
- 8 | 1.4077 | - 12
- 10 | 1.4118 | - 14 | 612 | | | | • | | - | | | | | | | 350 | 1.3993 | - 6 | 1.4030 | - 8 | 1.4067 | - 11 | 1.4104 | - 13 | 630 | | 360
370 | 1.3987 | - 6 | 1.4022 | - 8 | 1.4056 | - 10 | 1.4091 | - 12 | 648 | | 370
380 | 1,3981
1,3975 | - 6
- 7 | 1.4014
1.4005 | - 9
- 8 | 1.4046
1.4036 | - 10
- 11 | 1.4079
1.4066 | - 13
- 12 | 666
684 | | 390 | 1.3968 | - <i>1</i> | 1.3997 | - 10 | 1.4025 | - 11 | 1.4054 | - 13 | 702 | | | | • | | | | | | | | | 400 | 1.3961 | - 8 | 1.3987 | - 8 | 1.4014 | - 10 | 1.4041 | - 13 | 720 | | 410 | 1.3953 | - 7 | 1.3979
1.3970 | - 9 | 1.4004
1.3994 | - 10 | 1.4028
1.4016 | - 12
- 13 | 738
756 | | 420
430 | 1.3946
1.3938 | - 8
- 9 | 1.3960 | - 10
- 10 | 1.3982 | - 12
- 10 | 1.4003 | - 13
- 12 | 774 | | 440 | 1.3929 | - 9 | 1.3950 | - 10 | 1.3972 | - 12 | 1.3991 | - 12 | 792 | | | | | | | | | 1 0070 | | 010 | | 450 | 1.3920 | - 9 | 1.3940 | - 10 | 1.3960
1.3949 | - 11 | 1.3979
1.3967 | - 12
- 12 | 810
828 | | 460
470 | 1.3911
1.3901 | - 10
- 9 | 1.3930
1.3919 | - 11
- 10 | 1.3938 | - 11
- 12 | 1.3955 | - 12
- 12 | 846 | | 480 | 1.3892 | - 11 | 1.3909 | - 10
- 11 | 1.3926 | - 12
- 12 | 1.3943 | - 12
- 13 | 864 | | 490 | 1.3881 | - 10 | 1.3898 | - 11 | 1.3914 | - 11 | 1.3930 | - 12 | 882 | | 500 | 1.3871 | - 10 | 1,3887 | - 11 | 1,3903 | - 12 | 1.3918 | - 12 | 900 | | 510 | 1.3861 | - 10
- 10 | 1.3876 | - 11
- 11 | 1.3891 | - 12
- 12 | 1.3906 | - 13 | 918 | | 520 | 1.3851 | - 11 | 1.3865 | - 12 | 1.3879 | - 13 | 1.3893 | - 13 | 936 | | 530 | 1.3840 | - 11 | 1.3853 | - 11 | 1.3866 | - 12 | 1.3880 | - 13 | 954 | | 540 | 1.3829 | - 11 | 1.3842 | - 12 | 1.3854 | - 12 | 1.3867 | - 13 | 972 | | 550 | 1.3818 | - 12 | 1.3830 | - 12 | 1.3842 | ~ 13 | 1.3854 | - 14 | 990 | | 560 | 1.3806 | - 11 | 1.3818 | - 12 | 1.3829 | - 12 | 1.3840 | - 13 | 1008 | | 570 | 1.3795 | - 12 | 1.3806 | - 12 | 1.3817 | - 12 | 1.3827 | - 13 | 1026 | | 580 | 1.3783 | - 11 | 1.3794 | - 12 | 1.3805 | - 13 | 1.3814 | - 13 | 1044 | | 5 9 0 | 1.3772 | - 12 | 1.3782 | - 12 | 1.3792 | - 12 | 1.3801 | - 13 | 1062 | | 600 | 1,3760 | - 11 | 1.3770 | - 12 | 1.3780 | 12 | 1.3788 | - 13 | 1080 | | 610 | 1,3749 | - 12 | 1.3758 | - 12 | 1.3768 | - 12 | 1.3775 | - 12 | 1098 | | 620 | 1.3737 | - 11 | 1.3746 | - 12 | 1.3756 | - 13 | 1.3763 | - 12 | 1116 | | 630 | 1.3726 | - 12 | 1.3734 | - 12 | 1.3743 | - 13 | 1.3751
1.3739 | - 12 | 1134
1152 | | 640 | 1.3714 | - 12 | 1.3722 | - 12 | 1.3730 | - 11 | 1.7/37 | - 13 | 1136 | | 650 | 1.3702 | - 11 | 1.3710 | - 11 | 1.3719 | - 13 | 1.3726 | - 12 | 1170 | | 660 | 1.3691 | - 12 | 1.3699 | - 12 | 1.3706 | - 12 | 1.3714 | - 13 | 1188 | | 670 | 1.3679
1.3668 | - 11 | 1.3687
1.3675 | - 12
- 11 | 1.3694
1.3682 | - 12
- 12 | 1.3701
1.3688 | - 13
- 12 | 1206
1224 | | 680
690 | 1.3657 | - 11
- 11 | 1.3664 | - 11
- 12 | 1.3670 | - 12
- 12 | 1.3676 | - 12 | 1242 | | | | | | _ | | _ | | | | | 700 | 1.3646 | | 1.3652 | | 1.3658 | | 1.3664 | | 1260 | Table 2-6. SPECIFIC-HEAT RATIO OF AIR - Cont. | °K | l atm | 4 | atm | 7 0 | ıtm | 10 | atm | •̂R | |--------------------------------------|--|---|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--------------------------------------| | 700
710
720
730
740 | 1.3646 - 12
1.3634 - 11
1.3623 - 11
1.3612 - 11 | 1.3641
1.3629
1.3618 | - 11
- 12
- 11
- 11 | 1.3658
1.3647
1.3635
1.3624
1.3613 | - 11
- 12
- 11
- 11
- 12 | 1.3664
1.3652
1.3641
1.3629
1.3618 | - 12
- 11
- 12
- 11
- 12 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | 1.3591 - 11
1.3580 - 11
1.3569 - 10
1.3559 - 10
1.3549 - 5 | 1.3585
1.3574
1.3564 | - 11
- 11
- 10
- 11
- 13 | 1.3601
1.3590
1.3579
1.3568
1.3557 | - 11
- 11
- 11
- 11 | 1.3606
1.3595
1.3583
1.3572
1.3561 | - 11
- 12
- 11
- 11
- 1 | 1350
1368
1386
1404
1422 | | 800
850
900
950
1000 | 1.354 - 5
1.349 - 4
1.345 - 5
1.340 - 4
1.336 - 7 | 1.354
1.349
1.345
1.340
1.336 | - 5
- 4
- 5
- 4
- 7 | 1.355
1.350
1.345
1.340
1.336 | - 5
- 5
- 5
- 4
- 7 | 1.355
1.350
1.345
1.341
1.336 | - 5
- 5
- 4
- 5
- 7 | 1440
1530
1620
1710
1800 | | 1100
1200
1300
1400
1500 | 1.329 - 7
1.322 - 6
1.316 - 6
1.310 - 6
1.304 - 5 | 1.329
1.322
1.316
1.310
1.304 | - 7
- 6
- 6
- 6
- 5 | 1.329
1.322
1.316
1.310
1.304 | - 7
- 6
- 6
- 6
- 5 | 1.329
1.322
1.316
1.310
1.304 | - 7
- 6
- 6
- 6
- 5 | 1980
2160
2340
2520
2700 | | 1600
1700
1800
1900
2000 | 1.299 - 6
1.293 - 5
1.288 - 6
1.282 - 8
1.274 - 7 | 1,299
1,293
1,288
1,283
1,277 | - 6
- 5
- 5
- 6
- 6 | 1.299
1.293
1.288
1.283
1.278 | - 6
- 5
- 5
- 5
- 6 | 1.299
1.293
1.288
1.283
1.278 | - 6
- 5
- 5
- 5
- 6 | 2880
3060
3240
3420
3600 | | 2100
2200
2300
2400
2500 | 1.267 - 8
1.259 -10
1.249 -11
1.238 -11
1.227 -12 | 1.271
1.265
1.257
1.249
1.241 | - 6
- 8
- 8
- 8
- 9 | 1.272
1.267
1.259
1.253
1.245 | - 5
- 8
- 6
- 8
- 8 | 1.272
1.267
1.260
1.254
1.247 | - 5
- 7
- 6
- 7
- 7 | 3780
3960
4140
4320
4500 | | 2600
2700
2800
2900
3000 | 1.215 -10
1.205 - 9
1.196 - 7
1.189 - 4 | 1.224
1.215 | - 8
- 9
- 8
- 6 | 1.237
1.230
1.222
1.214
1.208 | - 7
- 8
- 8
- 6 | 1.240
1.233
1.226
1.218
1.212 | - 7
- 7
- 8
- 6 | 4680
4860
5040
5220
5400 | | °K | IO atm | 40 atm | 70 atm | 100 atm | ° R | l | |----|--------|--------|--------|---------|------------|---| |----|--------|--------|--------|---------|------------|---| | 150 | 1,5084 | - 188 | 2.7372 | -6204 | | | | | 270 | |------|--------|-------|--------|--------------|--------|-------|----------|-------|------| | 160 | 1.4896 | - 140 | 2.1168 | -2282 | | | | | 288 | | 170 | 1.4756 | -
108 | 1.8886 | -1208 | | | | | 306 | | 180 | 1.4648 | - 88 | 1.7678 | - 756 | 2,3139 | -2672 | | | 324 | | 190 | 1.4560 | - n | 1.6922 | - 504 | 2.0467 | -1467 | | | 342 | | 200 | 1.4489 | - 52 | 1.6418 | - 392 | 1.9000 | -1005 | 2.1376 | -1574 | 360 | | 210 | 1.4437 | - 48 | 1.6026 | - 286 | 1.7995 | - 677 | 1.9802 | -1033 | 378 | | 220 | 1,4389 | - 41 | 1.5740 | - 225 | 1.7318 | - 500 | 1.8769 | - 757 | 396 | | 230 | 1.4348 | - 35 | 1.5515 | - 181 | 1.6818 | - 384 | 1.8012 | - 573 | 414 | | 240 | 1.4313 | - 29 | 1.5334 | - 149 | 1.6434 | - 304 | 1.7439 | - 449 | 432 | | 250 | 1.4284 | - 25 | 1.5185 | - 123 | 1.6130 | - 245 | 1.6990 | - 359 | 450 | | 260 | 1.4259 | - 23 | 1.5062 | - 106 | 1.5885 | - 202 | 1.6631 | - 292 | 468 | | 270 | 1.4236 | - 22 | 1.4956 | - 91 | 1.5683 | - 172 | 1.6339 | - 245 | 486 | | 280 | 1,4214 | - 20 | 1.4865 | - 79 | 1.5511 | - 146 | 1.6094 | - 207 | 504 | | 290 | 1.4194 | - 17 | 1.4786 | - 69 | 1.5365 | - 125 | 1.5887 | - 176 | 522 | | 300 | 1.4177 | - 16 | 1.4717 | - 59 | 1.5240 | - 108 | 1.5711 | - 152 | 540 | | 310 | 1.4161 | - 15 | 1.4658 | - 55 | 1.5132 | - 97 | 1.5559 | - 134 | 558 | | 320 | 1.4146 | - 15 | 1.4603 | 50 | 1.5035 | 87 | 1.5425 | - 118 | 576 | | 330 | 1.4131 | - 13 | 1.4553 | - 46 | 1.4948 | - 77 | 1.5307 | - 105 | 594 | | 340 | 1.4118 | - 14 | 1.4507 | - 42 | 1.4871 | - 67 | 1.5202 | - 93 | 612 | | 350 | 1.4104 | - 13 | 1.4465 | - 36 | 1.4804 | - 62 | 1.5109 | - 85 | 630 | | 360 | 1.4091 | - 12 | 1.4429 | - 35 | 1.4742 | - 57 | 1.5024 | - 77 | 648 | | 370 | 1.4079 | - 13 | 1.4394 | - 3 3 | 1.4685 | - 53 | 1.4947 | - 69 | 666 | | 380 | 1.4066 | - 12 | 1.4361 | - 32 | 1.4632 | - 49 | 1.4878 | 65 | 684 | | 390 | 1.4054 | - 13 | 1.4329 | - 30 | 1.4583 | - 46 | 1.4813 | - 61 | 702 | | 400 | 1.4041 | - 13 | 1.4299 | - 26 | 1.4537 | - 45 | 1.4752 | - 59 | 720 | | 410 | 1.4028 | - 12 | 1.4273 | – 27 | 1.4492 | - 43 | 1.4693 | - 55 | 738 | | 420 | 1.4016 | - 13 | 1.4246 | - 26 | 1.4449 | - 37 | 1.4638 | - 50 | 756 | | 430 | 1.4003 | - 12 | 1.4220 | - 26 | 1.4412 | - 36 | 1.4588 | - 47 | 774 | | 440 | 1.3991 | - 12 | 1.4194 | - 26 | 1.4376 | - 34 | 1.4541 | - 43 | 792 | | 450 | 1.3979 | - 12 | 1.4168 | - 20 | 1.4342 | - 30 | 1.4498 | - 37 | 810 | | 460 | 1.3967 | - 12 | 1.4148 | - 21 | 1.4312 | - 29 | 1.4461 | - 36 | 828 | | 470 | 1,3955 | - 12 | 1.4127 | - 21 | 1.4283 | - 31 | 1.4425 | - 36 | 846 | | 480 | 1.3943 | - 13 | 1.4106 | - 20 | 1.4252 | - 28 | 1.4389 | - 34 | 864 | | 490 | 1.3930 | - 12 | 1.4086 | - 21 | 1.4224 | - 25 | 1.4355 | - 34 | 882 | | 500 | 1.3918 | - 12 | 1.4065 | - 19 | 1,4199 | - 27 | 1.4321 | - 32 | 900 | | 510 | 1,3906 | - 13 | 1.4046 | - 19 | 1.4172 | - 24 | 1,4289 | - 31 | 918 | | 520 | 1.3893 | - 13 | 1.4027 | - 19 | 1.4148 | - 26 | 1.4258 | - 31 | 936 | | 530 | 1.3880 | - 13 | 1.4008 | - 20 | 1.4122 | - 24 | 1.4227 | - 29 | 954 | | 540 | 1.3867 | - 13 | 1.3988 | - 19 | 1.4098 | - 25 | 1.4198 | - 28 | 972 | | 550 | 1,3854 | - 14 | 1.3969 | - 17 | 1.4073 | - 22 | 1.4170 | - 28 | 990 | | 560 | 1.3840 | - 13 | 1.3952 | - 18 | 1.4051 | - 22 | 1.4142 | - 26 | 1008 | | 570 | 1.3827 | - 13 | 1.3934 | - 17 | 1.4029 | - 21 | 1.4116 | - 26 | 1026 | | 580 | 1.3814 | - 13 | 1.3917 | - 18 | 1.4008 | - 21 | 1.4090 | - 25 | 1044 | | 590 | 1.3801 | - 13 | 1.3899 | - 17 | 1.3987 | - 20 | 1.4065 | - 24 | 1062 | | 600 | 1.3788 | - 13 | 1.3882 | - 16 | 1,3967 | - 20 | 1.4041 | - 23 | 1080 | | 610 | 1.3775 | - 12 | 1.3866 | - 16 | 1,3947 | - 20 | 1.4018 | - 23 | 1098 | | 620 | 1.3763 | - 12 | 1.3850 | - 16 | 1.3927 | - 20 | 1.3995 | - 22 | 1116 | | 630 | 1.3751 | - 12 | 1.3834 | - 17 | 1.3907 | - 19 | 1.3973 | - 22 | 1134 | | 640 | 1.3739 | - 13 | 1.3817 | - 16 | 1.3888 | - 19 | 1.3951 | - 20 | 1152 | | 650 | 1.3726 | - 12 | 1.3801 | - 16 | 1.3869 | - 19 | 1.3931 | - 21 | 1170 | | 660 | 1.3714 | - 13 | 1.3785 | - 15 | 1.3850 | - 17 | 1.3910 | - 20 | 1188 | | 670 | 1.3701 | - 13 | 1.3770 | - 15 | 1.3833 | - 17 | 1.3890 | - 20 | 1206 | | 680· | 1.3688 | - 12 | 1.3755 | - 15 | 1.3816 | - 16 | . 1.3870 | - 19 | 1224 | | 690 | 1.3676 | - 12 | 1.3740 | 15 | 1.3800 | - 17 | 1.3851 | - 19 | 1242 | | 700 | 1.3664 | | 1.3725 | | 1.3783 | | 1.3832 | | 1260 | | | | | | | | | | | | Table 2-6. SPECIFIC-HEAT RATIO OF AIR - Cont. | °K | 10 atm | 40 atm | 70 atm | 100 atm | °R | |------|-------------|-------------|-------------|-------------|------| | 700 | 1.3664 - 12 | 1.3725 - 13 | 1.3783 - 17 | 1.3832 - 18 | 1260 | | 710 | 1.3652 - 11 | 1.3712 - 14 | 1.3766 - 16 | 1.3814 - 18 | 1278 | | 720 | 1.3641 - 12 | 1.3698 - 13 | 1.3750 - 16 | 1.3796 - 18 | 1296 | | 730 | 1.3629 - 11 | 1.3685 - 14 | 1.3734 - 16 | 1.3778 - 17 | 1314 | | 740 | 1.3618 - 12 | 1.3671 - 13 | 1.3718 - 15 | 1.3761 - 16 | 1332 | | 750 | 1.3606 - 11 | 1.3658 - 13 | 1.3703 - 15 | 1.3745 - 16 | 1350 | | 760 | 1.3595 - 12 | 1.3645 - 13 | 1.3688 - 15 | 1.3729 - 16 | 1368 | | 770 | 1.3583 - 11 | 1.3632 - 13 | 1.3673 - 14 | 1.3713 - 16 | 1386 | | 780 | 1.3572 - 11 | 1.3619 - 13 | 1.3659 - 14 | 1.3697 - 16 | 1404 | | 790 | 1.3561 - 10 | 1.3606 - 14 | 1.3645 - 15 | 1.3681 - 16 | 1422 | | 800 | 1.3551 - 52 | 1.3592 - 61 | 1.3630 - 64 | 1.3665 - 70 | 1440 | | 850 | 1.3499 - 47 | 1.3531 - 51 | 1.3566 - 60 | 1.3595 - 62 | 1530 | | 900 | 1.3452 - 46 | 1.3480 - 50 | 1.3506 - 52 | 1.3533 - 57 | 1620 | | 950 | 1.3406 - 42 | 1.3430 - 44 | 1.3454 - 48 | 1.3476 - 53 | 1710 | | 1000 | 1.3364 - 76 | 1.3386 - 83 | 1.3406 - 87 | 1.3423 - 90 | 1800 | | 1100 | 1.3288 - 67 | 1.3303 - 71 | 1.3319 - 76 | 1.3333 - 79 | 1980 | | 1200 | 1.3221 - 65 | 1.3232 - 67 | 1.3243 - 69 | 1.3254 - 73 | 2160 | | 1300 | 1.3156 - 58 | 1.3165 - 59 | 1.3174 - 63 | 1.3181 - 64 | 2340 | | 1400 | 1.3098 - 55 | 1.3106 - 59 | 1.3111 - 59 | 1.3117 - 61 | 2520 | | 1500 | 1.3043 - 5 | 1.3047 - 4 | 1.3052 - 3 | 1.3056 - 3 | 2700 | | 1600 | 1.299 - 6 | 1.301 - 7 | 1.302 - 6 | 1.303 - 6 | 2880 | | 1700 | 1.293 - 5 | 1.294 - 5 | 1.296 - 6 | 1.297 - 6 | 3060 | | 1800 | 1.288 - 5 | 1.289 - 5 | 1.290 - 5 | 1.291 - 5 | 3240 | | 1900 | 1.283 - 5 | 1.284 - 5 | 1.285 - 5 | 1.286 - 5 | 3420 | | 2000 | 1.278 - 6 | 1.279 - 5 | 1.280 - 5 | 1.281 - 5 | 3600 | | 2100 | 1.272 - 5 | 1.274 - 5 | 1.275 - 5 | 1.276 - 6 | 3780 | | 2200 | 1.267 - 7 | 1.269 - 5 | 1.270 - 5 | 1.270 - 4 | 3960 | | 2300 | 1.260 - 6 | 1.264 - 5 | 1.265 - 5 | 1.266 - 5 | 4140 | | 2400 | 1.254 - 7 | 1.259 - 6 | 1.260 - 4 | 1.261 - 4 | 4320 | | 2500 | 1.247 - 7 | 1.253 - 5 | 1.256 - 5 | 1.257 - 5 | 4500 | | 2600 | 1.240 - 7 | 1,248 - 5 | 1.251 - 5 | 1.252 - 5 | 4680 | | 2700 | 1.233 - 7 | 1,243 - 6 | 1.246 - 5 | 1.247 - 4 | 4860 | | 2800 | 1.226 - 8 | 1,237 - 5 | 1.241 - 5 | 1.243 - 5 | 5040 | | 2900 | 1.218 - 6 | 1,232 - 6 | 1.236 - 5 | 1.238 - 4 | 5220 | | 3000 | 1.212 | 1,226 | 1.231 | 1.234 | 5400 | Table 2-7. SOUND VELOCITY AT LOW FREQUENCY IN AIR | o / | Ω | |------------|---| | - / | • | | °K | .OI atm | .1 | atm | .4 | atm | .7 | atm | °R | |---------------------------------|--|---|---------------------------------|--|---------------------------------|--|---------------------------------|--------------------------------------| | 50
60
70
80
90 | .4275 41
.4685 37
.5061 55
.5412 32
.5740 31 | 6
1
8 .5402 | 329
314 | .5707 | 319 | .5682 | 324 | 90
108
126
144
162 | | 100
110
120
130
140 | .6051 29
.6346 28
.6629 27
.6900 26
.7160 25 | 3 .6341
1 .6625
0 .6896 | 296
284
271
261
252 | .6026
.6327
.6613
.6887
.7150 | 301
286
274
263
253 | .6006
.6312
.6601
.6877
.7142 | 306
289
276
265
255 | 180
198
216
234
252 | | 150
160
170
180
190 | .7411 24
.7654 23
.7890 22
.8119 22
.8341 21 | .7653
.7888
.8118 | 244
236
230
222
217 | .7403
.7648
.7884
.8115
.8337 | 245
236
231
222
217 | .7397
.7643
.7880
.8111 | 246
237
231
223
218 | 270
288
306
324
342 | | 200
210
220
230
240 | .8557 212
.8769 200
.8975 201
.9176 197
.9373 199 | .8557
.8768
.8975
.9176 | 211
207
201
197
193 | .8554
.8767
.8974
.9176 | 213
207
202
196
194 | .8552
.8766
.8973
.9175 | 214
207
202
197
195 | 360
378
396
414
432 | | 250
260
270
280
290 | .9566 185
.9755 186
.9741 181
1.0122 176
1.0300 176 | .9566
.9755
.9941
1.0122 | 189
186
181
178
176 | .9566
.9756
.9941
1.0123
1.0301 | 190
185
182
178 | .9567
.9756
.9942
1.0123
1.0302 | 189
186
181
179
176 | 450
468
486
504
522 | | 300
310
320
330
340 | 1.0476 172
1.0648 176
1.0818 166
1.0984 164
1.1148 166 | 1.0476
1.0648
1.0818
1.0984 | 172
170
166
164
160 | 1.0477
1.0649
1.0819
1.0985
1.1149 | 172
170
166
164
160 | 1.0478
1.0650
1.0820
1.0986
1.1150 | 172
170
166
164
160 | 540
558
576
594
612 | | 350
360
370
380
390 | 1.1308 158
1.1466 156
1.1622 153
1.1775 152
1.1927 149 | 1.1308
1.1467
1.1623
1.1776 | 159
156
153
152
149 | 1.1309
1.1469
1.1625
1.1778
1.1930 | 160
156
153
152
149 | 1.1310
1.1470
1.1626
1.1779
1.1931 | 160
156
153
152
149 | 630
648
666
684
702 | | 400
410
420
430
440 | 1.2076 147
1.2223 144
1.2367 144
1.2511 141
1.2652 139 | 1.2077
1.2224
1.2368
1.2512 | 147
144
144
141
139 | 1.2079
1.2226
1.2370
1.2514
1.2655 | 147
144
144
141
139 | 1.2080
1.2227
1.2371
1.2515
1.2656 | 147
144
144
141
140 | 720
738
756
774
792 | |
450
460
470
480
490 | 1.2791 137
1.2928 135
1.3063 134
1.3197 132
1.3329 131 | 1.2792
1.2929
1.3064
1.3198 | 137
135
134
132
131 | 1.2794
1.2931
1.3066
1.3200
1.3332 | 137
135
134
132
131 | 1.2796
1.2933
1.3068
1.3202
1.3334 | 137
135
134
132
131 | 810
828
846
864
882 | | 500
510
520
530
540 | 1.3460 129
1.3589 127
1.3716 126
1.3842 125
1.3967 123 | 1.3590
1.3717
1.3843 | 129
127
126
125
123 | 1.3463
1.3592
1.3719
1.3845
1.3970 | 129
127
126
125
123 | 1.3465
1.3594
1.3721
1.3847
1.3972 | 129
127
126
125
123 | 900
918
936
954
972 | | 550
560
570
580
590 | 1.4090 122
1.4212 120
1.4332 119
1.4451 119
1.4570 12 | 1.4213
1.4333 | 122
120
119
119
12 | 1.4093
1.4215
1.4335
1.4454
1.4573 | 122
120
119
119
12 | 1.4095
1.4217
1.4337
1.4456
1.4575 | 122
120
119
119
11 | 990
1008
1026
1044
1062 | | 600
610
620
630
640 | 1.469 11
1.480 12
1.492 11
1.503 11
1.514 11 | 1.469
1.480
1.492
1.503
1.514 | 11
12
11
11 | 1.469
1.481
1.492
1.503
1.515 | 12
11
11
12
11 | 1.469
1.481
1.492
1.504
1.515 | 12
11
12
11 | 1080
1098
1116
1134
1152 | | 650 | 1.525 | 1,526 | | 1.526 | | 1.526 | | 1170 | | °K | .01 | atm | .1 0 | ıtm | ,4 a | tm | .7 | atm | °R | |----------------------|----------------|----------------------|-------------------------|------------------|----------------|----------|----------------|----------|--------------| | | | | | | | | | | | | 650 | 1.525 | 11 | 1.526 | 11 | 1.526 | 11 | 1.526 | 11 | 1170 | | 660 | 1.536 | 11 | 1.537 | 10 | 1.537 | 11 | 1.537 | 11 | 1188 | | 670 | 1.547 | 11 | 1.547 | 11 | 1.548 | 11 | 1.548 | 11 | 1206 | | 680 | 1,558 | 11 | 1.558 | 11 | 1.559 | 10 | 1.559 | 11 | 1224
1242 | | 690 | 1.569 | 11 | 1.569 | 11 | 1.569 | 11 | 1.570 | 10 | | | 700 | 1.580 | 10 | 1.580 | 10 | 1.580 | 11
10 | 1.580
1.591 | 11
10 | 1260
1278 | | 710 | 1.590 | 11 | 1.590 | 11 | 1.591
1.601 | 10 | 1.601 | 11 | 1296 | | 720 | 1.601 | 10 | 1.601
1.611 | 10
11 | 1.611 | 11 | 1.612 | 10 | 1314 | | 730
740 | 1.611
1.622 | 11
10 | 1.622 | 10 | 1.622 | 10 | 1.622 | 10 | 1332 | | 750 | 1.632 | 10 | 1,632 | 10 | 1.632 | 10 | 1.632 | 11 | 1350 | | 760 | 1.642 | 10 | 1.642 | 10 | 1.642 | 10 | 1.643 | 10 | 1368 | | 770 | 1,652 | 10 | 1.652 | 10 | 1.652 | 11 | 1.653 | 10 | 1386 | | 780 | 1.662 | 10 | 1.662 | 10 | 1.663 | 10 | 1.663 | 10
10 | 1404
1422 | | 790 | 1.672 | 10 | 1,672 | 10 | 1.673 | 10 | 1.673 | 10 | 1422 | | | 1 (00 | | 1.682 | 49 | 1.683 | 48 | 1.683 | 48 | 1440 | | 800 | 1.682
1.731 | 49
47 | 1.731 | 47
47 | 1.731 | 47 | 1.731 | 48 | 1530 | | 850
900 | 1.778 | 46 | 1.778 | 46 | 1,778 | 46 | 1.779 | 45 | 1620 | | 950 | 1.824 | 44 | 1.824 | 44 | 1.824 | 45 | 1.824 | 45 | 1710 | | 1000 | 1.868 | 44 | 1.868 | 44 | 1.869 | 43 | 1.869 | 43 | 1800 | | 1050 | 1.912 | 42 | 1.912 | 42 | 1.912 | 42 | 1.912 | 42 | 1890
1980 | | 1100 | 1.954 | 41 | 1.954 | 41 | 1.954 | 42 | 1.954 | 42 | 2070 | | 1150 | 1.995 | 41 | 1.995 | 41 | 1.996 | 40 | 1.996
2.036 | 40
40 | 2160 | | 1200
1250 | 2.036
2.076 | 40
38 | 2.036
2.076 | 40
38 | 2.036
2.076 | 40
39 | 2.076 | 39 | 2250 | | | | | 2.114 | 38 | 2.115 | 37 | 2,115 | 37 | 2340 | | 1300
1350 | 2.114
2.152 | 38
37 | 2.152 | 37 | 2.152 | 37 | 2.152 | 37 | 2430 | | 1400 | 2.189 | 36 | 2.189 | 36 | 2.189 | 36 | 2.189 | 37 | 2520 | | .450 | 2.225 | 36 | 2.225 | 36 | 2,225 | - 36 | 2.226 | 35 | 2610 | | 1500 | 2.261 | 34 | 2,261 | 35 | 2.261 | 35 | 2.261 | 35 | 2700 | | 1550 | 2,295 | 34 | 2.296 | 34 | 2,296 | 34 | 2.296 | 35 | 2790
2880 | | 1600 | 2.329 | 33 | 2.330 | 33 | 2.330 | 34 | 2.331
2.364 | 33
33 | 2970 | | 1650 | 2.362 | 32 | 2.363 | 33 | 2.364
2.397 | 33
32 | 2.397 | 33 | 3060 | | 1700
1750 | 2,394
2,424 | 30
30 | 2.396
2.428 | 32
31 | 2.429 | 32
32 | 2.430 | 31 | 3150 | | | 2.454 | 28 | 2,459 | 31 | 2.461 | 30 | 2,461 | 31 | 3240 | | 1800
1850 | 2.482 | 26 | 2.490 | 28 | 2.491 | 30 | 2.492 | 30 | 3330 | | 1900 | 2.508 | 24 | 2.518 | 28 | 2.521 | 29 | 2.522 | 29 | 3420 | | 1950 | 2.532 | 21 | 2.546 | 28 | 2.550 | 29 | 2.551 | 29 | 3510 | | 2000 | 2.553 | 21 | 2.574 | 26 | .2.579 | 26 | 2.580 | 27 | 3600 | | 2050 | 2,574 | 19 | 2.600 | 24 | 2.605 | 27 | 2.607 | 27 | 3690
3780 | | 2100 | 2.593 | | 2.624 | 24 | 2.632 | 25 | 2.634 | 28 | 3870 | | 2150 | | | 2.648 | 22 | 2.657 | 26 | 2.662
2.688 | 26
25 | 3960 | | 2200
2250 | | | 2.670
2.692 | 22
22 | 2.683
2.707 | 24
23 | 2.713 | 24 | 4050 | | | | | 2,714 | 21 | 2,730 | 23 | 2,737 | 23 | 4140 | | 2300 | | | 2.735 | 21 | 2.753 | 23 | 2.760 | 24 | 4230 | | 2350 | | | 2.756 | 21 | 2.776 | 21 | 2.784 | 22 | 4320 | | 2400
2450 | | | 2.777 | 20 | 2.797 | 21 | 2.806 | 21 | 4410 | | 2500 | | | 2.797 | 22 | 2.818 | 22 | 2.827 | 22 | 4500 | | 2550 | | | 2.819 | 23 | 2.840 | 22 | 2.849 | 22 | 4590
4680 | | 2600 | | | 2.842 | 25 | 2.862 | 24 | 2.871
2.893 | 22
22 | 4770 | | 2650 | | | 2.867 | 27 | 2.886 | 23 | 2.915 | 24 | 4860 | | | | | 2.894
2.923 | 29
3 0 | 2.909
2.933 | 24
25 | 2.939 | 23 | 4950 | | 2700
2750 | | | • | | 0.050 | 27 | 2,962 | 25 | 5040 | | 2750 | | | 2 953 | 23 | 2.958 | 21 | | | | | 2750
2800 | | | 2.953
2.986 | 33
35 | 2.958
2.985 | 28 | 2.987 | 26 | 5130 | | 2750
2800
2850 | | | 2.953
2.986
3.021 | | 2.985
3.013 | 28
29 | 2.987
3.013 | 26
26 | 5130
5220 | | 2750
2800 | | | 2.986 | 35 | 2.985 | 28 | 2.987 | 26 | 5130 | Table 2-7. SOUND VELOCITY AT LOW FREQUENCY IN AIR - Cont. | a/ | a | |----|---| | , | | | - 4016 2 | BOOMD | VELOCI | II AI LOW | r re Que | NCI IN AIR | t - Cont. | | | a/a ₀ | |------------|---------------------------|------------------------|----------------------|------------------------|------------------|------------------------|------------------|-------------|------------------| | °K | l l | atm | 4 | atm | 7 0 | ıtm | 10 | atm | °R | | | | | | | | | | | | | 100 | .5987 | 309 | | | | | | | 100 | | 110 | .6296 | 293 | .6136 | 328 | .5960 | 3 73 | .5762 | 429 | 180
198 | | 120 | .6589 | 279 | .6464 | 306 | .6333 | 335 | .6191 | 37 2 | 216 | | 130 | .6868 | 266 | .6770 | 286 | .6668 | 309 | .6563 | 334 | 234 | | 140 | .7134 | 257 | .7056 | 273 | .6977 | 290 | .6897 | 308 | 252 | | 150 | .7391 | 247 | .7329 | 260 | .7267 | 273 | .7205 | 287 | 270 | | 160
170 | .7638
.7875 | 237 | .7589 | 249 | .7540 | 260 | .7492 | 271 | 288 | | 180 | .8108 | 233
224 | .7838
.8079 | 241 | .7800 | 250 | .7763 | 257 | 306 | | 190 | .8332 | 218 | .8308 | 229
224 | .8050
.8286 | 2 3 6
229 | .8020
.8265 | 245 | 324 | | 200 | | | | 224 | .0200 | 229 | .0205 | 235 | 342 | | 200
210 | .8550
.8764 | 214 | .8532 | 219 | .8515 | 225 | .8500 | 229 | 360 | | 220 | .8972 | 208
203 | .8751
.8964 | 213 | .8740 | 217 | .8729 | 221 | 378 | | 230 | .9175 | 196 | .9171 | 207
198 | .8957
.9167 | 210 | .8950 | 214 | 396 | | 240 | .9371 | 196 | .9369 | 198 | .9369 | 202
201 | .9164
.9372 | 208 | 414 | | 250 | 05/7 | | | | | 201 | .///2 | 202 | 432 | | 250
260 | .9567
.9757 | 190 | .9567 | 193 | .9570 | 194 | .9574 | 197 | 450 | | 270 | .9943 | 186
181 | .9760
.9949 | 189 | .9764 | 190 | .9771 | . 192 | 468 | | 280 | 1.0124 | 179 | 1.0133 | 184
180 | .9954
1.0140 | 186 | .9963 | 188 | 486 | | 290 | 1.0303 | 176 | 1.0313 | 177 | 1.0323 | 183
179 | 1.0151
1.0335 | 184
179 | 504
522 | | 300 | 1.0479 | | 1 0400 | | | -,, | | 1/7 | 722 | | 310 | 1.0652 | 173 | 1.0490
1.0664 | 174 | 1.0502 | 174 | 1.0514 | 176 | 540 | | 320 | 1.0821 | 1 69
168 | 1.0834 | 170
1 69 | 1.0676
1.0848 | 172 | 1.0690 | 173 | 558 | | 330 | 1.0989 | 163 | 1.1003 | 164 | 1.1017 | 1 69
165 | 1.0863
1.1032 | 169 | 576 | | 340 | 1.1152 | 161 | 1.1167 | 162 | 1.1182 | 164 | 1.1198 | 166
164 | 594
612 | | 350 | 1,1313 | 158 | 1.1329 | 159 | 1.1346 | 159 | 1.1362 | 10 | 420 | | 360 | 1.1471 | 157 | 1.1488 | 157 | 1.1505 | 158 | 1.1523 | 161
158 | 630
648 | | 370 | 1.1628 | 154 | 1.1645 | 155 | 1.1663 | 155 | 1.1681 | 156 | 666 | | 380
390 | 1.1782 | 151 | 1.1800 | 151 | 1.1818 | 152 | 1.1837 | 153 | 684 | | 390 | 1.1933 | 149 | 1,1951 | 150 | 1.1970 | 150 | 1.1990 | 150 | 702 | | 400 | 1.2082 | 147 | 1.2101 | 147 | 1.2120 | 148 | 1,2140 | 148 | 720 | | 410 | 1.2229 | 146 | 1.2248 | 146 | 1.2268 | 146 | 1.2288 | 146 | 738 | | 420
430 | 1.2375
1.2518 | 143 | 1.2394 | 144 | 1.2414 | 144 | 1.2434 | 144 | 756 | | 440 | 1.2659 | 141
139 | 1.2538
1.2679 | 141 | 1.2558 | 142 | 1.2578 | 142 | 774 | | | | 137 | | 139 | 1.2700 | 139 | 1.2720 | 140 | 792 | | 450
460 | 1.2798
1 .293 5 | 137 | 1.2818 | 138 | 1.2839 | 138 | 1.2860 | 138 | 810 | | 470 | 1.3070 | 135
134 | 1.2956
1.3091 | 135 | 1.2977 | 136 | 1.2998 | 136 | 828 | | 480 | 1.3204 | 132 | 1.3226 | 135
132 | 1.3113
1.3248 | 135
132 | 1.3134
1.3269 | 135 | 846 | | 490 | 1.3336 | 131 | 1.3358 | 131 | 1.3380 | 131 | 1.3401 | 132
131 | 864
882 | | 500 | 1.3467 | 129 | 1.3489 | 129 | 1.3511 | 129 | 1,3532 | | 000 | | 510 | 1.3596 | 128 | 1.3618 | 128 | 1.3640 | 128 | 1.3662 | 130
128 | 900
918 | | 520 | 1.3724 | 126 | 1.3746 | 126 | 1.3768 | 126 | 1.3790 | 126 | 936 | | 530 | 1.3850 | 124 | 1.3872 | 124 | 1.3894 | 124 | 1.3916 | 125 | 954 | | 540 | 1.3974 | 124 | 1.3996 | 124 | 1.4018 | 124 | 1.4041 | 123 | 972 | | 550 | 1.4098 | 121 | 1.4120 | 121 | 1.4142 | 121 | 1.4164 | 121 | 990 | | 560 | 1.4219 | 121 | 1.4241 | 121 | 1.4263 | 121 | 1.4285 | 121 | 1008 | | 570
580 |
1.4340
1.4459 | 119 | 1.4362
1.4481 | 119 | 1.4384 | 119 | 1.4406 | 119 | 1026 | | 590 | 1.4577 | 118
11 | 1.4481 | 118
12 | 1.4503
1.4621 | 118
12 | 1.4525
1.4643 | 118
12 | 1044
1062 | | 600 | 1,469 | | | | | | | | | | 610 | 1.481 | 12
11 | 1.472
1.483 | 11
12 | 1.474
1.486 | 12 | 1.476 | 12 | 1080 | | 620 | 1.492 | 12 | 1.495 | 12 | 1.486 | 11
11 | 1.488
1.499 | 11
12 | 1098
1116 | | 630 | 1.504 | 11 | 1.506 | ii | 1.508 | 12 | 1.511 | 11 | 1134 | | 640 | 1.515 | 11 | 1.517 | 11 | 1.520 | 11 | 1.522 | 11 | 1152 | | 650 | 1.526 | | 1.528 | | 1,531 | | 1,533 | | 1170 | | | | | · · · · · | | | | | | 1110 | Table 2-7. SOUND VELOCITY AT LOW FREQUENCY IN AIR - Cont. | a/ | a _o | |----|----------------| |----|----------------| | | | | - | | | | | | | |--------------|----------------|----------------|----------------|----------|----------------|----------|----------------|-----------------|--------------| | °K | 1 | atm | 4 | atm | 7 at | m | 10 | atm | °R | | 650 | 1.526 | - 11 | 1,528 | 11 | 1.531 | 11 | 1.533 | 11 | 1170 | | 660 | 1.537 | 11 | 1.539 | 11 | 1.542 | 11 | 1.544 | 11 | 1188 | | 670 | 1.548 | 11 | 1.550 | 11 | 1.553 | 11 | 1.555 | 11 | 1206 | | 680 | 1.559 | 11 | 1.561 | 11 | 1.564 | 11 | 1.566 | 11 | 1224 | | 690 | 1.570 | 10 | 1.572 | 11 | 1.575 | 11 | 1.577 | 10 | 1242 | | 700
710 | 1.580
1.591 | 11
11 | 1.583
1.593 | 10
11 | 1.586
1.596 | 10 | 1.587
1.598 | 11 | 1260 | | 720 | 1,602 | 10 | 1.604 | 10 | 1.606 | 10
10 | 1,608 | 10
11 | 1278
1296 | | 730 | 1.612 | 10 | 1.614 | 11 | 1.616 | 11 | 1,619 | 10 | 1314 | | 740 | 1.622 | 11 | 1.625 | 10 | 1.627 | 10 | 1.629 | 10 | 1332 | | 750
760 | 1.633
1.643 | 10
10 | 1.635
1.645 | 10 | 1.637 | 10 | 1.639 | 10 | 1350 | | 770 | 1.653 | 10 | 1.655 | 10
10 | 1.647
1.657 | 10 | 1.649 | 11 | 1368 | | 780 | 1.663 | 10 | 1.665 | 10 | 1.667 | 10
10 | 1.660
1.670 | 10
10 | 1386
1404 | | 790 | 1.673 | 10 | 1.675 | 10 | 1.677 | 10 | 1.680 | 10 | 1422 | | 800 | 1 402 | - | 1 (05 | | 3 (07 | | 7 (00 | | | | 850 | 1.683
1.732 | 49
47 | 1.685
1.734 | 49 | 1.687
1.736 | 49 | 1.690 | 48 | 1440 | | 900 | 1.779 | 46 | 1.781 | 47
46 | 1.783 | 47 | 1.738
1.785 | 47 | 1530
1620 | | 950 | 1.825 | 44 | 1.827 | 44 | 1.829 | 46
44 | 1.831 | 46
44 | 1710 | | 1000 | 1.869 | 43 | 1.871 | 43 | 1.873 | 43 | 1.875 | 43 | 1800 | | 1050
1100 | 1.912 | 43 | 1.914 | 43 | 1.916 | 43 | 1.918 | 43 | 1890 | | 1150 | 1.955
1.996 | 41 | 1.957
1.998 | 41 | 1.959 | 41 | 1.961 | 41 | 1980 | | 1200 | 2.037 | 41
39 | 2.038 | 40 | 2.000
2.040 | 40 | 2.002 | 40 | 2070 | | 1250 | 2.076 | 3 9 | 2.078 | 40
39 | 2.080 | 40
38 | 2.042
2.082 | 40
38 | 2160
2250 | | 1300 | 2.115 | 38 | 2.117 | 37 | 2.118 | 38 | 2.120 | 38 | 2340 | | 1350
1400 | 2.153 | 37 | 2.154 | 37 | 2.156 | 37 | 2.158 | 3 7 | 2430 | | 1450 | 2.190
2.226 | 36 | 2.191
2.228 | 37 | 2.193 | 36 | 2.195 | 36 | 2520 | | 1500 | 2.261 | 35
35 | 2.263 | 35
35 | 2.229
2.265 | 36
35 | 2.231
2.267 | 36
34 | 2610
2700 | | 1550 | 2.296 | 35 | 2.298 | 34 | 2.300 | 34 | 2.301 | 34 | 2790 | | 1600 | 2.331 | 33 | 2.332 | 34 | 2.334 | 34 | 2.335 | 34 | 2880 | | 1650 | 2.364 | 34 | 2.366 | 33 | 2.368 | 33 | 2.369 | 33 | 2970 | | 1700
1750 | 2.398 | 32 | 2.399 | 32 | 2.401 | 32 | 2.402 | 33 | 3060 | | | 2.430 | 31 | 2,431 | 33 | 2.433 | 32 | 2,435 | 32 | 3150 | | 1800 | 2.461 | 31 | 2.464 | 31 | 2.465 | 32 | 2.467 | 31 | 3240 | | 1850
1900 | 2.492
2.523 | 31 | 2.495 | 31 | 2.497 | 31 | 2.498 | 31 | 3330 | | 1950 | 2.552 | 29
29 | 2.526
2.556 | 30
29 | 2.528
2.558 | 30 | 2.529
2.560 | 31 | 3420
3510 | | 2000 | 2.581 | 27 | 2.585 | 29 | 2.588 | 30
29 | 2.590 | 30
29 | 3600 | | 2050
2100 | 2.608 | 28 | 2.614 | 28 | 2.617 | 29 | 2.619 | 29 | 3690 | | 2150 | 2.636
2.664 | 28 | 2.642 | 29 | 2.646 | 28 | 2.648 | 28 | 3780 | | 2200 | 2.691 | 27
26 | 2.671
2.699 | 28 | 2.674 | 28 | 2.676 | 28 | 3870 | | 2250 | 2.717 | 24 | 2.725 | 26
27 | 2.702
2.730 | 28
25 | 2.704
2.731 | 27
26 | 3960
4050 | | 2300 | 2,741 | 24 | 2.752 | 25 | 2.755 | 26 | 2.757 | 26 | 4140 | | 2350 | 2.765 | 24 | 2.777 | 25 | 2.781 | 25 | 2.783 | 25 | 4230 | | 2400 | 2.789 | 22 | 2.802 | 24 | 2.806 | 24 | 2.808 | 25 | 4320 | | 2450
2500 | 2.811
2.832 | 21
22 | 2.826
2.849 | 23
23 | 2.830
2.855 | 25
24 | 2.833
2.858 | 25
25 | 4410
4500 | | 2550 | 2.854 | 22 | 2.872 | 23 | 2.879 | 23 | 2,883 | 24 | 4590 | | 2600 | 2.876 | 22 | 2.895 | 23 | 2.902 | 24 | 2.907 | 24 | 4680 | | 2650 | 2.898 | 22 | 2.918 | 22 | 2.926 | 23 | 2.931 | 24 | 4770 | | 2700 | 2.920 | 23 | 2.940 | 23 | 2.949 | 23 | 2.955 | 24 | 4860 | | 2750 | 2.943 | 23 | 2.963 | 22 | 2.972 | 23 | 2.979 | 23 | 49 50 | | 2800
2850 | 2.966
2.990 | 24
25 | 2.985
3.008 | 23
22 | 2.995
3.017 | 22
23 | 3.002
3.025 | 23
22 | 5040
5130 | | 2900 | 3.015 | 25 | 3.030 | 23 | 3.040 | 23 | 3.047 | 22 | 5220 | | 2950 | 3.040 | 26 | 3.053 | 23 | 3.063 | 22 | 3.070 | 22 | 5310 | | 3000 | 3.066 | | 3.076 | | 3.085 | | 3.092 | *** | 5400 | Table 2-7. SOUND VELOCITY AT LOW FREQUENCY IN AIR - Cont. | a/a
0 | | |----------|--| |
• | | | °K | IO atm | 40 atm | 70 atm | 100 atm | ° R | | |----|--------|--------|--------|---------|------------|--| | 150 | .7205 | 207 | .6574 | 40/ | | | | | 270 | |------|---------------|-----|--------|-----|--------|-----|--------|-------|------| | 160 | .7492 | 287 | .7060 | 486 | | | | | 270 | | 170 | .7763 | 271 | | 402 | | | | | 288 | | | .8020 | 257 | .7462 | 351 | 7000 | | | | 306 | | 180 | | 245 | .7813 | 317 | .7988 | 306 | | | 324 | | 190 | .826 5 | 235 | .8130 | 295 | .8294 | 299 | | | 342 | | 200 | .8500 | 229 | .8425 | 271 | .8593 | 270 | .9106 | 185 | 360 | | 210 | .8729 | 221 | .8696 | 257 | .8863 | 264 | .9291 | 219 | 378 | | 220 | .8950 | 214 | .8953 | 245 | .9127 | 252 | .9510 | | 396 | | 230 | .9164 | 208 | .9198 | | .9379 | | | 222 | | | 240 | .9372 | | | 233 | | 241 | .9732 | 219 | 414 | | 2,40 | .7312 | 202 | .9431 | 224 | .9620 | 230 | .9951 | . 215 | 432 | | 250 | .9574 | 197 | .9655 | 216 | .9850 | 222 | 1.0166 | 212 | 450 | | 260 | . 9771 | 192 | .9871 | 209 | 1.0072 | 215 | 1.0378 | 206 | 468 | | 270 | .9963 | 188 | 1.0080 | 202 | 1.0287 | 206 | 1.0584 | 200 | 486 | | 280 | 1.0151 | 184 | 1.0282 | 194 | 1.0493 | 200 | 1.0784 | 195 | 504 | | 290 | 1.0335 | 179 | 1.0476 | 192 | 1.0693 | 195 | 1.0979 | 191 | 522 | | 200 | 1 0514 | | 3.0445 | | | | | | | | 300 | 1.0514 | 176 | 1.0668 | 187 | 1.0888 | 189 | 1.1170 | 186 | 540 | | 310 | 1.0690 | 173 | 1.0855 | 181 | 1.1077 | 184 | 1,1356 | 181 | 558 | | 320 | 1.0863 | 169 | 1.1036 | 177 | 1.1261 | 179 | 1,1537 | 178 | 576 | | 330 | 1.1032 | 166 | 1.1213 | 172 | 1.1440 | 175 | 1.1715 | 173 | 594 | | 340 | 1.1198 | 164 | 1.1385 | 169 | 1.1615 | 172 | 1.1888 | 168 | 612 | | 350 | 1,1362 | 1/1 | 1 1554 | | 1 1707 | | 1 005/ | | | | 360 | | 161 | 1.1554 | 166 | 1.1787 | 167 | 1.2056 | 168 | 630 | | | 1.1523 | 158 | 1.1720 | 163 | 1.1954 | 164 | 1.2224 | 163 | 648 | | 370 | 1.1681 | 156 | 1.1883 | 159 | 1.2118 | 160 | 1.2387 | 158 | 666 | | 380 | 1.1837 | 153 | 1.2042 | 156 | 1.2278 | 158 | 1.2545 | 156 | 684 | | 390 | 1.1990 | 150 | 1.2198 | 153 | 1.2436 | 154 | 1.2701 | 151 | 702 | | 400 | 1.2140 | 148 | 1.2351 | 152 | 1.2590 | 150 | 1.2852 | 150 | 720 | | 410 | 1.2288 | 146 | 1,2503 | 148 | 1.2740 | 148 | 1.3002 | | 738 | | 420 | 1.2434 | 144 | 1.2651 | | 1.2888 | | | 145 | | | 430 | 1.2578 | | | 146 | | 146 | 1.3147 | 145 | 756 | | | | 142 | 1.2797 | 143 | 1.3034 | 144 | 1.3292 | 142 | 774 | | 440 | 1.2720 | 140 | 1.2940 | 140 | 1.3178 | 142 | 1.3434 | 145 | 792 | | 450 | 1.2860 | 138 | 1.3080 | 140 | 1.3320 | 140 | 1.3579 | 135 | 810 | | 460 | 1,2998 | 136 | 1,3220 | 138 | 1.3460 | 138 | 1.3714 | 138 | 828 | | 470 | 1.3134 | 135 | 1.3358 | 136 | 1.3598 | 134 | 1.3852 | 134 | 846 | | 480 | 1.3269 | 132 | 1.3494 | 134 | 1.3732 | 134 | 1.3986 | 133 | 864 | | 490 | 1.3401 | 131 | 1.3628 | 131 | 1.3866 | 132 | 1.4119 | 130 | 882 | | | | -/- | 2,5020 | 1,1 | 1.5000 | 132 | 1.7117 | 150 | 402 | | 500 | 1.3532 | 130 | 1.3759 | 130 | 1.3998 | 129 | 1.4249 | 128 | 900 | | 510 | 1.3662 | 128 | 1.3889 | 129 | 1.4127 | 129 | 1.4377 | 126 | 918 | | 520 | 1.3790 | 126 | 1.4018 | 126 | 1.4256 | 126 | 1.4503 | 125 | 936 | | 530 | 1.3916 | 125 | 1,4144 | 124 | 1.4382 | 124 | 1.4628 | 124 | 954 | | 540 | 1.4041 | 123 | 1.4268 | 124 | 1.4506 | 122 | 1.4752 | 122 | 972 | | 550 | | | | | | | | | | | 550 | 1.4164 | 121 | 1.4392 | 122 | 1.4628 | 122 | 1.4874 | 120 | 990 | | 560 | 1.4285 | 121 | 1.4514 | 121 | 1.4750 | 120 | 1.4994 | 119 | 1008 | | 570 | 1.4406 | 119 | 1.4635 | 119 | 1.4870 | 119 | 1.5113 | 117 | 1026 | | 580 | 1.4525 | 118 | 1.4754 | 118 | 1.4989 | 118 | 1,5230 | 116 | 1044 | | 590 | 1.4643 | 12 | 1.4872 | 12 | 1.5107 | 11 | 1.5346 | 11 | 1062 | | 600 | 1.476 | 10 | 1.400 | •• | 1 500 | | 3.544 | | 1000 | | 610 | 1.488 | 12 | 1.499 | 11 | 1.522 | 11 | 1.546 | 11 | 1080 | | | | 11 | 1.510 | 11 | 1.533 | 12 | 1.557 | 12 | 1098 | | 620 | 1.499 | 12 | 1.521 | 12 | 1.545 | 11 | 1.569 | 11 | 1116 | | 630 | 1.511 | 11 | 1.533 | 11 | 1.556 | 11 | 1.580 | 11 | 1134 | | 640 | 1.522 | 11 | 1.544 | 11 | 1.567 | 11 | 1.591 | 11 | 1152 | | 650 | 1.533 | 11 | 1.555 | 11 | 1.578 | 11 | 1.602 | 11 | 1170 | | 660 | 1.544 | 11 | 1.566 | 11 | 1.589 | 11 | 1.613 | 10 | 1188 | | 670 | 1.555 | 11 | 1.577 | 11 | 1.600 | 11 | 1.623 | | 1206 | | 680 | 1.566 | 11 | 1.588 | 11 | 1.611 | | | 11 | | | 690 | 1.577 | 10 | | | 1.622 | 11 | 1.634 | 10 | 1224 | | 070 | 1.511 | 70 | 1.599 | 10 | 1.022 | 10 | 1.644 | 11 | 1242 | | 700 | 1.587 | | 1.609 | | 1.632 | | 1.655 | | 1260 | | | • | | | | | | 000 | | 2200 | | | | | 1 | | 1. | | | | | |--------------|----------------|------------------|----------------|----------
----------------|------------------|----------------|-------------------------|--------------| | °K | 10 | atm | 40 0 | tm | 70 at | m | 100 | atm | °R | | | | | | | | | | | | | 700 | 1.587 | 11 | 1.609 | 11 | 1.632 | 10 | 1.655 | 10 | 1260 | | 710 | 1.598 | 10 | 1.620 | 10 | 1.642 | 10 | 1.665 | 10 | 1278 | | 720 | 1.608 | 11 | 1.630 | 10 | 1.652 | 11 | 1.675 | 11 | 1296 | | 730 | 1.619 | 10 | 1.640 | 10 | 1.663 | 10 | 1.686 | 10 | 1314 | | 740 | 1.629 | 10 | 1.650 | 11 | 1.673 | 10 | 1.696 | 10 | 1332 | | 750
760 | 1.639
1.649 | 10 | 1.661
1.671 | 10
10 | 1.683
1.693 | 10
10 | 1.706
1.716 | 10
10 | 1350
1368 | | 770 | 1.660 | - 11
- 10 | 1.681 | 10 | 1.703 | 10 | 1.726 | 9 | 1386 | | 780 | 1.670 | 10 | 1.691 | 10 | 1.713 | 10 | 1.735 | 10 | 1404 | | 790 | 1.680 | 10 | 1.701 | 10 | 1.723 | 10 | 1.745 | 9 | 1422 | | | | | | | 1 | | n nic a | | 1440 | | 800 | 1.690 | 48 | 1.711 | 49 | 1.733 | 48 | 1.754 | 48 | 1440 | | 850 | 1.738 | 47 | 1.760 | 47 | 1.781 | 46 | 1.802 | 45 | 1530 | | 900 | 1.785 | 46 | 1.807 | 45 | 1.827 | 45 | 1.847
1.892 | 45 | 1620
1710 | | 950
1000 | 1.831
1.875 | 44
43 | 1.852
1.896 | 44
43 | 1.872
1.916 | 44
42 | 1.936 | 44
4 2 | 1800 | | | | | | | | | | | | | 1050 | 1.918 | 43 | 1.939 | 41 | 1.958 | 42 | 1.978 | 42 | 1890
1980 | | 1100 | 1.961 | 41 | 1.980 | 41 | 2.000 | 41 | 2.020 | 40 | 2070 | | 1150 | 2.002 | 40 | 2.021 | 40 | 2.041
2.080 | 39 | 2.060
2.100 | 40
39 | 2160 | | 1200
1250 | 2.042
2.082 | 40
38 | 2.061
2.100 | 39
39 | 2.119 | 39
38 | 2.139 | 38 | 2250 | | 1300 | 2.120 | 38 | 2.139 | 37 | 2.157 | 39 | 2.177 | 37 | 2340 | | 1350 | 2.158 | 37 | 2.176 | 37 | 2.196 | 35 | 2.214 | 36 | 2430 | | 1400 | 2.195 | 36 | 2.213 | 36 | 2.231 | 36 | 2.250 | 36 | 2520 | | 1450 | 2.231 | 36 | 2.249 | 35 | 2.267 | 36 | 2.286 | 35 | 2610 | | 1500 | 2.267 | 34 | 2.284 | 35 | 2.303 | 34 | 2.321 | 34 | 2700 | | 1550 | 2.301 | 34 | 2.319 | 33 | 2.337 | 33 | 2.355 | 34 | 2790 | | 1600 | 2.335 | 34 | 2.352 | 33 | 2.370 | 33 | 2.389 | 33 | 2880 | | 1650 | 2.369 | 33 | 2.385 | 33 | 2.303 | 33 | 2.422
2.455 | 33 | 2970
3060 | | 1700
1750 | 2.402
2.435 | 33
32 | 2.418
2.452 | 34
34 | 2.436
2.469 | 33
33 | 2.487 | 32
31 | 3150 | | 1800 | 2.467 | 3 1 | 2,486 | 33 | 2.502 | 32 | 2.518 | 31 | 3240 | | 1850 | 2,498 | 31 | 2,519 | 32 | 2.534 | 31 | 2.549 | 31 | 3330 | | 1900 | 2.529 | 31 | 2.551 | 31 | 2.565 | 30 | 2.580 | 30 | 3420 | | 1950 | 2.560 | 30 | 2.582 | 30 | 2.595 | 30 | 2.610 | 29 | 3510 | | 2000 | 2.590 | 29 | 2.612 | 30 | 2.625 | 29 | 2.639 | 28 | 3600 | | 2050 | 2.619 | 29 | 2.642 | 29 | 2.654 | 31 | 2.667 | 30 | 3690 | | 2100 | 2.648 | 28 | 2.671 | 28 | 2.685 | 28 | 2.697 | 28 | 3780 | | 2150 | 2.676 | 28 | 2.699 | 27 | 2.713 | 28 | 2.725 | 28 | 3870
3960 | | 2200
2250 | 2.704
2.731 | 27
26 | 2.726
2.754 | 28
27 | 2.741
2.769 | 2 8
27 | 2.753
2.781 | 28
27 | 4050 | | 2300 | 2.757 | 26 | 2.781 | 26 | 2.796 | 27 | 2.808 | 27 | 4140 | | 2350 | 2.783 | 26
25 | 2.807 | 26 | 2.823 | 26 | 2.835 | 26 | 4230 | | 2400 | 2.808 | 25 | 2.833 | 26 | 2.849 | 27 | 2.861 | 26 | 4320 | | 2450 | 2.833 | 25 | 2.859 | 26 | 2.876 | 25 | 2.887 | 26 | 4410 | | 2500 | 2.858 | 25 | 2.885 | 26 | 2.901 | 26 | 2,913 | 25 | 4500 | | 2550 | 2.883 | 24 | 2.911 | 25 | 2.927 | 25 | 2.938 | 25 | 4590 | | 2600 | 2.907 | 24 | 2.936 | 25 | 2.952 | 25 | 2.963 | 25 | 4680 | | 2650 | 2.931 | 24 | 2.961 | 26 | 2.977 | 26 | 2.988 | 25 | 4770 | | 2700
2750 | 2.955
2.979 | 24
23 | 2.987
3.011 | 24
24 | 3.003
3.027 | 24
25 | 3.013
3.038 | 25
24 | 4860
4950 | | | | | | | 3,052 | | 3,062 | 24 | 5040 | | 2800
2850 | 3.002
3.025 | 2 3
22 | 3.035
3.059 | 24
22 | 3.075 | 2 3
23 | 3.086 | 23 | 5130 | | 2900 | 3.047 | 22
23 | 3.081 | 23 | 3.098 | 22 | 3.109 | 22 | 5220 | | 2950 | 3.070 | 22 | 3.104 | 21 | 3.120 | 22 | 3.131 | 21 | 5310 | | 3000 | 3.092 | | 3.125 | | 3.142 | | 3.152 | | 5400 | | | | | | | | | | | | Table 2-8. VISCOSITY OF AIR AT ATMOSPHERIC PRESSURE | οK | 7/70 | | o _R | οK | 7/70 | | o _R | oK | 7/70 | | OR | |------------|----------------|-------------|----------------|------|-------|----|----------------|------|-------|-----|------| | 100 | 4020 | | | | | | | | | | | | 110 | .4038 | 410 | 180 | 600 | 1.758 | 19 | 1080 | 1100 | 2.562 | 14 | 1980 | | | .4448 | 400 | 198 | 610 | 1.777 | 19 | 1098 | 1110 | 2.576 | 13 | 1998 | | 120
130 | .4848
.5239 | 391 | 216 | 620 | 1.796 | 19 | 1116 | 1120 | 2.589 | 13 | 2016 | | 140 | | 382 | 234 | 630 | 1.815 | 19 | 1134 | 1130 | 2.602 | 14 | 2034 | | | .5621 | 373 | 2 52 | 640 | 1.834 | 18 | 1152 | 1140 | 2,616 | 13 | 2052 | | 150 | .5994 | 365 | 270 | 650 | 1.852 | 18 | 1170 | 1150 | 2,629 | 13 | 2070 | | 160 | .6359 | 3 57 | 288 | 660 | 1.870 | 18 | 1188 | 1160 | 2.642 | 14 | 2088 | | 170 | .6716 | 349 | 306 | 670 | 1.888 | 18 | 1206 | 1170 | 2.656 | 13 | 2106 | | 180
190 | .7065 | 342 | 324 | 680 | 1.906 | 18 | 1224 | 1180 | 2.669 | 14 | 2124 | | | .7407 | 335 | 342 | 690 | 1.924 | 18 | 1242 | 1190 | 2.683 | 13 | 2142 | | 200 | .7742 | 328 | 360 | 700 | 1.942 | 17 | 1260 | 1200 | 2.696 | 13 | 2160 | | 210 | .8070 | 321 | 378 | 710 | 1.959 | 18 | 1278 | 1210 | 2.709 | ย | 2178 | | 220 | .8391 | 315 | 396 | 720 | 1.977 | 17 | 1296 | 1220 | 2.722 | B | 2196 | | 230 | .8706 | 309 | 414 | 730 | 1.994 | 18 | 1314 | 1230 | 2.735 | 12 | 2214 | | 240 | .9015 | 304 | 432 | 740 | 2.012 | 17 | 1332 | 1240 | 2.747 | 13 | 2232 | | 250 | .9319 | 298 | 450 | 750 | 2.029 | 17 | 1350 | 1250 | 2,760 | B | 2250 | | 260 | .9617 | 292 | 468 | 760 | 2.046 | 17 | 1368 | 1260 | 2.773 | 13 | 2268 | | 270 | .9909 | 29 | 486 | 770 | 2.063 | 17 | 1386 | 1270 | 2.786 | ij | 2286 | | 280 | 1.020 | 28 | 504 | 780 | 2.080 | 16 | 1404 | 1280 | 2.799 | 13 | 2304 | | 290 | 1.048 | 28 | 522 | 790 | 2.096 | 16 | 1422 | 1290 | 2.812 | 12 | 2322 | | 300 | 1.076 | 27 | 540 | 800 | 2.112 | 16 | 1440 | 1300 | 2.824 | 13 | 2340 | | 310 | 1.103 | 27 | 558 | 810 | 2.128 | 17 | 1458 | 1310 | 2.837 | 12 | 2358 | | 320 | 1.130 | 27 | 576 | 820 | 2.145 | 16 | 1476 | 1320 | 2.849 | 13 | 2376 | | 330 | 1.157 | 26 | 594 | 830 | 2.161 | 16 | 1494 | 1330 | 2.862 | 12 | 2394 | | 340 | 1.183 | 26 | 612 | 840 | 2.177 | 16 | 1512 | 1340 | 2.874 | 12 | 2412 | | 350 | 1.209 | 25 | 630 | 850 | 2.193 | 16 | 1530 | 1350 | 2.886 | 12 | 2430 | | 360 | 1.234 | 25 | 648 | 860 | 2.209 | 16 | 1548 | 1360 | 2.898 | 13 | 2448 | | 370 | 1.259 | 24 | 666 | 870 | 2.225 | 15 | 1566 | 1370 | 2.911 | 12 | 2466 | | 380 | 1.283 | 25 | 684 | 880 | 2.240 | 16 | 1584 | 1380 | 2.923 | 12 | 2484 | | 390 | 1.308 | 24 | 702 | 890 | 2.256 | 15 | 1602 | 1390 | 2.935 | 12 | 2502 | | 400 | 1.332 | 24 | 720 | 900 | 2,271 | 15 | 1620 | 1400 | 2.947 | 13 | 2520 | | 410 | 1.356 | 23 | 738 | 910 | 2.286 | 15 | 1638 | 1410 | 2.960 | 12 | 2538 | | 420 | 1.379 | 23 | 756 | 920 | 2.301 | 15 | 1656 | 1420 | 2.972 | 12 | 2556 | | 430 | 1.402 | 23 | 774 | 930 | 2.316 | 15 | 1674 | 1430 | 2.984 | 11 | 2574 | | 440 | 1.425 | 23 | 792 | 940 | 2.331 | 15 | 1692 | 1440 | 2.995 | 12 | 2592 | | 450 | 1.448 | 22 | 810 | 950 | 2.346 | 16 | 1710 | 1450 | 3.007 | 12 | 2610 | | 460 | 1.470 | 21 | 828 | 960 | 2.362 | 15 | 1728 | 1460 | 3.019 | 12 | 2628 | | 470 | 1.491 | 22 | 846 | 970 | 2.377 | 14 | 1746 | 1470 | 3.031 | 11 | 2646 | | 480 | 1.513 | 21 | 864 | 980 | 2.391 | 15 | 1764 | 1480 | 3.042 | 12 | 2664 | | 490 | 1.534 | 22 | 882 | 990 | 2.406 | 14 | 1782 | 1490 | 3.054 | 12 | 2682 | | 500 | 1.556 | 21 | 900 | 1000 | 2.420 | 15 | 1800 | 1500 | 3.066 | 114 | 2700 | | 510 | 1.577 | 21 | 918 | 1010 | 2.435 | 15 | 1818 | 1600 | 3.180 | 110 | 2880 | | 520 | 1.598 | 21 | 936 | 1020 | 2.450 | 14 | 1836 | 1700 | 3.290 | 107 | 3060 | | 530 | 1.619 | 21 | 954 | 1030 | 2.464 | 14 | 1854 | 1800 | 3.397 | 104 | 3240 | | 540 | 1.640 | 20 | 972 | 1040 | 2.478 | 14 | 1872 | 1900 | 3.501 | *** | 3420 | | 550 | 1.660 | 20 | 990 | 1050 | 2.492 | 14 | 1890 | | | | | | 560 | 1.680 | 20 | 1008 | 1060 | 2.506 | 14 | 1908 | | | | | | 570 | 1.700 | 20 | 1026 | 1070 | 2,520 | 14 | 1926 | | | | | | 580 | 1.720 | 19 | 1044 | 1080 | 2.534 | 14 | 1944 | | | | | | 590 | 1.739 | 19 | 1062 | 1090 | 2.548 | 14 | 1962 | | | | | | 600 | 1.758 | | 1080 | 1100 | 2.562 | | 1980 | | | | | | | | | | | | | - | | | | | Table 2-9. THERMAL CONDUCTIVITY OF AIR AT ATMOSPHERIC PRESSURE | OK | , | | | | | | | | | |--|----------------|--------------------|-----|----------------|-----|----------------|------------------|-----------------|------| | 80 | o _K | . k/k ₀ | | o _R | | o _K | k/k ₀ | | °R. | | 90 | | | | | | <u></u> | | | | | 100 | | | 367 | 144 | | | | | | | 110 | 90 | .3459 | 372 | 162 | 1 | | | | | | 110 | | | | | | | | | | | 120 | | |
 | | | | 25 ⁻ | | | 130 | 110 | .4203 | | | i | 610 | 1.956 | 24 | 1098 | | 140 | | | | | | 620 | 1.980 | 24 | 1116 | | 150 | | | 370 | | 1 | 630 | 2.004 | 24 | 1134 | | 160 | 140 | .5318 | 369 | 252 | ı | 640 | 2.028 | 24 | 1152 | | 160 | 150 | 5/07 | | 070 | | | | | | | 170 | | .5687 | | | 1 | | | | | | 180 | | | | | | | | | | | 190 | | | | | 1 | | | | | | 200 | | | | | | | | 23 | | | 210 | 190 | ./138 | 356 | 342 | ì | 690 | 2.146 | 23 | 1242 | | 210 | 200 | 7/10/ | 252 | 340 | | 700 | 2.142 | | 3040 | | 220 | | | | | | | | | | | 230 | 220 | | | | | | | | | | 240 | 220 | | | | i | | | | | | 250 | | | | | 1 | | | | | | 260 | 240 | .8885 | 340 | 432 | | 740 | 2,259 | 23 | 1332 | | 260 | 250 | 9225 | 224 | 450 | 1 | 750 | 2 202 | | 1250 | | 270 | | | | | i | | | | | | 280 | 270 | | | | l | | | | | | 290 | | 1 022 | | | l | | | | | | 300 1.087 32 540 800 2.392 21 1440 310 1.119 32 558 810 2.413 21 1458 320 1.151 31 576 820 2.434 22 1476 330 1.182 31 594 830 2.456 21 1494 340 1.213 31 612 840 2.477 21 1512 350 1.244 31 630 850 2.498 20 1530 360 1.275 30 648 860 2.518 21 1548 370 1.305 30 666 870 2.539 20 1566 380 1.335 30 684 880 2.559 21 1584 390 1.365 29 702 890 2.580 20 1602 400 1.394 29 720 900 2.600 20 1602 400 1.394 29 720 900 2.600 20 1620 410 1.423 29 738 910 2.620 20 1638 420 1.452 29 756 920 2.640 21 1656 430 1.481 28 774 930 2.661 20 1674 440 1.509 28 792 940 2.681 20 1692 450 1.537 28 810 950 2.701 19 1710 460 1.565 28 828 960 2.720 20 1728 470 1.593 27 846 970 2.740 19 1746 480 1.620 27 864 980 2.759 20 1764 480 1.620 27 864 980 2.759 20 1764 480 1.647 27 882 990 2.779 19 1786 550 1.805 26 990 560 1.831 25 1008 570 1.856 25 1026 580 1.881 25 1044 590 1.906 25 1062 | | | | | ŀ | | | | | | 310 1.119 32 558 810 2.413 21 1458 320 1.151 31 576 820 2.434 22 1476 330 1.182 31 594 830 2.456 21 1494 340 1.213 31 612 840 2.477 21 1512 350 1.244 31 630 850 2.498 20 1530 360 1.275 30 648 860 2.518 21 1548 370 1.305 30 666 870 2.539 20 1566 380 1.335 30 684 880 2.559 21 1584 390 1.365 29 702 890 2.580 20 1602 400 1.342 29 738 910 2.620 20 1602 400 1.423 29 738 910 2.620 | 270 | 1.055 | 32 | 222 | i | 790 | 2.370 | 22 | 1422 | | 310 1.119 32 558 810 2.413 21 1458 320 1.151 31 576 820 2.434 22 1476 330 1.182 31 594 830 2.456 21 1494 340 1.213 31 612 840 2.477 21 1512 350 1.244 31 630 850 2.498 20 1530 360 1.275 30 648 860 2.518 21 1548 370 1.305 30 666 870 2.539 20 1566 380 1.335 30 684 880 2.559 21 1584 390 1.365 29 702 890 2.580 20 1602 400 1.342 29 738 910 2.620 20 1602 400 1.423 29 738 910 2.620 | 300 | 1.087 | 32 | 540 | l | 800 | 2 302 | 23 | 1440 | | 320 1.151 31 576 820 2.434 22 1476 330 1.182 31 594 830 2.456 21 1476 340 1.213 31 612 840 2.477 21 1512 350 1.244 31 630 850 2.498 20 1530 360 1.275 30 648 860 2.518 21 1548 370 1.305 30 666 870 2.539 20 1566 380 1.335 30 664 880 2.559 21 1584 390 1.365 29 702 890 2.580 20 1602 400 1.394 29 720 900 2.600 20 1620 410 1.423 29 738 910 2.620 20 1638 420 1.452 29 756 920 2.640 21 1656 430 1.481 28 7774 440 1.509 28 792 940 2.681 20 1674 440 1.599 28 792 940 2.681 20 1692 450 1.537 28 810 950 2.701 19 1710 460 1.565 28 828 960 2.720 20 1728 470 1.593 27 846 970 2.740 19 1746 480 1.620 27 864 970 2.740 19 1746 480 1.620 27 864 970 2.759 20 1764 490 1.647 27 882 990 2.759 20 1764 490 1.647 27 882 990 2.779 19 1782 500 1.674 27 900 1000 2.798 1800 500 1.727 26 936 530 1.753 26 954 570 1.856 25 1026 580 1.881 25 1044 590 1.906 25 1062 | | | | | 1 | | | | | | 330 | | | | | | | | | | | 340 1.213 31 612 840 2.477 21 1512 350 1.244 31 630 850 2.498 20 1530 360 1.275 30 648 860 2.518 21 1548 370 1.305 30 666 870 2.539 20 1566 380 1.335 30 684 880 2.559 21 1584 390 1.365 29 702 890 2.580 20 1602 400 1.394 29 720 900 2.600 20 1620 410 1.423 29 738 910 2.620 20 1638 420 1.452 29 756 920 2.640 21 1656 430 1.481 28 774 930 2.661 20 1674 440 1.509 28 792 940 2.681 | | | | 594 | ŀ | | | | | | 350 | | | | | - 1 | | | | | | 360 1,275 30 648 860 2,518 21 1548 370 1,305 30 666 870 2,539 20 1566 380 1,335 30 6684 880 2,559 21 1584 390 1,365 29 702 890 2,580 20 1602 400 1,394 29 720 900 2,600 20 1620 410 1,423 29 738 910 2,620 20 1638 420 1,452 29 756 920 2,640 21 1656 430 1,481 28 774 930 2,661 20 1674 440 1,537 28 810 950 2,701 19 1710 450 1,537 28 828 960 2,720 20 1728 470 1,593 27 846 970 2,740 19 1746 480 1,647 27 882 990 2,75 | 710 | 1,217 | 71 | 012 | l | 040 | 2,4// | 21 | 1512 | | 360 1,275 30 648 860 2,518 21 1548 370 1,305 30 666 870 2,539 20 1566 380 1,335 30 6684 880 2,559 21 1584 390 1,365 29 702 890 2,580 20 1602 400 1,394 29 720 900 2,600 20 1620 410 1,423 29 738 910 2,620 20 1638 420 1,452 29 756 920 2,640 21 1656 430 1,481 28 774 930 2,661 20 1674 440 1,537 28 810 950 2,701 19 1710 450 1,537 28 828 960 2,720 20 1728 470 1,593 27 846 970 2,740 19 1746 480 1,647 27 882 990 2,75 | 350 | 1.244 | 31 | 630 | l | 850 | 2.498 | 20 | 1530 | | 370 1,305 30 666 870 2,539 20 1566 380 1,335 30 684 880 2,559 21 1584 390 1,365 29 702 890 2,580 20 1602 400 1,394 29 720 900 2,600 20 1620 410 1,423 29 738 910 2,620 20 1638 420 1,452 29 756 920 2,640 21 1656 430 1,481 28 774 930 2,661 20 1674 440 1,509 28 792 940 2,681 20 1672 450 1,537 28 810 950 2,701 19 1710 460 1,565 28 828 960 2,720 20 1728 470 1,593 27 846 970 2,740 19 1746 480 1,620 27 864 980 2,759 20 1764 490 1,647 27 900 1000 2,798 1800 500 1,674 27 <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> | | | | | 1 | | | | | | 380 1.335 30 684 880 2.559 21 1584 390 1.365 29 702 890 2.580 20 1602 400 1.394 29 720 900 2.600 20 1620 410 1.423 29 738 910 2.620 20 1638 420 1.452 29 756 920 2.640 21 1656 430 1.481 28 774 930 2.661 20 1674 440 1.509 28 792 940 2.681 20 1672 450 1.537 28 810 950 2.701 19 1710 460 1.565 28 828 960 2.720 20 1728 470 1.593 27 846 970 2.740 19 1746 480 1.620 27 864 980 2.759 20 1764 490 1.647 27 900 1000 2.798 1800 500 1.674 27 900 1000 2.798 1800 550 1.805 26 990 </td <td></td> <td>1.305</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | 1.305 | | | | | | | | | 390 1.365 29 702 890 2,580 20 1602 400 1.394 29 720 900 2,600 20 1620 410 1.423 29 738 910 2,620 20 1638 420 1.452 29 756 920 2,640 21 1656 430 1.481 28 774 930 2,661 20 1674 440 1.509 28 810 950 2,701 19 1710 450 1.537 28 810 950 2,701 19 1710 460 1.565 28 828 960 2,720 20 1728 470 1.593 27 846 970 2,740 19 1746 480 1.620 27 864 980 2,759 20 1764 490 1.647 27 900 1000 2,798 1800 500 1.674 27 900 1000 2,798 1800 550 1.805 26 936 550 1.831 25 1008 570 1.856 25 <td></td> <td></td> <td></td> <td></td> <td>ļ</td> <td></td> <td></td> <td></td> <td></td> | | | | | ļ | | | | | | 400 1.394 29 720 900 2.600 20 1620 410 1.423 29 738 910 2.620 20 1638 420 1.452 29 756 920 2.640 21 1656 430 1.481 28 774 930 2.661 20 1674 440 1.509 28 792 940 2.681 20 1692 450 1.537 28 810 950 2.701 19 1710 460 1.565 28 828 960 2.720 20 1728 470 1.593 27 846 970 2.740 19 1746 480 1.620 27 864 980 2.759 20 1764 490 1.647 27 900 1000 2.798 1800 510 1.701 26 918 92 2.799 19 1782 550 1.805 26 954 954 972 1008 | 390 | | | | 1 | | | | | | 410 1.423 29 738 910 2.620 20 1638 420 1.452 29 756 920 2.640 21 1656 430 1.481 28 774 930 2.661 20 1674 440 1.509 28 810 940 2.681 20 1692 450 1.537 28 810 950 2.701 19 1710 460 1.565 28 828 960 2.720 20 1728 470 1.593 27 846 970 2.740 19 1746 480 1.620 27 864 980 2.759 20 1764 490 1.647 27 882 990 2.779 19 1782 500 1.674 27 900 1000 2.798 1800 520 1.727 26 936 55 530 1.81 25 1008 570 1.856 25 1026 580 1.88 | | | | | İ | | -, | | | | 410 1.423 29 738 910 2.620 20 1638 420 1.452 29 756 920 2.640 21 1656 430 1.481 28 774 930 2.661 20 1674 440 1.509 28 792 940 2.681 20 1674 450 1.537 28 810 950 2.701 19 1710 460 1.565 28 828 960 2.720 20 1728 470 1.593 27 846 970 2.740 19 1746 480 1.620 27 864 980 2.759 20 1764 490 1.647 27 882 990 2.779 19 1782 500 1.674 27 900 1000 2.798 1800 510 1.701 26 918 91 2.799 19 1800 550 1.805 26 994 990 2.798 18 | | | 29 | | - | 900 | 2,600 | 20 | 1620 | | 420 1.452 29 756 430 1.481 28 774 930 2.661 20 1674 440 1.509 28 792 940 2.681 20 1692 450 1.537 28 810 950 2.701 19 1710 460 1.565 28 828 960 2.720 20 1728 470 1.593 27 846 970 2.740 19 1746 480 1.620 27 864 980 2.759 20 1764 490 1.647 27 882 990 2.779 19 1782 500 1.674 27 900 1000 2.798 1800 510 1.701 26 918 918 91 91 91 520 1.727 26 936 954 972 972 970 | | | 29 | | | 910 | | 20 | | | 430 1.481 28 774 440 1.509 28 792 930 2.661 20 1674 440 1.509 28 810 950 2.701 19 1710 460 1.565 28 828 960 2.720 20 1728 470 1.593 27 846 970 2.740 19 1746 480 1.620 27 864 980 2.759 20 1764 490 1.647 27 900 2.779 19 1782 500 1.674 27 900 1000 2.798 1800 510 1.701 26 918 < | | | 29 | | | 920 | 2,640 | 21 | 1656 | | 440 1.509 28 792 940 2.681 20 1692 450 1.537 28 810 950 2.701 19 1710 460 1.565 28 828 960 2.720 20 1728 470 1.593 27 846 970 2.740 19 1746 480 1.620 27 864 980 2.759 20 1764 490 1.647 27 900 2.779 19 1782 500 1.674 27 900 1000 2.798 1800 510 1.701 26 918 936 520 1.727 26 936 530 1.753 26 954 540 1.779 26 972 550 1.805 26 990 560 1.831 25 1008 570 1.856 25 1026 580 1.881 25 1044 590 1.906 25 1062 | | 1.481 | 28 | 774 | 1 | 930 | | 20 | | | 460 1.565 28 828 960 2.720 20 1728 470 1.593 27 846 970 2.740 19 1746 480 1.620 27 864 980 2.759 20 1764 490 1.647 27 900 2.779 19 1782 500 1.674 27 900 1000 2.798 1800 510 1.701 26 918 918 972 1000 2.798 1800 530 1.753 26 936 954 972 972 1000 2.798 1800 550 1.805 26 990 972 | 440 | 1.509 | 28 | 792 | 1 | 940 | | | | | 460 1.565 28 828 960 2.720 20 1728 470 1.593 27 846 970 2.740 19 1746 480 1.620 27 864 980 2.759 20 1764 490 1.647 27 900
2.779 19 1782 500 1.674 27 900 1000 2.798 1800 510 1.701 26 918 918 972 1000 2.798 1800 530 1.753 26 954 972 < | 450 | | | 010 | i | | | | | | 470 1.593 27 846 970 2.740 19 1746 480 1.620 27 864 980 2.759 20 1764 490 1.647 27 882 990 2.779 19 1782 500 1.674 27 900 1000 2.798 1800 510 1.701 26 918 </td <td></td> <td>1.53/</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | 1.53/ | | | | | | | | | 480 1.620 27 864 980 2.759 20 1764 490 1.647 27 882 990 2.779 19 1782 500 1.674 27 900 1000 2.798 1800 510 1.701 26 918 | | | | | 1 | | | | | | 490 1.647 27 882 990 2.779 19 1782 500 1.674 27 900 1000 2.798 1800 510 1.701 26 918 9 | | | | | ı | | | | | | 500 1.674 27 900 1000 2.798 1800 510 1.701 26 918 520 1.727 26 936 530 1.753 26 954 540 1.779 26 972 550 1.805 26 972 550 1.831 25 1008 570 1.856 25 1026 580 1.881 25 1044 590 1.906 25 1062 | | | | | ı | | | | | | 510 1.701 26 918 520 1.727 26 936 530 1.753 26 954 540 1.779 26 972 550 1.805 26 990 560 1.831 25 1008 570 1.856 25 1026 580 1.881 25 1044 590 1.906 25 1062 | 490 | 1.64/ | 27 | 882 | 1 | 990 | 2.779 | 19 · | 1782 | | 510 1.701 26 918 520 1.727 26 936 530 1.753 26 954 540 1.779 26 972 550 1.805 26 990 560 1.831 25 1008 570 1.856 25 1026 580 1.881 25 1044 590 1.906 25 1062 | 500 | 1 674 | 27 | gnn | ı | 1000 | 2 700 | | 1000 | | 520 1.727 26 936 530 1.753 26 954 540 1.779 26 972 550 1.805 26 990 560 1.831 25 1008 570 1.856 25 1026 580 1.881 25 1044 590 1.906 25 1062 | | | | | ! | 1000 | 2,198 | | 1800 | | 530 1.753 26 954 540 1.779 26 972 550 1.805 26 990 560 1.831 25 1008 570 1.856 25 1026 580 1.881 25 1044 590 1.906 25 1062 | | | | | ŀ | | | | | | 540 1.779 26 972 550 1.805 26 990 560 1.831 25 1008 570 1.856 25 1026 580 1.881 25 1044 590 1.906 25 1062 | | | | | ! | | | | | | 550 1.805 26 990 560 1.831 25 1008 570 1.856 25 1026 580 1.881 25 1044 590 1.906 25 1062 | | | | | l | | | | | | 560 1.831 25 1008 570 1.856 25 1026 580 1.881 25 1044 590 1.906 25 1062 | 5.40 | 2.77 | 20 | ,,, | Ì | | | | | | 560 1.831 25 1008 570 1.856 25 1026 580 1.881 25 1044 590 1.906 25 1062 | 550 | 1.805 | 26 | 990 | - 1 | | | | | | 570 1.856 25 1026
580 1.881 25 1044
590 1.906 25 1062 | | | | | | | | | | | 580 1.881 25 1044
590 1.906 25 1062 | | | | | İ | | • | | | | 590 1.906 25 1062 | | | | | | | | | | | | | | | | 1 | • | | | | | 600 1.931 1080 ¹ | | | | | | | | | - | | | 600 | 1.931 | | 1080 | ı | | | | | Table 2-10. PRANDTL NUMBER OF AIR AT ATMOSPHERIC PRESSURE $\eta_{\, C_p/k}$ | °K | (N _{Pr}) | | $(N_{Pr})^2$ | /3 | (N _{Pr}) | 1/3 | (N _{Pr}) | 1/2 | ٥R | |-------------------|------------------------------|----------------|--------------------------------------|----------|--------------------------------------|-----|------------------------------|-----|-------------------| | | · Pr' | | l . Pr | | l Pr | | · FF | | | | 100 | .770 | -4 | .841 | -4 | .916 | -1 | .877 | -2 | 180 | | 120 | .766 | - 5 | 837 | -3 | .915 | -2 | .875 | -3 | 216 | | 140 | .761 | -7 | B34 | -6 | 913 | -3 | .872 | -4 | 252 | | 140 | .701 | | .837
.834
.828
.822 | | .913
.910 | -3 | .868
.864 | -4 | 216
252
288 | | 160 | .754
.746 | ~8 | .020 | -6 | .907 | | .000 | -4 | 324 | | 180 | .746 | -7 | | -5 | | -3 | | -4 | | | 200
220 | .739
.732
.725
.719 | -7 | .817
.812
.807
.802
.798 | -5 | .904
.901
.898
.896
.893 | -3 | .860 | -4 | 360
396
432 | | 220 | .732 | -7 | .812 | -5 | .9 01 | -3 | .856 | -5 | 396 | | 240 | .725 | -6 | .807 | -5
-4 | .898 | -2 | .851 | -3 | 432 | | 260 | 719 | -6 | .802 | -4 | .896 | -3 | .848 | -4 | 46 | | 240
260
280 | .713 | -5 | .798 | -3 | .893 | -2 | .844 | -3 | 46
50 | | | .708 | -5 | .795 | -4 | | -2 | .841 | -3 | 54 | | 300
320 | .700 | | .791 | -3 | .891
.889 | -2 | .838 | -2 | 57 | | 220 | .703 | -4 | ./71 | | .887 | | .836 | -2 | 61
64 | | 340 | .699 | -4 | .788 | -4 | .007 | -1 | .834 | | 44 | | 360 | .703
.699
.695 | -4 | .788
.784 | -2 | .886
.884 | -2 | •024 | -3 | 68 | | 380 | .691 | -2 | .782 | -2 | .884 | -1 | .831 | -1 | | | 400 | .689 | -3 | .780 | -2 | .883
.882 | -1 | .830
.828 | -2 | 72
75
79 | | 420 | .686 | -2 | .778 | -2 | .882 | -1 | .828 | -1 | 75 | | 440 | .684 | -1 | .778
.776 | -1 | .881 | | .827 | -1 | 79 | | 460 | .683 | -1
-2 | .775 | -i | 881 | -1 | .826 | -1 | 82
86 | | | .003 | | .774 | -1 | .881
.881
.880 | -1 | .827
.826
.825 | • | 86 | | 480 | .681 | -1 | .//4 | | | -1 | | | | | 500 | .680 | | .774 | | .879 | | .825 | | 90 | | 520 | .680 | | .774 | | .879 | | .825 | | 93
97 | | 540 | .680 | | .774
.774 | | .879 | | .825 | | 97 | | 540 | .680 | | 774 | | .879 | | .825
.825
.825 | | 100 | | 540
560
580 | .680 | | .774
.774 | | .879
.879
.879
.879
.879 | | .825 | | 100
104 | | | 400 | | .774 | | .879 | 1 | .825 | | 108 | | 600 | .680 | 1 | .//4 | _ | .880 | 1 | 925 | 1 | 111 | | 620 | .681 | 1 | .774 | 1 | .000 | | .023 | - | 115 | | 640 | .682 | | .775 | | .880 | | .825
.826
.826 | | 118 | | 660 | .682 | 1 | .775 | | .880 | 1 | .826 | | 110 | | 680 | .683 | 1 | .775
.775 | . 1 | .880
.881 | | .826 | 1 | 122 | | 700 | .684 | 1 | .776 | 1 | .881 | 1 | .827
.828
.828 | 1 | 120 | | 720 | .685 | 1 | .777 | 1 | .882
.882 | | .828 | | 129 | | 720
740 | .686 | 1 | .778 | î | 882 | | 828 | 1 | 133 | | 740 | .687 | | .779 | | .882 | 1 | .829 | ī | 136 | | 760
780 | .688 | 1
1 | .779 | 1 | .883 | 1 | .830 | • | 140 | | | | | | | | _ | 930 | | 14 | | 80 0 | .689 | 1 | .780 | 1 | .883 | 1 | .830 | 1 | 144 | | 820 | .690 | 2 | .781 | 2 | .884 | | .831 | 1 | 14 | | 840 | -692 | 1 | .783 | | .884 | 1 | .832 | | 15 | | 860 | .693 | 2 | .783 | 1 | .884
.884
.885 | 1 | .832
.832 | 2 | 15 | | 880 | .695 | 1 | .784 | 1 | .886 | | .834 | | 15 | | 900 | .696 | 1 | .785 | 1 | .886 | 1 | .834 | 1 | 16:
16: | | 700 | .070 | | .786 | 1 | 997 | • | 835 | - | 16 | | 920 | .697 | 1 | .700 | | 007 | 1 | 025 | 2 | 160 | | 940 | .698 | 2 | .787 | 1 | .887
.887
.888 | 1 | .835
.835
.837
.837 | - | 169
173 | | 960 | .700 | 1 | .788 | 1 | .655 | _ | .0 <i>) </i> | | 17 | | 980 | .701 | 1 | .789 | 1 | .888 | 1 | .821 | 1 | 1/0 | | | | | | | | | .838 | | 18 | Table 2-11. IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR AIR | ſ | L Co | | (H° - E°) | · * | s° | | _ | |------------|------------------|------------------|------------------|-------------------------------|--------------------|---------------|--------------| | °K | C°p
R | | RTo | - | $\frac{3}{R}$ | • | °R | | <u> </u> | L | | 1 | | | - | L | | 10 | 3,5009 | - 68 | .1238 | 1280 | 12,0382 | 24240 | 18 | | 20 | 3.4941 | - 15 | .2518 | 1278 | 14.4622 | 14126 | 36
54 | | 30
40 | 3.4926
3.4918 | - 8
- 3 | .3796
.5075 | 1279
1278 | 15.8748
16.8832 | 10084
7801 | 72 | | | | | | | | | 90 | | 50
60 | 3.4915
3.4914 | - 1 | .6353
.7631 | 1278
1278 | 17.6633
18.2990 | 6357
5377 | 108 | | 70 | 3.4914 | - 1 | .8909 | 1279 | 18.8367 | 4667 | 126 | | 80 | 3.4913 | | 1.0188 | 1278 | 19.3034 | 4111 | 144
162 | | 90 | 3.4913 | | 1.1466 | 1278 | 19.7145 | 3679 | | | 100 | 3.4913 | 1 | 1.2744 | 1278 | 20.0824 | 3328 | 180
198 | | 110 | 3.4914 | | 1.4022
1.5300 | 1278
1278 | 20.4152
20.7190 | 3038
2794 | 216 | | 120
130 | 3.4914
3.4914 | | 1.6578 | 1278 | 20.9984 | 2588 | 234 | | 140 | 3.4914 | . 1 | 1.7856 | 1278 | 21.2572 | 2408 | 252 | | 150 | 3,4915 | 1 | 1.9134 | 1279 | 21.4980 | 2254 | 270 | | 160 | 3.4916 | | 2.0413 | 1278 | 21.7234 | 2117 | 288 | | 170 | 3.4916 | 1 | 2.1691 | 1278 | 21.9351 | 1995 | 306
324 | | 180
190 | 3.4917
3.4919 | 2
3 | 2.2969
2.4247 | 1278
1279 | 22.1346
22.3234 | 1888
1792 | 342 | | | | | | | | | 360 | | 200 | 3.4922 | 2 | 2.5526
2.6804 | 1278
1279 | 22.5026
22.6729 | 1703
1625 | 378 | | 210
220 | 3.4924
3.4927 | 3
5 | 2.8083 | 1279 | 22.8354 | 1553 | 396 | | 230 | 3.4932 | 5 | 2.9362 | 1279 | 22.9907 | 1487 | 414 | | 240 | 3.4937 | 8 | 3.0641 | 1279 | 23.1394 | 1426 | 432 | | 250 | 3.4945 | 8 | 3.1920 | 1279 | 23.2820 | 1371 | 450 | | 260 | 3.4953 | 10 | 3.3199 | 1280 | 23.4191
23.5510 | 1319
1272 | 468
486 | | 270
280 | 3.4963
3.4975 | 12
14 | 3.4479
3.5759 | 12 8 0
12 81 | 23,6782 | 1227 | 504 | | 290 | 3.4989 | 16 | 3.7040 | 1281 | 23.8009 | 1187 | 522 | | 300 | 3,5005 | 19 | 3,8321 | 1282 | 23,9196 | 1148 | 540 | | 310 | 3.5024 | 20 | 3.9603 | 1282 | 24.0344 | 1112 | 558 | | 320 | 3.5044 | 24 | 4.0885 | 1284 | 24.1456 | 1079 | 576
594 | | 330
340 | 3.5068
3.5093 | 25
29 | 4.2169
4.3453 | 1284
1285 | 24.2535
24.3582 | 1047
1018 | 612 | | - | | | 4.4738 | 1286 | 24.4600 | 990 | 630 | |
350
360 | 3.5122
3.5153 | 31
33 | 4,6024 | 1288 | 24.5590 | 963 | 648 | | 370 | 3,5186 | 38 | 4.7312 | 1289 | 24.6553 | 939 | 666 | | 380 | 3.5224 | 39 | 4.8601 | 1290 | 24.7492 | 916 | 684
702 | | 390 | 3.5263 | 42 | 4.9891 | 1291 | 24.8408 | 893 | | | 400 | 3.5305 | 44 | 5.1182 | 1294 | 24.9301 | 872 | 720
738 | | 410 | 3.5349 | 48 | 5.2476
5.3771 | 1295
1296 | 25.0173
25.1026 | 853
833 | 756 | | 420
430 | 3.5397
3.5447 | 50
52 | 5.5067 | 1299 | 25.1859 | 816 | 774 | | 440 | 3.5499 | 56 | 5.6366 | 1301 | 25.2675 | 798 | 792 | | 450 | 3.5555 | 58 | 5.7667 | 1302 | 25.3473 | 782 | 810 | | 460 | 3.5613 | 60 | 5.8969 | 1305 | 25.4255 | 767 | 828
846 | | 470 | 3.5673 | 62 | 6.0274 | 1307 | 25.5022
25.5773 | 751
738 | 864 | | 480
490 | 3.5735
3.5799 | 64
66 | 6.1581
6.2891 | 1310
1311 | 25.6511 | 724 | 882 | | | | | 6.4202 | 1315 | 25.7235 | 711 | 900 | | 500
510 | 3.5865
3.5933 | 68
70 | 6.5517 | 1316 | 25.7946 | 698 | 918 | | 520 | 3.600 3 | 72 | 6.6833 | 1320 | 25.8644 | 686 | 936
954 | | 530
540 | 3.6075
3.6149 | 7 4
75 | 6.8153
6.9475 | 1322
1324 | 25.9330
26.0005 | 675
664 | 972 | | | | | | | 26.0669 | 654 | 990 | | 550
560 | 3.6224
3.6300 | 76
77 | 7.0799
7.2127 | 1328
1330 | 26.1323 | 643 | 1008 | | 570 | 3.6377 | 79 | 7.3457 | 1333 | 26.1966 | 633 | 1026 | | 580 | 3.6456 | 79 | 7.4790 | 1336 | 26.2599 | 624 | 1044
1062 | | 590 | 3,6535 | 80 | 7.6126 | 1339 | 26.3223 | 615 | | | 600 | 3.6615 | | 7.7465 | | 26,3838 | | 1080 | | | | | | | | | | ^{*} The enthalpy function is divided here by a constant RT_0 where $T_0 = 273.16$ °K (491.688°R). Table 2-11. IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR AIR - Cont. | | | | | | | | 1 | | |--------------|------------------|------------|--------------------|----------------------|--------------------|---------------------|---|----------| | ٠ | C _p | | (H° - E°)* | | s° | | | °⁄- | | °K | R | | RT _o | | R | | | | | | | | | | - | | | | | 600 | 3,6615 | 81 | 7.7465 | 1342 | 26,3838 | 606 | | 10 | | 610 | 3.6696 | 82 | 7.8807 | 1345 | 26.4444 | 597 | | 10 | | 620 | 3.6778 | 82 | 8.0152 | 1348 | 26.5041 | 589 | | 11 | | 630 | 3.6860 | 83 | 8.1500 | 1351 | 26,5630 | 581 | | 11 | | 640 | 3.6943 | 84 | 8.2851 | 1354 | 26.6211 | 574 | | 11 | | 650 | 3,7027 | 84 | 8,4205 | 1357 | 26.6785 | 566 | • | 11 | | 660 | 3.7111 | 84 | 8.5562 | 1360 | 26.7351 | 559 | | 11 | | 670 | 3.7195 | 84 | 8.6922 | 1363 | 26.7910 | 551 | | 12 | | 680 | 3.7279 | 84 | 8.8285 | 1366 | 26.8461 | 545 | | 12 | | 690 | 3.7363 | 84 | 8.9651 | 1370 | 26.9006 | 538 | | 12 | | 700 | 3.7447 | 84 | 9.1021 | 1372 | 26.9544 | 532 | | 12 | | 710 | 3.7531 | 83 | 9.2393 | 1375 | 27.0076 | 525 | | 12 | | 720 | 3.7614 | 84 | 9.3768 | 1379 | 27.0601 | 520 | | 12 | | 730 | 3.7698 | 84 | 9.5147 | 1381 | 27.1121 | 513 | | 13 | | 740 | 3.7782 | 83 | 9.6528 | 1385 | 27.1634 | 508 | | 13 | | 750 | 3.7865 | 82 | 9.7913 | 1388 | 27.2142 | 502 | | 13 | | 760 | 3.7947 | 83 | 9.9301 | 1391 | 27.2644 | 497 | | 13 | | 770 | 3.8030 | 82 | 10.0692 | 1393 | 27.3141 | 491 | | 13 | | 780 | 3.8112 | 82 | 10.2085 | 1397 | 27.3632 | 486 | | 14 | | 790 | 3.8194 | 81 | 10,3482 | 1400 | 27.4118 | 481 | | 14 | | | | | 10 4000 | | 27 #500 | *** | | 14 | | 800 | 3.8275 | 395 | 10.4882
11.1924 | 7042 | 27.4599
27.6931 | 2332
2221 | | 15 | | 850 | 3.8670 | 379 | 11.1924 | 7113 | 27.9152 | 2121 | | 16 | | 900 | 3.9049 | 360 | 12.6218 | 7181
7245 | 28.1273 | 2030 | | 17 | | 950
1000 | 3.9409
3.9750 | 341
320 | 13.3463 | 7306 | 28.3303 | 1947 | | 18 | | 1050 | 4.0070 | 301 | 14,0769 | 7362 | 28,5250 | 1871 | | 18 | | 1100 | 4.0371 | 282 | 14.8131 | 7416 | 28.7121 | 1801 | | 19 | | 1150 | 4.0653 | 264 | 15,5547 | 7 46 6 | 28.8922 | 1736 | | 20 | | 1200 | 4.0917 | 249 | 16.3013 | 7512 | 29.0658 | 1675 | | 21 | | 1250 | 4.1166 | 232 | 17.0525 | 7 5 57 | 29.2333 | 1620 | | 22 | | 1300 | 4.1398 | 217 | 17.8082 | 7597 | 29,3953 | 1566 | | 23 | | 1350 | 4.1615 | 205 | 18.5679 | 7636 | 29.5519 | 1517 | | 24 | | 1400 | 4.1820 | 192 | 19.3315 | 7673 | 29.7036 | 1471 | | 25 | | 1450 | 4.2012 | 181 | 20.0988 | 7707 | 29.8507 | 1428 | | 26 | | 500 | 4.2193 | 171 | 20.8695 | 7739 | 29.9935 | 1386 | | 27 | | 1550 | 4,2364 | 161 | 21.6434 | 77 69 | 30.1321 | 1348 | | 2 | | 600 | 4.2525 | 153 | 22,4203 | 7798 | 30.2669 | 1310 | | 21 | | 1650 | 4.2678 | 145 | 23.2001 | 7825 | 30.3979 | 1276 | | 29 | | L700 | 4.2823 | 139 | 23.9826 | 7852 | 30.5255 | 1244 | | 30 | | 1750 | 4.2962 | 131 | 24.7678 | 7875 | 30.6499 | 1212 | | 3 | | 1800 | 4.3093 | 125 | 25.5553 | 7900 | 30.7711 | 1182 | | 3 | | 1850 | 4.3218 | 119 | 26.3453 | 7922 | 30.8893 | 1154 | | 3: | | 1900 | 4.3337 | 115 | 27.1375 | 7943 | 31.0047 | 1128 | | 3 | | 1950 | 4.3452 | 109 | 27.9318 | 7963 | 31.1175 | 1101 | | 3 | | 2000 | 4.3561 | 105 | 28.7281 | 7983 | 31.2276 | 1077 | | 3 | | 2050 | 4.3666 | 101 | 29.5264 | 8003 | 31.3353 | 1054 | | 3 | | 2100 | 4.3767 | 97 | 30.3267 | 8020 | 31.4407 | 1031 | | 3 | | 2150 | 4.3864 | 94 | 31.1287 | 8037 | 31.5438 | 1009 | | 31
30 | | 2200
2250 | 4.3958
4.4048 | 90
87 | 31.9324
32.7379 | 8055
8070 | 31.6447
31.7436 | 989
9 6 9 | | ر
4۱ | | | | | | | 31.8405 | 950 | | 4 | | 2300 | 4.4135 | 84 | 33.5449 | 8087 | 31.9355 | 932 | | 4 | | 2350 | 4.4219 | 82 | 34.3536
35.1637 | 8101
81 17 | 32,0287 | 914 | | 4 | | 2400
2450 | 4.4301
4.4380 | 79
76 | 35 . 9754 | 8117 | 32.1201 | 898 | | 4 | | 2450
2500 | 4.4360 | 76
74 | 36.7884 | 8144 | 32,2099 | 881 | | 4 | | | | | 37,6028 | | 32,2980 | | | 4 | | 2550 | 4.4530 | | | | | | | | ^{*}The enthalpy function is divided here by a constant RT_0 where $T_0 = 273.16$ oK (491.688°R). Table 2-11. IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR AIR - Cont. | | | | | | | | | |--------------------------------------|--|----------------------------|---|--------------------------------------|---|---------------------------------|--------------------------------------| | °ĸ | C°p
R | | $\frac{(H^{\circ} - E_{o}^{\circ})}{RT_{o}}$ | * | S° R | | °R | | 2550
2600
2650
2700
2750 | 4.4530
4.4602
4.4672
4.4740
4.4807 | 72
70
68
67
64 | 37.6028
38.4186
39.2357
40.0540
40.8735 | 8158
8171
8183
8195
8208 | 32.2980
32.3845
32.4695
32.5531
32.6353 | 865
950
836
822
807 | 4590
4680
4770
4860
4950 | | 2800
2850
2900
2950
3000 | 4.4871
4.4933
4.4994
4.5053
4.5109 | 62
61
59
56 | 41.6943
42.5162
43.3392
44.1633
44.9884 | 8219
8230
8241
8251 | 32.7160
32.7955
32.8737
32.9507
33.0264 | 795
782
770
757 | 5040
5130
5220
5310
5400 | ^{*}The enthalpy function is divided here by a constant RT_0 where $T_0 = 273.16$ (491.688°R). Table 2-12. COEFFICIENTS FOR THE EQUATION OF STATE FOR AIR | | | RT | $1 + \frac{B}{V} + \frac{C}{V^2} +$ | D
V3 | | | | |-----|-----------------------|------------------------------------|-------------------------------------|---------|-----------------------|------------------|-----------------------| | т | В | С | D x10 ⁻⁴ | Т | В | С | D x10 ⁻⁴ | | °K | cm ³ /mole | cm ⁶ /mole ² | cm ⁹ /mole ³ | °K | cm ³ /mole | $cm^6/mole^2$ | cm ⁹ /mole | | 50 | -527.60 | | | 350 | + 0.575 | | + 2.75 | | 60 | -374.38 | | | 360 | 1.882 | 1230.4 | 2.62 | | 70 | -284. 27 | | | 370 | 3.108 | 1220.7 | 2.49 | | 80 | -225.30 | | | 380 | 4.260 | 1211.5 | 2.37 | | 90 | -183.83 | -6825.8 | | 390 | 5.344 | 1202.8 | 2. 26 | | 100 | -153.15 | -3253.5 | +9.40 | 400 | 6.367 | 1194.2 | 2.16 | | 10 | -129.56 | -1377.4 | 8.86 | 410 | 7.332 | 1185.8 | 2.07 | | 20 | -110.87 | - 314.0 | 8.34 | 420 | 8.243 | 1177.6 | 1.98 | | 30 | - 95.73 | + 316.3 | 7.85 | 430 | 9.107 | 1169.7 | 1.89 | | 140 | - 83.13 | 602.5 | 7.40 | 440 | 9.924 | 1162.0 | 1.80 | | 40 | - 00, 20 | 002.0 | | | | | | | 50 | - 72.681 | 944.9 | 7.00 | 450 | 10.701 | 1154.4 | 1.72 | | 60 | - 63,729 | 1099.1 | 6.63 | 460 | 11.438 | 1147.0 | 1.65 | | 70 | - 56,020 | 1197.9 | 6.30 | 470 | 12.139 | 1139.8 | 1.58 | | 80 | - 49.316 | 1260.8 | 6.00 | 480 | 12.806 | 1132.8 | 1.52 | | 90 | - 43.436 | 1300.0 | 5,72 | 490 | 13.442 | 1126.0 | 1.46 | | 00 | - 38.241 | 1323.5 | 5.46 | 500 | 14.048 | 1119.2 | 1.40 | | 10 | - 33.617 | 1336.1 | 5. 23 | 550 | 16,691 | 1088.2 | 1.30 | | 220 | - 29.479 | 1341.5 | 5.00 | 600 | 18.826 | 1060.3 | 0.89 | | 230 | - 25.754 | 1341.7 | 4.78 | 650 | 20.573 | 1034.9 | 0.62 | | 240 | - 22.386 | 1338.5 | 4.56 | 700 | 22.024 | 1011.7 | 0.52 | | | | _ | | ,,, | 00 041 | 990.4 | 0.4 | | 250 | - 19.327 | 1332.7 | 4.36 | 750 | 23. 241 | 970.99 | 0.3 | | 260 | - 16. 537 | 1325.3 | 4. 17 | 800 | 24. 271 | 952. 20 | 0.0 | | 270 | - 13.982 | 1316.9 | 3.98 | 850 | 25. 151 | 935. 40 | | | 280 | - 11,637 | 1308.0 | 3.80 | 900 | 25.907 | 935.40 | | | 290 | - 9.475 | 1298.3 | 3.63 | 950 | 26.561 | 904.30 | | | 300 | - 7.480 | 1288.5 | 3.46 | 1000 | 27.129 | 876.91 | | | 310 | - 5.629 | 1278.4 | 3.31 | 1100 | 28.061 | | | | 320 | - 3.911 | 1268.4 | 3.16 | 1200 | 28.765 | 851.64 | | | 330 | - 2.310 | 1258.6 | 3.02 | 1300 | 29.344 | 829.03 | | | 340 | - 0.820 | 1248.8 | 2.88 | 1400 | 29.788 | 808.33
789.45 | | | | | | | 1500 | 30.138 | (05.40 | | #### CHAPTER 3 ### THE THERMODYNAMIC PROPERTIES OF ARGON Since the discovery of argon by Lord Rayleigh in 1890, many thermodynamic and related properties of the gas have been investigated. The density, compressibility factor, Joule-Thomson coefficient, sound velocity, thermal conductivity, viscosity, and diffusion coefficient are known with accuracies comparable to those of the common gases such as air, nitrogen, and oxygen. Probably only helium has been investigated more
extensively. Interest in argon arises from its relatively high abundance (approximately 1 percent in air), its chemical inertness, and its structural simplicity. Studies of the structurally simple substances such as argon and other noble gases aid in the development of theories of atomic and molecular structure. In spite of the scientific interest in argon, no up-to-date correlation of the thermodynamic data has been available. Such tables as have been published are limited to the experimental range covered by the individual investigators. At present technological interests focus attention on the high-temperature, high-pressure region, for which consistent tables are lacking. ### The Correlation of the Experimental Data The first extensive measurements of the data of state for argon were made at Leiden about 1910 [1]. This work, which covers the low-temperature region (123° to 293°K) at pressures from 1 to 62 atmospheres, was later shown by Cragoe [2] to require a correction to make it consistent with more recent results. The data of Holborn and others [3, 38-40] cover the temperature range -200° to +400°C at pressures from 0 to 80 meters of mercury. Other PVT measurements are reported by Tanner and Masson [4] at temperatures between 25° and 175°C and at pressures from 30 to 125 atmospheres, by Oishi [5] at temperatures between 0° and 100°C at low pressures, and most recently by Michels, et al., [6] at temperatures between 0° and 150°C and at pressures to 2900 atmospheres. This last extensive work is the most accurate. Other data considered in this correlation include the Joule-Thomson data from Roebuck and Osterberg [7] as corrected by Roebuck [34,page 61]; sound velocity data from Van Itterbeek and Van Paemel [8] and self-diffusion data from Winn [9]. Some experimental viscosities [10 - 16] were considered also in the course of the selection of the force constants for argon. The compressibility factor was computed from the equation $$Z = 1 + B_1 P + C_1 P^2 + D_1 P^3 + E_1 P^4 + F_1 P^5.$$ The virial coefficients B_1 and C_1 were obtained by fitting the data of state to a theoretical model having a Lennard-Jones 6-12 intermolecular potential, for which virial coefficient functions had been calculated previously by Bird, Spotz, and Hirschfelder [17]. The intermolecular force constants, $\epsilon/k = 119.5$ °K and $b_0 = 50.51$ cm 3 mole $^{-1}$, were evaluated by correlating the available data on several different properties: PVT, Joule-Thomson, sound velocity, self-diffusion, and viscosity. The higher virial coefficients, D_1 , E_1 , and F_1 , were obtained by a least-squares treatment of the more reliable experimental PVT data. The values of the thermodynamic properties-namely, entropy, enthalpy, specific heat, specific-heat ratio, and sound velocity at low frequency-were computed by means of the usual thermodynamic relationships from the virial coefficients given in table 3-13 and their derivatives and from the values for the ideal gas given in table 3-12. The ideal gas properties were calculated using the electronic energy levels given by Moore [35]. This semi-empirical correlation permitted the calculation of a consistent set of thermodynamic properties at pressures from 1 to 100 atmospheres and temperatures from about 100° to 5000°K. Although far superior to a separate empirical fit for each kind of experimental data, such extrapolations are not without uncertainty. As indicated above, the second and third virial coefficients were computed from the 6-12 Lennard-Jones intermolecular potential with force constants, b_0 and ϵ/k , obtained from the pertinent experimental data. Since the most accurate and abundant experiments are those on the data of state, these were given the most weight. The details of the fitting of the data are to be found in a report by Beckett and Fano [18] from which figure 3a is taken. This plot of $b_0 = 2/3\pi N r_0^3$ versus temperature was used to fix the value of b_0 at 50.51 cm³ mole⁻¹ after the value of $\epsilon/k = 119.5^{\circ}K$ was fixed. The plot permits the simultaneous consideration of such diverse properties as viscosity, sound velocity at low frequency, Joule-Thomson coefficient, self-diffusion, and PVT data. The value of 50.51 was obtained by averaging, with appropriate weights, the values of b_0 obtained from the above-mentioned experimental data. The dimensionless representation has been accomplished for certain properties by expressing them relative to the value at standard conditions (0°C and 1 atmosphere). Thus, the density is expressed as P/P_0 , the sound velocity at low frequency as a/a₀, the thermal conductivity as k/k_0 , and the viscosity as η/η_0 . The reference values P_0 , a₀, and η_0 were computed on the basis of the Lennard-Jones intermolecular potential, whose force constants were evaluated in the manner outlined above. The value k_0 was determined from an equation based on an empirical fit of the experimental data. Values for these quantities are given in various units in table 3-b. The agreement of P_0 and P_0 with the experimental data is shown in figures 3b and 3f. It can be seen from figure 3e that the average departure of the experimental data at standard conditions from the adopted value of η_0 is about 1 percent. The value of 307.88 m/sec for a₀ is in agreement with the value 307.8 m/sec cited in the International Critical Tables [36] and is further corroborated by the very recent determination by Greenspan of the National Bureau of Standards [37] who reports a provisional value 307.86 m/sec. The viscosity was computed on the basis of the Lennard-Jones 6-12 intermolecular potential with the same force constants as were used for the thermodynamic properties (see summary table 1-B). The thermal conductivities were computed from an empirical fit of the experimental data [19-22] using the equation given in summary table 1-C. The tables of vapor pressure are based on an analysis of the data in references 23 - 30, which are arranged roughly in order of the weight given to the data taken from them. The accepted triple and boiling points are those of Frank, et al., [25] whose work makes it almost certain that Born's results [30] are in error. At other temperatures Crommelin's work [23,24] has been given the greatest weight. In the analysis of the data, his second rather than his first measurements on the solid were accepted. The table for the liquid was partially determined from the law of corresponding states, using oxygen as the reference substance. The critical point is that given by Crommelin. Figure 3a. $b_0 = \frac{2}{3} \% Nr_0^3$ from various experimental data | From Jo | ule-Thomson coefficient data μ_0 | | | | Ф | |----------|---|----------|---|--------|---| | From Jo | ule-Thomson coefficient data $\mathfrak{d}\mu/\mathfrak{d}$ | p | | | 8 | | From se | lf-diffusion data | | | | 0 | | From so | und-velocity data | | | | • | | From vis | scosity data | | | | 0 | | From PV | TT data - Michels 6 power series: | from B | • | from C | • | | From PV | T data - Holborn, et al.: | from B | • | from C | 0 | ## The Reliability of the Tables Throughout the experimental range, the uncertainties of the tabulated values of the compressibility factor (table 3-1) are essentially the same as the uncertainties of the experimental values (see figure 3b). That is, above 200°K, they are no more than one part in one thousand and in most cases about two or three parts in ten thousand; below 200°K, the uncertainties are larger—of the order of several parts in one thousand. The uncertainties in the table of density (table 3-2) correspond to those for the table of the compressibility factor, since the densities were computed directly from the compressibility factors. Figure 3b. Departures of experimental compressibility factors obtained from the virial equation used to calculate table 3-1 Figure 3c. Second virial coefficient, B, of argon An indication of the probable uncertainty of the tabulated Z and P values at temperatures above the experimental range can be obtained from figure 3c, which shows a comparison of the second virial coefficients for various models with those derived from the experimental PVT data of various authors. The models considered were the exponential 6 function of Herzfeld [31], the modified Lennard-Jones potential (hard-sphere core) [32], and the square-well and Lennard-Jones 6-12 potentials as tabulated by Hirschfelder, et al., [17]. It will be seen that in the experimental region, the Lennard-Jones 6-12 potential is slightly favored by the experimental data. A fuller discussion of the fitting of the higher virials used here is to be found in the report of Beckett and Fano [18]. The uncertainties of the tabulated compressibility factors above the experimental temperature range are estimated to be 10 percent of (Z-1). The ideal-gas thermodynamic properties for argon (table 3-12) are quite reliable, since the atomic weight and the fundamental constants are the only source of uncertainty. The uncertainty in the real-gas properties, is, therefore, due almost entirely to the uncertainty in the pressure correction, that is, to the uncertainty in the virial coefficients and their derivatives. At high temperatures and moderate pressures, where the gas imperfection is small, the thermodynamic properties should be reliable as tabulated. Outside this region, the pressure correction for entropy (table 3-5) and enthalpy (table 3-4) depends on the first derivative of the virial coefficients, Figure 3d. Departures of experimental sound velocities from the tabulated values for argon (table 3-7) and therefore, it is estimated that the uncertainty in the tables is in the worst cases of the order of 10 percent of the gas imperfection. For specific heat (table 3-3), the pressure correction depends on the second derivative of the
virial coefficients, and therefore, the uncertainties for this property are correspondingly larger, namely, of the order of 10 percent of the pressure correction around the ice point and up to about 30 percent at 100°K. For the specific-heat ratio (table 3-6) and sound velocity at low frequency (table 3-7), the tabulated values are in good agreement with the experimental data [33 and 8] (see figure 3d). The tabulated values are thought to be accurate within a few units in the last tabulated figure above the ice point at moderate pressures. At lower temperatures and high pressures, the accuracy decreases somewhat, whereas it increases at high temperature where the gas approaches ideality. A graphical comparison of the tabulated and experimental viscosities [10-16] is given in figure 3e. From this it would seem that the viscosity table is reliable to within 2 percent between 200° and 600°K and to within 3 percent at higher temperatures. Below 200°K, the uncertainties increase to 4 percent. The values of thermal conductivity are considered reliable to within 2 percent. Figure 3f shows the deviations of the tabulated values from the experimental data [19-22]. Figure 3e. Departures of experimental viscosities from the tabulated values for argon (table 3-8) Figure 3f. Departures of experimental thermal conductivities from the tabulated values for argon (table 3-9) For vapor pressure, the empirical equation which was used to compute the tables for the solid appears to yield results which are reliable to about $\pm 0.1^{\circ}$ K. This corresponds to $\pm 0.5^{\circ}$ mm Hg at 65°K and ± 7 mm Hg at the triple point (83.78°K). Tabulated values for the liquid between the triple point and about 95°K appear to be reliable to about $\pm 0.05^{\circ}$ K, or roughly to ± 5 mm Hg. At higher temperatures, the tables should not be considered reliable to better than $\pm 0.2^{\circ}$ K. This corresponds to ± 40 mm Hg at 100°K, to ± 120 mm Hg at 125°K, and to ± 280 mm Hg at the critical point. The triple-point pressure, being independent of the temperature-scale error, is probably accurate to ± 0.2 mm Hg. Figure 3g shows the deviation of the experimental data from the calculated values, except for a few experimental points outside the range of the graphs. Figure 3g. Departures of the experimental vapor pressure from the tabulated values for argon (table 3-11) #### References - [1] H. Kamerlingh Onnes and C. A. Crommelin, Communs. Phys. Lab. Univ. Leiden No. 118b (1910). - [2] C. S. Cragoe, J. Research Natl. Bur. Standards 26, 495 (1941) RP 1393. - [3] L. Holborn and H. Schultze, Ann. Physik [4] 47, 1089 (1915). - [4] C. C. Tanner and I. Masson, Proc. Roy. Soc. (London) [A] 126, 268 (1930). - [5] J. Oishi, J. Sci. Research Inst. (Tokyo) 43, 220 (1949). - [6] A. Michels, H. Wijker, and H. Wijker, Physica 15, 627 (1949). - [7] J. R. Roebuck and H. Osterberg, Phys. Rev. [2] 46, 785 (1934). - [8] A. Van Itterbeek and O. Van Paemel, Physica 5, 845 (1938). - [9] E. B. Winn, Phys. Rev. [2] 80, 1024 (1950). - [10] H. L. Johnston and E. R. Grilly, J. Phys. Chem. 46, 948 (1942). - [11] W. Kopsch, Dissertation, Halle (1909). - [12] H. Schultze, Ann. Physik [4] 5, 140 (1901). - [13] M. Trautz and R. Zink, Ann. Physik [5] 7, 427 (1930). - [14] V. Vasilesco, Ann. phys. [11] 20, 137 and 292 (1945). - [15] J. C. Westmoreland, unpublished data, National Bureau of Standards. - [16] R. Wobser and Fr. Müller, Kolloid-Beih. 52, 165 (1941). - [17] R. B. Bird, E. L. Spotz, and J. O. Hirschfelder, J. Chem. Phys. 18, 1395 (1950). - [18] C. W. Beckett and L. Fano, Natl. Advisory Comm. Aeronaut. Tech. Note 3274. - [19] A. Eucken, Physik. Z. 12, 1101 (1911). - [20] S. Weber, Ann. Physik [4] 54, 437 (1917). - [21] B. G. Dickins, Proc. Roy. Soc. (London) [A] 143, 517 (1934). - [22] W. G. Kannuluik and L. H. Martin, Proc. Roy. Soc. (London) [A] 144, 496 (1934). - [23] C. A. Crommelin, Communs. Phys. Lab. Univ. Leiden, No. 138c (1913). - [24] C. A. Crommelin, Communs. Phys. Lab. Univ. Leiden, No. 140a (1914). - [25] A. Frank and K. Clusius, Z. physik. Chem. [B] 42, 395 (1939). - [26] G. Holst and L. Hamburger, Z. physik. Chem. 91, 513 (1916). - [27] P. Bourbo and I. Ischkin, Physica 3, 1067 (1936). - [28] K. Olszewski, Trans. Roy. Soc. (London) [A] 186, 253 (1895). - [29] W. Ramsay and M. W. Travers, Trans. Roy. Soc. (London) [A] 197, 47 (1901). - [30] F. Born, Ann. Physik [4] 69, 473 (1922). - [31] K. F. Herzfeld, Phys. Rev. [2] 52, 374 (1937). - [32] J. G. Kirkwood, V. A. Lewinson, and B. J. Alder, J. Chem. Phys. 20, 929 (1952). - [33] A. L. Clark and L. Katz, Can. J. Research [A] 21, 1 (1943). - [34] J. R. Roebuck, in Am. Inst. Phys., Temperature, its measurement and control in science and industry, p. 61 (Reinhold Publishing Corp., New York, N.Y., 1941). - [35] C. E. Moore, Natl.Bur. Standards (U.S.) Circ. 467, Atomic energy levels, <u>I</u> (Supt. of Documents, Govt. Printing Office, Washington 25, D. C., 1949). - [36] National Research Council, International critical tables of numerical data, physics, chemistry, and technology, <u>VI</u>, 462 (McGraw-Hill Book Company, Inc., New York, N.Y., 1929). - [37] M. Greenspan, private communication. - [38] L. Holborn and J. Otto, Z. Physik 23, 77 (1924). - [39] L. Holborn and J. Otto, Z. Physik 30, 320 (1924). - [40] L. Holborn and J. Otto, Z. Physik 33, 1 (1925). Table 3-a. VALUES OF THE GAS CONSTANT, R, FOR ARGON. Values of R for Argon for Temperatures in Degrees Kelvin | Pressure
Density | atm | kg/cm ² | mm Hg | lb/in ² | |-------------------------|-----------|--------------------|----------|--------------------| | g/cm ³ | 2. 05429 | 2. 12255 | 1561. 26 | 30. 1899 | | mole/cm ³ | 82.0567 | 84.7832 | 62363.1 | 1205.91 | | mole/liter | 0.0820544 | 0.0847809 | 62.3613 | 1. 20587 | | lb/ft ³ | 0.0329063 | 0.0339997 | 25.0088 | 0.483591 | | lb mole/ft ³ | 1.31441 | 1. 35808 | 998.952 | 19.3166 | Values of R for Argon for Temperatures in Degrees Rankine | Pressure
Density | atm | kg/cm ² | mm Hg | lb/in ² | |-------------------------|-----------|-------------------------|----------|--------------------| | g/cm ³ | 1. 14127 | 1.17919 | 867.367 | 16.7722 | | mole/cm ³ | 45.5871 | 47. 101 8 | 34646.2 | 669.950 | | mole/liter | 0.0455858 | 0.0471005 | 34. 6452 | 0.669928 | | lb/ft ³ | 0.0182813 | 0.0188887 | 13.8938 | 0.268662 | | lb mole/ft ³ | 0.730228 | 0.754489 | 554.973 | 10.7314 | Table 3-b. CONVERSION FACTORS FOR THE ARGON TABLES ### Conversion Factors for Table 3-2 | To Convert
Tabulated
Value of | То | Having the Dimensions Indicated Below | Multiply
by | |-------------------------------------|----|---------------------------------------|-----------------------------| | P /P0 | 0 | g cm ⁻³ | 1.78377x10 ⁻³ | | P / P0 | • | mole cm ⁻³ | 4. 46568 x 10 ⁻⁵ | | ļ | | g liter ⁻¹ | 1.78382 | | | | lb in ⁻³ | 6.44432 x 10 ⁻⁵ | | | | lb ft ⁻³ | 0. 111358 | ## Conversion Factors for Tables 3-4 and 3-12 | To Convert
Tabulated
Value of | То | Having the Dimensions Indicated Below | Multiply
by | |---|------------------------|--|--| | (H°-E°)/RT ₀ ,
(H-E°)/RT ₀ | (H° - E°),
(H - E°) | cal mole ⁻¹ cal g ⁻¹ joules g ⁻¹ Btu (lb mole) ⁻¹ Btu lb ⁻¹ | 542. 821
13. 5896
56. 8589
976. 437
24. 4451 | Conversion Factors for Tables 3-3, 3-5, and 3-12 | To Convert
Tabulated
Value of | То | Having the Dimensions Indicated Below | Multiply
by | |---------------------------------------|-----------------------------------|--|--| | C _p /R, S ^o /R, | C _p , s ^o , | cal mole ⁻¹ oK ⁻¹ (or oC ⁻¹) cal g ⁻¹ oK ⁻¹ (or oC ⁻¹) joules g ⁻¹ oK ⁻¹ (or oC ⁻¹) Btu (lb mole) ⁻¹ oR ⁻¹ (or oF ⁻¹) Btu lb ⁻¹ oR ⁻¹ (or oF ⁻¹) | 1.98719 0.0497494 0.208152 1.98588 0.0497166 | The molecular weight of argon is 39.944 g mole⁻¹. Unless otherwise specified, the mole is the gram-mole; the calorie is the thermochemical calorie; and the joule is the absolute joule. Table 3-b. CONVERSION FACTORS FOR THE ARGON TABLES - Cont. ## Conversion Factors for Table 3-7 | То | Having the Dimensions Indicated Below | Multiply
by | |----|--|--------------------------------------| | a | m sec ⁻¹ ft sec ⁻¹ | 307.88
1010.10 | | | | Indicated Below m sec ⁻¹ | ## Conversion Factors for Table 3-8 | To Convert Tabulated Value of | То | Having the Dimensions Indicated Below | Multiply
by | |-------------------------------|----|---|--------------------------| | η/η_0 | η | poise or g sec ⁻¹ cm ⁻¹ | 2. 125x10 ⁻⁴ | | 7.70 | 7 | kg hr ⁻¹ m ⁻¹ | 7.650×10^{-2} | | 1 | | slug hr ⁻¹ ft ⁻¹ | 1.598×10^{-3} | | İ | | lb sec ⁻¹ ft ⁻¹ | 1.428×10^{-5} | | | | lb hr ⁻¹ ft ⁻¹ | 5.140 x 10 ⁻² | # Conversion Factors for Table 3-9 | To Convert Tabulated Value of | То | Having the Dimensions Indicated Below | Multiply
by | |-------------------------------|----|---|--| | k/k ₀ | k | cal cm ⁻¹ sec ^{-1 °} K ⁻¹ Btu ft ⁻¹ hr ^{-1 °} R ⁻¹ watts cm ^{-1 °} K ⁻¹ | 3.905 x 10 ⁻⁵ 9.444 x 10 ⁻³ 1.634 x 10 ⁻⁴ | Table 3-1. COMPRESSIBILITY FACTOR FOR ARGON | °K | .01 | atm | 1.1 | atm | .4 a | tm | .7 | atm
| °R | |------------|--------------------|--------|--------------------|--------|--------------------|----------|--------------------|----------|--------------| | | L | | | | L | | 1 | | L | | 70 | 9994 | | | | | | | | 124 | | 80 | .9994
.9996 | 2
1 | .996 | | | | | | 126
144 | | 90 | .9997 | 1 | .9972 | 1
6 | .9885 | 29 | | | 162 | | ,, | • / / / / | • | •///2 | • | .,005 | 27 | | | 102 | | 100 | .99979 | 5 | .99782 | 54 | .99142 | 198 | .98490 | 349 | 180 | | 110 | .99984 | 3 | .99836 | 35 | .99340 | 141 | .98839 | 248 | 198 | | 120 | .99987 | 3 | .99871 | 25 | .99481 | 103 | .99087 | 183 | 216 | | 130 | .99990 | 2 | .99896 | 20 | .99584 | 78 | .99270 | 137 | 234 | | 140 | .99992 | 1 | .99916 | 15 | .99662 | 60 | .99407 | 105 | 252 | | 150 | .99993 | 1 | .99931 | 11 | .99722 | 47 | .99512 | 83 | 270 | | 160 | 99994 | ī | .99942 | 10 | .99769 | 36 | .99595 | -66 | 288 | | 170 | 99995 | ī | .99952 | 7 | .99807 | 30 | .99661 | 53 | 306 | | 180 | .99996 | 1 | .99959 | 6 | .99837 | 25 | .99714 | 44 | 324 | | 190 | .99997 | | .99965 | 6 | .99862 | 20 | .99758 | 36 | 342 | | 200 | 00007 | | 00071 | | | | 00704 | | 2/0 | | 210 | .99997
.99998 | 1 | .99971
.99975 | 4 | .99882 | 17 | .99794 | 30 | 360
370 | | 220 | .99998 | | .99978 | 3 | .99899
.99914 | 15
12 | .99824
.99849 | 25
21 | 378
396 | | 230 | .99998 | | .99981 | 3 | .99926 | 10 | .99870 | 21
19 | 414 | | 240 | .99998 | 1 | .99984 | ź | .99936 | 9 | .99889 | 15 | 432 | | | | | • | | - | | ••••• | _ | | | 250 | .99999 | | .99986 | 2 | .99945 | 8 | .99904 | 14 | 450 | | 260 | .99999 | | .99988 | 2 | .99953 | 7 | .99918 | 11 | 468 | | 270 | .99999 | | .99990 | 1 | .99960 | 5 | .99929 | 10 | 486 | | 280 | .99999 | | .99991 | 2 | .99965 | 5 | .99939 | 9 | 504 | | 290 | .99999 | | .99993 | 1 | .99970 | 5 | .99948 | 8 | 522 | | 300 | .99999 | 1 | .99994 | 1 | .99975 | 4 | .99956 | 7 | 540 | | 310 | 1.00000 | _ | .99995 | 1 | .99979 | ġ | .99963 | 6 | 558 | | 320 | 1.00000 | | .99996 | | .99982 | 3 | .99969 | 5 | 576 | | 330 | 1.00000 | | .99996 | 1 | .99985 | 3 | .99974 | 5 | 594 | | 340 | 1.00000 | | .99997 | 1 | .99988 | 2 | .99979 | 4 | 612 | | 350 | 1.00000 | | .99998 | | .99990 | 2 | .99983 | | 630 | | 360 | 1.00000 | | .99998 | 1 | .99992 | 2 | .99987 | 4 | 648 | | 370 | 1.00000 | | .99999 | 1 | .99994 | 2 | .99990 | 3 | 666 | | 380 | 1.00000 | | 99999 | | .99996 | 2 | .99993 | ŝ | 684 | | 390 | 1.00000 | | .99999 | 1 | .99998 | ì | .99996 | 2 | 702 | | | | | | | | | | | | | 400 | 1.00000 | | 1.00000 | | .99999 | 1 | .99998 | 2 | 720 | | 410 | 1.00000 | | 1.00000 | _ | 1.00000 | 1 | 1.00000 | 2 | 738 | | 420
430 | 1.00000
1.00000 | | 1.00000
1.00001 | 1 | 1.00001
1.00002 | 1 | 1.00002
1.00004 | 2 | 756
774 | | 440 | 1.00000 | | 1.00001 | | 1.00002 | 1
1 | 1.00004 | 2
1 | 792 | | 110 | 1,00000 | | 1,00001 | | 1.0000 | - | 1.00000 | • | ,,_ | | 450 | 1.00000 | | 1.00001 | | 1.00004 | 1 | 1.00007 | 1 | 810 | | 460 | 1.00000 | | 1.00001 | | 1.00005 | | 1.00008 | 2 | 828 | | 470 | 1.00000 | | 1.00001 | 1 | 1.00005 | 1 | 1.00010 | 1 | 846 | | 480 | 1.00000 | | 1.00002 | | 1.00006 | 1 | 1.00011 | 1 | 864
882 | | 490 | 1.00000 | | 1.00002 | | 1.00007 | | 1.00012 | 1 | 002 | | 500 | 1.00000 | | 1,00002 | | 1.00007 | 1 | 1.00013 | | 900 | | 510 | 1.00000 | | 1.00002 | | 1.00008 | - | 1.00013 | 1 | 918 | | 520 | 1.00000 | | 1.00002 | | 1.00008 | | 1.00014 | 1 | 936 | | 530 | 1.00000 | | 1.00002 | | 1.00008 | 1 | 1.00015 | | 954 | | 540 | 1.00000 | | 1.00002 | | 1.00009 | | 1.00015 | 1 | 972 | | 550 | 1 00000 | | 1 00000 | | 1 00000 | | 1 00017 | | 900 | | 550
560 | 1.00000
1.00000 | | 1.00002
1.00002 | | 1.00009
1.00009 | 1 | 1.00016
1.00016 | 1 | 990
1008 | | 570 | 1.00000 | | 1.00002 | | 1.00010 | 1 | 1.00017 | 1 | 1026 | | 580 | 1.00000 | | 1.00002 | 1 | 1.00010 | | 1,00017 | | 1044 | | 590 | 1.00000 | | 1.00003 | • | 1.00010 | | 1.00017 | 1 | 1062 | | | | | | | | | | = | | | 600 | 1.00000 | | 1.00003 | | 1.00010 | | 1.00018 | | 1080 | | 610 | 1.00000 | | 1.00003 | | 1.00010 | _ | 1.00018 | | 1098 | | 620
630 | 1.00000
1.00000 | | 1.00003
1.00003 | | 1.00010
1.00011 | 1 | 1.00018
1.00018 | | 1116
1134 | | 640 | 1.00000 | | 1.00003 | | 1.00011 | | 1.00019 | 1 | 1152 | | 9.70 | | | | | -,, | | | | | | 650 | 1.00000 | | 1.00003 | | 1.00011 | | 1.00019 | | 1170 | Table 3-1. COMPRESSIBILITY FACTOR FOR ARGON - Cont. | °K | .01 | atm | ,i atm | ,4 gtm | .7 atm | °R | |--------------------------------------|---|-------------|---|---|---|--------------------------------------| | | | 21111 | ,. 41111 | 1 | | | | 650
660
670
680
690 | 1.00000
1.00000
1.00000
1.00000 | | 1.00003
1.00003
1.00003
1.00003
1.00003 | 1.00011
1.00011
1.00011
1.00011
1.00011 | 1,00019
1,00019
1,00019
1,00019 | 1170
1188
1206
1224
1242 | | 700
710
720
730
740 | 1.00000
1.00000
1.00000
1.00000
1.00000 | | 1.00003
1.00003
1.00003
1.00003
1.00003 | 1,00011
1,00011
1,00011
1,00011
1,00011 | 1.00019
1.00019
1.00019
1.00020
1.00020 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | 1.00000
1.00000
1.00000
1.00000
1.00000 | 2. ● | 1.00003
1.00003
1.00003
1.00003
1.00003 | 1.00011
1.00011
1.00011
1.00011 | 1.00020
1.00020
1.00020
1.00020
1.00020 | 1350
1368
1386
1404
1422 | | 800
850
900
950
1000 | 1.00000
1.00000
1.00000
1.00000 | | 1.00003
1.00003
1.00003
1.00003
1.00003 | 1.00011
1.00011
1.00011
1.00011 - 1 | 1.00020 - 1
1.00019
1.00019
1.00019 - 1
1.00018 | 1440
1530
1620
1710
1800 | | 1050
1100
1150
1200
1250 | 1.00000
1.00000
1.00000
1.00000
1.00000 | | 1.00003
1.00003 - 1
1.00002
1.00002
1.00002 | 1.00010
1.00010
1.00010
1.00010 - 1
1.00009 | 1.00018 - 1
1.00017
1.00017
1.00017 - 1
1.00016 | 1890
1980
2070
2160
2250 | | 1300
1350
1400
1450
1500 | 1.00000
1.00000
1.00000
1.00000 | | 1.00002
1.00002
1.00002
1.00002
1.00002 | 1.00009
1.00009
1.00009 - 1
1.00008
1.00008 | 1.00016 - 1
1.00015
1.00015
1.00015 - 1
1.00014 | 2340
2430
2520
2610
2700 | | 1550
1600
1650
1700
1750 | 1.00000
1.00000
1.00000
1.00000
1.00000 | | 1.00002
1.00002
1.00002
1.00002
1.00002 | 1.00008
1.00008
1.00008 - 1
1.00007
1.00007 | 1.00014
1.00014 - 1
1.00013
1.00013
1.00013 - 1 | 2790
2880
2970
3060
3150 | | 1800
1850
1900
1950
2000 | 1.00000
1.00000
1.00000
1.00000 | | 1.00002
1.00002
1.00002
1.00002
1.00002 | 1.00007
1.00007
1.00007
1.00007 - 1 | 1.00012
1.00012
1.00012 - 1
1.00011
1.00011 | 3240
3330
3420
3510
3600 | | 2050
2100
2150
2200
2250 | 1.00000
1.00000
1.00000
1.00000 | | 1.00002
1.00002
1.00002
1.00002 - 1
1.00001 | 1.00006
1.00006
1.00006
1.00006
1.00006 | 1.00011
1.00011 - 1
1.00010
1.00010
1.00010 | 3690
3780
3870
3960
4050 | | 2300
2350
2400
2450
2500 | 1.00000
1.00000
1.00000
1.00000 | | 1.00001
1.00001
1.00001
1.00001
1.00001 | 1.00006
1.00006 - 1
1.00005
1.00005
1.00005 | 1.00010
1.00010
1.00010 - 1
1.00009
1.00009 | 4140
4230
4320
4410
4500 | | 2550
2600
2650
2700
2750 | 1.00000
1.00000
1.00000
1.00000 | | 1.00001
1.00001
1.00001
1.00001
1.00001 | 1.00005
1.00005
1.00005
1.00005
1.00005 | 1.00009
1.00009 - 1
1.00009
1.00008
1.00008 | 4590
4680
4770
4860
4950 | | 2800
2850
2900
2950
3000 | 1.00000
1.00000
1.00000
1.00000 | | 1.00001
1.00001
1.00001
1.00001
1.00001 | 1.00005
1.00005
1.00005 - 1
1.00004
1.00004 | 1.00008
1.00008
1.00008
1.00008
1.00008 - 1 | 5040
5130
5220
5310
5400 | | 3100 | 1.00000 | | 1.00001 | 1.00004 | 1.00007 | 5580 | | °K | ,OI atm | .I atm | .4 atm | .7 | atm | °R | |--|---|---|---|---|-----|--| | 3100
3200
3300
3400 | 1,00000
1,00000
1,00000
1,00000 | 1.00001
1.00001
1.00001
1.00001 | 1.00004
1.00004
1.00004
1.00004 | 1.00007
1.00007
1.00007
1.00007 | | 5580
5760
5940
6120 | | 3500
3600
3700
3800
3900
4000 | 1.00000
1.00000
1.00000
1.00000
1.00000 | 1,00001
1,00001
1,00001
1,00001
1,00001 | 1.00004
1.00004
1.00004 - 1
1.00003
1.00003 | 1.00007
1.00006
1.00006
1.00006
1.00006 | - 1 | 6300
6480
6660
6840
7020 | | 4100
4200
4300
4400
4500 | 1.00000
1.00000
1.00000
1.00000
1.00000 | 1.00001
1.00001
1.00001
1.00001
1.00001 | 1,00003
1,00003
1,00003
1,00003
1,00003 | 1.00006
1.00006
1.00005
1.00005
1.00005 | - 1 | 7200
7380
7560
7740
7920
8100 | | 4600
4700
4800
4900
5000 | 1.00000
1.00000
1.00000
1.00000
1.00000 | 1.00001
1.00001
1.00001
1.00001 | 1.00003
1.00003
1.00003
1.00003
1.00003 | 1.00005
1.00005
1.00005
1.00005
1.00004 | - 1 | 8280
8460
8640
8820
9000 | | °ĸ | | | <u> </u> | | f |
 | <u> </u> | | T | |------------|------------------|-------------|------------------|--------|--------------------|-------------|--------------------|----------|--------------| | | 1 | atm | 4 | atm | 7 (| atm | 10 | atm | °R | | 100 | .9782 | | 0070 | | | | | | | | 110 | .9835 | 53 | .9079 | 223 | | | | | 180 | | 120 | .9869 | 34 | .9302 | 156 | .872 | 30 | | | 198 | | 130 | .9895 | 26 | .9458 | 113 | .902 | 21 | .855 | 35 | 216 | | 140 | .9915 | 20 | .9571 | 82 | .923 | 15 | .888 | 22 | 234 | | | .7713 | 15 | .9653 | 63 | .938 | 12 | .910 | 17 | 252 | | 150 | .9930 | 12 | .9716 | 49 | .950 | 8 | .927 | 13 | 270 | | 160 | .9942 | 9 | .9765 | 39 | .9584 | 70 | .940 | 10 | 288 | | 170
180 | .9951 | 8 | .9804 | 31 | .9654 | 56 | .950 | 8 | 306 | | 190 | .99592
.99654 | 62
52 | .98354
.98609 | 255 | .97099 | 453 | .9582 | 66 | 324 | | | | | | 209 | .97552 | 371 | .9648 | 54 | 342 | | 200
210 | .99706
.99748 | 42 | .98818 | 173 | .97923 | 307 | .97023 | 443 | 360 | | 220 | .99784 | 36
33 | .98991 | 145 | .98230 | 257 | .97466 | 371 | 378 | | 230 | .99815 | 31 | .99136 | 123 | .98487 | 217 | .97837 | 313 | 396 | | 240 | .99841 | 26 | .99259 | 105 | .98704 | 184 | .98150 | 264 | 414 | | | | 22 | .99364 | 89 | .98888 | 157 | .98414 | 225 | 432 | | 250 | .99863 | 19 | .99453 | π | .99045 | 135 | .98639 | 193 | 450 | | 260 | .99882 | 17 | .99530 | 67 | .99180 | 117 | .98832 | 168 | 468 | | 270 | .99899 | 14 | .99597 | 58 | .99297 | 102 | .99000 | 145 | 486 | | 280 | .99913 | 13 | .99655 | 50 | .99399 | 88 | .99145 | 126 | 504 | | 290 | .99926 | 11 | .99705 | 45 | .99487 | 78 | .99271 | 111 | 522 | | 300 | .99937 | 10 | .99750 | 38 | .99565 | 67 | .99382 | 97 | 540 | | 310 | .99947 | 8 | .99788 | 35 | .99632 | 60 | .99479 | 7/
85 | 558 | | 320 | .99955 | 8 | .99823 | 30 | .99692 | 53 | 99564 | 76 | 576 | | 330 | .99963 | 7 | .99853 | 27 | .99745 | 48 | .99640 | 67 | 594 | | 340 | .99970 | 6 | .99880 | 24 | .99793 | 41 | .99707 | 59 | 612 | | 350 | .99976 | 5 | .99904 | 22 | .99834 | 38 | .99766 | 54 | 630 | | 360 | .99981 | 5 | .99926 | 19 | .99872 | 33 | .99820 | 47 | 648 | | 370 | .99986 | 5 | .99945 | 17 | .99905 | 30 | .99867 | 43 | 666 | | 380 | .99991 | 3 | .99962 | 15 | .99935 | 26 | .99910 | 38 | 684 | | 390 | .99994 | 4 | .99977 | 14 | .99961 | 25 | .99948 | 34 | 702 | | 400 | .99998 | 3 | .99991 | 12 | .99986 | 21 | .99982 | • | 720 | | 410 | 1.00001 | 2 | 1.00003 | 11 | 1.00007 | 20 | 1.00013 | 31 | 720
738 | | 420 | 1.00003 | 3 | 1.00014 | 10 | 1.00027 | 17 | 1.00040 | 27
25 | 756 | | 430 | 1.00006 | 2 | 1.00024 | 9 | 1.00044 | 16 | 1.00065 | 22 | 774 | | 440 | 1.00008 | 2 | 1.00033 | 8 | 1.00060 | 14 | 1.00087 | 20 | 792 | | 450 | 1.00010 | 2 | 1.00041 | 8 | 1.00074 | 13 | 1.00107 | | 010 | | 460 | 1.00012 | 2 | 1.00049 | 6 | 1.00087 | 11 | 1.00126 | 19 | 810 | | 470 | 1.00014 | ī | 1.00055 | 7 | 1.00098 | 11 | 1.00128 | 15 | 828
846 | | 480 | 1.00015 | 2 | 1.00062 | 5 | 1.00109 | 9 | 1.00157 | 16
13 | 864 | | 490 | 1.00017 | 1 | 1.00067 | 5 | 1.00118 | ģ | 1.00170 | 13 | 882 | | 500 | 1.00018 | 1 | 1.00072 | | 1 00107 | | | | | | 510 | 1.00019 | i | 1.00076 | 4
4 | 1.00127
1.00134 | 7 | 1.00183
1.00193 | 10 | 900 | | 520 | 1.00020 | i | 1.00080 | 4 | 1.00141 | 7 | | 10 | 918 | | 530 | 1.00021 | - | 1.00084 | 3 | 1.00148 | 7 | 1.00203
1.00212 | 9 | 936 | | 540 | 1.00021 | 1 | 1.00087 | ź | 1.00154 | 6
5 | 1.00212 | 9
7 | 954
972 | | 550 | 1.00022 | 1 | 1.00090 | • | 1.00159 | | 1 00000 | | | | 560 | 1.00023 | 1 | 1.00093 | 3
2 | | 4 | 1.00228 | 6 | 990 | | 570 | 1.00024 | • | 1.00095 | | 1.00163
1.00167 | 4 | 1.00234 | 6 | 1008 | | 580 | 1.00024 | 1 | 1.00097 | 2
2 | 1.00171 | 4 | 1.00240 | 5 | 1026 | | 590 | 1.00025 | • | 1.00099 | 2 | 1.00171 | 3
4 | 1.00245
1.00250 | 5
5 | 1044
1062 | | 600 | 1.00025 | • | 1.00101 | | | | | | | | 610 | 1.00025 | 1 | 1.00101 | 2 | 1.00178 | 2 | 1.00255 | 4 | 1080 | | 620 | 1.00026 | | 1.00104 | 1 | 1.00180
1.00182 | 2 | 1.00259 | 2 | 1098 | | 630 | 1.00026 | 1 | 1.00105 | 1 | 1.00182 | 3
2 | 1.00261
1.00264 | 3 | 1116 | | 640 | 1.00027 | - | 1.00106 | 2 | 1.00187 | 2 | 1.00267 | 3
3 | 1134
1152 | | 650 | 1.00027 | | 1,00108 | | 1.00189 | | 1 00270 | | | | 660 | 1.00027 | | 1.00108 | 1 | 1.00190 | 1
1 | 1.00270
1.00272 | 2 | 1170 | | 670 | 1.00027 | | 1.00109 | | 1.00190 | 1 | 1.00272 | 2 | 1188 | | 680 | 1.00027 | | 1.00109 | 1 | 1.00192 | 1 | 1.00274 | 1 | 1206
1224 | | 690 | 1.00027 | | 1.00110 | ī | 1.00193 | i | 1.00276 | . 2 | 1242 | | 700 | 1.00027 | | 1.00111 | | 1.00194 | | 1.00278 | - | | | | | | _, | | 1.001/7 | | 1.002/8 | | 1260 | | | r· | | | | | | _ | | • | |--------------------------------------|---|-------------------|---|---------------------------------|---|---------------------------------|---|---------------------------------|--------------------------------------| | °K | 1 | atm | 4 | atm | 7 | atm | 10 | atm | °R | | 700
710
720
730
740 | 1.00027
1.00027
1.00028
1.00028
1.00028 | 1 | 1.00111
1.00111
1.00111
1.00111
1.00111 | 1 | 1.00194
1.00195
1.00195
1.00195
1.00195 | 1 | 1.00278
1.00279
1.00279
1.00279
1.00279 | 1 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | 1.00028
1.00028
1.00028
1.00028
1.00028 | | 1.00112
1.00112
1.00112
1.00112
1.00112 | - 1 | 1.00196
1.00196
1.00196
1.00196
1.00196 | - 1 | 1.00280
1.00280
1.00280
1.00280
1.00280 | - 1 | 1350
1368
1386
1404
1422 | | 800
850
900
950
1000 | 1.00028
1.00028
1.00027
1.00027
1.00026 | - 1
- 1 | 1.00111
1.00111
1.00109
1.00107
1.00104 | - 2
- 2
- 3
- 2 | 1.00195
1.00194
1.00191
1.00187
1.00183 | - 1
- 3
- 4
- 4
- 4 | 1.00279
1.00277
1.00273
1.00268
1.00261 | - 2
- 4
- 5
- 7
- 6 | 1440
1530
1620
1710
1800 | | 1050
1100
1150
1200
1250 | 1.00026
1.00025
1.00024
1.00024
1.00023 | - 1
- 1
- 1 | 1.00102
1.00100
1.00097
1.00095
1.00092 | - 2
- 3
- 2
- 3
- 2 | 1.00179
1.00174
1.00170
1.00166
1.00161 | - 5
- 4
- 4
- 5
- 3 | 1.00255
1.00249
1.00243
1.00237
1.00230 | - 6
- 6
- 6
- 7
- 5 | 1890
1980
2070
2160
2250 | | 1300
1350
1400
1450
1500 | 1.00023
1.00022
1.00021
1.00021
1.00020 | - 1
- 1 | 1.00090
1.00088
1.00085
1.00083
1.00081 | - 2
- 3
- 2
- 2
- 2 | 1.00158
1.00153
1.00149
1.00146
1.00142 | - 5
- 4
- 3
- 4
- 4 | 1.00225
1.00219
1.00213
1.00208
1.00203 | - 6
- 6
- 5
- 5
- 6 | 2340
2430
2520
2610
2700 | | 1550
1600
1650
1700
1750 | 1.00020
1.00019
1.00019
1.00018
1.00018 | - 1 | 1.00079
1.00077
1.00075
1.00073
1.00072 | - 2
- 2
- 2
- 1
- 2 | 1.00138
1.00135
1.00132
1.00128
1.00125 | - 3
- 3
- 4
- 3
- 2 | 1.00197
1.00193
1.00188
1.00183
1.00179 | - 4
- 5
- 5
- 4
- 4 | 2790
2880
2970
3060
3150 | | 1800
1850
1900
1950
2000 | 1.00018
1.00017
1.00017
1.00016
1.00016 | - 1 | 1.00070
1.00068
1.00067
1.00065
1.00064 | - 2
- 1
- 2
- 1
- 2 | 1.00123
1.00120
1.00117
1.00114
1.00111 | - 3
- 3
- 3
- 3 | 1.00175
1.00171
1.00167
1.00163
1.00159 | - 4
- 4
- 4
- 3 | 3240
3330
3420
3510
3600 | | 2050
2100
2150
2200
2250 | 1.00016
1.00015
1.00015
1.00015
1.00014 | - 1 | 1.00062
1.00061
1.00060
1.00058
1.00057 | - 1
- 1
- 2
- 1
- 1 | 1.00109
1.00107
1.00104
1.00102
1.00100 | - 2
- 3
- 2
- 2
- 2 | 1.00156
1.00153
1.00149
1.00146
1.00143 | - 3
- 4
- 3
- 3
- 3 | 3690
3780
3870
3960
4050 | | 2300
2350
2400
2450
2500 | 1.00014
1.00014
1.00014
1.00013
1.00013 | - 1 | 1.00056
1.00055
1.00054
1.00053
1.00052 | - 1
- 1
- 1
- 1
- 1 | 1.00098
1.00096
1.00095
1.00092
1.00091 | - 2
- 1
- 3
- 1
- 2 | 1.00140
1.00137
1.00135
1.00132
1.00130 | - 3
- 2
- 3
- 2
- 5 | 4140
4230
4320
4410
4500 | | 2550
2600
2650
2700
2750 | 1.00013
1.00013
1.00012
1.00012
1.00012 | - 1 | 1.00051
1.00050
1.00049
1.00048
1.00047 | - 1
- 1
- 1
- 1
- 1 | 1.00089
1.00088
1.00086
1.00084
1.00083 | - 1
- 2
- 2
- 1
- 2 | 1.00127
1.00125
1.00123
1.00120
1.00118 | 2
2
3
2
2 | 4590
4680
4770
4860
4950 | | 2800
2850
2900
2950
3000 | 1.00012
1.00011
1.00011
1.00011 | | 1.00046
1.00046
1.00045
1.00044
1.00043 | - 1
- 1
- 1
- 1 | 1.00081
1.00080
1.00078
1.00077
1.00076 | - 1
- 2
- 1
- 1
- 2 | 1.00116
1.00114
1.00112
1.00110
1.00108 | - 2
- 2
- 2
- 2
- 3 | 5040
5130
5220
5310
5400 | | 3100
3200
3300
3400
3500 | 1.00011
1.00011
1.00010
1.00010
1.00009 | - 1]
- 1 | 1.00042
1.00041
1.00039
1.00038 | - 1
- 2
- 1
- 1
- 1 | 1.00074
1.00072
1.00069
1.00067
1.00065 | - 2
- 3
- 2
- 2
- 2 | 1.00105
1.00102
1.00098
1.00096
1.00093 | - 3
- 4
- 2
- 3 | 5580
5760
5940
6120
6300 | | 3600 | 1.00009 | . 1 | .00036 | | 1.00063 | | 1.00090 | | 6480 | Table 3-1. COMPRESSIBILITY FACTOR FOR ARGON - Cont. | °K | 1 atm | 4 atm | 7 atm | IO atm | °R |
--------------------------------------|---|--|---|---|--------------------------------------| | 3600
3700
3800
3900
4000 | 1.00009
1.00009
1.00009 - 1
1.00008
1.00008 | 1.00036 - 1
1.00035 - 1
1.00034 - 1
1.00033 - 1 | 1.00063 - 1
1.00062 - 2
1.00060 - 2
1.00058 - 1
1.00057 - 2 | 1.00090 - 2
1.00088 - 3
1.00085 - 2
1.00083 - 2
1.00081 - 2 | 6480
6660
6840
7020
7200 | | 4100
4200
4300
4400
4500 | 1.00008
1.00008
1.00008 - 1
1.00007
1.00007 | 1.00032 - 1
1.00031 - 1
1.00030 - 1
1.00029 - 1 | 1.00055 - 1
1.00054 - 1
1.00053 - 2
1.00051 - 1
1.00050 - 1 | 1.00079 - 2
1.00077 - 2
1.00075 - 2
1.00073 - 2
1.00071 - 1 | 7380
7560
7740
7920
8100 | | 4600
4700
4800
4900
5000 | 1.00007
1.00007
1.00007
1.00007 - 1 | 1.00028 - 1
1.00027 - 1
1.00026
1.00026 - 1 | 1.00049 - 1
1.00048 - 2
1.00046 -
1.00046 - 2 | 1.00070 - 2
1.00068 - 2
1.00066 - 1
1.00065 - 2
1.00063 | 8280
8460
8640
8820
9000 | Table 3-1. COMPRESSIBILITY FACTOR FOR ARGON - Cont. | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | °R | |------------|------------------|----------|------------------|------------|------------------|------------------|------------------|--------------------|--------------| | 100 | 0500 | | 01.00 | | (542 | | .4589 | | 324 | | 180
190 | .9582
.9648 | 66
54 | .8189
.8527 | 338
251 | .6542
.7328 | 786
510 | .6073 | 1484
844 | 342 | | 200 | .9702 | 45 | .8778 | 200 | .7838 | 392 | .6917 | 627 | 360 | | 210 | .9747 | 37 | .8978 | 163 | .8230 | 313 | .7544 | 486 | 378
304 | | 220
230 | .9784
.9815 | 31
26 | .9141 | 134
109 | .8543
.8788 | 245
194 | .8030
.8393 | 3 63
270 | 396
414 | | 240 | .9841 | 23 | .9384 | 92 | .8982 | 159 | .8663 | 215 | 432 | | 250 | .9864 | 19 | .9476 | 78 | .9141 | 1 3 3 | .8878 | 177 | 450 | | 260 | .9883 | 17 | .9554 | 68 | .9274 | 114 | .9055 | 153 | 468 | | 270 | .9900
.9915 | 15 | .9622
.9679 | - 57
50 | .9388
.9486 | 98
84 | .9208
.9340 | 132
114 | 486
504 | | 280
290 | .9927 | 12
11 | .9729 | 44 | .9570 | 73 | .9454 | 99 | 522 | | 300 | .9938 | 10 | .9773 | 37 | .9643 | 63 | .9553 | 84 | 540 | | 310 | .9948 | 8 | .9810 | 33 | .9706 | 55 | .9637 | 73 | 558 | | 320 | .9956 | 8 | .9843 | 30 | .9761 | 48 | .9710 | 64 | 576 | | 330 | .9964 | 7 | .9873 | 25 | .9809 | 41 | .9774 | 56 | 594
612 | | 340 | .9971 | 6 | .9898 | 23 | · . 9850 | 38 | .9830 | 49 | | | 350 | .9977 | 5 | .9921 | 20 | .9888 | 33 | .9879 | 45 | 630 | | 360 | .9982 | 5 | .9941 | 18 | .9921 | 30 | .9924 | 39 | 648
666 | | 370
380 | .9987
.9991 | 4
4 | .9959
.9976 | 17
14 | .9951
.9978 | 27
2 3 | .9963
.9999 | 36
30 | 684 | | 390 | .9995 | 3 | .9990 | 12 | 1.0001 | 21 | 1.0029 | 28 | 702 | | 400 | .9998 | 3 | 1.0002 | 12 | 1.0022 | 19 | 1.0057 | 24 | 720 | | 410 | 1.0001 | 3 | 1.0014 | 11 | 1.0041 | 17 | 1.0081 | 24 | 738 | | 420 | 1.0004 | 3 | 1.0025 | . 9 | 1.0058 | 16 | 1.0105 | 21 | 756 | | 430 | 1.0007 | 2 | 1.0034 | 9 | 1.0074 | 14 | 1.0126 | 19 | 774 | | 440 | 1.0009 | 2 | 1.0043 | 7 | 1.0088 | 13 | 1.0145 | 17 | 792 | | 450 | 1.0011 | 2 | 1.0050 | 7 | 1.0101 | 11 | 1.0162 | 15 | 810 | | 460 | 1.0013 | 1 | 1.0057 | 6 | 1.0112 | 10 | 1.0177 | 13 | 828 | | 470 | 1.0014
1.0016 | 2 | 1.0063
1.0069 | 6 | 1.0122
1.0131 | 9
9 | 1.0190
1.0203 | 13
11 | 846
864 | | 480
490 | 1.0016 | 1
1 | 1.0074 | 5
5 | 1.0140 | 7 | 1.0214 | 10 | 882 | | 500 | 1.0018 | 1 | 1.0079 | 4 | 1.0147 | 6 | 1.0224 | 8 | 900 | | 510 | 1,0019 | ī | 1,0083 | 3 | 1.0153 | 6 | 1.0232 | 8 | 918 | | 520 | 1.0020 | 1 | 1.0086 | 3 | 1.0159 | 6 | 1.0240 | 7 | 936 | | 530 | 1.0021 | 1 | 1.0089 | 3 | 1.0165 | 5 | 1.0247 | 7 | 954
972 | | 540 | 1.0022 | 1 | 1.0092 | 3 | 1.0170 | 4 - | 1.0254 | 5 | | | 550 | 1.0023 | | 1.0095 | 3 | 1.0174 | 4 | 1.0259 | 5 | 990
1008 | | 560 | 1.0023
1.0024 | 1 | 1.0098
1.0100 | 2
2 | 1.0178
1.0181 | 3
3 | 1.0264
1.0268 | 4 | 1026 | | 570
580 | 1.0024 | 1 | 1.0102 | 1 | 1.0184 | ŝ | 1.0272 | 3 | 1044 | | 590 | 1.0025 | 1 | 1.0103 | 2 | 1.0187 | 3 | 1.0275 | 4 | 1062 | | 600 | 1.0026 | | 1.0105 | 1 | 1.0190 | 1 | 1.0279 | 2 | 1080 | | 610 | 1.0026 | | 1.0106 | 1 | 1.0191 | 2 | 1.0281 | 2 | 1098 | | 620 | 1.0026 | | 1.0107 | 1 | 1.0193 | 2 | 1.0283
1.0285 | 2 | 1116
1134 | | 630
640 | 1.0026
1.0027 | 1 | 1.0108
1.0110 | 2
1 | 1.0195
1.0196 | 1
2 | 1.0287 | 2
2 | 1152 | | 650 | 1.0027 | | 1.0111 | | 1.0198 | 1 | 1.0289 | 1 | 1170 | | 660 | 1.0027 | | 1.0111 | 1 | 1.0199 | i | 1.0290 | î | 1188 | | 670 | 1.0027 | 1 | 1.0112 | _ | 1.0200 | _ | 1.0291 | | 1206 | | 680 | 1.0028 | | 1.0112 | | 1.0200 | | 1.0291 | | 1224 | | 690 | 1.0028 | | 1.0112 | 1 | 1.0200 | 1 | 1.0291 | 1 | 1242 | | 700 | 1.0028 | | 1.0113 | | 1.0201 | 1 | 1.0292 | 1 | 1260 | | 710 | 1.0028 | | 1.0113 | | 1.0202 | - 1 | 1.0293 | - 1 | 1278 | | 720 | 1.0028 | | 1.0113 | | 1.0201
1.0201 | | 1.0292
1.0292 | - 1 | 1296
1314 | | 730
740 | 1.0028
1.0028 | | 1.0113
1.0113 | 1 | 1.0201 | 1 | 1.0291 | - 1
1 | 1332 | | 750 | 1.0028 | | 1.0114 | | 1.0202 | | 1.0292 | | 1350 | | | | | • | | | | | | | Table 3-1. COMPRESSIBILITY FACTOR FOR ARGON - Cont. | °K | 10 atm | 40 atm | 70. atm | 100 atm | ° R | |--------------------------------------|--|--|--|--|--------------------------------------| | 750
760
770
780
790 | 1.0028
1.0028
1.0028
1.0028
1.0028 | 1.0114
1.0114
1.0114 - 1
1.0113
1.0113 | 1.0202 - 1
1.0201
1.0201
1.0201
1.0201 - 2 | 1.0292 - 1
1.0291
1.0291 - 1
1.0290 - 2 | 1350
1368
1386
1404
1422 | | 800
850
900
950
1000 | 1.0028
1.0028 - 1
1.0027
1.0027 - 1 | 1.0113 - 1
1.0112 - 2
1.0110 - 2
1.0108 - 3
1.0105 - 2 | 1.0199 - 2
1.0197 - 3
1.0194 - 5
1.0189 - 4
1.0185 - 5 | 1.0288 - 4
1.0284 - 5
1.0279 - 7
1.0272 - 7
1.0265 - 6 | 1440
1530
1620
1710
1800 | | 1050 | 1.0026 -1 | 1.0103 - 3 | 1.0180 - 4 | 1.0259 - 7 | 1890 | | 1100 | 1.0025 -1 | 1.0100 - 2 | 1.0176 - 5 | 1.0252 - 7 | 1980 | | 1150 | 1.0024 | 1.0098 - 3 | 1.0171 - 4 | 1.0245 - 6 | 2070 | | 1200 | 1.0024 -1 | 1.0095 - 3 | 1.0167 - 5 | 1.0239 - 7 | 2160 | | 1250 | 1.0023 | 1.0092 - 2 | 1.0162 - 4 | 1.0232 - 6 | 2250 | | 1300 | 1.0023 - 1 | 1.0090 - 2 | 1.0158 - 4 | 1.0226 - 6 | 2340 | | 1350 | 1.0022 - 1 | 1.0088 - 3 | 1.0154 - 5 | 1.0220 - 7 | 2430 | | 1400 | 1.0021 | 1.0085 - 2 | 1.0149 - 3 | 1.0213 - 5 | 2520 | | 1450 | 1.0021 - 1 | 1.0083 - 2 | 1.0146 - 4 | 1.0208 - 5 | 2610 | | 1500 | 1.0020 | 1.0081 - 2 | 1.0142 - 4 | 1.0203 - 6 | 2700 | | 1550 | 1.0020 - 1 | 1.0079 - 2 | 1.0138 - 3 | 1.0197 - 4 | 2790 | | 1600 | 1.0019 | 1.0077 - 2 | 1.0135 - 3 | 1.0193 - 5 | 2880 | | 1650 | 1.0019 - 1 | 1.0075 - 2 | 1.0132 - 4 | 1.0188 - 5 | 2970 | | 1700 | 1.0018 | 1.0073 - 1 | 1.0128 - 3 | 1.0183 - 4 | 3060 | | 1750 | 1.0018 | 1.0072 - 2 | 1.0125 - 2 | 1.0179 - 4 | 3150 | | 1800 | 1.0018 - 1 | 1.0070 - 2 | 1.0123 - 3 | 1.0175 - 4 | 3240 | | 1850 | 1.0017 | 1.0068 - 1 | 1.0120 - 3 | 1.0171 - 4 | 3330 | | 1900 | 1.0017 - 1 | 1.0067 - 2 | 1.0117 - 3 | 1.0167 - 4 | 3420 | | 1950 | 1.0016 | 1.0065 - 1 | 1.0114 - 3 | 1.0163 - 4 | 3510 | | 2000 | 1.0016 | 1.0064 - 2 | 1.0111 - 2 | 1.0159 - 3 | 3600 | | 2050 | 1.0016 - 1 | 1.0062 - 1 | 1.0109 - 2 | 1.0156 - 3 | 3690 | | 2100 | 1.0015 | 1.0061 - 1 | 1.0107 - 3 | 1.0153 - 4 | 3780 | | 2150 | 1.0015 | 1.0060 - 2 | 1.0104 - 2 | 1.0149 - 3 | 3870 | | 2200 | 1.0015 - 1 | 1.0058 - 1 | 1.0102 - 2 | 1.0146 - 3 | 3960 | | 2250 | 1.0014 | 1.0057 - 1 | 1.0100 - 2 | 1.0143 - 3 | 4050 | | 2300 | 1.0014 | 1.0056 - 1 | 1.0098 - 2 | 1.0140 - 3 | 4140 | | 2350 | 1.0014 | 1.0055 - 1 | 1.0096 - 1 | 1.0137 - 2 | 4230 | | 2400 | 1.0014 - 1 | 1.0054 - 1 | 1.0095 - 3 | 1.0135 - 3 | 4320 | | 2450 | 1.0013 | 1.0053 - 1 | 1.0092 - 1 | 1.0132 - 2 | 4410 | | 2500 | 1.0013 | 1.0052 - 1 | 1.0091 - 2 | 1.0130 - 3 | 4500 | | 2550 | 1.0013 | 1.0051 - 1 | 1.0089 - 1 | 1.0127 - 2 | 4590 | | 2600 | 1.0013 - 1 | 1.0050 - 1 | 1.0088 - 2 | 1.0125 - 2 | 4680 | | 2650 | 1.0012 | 1.0049 - 1 | 1.0086 - 2 | 1.0123 - 3 | 4770 | | 2700 | 1.0012 | 1.0048 - 1 | 1.0084 - 1 | 1.0120 - 2 | 4860 | | 2750 | 1.0012 | 1.0047 - 1 | 1.0083 - 2 | 1.0118 - 2 | 4950 | | 2800
2850
2900
2950
3000 | 1,0012 - 1
1,0011
1,0011
1,0011 | 1.0046
1.0046 - 1
1.0045 - 1
1.0044 - 1
1.0043 - 1 | 1.0081 - 1
1.0080 - 2
1.0078 - 1
1.0077 - 1
1.0076 - 2 | 1.0116 - 2
1.0114 - 2
1.0112 - 2
1.0110 - 2
1.0108 - 3 | 5040
5130
5220
5310
5400 | | 3100 | 1.0011 - 1 | 1.0042 - 1 | 1.0074 - 2 | 1.0105 - 3 | 5580 | | 3200 | 1.0010 | 1.0041 - 2 | 1.0072 - 3 | 1.0102 - 4 | 5760 | | 3300 | 1.0010 | 1.0039 - 1 | 1.0069 - 2 | 1.0098 - 2 | 5940 | | 3400 | 1.0010 - 1 | 1.0038 - 1 | 1.0067 - 2 | 1.0096 - 3 | 6120 | | 3500 | 1.0009 | 1.0037 - 1 | 1.0065 - 2 | 1.0093 - 3 | 6300 | | 3600 | 1.0009 | 1.0036 - 1 | 1.0063 - 1 | 1.0090 - 2 | 6480 | | 3700 | 1.0009 | 1.0035 - 1 | 1.0062 - 2 | 1.0088 - 3 | 6660 | | 3800 | 1.0009 - 1 | 1.0034 - 1 | 1.0060 - 2 | 1.0085 - 2 | 6840 | | 3900 | 1.0008 | 1.0033 - 1 | 1.0058 - 1 | 1.0083 - 2 | 7020 | | 4000 | 1.0008 | 1.0032 | 1.0057 - 2 | 1.0081 - 2 | 7200 | | 4100 | 1.0008 | 1.0032 | 1.0055 | 1.0079 | 7380 |
Table 3-1. COMPRESSIBILITY FACTOR FOR ARGON - Cont. Z = PV/RT | °K | . 10 | atm | 40 | atm | 70 | atm | 100 | atm | *R | |--------------------------------------|--|------------|--|--------------------------|--|---------------------------------|--|---------------------------------|--------------------------------------| | 4100
4200
4300
4400
4500 | 1.0008
1.0008
1.0008
1.0007 | - 1 | 1.0032
1.0031
1.0030
1.0029
1.0028 | - 1
- 1
- 1
- 1 | 1.0055
1.0054
1.0053
1.0051
1.0050 | - 1
- 1
- 2
- 1
- 1 | 1.0079
1.0077
1.0075
1.0073
1.0071 | - 2
- 2
- 2
- 2
- 1 | 7380
7560
7740
7920
8100 | | 4600
4700
4800
4900
5000 | 1.0007
1.0007
1.0007
1.0007
1.0006 | - 1 | 1.0028
1.0027
1.0026
1.0026
1.0025 | - 1
- 1
- 1 | 1.0049
1.0048
1.0046
1.0046 | - 1
- 2
- 2 | 1.0070
1.0068
1.0066
1.0065
1.0063 | - 2
- 2
- 1
- 2 | 8280
8460
8640
8820
9000 | | | | | | | — <u> </u> | |------------|------------------------------------|--|--------------------------------|--------------------------------|------------------------| | *K | ,OI atm | .1 atm | .4 atm | .7 atm | °R | | | | | . | | | | 70 | .03901 -488 | | | | 126 | | 80 | .03413 -380 | .342 –38 | | | 144 | | 90 | .03033 -304 | .3041 - 306 | 1.227 –126 | | 162 | | 100 | 027205 0400 | .27349 -2499 | 1.1010 -1020 | 1,9396 -1826 | 180 | | 100
110 | .027295 -2482
.024813 -2069 | .24850 -2079 | .99895 - 8455 | 1.7570 -1504 | 198 | | 120 | .022744 -1750 | .22771 -1757 | .91440 - 7121 | 1.6066 -1263 | 216 | | 130 | .020994 -1500 | .21014 -1505 | .84319 - 6084 | 1.4803 -1077 | 234
252 | | 140 | .019494 -1300 | .19509 -1303 | .78235 - 5260 | 1.3726 - 928 | 232 | | 150 | .018194 -1137 | .18206 -1140 | .72975 - 4 5 93 | 1.2798 - 810 | 270 | | 160 | .017057 -1003 | .17066 -1006 | .68382 - 4047 | 1.1988 - 713 | 288 | | 170 | .016054 - 892 | .16060 - 893 | .64335 - 3592 | 1.1275 - 632 | 30 6
324 | | 180 | .015162 - 799 | .15167 - 799 | .60743 - 3212
.57531 - 2887 | 1.0643 - 565
1.0078 - 507 | 342 | | 190 | .014363 - 718 | .14368 – 719 | - Z001 - Z001 | 2,0070 507 | | | 200 | .013645 - 650 | .13649 - 651 | .54644 - 2611 | .95711 - 4585 | 360 | | 210 | .012995 - 590 | .12998 - 591 | .52033 - 2373 | .91126 - 4164 | 378 | | 220 | .012405 - 540 | .12407 - 540 | .49660 - 2165 | .86962 - 3798
.83164 - 3481 | 396
414 | | 230 | .011865 - 494 | .11867 <i>- 4</i> 94
.11373 <i>- 4</i> 56 | .47495 - 1983
.45512 - 1824 | .79683 - 3149 | 432 | | 240 | .011371 - 455 | .11717 - 450 | .45512 1024 | 11,7005 | | | 250 | .010916 - 420 | .10917 - 420 | .43688 - 1684 | .76484 - 2951 | 450 | | 260 | .010496 - 389 | .10497 - 3 8 9 | .42004 - 1559 | .73533 - 2732 | 468 | | 270 | .010107 - 361 | .10108 - 361 | .40445 - 1446 | .70801 - 2535
.68266 - 2360 | 486
504 | | 280 | .0097464 - 3361 | .097472 - 3363
.094109 - 3138 | .38999 – 1347
.37652 – 1257 | .65906 - 2202 | 522 | | 290 | .0094103 - 3136 | .074107 - 3130 | | | | | 300 | .0090967 - 2936 | .090971 - 2935 | .36395 - 1175 | .63704 - 2059 | 540 | | 310 | .0088031 - 2751 | .088036 - 2752 | .35220 - 1102 | .61645 - 1930
.59715 - 1813 | 558
576 | | 320 | .0085280 - 2584 | .085284 - 2585
.082699 - 2433 | .34118 - 1035
.33083 - 974 | .59715 - 1813
.57902 - 1706 | 594 | | 330
340 | .0082696 - 2432
.0080264 - 2293 | .082699 - 2433
.080266 - 2294 | .32109 - 918 | .56196 - 1607 | 612 | | 740 | .0000204 - 2277 | .000200 | | | | | 350 | .0077971 - 2166 | .077972 - 2166 | .31191 - 867 | .54589 - 1519 | 630 | | 360 | .0075805 - 2049 | .075806 - 2049 | .30324 - 820 | .53070 - 1436
.51634 - 1360 | 648
666 | | 370 | .0073756 - 1941 | .073757 - 1941
.071816 - 1842 | .29504 - 177
.28727 - 787 | .50274 - 1291 | 684 | | 380
390 | .0071815 - 1841
.0069974 - 1750 | .069974 - 1750 | .27990 - 700 | .48983 - 1225 | 702 | | 270 | ,000/// 1/50 | | | | 700 | | 400 | .0068224 - 1664 | .068224 - 1664 | .27290 - 666 | .47758 - 1166 | 720
738 | | 410 | .0066560 - 1585 | .066560 - 1585 | .26624 - 634
.25990 - 605 | .46592 - 1110
.45482 - 1059 | 756 | | 420
430 | .0064975 - 1511
.0063464 - 1442 | .064975 - 1511
.063464 - 1443 | .25385 - 577 | .44423 - 1010 | 774 | | 440 | .0062022 - 1378 | .062021 - 1378 | .24808 - 551 | .43413 - 965 | 792 | | | | | 0.4057 | 42440 | 810 | | 450 | .0060644 - 1319 | .060643 - 1318 | .24257 - 528
.23729 - 505 | .42448 - 924
.41524 - 884 | 828 | | 460
470 | .0059325 - 1262
.0058063 - 1209 | .059325 - 1262
.058063 - 1211 | .23224 - 484 | .40640 - 847 | 846 | | 480 | .0056854 - 1161 | .056852 - 1160 | .22740 - 464 | .39793 - 812 | 864 | | 490 | .0055693 - 1114 | .055692 - 1114 | .22276 - 446 | .38981 - 780 | 882 | | | 0054570 | 0E4E70 | .21830 - 428 | .38201 - 749 | 900 | | 500 | .0054579 - 1070 | .054578 - 1070
.053508 - 1029 | .21402 - 412 | .37452 - 721 | 918 | | 510
520 | .0053509 - 1029
.0052480 - 990 | .052479 - 990 | 20990 - 396 | .36731 - 693 | 936 | | 530 | .0051490 - 954 | .051489 - 954 | .20594 <i>–</i> 381 | .36038 - 668 | 954 | | 540 | .0050536 - 918 | .050535 - 918 | .20213 - 368 | .35370 - 643 | 972 | | | 0040/30 | 040417 | .19845 - 354 | .34727 - 620 | 990 | | 550
540 | .0049618 - 886
.0048732 - 855 | .049617 - 886
.048731 - 865 | .19845 - 354
.19491 - 342 | .34107 - 599 | 1008 | | 560
570 | .0048732 - 855
.0047877 - 826 | .047876 - 826 | .19149 - 330 | .33508 – 578 | 1026 | | 580 | .0047051 - 797 | .047050 - 798 | .18819 - 319 | .32930 - 558 | 1044 | | 590 | .0046254 - 771 | .046252 - 771 | .18500 - 309 | .32372 - 540 | 1062 | | 400 | 0045493 | .045481 - 745 | .18191 – 298 | .31832 - 522 | 1080 | | 600
610 | .0045483 - 746
.0044737 - 721 | .044736 - 722 | .17893 - 289 | .31310 - 505 | 1098 | | 620 | .0044016 - 699 | .044014 - 698 | .17604 – 279 | .30805 - 489 | 1116 | | 630 | .0043317 - 677 | .043316 - 677 | .17325 - 271 | .30316 - 474 | 1134
1152 | | 640 | .0042640 - 656 | .042639 - 656 | .17054 - 262 | .29842 - 459 | 1136 | | 650 | .0041984 | .041983 | .16792 | .29383 | 1170 | | 0.00 | ******* | ••• | | | | | °K | O1 stm | .1 atm | .4 atm | .7 atm | °R | |--------------|--------------------------------------|--|----------------------------------|--|--------------| | | ,O1 atm | .1 atm | , T WITH | ., 4,,,,, | | | | | 443.000 | 14702 | .29383 - 445 | 1170 | | 650 | .0041984 - 636 | .041983 - 636
.041347 - 617 | .16792 - 255
.16537 - 246 | .28938 - 432 | 1188 | | 660 | .0041348 - 617
.0040731 - 599 | .041347 - 617
.040730 - 599 | 16291 - 240 | .28506 - 419 | 1206 | | 670
680 | .0040132 - 582 | .040131 - 582 | .16051 - 233 | .28087 - 407 | 1224 | | 690 | .0039550 - 565 | .039549 - 565 | .15818 - 226 | .27680 - 395 | 1242 | | 700 | .0038985 - 549 | .038984 - 549 | .15592 - 219 | .27285 - 385 | 1260
1278 | | 710 | .0038436 - 534 | .038435 - 534 | .15373 - 214
.15159 - 207 | .26900 - 373
.26527 - 364 | 1296 | | 720 | .0037902 - 519
.0037383 - 505 | .037901 - 519
.037382 - 505 | .14952 - 202 | .26163 - 354 | 1314 | | 730
740 | .0037383 - 505
.0036878 - 492 | .036877 - 492 | .14750 - 197 | .25809 - 344 | 1332 | | 750 | .0036386 - 479 | .036385 - 479 | .14553 - 192 | .25465 - 335 | 1350 | | 760 | .0035907 - 466 | .035906 - 466 | .14361 - 186 | .25130 - 326
.24804 - 318 | 1368
1386 | | 770 | .0035441 - 454 | .035440 - 454 | .14175 - 182
.13993 - 177 | .24804 - 318
.24486 - 310 | 1404 | | 780
780 | .0034987 - 443
.0034544 - 432 | .034986 - 443
.034543 - 432 | .13816 - 173 | .24176 - 302 | 1422 | | 790 | .0034344 - 432 | ער ערערעט. | | | | | 800 | .0034112 - 2006 | .034111 - 2006 | .13643 - 802 | .23874 - 1404 | 1440 | | 850 | .0032106 - 1784 | .032105 - 1784 | .12841 - 714 | .22470 - 1249 | 1530
1620 | | 900 | .0030322 - 1596 | .030321 - 1596 | .12127 - 638
.11489 - 574 | .21221 - 1117
.20104 - 1005 | 1710 | | 950
1000 | .0028726 - 1436
.0027290 - 1300 | .028725 - 1436
.027289 - 1300 | .11467 - 574 | .19099 - 909 | 1800 | | 1050 | .0025990 - 1181 | .025989 - 1181 | .10395 - 473 | .18190 - 827 | 1890 | | 1100 | .0024809 - 1079 | .024808 - 1078 | .099225 - 4314 | .17363 - 755 | 1980 | | 1150 | .0023730 - 989 | .023730 - 989 | .094911 - 3954 | .16608 <i>- 6</i> 92
.15916 <i>- 6</i> 36 | 2070
2160 | | 1200
1250 | .0022741 - 909
.0021832 - 840 | .022741 - 910
.021831 - 839 | .090957 - 3638
.087319 - 3358 | .15280 - 588 | 2250 | | | | .020992 - 778 | .083961 - 2010 | .14692 - 544 | 2340 | | 1300
1350 | .0020992 - 777
.0020215 - 722 | .020214 - 722 | .080851 - 2887 | .14148 - 505 | 2430 | | 1400 | .0019493 - 673 | .019492 - 672 | .077964 - 2688 | .13643 - 471 | 2520
2610 | | 1450 | .0018820 - 627 | .018820 - 627
.018193 - 587 | .075276 - 2509
.072767 - 2348 | .13172 - 439
.12733 - 410 | 2700 | | 1500 | .0018193 - 587 | - | •••• | .12323 - 385 | 2790 | | 1550 | .0017606 - 550 | .017606 - 550
.017056 - 517 | .070419 - 2200
.068219 - 2067 | .11938 - 362 | 2880 | | 1600
1650 | .0017056 - 517
.0016539 - 486 | .017056 - 517
.016539 - 487 | .066152 - 1945 | .11576 - 341 | 2970 | | 1700 | .0016053 - 459 | .016052 - 458 | .064207 - 1835 | .11235 - 321 | 3060 | | 1750 | .0015594 - 433 | .015594 - 433 | .062372 - 1732 | .10914 - 303 | 3150 | | 1800 | .0015161 - 410 | .015161 - 410 | .060640 - 1639 | .10611 - 286 | 3240
3330 | | 1850 | .0014751 - 388 | .014751 - 388 | .059001 - 1553
.057448 - 1473 | .10325 - 272
.10053 - 258 | 3420 | | 1900 | .0014363 -
368
.0013995 - 350 | .014363 - 3 69
.013994 - 349 | .055975 - 1399 | .097952 - 2449 | 3510 | | 1950
2000 | .0013645 - 333 | .013645 - 333 | .054576 - 1331 | .095503 - 2329 | 3600 | | 2050 | .0013312 - 317 | .013312 - 317 | .053245 - 1268 | .093174 - 2218 | 3690 | | 2100 | .0012995 - 302 | .012995 - 302 | .051977 - 1209 | .090956 - 2115
.088841 - 2019 | 3780
3870 | | 2150 | .0012693 - 289 | .012693 - 289
.012404 - 275 | .050768 - 1153
.049615 - 1103 | .086822 - 1929 | 3960 | | 2200
2250 | .0012404 - 275
.0012129 - 264 | .012129 - 264 | .048512 - 1055 | .084893 - 1846 | 4050 | | | | .011865 - 252 | .047457 - 1009 | .083047 - 1767 | | | 2300
2350 | .0011865 - 252
.0011613 - 242 | .011613 - 242 | .046448 - 967 | .081280 - 1 69 3 | 4230 | | 2400 | .0011371 - 232 | .011371 - 232 | .045481 - 929 | .079587 - 1623 | 4320
4410 | | 2450 | .0011139 - 223 | .011139 - 223 | .044552 - 891
.043661 - 1679 | .077964 - 1560
.076404 - 2938 | 4500 | | 2500 | .0010916 - 420 | .010916 - 420 | -UTJQUI - 10/7 | , | | | 2600 | .0010496 - 389 | .010496 - 389 | .041982 - 1555 | .073466 - 2721 | | | 2700 | .0010107 - 361 | .010107 - 361 | .040427 - 1444 | .070745 - 2526 | | | 2800 | .00097463 - 3361 | .0097462 - 3361 | .038983 - 1344
.037639 - 1254 | .068219 - 2953
.065866 - 2195 | | | 2900
3000 | .00094102 - 3136
.00090966 - 2935 | .0094101 - 3136
.0090965 - 2935 | .036385 - 1174 | .063671 - 2053 | | | | | .0088030 - 2751 | .035211 - 1100 | .061618 - 1926 | | | 3100
3200 | .00088031 - 2751
.00085280 - 2584 | .0085279 - 2584 | .034111 - 1034 | .059692 - 1809 | 5760 | | 3300 | .00082696 - 2432 | .0082695 - 2432 | .033077 - 973 | .057883 - 1702 | | | 3400 | .00080264 - 2293 | .0080263 - 2293 | .032104 - 917
.031187 - 866 | .056181 - 1605
.054576 - 1516 | | | 3500 | .00077971 - 2166 | .0077970 - 2166 | | | | | 3600 | .00075805 | .0075804 | .030321 | .053060 | 6480 | Table 3-2. DENSITY OF ARGON - Cont. | °K | .OI atm | ,l atm | .4 atm | .7 atm | °R | |--|---|--|---|--|--| | 3600
3700
3800
3900
4000
4100
4200
4300
4400
4500
4600
4700
4800
4900 | .00075805 - 2049
.00073756 - 1941
.00071815 - 1841
.00069974 - 1750
.00068224 - 1664
.00066560 - 1585
.00064975 - 1511
.00063464 - 1442
.00062022 - 1378
.00060644 - 1319
.00059325 - 1262
.0005863 - 1209
.00055693 - 1114 | .0075804 - 2049
.0073755 - 1941
.0071814 - 1841
.0069973 - 1749
.0068224 - 1664
.0066560 - 1585
.0064975 - 1511
.0063464 - 1443
.0062021 - 1378
.0060643 - 1318
.0059325 - 1262
.0058063 - 1210
.0056853 - 1164
.00554579 | .030321 - 820
.029501 - 776
.028725 - 736
.027989 - 700
.027289 - 666
.026623 - 634
.025989 - 604
.025385 - 577
.024808 - 551
.024257 - 528
.023729 - 504
.023729 - 504
.023225 - 484
.022741 - 464
.022277 - 446 | .053060 - 1434
.051626 - 1359
.050267 - 1288
.048979 - 1225
.047754 - 1165
.046589 - 1108
.045481 - 1058
.044423 - 1010
.043413 - 964
.042449 - 923
.041526 - 884
.040642 - 847
.039795 - 812
.038983 - 779 | 6480
6660
6840
7020
7200
7380
7560
7740
8100
8280
8460
8840
8820
9000 | | | | | | | | | | | ,,, | |-------------------|------------------|------------------------|------------------|----------------------|------------------|----------------------------|------------------|------------------|--------------| | °K | 1 | atm | 4 | atm | 7 | atm | 10 | atm | °R | | <u> </u> | | | | | _ <u></u> | | | | | | 100 | 2.790 | -267 | 12.02 | -135 | | | | | 180 | | 110 | 2.523 | -267
-219 | 10.67 | -195
-105 | 19.9 | -23 | | | 198 | | 120 | 2.304 | -183 | 9.618 | - 845 | 17.6 | -17 | 26.6 | - 30 | 216 | | 130 | 2.121 | -155 | 8.773 | - 696 | 15.9 | -14 | 23.6 | -22 | 234 | | 140 | 1.966 | -134 | 8.077 | - 587 | 14.5 | -11 | 21.4 | -18 | 252 | | 150 | 1.832 | -116 | 7.490 | - 504 | 13.4 | - 9 | 19.6 | -15 | 270 | | 160 | 1.716 | -103 | 6.986 | - 437 | 12.46 | - 82 | 18.1 | -12 | 288 | | 170 | 1.613 | - 91 | 6.549 | 383 | 11.64 | ÷ 71 | 16.9 | -11 | 306 | | 180
190 | 1.5223
1.4413 | - 80.0 | 6.1659
5.8262 | - 3397
- 3030 | 10.930
10.306 | ~ 624
~ 552 | 15.81
14.88 | - 93
- 82 | 324
342 | | 170 | 1.4417 | - 728 | 3.0202 | - 3030 | 10.500 | | | _ | | | 200 | 1.3685 | - 657 | 5.5232 | - 2722 | 9.7540 | - 4935 | 14.064 | - 731 | 360
379 | | 210 | 1.3028 | - 597 | 5.2510 | - 2460 | 9.2605
8.8165 | - 4440
- 4019 | 13,333
12,679 | - 654
- 590 | 378
396 | | 220
230 | 1.2431
1.1887 | 544
498 | 5.0050
4.7815 | 2235
2041 | 8.4146 | - 3656 | 12.089 | - 535 | 414 | | 240 | 1.1389 | - 458 | 4.5774 | - 1870 | 8.0490 | - 3342 | 11.554 | - 488 | 432 | | | 3 0003 | | 4 2004 | | 7 7140 | *** | 11 044 | *** | 450 | | 250 | 1.0931 | - 423 | 4.3904
4.2182 | 1722
15 89 | 7.7148
7.4080 | - 3068
- 2828 | 11.066
10.620 | - 446
- 411 | 468 | | 260
270 | 1.0508
1.0118 | - 390
- 363 | 4.0593 | - 1567
1473 | 7,1252 | - 2615 | 10.209 | - 379 | 486 | | 280 | .97548 | - 3376 | 3.9120 | - 1368 | 6.8637 | - 2426 | 9.8304 | - 3511 | 504 | | 290 | .94172 | - 3149 | 3,7752 | - 1275 | 6.6211 | - 2257 | 9.4793 | - 3262 | 522 | | 300 | .91023 | - 2945 | 3,6477 | - 1190 | 6,3954 | - 2105 | 9.1531 | - 3039 | 540 | | 310 | .88078 | - 2743
- 2759 | 3.5287 | - 1114 | 6.1849 | - 1968 | 8.8492 | - 2838 | 558 | | 320 | .85319 | - 2592 | 3.4173 | - 1046 | 5.9881 | - 1846 | 8.5654 | - 2659 | 576 | | 330 | .82727 | ~ 2439 | 3.3127 | - 983 | 5.8035 | - 1733 | 8.2995 | - 2495 | 594 | | 340 | .80288 | - 2299 | 3.2144 | - 926 | 5,6302 | - 1632 | 8.0500 | - 2347 | 612 | | 350 | .77989 | - 2170 | 3.1218 | - 874 | 5.4670 | - 1539 | 7.8153 | - 2211 | 630 | | 360 | .75819 | - 2053 | 3.0344 | ~ 825 | 5.3131 | - 1453 | 7.5942 | - 2088 | 648 | | 370 | .73766 | - 1944 | 2.9519 | - 782 | 5.1678 | - 1375 | 7.3854 | - 1974 | 666 | | 380
390 | .71822
.69978 | - 1844
1752 | 2.8737
2.7996 | - 741
- 704 | 5.0303
4.9000 | - 1 3 03
- 1236 | 7.1880
7.0010 | - 1870
- 1773 | 684
702 | | 270 | .07770 | 1736 | | , , | | | | | | | 400 | .68226 | - 1666 | 2.7292 | - 6 69 | 4.7764 | - 1175 | 6.8237 | - 1685 | 720 | | 410 | .66560 | - 1586 | 2.6623
2.5987 | - 636 | 4.6589
4.5471 | - 1118
- 1065 | 6.6552
6.4949 | - 1603
- 1526 | 738
756 | | 420
430 | .64974
.63461 | - 1513
- 1444 | 2.5380 | - 607
- 579 | 4.4406 | - 1017 | 6.3423 | - 1455 | 774 | | 440 | .62017 | - 1379 | 2.4801 | - 553 | 4.3389 | - 970 | 6.1968 | - 1389 | 792 | | 450 | (0/20 | | 2 4240 | | 4.2419 | 007 | 6.0579 | - 1328 | 810 | | 450
460 | .60638
.59318 | - 1320
- 1263 | 2.4248
2.3719 | ~ 529
~ 507 | 4.1492 | - 927
- 888 | 5.9251 | - 1270 | 828 | | 470 | .58055 | - 1210 | 2,3212 | - 485 | 4.0604 | - 850 | 5.7981 | - 1216 | 846 | | 480 | .56845 | - 1161 | 2.2727 | - 465 | 3.9754 | - 815 | 5.6765 | - 1167 | 864 | | 490 | .55684 | - 1114 | 2,2262 | - 446 | 3.8939 | - 782 | 5.5598 | - 1118 | 882 | | 500 | .54570 | - 1071 | 2.1816 | - 429 | 3.8157 | - 751 | 5.4480 | - 1074 | 900 | | 510 | .53499 | - 1029 | 2.1387 | - 412 | 3.7406 | - 722 | 5.3406 | - 1032 | 918 | | 520 | .52470 | - 99 1 | 2.0975 | - 396 | 3.6684 | - 69 4 | 5.2374 | - 993 | 936 | | 530
540 | .51479
50526 | - 953
- 919 | 2.0579
2.0197 | - 362
- 368 | 3.5990
3.5321 | - 669
- 644 | 5.1381
5.0425 | - 956
- 920 | 954
972 | | J -1 U | .50526 | - 717 | | - 700 | | • | | | | | 550 | .49607 | - 887 | 1.9829 | - 354 | 3.4677 | - 620 | 4.9505 | - 887 | 990 | | 560 | .48720 | - 855 | 1.9475 | - 343 | 3.4057 | - 599 | 4.8618 | - 856
m/ | 1008 | | 570 | .47865 | - 825 | 1.9132
1.8802 | - 330
- 319 | 3.3458
3.2880 | - 578
- 5 59 | 4.7762
4.6936 | - 826
- 798 | 1026
1044 | | 580
590 | .47040
.46242 | - 798
- 771 | 1.8483 | - 319
- 308 | 3.2321 | - 540 | 4.6138 | - 771 | 1062 | | | | 714 | - | | | | | | | | 600 | .45471 | - 7 4 5 | 1.8175 | - 299 | 3.1781 | - 521
- 505 | 4.5367
4.4622 | - 745
- 721 | 1080
1098 | | 610
620 | .44726
.44004 | 722
69 8 | 1.7876
1.7588 | - 288
- 279 | 3.1260
3.0755 | ~ 505
- 489 | 4.4622 | - 721 | 1116 | | 630 | .43306 | - 677 | 1.7309 | - 271 | 3.0266 | - 474 | 4.3203 | - 676 | 1134 | | 640 | .42629 | - 656 | 1.7038 | - 262 | 2.9792 | - 459 | 4.2527 | - 656 | 1152 | | 650 | .41973 | - 636 | 1,6776 | 255 | 2,9333 | - 444 | 4,1871 | - 635 | 1170 | | 660 | .41337 | - 617 | 1.6521 | - 246 | 2.8889 | - 432 | 4.1236 | - 616 |
1188 | | 670 | .40720 | ~ 599 | 1.6275 | - 240 | 2.8457 | - 419 | 4.0620 | - 598 | 1206 | | 680
680 | .40121 | - 581
- 545 | 1.6035
1.5803 | - 232
- 226 | 2.8038
2.7632 | - 406
- 395 | 4.0022
3.9441 | - 581
- 564 | 1224
1242 | | 690 | .39540 | - 565 | | - 220 | 2.1072 | כת – | | 204 | | | 700 | .38975 | | 1.5577 | | 2.7237 | | 3.8877 | | 1260 | | | | | | | | | | | | | °K | 1 atm | 4 atm | 7 atm | 10 atm | °R | |--------------------------------------|--|--|--|--|--------------------------------------| | 700
710
720
730
740 | .38975 - 549
.38426 - 534
.37892 - 519
.37373 - 505
.36868 - 492 | 1.5577 - 220
1.5357 - 213
1.5144 - 207
1.4937 - 202
1.4735 - 197
1.4538 - 191 | 2.7237 - 384
2.6853 - 373
2.6480 - 363
2.6117 - 353
2.5764 - 343
2.5421 - 335 | 3.8877 - 548
3.8329 - 532
3.7797 - 518
3.7279 - 504
3.6775 - 490
3.6285 - 478 | 1260
1278
1296
1314
1332 | | 760
770
780
790 | .35897 - 466
.35431 - 454
.34977 - 443
.34534 - 431 | 1.4347 - 186
1.4161 - 182
1.3979 - 177
1.3802 - 172 | 2.5086 - 326
2.4760 - 317
2.4443 - 310
2.4133 - 301 | 3.5807 - 465
3.5342 - 453
3.4889 - 442
3.4447 - 430 | 1368
1386
1404
1422 | | 800
850
900
950
1000 | .34103 - 2006
.32097 - 1783
.30314 - 1596
.28718 - 1435
.27283 - 1300 | 1.3630 - 802
1.2828 - 712
1.2116 - 638
1.1478 - 573
1.0905 - 520 | 2.3832 - 1402
2.2430 - 1245
2.1185 - 1114
2.0071 - 1003
1.9068 - 907 | 3.4017 - 2000
3.2017 - 1778
3.0239 - 1590
2.8649 - 1430
2.7219 - 1295 | 1440
1530
1620
1710
1800 | | 1050
1100
1150
1200
1250 | .25983 - 1180
.24803 - 1079
.23724 - 988
.22736 - 909
.21827 - 840 | 1.0385 - 471
.99136 - 4307
.94829 - 3950
.90879 - 3632
.87247 - 3364 | 1.8161 - 825
1.7336 - 753
1.6583 - 690
1.5893 - 635
1.5258 - 987 | 2.5924 - 1177
2.4747 - 1074
2.3673 - 985
2.2688 - 907
2.1781 - 836 | 1890
1980
2070
2160
2250 | | 1300
1350
1400
1450
1500 | .20987 - 777
.20210 - 721
.19489 - 672
.18817 - 628
.18189 - 586 | .83893 - 3106
.80787 - 2883
.77904 - 2685
.75219 - 2505
.72714 - 2345 | 1.4671 - 542
1.4129 - 504
1.3625 - 470
1.3155 - 438
1.2717 - 410 | 2.0945 - 775
2.0170 - 719
1.9451 - 670
1.8781 - 625
1.8156 - 585 | 2340
2430
2520
2610
2700 | | 1550
1600
1650
1700
1750 | .17603 - 550
.17053 - 517
.16536 - 486
.16050 - 459
.15591 - 433 | .70369 - 2197
.68172 - 2065
.66107 - 1943
.64164 - 1832
.62332 - 1731 | 1.2307 - 384
1.1923 - 361
1.1562 - 339
1.1223 - 321
1.0902 - 302 | 1.7571 - 548
1.7023 - 515
1.6508 - 485
1.6023 - 457
1.5566 - 432 | 2880
2970
3060
3150 | | 1800
1850
1900
1950
2000 | .15158 - 409
.14749 - 388
.14361 - 369
.13992 - 349
.13643 - 333 | .60601 - 1636
.58965 - 1551
.57414 - 1472
.55942 - 1398
.54544 - 1329 | 1.0600 - 287
1.0313 - 271
1.0042 - 257
.97851 - 2443
.95408 - 2325 | 1.5134 - 408
1.4726 - 387
1.4339 - 367
1.3972 - 349
1.3623 - 332 | 3330
3420
3510
3600 | | 2050
2100
2150
2200
2250 | .13310 - 317
.12993 - 302
.12691 - 288
.12403 - 276
.12127 - 264 | .53215 - 1266
.51949 - 1208
.50741 - 1152
.49589 - 1102
.48487 - 1053 | .93083 - 2215
.90868 - 2110
.88758 - 2016
.86742 - 1926
.84816 - 1842 | 1.3291 - 316
1.2975 - 301
1.2674 - 288
1.2386 - 275
1.2111 - 263 | 3780
3870
3960
4050 | | 2300
2350
2400
2450
2500 | .11863 - 252
.11611 - 242
.11369 - 232
.11137 - 223
.10914 - 419 | .47434 - 1009
.46425 - 967
.45458 - 927
.44531 - 890
.43641 - 1678 | .82974 - 1764
.81210 - 1690
.79520 - 1621
.77899 - 1557
.76342 - 2934 | 1.1848 - 251
1.1597 - 242
1.1355 - 231
1.1124 - 222
1.0902 - 419 | 4230
4320
4410
4500 | | 2600
2700
2800
2900
3000 | .10495 - 389
.10106 - 361
.097452 - 3360
.094092 - 3136
.090956 - 2934 | .41963 - 1553
.40410 - 1443
.38967 - 1343
.37624 - 1253
.36371 - 1173 | .73408 - 2716
.70692 - 2523
.68169 - 2349
.65820 - 2192
.63628 - 2052 | 1.0483 - 388
1.0095 - 360
.97350 - 3953
.93997 - 3129
.90868 - 2929 | 4680
4860
5040
5220
5400 | | 3100
3200
3300
3400
3500 | .088022 - 2751
.085271 - 2583
.082688 - 2432
.080256 - 2292
.077964 - 2166 | .35198 - 1100
.34098 - 1032
.33066 - 973
.32093 - 916
.31177 - 866 | .61576 - 1923
.59653 - 1806
.57847 - 1700
.56147 - 1603
.54544 - 1514 | .87939 - 2746
.85193 - 2579
.82614 - 2427
.80187 - 2289
.77,898 - 2161 | 5580
5760
5940
6120
6300 | | 3600
3700
3800
3900
4000 | .075798 - 2049
.073749 - 1940
.071809 - 1841
.069968 - 1749
.068219 - 1664 | .30311 - 819
.29492 - 776
.28716 - 736
.27980 - 699
.27281 - 665 | .53030 - 1433
.51597 - 1357
.50240 - 1287
.48953 - 1223
.47730 - 1163 | .75737 - 2046
.73691 - 1937
.71754 - 1838
.69916 - 1747
.68169 - 1661 | 6660
6840
7020 | | 4100 | .066555 | .26616 | .46567 | .66508 | 7380 | Table 3-2. DENSITY OF ARGON - Cont. | ρ | | 1 | 0 | |---|---|---|---| | • | , | • | Ω | | °K | 1 atm | 4 atm | 7 atm | 10 atm | °R | |--------------------------------------|--|--|---|---|--------------------------------------| | 4100
4200
4300
4400
4500 | .066555 - 1585
.064970 - 1511
.063459 - 1441
.062018 - 1378
.060640 - 1319 | .26616 - 634
.25982 - 604
.25378 - 576
.24802 - 551
.24251 - 527 | .46567 - 1109
.45458 - 1056
.44402 - 1009
.43393 - 964
.42429 - 922 | .66508 - 1583
.64925 - 1508
.63417 - 1440
.61977 - 1376
.60601 - 1317 | 7380
7560
7740
7920
8100 | | 4600
4700
4800
4900
5000 | .059321 - 1262
.058059 - 1209
.056850 - 1161
.055689 - 1113
.054576 | .23724 - 505
.23219 - 483
.22736 - 464
.22272 - 446
.21826 | .41507 - 882
.40625 - 846
.39779 - 812
.38967 - 778
.38189 | .59284 - 1260
.58024 - 1208
.56816 - 1159
.55657 - 1112 | 8280
8460
8640
8820
9000 | | able : | 3-2. DENS | ITY OF A | RGON - C | ont. | | | | | P/P0 | |------------|----------------|----------------------|----------------|--------------|----------------|----------------|----------------|----------------|--------------| | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | °R | | 180
190 | 15.81
14.88 | -93
-82 | 74.06
67.38 | 668
520 | 162.2
137.2 | -250
-153 | 330.4
236.5 | -939
-392 | 324
342 | | 200 | 14.06 | -73 | 62.18 | -428 | 121.9 | -114 | 197.3 | -250 | 360 | | 210 | 13.33 | ~65 | 57.90
54.28 | - 362
310 | 110.5
101.6 | - 89
- 71 | 172.3
154.5 | -178
-131 | 378
396 | | 220
230 | 12.68
12.09 | -59
-54 | 51.18 | -271 | 94.51 | - 589 | 141.4 | -101 | 414 | | 240 | 11.55 | -48 | 48.47 | -239 | 88.62 | - 503 | 131.3 | - 83 | 432 | | 250 | 11.07 | -45 | 46.08 | -214 | 83.59 | - 437 | 123.0 | - 7 1 | 450 | | 260 | 10.62 | -41 | 43.94 | -192 | 79.22
75.36 | - 386
- 344 | 115.9
109.8 | - 61
54 | 468
486 | | 270
280 | 10.21
9.830 | - 38
- 351 | 42.02
40.28 | 174
159 | 71.92 | - 309 | 104.4 | - 49 | 504 | | 290 | 9.479 | -326 | 38.69 | -146 | 68.83 | - 280 | 99.54 | - 432 | 522 | | 300 | 9.153 | -304 | 37.23 | -134 | 66.03 | - 254 | 95.22 | - 387 | 540 | | 310 | 8.849 | -283 | 35.89 | ~123 | 63.49 | - 233 | 91.35 | - 352 | 558 | | 320 | 8,566 | -267 | 34.66 | -116 | 61,16 | → 215 | 87.83
84.61 | - 322
- 296 | 576
594 | | 330
340 | 8.299
8.050 | -249
-235 | 33.50
32.43 | -107
- 99 | 59.01
57.03 | - 198
183 | 81.65 | - 272 | 612 | | 350 | 7.815 | -221 | 31,44 | - 94 | 55,20 | - 171 | 78.93 | 254 | 630 | | 360 | 7.594 | -209 | 30.50 | - 88 | 53.49 | - 161 | 76.39 | - 237 | 648 | | 370 | 7.385 | -197 | 29,62 | - 82 | 51.88 | - 150 | 74.02 | - 220 | 666 | | 380
390 | 7.188
7.001 | -187
- 177 | 28.80
28.02 | - 78
- 74 | 50.38
48.98 | - 140
- 133 | 71.82
69.77 | - 205
- 193 | 684
702 | | | | | 27.28 | | 47.65 | - 125 | 67.84 | - 182 | 720 | | 400
410 | 6.824
6.655 | -169
-160 | 26.59 | - 69
- 66 | 46.40 | - 125
- 118 | 66.02 | - 1 72 | 738 | | 420 | 6.495 | -153 | 25.93 | - 63 | 45.22 | - 112 | 64.30 | - 163 | 756 | | 430
440 | 6.342
6.197 | -145
-139 | 25.30
24.70 | - 60
- 56 | 44.10
43.04 | - 106
- 101 | 62.67
61.14 | - 153
- 146 | 774
792 | | | | | | | 42.03 | - 96 | 59.68 | - 139 | 810 | | 450
460 | 6.058
5.925 | -133
-127 | 24.14
23.60 | - 54
- 52 | 41.07 | - 90
- 92 | 58.29 | - 131 | 828 | | 470 | 5.798 | -122 | 23.08 | - 49 | 40.15 | - 87 | 56.98 | - 126 | 846 | | 480 | 5.676 | -116 | 22.59 | - 48 | 39.28 | - 83
- 80 | 55.72
54.53 | - 119
- 115 | 864
882 | | 490 | 5.560 | -112 | 22.11 | - 45 | 38.45 | - | | | - | | 500 | 5.448 | -107 | 21.66
21.23 | - 43 | 37.65
36.89 | - 76
- 73 | 53.38
52.30 | - 108
105 |
900
918 | | 510
520 | 5.341
5.238 | -103
-100 | 20.81 | - 42
- 40 | 36.16 | - 79
- 70 | 51.25 | - 100 | 936 | | 530 | 5.138 | - 95 | 20.41 | - 38 | 35.46 | - 68 | 50.25 | - 97 | 954 | | 540 | 5.043 | - 93 | 20.03 | - 37 | 34.78 | - 64 | 49.28 | - 92 | 972 | | 550 | 4.950 | - 88 | 19.66 | - 36 | 34.14 | - 62 | 48.36 | - 88 | 990
1008 | | 560 | 4.862 | - 86 | 19.30
18.96 | - 34
- 33 | 33.52
32.92 | 60
58 | 47.48
46.63 | - 85
- 82 | 1026 | | 570
580 | 4.776
4.693 | - 83
- 79 | 18.63 | - 32 | 32.34 | - 56 | 45.81 | - 80 | 1044 | | 590 | 4.614 | - 78 | 18.31 | - 31 | 31.78 | - 53 | 45.01 | - 76 | 1062 | | 600 | 4.536 | - 74 | 18.00 | - 29 | 31.25 | - 52 | 44.25 | - 74 | 1080 | | 610 | 4.462 | - 72 | 17.71 | - 29 | 30.73 | - 50 | 43.51 | - 71 | 1098
1116 | | 620 | 4.390 | - 70 | 17.42 | - 28 | 30.23
29.74 | - 49
- 47 | 42.80
42.12 | - 68
- 67 | 1134 | | 630
640 | 4.320
4.253 | - 67
- 66 | 17.14
16.87 | - 27
- 26 | 29.27 | - 45 | 41.45 | - 65 | 1152 | | 650 | 4,187 | - 63 | 16.61 | - 25 | 28.82 | - 44 | 40.80 | - 62 | 1170 | | 660 | 4.124 | - 62 | 16.36 | - 25 | 28.38 | - 43 | 40.18 | - 60 | 1188 | | 670 | 4.062 | - 60 | 16.11 | - 24 | 27.95 | - 41 | 39.58 | - 58
- 57 | 1206
1224 | | 680
690 | 4.002
3.944 | - 58
- 56 | 15.87
15.64 | - 23
- 22 | 27.54
27.14 | - 40
- 39 | 39.00
38.43 | - 57
- 55 | 1242 | | 700 | 3.888 | - 55 | 15.42 | - 22 | 26.75 | - 38 | 37.88 | - 54 | 1260 | | 710 | 3.833 | - 55
- 53 | 15.20 | - 22
- 21 | 26.37 | - 36 | 37.34 | - 51 | 1278 | | 720 | 3.780 | - 52 | 14.99 | - 20 | 26.01 | - 36 | 36.83 | - 51 | 1296 | | 730 | 3.728 | - 51 | 14.79 | - 20 | 25.65
25.31 | - 34
- 34 | 36.32
35.83 | 49
48 | 1314
1332 | | 740 | 3.677 | - 49 | 14.59 | - 20 | 25,31 | - >4 | | 40 | | | 750 | 3.628 | | 14.39 | | 24.97 | | 35.35 | | 1350 | _ · · · · · · · · · · · · · · · · · · · | |------|-------|-------|-------|-------|-------|-------|-------|-------|--| | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | °R | | 750 | 3.628 | 47 | 14.39 | - 19 | 24.97 | - 33 | 35.35 | - 46 | 1350 | | 760 | 3.581 | 47 | 14.20 | - 18 | 24.64 | - 32 | 34.89 | - 45 | 1368 | | 770 | 3.534 | 45 | 14.02 | - 18 | 24.32 | - 31 | 34.44 | - 44 | 1386 | | 780 | 3.489 | 44 | 13.84 | - 18 | 24.01 | - 31 | 34.00 | - 43 | 1404 | | 790 | 3.445 | 43 | 13,66 | - 17 | 23.70 | - 29 | 33.57 | - 41 | 1422 | | 800 | 3.402 | -200 | 13.49 | - 79 | 23.41 | - 137 | 33.16 | 194 | 1440 | | 850 | 3.202 | -178 | 12.70 | - 70 | 22.04 | - 122 | 31.22 | 172 | 1530 | | 900 | 3.024 | -159 | 12.00 | - 63 | 20.82 | - 108 | 29.50 | 153 | 1620 | | 950 | 2.865 | -143 | 11.37 | - 57 | 19.74 | - 98 | 27.97 | 138 | 1710 | | 1000 | 2.722 | -130 | 10.80 | - 51 | 18.76 | - 89 | 26.59 | 126 | 1800 | | 1050 | 2.592 | -117 | 10.29 | - 47 | 17.87 | - 80 | 25.33 | - 113 | 1890 | | 1100 | 2.475 | -108 | 9.825 | - 425 | 17.07 | - 74 | 24.20 | - 104 | 1980 | | 1150 | 2.367 | - 98 | 9.400 | - 389 | 16.33 | - 67 | 23.16 | - 95 | 2070 | | 1200 | 2.269 | - 91 | 9.011 | - 358 | 15.66 | - 62 | 22.21 | - 87 | 2160 | | 1250 | 2.178 | - 84 | 8.653 | - 331 | 15.04 | - 57 | 21.34 | - 81 | 2250 | | 1300 | 2.094 | - 77 | 8.322 | - 307 | 14.47 | - 53 | 20.53 | - 75 | 2340 | | 1350 | 2.017 | - 72 | 8.015 | - 284 | 13.94 | - 50 | 19.78 | - 69 | 2430 | | 1400 | 1.945 | - 67 | 7.731 | - 265 | 13.44 | - 46 | 19.09 | - 65 | 2520 | | 1450 | 1.878 | - 62 | 7.466 | - 247 | 12.98 | - 42 | 18.44 | - 61 | 2610 | | 1500 | 1.816 | - 59 | 7.219 | - 232 | 12.56 | - 40 | 17.83 | - 57 | 2700 | | 1550 | 1.757 | 55 | 6.987 | - 217 | 12.16 | 38 | 17.26 | - 53 | 2790 | | 1600 | 1.702 | 51 | 6.770 | - 204 | 11.78 | 35 | 16.73 | - 50 | 2880 | | 1650 | 1.651 | 49 | 6.566 | - 191 | 11.43 | 34 | 16.23 | - 47 | 2970 | | 1700 | 1.602 | 45 | 6.375 | - 182 | 11.09 | 31 | 15.76 | - 44 | 3060 | | 1750 | 1.557 | 44 | 6.193 | - 171 | 10.78 | 30 | 15.32 | - 42 | 3150 | | 1800 | 1.513 | - 40 | 6.022 | - 161 | 10.48 | - 28 | 14.90 | - 40 | 3240 | | 1850 | 1.473 | - 39 | 5.861 | - 154 | 10.20 | - 26 | 14.50 | - 37 | 3330 | | 1900 | 1.434 | - 37 | 5.707 | - 145 | 9.938 | - 252 | 14.13 | - 36 | 3420 | | 1950 | 1.397 | - 35 | 5.562 | - 139 | 9.686 | - 239 | 13.77 | - 34 | 3510 | | 2000 | 1.362 | - 33 | 5.423 | - 131 | 9.447 | - 229 | 13.43 | - 32 | 3600 | | 2050 | 1.329 | - 31 | 5.292 | - 125 | 9.218 | - 218 | 13.11 | - 31 | 3690 | | 2100 | 1.298 | - 31 | 5.167 | - 120 | 9.000 | - 206 | 12.80 | - 29 | 3780 | | 2150 | 1.267 | - 28 | 5.047 | - 114 | 8.794 | - 199 | 12.51 | - 28 | 3870 | | 2200 | 1.239 | - 28 | 4.933 | - 109 | 8.595 | - 189 | 12.23 | - 27 | 3960 | | 2250 | 1.211 | - 26 | 4.824 | - 104 | 8.406 | - 181 | 11.96 | - 26 | 4050 | | 2300 | 1.185 | - 25 | 4.720 | - 100 | 8.225 | - 173 | 11.70 | - 24 | 4140 | | 2350 | 1.160 | - 25 | 4.620 | - 96 | 8.052 | - 167 | 11.46 | - 24 | 4230 | | 2400 | 1.135 | - 23 | 4.524 | - 92 | 7.885 | - 159 | 11.22 | - 23 | 4320 | | 2450 | 1.112 | - 22 | 4.432 | - 88 | 7.726 | - 154 | 10.99 | - 21 | 4410 | | 2500 | 1.090 | - 42 | 4.344 | - 166 | 7.572 | - 289 | 10.78 | - 41 | 4500 | | 2600 | 1.048 | - 38 | 4.178 | - 154 | 7.283 | - 267 | 10.37 | - 38 | 4680 | | 2700 | 1.010 | - 36 | 4.024 | - 143 | 7.016 | - 248 | 9.987 | - 352 | 4860 | | 2800 | .9735 | - 335 | 3.881 | - 134 | 6.768 | - 232 | 9.635 | - 329 | 5040 | | 2900 | .9400 | - 313 | 3.747 | - 124 | 6.536 | - 216 | 9.306 | - 307 | 5220 | | 3000 | .9087 | - 294 | 3.623 | - 116 | 6.320 | - 203 | 8.999 | - 287 | 5400 | | 3100 | .8793 | - 273 | 3.507 | - 110 | 6.117 | 190 | 8.712 | - 270 | 5580 | | 3200 | .8520 | - 259 | 3.397 | - 102 | 5.927 | 178 | 8.442 | - 253 | 5760 | | 3300 | .8261 | - 243 | 3.295 | - 97 | 5.749 | 168 | 8.189 | - 239 | 5940 | | 3400 | .8018 | - 228 | 3.198 | - 91 | 5.581 | 158 | 7.950 | - 225 | 6120 | | 3500 | .7790 | - 216 | 3.107 | - 86 | 5.423 | 150 | 7.725 | - 212 | 6300 | | 3600 | .7574 | - 205 | 3.021 | - 81 | 5.273 | - 142 | 7.513 | - 202 | 6480 | | 3700 | .7369 | - 194 | 2.940 | - 77 | 5.131 | - 134 | 7.311 | - 190 | 6660 | | 3800 | .7175 | - 183 | 2.863 | - 73 | 4.997 | - 127 | 7.121 | - 181 | 6840 | | 3900 | .6992 | - 175 | 2.790 | - 70 | 4.870 | - 121 | 6.940 | - 172 | 7020 | | 4000 | .6817 | - 166 | 2.720 | - 66 | 4.749 | - 115 | 6.768 | - 164 | 7200 | | 4100 | .6651 | - 159 | 2.654 | - 63 | 4.634 | - 110 | 6.604 | - 156 | 7380 | | 4200 | .6492 | - 151 | 2.591 | - 60 | 4.524 | - 105 | 6.448 | - 149 | 7560 | | 4300 | .6341 | - 143 | 2.531 | - 57 | 4.419 | - 99 | 6.299 | - 142 | 7740 | | 4400 | .6198 | - 138 | 2.474 | - 55 | 4.320 | - 96 | 6.157 | - 135 | 7920 | | 4500 | .6060 | - 132 | 2.419 | - 53 | 4.224 | - 91 | 6.022 | - 131 | 8100 | | 4600 | .5928 | | 2.366 | | 4.133 | | 5.891 | | 8280 | Table 3-2. DENSITY OF ARGON - Cont. | °K | 10 | atm | 40 | atm | 70 | atm | | 100 | atm | ° R | |--------------------------------------|----------------------------------|----------------------------------|---|------------------------------|---|-----|----------------------|---|----------------------------------|--------------------------------------| | 4600
4700
4800
4900
5000 | .5928
.5802
.5681
.5565 | - 126
- 121
- 116
- 110 | 2.366
2.316
2.268
2.222
2.178 | - 50
- 48
- 46
- 44 | 4.133
4.045
3.961
3.881
3.804 | - | 88
84
80
77 | 5.891
5.767
5.648
5.533
5.424 | - 124
- 119
- 115
- 109 | 8280
8460
8640
8820
9000 | Table 3-3. SPECIFIC HEAT OF ARGON | °K | .01 | atm | 1 .1 | atm | .4 | atm | .7 | atm | °R | |---------------------------------|--|----------------------------|--|---------------------------------|--|--------------------------------------|--|--------------------------------------|--------------------------------------| | | 1 .01 | 41111 | <u> </u> | | 1 | | · · · | | L | | 100
110
120
130
140 | 2,5010
2,5008
2,5006
2,5005
2,5004 | -2
-2
-1
-1
-1 | 2.5100
2.5076
2.5059
2.5047
2.5038 | -24
-17
-12
- 9
- 6 | 2.5413
2.5308
2.5239
2.5190
2.5155 | -105
- 69
- 49
- 35
- 27 | 2.5739
2.5548
2.5422
2.5334
2.5273 | 191
126
88
61
48 | 180
198
216
234
252 | | 150
160
170
180
190 | 2.5003
2.5003
2.5002
2.5002
2.5002 | -1 | 2.5032
2.5027
2.5023
2.5020
2.5017 | - 5
- 4
- 3
- 3
- 2 | 2,5128
2,5108
2,5093
2,5081
2,5069 | - 20
- 15
- 12
- 12
- 8 | 2.5225
2.5189
2.5162
2.5139
2.5122 | - 36
- 27
- 23
- 17
- 15 | 270
288
306
324
342 | | 200
210
220
230
240 | 2.5002
2.5001
2.5001
2.5001
2.5001 | -1 | 2.5015
2.5013
2.5012
2.5011
2.5010 | - 2
- 1
- 1
- 1
- 1 | 2.5061
2.5054
2.5048
2.5043
2.5039 | - 7
- 6
- 5
- 4
- 4 | 2.5107
2.5095
2.5084
2.5075
2.5068 | - 12
- 11
- 9
- 7
- 7 | 360
378
396
414
432 | | 250
260
270
280
290 | 2.5001
2.5001
2.5001
2.5001
2.5001 | | 2,5009
2,5008
2,5007
2,5007
2,5006 | - 1
- 1
- 1 | 2.5035
2.5032
2.5029
2.5027
2.5025 | - 3
- 3
- 2
- 2
- 2 | 2.5061
2.5056
2.5051
2.5047
2.5043 | - 5
- 5
- 4
- 4
- 3 | 450
468
486
504
522 | | 300
310
320
330
340 | 2.5001
2.5001
2.5000
2.5000
2.5000 | -1 | 2.5006
2.5005
2.5005
2.5005
2.5004 | - 1
- 1 | 2.5023
2.5021
2.5020
2.5018
2.5017 | - 2
- 1
- 2
- 1
-
1 | 2.5040
2.5037
2.5034
2.5032
2.5030 | - 3
- 3
- 2
- 2
- 2 | 540
558
576
594
612 | | 350
360
370
380
390 | 2.5000
2.5000
2.5000
2.5000
2.5000 | | 2.5004
2.5004
2.5004
2.5003
2.5003 | - 1 | 2.5016
2.5015
2.5014
2.5013
2.5012 | - 1
- 1
- 1
- 1 | 2.5028
2.5026
2.5025
2.5023
2.5022 | - 2
- 1
- 2
- 1
- 1 | 630
648
666
684
702 | | 400
410
420
430
440 | 2.5000
2.5000
2.5000
2.5000
2.5000 | | 2.5003
2.5003
2.5003
2.5002
2.5002 | - 1 | 2.5012
2.5011
2.5010
2.5010
2.5010 | - 1
- 1 | 2.5021
2.5020
2.5018
2.5018
2.5017 | - 1
- 2
- 1
- 1 | 720
738
756
774
792 | | 450
460
470
480
490 | 2.5000
2.5000
2.5000
2.5000
2.5000 | | 2.5002
2.5002
2.5002
2.5002
2.5002 | | 2.5009
2.5009
2.5008
2.8008
2.5007 | - 1
- 1 | 2.5016
2.5015
2.5014
2.5014
2.5013 | - 1
- 1
- 1
- 1 | 810
828
846
864
882 | | 500
510
520
530
540 | 2.5000
2.5000
2.5000
2.5000
2.5000 | | 2.5002
2.5002
2.5002
2.5002
2.5001 | - 1 | 2.5007
2.5007
2.5007
2.5006
2.5006 | - 1 | 2.5012
2.5012
2.5011
2.5011
2.5010 | - 1
- 1 | 900
918
936
954
972 | | 550
560
570
580
590 | 2.5000
2.5000
2.5000
2.5000
2.5000 | • | 2.5001
2.5001
2.5001
2.5001
2.5001 | | 2.5006
2.5006
2.5006
2.5005
2.5005 | - 1 | 2.5010
2.5010
2.5009
2.5009
2.5009 | - 1
- 1 | 990
1008
1026
1044
1062 | | 600
610
620
630
640 | 2,5000
2,5000
2,5000
2,5000
2,5000 | | 2.5001
2.5001
2.5001
2.5001
2.5001 | | 2.5005
2.5005
2.5004
2.5004
2.5004 | - 1 | 2.5008
2.5008
2.5008
2.5007
2.5007 | - 1 | 1080
1098
1116
1134
1152 | | 650
660
670
680
690 | 2.5000
2.5000
2.5000
2.5000
2.5000 | | 2.5001
2.5001
2.5001
2.5001
2.5001 | | 2.5004
2.5004
2.5004
2.5004
2.5003 | - 1 | 2.5007
2.5007
2.5006
2.5006
2.5006 | - 1 | 1170
1188
1206
1224
1242 | | 700 | 2.5000 | | 2,5001 | | 2,5003 | | 2,5006 | | 1260 | Table 3-3. SPECIFIC HEAT OF ARGON - Cont. | *K | .OI atm | .i atm | .4 atm | .7 atm | °R | |------------------------------------|---------|--|--|--|--------------------------------------| | 700 | 2.5000 | 2.5001 | 2.5003 | 2.5006 | 1260 | | 710 | | 2.5001 | 2.5003 | 2.5006 | 1278 | | 720 | | 2.5001 | 2.5003 | 2.5006 - 1 | 1296 | | 730 | | 2.5001 | 2.5003 | 2.5005 | 1314 | | 740 | | 2.5001 | 2.5003 | 2.5005 | 1332 | | 750 | | 2.5001 | 2.5003 | 2.5005 | 1350 | | 760 | | -2.5001 | 2.5003 | 2.5005 | 1368 | | 770 | | 2.5001 | 2.5003 | 2.5005 | 1386 | | 780 | | 2.5001 | 2.5003 | 2.5005 - 1 | 1404 | | 790 | | 2.5001 | 2.5003 | 2.5004 | 1422 | | 800
900
1000
1100
1200 | | 2,5001 - 1
2,5000
2,5000
2,5000
2,5000 | 2.5003 - 1
2.5002
2.5002 - 1
2.5001 | 2.5004 - 1
2.5003
2.5003 - 1
2.5002
2.5002 - 1 | 1440
1620
1800
1980
2160 | | 1300 | | 2,5000 | 2.5001 | 2.5001 | 2340 | | 1400 | | 2,5000 | 2.5001 | 2.5001 | 2520 | | 1500 | | 2,5000 | 2.5001 | 2.5001 | 2700 | | 1600 | | 2,5000 | 2.5001 - 1 | 2.5001 | 2880 | | 1700 | | 2,5000 | 2.5000 | 2.5001 | 3060 | | 1800 | | 2,5000 | 2.5000 | 2.5001 | 3240 | | 1900 | | 2,5000 | 2.5000 | 2.5001 | 3420 | | 2000 | | 2,5000 | 2.5000 | 2.5001 - 1 | 3600 | | 2100 | | 2,5000 | 2.5000 | 2.5000 | 3780 | | 2200 | | 2,5000 | 2.5000 | 2.5000 | 3960 | | 2300 | | 2,5000 | 2.5000 | 2.5000 | 4140 | | 2400 | | 2,5000 | 2.5000 | 2.5000 | 4320 | | 2500 | | 2,5000 | 2.5000 | 2.5000 | 4500 | | 2600 | | 2,5000 | 2.5000 | 2.5000 | 4680 | | 2700 | | 2,5000 | 2.5000 | 2.5000 | 4860 | | 2800 | 2.5000 | 2.5000 | 2.5000 | 2.5000 | 5040 | | 2900 | | 2.5000 | 2.5000 | 2.5000 | 5220 | | 3000 | | 2.5000 | 2.5000 | 2.5000 | 5400 | Table 3-3. SPECIFIC HEAT OF ARGON - Cont. | °K | 1 atm | 4 atm | 7 atm | IO atm | °R | |-----|-------------|---|--------------|-------------|------| | 100 | 2.6077 -281 | 3.016 -151 | 3.55 -33 | | 180 | | 110 | 2.5796 -186 | 2.865 - 93 | 3.22 -20 | | 198 | | 120 | 2.5610 -125 | 2.772 - 62 | 3.02 -12 | | 216 | | 130 | 2.5485 - 94 | 2.710 - 42 | 2.90 - 9 | | 234 | | 140 | 2.5391 - 67 | 2.668 - 31 | 2.81 - 6 | | 252 | | 150 | 2.5324 - 52 | 2.637 - 23 | 2.753 - 43 | 2.98 -17 | 270 | | 160 | 2.5272 - 40 | 2.614 - 18 | 2.710 - 35 | 2.81 - 5 | 288 | | 170 | 2.5232 - 33 | 2.596 - 14 | 2.675 - 26 | 2.76 - 5 | 306 | | 180 | 2.5199 - 24 | 2.582 - 11 | 2.649 - 21 | 2.71 - 3 | 324 | | 190 | 2.5175 - 21 | 2.571 - 8 | 2.628 - 16 | 2.68 - 2 | 342 | | 200 | 2.5154 - 17 | 2.5626 - 75 2.5551 - 61 2.5490 - 52 2.5438 - 43 2.5395 - 39 | 2.6120 - 137 | 2.663 - 22 | 360 | | 210 | 2.5137 - 14 | | 2.5983 - 111 | 2.641 - 14 | 378 | | 220 | 2.5123 - 13 | | 2.5872 - 94 | 2.627 - 14 | 396 | | 230 | 2.5110 - 13 | | 2.5778 - 80 | 2.613 - 12 | 414 | | 240 | 2.5097 - 9 | | 2.5698 - 67 | 2.601 - 10 | 432 | | 250 | 2.5088 - 8 | 2.5356 - 92 | 2.5631 - 59 | 2.5910 - 85 | 450 | | 260 | 2.5080 - 7 | 2.5324 - 29 | 2.5572 - 50 | 2.5825 - 75 | 468 | | 270 | 2.5073 - 6 | 2.5295 - 25 | 2.5522 - 44 | 2.5750 - 64 | 486 | | 280 | 2.5067 - 5 | 2.5270 - 21 | 2.5478 - 40 | 2.5686 - 56 | 504 | | 290 | 2.5062 - 5 | 2.5249 - 19 | 2.5438 - 34 | 2.5630 - 49 | 522 | | 300 | 2.5057 - 4 | 2.5230 - 18 | 2.5404 - 30 | 2.5581 - 46 | 540 | | 310 | 2.5053 - 4 | 2.5212 - 15 | 2.5374 - 27 | 2.5535 - 38 | 558 | | 320 | 2.5049 - 3 | 2.5197 - 13 | 2.5347 - 25 | 2.5497 - 35 | 576 | | 330 | 2.5046 - 3 | 2.5184 - 12 | 2.5322 - 21 | 2.5462 - 31 | 594 | | 340 | 2.5043 - 3 | 2.5172 - 12 | 2.5301 - 21 | 2.5431 - 29 | 612 | | 350 | 2.5040 - 3 | 2.5160 - 10 | 2.5280 - 17 | 2.5402 - 26 | 630 | | 360 | 2.5037 - 2 | 2.5150 - 10 | 2.5263 - 16 | 2.5376 - 24 | 648 | | 370 | 2.5035 - 2 | 2.5140 - 8 | 2.5247 - 15 | 2.5352 - 21 | 666 | | 380 | 2.5033 - 2 | 2.5132 - 7 | 2.5232 - 14 | 2.5331 - 19 | 684 | | 390 | 2.5031 - 2 | 2.5125 - 7 | 2.5218 - 12 | 2.5312 - 18 | 702 | | 400 | 2.5029 - 1 | 2.5118 - 7 | 2.5206 - 11 | 2.5294 - 16 | 720 | | 410 | 2.5028 - 2 | 2.5111 - 6 | 2.5195 - 11 | 2.5278 - 15 | 738 | | 420 | 2.5026 - 1 | 2.5105 - 5 | 2.5184 - 9 | 2.5263 - 14 | 756 | | 430 | 2.5025 - 1 | 2.5100 - 5 | 2.5175 - 9 | 2.5249 - 12 | 774 | | 440 | 2.5024 - 2 | 2.5095 - 5 | 2.5166 - 9 | 2.5237 - 12 | 792 | | 450 | 2.5022 - 1 | 2.5090 - 4 | 2.5157 - 7 | 2.5225 - 12 | 810 | | 460 | 2.5021 - 1 | 2.5086 - 4 | 2.5150 - 7 | 2.5213 - 10 | 828 | | 470 | 2.5020 - 1 | 2.5082 - 4 | 2.5143 - 7 | 2.5203 - 10 | 846 | | 480 | 2.5019 | 2.5078 - 4 | 2.5136 - 6 | 2.5193 - 8 | 864 | | 490 | 2.5019 - 1 | 2.5074 - 3 | 2.5130 - 6 | 2.5185 - 9 | 882 | | 500 | 2.5018 - 1 | 2.5071 - 3 | 2.5124 - 5 | 2.5176 - 7 | 900 | | 510 | 2.5017 - 1 | 2.5068 - 3 | 2.5119 - 5 | 2.5169 - 8 | 918 | | 520 | 2.5016 | 2.5065 - 3 | 2.5114 - 5 | 2.5161 - 6 | 936 | | 530 | 2.5016 - 1 | 2.5062 - 2 | 2.5109 - 5 | 2.5155 - 7 | 954 | | 540 | 2.5015 - 1 | 2.5060 - 3 | 2.5104 - 4 | 2.5148 - 6 | 972 | | 550 | 2.5014 | 2.5057 - 2 | 2.5100 - 4 | 2.5142 - 6 | 990 | | 560 | 2.5014 - 1 | 2.5055 - 2 | 2.5096 - 4 | 2.5136 - 5 | 1008 | | 570 | 2.5013 | 2.5053 - 2 | 2.5092 - 3 | 2.5131 - 5 | 1026 | | 580 | 2.5013 - 1 | 2.5051 - 2 | 2.5089 - 3 | 2.5126 - 5 | 1044 | | 590 | 2.5012 | 2.5049 - 2 | 2.5086 - 4 | 2.5121 - 4 | 1062 | | 600 | 2.5012 - 1 | 2.5047 - 2 | 2.5082 - 3 | 2.5117 - 5 | 1080 | | 610 | 2.5011 | 2.5045 - 1 | 2.5079 - 2 | 2.5112 - 4 | 1098 | | 620 | 2.5011 | 2.5044 - 2 | 2.5077 - 3 | 2.5108 - 3 | 1116 | | 630 | 2.5011 - 1 | 2.5042 - 1 | 2.5074 - 3 | 2.5105 - 4 | 1134 | | 640 | 2.5010 | 2.5041 - 2 | 2.5071 - 2 | 2.5101 - 4 | 1152 | | 650 | 2.5010 | 2,5039 - 1 | 2.5069 - 2 | 2.5097 - 3 | 1170 | | 660 | 2.5010 - 1 | 2,5038 - 1 | 2.5067 - 3 | 2.5094 - 3 | 1188 | | 670 | 2.5009 | 2,5037 - 1 | 2.5064 - 2 | 2.5091 - 3 | 1206 | | 680 | 2.5009 | 2,5036 - 2 | 2.5062 - 2 | 2.5088 - 3 | 1224 | | 690 | 2.5009 - 1 | 2,5034 - 1 | 2.5060 - 2 | 2.5085 - 3 | 1242 | | 700 | 2.5008 | 2,5033 | 2,5058 | 2.5082 | 1260 | | °K | 1 atm | 4 atm | 7 atm | 10 atm | °R | |--------------------------------------|--|--|--|--|--------------------------------------| | 700 | 2.5008 | 2.5033 - 1 | 2.5058 | 2.5082 - 1 | 1260 | | 710 | 2.5008 | 2.5032 - 1 | 2.5058 - 3 | 2.5081 - 3 | 1278 | | 720 | 2.5008 | 2.5031 - 1 | 2.5055 - 2 | 2.5078 - 2 | 1296 | | 730 | 2.5008 - 1 | 2.5030 - 1 | 2.5053 - 2 | 2.5076 - 3 | 1314 | | 740 | 2.5007 | 2.5029 | 2.5051 - 1 | 2.5073 - 2 | 1332 | | 750 | 2.5007 | 2.5029 - 1 | 2.5050 - 2 | 2,5071 - 2 | 1350 | | 760 | 2.5007 | 2.5028 - 1 | 2.5048 - 1 | 2,5069 - 2 | 1368 | | 770 | 2.5007 | 2.5027 - 1 | 2.5047 - 1 | 2,5067 - 2 | 1386 | | 780 | 2.5007 - 1 | 2.5026 - 1 | 2.5046 - 2 | 2,5065 - 2 | 1404 | | 790 | 2.5006 | 2.5025 | 2.5044 - 1 | 2,5063 - 1 | 1422 | | 800 | 2.5006 - 1 | 2.5025 - 5 | 2.5043 - 10 | 2.5062 - 15 | 1440 | | 900 | 2.5005 - 1 | 2.5020 - 5 | 2.5033 - 7 | 2.5047 - 10 | 1620 | | 1000 | 2.5004 - 1 | 2.5015 - 3 | 2.5026 - 5 | 2.5037 - 7 | 1800 | | 1100 | 2.5003 - 1 | 2.5012 - 2 | 2.5021 - 4 | 2.5030 - 6 | 1980 | | 1200 | 2.5002 | 2.5010 - 2 | 2.5017 - 3 | 2.5024 - 4 | 2160 | | 1300 | 2.5002 | 2.5008 - 1 | 2.5014 - 2 | 2.5020 - 3 | 2340 | | 1400 | 2.5002 - 1 | 2.5007 - 1 | 2.5012 - 2 | 2.5017 - 3 | 2520 | | 1500 | 2.5001 | 2.5006 - 1 | 2.5010 - 1 | 2.5014 - 2 | 2700 | | 1600 | 2.5001 | 2.5005 - 1 | 2.5009 - 2 | 2.5012 - 1 | 2880 | | 1700 | 2.5001 | 2.5004 | 2.5007 - 1 | 2.5011 - 2 | 3060 | | 1800 | 2.5001 | 2.5004 - 1 | 2.5006 |
2.5009 - 1 | 3240 | | 1900 | 2.5001 | 2.5003 | 2.5006 - 1 | 2.5008 - 1 | 3420 | | 2000 | 2.5001 | 2.5003 - 1 | 2.5005 - 1 | 2.5007 - 1 | 3600 | | 2100 | 2.5001 | 2.5002 | 2.5004 | 2.5006 - 1 | 3780 | | 2200 | 2.5001 - 1 | 2.5002 | 2.5004 - 1 | 2.5005 | 3960 | | 2300
2400
2500
2600
2700 | 2.5000
2.5000
2.5000
2.5000
2.5000 | 2,5002
2,5002
2,5002 - 1
2,5001
2,5001 | 2.5003
2.5003
2.5003 - 1
2.5002
2.5002 | 2.5005 - 1
2.5004 - 1
2.5003 - 1 | 4140
4320
4500
4680
4860 | | 2800 | 2.5000 | 2.5001 | 2.5002 | 2.5003 | 5040 | | 2900 | 2.5000 | 2.5001 | 2.5002 | 2.5003 - 1 | 5220 | | 3000 | 2.5000 | 2.5001 | 2.5002 | 2.5002 | 5400 | Table 3-3. SPECIFIC HEAT OF ARGON - Cont. | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | °R | |---------------------------------|---|----------------------------|---|---------------------------------|---|----------------------------------|---|------------------------------------|--------------------------------------| | 200
210
220
230
240 | 2.66
2.64
2.63
2.61
2.60 | -2
-1
-2
-1
-1 | 3.31
3.19
3.09
3.00
2.96 | -12
-10
- 9
- 4
- 6 | 4.2
3.9
3.7
3.5
3.4 | -3
-2
-2
-1
-1 | 5.2
4.7
4.4
4.2
3.9 | -5
-3
-2
-3
-2 | 360
378
396
414
432 | | 250
260
270
280
290 | 2.59
2.58
2.57
2.57
2.56 | -1
-1
-1 | 2.90
2.85
2.81
2.79
2.77 | - 5
- 4
- 2
- 2
- 3 | 3.26
3.13
3.06
3.01
2.97 | -13
- 7
- 5
- 4
- 4 | 3.66
3.40
3.30
3.23
3.17 | -26
-10
- 7
- 6
- 5 | 450
468
486
504
522 | | 300
310
320
330
340 | 2.56
2.55
2.55
2.55
2.55 | -1 | 2.74
2.72
2.71
2.69
2.67 | - 2
- 1
- 2
- 2
- 2 | 2.93
2.89
2.85
2.81
2.77 | 4
4
4
2 | 3.12
3.07
3.03
2.99
2.96 | - 5
- 4
- 4
- 3
- 4 | 540
558
576
594
612 | | 350
360
370
380
390 | 2.54
2.54
2.54
2.53
2.53 | -1 | 2.65
2.65
2.64
2.63
2.63 | - 1
- 1
- 2 | 2.75
2.75
2.74
2.73
2.72 | 1
- 1
- 1
- 1
- 2 | 2.92
2.88
2.85
2.83
2.82 | - 4
- 3
- 2
- 1
- 3 | 630
648
666
684
702 | | 400
410
420
430
440 | 2,53
2,53
2,53
2,52
2,52 | -1 | 2.61
2.61
2.60
2.600
2.594 | - 1
- 6
- 5 | 2.70
2.69
2.68
2.674
2.664 | - 1
- 1
- 1
- 10
- 9 | 2.79
2.78
2.76
2.747
2.734 | - 1
- 2
- 1
- 13
- 13 | 720
738
756
774
792 | | 450
460
470
480
490 | 2.523
2.521
2.520
2.519
2.519 | - 2
- 1
- 1 | 2.589
2.585
2.581
2.577
2.573 | - 4
- 4
- 4
- 4 | 2.655
2.648
2.640
2.633
2.627 | - 7
- 8
- 7
- 6
- 6 | 2.721
2.709
2.698
2.688
2.679 | - 12
- 11
- 10
- 9
- 9 | 810
828
846
864
882 | | 500
510
520
530
540 | 2.518
2.517
2.516
2.516
2.515 | - 1
- 1
- 1
- 1 | 2.570
2.567
2.564
2.561
2.559 | - 3
- 3
- 3
- 2
- 3 | 2.621
2.616
2.611
2.606
2.601 | - 5
- 5
- 5
- 5
- 4 | 2.670
2.663
2.656
2.649
2.642 | - 7
- 7
- 7
- 7
- 6 | 900
918
936
954
972 | | 550
560
570
580
590 | 2.514
2.514
2.513
2.513
2.512 | - 1
- 1 | 2.556
2.554
2.552
2.550
2.548 | - 2
- 2
- 2
- 2
- 2 | 2.597
2.593
2.589
2.586
2.583 | - 4
- 4
- 3
- 3
- 4 | 2.636
2.630
2.625
2.620
2.615 | - 6
- 5
- 5
- 5
- 4 | 990
1008
1026
1044
1062 | | 600
610
620
630
640 | 2.512
2.511
2.511
2.511
2.510 | - 1
- 1 | 2.546
2.544
2.543
2.541
2.540 | - 2
- 1
- 2
- 1
- 2 | 2.579
2.576
2.574
2.571
2.568 | - 3
- 2
- 3
- 3 | 2.611
2.607
2.603
2.600
2.596 | - 4
- 4
- 3
- 4 | 1080
1098
1116
1134
1152 | | 650
660
670
680
690 | 2.510
2.509
2.509
2.509
2.509 | - 1 | 2.538
2.537
2.536
2.535
2.533 | - 1
- 1
- 1
- 2
- 1 | 2.566
2.564
2.561
2.559
2.557 | - 2
- 3
- 2
- 2
- 2 | 2.592
2.589
2.586
2.584
2.581 | - 3
- 3
- 2
- 3
- 3 | 1170
1188
1206
1224
1242 | | 700
710
720
730
740 | 2.508
2.508
2.508
2.508
2.507 | - 1 | 2.532
2.531
2.530
2.529
2.528 | - 1
- 1
- 1
- 1 | 2.555
2.554
2.553
2.551
2.549 | - 1
- 1
- 2
- 2
- 1 | 2.578
2.576
2.573
2.571
2.569 | - 2
- 3
- 2
- 2
- 2 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | 2.507
2.507
2.507
2.507
2.506 | - 1 | 2.528
2.527
2.526
2.525
2.524 | - 1
- 1
- 1
- 1 | 2.548
2.546
2.545
2.544
2.542 | - 2
- 1
- 1
- 2
- 1 | 2.567
2.565
2.563
2.561
2.559 | - 2
- 2
- 2
- 2
- 1 | 1350
1368
1386
1404
1422 | | 800 | 2.506 | | 2.524 | | 2.541 | | 2.558 | | 1440 | Table 3-3. SPECIFIC HEAT OF ARGON - Cont. C_p/R | °K | 10 | atm | 40 | otm | 70 | atm | 100 | atm | °R | |--------------------------------------|---|--------------------------|---|---------------------------------|---|----------------------------------|---|----------------------------------|--------------------------------------| | 800
900
1000
1100
1200 | 2.506
2.505
2.504
2.503
2.502 | - 1
- 1
- 1
- 1 | 2.524
2.519
2.515
2.512
2.510 | - 5
- 4
- 3
- 2
- 2 | 2.541
2.531
2.525
2.520
2.516 | - 10
- 6
- 5
- 4
- 2 | 2.558
2.544
2.536
2.528
2.523 | - 14
- 8
- 8
- 5
- 4 | 1440
1620
1800
1980
2160 | | 1300
1400
1500
1600
1700 | 2.502
2.502
2.501
2.501
2.501 | - 1 | 2.508
2.507
2.506
2.505
2.504 | - 1
- 1
- 1
- 1 | 2.514
2.512
2.510
2.509
2.507 | - 2
- 2
- 1
- 2
- 1 | 2.519
2.516
2.513
2.511
2.511 | - 3
- 3
- 2
- 2 | 2340
2520
2700
2880
3060 | | 1800
1900
2000
2100
2200 | 2.501
2.501
2.501
2.501
2.501 | | 2.504
2.503
2.503
2.502
2.502 | - 1
- 1 | 2.506
2.506
2.505
2.504
2.504 | - 1
- 1
- 1 | 2.509
2.508
2.507
2.506
2.505 | - 1
- 1
- 1 | 3240
3420
3600
3780
3960 | | 2300
2400
2500
2600
2700 | 2.501
2.500
2.500
2.500
2.500 | - 1 | 2.502
2.502
2.502
2.501
2.501 | - 1 | 2.503
2.503
2.503
2.502
2.502 | - 1 | 2.505
2.504
2.504
2.503
2.503 | - 1
- 1 | 4140
4320
4500
4680
4860 | | 2800
2900
3000 | 2.500
2.500
2.500 | | 2.501
2.501
2.501 | | 2.502
2.502
2.502 | | 2.503
2.503
2.502 | - 1 | 5040
5220
5400 | Table 3-4. ENTHALPY OF ARGON* | °K | .01 | atm | .1 | atm | .4 | atm | .7 | atm | °R | |------------|------------------|--------------------|------------------|------------|------------------|------------|------------------|------------|--------------| | | | | | | 2011 | | | | 100 | | 100 | .9150 | 915 | .9131 | 918 | .9066 | 928 | .9000 | 939 | 180
198 | | 110 | 1.0065 | 916 | 1.0049 | 918 | .9994 | 927 | .9939 | 934 | 216 | | 120
130 | 1.0981
1.1897 | 916 | 1.0967
1.1884 | 917
917 | 1.0921
1.1843 | 922
922 | 1.0873
1.1801 | 928
927 | 234 | | 140 | 1.2812 | 915
9 15 | 1.2801 | 916 | 1.2765 | 920 | 1.2728 | 924 | 252 | | 150 | 1.3727 | 915 | 1,3717 | 916 | 1.3685 | 919 | 1.3652 | 923 | 270 | | 160 | 1.4642 | 916 | 1.4633 | 917 | 1.4604 | 920 | 1.4575 | 922 | 288 | | 170 | 1.5558 | 915 | 1.5550 | 916 | 1.5524 | 918 | 1.5497 | 920 | 306 | | 180
190 | 1.6473
1.7388 | 915
915 | 1.6466
1.7382 | 916
915 | 1.6442
1.7359 | 917
918 | 1.6417
1.7337 | 920
919 | 324
342 | | 200 | 1.8303 | 916 | 1.8297 | 917 | 1.8277 | 918 | 1.8256 | 920 | 360 | | 210 | 1,9219 | 915 | 1.9214 | 915 | 1.9195 | 917 | 1.9176 | 918 | 378 | | 220 | 2.0134 | 915 | 2.0129 | 916 | 2.0112 | 916 | 2.0094 | 918 | 396 | | 230 | 2.1049 | 915 | 2.1045 | 915 | 2.1028 | 917 | 2.1012 | 918 | 414 | | 240 | 2.1964 | 916 | 2.1960 | 915 | 2.1945 | 916 | 2.1930 | 917 | 432 | | 250 | 2.2880 | 916 | 2.2875 | 917 | 2,2861 | 917 | 2.2847 | 918 | 450 | | 260 | 2.3796 | 915 | 2.3792 | 915 | 2.3778 | 916 | 2.3765 | 917 | 468 | | 270 | 2.4711 | 915 | 2.4707 | 915 | 2.4694 | 917 | 2.4682 | 917 | 486 | | 280 | 2.5626 | 915 | 2.5622 | 915 | 2.5611 | 915 | 2.5599 | 917 | 504
522 | | 290 | 2.6541 | 915 | 2.6537 | 916 | 2.6526 | 916 | 2.6516 | 916 | | | 300 | 2.7456 | 916 | 2.7453 | 916 | 2.7442 | 917 | 2.7432 | 917 | 540 | | 310 | 2.8372 | 915 | 2.8369 | 915 | 2.8359 | 916 | 2.8349 | 917 | 558 | | 320 | 2.9287 | 915 | 2.9284 | 915 | 2.9275 | 916 | 2.9266 | 91.6 | 576 | | 330 | 3.0202 | 915 | 3.0199 | 915 | 3.0191 | 915 | 3.0182 | 916 | 594
612 | | 340 | 3.1117 | 916 | 3.1114 | 916 | 3.1106 | 917 | 3.1098 | 917 | | | 350 | 3.2033 | 915 | 3.2030 | 916 | 3.2023 | 915 | 3.2015 | 916 | 630 | | 360 | 3.2948 | 915 | 3.2946 | 915 | 3.2938 | 916 | 3.2931 | 916 | 648 | | 370 | 3.3863 | 915 | 3.3861 | 915 | 3.3854 | 915 | 3.3847 | 916 | 666
684 | | 380
390 | 3.4778
3.5693 | 915
916 | 3.4776
3.5691 | 915
916 | 3.4769
3.5685 | 916
916 | 3.4763
3.5679 | 916
917 | 702 | | 400 | 3,6609 | 915 | 3,6607 | 915 | 3,6601 | 916 | 3,6596 | 915 | 720 |
| 410 | 3.7524 | 915 | 3.7522 | 915 | 3.7517 | 915 | 3.7511 | 916 | 738 | | 420 | 3.8439 | 915 | 3.8437 | 915 | 3.8432 | 916 | 3.8427 | 916 | 756 | | 430 | 3.9354 | 915 | 3.9352 | 915 | 3.9348 | 915 | 3.9343 | 915 | 774 | | 440 | 4.0269 | 916 | 4.0267 | 917 | 4.0263 | 916 | 4.0258 | 917 | 792 | | 450 | 4.1185 | 915 | 4.1184 | 915 | 4,1179 | 916 | 4.1175 | 915 | 810 | | 460 | 4.2100 | 915 | 4.2099 | 915 | 4.2095 | 915 | 4.2090 | 916 | 828 | | 470 | 4,3015 | 915 | 4.3014 | 915 | 4.3010 | 915 | 4.3006 | 915 | 846 | | 480 | 4.3930 | 916 | 4.3929 | 916 | 4.3925 | 916 | 4.3921 | 917 | 864 | | 490 | 4.4846 | 915 | 4.4845 | 915 | 4.4841 | 916 | 4.4838 | 915 | 882 | | 500 | 4.5761 | 915 | 4.5760 | 915 | 4.5757 | 915 | 4.5753 | 916 | 900 | | 510 | 4.6676 | 915 | 4.6675 | 915 | 4.6672 | 915 | 4.6669 | 915 | 918 | | 520 | 4.7591 | 915 | 4.7590 | 915 | 4.7587 | 915 | 4.7584 | 916 | 936 | | 530
540 | 4.8506
4.9422 | 916 | 4.8505
4.9421 | 916
915 | 4.8502
4.9419 | 917
915 | 4.8500
4.9416 | 916
915 | 954
972 | | | | 915 | | | | | | | | | 550 | 5.0337 | 915 | 5.0336 | 915 | 5.0334 | 915 | 5.0331 | 916 | 990 | | 560 | 5.1252 | 915 | 5.1251 | 915 | 5.1249 | 915 | 5.1247 | 915 | 1008 | | 570 | 5.2167 | 915 | 5.2166 | 915 | 5.2164 | 915 | 5.2162 | 915 | 1026 | | 580 | 5.3082 | 916 | 5.3081 | 916 | 5.3079 | 917 | 5.3077 | 917 | 1044
1062 | | 590 | 5.3998 | 915 | 5.3997 | 915 | 5.3996 | 915 | 5.3994 | 915 | | | 600 | 5.4913 | 915 | 5.4912 | 915 | 5.4911 | 915 | 5.4909 | 915 | 1080 | | 610 | 5.5828 | 915 | 5.5827 | 916 | 5.5826 | 915 | 5.5824 | 916 | 1098
1116 | | 620 | 5.6743 | 916 | 5.6743
5.7659 | 916 | 5.6741
5.7657 | 916 | 5.6740
5.7656 | 916
915 | 1116 | | 630
640 | 5.7659
5.8574 | 915
915 | 5.7659
5.8574 | 915
915 | 5.8572 | 915
916 | 5.8571 | 915 | 1152 | | 650 | 5.9489 | 915 | 5,9489 | 915 | 5.9488 | 915 | 5.9486 | 916 | 1170 | | 660 | 6.0404 | 915 | 6.0404 | 915 | 6.0403 | 915 | 6.0402 | 915 | 1188 | | 670 | 6.1319 | 916 | 6.1319 | 916 | 6.1318 | 916 | 6.1317 | 916 | 1206 | | 680 | 6,2235 | 915 | 6,2235 | 915 | 6.2234 | 915 | 6.2233 | 915 | 1224 | | 690 | 6.3150 | 915 | 6,3150 | 915 | 6.3149 | 915 | 6.3148 | 916 | 1242 | | 700 | 6.4065 | | 6.4065 | | 6.4064 | | 6.4064 | | 1260 | ^{*}The enthalpy function is divided here by a constant RT_0 where $T_0 = 273.16$ (491.688 R). Table 3-4. ENTHALPY OF ARGON - Cont.* | ramie a | | | | | | | | | | | |---------|---------|------|---------|------|---------|------|---------|------|--------------|--| | °K | .01 | atm | ۱. | atm | .4 | atm | .7 | atm | °R | | | | | | | | | | | | | | | 700 | 6.4065 | 915 | 6,4065 | 915 | 6.4064 | 915 | 6.4064 | 915 | 1260 | | | 710 | 6.4980 | 915 | 6.4980 | 915 | 6.4979 | 915 | 6.4979 | 915 | 1278 | | | 720 | 6.5895 | 916 | 6.5895 | 916 | 6,5894 | 917 | 6.5894 | 916 | 1296 | | | 730 | 6.6811 | 915 | 6.6811 | 915 | 6.6811 | 915 | 6.6810 | 915 | 1314 | | | 740 | 6.7726 | 915 | 6.7726 | 915 | 6.7726 | 915 | 6.7725 | 913 | 1332 | | | 750 | 6.8641 | 915 | 6.8641 | 915 | 6.8641 | 915 | 6.8638 | 917 | 1350 | | | 760 | 6.9556 | 916 | 6.9556 | 916 | 6.9556 | 916 | 6.9555 | 917 | 1368 | | | 770 | 7.0472 | 915 | 7.0472 | 915 | 7.0472 | 915 | 7.0472 | 915 | 1386 | | | 780 | 7.1387 | 915 | 7.1387 | 915 | 7.1387 | 915 | 7.1387 | 915 | 1404
1422 | | | 790 | 7.2302 | 915 | 7.2302 | 915 | 7.2302 | 915 | 7.2302 | 916 | 1722 | | | 800 | 7,3217 | 4576 | 7.3217 | 4576 | 7.3217 | 4577 | 7.3218 | 4576 | 1440 | | | 850 | 7.7793 | 4576 | 7.7793 | 4576 | 7.7794 | 4576 | 7,7794 | 4577 | 1530 | | | 900 | 8,2369 | 4576 | 8.2369 | 4576 | 8,2370 | 4576 | 8,2371 | 4576 | 1620 | | | 950 | 8.6945 | 4576 | 8.6945 | 4576 | 8.6946 | 4577 | 8.6947 | 4577 | 1710 | | | 1000 | 9.1521 | 4577 | 9.1521 | 4577 | 9.1523 | 4577 | 9.1524 | 4577 | 1800 | | | 1050 | 9.6098 | 4576 | 9.6098 | 4577 | 9.6100 | 4576 | 9.6101 | 4577 | 1890 | | | 1100 | 10.0674 | 4576 | 10.0675 | 4576 | 10.0676 | 4576 | 10.0678 | 4576 | 1980 | | | 1150 | 10.5250 | 4576 | 10.5251 | 4576 | 10.5252 | 4577 | 10.5254 | 4577 | 2070 | | | 1200 | 10.9826 | 4576 | 10,9827 | 4576 | 10.9829 | 4576 | 10.9831 | 4576 | 2160 | | | 1250 | 11.4402 | 4576 | 11.4403 | 4576 | 11.4405 | 4576 | 11.4407 | 4576 | 2250 | | | 1300 | 11.8978 | 4576 | 11.8979 | 4576 | 11.8981 | 4576 | 11.8983 | 4576 | 2340 | | | 1350 | 12.3554 | 4576 | 12,3555 | 4576 | 12.3557 | 4576 | 12.3559 | 4577 | 2430 | | | 1400 | 12.8130 | 4576 | 12.8131 | 4576 | 12.8133 | 4576 | 12.8136 | 4576 | 2520 | | | 1450 | 13,2706 | 4576 | 13.2707 | 4576 | 13.2709 | 4576 | 13,2712 | 4576 | 2610 | | | 1500 | 13.7282 | 4576 | 13,7283 | 4576 | 13.7285 | 4577 | 13,7288 | 4576 | 2700 | | | 1550 | 14.1858 | 4576 | 14.1859 | 4576 | 12.1862 | 4576 | 14.1864 | 4576 | 2790 | | | 1600 | 14.6434 | 4576 | 14.6435 | 4576 | 14.6438 | 4576 | 14.6440 | 4576 | 2880 | | | 1650 | 15.1010 | 4576 | 15.1011 | 4576 | 15.1014 | 4576 | 15.1016 | 4577 | 2970 | | | 1700 | 15.5586 | 4577 | 15.5587 | 4577 | 15.5590 | 4577 | 15.5593 | 4577 | 3060 | | | 1750 | 16.0163 | 4576 | 16.0164 | 4576 | 16.0167 | 4576 | 16.0170 | 4576 | 3150 | | | 1800 | 16.4739 | 4576 | 16.4740 | 4576 | 16.4743 | 4576 | 16.4746 | 4576 | 3240 | | | 1850 | 16.9315 | 4576 | 16,9316 | 4576 | 16.9319 | 4576 | 16.9222 | 4576 | 3330 | | | 1900 | 17.3891 | 4576 | 17.3892 | 4576 | 17.3895 | 4576 | 17.3898 | 4576 | 3420 | | | 1950 | 17.8467 | 4576 | 17.8468 | 4576 | 17.8471 | 4576 | 17.8474 | 4576 | 3510 | | | 2000 | 18.3043 | 4576 | 18,3044 | 4576 | 18.3047 | 4576 | 18.3050 | 4576 | 3600 | | | 2050 | 18,7619 | 4576 | 18.7620 | 4576 | 18,7623 | 4576 | 18.7626 | 4576 | 3690 | | | 2100 | 19,2195 | 4576 | 19,2196 | 4576 | 19.2199 | 4576 | 19.2202 | 4577 | 3780 | | | 2150 | 19.6771 | 4576 | 19,6772 | 4576 | 19.6775 | 4576 | 19.6779 | 4576 | 3870 | | | 2200 | 20.1347 | 4576 | 20.1348 | 4576 | 20.1351 | 4576 | 20.1355 | 4576 | 3960 | | | 2250 | 20.5923 | 4576 | 20.5924 | 4576 | 20.5927 | 4576 | 20.5931 | 4576 | 405 0 | | | 2300 | 21.0499 | 4576 | 21.0500 | 4576 | 21.0503 | 4577 | 21.0507 | 4576 | 4140 | | | 2350 | 21.5075 | 4576 | 21.5076 | 4576 | 21.5080 | 4576 | 21,5083 | 4576 | 4230 | | | 2400 | 21,9651 | 4577 | 21.9652 | 4577 | 21.9656 | 4577 | 21.9659 | 4577 | 4320 | | | 2450 | 22,4228 | 4576 | 22,4229 | 4576 | 22.4233 | 4576 | 22.4236 | 4576 | 4410 | | | 2500 | 22.8804 | 4576 | 22.8805 | 4576 | 22.8809 | 4576 | 22.8812 | 4576 | 4500 | | | 2550 | 23.3380 | 4576 | 23.3381 | 4576 | 23.3385 | 4576 | 23.3388 | 4576 | 4590 | | | 2600 | 23.7956 | 4576 | 23.7957 | 4576 | 23.7961 | 4576 | 23.7964 | 4576 | 4680 | | | 2650 | 24.2532 | 4576 | 24.2533 | 4576 | 24,2537 | 4576 | 24.2540 | 4576 | 4770
4860 | | | 2700 | 24.7108 | 4576 | 24.7109 | 4576 | 24.7113 | 4576 | 24,7116 | 4576 | | | | 2750 | 25.1684 | 4576 | 25.1685 | 4576 | 25.1689 | 4576 | 25.1692 | 4576 | 4950 | | | 2800 | 25,6260 | 4576 | 25,6261 | 4576 | 25.6265 | 4576 | 25.6268 | 4576 | 5040 | | | 2850 | 26.0836 | 4576 | 26.0837 | 4576 | 26.0841 | 4576 | 26.0844 | 4576 | 5130 | | | 2900 | 26,5412 | 4576 | 26.5413 | 4576 | 26.5417 | 4576 | 26.5420 | 4576 | 5220 | | | 2950 | 26.9988 | 4576 | 26.9989 | 4576 | 26.9993 | 4576 | 26.9996 | 4576 | 5310 | | | 3000 | 27.4564 | | 27.4565 | | 27.4569 | | 27.4572 | | 5400 | | | | | | | | | | | | | | ^{*}The enthalpy function is divided here by a constant RT_0 where $T_0 = 273.16^{\circ}K$ (491.688°R). Table 3-4. ENTHALPY OF ARGON - Cont.* | 1 | | | | | | | | | · . | | |---|------------|------------------|------------|------------------|------------|------------------|------------|------------------|------------|--------------| | | *K | 1 | atm . | 4 | atm | 7 | atm | 10 | atm | •̂R | | • | | | | | <u>-</u> | | | | | • | | | 100 | .8935 | 949 | .8220 | 1075 | .7413 | 1235 | | | 180 | | | 110 | .9884 | 941 | .9295 | 1031 | .8648 | 1142 | | | 198 | | | 120 | 1.0825 | 935 | 1.0326 | 1003 | .9790 | 1082 | .92 | 12 | 216 | | | 130 | 1.1760 | 931 | 1.1329 | 983 | 1.0872 | 1045 | 1.04 | 11 | 234 | | | 140 | 1.2691 | 928 | 1.2312 | 972 | 1,1917 | 1018 | 1.15 | 11 | 252 | | | 150 | 1.3619 | 925 | 1.3284 | 960 | 1,2935 | 999 | 1.258 | 104 | 270 | | | 160 | 1.4544 | 926 | 1,4244 | 954 | 1.3934 | 986 | 1.362 | 102 | 288 | | | 170 | 1.5470 | 923 | 1.5198 | 948 | 1.4920 | 975 | 1.464 | 100 | 306 | | | 180 | 1,6393 | 922 | 1.6146 | 943 | 1.5895 | 965 | 1.564 | 99 | 324 | | | 190 | 1.7315 | 921 | 1.7089 | 940 | 1.6860 | 959 | 1.663 | 98 | 342 | | | 200 | 1.8236 | 921 | 1.8029 | 937 | 1.7819 | 954 | 1.7606 | 973 | 360 | | | 210 | 1.9157 | 920 | 1.8966 | 934 | 1.8773 | 949 | 1.8579 | 963 | 378 | | | 220 | 2,0077 | 919 | 1.9900 | 932 | 1,9722 | 945 | 1.9542 | 960 | 396 | | | 230 | 2.0996 | 919 | 2.0832 | 930 | 2.0667 | 942 | 2,0502 | 953 | 414 | | | 240 | 2.1915 | 918 | 2.1762 | 928 | 2.1609 | 939 | 2.1455 | 951 | 432 | | | 050 | 0.0000 | | | | | | | | | | | 250 | 2.2833 | 919 | 2.2690 | 930 | 2.2548 | 939 | 2.2406 | 947 | 450 | | | 260 | 2.3752 | 918 | 2.3620 | 926 | 2.3487 | 934 | 2.3353 | 944 | 468 | | | 270 | 2.4670 | 917 | 2.4546 | 925 | 2.4421 | 934 | 2.4297 | 941 | 486 | | | 280 | 2.5587 | 918 | 2.5471 | 925 | 2.5355 | 932 | 2.5238 | 939 | 504 | | | 290 | 2.6505 | 917 | 2.6396 | 923 | 2.6287 | 930 | 2.6177 | 937 | 522 | | | 300 | 2.7422 | 918 | 2.7319 | 924 | 2,7217 | 930 | 2.7114 | 936 | 540 | | | 310 | 2.8340 | 917 | 2.8243 | 923 | 2.8147 | 928 | 2.8050 | 934 | 558 | | | 320 | 2.9257 | 916 | 2,9166 | 922 | 2.9075 | 927 | 2.8984 | 932 | 576 | | | 330 | 3.0173 | 917 | 3,0088 | 921 | 3.0002 | 926 | 2,9916 | 932 | 594 | | | 340 | 3.1090 | 918 | 3.1009 | 922 | 3.0928 | 927 | 3.0848 | 932
932 | 612 | | | 350 | 2 2000 | | 2 1021 | | 2 1055 | | 4 1700 | | | | | 350
360 | 3.2008 | 916 | 3.1931 | 921 | 3.1855 | 925 | 3.1780 | 929 | 630 | | | 370 | 3.2924 | 916 | 3.2852 | 920 | 3.2780 | 925 | 3.2709 | 928 | 648 | | | | 3.3840 | 917 | 3.3772 | 920 | 3.3705 | 924 | 3.3637 | 927 | 666 | | | 380
390 | 3.4757 | 916 | 3.4692 | 920 | 3.4629 | 923 | 3.4564 | 927 | 684 | | | 270 | 3.5673 | 917 | 3.5612 | 920 |
3.5552 | 924 | 3.5491 | 927 | 702 | | | 400 | 3,6590 | 916 | 3.6532 | 920 | 3.6476 | 922 | 3,6418 | 926 | 720 | | | 410 | 3.7506 | 916 | 3.7452 | 918 | 3,7398 | 922 | 3.7344 | 925 | 738 | | | 420 | 3.8422 | 916 | 3.8370 | 919 | 3.8320 | 922 | 3.8269 | 924 | 756 | | | 430 | 3.9338 | 916 | 3.9289 | 919 | 3.9242 | 921 | 3,9193 | 924 | 774 | | | 440 | 4.0254 | 917 | 4.0208 | 919 | 4.0163 | 922 | 4.0117 | 924 | 792 | | | 450 | 4.1171 | 915 | 4.1127 | 03.0 | 4.1085 | 000 | 4 1041 | | 010 | | | 460 | 4.2086 | 916 | 4.2045 | 918
918 | 4.2005 | 920 | 4.1041
4.1964 | 923 | 810
828 | | | 470 | 4.3002 | 916 | 4.2963 | | 4.2926 | 921 | | 923 | | | | 480 | 4.3918 | 917 | 4.3881 | 918
919 | 4.3846 | 920 | 4.2887
4.3809 | 922 | 846 | | | 490 | 4.4835 | 915 | 4.4800 | 919
918 | 4.4767 | 921
919 | 4.4732 | 923
922 | 864
882 | | | | | 725 | | ,10 | | 727 | 7,7172 | 762 | 002 | | | 500 | 4.5750 | 916 | 4.5718 | 917 | 4.5686 | 920 | 4.5654 | 921 | 900 | | | 510 | 4.6666 | 915 | 4.6635 | 918 | 4.6606 | 919 | 4.6575 | 921 | 918 | | | 520 | 4.7581 | 916 | 4.7553 | 917 | 4.7525 | 919 | 4.7496 | 921 | 936 | | | 530 | 4.8497 | 917 | 4.8470 | 918 | 4.8444 | 920 | 4.8417 | 922 | 954 | | | 540 | 4.9414 | 915 | 4.9388 | 917 | 4.9364 | 919 | 4.9339 | 920 | 972 | | | 550 | 5.0329 | 916 | 5.0305 | 918 | 5,0283 | 917 | 5.0259 | 920 | 990 | | | 560 | 5.1245 | 915 | 5.1223 | 916 | 5.1200 | 919 | 5.1179 | 920 | 1008 | | | 570 | 5.2160 | 916 | 5.2139 | 917 | 5.2119 | 918 | 5.2099 | 920 | 1026 | | | 580 | 5,3076 | 916 | 5.3056 | 918 | 5,3037 | 919 | 5,3019 | 920 | 1044 | | | 590 | 5.3992 | 915 | 5.3974 | 917 | 5.3956 | 918 | 5.3939 | 920 | 1062 | | | 400 | E 4007 | 014 | E 4001 | . | E 4074 | | | | 1000 | | | 600
610 | 5.4907
5.5823 | 916
915 | 5.4891
5.5808 | 917
916 | 5.4874
5.5792 | 918
918 | 5.4859
5.5778 | 919 | 1080
1098 | | | 620 | 5.6738 | 917 | 5.6724 | 918 | 5.6710 | 919 | 5.6697 | 919 | 1116 | | | 630 | 5.7655 | 917
915 | 5.7642 | | 5.7629 | | 5.7617 | 920 | 1134 | | | 640 | 5.8570 | 915 | 5.8558 | 916
917 | 5.8547 | 918
917 | 5.8536 | 919
919 | 1152 | | | | | | | | | | | | | | | 650 | 5.9485 | 916 | 5.9475 | 916 | 5.9464 | 918 | 5.9455 | 918 | 1170 | | | 660 | 6.0401 | 915 | 6.0391 | 917 | 6.0382 | 917 | 6.0373 | 919 | 1188 | | | 670 | 6.1316 | 916 | 6.1308 | 917 | 6.1299 | 918 | 6.1292 | 919 | 1206 | | | 680 | 6.2232 | 916 | 6.2225 | 916 | 6.2217 | 918 | 6,2211 | 918 | 1224 | | | 690 | 6.3148 | 915 | 6.3141 | 916 | 6.3135 | 917 | 6.3129 | 918 | 1242 | | | 700 | 6.4063 | | 6,4057 | | 6.4052 | | 6.4047 | | 1260 | | | | | | | | | | | | | ^{*} The enthalpy function is divided here by a constant RT_0 where $T_0 = 273.16^{\circ}K$ (491.688°R). | *K | ì | atm | 4 | atm | 7 | atm | 10 | atm | °₽ | |------|---------|------|---------|------|---------|---------------|---------|-------|------| | | | | | | | | · | • | • | | 700 | 6.4063 | 915 | 6.4057 | 917 | 6,4052 | 917 | 6.4047 | 918 | 1260 | | 710 | 6.4978 | 916 | 6.4974 | 916 | 6.4969 | 917 | 6.4965 | 918 | 1278 | | 720 | 6.5894 | 916 | 6.5890 | 917 | 6.5886 | 918 | 6.5883 | 919 | 1296 | | 730 | 6.6810 | 915 | 6.6807 | 916 | 6.6804 | 917 | 6.6802 | 918 | 1314 | | 740 | 6.7725 | 916 | 6.7723 | 916 | 6.7721 | 917 | 6.7720 | 917 | 1332 | | 750 | 6.8641 | 915 | 6,8639 | 916 | 6.8638 | 917 | 6.8637 | 918 | 1350 | | 760 | 6,9556 | 916 | 6.9555 | 917 | 6.9555 | 917 | 6.9555 | 918 | 1368 | | 770 | 7.0472 | 915 | 7.0472 | 916 | 7.0472 | 917 | 7.0473 | 918 | 1386 | | 780 | 7.1387 | 916 | 7.1388 | 916 | 7.1389 | 917 | 7,1391 | 917 | 1404 | | 790 | 7.2303 | 915 | 7.2304 | 916 | 7.2306 | 916 | 7.2308 | 918 | 1422 | | | | | | | | | | | | | 800 | 7.3218 | 9154 | 7.3220 | 9160 | 7.3222 | 9166 | 7.3226 | 9170 | 1440 | | 900 | 8.2372 | 9153 | 8.2380 | 9158 | 8.2388 | 9163 | 8.2396 | 9168 | 1620 | | 1000 | 9.1525 | 9154 | 9.1538 | 9158 | 9.1551 | 91.61 | 9.1564 | 9165 | 1800 | | 1100 | 10.0679 | 9153 | 10.0696 | 9156 | 10.0712 | 9159 | 10.0729 | 9162 | 1980 | | 1200 | 10.9832 | 9153 | 10,9852 | 9155 | 10.9871 | 9158 | 10.9891 | 9160 | 2160 | | 1300 | 11.8985 | 9153 | 11,9007 | 9155 | 11.9029 | 9157 | 11.9051 | 9159 | 2340 | | 1400 | 12.8138 | 9153 | 12.8162 | 9154 | 12.8186 | 9156 | 12.8210 | 9157 | 2520 | | 1500 | 13.7291 | 9152 | 13.7316 | 9154 | 13.7342 | 9155 | 13,7367 | 9157 | 2700 | | 1600 | 14.6443 | 9152 | 14,6470 | 9154 | 14.6497 | 9155 | 14.6524 | 9156 | 2880 | | 1700 | 15.5595 | 9154 | 15.5624 | 9154 | 15.5652 | 9156 | 15.5680 | 9157 | 3060 | | 1800 | 16.4749 | 9152 | 16.4778 | 9153 | 16.4808 | 9154 | 16,4837 | 9155 | 3240 | | 1900 | 17.3901 | 9152 | 17,3931 | 9154 | 17.3962 | 9154 | 17.3992 | 9155 | 3420 | | 2000 | 18.3053 | 9153 | 18,3085 | 9153 | 18,3116 | 9153 | 18.3147 | 9154 | 3600 | | 2100 | 19.2206 | 9152 | 19,2238 | 9152 | 19,2269 | 9154 | 19.2301 | 9155 | 3780 | | 2200 | 20.1358 | 9152 | 20.1390 | 9153 | 20,1423 | 9153 | 20.1456 | 9153 | 3960 | | 2300 | 21.0510 | 9152 | 21.0543 | 9153 | 21.0576 | 9153 | 21.0609 | 9154 | 4140 | | 2400 | 21.9662 | 9153 | 21.9696 | 9153 | 21,9729 | 9155 | 21.9763 | 9155 | 4320 | | 2500 | 22.8815 | 9152 | 22.8849 | 9153 | 22.8884 | 9152 | 22.8918 | 9153 | 4500 | | 2600 | 23.7967 | 9153 | 23.8002 | 9152 | 23.8036 | 9153 | 23.8071 | 9153 | 4680 | | 2700 | 24.7120 | 9152 | 24.7154 | 9153 | 24.7189 | 9153 | 24.7224 | 9153 | 4860 | | 2800 | 25.6272 | 9152 | 25.6307 | 9152 | 25.6342 | 9153 | 25,6377 | 9153 | 5040 | | 2900 | 26.5424 | 9152 | 26.5459 | 9153 | 26.5495 | 91 5 2 | 26.5530 | 9153 | 5220 | | 3000 | 27.4576 | | 27.4612 | | 27.4647 | | 27.4683 | ,,,,, | 5400 | ^{*}The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). $(H-E8)/RT_0$ | | | | | | | | | | -0,,,0 | |----------------------------|------------------|------------------------|-------------------|------------|----------------|------------|----------------|------------|--------------------| | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | ° R | | | | | | | | | | | | | 200 | 1.7606 | 973 | 1.53 | 12 | 1.3 | 1 | | | 360 | | 210 | 1.8579 | 963 | 1.65 | 12 | 1.4 | 2 | | | 378 | | 220 | 1.9542 | 960 | 1.77 | 11 | 1.6 | 1 | | | 396 | | 230 | 2.0502 | 953 | 1.88 | 11 | 1.7 | 1 | | | 414 | | 240 | 2.1455 | 951 | 1.99 | 11 | 1.8 | 2 | | | 432 | | 250 | 2.2406 | 947 | 2.096 | 106 | 1.95 | 12 | 1.81 | 13 | 450 | | 260 | 2.3353 | 944 | 2.202 | 103 | 2.07 | 12 | 1.94 | 12 | 468 | | 270
280 | 2.4297 | 941 | 2.305 | 103 | 2.19 | 10 | 2.06 | 12 | 486 | | 290 | 2.5238
2.6177 | 9 39
937 | 2.408
2.509 | 101
101 | 2.29
2.40 | 11 | 2.18
2.30 | 12 | 504
522 | | | 2.01// | | 2.307 | 101 | 2.40 | 11 | 2,50 | 12 | 322 | | 300 | 2.7114 | 936 | 2.610 | 100 | 2.512 | 108 | 2.42 | 12 | 540 | | 310 | 2.8050 | 934 | 2.710 | 100 | 2.620 | 106 | 2.54 | 11 | 558 | | 320
330 | 2.8984
2.9916 | 932 | 2.810
2.908 | 98 | 2.726
2.830 | 104 | 2.65 | 11 | 576 | | 340 | 3.0848 | 932
932 | 3.006 | 98
98 | 2,933 | 103
101 | 2.76
2.86 | 10 | 594
612 | | | J.0070 | 732 | 2.000 | 76 | 2,733 | 101 | 2.00 | 11 | 012 | | 350 | 3.1780 | 929 | 3.104 | 97 | 3.034 | 101 | 2.97 | 10 | 630 | | 360 | 3.2709 | 928 | 3,201 | 96 | 3.135 | 100 | 3.07 | 11 | 648 | | 370 | 3.3637 | 927 | 3.297 | 97 | 3.235 | 101 | 3.18 | 10 | 666 | | 380 | 3.4564 | 927 | 3.394 | 96 | 3.336 | 99 | 3.28 | 10 | 684 | | 390 | 3,5491 | 927 | 3.490 | 96 | 3.435 | 98 | 3.38 | 10 | 702 | | 400 | 3.6418 | 926 | 3.586 | 96 | 3.533 | 99 | 3.480 | 104 | 720 | | 410 | 3.7344 | 925 | 3.682 | 96 | 3.632 | 98 | 3.584 | 102 | 738 | | 420
430 | 3.8269 | 924 | 3.778 | 95 | 3.730 | 99 | 3.686 | 101 | 756 | | 4 30
4 40 | 3.9193
4.0117 | 924
924 | 3.873
3.968 | 95
95 | 3.829
3.926 | 97
98 | 3.787
3.887 | 100
100 | 77 4
792 | | 450 | 4.1041 | 923 | 4.063 | 94 | 4.024 | 97 | 3,987 | 99 | 810 | | 460 | 4.1964 | 923 | 4.157 | 95 | 4.121 | 97
96 | 4.086 | 99 | 828 | | 470 | 4.2887 | 922 | 4.252 | 94 | 4.217 | 97 | 4.185 | 99 | 846 | | 480 | 4,3809 | 923 | 4.346 | 95 | 4.314 | 96 | 4.284 | 98 | 864 | | 490 | 4,4732 | 922 | 4.441 | 94 | 4.410 | 96 | 4.382 | 98 | 882 | | 500 | 4.5654 | 921 | 4.535 | 94 | 4.506 | 96 | 4.480 | 97 | 900 | | 510 | 4.6575 | 921 | 4.62 9 | 94 | 4.602 | 96 | 4.577 | 98 | 918 | | 520 | 4.7496 | 921 | 4.723 | 93 | 4.698 | 95 | 4.675 | 97 | 936 | | 530 | 4.8417 | 922 | 4.816 | 94 | 4.793 | 96 | 4.772 | 97 | 954 | | 540 | 4.9339 | 920 | 4.910 | 94 | 4.889 | 95 | 4.869 | 96 | 972 | | 550 | 5.0259 | 920 | 5.004 | 93 | 4.984 | 95 | 4.965 | 97 | 990 | | 560 | 5.1179 | 920 | 5.097 | 94 | 5.079 | 94 | 5.062 | 96 | 1008 | | 570 | 5.2099 | 920 | 5.191 | 93 | 5.173 | 95 | 5.158 | 96 | 1026 | | 580 | 5.3019 | 920 | 5.284 | 94 | 5.268 | 95 | 5.254 | 96 | 1044
1062 | | 590 | 5.3939 | 920 | 5.378 | 93 | 5,363 | 94 | 5.350 | 95 | 1062 | | 600 | 5.4859 | 919 | 5.471 | 93 | 5.457 | 95 | 5,445 | 96 | 1080 | | 610 | 5.5778 | 919 | 5.564 | 93 | 5.552 | 94 | 5.541 | 95 | 1098 | | 620 | 5.6697 | 920 | 5.657 | 93 | 5.646 | 94 | 5.636 | 96 | 1116 | | 630 | 5.7617 | 919 | 5.750 | 93 | 5.740 | 94 | 5.732 | 95
~~ | 1134 | | 640 | 5.8536 | 919 | 5.843 | 93 | 5.834 | 94 | 5.827 | 95 | 1152 | | 650 | 5.9455 | 918 | 5.936 | 93 | 5.928 | 94 | 5.922 | 94 | 1170 | | 660 | 6.0373 | 919 | 6.029 | 93 | 6.022 | 94 | 6.016 | 95 | 1188 | | 670
680 | 6.1292
6.2211 | 919 | 6.122
6.214 | 92 | 6.116
6.210 | 94 | 6.111
6.206 | 95 | 1206
1224 | | 690 | 6.3129 | 918
9 18 | 6.307 | 93
93 | 6.303 | 93
94 | 6.300 | 94
95 | 1242 | | 700 | 6.4047 | | 6.400 | | 6.397 | | 6.395 | | 1260 | | | | | | | | | | | | ^{*} The enthalpy function is divided here by a constant RT_0 where $T_0 = 273.16$ (491.688°R). Table 3-4. ENTHALPY OF ARGON - Cont.* | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | °R | |--------------|--------------------|----------------------|--------|------------|------------------|------------|--------
------------|--------------| | | | | | | | | | | | | 700 | 6.4047 | 918 | 6.400 | 93 | 6.397 | 93 | 6.395 | 94 | 1260 | | 710 | 6.4965 | 918 | 6.493 | 92 | 6.490 | 94 | 6.489 | 94 | 127 8 | | 720 | 6.5883 | 919 | 6.585 | 93 | 6.584 | 93 | 6.583 | 95 | 1296 | | 730 | 6.6802 | 918 | 6.678 | 93 | 6.677 | 94 | 6.678 | 94 | 1314 | | 740 | 6.7720 | 917 | 6.771 | 92 | 6.771 | 93 | 6.772 | 94 | 1332 | | 750 | 6.8637 | 918 | 6.863 | 93 | 6.864 | 93 | 6.866 | 94 | 1350 | | 760 | 6.9555 | 918 | 6.956 | 92 | 6.957 | 93 | 6.960 | 93 | 1368 | | 770 | 7.0473 | 918 | 7.048 | 93 | 7.050 | 94 | 7.053 | -94 | 1386 | | 780 | 7.1391 | 917 | 7.141 | 92 | 7.144 | 93 | 7.147 | 94 | 1404 | | 790 | 7.2308 | 918 | 7.233 | 93 | 7.237 | 93 | 7.241 | 94 | 1422 | | | | | | | | | | | | | 800 | 7.3226 | 9170 | 7.326 | 923 | 7.330 | 928 | 7.335 | 933 | 1440 | | 900 | 8.2396 | 9168 | 8.249 | 921 | 8.258 | 926 | 8.268 | 930 | 1620 | | 1000 | 9.1564 | 9165 | 9.170 | 920 | 9.184 | 923 | 9.198 | 927 | 1800 | | 1100 | 10.0729 | 9162 | 10.090 | 919 | 10.107 | 922 | 10.125 | 924 | 1980 | | 1200 | 10.9891 | 9160 | 11.009 | 918 | 11.029 | 921 | 11.049 | 923 | 2160 | | 1300 | 11.9051 | 9159 | 11.927 | 918 | 11.950 | 919 | 11.972 | 922 | 2340 | | 1400 | 12.8210 | 9157 | 12.845 | 918 | 12.869 | 919 | 12.894 | 921 | 2520 | | 1500 | 13.7367 | 9157 | 13.763 | 917 | 13.788 | 919 | 13.815 | 920 | 2700 | | 1600 | 14.6524 | 9156 | 14.680 | 917 | 14.707 | 918 | 14.735 | 919 | 2880 | | 1700 | 15.5680 | 9157 | 15.597 | 916 | 15.625 | 918 | 15.654 | 918 | 3060 | | 1800 | 16.4837 | 9155 | 16.513 | 917 | 16,543 | 917 | 16.572 | 919 | 3240 | | 1900 | 17.3992 | 9155 | 17.430 | 916 | 17.460 | 917 | 17.491 | 918 | 3420 | | 2000 | 18.3147 | 9154 | 18.346 | 916 | 18.377 | 917 | 18,409 | 917 | 3600 | | 2100 | 19.2301 | 9155 | 19.262 | 916 | 19.294 | 917 | 19.326 | 917 | 3780 | | 2200 | 20.1456 | 9153 | 20.178 | 916 | 20.211 | 916 | 20.243 | 917 | 3960 | | 2200 | 21 0400 | 0354 | 21.094 | 916 | 21.127 | 917 | 21,160 | 917 | 4140 | | 2300 | 21.0609
21.9763 | 9154
9155 | 22.010 | 916 | 22.044 | 916 | 22.077 | 917 | 4320 | | 2400
2500 | 21.9763 | 9155
915 3 | 22.926 | 916 | 22.960 | 916 | 22.994 | 917 | 4500 | | 2600
2600 | 23.8071 | 9153
915 3 | 23.842 | 916
915 | 23.876 | 916 | 23.911 | 916 | 4680 | | 2700 | 24.7224 | 9153
915 3 | 24.757 | 916 | 24.792 | 916 | 24.827 | 916 | 4860 | | | 0 | | 05 (70 | | 25 700 | | 25,743 | 916 | 5040 | | 2800 | 25.6377 | 9153 | 25.673 | 916 | 25.708
26.624 | 916
916 | 26.659 | 916
916 | 5220 | | 2900 | 26.5530 | 9153 | 26.589 | 915 | 27.540 | 710 | 27.575 | 710 | 5400 | | 3000 | 27.4683 | | 27.504 | | 21.540 | | 61.373 | | 5400 | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). Table 3-5. ENTROPY OF ARGON | °K | .01 | atm | 1. | atm | .4 | atm | 1 - | | °R | |------------|--------------------|------------------------|--------------------|---------------------|--------------------|----------------------|--------------------|--------------|--------------| | <u></u> | 1 .0. | u i i i | | 41111 | | <u> </u> | .7 | atm | | | | | | | | | | | | | | 100 | 20.4852 | 2384 | 18.1793 | 2392 | 16.7818 | 2417 | 16.2108 | 2444 | 180 | | 110 | 20.7236 | 2176 | 18.4185 | 2180 | 17.0235 | 2199 | 16.4552 | 2217 | 198 | | 120 | 20.9412 | 2001 | 18.6365 | 2006 | 17.2434
17.4452 | 2018 | 16.6769
16.8800 | 2031 | 216
234 | | 130
140 | 21.1413
21.3266 | 1853
1726 | 18.8371
19.0227 | 1856
1727 | 17.6318 | 1866
1735 | 17.0675 | 1875
1743 | 252 | | 140 | 21.5200 | 1120 | 17.02.27 | 1,2, | 11.0510 | 1120 | 17,0075 | 2145 | -32 | | 150 | 21.4992 | 1613 | 19.1954 | 1615 | 17.8053 | 1620 | 17.2418 | 1626 | 270 | | 160 | 21.6605 | 1516 | 19.3569 | 1518 | 17.9673 | 1522 | 17.4044 | 1527 | 288 | | 170
180 | 21.8121
21.9550 | 1429
1352 | 19.5087
19.6517 | 1430
1353 | 18.1195
18.2629 | 1434
1356 | 17.5571
17.7009 | 1438
1359 | 306
324 | | 190 | 22.0902 | 1282 | 19.7870 | 1283 | 18.3985 | 1285 | 17.8368 | 1287 | 342 | | | | | | | | | | | | | 200 | 22.2184 | 1220 | 19.9153 | 1220 | 18.5270 | 1223 | 17.9655 | 1225 | 360 | | 210
220 | 22.3404
22.4567 | 1163
1112 | 20.0373
20.1537 | 1164
1111 | 18.6493
18.7659 | 1166
111 3 | 18.0880
18.2047 | 1167
1115 | 378
396 | | 230 | 22.5679 | 1064 | 20.2648 | 1065 | 18.8772 | 1065 | 18.3162 | 1067 | 414 | | 240 | 22.6743 | 1020 | 20.3713 | 1020 | 18.9837 | 1022 | 18.4229 | 1023 | 432 | | | | | | | | | | | | | 250 | 22.7763 | 981 | 20.4733 | 982 | 19.0859 | 982 | 18.5252 | 983 | 450 | | 260
270 | 22.8744
22.9688 | 944
909 | 20.5715
20.6659 | 944
909 | 19.1841
19.2786 | 9 45
910 | 18.6235
18.7181 | 946
911 | 468
486 | | 280 | 23.0597 | 907
877 | 20.7568 | 877 | 19.3696 | 878 | 18.8092 | 978 | 504 | | 290 | 23.1474 | 848 | 20.8445 | 849 | 19.4574 | 849 | 18.8970 | 850 | 522 | | | | | | | | | | | - 40 | | 300 | 23.2322 | 81.9 | 20.9294
21.0113 | 819 | 19.5423 | 820 | 18.9820
19.0640 | 820 | 540
558 | | 310
320 | 23.3141
23.3935 | 794
7 69 | 21.0113 | 794
769 | 19.6243
19.7037 | 794
770 | 19.1435 | 795
770 | 57 6 | | 330 | 23,4704 | 747 | 21.1676 | 747 | 19,7807 | 748 | 19.2205 | 748 | 594 | | 340 | 23,5451 | 724 | 21.2423 | 724 | 19.8555 | 724 | 19.2953 | 725 | 612 | | 250 | 00 (175 | | 01 2147 | | 10 0070 | | 10 2470 | | 420 | | 350
360 | 23.6175
23.6880 | 705
685 | 21.3147
21.3852 | 705
68 5 | 19.9279
19.9984 | 705
686 | 19.3678
19.4384 | 706
685 | 630
648 | | 370 | 23.7565 | 666 | 21.4537 | 667 | 20.0670 | 666 | 19.5069 | 667 | 666 | | 380 | 23.8231 | 650 | 21.5204 | 650 | 20.1336 | 651 | 19.5736 | 650 | 684 | | 390 | 23.8881 | 633 | 21.5854 | 633 | 20.1987 | 633 | 19.6386 | 634 | 702 | | 400 | 23,9514 | 43. | 21.6487 | | 20,2620 | 43.9 | 19.7020 | (10 | 720 | | 410 | 24.0131 | 61.7
602 | 21.7104 | 61.7
602 | 20.2620 | 617
602 | 19.7638 | 618
602 | 738 | | 420 | 24.0733 | 589 | 21.7706 | 589 | 20.3839 | 590 | 19.8240 | 589 | 756 | | 430 | 24.1322 | 574 | 21.8295 | 574 | 20.4429 | 574 | 19.8829 | 575 | 774 | | 440 | 24.1896 | 562 | 21.8869 | 562 | 20.5003 | 562 | 19.9404 | 562 | 792 | | 450 | 24.2458 | 550 | 21.9431 | 550 | 20,5565 | 550 | 19,9966 | 550 | 810 | | 460 | 24.2436 | 537 | 21.9981 | 537 | 50.6115 | 537 | 20.0516 | 538 | 828 | | 470 | 24.3545 | 527 | 22.0518 | 527 | 20.6652 | 528 | 20.1054 | 527 | 846 | | 480 | 24.4072 | 515 | 22.1045 | 515 | 20.7180 | 515 | 20.1581 | 515 | 864 | | 490 | 24.4587 | 505 | 22.1560 | 505 | 20.7695 | 505 | 20.2096 | 506 | 882 | | 500 | 24.5092 | 495 | 22,2065 | 495 | 20.8200 | 495 | 20,2602 | 495 | 900 | | 510 | 24.5587 | 486 | 22.2560 | 486 | 20.8695 | 486 | 20.3097 | 486 | 918 | | 520 | 24.6073 | 476 | 22.3046 | 476 | 20.9181 | 476 | 20.3583 | 476 | 936 | | 530 | 24.6549 | 467 | 22.3522 | 467 | 20.9657 | 467 | 20.4059 | 468 | 954 | | 540 | 24.7016 | 459 | 22,3989 | 459 | 21.0124 | 460 | 20.4527 | 459 | 972 | | 550 | 24.7475 | 450 | 22.4448 | 450 | 21.0584 | 450 | 20.4986 | 450 | 990 | | 560 | 24.7925 | 443 | 22.4898 | 443 | 21.1034 | 443 | 20.5436 | 443 | 1008 | | 570 | 24.8368 | 435 | 22.5341 | 435 | 21,1477 | 435 | 20.5879 | 435 | 1026 | | 580 | 24.8803 | 427 | 22.5776 | 427 | 21.1912 | 427 | 20.6314 | 427 | 1044
1062 | | 590 | 24.9230 | 420 | 22,6203 | 420 | 21.2339 | 420 | 20.6741 | 420 | 1002 | | 600 | 24.9650 | 413 | 22,6623 | 414 | 21.2759 | 413 | 20.7161 | 414 | 1080 | | 610 | 25.0063 | 407 | 22.7037 | 40,7 | 21.3172 | 407 | 20.7575 | 407 | 1098 | | 620 | 25.0470 | 400 | 22.7444 | 400 | 21.3579 | 400 | 20.7982 | 400 | 1116 | | 630
640 | 25.0870
25.1264 | 394
307 | 22.7844
22.8238 | 394
387 | 21.3979
21.4373 | 3 94
387 | 20.8382
20.8776 | 394
387 | 1134
1152 | | 040 | 25.1264 | 387 | 22,0230 | <i>7</i> 0 <i>1</i> | 61.7313 | 201 | 20,0770 | 201 | | | 650 | 25,1651 | 382 | 22.8625 | 382 | 21.4760 | 382 | 20.9163 | 382 | 1170 | | 660 | 25.2033 | 376 | 22.9007 | 376 | 21.5142 | 376 | 20.9545 | 376 | 1188 | | 670
680 | 25.2409
25.2779 | 3 70 | 22.9383
22.9753 | 370
365 | 21.5518
21.5889 | 371
365 | 20.9921
21.0291 | 370
365 | 1206
1224 | | 690 | 25.2779
25.3144 | 365
360 | 23.0118 | 360 | 21.6254 | 360 | 21.0656 | 361 | 1242 | | | | | | | | - - | | | | | 700 | 25.3504 | | 23.0478 | | 21.6614 | | 21.1017 | | 1260 | | *K | .01 | atm | ا. ا | atm | .4 | atm | .7 | atm | °R | |--------------|--------------------|---------------|--------------------|------------------------|--------------------|------------|--------------------|-------------|--------------| | | | | | | | | | | | | 700 | 25.3504 | 355 | 23.0478 | 355 | 21.6614 | 355 | 21.1017 | 365 | 1260 | | 710 | 25.3859 | 349 | 23,0833 | 349 | 21.6969 | 349 | 21.1372 | 349 | 1278 | | 720 | 25.4208 | 34 5 | 23.1182 | 345 | 21.7318 | 345 | 21.1721 | 345 | 1296 | | 730 | 25.4553 | 340 | 23.1527 | 340 | 21.7663 | 340 | 21.2066 | 340 | 1314 | | 740 | 25.4893 | 336 | 23.1867 | 336 | 21,8003 | 336 | 21.2406 | 336 | 1332 | | 750 | 25.5229 | 331 | 23.2203 | 331 | 21.8339 | 331 | 21.2742 | 3 31 | 1350 | | 760
770 | 25.5560
25.5887 | 327
322 | 23.2534
23.2861 | 327 | 21.8670
21.8997 | 327 | 21.3073 | 327 | 1368 | | 780 | 25.6209 | 322
319 | 23.3183 | 322
319 | 21.8997 | 322
319 | 21.3400
21.3722 | 322
319 | 1386
1404 | | 790 | 25.6528 | 314 | 23.3502 | 314 | 21.9638 | 314 | 21.4041 | 314 | 1422 | | | | | | | | | | | | | 800 | 25.6842 | 1516 | 23.3816 | 1516 | 21.9952 | 1516 | 21.4355 | 1516 | 1440 | | 850 | 25.8358 | 1429 | 23.5332 | 1429 | 22.1468 | 1429 | 21.5871 | 1430 | 1530 | | 900 | 25.9787 | 1352 | 23.6761 | 1352 | 22,2897 | 1352 | 21.7301 | 1352 | 1620 | | 950
1000 | 26.1139
26.2421 | 1282 | 23.8113 | 1282 | 22.4249 | 1282 | 21.8653 | 1282 | 1710 | | | 26.2421 | 1220 |
23.9395 | 1220 | 22.5531 | 1220 | 21.9935 | 1220 | 1800 | | 1050 | 26.3641 | 1163 | 24.0615 | 1163 | 22.6751 | 1164 | 22.1155 | 1163 | 1890 | | 1100 | 26.4804 | 1111 | 24.1778 | 1111 | 22.7915 | 1111 | 22.2318 | 1111 | 1980 | | 1150 | 26.5915 | 1064 | 24.2889 | 1064 | 22.9026 | 1064 | 22.3429 | 1064 | 2070 | | 1200
1250 | 26.6979
26.7999 | 1020 | 24.3953
24.4973 | 1020 | 23.0090 | 1020 | 22.4493 | 1020 | 2160 | | | | 981 | | 981 | 23.1110 | 981 | 22.5513 | 981 | 2250 | | 1300 | 26.8980 | 943 | 24.5954 | 943 | 23.2091 | 943 | 22.6494 | 944 | 2340 | | 1350 | 26.9923 | 910 | 24.6897 | 910 | 23.3034 | 910 | 22.7438 | 910 | 2430 | | 1400
1450 | 27.0833
27.1710 | 877 | 24.7807 | 877 | 23.3944 | 877 | 22.8348 | 877 | 2520 | | 1500 | 27.1710 | 847
820 | 24.8684
24.9531 | 847 | 23.4821
23.5668 | 847 | 22.9225 | 847 | 2610 | | • | | | | 820 | | 820 | 23.0072 | 82 0 | 2700 | | 1550 | 27.3377 | 794 | 25.0351 | 794 | 23.6488 | 794 | 23.0892 | 794 | 2790 | | 1600
1650 | 27.4171 | 769 | 25.1145 | 7 69 | 23.7282 | | 23,1686 | 769 | 2880 | | 1700 | 27.4940
27.5687 | 747
724 | 25.1914
25.2661 | 747
724 | 23.8051
23.8798 | 747 | 23,2455
23,3202 | 747 | 2970
3060 | | 1750 | 27.6411 | 705 | 25.3385 | 72 4
705 | 23.9522 | | 23.3926 | 724
705 | 3150 | | 1800 | 27.7116 | 684 | 25.4090 | 684 | 24.0227 | 684 | 23.4631 | 684 | 3240 | | 1850 | 27.7800 | | 25,4774 | 667 | 24.0911 | 667 | 23.5315 | 667 | 3330 | | 1900 | 27.8467 | 65 0 · | 25.5441 | 650 | 24.1578 | | 23.5982 | 650 | 3420 | | 1950 | 27.9117 | | 25.6091 | 633 | 24.2228 | 633 | 23.6632 | 633 | 3510 | | 2000 | 27.9750 | 617 | 25,6724 | 617 | 24.2861 | 617 | 23.7265 | 617 | 3600 | | 2050 | 28.0367 | 602 | 25.7341 | 602 | 24,3478 | 602 | 23.7882 | 602 | 3690 | | 2100 | 28.0969 | | 25.7943 | 589 | 24.4080 | | 23.8484 | 589 | 3780 | | 2150 | 28.1558 | | 25.8532 | 574 | 24.4669 | | 23.9073 | 574 | 3870 | | 2200 | 28.2132 | | 25.9106 | 562 | 24.5243 | | 23.9647 | 562 | 3960 | | 2250 | 28,2694 | 550 | 25.9668 | 550 | 24.5805 | 550 | 24.0209 | 550 | 4050 | | 2300 | 28.3244 | | 26.0218 | 537 | 24.6355 | | 24.0759 | 537 | 4140 | | 2350 | 28.3781 | | 26.0755 | 527 | 24.6892 | | 24.1296 | 527 | 4230 | | 2400 | 28.4308 | | 26.1282 | 515 | 24.7419 | | 24.1823 | 515 | 4320 | | 2450 | 28.4823 | | 26.1797 | 505 | 24.7934 | | 24.2338 | 505 | 4410 | | 2500 | 28,5328 | | 26.2302 | 495 | 24.8439 | 495 | 24.2843 | 495 | 4500 | | 2550 | 28.5823 | | 26.2797 | 486 | 24.8934 | | 24.3338 | 486 | 4590 | | 2600 | 28.6309 | | 26,3283 | 476 | 24.9420 | | 24.3824 | 476 | 4680 | | 2650 | 28.6785 | | 26.3759 | 467 | 24.9896 | | 24.4300 | 467 | 4770 | | 2700 | 28.7252 | | 26.4226 | 459 | 25.0363 | | 24.4767 | 459 | 4860 | | 2750 | 28.7711 | | 26,4685 | 450 | 25.0822 | 450 | 24,5226 | 450 | 4950 | | 2800 | 28.8161 | | 26.5135 | 443 | 25,1272 | | 24.5676 | 443 | 5040 | | 2850 | 28.8604 | | 26.5578 | 435 | 25.1715 | | 24.6119 | 435 | 5130 | | 2900 | 28.9039 | | 26.6013 | 427 | 25.2150 | | 24.6554 | 427 | 5220 | | 2950
3000 | 28.9466 | | 26.6440
26.6840 | 420 | 25.2577
25.2997 | | 24.6981 | 420 | 5310 | | 3000 | 28.9886 | • | 26,6860 | | 43.4771 | | 24.7401 | | 5400 | Table 3-5. ENTROPY OF ARGON - Cont. | °K | ì | atm | 4 | atm | 7 | atm | 10 | atm | °R | |--------------|--------------------|-----------------------|--------------------|--------------------|--------------------|---------------------|--------------------|---------------------|--------------| | 100 | 15.8425 | | 14.328 | 280 | 13.620 | 322 | | | 180
198 | | 110
120 | 16.0897
16.3132 | 22 3 5
2045 | 14.608
14.853 | 245
220 | 13.942
14.213 | 271
2 3 7 | 13,77 | 26 | 216 | | 130 | 16.5177 | | 15.073 | 199 | 14.450 | 211 | 14.03 | 22 | 234 | | 140 | 16.7062 | | 15.272 | 183 | 14.661 | 192 | 14.25 | 20 | 252 | | 150 | 16.8812 | | 15.455 | 169 | 14.853 | 177 | 14.453 | 183 | 270 | | 160 | 17.0444 | | 15.624
15.782 | 158
148 | 15.030
15.193 | 163
152 | 14.636
14.805 | 169
157 | 288
306 | | 170
180 | 17.1975
17.3417 | | 15.782 | 140 | 15.345 | 142 | 14.962 | 146 | 324 | | 190 | 17.4779 | | 16.070 | 131 | 15.487 | 135 | 15.108 | 137 | 342 | | 200 | 17.6069 | | 16.2012 | 1249 | 15.6218 | 1271 | 15.2450 | 1294 | 360 | | 210 | 17.7296 | | 16.3261 | 1186 | 15.7489 | 1206 | 15.3744
15.4970 | 1226
1165 | 378
396 | | 220
230 | 17.8465
17.9581 | | 16.4447
16.5579 | 1132
1082 | 15.8695
15.9843 | 1148
1095 | 15.6135 | 1109 | 414 | | 240 | 18.0649 | | 16.6661 | 1035 | 16.0938 | 1047 | 15.7244 | 1059 | 432 | | 250 | 18.1673 | | 16.7696 | 995 | 16.1985 | 1005 | 15.8303 | 1015 | 450 | | 260 | 18.2657 | | 16.8691 | 9 5 5 | 16.2990
16.3955 | 965
934 | 15.9318
16.0292 | 974
9 3 5 | 468
486 | | 270
280 | 18.3604
18.4516 | | 16.9646
17.0566 | 920
88 6 | 16.4881 | 926
894 | 16.1227 | 900 | 504 | | 290 | 18.5395 | | 17.1452 | 856 | 16.5775 | 862 | 16,2127 | 868 | 522 | | 300 | 18,6245 | 821 | 17,2308 | 826 | 16.6637 | 832 | 16.2995 | 838 | 540 | | 310 | 18.7066 | | 17.3134 | 800 | 16.7469 | 805 | 16.3833 | 810 | 558 | | 320 | 18.7862 | | 17.3934
17.4709 | 775 | 16.8274
16.9053 | 779
757 | 16.4643
16.5427 | 784
760 | 576
594 | | 330
340 | 18.8632
18.9380 | 748
726 | 17.5462 | 753
728 | 16.9810 | 732 | 16.6187 | 736 | 612 | | 350 | 19.0106 | 706 | 17.6190 | 710 | 17.0542 | 71.3 | 16.6923 | 716 | 630 | | 360 | 19.0812 | 686 | 17.6900 | 689 | 17.1255 | 692 | 16.7639
16.8334 | 695
475 | 648
666 | | 370
380 | 19.1498
19.2165 | 667
650 | 17.7589
17.8258 | 669
654 | 17.1947
17.2619 | 672
656 | 16.9009 | 675
658 | 684 | | 390 | 19.2815 | 634 | 17.8912 | 636 | 17.3275 | 638 | 16.9667 | 641 | 702 | | 400 | 19.3449 | 618 | 17.9548 | 620 | 17.3913 | 622 | 17,0308 | 624 | 720 | | 410 | 19.4067 | 603 | 18.0168 | 604 | 17.4535 | 607 | 17.0932 | 608 | 738 | | 420 | 19.4670 | 589 | 18.0772
18.1364 | 592 | 17.5142
17.5735 | 593
578 | 17.1540
17.2135 | 595
580 | 756
774 | | 430
440 | 19.5259
19.5834 | 575
562 | 18.1940 | 576
564 | 17.6313 | 565 | 17.2715 | 567 | 792 | | 450 | 19.6396 | 551 | 18.2504 | 552 | 17.6878 | 554 | 17.3282 | 555 | 810 | | 460 | 19.6947 | 537 | 18.3056 | 539 | 17.7432 | 540 | 17.3837
17.4378 | 541 | 828
846 | | 470
480 | 19.7484
19.8012 | 528
515 | 18.3595
18.4123 | 528
517 | 17.7972
17.8502 | 530
518 | 17.4910 | 532
519 | 864 | | 490 | 19.8527 | 505 | 18.4640 | 506 | 17.9020 | 507 | 17.5429 | 508 | 882 | | 500 | 19,9032 | 496 | 18.5146 | 497 | 17.9527 | 498 | 17.5937 | 499 | 900 | | 510 | 19.9528 | 486 | 18.5643 | 487 | 18.0025 | 488 | 17.6436
17.6925 | 489
470 | 918
936 | | 520
530 | 20.0014
20.0490 | 476
468 | 18.6130
18.6607 | 477
468 | 18.0513
18.0991 | 478
469 | 17.7404 | 479
470 | 954 | | 540 | 20.0958 | 459 | 18.7075 | 460 | 18.1460 | 461 | 17.7874 | 461 | 972 | | 550 | 20.1417 | 450 | 18.7535 | 451 | 18.1921 | 452 | 17.8335 | 453 | 990 | | 560 | 20.1867 | 443 | 18.7986 | 444 | 18.2373 | 444 | 17.8788 | 445 | 1008
1026 | | 570
580 | 20.2310
20.2746 | 436 | 18.8430
18.8866 | 436
428 | 18.2817
18.3254 | 437
428 | 17.9233
17.9671 | 438
429 | 1044 | | 5 9 0 | 20.2746 | 427
420 | 18.9294 | 421 | 18.3682 | 422 | 18.0100 | 422 | 1062 | | 600 | 20.3593 | 413 | 18,9715 | 414 | 18.4104 | 414 | 18.0522 | 415 | 1080 | | 610 | 20,4006 | 408 | 19.0129
19.0536 | 407 | 18.4518 | 408
402 | 18.0937
18.1345 | 408
402 | 1098
1116 | | 620
630 | 20.4414
20.4814 | 400
394 | 19.0536 | 401
395 | 18.4926
18.5328 | 402
395 | 18.1747 | 402
396 | 1134 | | 640 | 20.5208 | 387 | 19.1332 | 387 | 18.5723 | 388 | 18.2143 | 388 | 1152 | | 650 | 20.5595 | 382 | 19.1719 | 383 | 18.6111 | 383 | 18.2531 | 384 | 1170 | | 660 | 20.5977 | 376 | 19.2102 | 377 | 18.6494 | 377
973 | 18.2915
18.3292 | 377
372 | 1188
1206 | | 670
680 | 20.6353
20.6723 | 370
365 | 19.2479
19.2849 | 370
366 | 18.6871
18.7242 | 371
366 | 18.3664 | 3/2
366 | 1224 | | 690 | 20.7088 | 361 | 19.3215 | 360 | 18.7608 | 361 | 18.4030 | 361 | 1242 | | 700 | 20.7449 | | 19.3575 | | 18.7969 | | 18.4391 | | 1260 | | °ĸ | Γ. | | | atm. | 7 | atm | 10 | atm | °R | |------|---------|-----------------|---------|------|--------------------|-------------|--------------------|------------------|--------------| | | 1 | atm | 4 | atm | | | 10 | 4711 | <u> </u> | | | | | | | | | | | | | 700 | 20.7449 | 355 | 19.3575 | 355 | 18.7969 | 355 | 18.4391 | 356 | 1260 | | 710 | 20.7804 | 349 | 19.3930 | 350 | 18.8324 | 350 | 18.4747 | 3 50 | 1278 | | 720 | 20.8153 | 3 45 | 19.4280 | 345 | 18.8674 | 346 | 18.5097 | 346 | 1296 | | 730 | 20.8498 | 340 | 19.4625 | 341 | 18.9020 | 341 | 18.5443 | 341 | 1314 | | 740 | 20.8838 | 336 | 19.4966 | 336 | 18.9361 | 336 | 18.5784 | 337 | 1332 | | 750 | 20.9174 | 331 | 19.5302 | 332 | 18.9697 | 332 | 18.6121 | 332 | 1350 | | 760 | 20.9505 | 327 | 19.5634 | 327 | 19.0029 | 328 | 18.6453 | 328 | 1368
1386 | | 770 | 20.9832 | 322 | 19.5961 | 322 | 19.0357 | 322 | 18.6781 | 323 | 1404 | | 780 | 21.0154 | 31.9 | 19.6283 | 320 | 19.0679
19.0999 | 320
314 | 18.7104
18.7424 | 320
315 | 1422 | | 790 | 21.0473 | 314 | 19.6603 | 314 | 17.0777 | 214 | 10,1424 | ,,, | | | 800 | 21,0787 | 1517 | 19.6917 | 1517 | 19,1313 | 1519 | 18,7739 | 1519 | 1440 | | 850 | 21.2304 | 1429 | 19.8434 | 1430 | 19,2832 | 1431 | 18,9258 | 1432 | 1530 | | 900 | 21.3733 | 1352 | 19.9864 | 1353 | 19.4263 | 1353 | 19.0690 | 1354 | 1620 | | 950 | 21.5085 | 1283 | 20,1217 | 1283 | 19.5616 | 1284 | 19.2044 | 1284 | 1710 | | 1000 | 21.6368 | 1220 | 20.2500 | 1221 | 19.6900 | 1221 | 19.3328 | 1222 | 1800 | | 1050 | 21,7588 | 1163 | 20,3721 | 1163 | 19.8121 | 1164 | 19.4550 | 1165 | 1890 | | 1100 | 21.8751 | 1111 | 20.4884 |
1112 | 19.9285 | 1112 | 19.5715 | 1112 | 1980 | | 1150 | 21.9862 | 1064 | 20.5996 | 1064 | 20.0397 | 1065 | 19.6827 | 1065 | 2070 | | 1200 | 22.0926 | 1020 | 20,7060 | 1021 | 20.1462 | 1020 | 19.7892 | 1021 | 2160 | | 1250 | 22.1946 | 981 | 20.8081 | 981 | 20.2482 | 982 | 19.8913 | 982 | 2250 | | 1300 | 22,2927 | 943 | 20,9062 | 943 | 20.3464 | 944 | 19,9895 | 944 | 2340 | | 1350 | 22.3870 | 910 | 21.0005 | 911 | 20,4408 | 910 | 20.0839 | 910 | 2430 | | 1400 | 22.4780 | 877 | 21.0916 | 877 | 20,5318 | 877 | 20.1749 | 878 | 2520 | | 1450 | 22.5657 | 848 | 21.1793 | 847 | 20,6195 | 848 | 20.2627 | 847 | 2610 | | 1500 | 22,6505 | 820 | 21.2640 | 820 | 20.7043 | 820 | 20.3474 | 821 | 2700 | | 1550 | 22.7325 | 794 | 21.3460 | 794 | 20.7863 | 794 | 20,4295 | 794 | 2790 | | 1600 | 22.8119 | 7 69 | 21.4254 | 770 | 20.8657 | <i>77</i> 0 | 20.5089 | 7 6 9 | 2880 | | 1650 | 22.8888 | 747 | 21.5024 | 747 | 20.9427 | 747 | 20.5858 | 748 | 2970 | | 1700 | 22.9635 | 724 | 21.5771 | 724 | 21.0174 | 724 | 20.6606 | 724 | 3060 | | 1750 | 23.0359 | 705 | 21.6495 | 705 | 21.0898 | 705 | 20.7330 | 705 | 3150 | | 1800 | 23,1064 | 684 | 21,7200 | 684 | 21,1603 | 684 | 20.8035 | 685 | 3240 | | 1850 | 23.1748 | 667 | 21.7884 | 667 | 21.2287 | 668 | 20.8720 | 667 | 3330 | | 1900 | 23.2415 | 650 | 21.8551 | 650 | 21,2955 | 650 | 20.9387 | 650 | 3420 | | 1950 | 23,3065 | 633 | 21.9201 | 633 | 21.3605 | 633 | 21.0037 | 633 | 3510 | | 2000 | 23,3698 | 617 | 21.9834 | 617 | 21.4238 | 617 | 21.0670 | 617 | 3600 | | 2050 | 23,4315 | 602 | 22.0451 | 602 | 21.4855 | 602 | 21.1287 | 603 | 3690 | | 2100 | 23.4917 | 58 9 | 22.1053 | 589 | 21.5457 | 589 | 21.1890 | 589 | 3780
3870 | | 2150 | 23.5506 | 574 | 22.1642 | 575 | 21.6046 | 574 | 21.2479 | 574 | 3960 | | 2200 | 23.6080 | 562 | 22.2217 | 562 | 21.6620 | 562 | 21.3053
21.3615 | 562 | 4050 | | 2250 | 23.6642 | 550 | 22.2779 | 550 | 21.7182 | 550 | 21,3613 | 550 | | | 2300 | 23,7192 | 537 | 22.3329 | 537 | 21.7732 | 537 | 21.4165 | 537 | 4140 | | 2350 | 23.7729 | 527 | 22.3866 | 527 | 21.8269 | 528 | 21.4702 | 527 | 4230 | | 2400 | 23.8256 | 515 | 22.4393 | 515 | 21.8797 | 515 | 21.5229 | 515 | 4320 | | 2450 | 23.8771 | 505 | 22.4908 | 505 | 21.9312 | 505 | 21.5744 | 505 | 4410 | | 2500 | 23.9276 | 495 | 22.5413 | 495 | 21.9817 | 495 | 21.6249 | 495 | 4500 | | 2550 | 23.9771 | 486 | 22.5908 | 486 | 22.0312 | 486 | 21.6744 | 487 | 4590 | | 2600 | 24.0257 | 476 | 22.6394 | 476 | 22.0798 | | 21.7231 | 476 | 4680 | | 2650 | 24.0733 | 467 | 22.6870 | 467 | 22.1274 | | 21.7707 | 467 | 4770 | | 2700 | 24.1200 | 459 | 22.7337 | 459 | 22.1741 | 459 | 21.8174 | 459 | 4860
4950 | | 2750 | 24.1659 | 450 | 22.7796 | 450 | 22.2200 | 450 | 21.8633 | 450 | | | 2800 | 24.2109 | 443 | 22.8246 | 443 | 22.2650 | | 21.9083 | 443 | 5040 | | 2850 | 24.2552 | 435 | 22.8689 | 435 | 22.3093 | | 21.9526 | 435 | 5130 | | 2900 | 24.2987 | 427 | 22.9124 | 427 | 22.3528 | | 21.9961 | 427 | 5220 | | 2950 | 24.3414 | 420 | 22.9551 | 420 | 22.3955 | | 22.0388 | 420 | 5310 | | 3000 | 24.3834 | | 22,9971 | | 22,4375 | | 22.0808 | | 5400 | | | | | | | | | | | | | *K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | °R | |---------------------------------|---|--|---|----------------------------------|---|---------------------------------|---|---------------------------------|--------------------------------------| | | | | | | - · · · | | - | | | | 120
130
140 | 13.77
14.03
14.25 | 26
22
20 | 11.1
11.7
12.2 | 6
5
3 | | | | | 216
234
252 | | 150
160
170
180
190 | 14.453
14.636
14.805
14.962
15.108 | 183
1 <i>6</i> 9
157
146
137 | 12.5
12.8
13.1
13.3
13.5 | 3
3
2
2
1 | 11.2
11.7
12.0
12.3
12.6 | 5
3
3
2 | 11.6
11.9 | 3
3 | 270
288
306
324
342 | | 200
210
220
230
240 | 15.2450
15.3744
15.4970
15.6135
15.7244 | 1294
1226
1165
1109
1059 | 13.64
13.80
13.94
14.08
14.21 | 16
14
14
13 | 12.83
13.02
13.20
13.36
13.51 | 19
18
16
15 | 12.2
12.4
12.6
12.8
13.0 | 2
2
2
2
2 | 360
378
396
414
432 | | 250
260
270
280
290 | 15.8303
15.9318
16.0292
16.1227
16.2127 | 1015
974
935
900
868 | 14.326
14.439
14.546
14.6479
14.7454 | 113
107
102
975
935 | 13.64
13.77
13.889
14.000
14.106 | 13
12
111
106
101 | 13.18
13.31
13.44
13.56
13.67 | 13
13
12
11
11 | 450
468
486
504
522 | | 300
310
320
330
340 | 16.2995
16.3833
16.4643
16.5427
16.6187 | 838
810
784
760
736 | 14.8389
14.9284
15.0146
15.0976
15.1777 | 895
862
830
801
771 | 14.2067
14.3019
14.3935
14.4816
14.5657 | 952
916
881
841
802 | 13.781
13.882
13.979
14.073
14.158 | 101
97
94
85
78 | 540
558
576
594
612 | | 350
360
370
380
390 | 16.6923
16.7639
16.8334
16.9009
16.9667 | 658 | 15.2548
15.3296
15.4020
15.4722
15.5406 | 748
724
702
684
661 | 14.6459
14.7237
14.7989
14.8718
14.9429 | 778
752
729
711
689 | 14.236
14.318
14.397
14.473
14.547 | 82
79
76
74
71 | 630
648
666
684
702 | | 400
410
420
430
440 | 17.0308
17.0932
17.1540
17.2135
17.2715 | 608
595
580 | 15.6067
15.6713
15.7341
15.7954
15.8550 | 646
628
61.3
596
583 | 15.0118
15.0770
15.1417
15.2048
15.2661 | 652
647
631
613
598 | 14.618
14.686
14.753
14.818
14.881 | 68
67
65
63
61 | 720
738
756
774
792 | | 450
460
470
480
490 | 17.3282
17.3837
17.4378
17.4910
17.5429 | 541
532
519 | 15.9133
15.9702
16.0257
16.0801
16.1331 | 569
555
544
530
519 | 15.3259
15.3842
15.4410
15.4968
15.5508 | 583
568
558
540
529 | 14.9422
15.0019
15.0600
15.1170
15.1721 | 597
581
570
551
540 | 810
828
846
864
882 | | 500
510
520
530
540 | 17.5937
17.6436
17.6925
17.7404
17.7874 | 4 89
479
470 | 16.1850
16.2359
16.2858
16.3346
16.3824 | 509
499
488
478
469 | 15.6037
15.6557
15.7064
15.7560
15.8048 | 520
507
496
488
476 | 15.2261
15.2790
15.3306
15.3811
15.4306 | 529
516
505
495
483 | 900
918
936
954
972 | | 550
560
570
580
590 | 17.8335
17.8788
17.9233
17.9671
18.0100 | 445
438
429 | 16.4293
16.4753
16.5205
16.5649
16.6084 | 460
452
444
435
429 | 15.8524
15.8991
15.9450
15.9900
16.0341 | 459
450
441 | 15.4789
15.5264
15.5729
15.6186
15.6632 | 475
465
457
446
440 | 990
1008
1026
1044
1062 | | 600
610
620
630
640 | 18.0522
18.0937
18.1345
18.1747
18.2143 | 408
402
396 | 16.6513
16.6933
16.7347
16.7754
16.8154 | 420
414
407
400
394 | 16.0776
16.1201
16.1620
16.2031
16.2437 | 419
411
406 | 15.7072
15.7503
15.7927
15.8343
15.8752 | 431
424
416
409
402 | 1080
1098
1116
1134
1152 | | 650
660
670
680
690 | 18.2531
18.2915
18.3292
18.3664
18.4030 | 377
372
366 | 16.8548
16.8935
16.9317
16.9691
17.0062 | 387
382
374
371
364 | 16.2834
16.3226
16.3612
16.3990
16.4364 | 386
378
374 | 15.9154
15.9549
15.9940
16.0322
16.0699 | 395
391
382
377
371 | 1170
1188
1206
1224
1242 | | 700 | 18.4391 | : | 17.0426 | | 16.4732 | | 16.1070 | | 1260 | Table 3-5. ENTROPY OF ARGON - Cont. | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | °R | |--------------------------------------|---|--------------------------|---|---|---|---|---|---|--------------------------------------| | 700
710
720
730
740 | 18.4391
18.4747
18.5097
18.5443
18.5784 | 350
346
341 | 17.0426
17.0786
17.1140
17.1489
17.1833 | 360
354
349
344
340 | 16.4732
16.5094
16.5452
16.5803
16.6150 | 362
358
351
347
343 | 16.1070
16.1436
16.1796
16.2150
16.2500 | 366
360
354
350
345 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | 18.6121
18.6453
18.6781
18.7104
18.7424 | 328
323
329 | 17.2173
17.2507
17.2837
17.3162
17.3485 | 334
330
325
323
317 | 16.6493
16.6829
16.7162
16.7491
16.7815 | 336
333
329
324
319 | 16.2845
16.3184
16.3520
16.3850
16.4177 | 339
336
330
327
321 | 1350
1368
1386
1404
1422 | | 800
850
900
950
1000 | 18.7739
18.9258
19.0690
19.2044
19.3328 | 1432
1354
1284 | 17.3802
17.5332
17.6772
17.8133
17.9423 | 1530
1440
1361
1290
1227 | 16.8134
16.9673
17.1122
17.2490
17.3785 | 15 3 9
1449
1 3 68
1295
12 3 2 | 16.4498
16.6047
16.7503
16.8878
17.0179 | 1549
1456
1375
1301
1236 | 1440
1530
1620
1710
1800 | |
1050
1100
1150
1200
1250 | 19.4550
19.5715
19.6827
19.7892
19.8913 | 1112
1065
1021 | 18.0650
18.1819
18.2935
18.4003
18.5026 | 1169
1116
1068
1023
984 | 17.5017
17.6190
17.7310
17.8381
17.9407 | 1173
1120
1071
1026
987 | 17.1415
17.2592
17.3715
17.4789
17.5818 | 1177
1123
1074
1029
989 | 1890
1980
2070
2160
2250 | | 1300
1350
1400
1450
1500 | 19.9895
20.0839
20.1749
20.2627
20.3474 | 910
878
847
821 | 18.6010
18.6956
18.7869
18.8748
18.9597 | 946
91 3
879
849
822 | 18.0394
18.1342
18.2256
18.3138
18.3988 | 948
914
882
850
822 | 17.6807
17.7757
17.8673
17.9556
18.0408 | 950
916
883
852
823 | 2340
2430
2520
2610
2700 | | 1550
1600
1650
1700
1750 | 20.4295
20.5089
20.5858
20.6606
20.7330 | 769
748
724
705 | 19.0419
19.1214
19.1985
19.2733
19.3458 | 795
771
748
725
707 | 18.4810
18.5607
18.6378
18.7128
18.7854 | 797
771
750
726
707 | 18.1231
18.2029
18.2802
18.3552
18.4279 | 798
773
750
727
708 | 2790
2880
2970
3060
3150 | | 1800
1850
1900
1950
2000 | 20.8035
20.8720
20.9387
21.0037
21.0670 | 667
650
633 | 19.4165
19.4850
19.5518
19.6168
19.6802 | 665
668
650
634
618 | 18.8561
18.9247
18.9915
19.0567
19.1201 | 686
668
652
634
618 | 18.4987
18.5674
18.6343
18.6995
18.7630 | 687
669
652
635
617 | 3240
3330
3420
3510
3600 | | 2050
2100
2150
2200
2250 | 21.1287
21.1890
21.2479
21.3053
21.3615 | 589
574
562
550 | 19.7420
19.8022
19.8612
19.9187
19.9749 | 602
590
575
562
550 | 19.1819
19.2422
19.3012
19.3587
19.4150 | 603
590
575
563
551 | 18.8247
18.8851
18.9441
19.0017
19.0580 | 604
590
576
563
551 | 3690
3780
3870
3960
4050 | | 2300
2350
2400
2450
2500 | 21.4165
21.4702
21.5229
21.5744
21.6249 | 527
515
505
495 | 20.0299
20.0837
20.1364
20.1880
20.2385 | 538
527
516
505
495 | 19.4701
19.5238
19.5766
19.6282
19.6787 | 537
528
516
505
49 5 | 19.1131
19.1669
19.2197
19.2713
19.3218 | 538
528
516
5 05
496 | 4140
4230
4320
4410
4500 | | 2550
2600
2650
2700
2750 | 21.6744
21.7231
21.7707
21.8174
21.8633 | 476
467
459
450 | 20.2880
20.3366
20.3843
20.4310
20.4769 | 486
477
467
459
450 | 19.7282
19.7769
19.8246
19.8713
19.9173 | 487
477
467
460
450 | 19.3714
19.4201
19.4678
19.5145
19.5605 | 487
477
467
460
450 | 4590
4680
4770
4860
4950 | | 2800
2850
2900
2950
3000 | 21.9083
21.9526
21.9961
22.0388
22.0808 | 435
427
420 | 20.5219
20.5663
20.6098
20.6525
20.6945 | 444
4 3 5
427
420 | 19.9623
20.0066
20.0501
20.0929
20.1349 | 443
435
428
420 | 19.6055
19.6499
19.6934
19.7362
19.7782 | 444
435
428
420 | 5040
5130
5220
5310
5400 | Table 3-6. SPECIFIC-HEAT RATIO OF ARGON | °K | .Oi atm | .1 atm | n | |---------------------------------|---|-------------------------|----------| | 100
120
140
160
180 | 1.667
1.667
1.667
1.667
1.667 | 1.669
1.668
1.668 | -1
-1 | At higher temperatures in this pressure range, the values of the specific-heat ratio are constant (1.667). Table 3-6. SPECIFIC-HEAT RATIO OF ARGON - Cont. $\gamma = C_{\rm p}/C_{\rm v}$ | | · | | | | - | | | ' | p, | |------|-------|------------|-------|------------|-------|-----|----------------|----------------|--------------| | °K | | 1 atm | 4 | atm | 7 | atm | 10 | atm | °R | | 100 | 1.706 | -14 | 1.858 | -88 | | | | | 180 | | 120 | 1.692 | - 8 | 1.770 | -30 | 1.890 | -80 | | | 216 | | 140 | 1.684 | - o
- 5 | 1.740 | -30
-20 | 1.810 | -47 | | | 252 | | 160 | 1.679 | - 3 | 1.720 | -20
-13 | 1.763 | -25 | | | 288 | | 180 | 1.676 | - 2 | 1.707 | -10 | 1.738 | -16 | 1.781 | -33 | 324 | | 200 | 1.674 | - 1 | 1.697 | - 6 | 1.722 | -12 | 1,748 | -18 | 360 | | 220 | 1,673 | - ī | 1.691 | - 4 | 1.710 | - 8 | 1.730 | -12 | 396 | | 240 | 1.672 | - ī | 1.687 | - 4 | 1.702 | - 6 | 1.718 | - 9 | 432 | | 260 | 1.671 | - ī | 1.683 | - 2 | 1.696 | - 5 | 1,709 | - 7 | 468 | | 280 | 1.670 | | 1.681 | ÷ 2 | 1.691 | - 3 | 1.702 | - 5 | 504 | | 300 | 1,670 | - 1 | 1.679 | - 2 | 1.688 | - 3 | 1.697 | - 4 | 540 | | 320 | 1.669 | | 1.677 | - 1 | 1.685 | - 3 | 1.693 | - 4 | 576 | | 340 | 1.669 | | 1.676 | - 1 | 1.682 | - 1 | 1.689 | - 3 | 612 | | 360 | 1.669 | - 1 | 1.675 | - 1 | 1.681 | ~ 2 | 1.686 | - 2 | 648 | | 380 | 1.668 | | 1.674 | - 1 | 1.679 | - 2 | 1.684 | - 2 | 684 | | 400 | 1.668 | | 1.673 | - 1 | 1.677 | - 1 | 1.682 | - 1 | 720 | | 420 | 1.668 | | 1.672 | | 1.676 | - 1 | 1.681 | - 2 | 756 | | 440 | 1.668 | | 1.672 | - 1 | 1.675 | - 1 | 1.679 | - 1 | 792 | | 460 | 1.668 | | 1.671 | | 1.674 | | 1.678 | - 1 | 828 | | 480 | 1.668 | | 1.671 | - 1 | 1.674 | - 1 | 1.677 | - 1 | 864 | | 500 | 1.668 | | 1.670 | | 1.673 | - 1 | 1.676 | - 1 | 900 | | 520 | 1.668 | | 1.670 | | 1.672 | | 1.675 | - 1 | 936 | | 540 | 1.668 | - 1 | 1.670 | - 1 | 1.672 | | 1.674 | | 972 | | 560 | 1.667 | | 1.669 | | 1.672 | - 1 | 1.674 | - 1 | 1008 | | 580 | 1.667 | | 1,669 | | 1.671 | | 1.673 | | 1044 | | 600 | 1,667 | | 1.669 | | 1.671 | - 1 | 1.673 | - 1 | 1080 | | 620 | 1.667 | | 1.669 | | 1.670 | | 1.672 | | 1116 | | 640 | 1.667 | | 1.669 | | 1.670 | | 1.672 | - 1 | 1152 | | 660 | 1.667 | | 1.669 | - 1 | 1.670 | | 1.671 | | 1188 | | 680 | 1.667 | | 1.668 | | 1.670 | | 1.671 | | 1224 | | 700 | 1.667 | | 1.668 | | 1.670 | - 1 | 1.671 | | 1260 | | 720 | 1.667 | | 1.668 | | 1.669 | | 1.671 | - 1 | 1296 | | 740 | 1.667 | | 1.668 | | 1.669 | | 1.670 | | 1332 | | 760 | 1.667 | | 1.668 | | 1.669 | | 1.670 | | 1368 | | 780 | 1.667 | | 1.668 | | 1.669 | | 1.670 | - 1 | 1404 | | | | | | | | | 2 //6 | | 1440 | | 800 | 1.667 | | 1.668 | - 1 | 1.669 | - 1 | 1.669 | - | 1440 | | 900 | 1.667 | | 1.667 | | 1.668 | | 1.669 | - 1 | 1620 | | 1000 | 1.667 | | 1.667 | | 1.668 | _ | 1.668 | | 1800
1980 | | 1100 | 1.667 | | 1.667 | | 1.668 | - 1 | 1.668
1.668 | | 2160 | | 1200 | 1.667 | | 1.667 | | 1.667 | | | - 1 | | | 1300 | 1.667 | | 1.667 | | 1.667 | | 1.667 | | 2340 | At higher temperatures in this pressure range, the values of the specific-heat ratio are constant. | *K | 10 | atm | 40 | atm | 70 | atm | 100 | atm . | °R | |--------------------------------------|---|---------------------------------|---|---------------------------------|---|---------------------------------|---|---------------------------------|---| | | 10 | | 1 40 | | 1 10 | | 1 .00 | | لــــــــــــــــــــــــــــــــــــــ | | 180 | 1.781 | -33 | | | | | | | 324 | | 200
220
240
260
280 | 1.748
1.730
1.718
1.709
1.702 | -18
-12
9
7
5 | 1.89
1.85
1.81 | 4
4
2 | 2.08
2.01
1.94 | -7
-7
-1 | 2.3
2.17
2.06 | -1
-11
-10 | 360
396
432
468
504 | | 300
320
340
360
380 | 1.697
1.693
1.689
1.686
1.684 | - 4
- 4
- 3
- 2
- 2 | 1.79
1.77
1.76
1.75
1.74 | -2
-1
-1
-1 | 1.87
1.84
1.83
1.81
1.79 | -3
-1
-2
-2
-3 | 1.96
1.91
1.89
1.85
1.83 | - 5
- 2
- 4
- 2
- 3 | 540
576
612
648
684 | | 400
420
440
460
480 | 1.682
1.681
1.679
1.678
1.677 | - 1
- 2
- 1
- 1 | 1.726
1.722
1.716
1.711
1.706 | - 4
- 6
- 5
- 5
- 3 | 1.76
1.76
1.751
1.742
1.735 | -1
- 9
- 7
- 7 | 1.80
1.80
1.786
1.773
1.762 | - 1
- 13
- 11
- 9 | 720
756
792
828
864 | | 500
520
540
560
580 | 1.676
1.675
1.674
1.674
1.673 | - 1
- 1
- 1 | 1.703
1.699
1.696
1.694
1.692 | - 4
- 3
- 2
- 2
- 2 | 1.728
1.722
1.717
1.713
1.709 | - 6
- 5
- 4
- 4
- 3 | 1.753
1.744
1.737
1.732
1.726 | - 9
- 7
- 5
- 6
- 5 | 900
936
972
1008
1044 | | 600
620
640
660
680 | 1.673
1.672
1.672
1.671
1.671 | - 1
- 1 | 1.690
1.688
1.686
1.685
1.683 | - 2
- 2
- 1
- 2
- 1 | 1.706
1.703
1.700
1.698
1.695 | - 3
- 3
- 2
- 3
- 2 | 1.721
1.717
1.713
1.710
1.706 | - 4
- 4
- 3
- 4
- 2 | 1080
1116
1152
1188
1224 | | 700
720
740
760
780 | 1.671
1.671
1.670
1.670
1.670 | - 1
- 1 | 1.682
1.681
1.681
1.679
1.679 | - 1
- 2
- 1 | 1.693
1.691
1.689
1.688
1.687 | - 2
- 2
- 1
- 1
- 2 | 1.704
1.701
1.699
1.697
1.695 | - 3
- 2
- 2
- 2
- 2 | 1260
1296
1332
1368
1404 | | 800
900
1000
1100
1200 | 1.669
1.669
1.668
1.668
1.668 | - 1
- 1 | 1.678
1.675
1.673
1.671
1.670 | - 3
- 2
- 2
- 1
- 1 | 1.685
1.681
1.677
1.674
1.673 | - 4
- 4
- 3
- 1
- 2 | 1.693
1.686
1.680
1.678
1.675 | - 7
- 6
- 2
- 3
- 2 | 1440
1620
1800
1980
2160 | | 1300
1400
1500
1600
1700 | 1.667
1.667
1.667
1.667 | | 1.669
1.669
1.668
1.668 | - 1
- 1 | 1.671
1.670
1.669
1.669
1.668 | - 1
- 1
- 1 |
1.673
1.672
1.671
1.670
1.668 | - 1
- 1
- 1
- 2 | 2340
2520
2700
2880
3060 | | 1800
1900
2000
2100
2200 | 1.667
1.667
1.667
1.667 | | 1.667
1.667
1.667
1.667 | | 1.668
1.667
1.667
1.667 | - 1 | 1.668
1.668
1.667
1.667
1.667 | - 1 | 3240
3420
3600
3780
3960 | | 2300
2400
2500
2600
2700 | 1.667
1.667
1.667
1.667 | | 1.667
1.667
1.667
1.667 | | 1.667
1.667
1.667
1.667
1.667 | | 1.667
1.667
1.667
1.667 | | 4140
4320
4500
4680
4860 | | 2800
2900
3000 | 1.667
1.667
1.667 | | 1.667
1.667
1.667 | | 1.667
1.667
1.667 | | 1.667
1.667
1.667 | | 5040
5220
5400 | Table 3-7. SOUND VELOCITY AT LOW FREQUENCY IN ARGON | °K | .OI atm | .1 a1 | tm | | atm | °R | |---------------------------------|---|---|-----------------------------|---|----------------------------------|--------------------------------------| | 100
120
140
160
180 | .605 58
.663 53
.716 49
.765 47
.812 44 | .604
.662
.715
.765
.812 | 58
53
50
47
43 | .599
.659
.713
.764 | 60
54
51
47
44 | 180
216
252
288
324 | | 200 | .856 41 | .855 | 42 | .855 | 42 | 360 | | 220 | .897 40 | .897 | 40 | .897 | 40 | 396 | | 240 | .937 39 | .937 | 38 | .937 | 39 | 432 | | 260 | .976 36 | .975 | 37 | .976 | 36 | 468 | | 280 | 1,012 36 | 1.012 | 36 | 1.012 | 36 | 504 | | 300 | 1.048 34 | 1.048 | 34 | 1.048 | 34 | 540 | | 320 | 1.082 34 | 1.082 | 34 | 1.082 | 34 | 576 | | 340 | 1.116 32 | 1.116 | 32 | 1.116 | 32 | 612 | | 360 | 1.148 31 | 1.148 | 31 | 1.148 | 32 | 648 | | 380 | 1.179 31 | 1.179 | 31 | 1.180 | 30 | 684 | | 400 | 1.210 30 | 1.210 | 30 | 1.210 | 30 | 720 | | 420 | 1.240 29 | 1.240 | 29 | 1.240 | 30 | 756 | | 440 | 1.269 29 | 1.269 | 29 | 1.270 | 28 | 792 | | 460 | 1.298 28 | 1.298 | 28 | 1.298 | 28 | 828 | | 480 | 1.326 27 | 1.326 | 27 | 1.326 | 28 | 864 | | 500 | 1,353 27 | 1.353 | 27 | 1.354 | 26 | 900 | | 520 | 1,380 26 | 1.380 | 26 | 1.380 | 27 | 936 | | 540 | 1,406 26 | 1.406 | 26 | 1.407 | 25 | 972 | | 560 | 1,432 25 | 1.432 | 25 | 1.432 | 25 | 1008 | | 580 | 1,457 25 | 1.457 | 25 | 1.457 | 25 | 1044 | | 600 | 1.482 25 | 1.482 | 25 | 1.482 | 25 | 1080 | | 620 | 1.507 24 | 1.507 | 24 | 1.507 | 24 | 1116 | | 640 | 1.531 23 | 1.531 | 23 | 1.531 | 24 | 1152 | | 660 | 1.554 24 | 1.554 | 24 | 1.555 | 23 | 1188 | | 680 | 1.578 23 | 1.578 | 23 | 1.578 | 23 | 1224 | | 700
720
740
760
780 | 1.601 22
1.623 23
1.646 22
1.668 22
1.690 21 | 1.601
1.623
1.646
1.668
1.690 | 22
23
22·
22
21 | 1.601
1.624
1.646
1.668
1.690 | 23
22
22
22
22
22 | 1260
1296
1332
1368
1404 | | 800
900
1000
1100 | 1.711 104
1.815 98
1.913 94
2.007 89
2.096 85 | 1.711
1.815
1.913
2.007
2.096 | 104
98
94
89 | 1.712
1.816
1.914
2.007
2.096 | 104
98
93
89
86 | 1440
1620
1800
1980
2160 | | 1300 | 2.181 83 | 2.181 | 83 | 2.182 | 82 | 2340 | | 1400 | 2.264 79 | 2.264 | 79 | 2.264 | 80 | 2520 | | 1500 | 2.343 77 | 2.343 | 77 | 2.344 | 77 | 2700 | | 1600 | 2.420 75 | 2.420 | 75 | 2.421 | 74 | 2880 | | 1700 | 2.495 72 | 2.495 | 72 | 2.495 | 72 | 3060 | | 1800 | 2.567 70 | 2.567 | 70 | 2.567 | 71 | 3240 | | 1900 | 2.637 #9 | 2.637 | 69 | 2.638 | 68 | 3420 | | 2000 | 2.706 67 | 2.706 | 67 | 2.706 | 67 | 3600 | | 2100 | 2.773 #6 | 2.773 | 65 | 2.773 | 65 | 3780 | | 2200 | 2.838 64 | 2.838 | 64 | 2.838 | 64 | 3960 | | 2300 | 2.902 62 | 2.902 | 62 | 2.902 | 62 | 4140 | | 2400 | 2.964 61 | 2.964 | 61 | 2.964 | 61 | 4320 | | 2500 | 3.025 60 | 3.025 | 60 | 3.025 | 60 | 4500 | | 2600 | 3.085 59 | 3.085 | 59 | 3.085 | 59 | 4680 | | 2700 | 3.144 57 | 3.144 | 57 | 3.144 | 58 | 4860 | | 2800
2900
3000 | 3.201 57
3.258 56
3.314 | 3.201
3.258
3.314 | 57
56 | 3.202
3.258
3.314 | 56
56 | 5040
5220
5400 | Table 3-7. SOUND VELOCITY AT LOW FREQUENCY IN ARGON - Cont. | 0,, | Γ | | | - 4 | l - | | . 10 | atm | °R | |--------------|----------------|----------|----------------|-----------|----------------|------------------|----------------|------------------|--------------| | °K | | l atm | 4 | atm | 7 | atm | 10 | | <u> </u> | | | | | 570 | | | | | | 180 | | 100 | .599 | 60 | .578 | 67 | .63 | 7 | | | 216 | | 120 | .659 | 54
51 | .645
.706 | 61
53 | .70 | 5 | | | 252 | | 140
160 | .713
.764 | 51
47 | .759 | 49 | .754 | 51 | | | 288 | | 180 | .811 | 44 | .808 | 45 | .805 | 46 | .80 | 5 | 324 | | 200 | .855 | 42 | .853 | 43 | .851 | 44 | .850 | 44 | 360 | | 220 | .897 | 40 | .896 | 41. | .895 | 42 | .894 | 42 | 396
432 | | 240 | .937 | 39 | .937 | 39 | .937 | 3 9 | .936
.976 | 40
38 | 468 | | 260
280 | .976
1.012 | 36
36 | .976
1.013 | 37
36 | .976
1.014 | 38
36 | 1.014 | 36
37 | 504 | | 300 | 1.048 | 34 | 1.049 | 35 | 1.050 | 35 | 1.051 | 35 | 540 | | 320 | 1.082 | 34 | 1.084 | 33 | 1.085 | 33 | 1.086 | 34 | 576 | | 340 | 1.116 | 32 | 1.117 | 33 | 1.118 | 33 | 1.120 | 32 | 612 | | 360 | 1.148 | 32 | 1.150 | 31 | 1.151 | 32 | 1.152 | 32 | 648 | | 380 | 1.180 | 30 | 1.181 | 31 | 1.183 | 30 | 1.184 | 31 | 684 | | 400 | 1.210 | 30 | 1.212 | 30 | 1.213 | 31 | 1.215 | 31 | 720
756 | | 420 | 1.240 | 30 | 1.242 | 29 | 1.244
1.273 | 29 | 1.246
1.275 | 29
29 | 792 | | 440 | 1.270 | 28 | 1.271 | 29
28 | 1.301 | 28
29 | 1.304 | - 28 | 828 | | 460
480 | 1.298
1.326 | 28
28 | 1.300
1.328 | 28
27 | 1.330 | 27 | 1.332 | 27 | 864 | | 500 | 1,354 | 26 | 1,355 | 27 | 1.357 | 27 | 1.359 | 27 | 900 | | 520 | 1.380 | 27 | 1.382 | 26 | 1.384 | 26 | 1.386 | 26 | 936 | | 540 | 1.407 | 25 | 1.408 | 26 | 1.410 | 26 | 1.412 | 26 | 972 | | 560 | 1.432 | 25 | 1.434 | 25 | 1.436 | 25 | 1.438
1.463 | 25
25 | 1008
1044 | | 580 | 1.457 | 25 | 1.459 | 25 | 1.461 | 25 | | | | | 600 | 1.482 | 25 | 1.484 | 25 | 1.486
1.511 | 25 | 1.488
1.513 | 25
2 4 | 1080
1116 | | 620 | 1.507 | 24 | 1.509 | 24 | 1.535 | 24
24 | 1.537 | 23 | 1152 | | 640 | 1.531
1.555 | 24
23 | 1.533
1.557 | 24
23 | 1.559 | 23 | 1.560 | 24 | 1188 | | 660
680 | 1.578 | 23 | 1.580 | 23 | 1.582 | 23 | 1.584 | 23 | 1224 | | 700 | 1.601 | 23 | 1,603 | 23 | 1,605 | 23 | 1.607 | 23 | 1260 | | 720 | 1.624 | 22 | 1.626 | 22 | 1.628 | 22 | 1.630 | 22 | 1296 | | 740 | 1.646 | 22 | 1.648 | 22 | 1.650 | 22 | 1.652
1.674 | 22
22 | 1332
1368 | | 760 | 1.668 | 22 | 1.670 | 22 | 1.672
1.694 | 22
22 | 1.696 | 21 | 1404 | | 780 | 1.690 | 22 | 1.692 | 22 | 1.074 | 22 | 1.070 | ** | | | 800 | 1.712 | 104 | 1.714 | 103 | 1.716 | 103 | 1.717 | 104 | 1440 | | 900 | 1.816 | 98 | 1.817 | 98 | 1.819 | 98 | 1.821 | 98 | 1620 | | 1000 | 1.914 | 93 | 1.915 | 94 | 1.917 | 94 | 1.919 | 93 | 1800 | | 1100
1200 | 2.007
2.096 | 89
86 | 2.009
2.098 | 89
85 | 2.011
2.099 | 88
86 | 2.012
2.101 | 89
85 | 1980
2160 | | | -, | | | | 2.185 | 82 | 2,186 | 83 | 2340 | | 1300 | 2.182
2.264 | 82
80 | 2.183
2.266 | 83
79 | 2.165 | 82
80 | 2.269 | 79 | 2520 | | 1400
1500 | 2.204 | 80
77 | 2.345 | 77 | 2.347 | 76 | 2.348 | 77 | 2700 | | 1600 | 2.421 | 74 | 2,422 | 74 | 2,423 | 75 | 2,425 | 74 | 2880 | | 1700 | 2.495 | 72 | 2.496 | 73 | 2.498 | 72 | 2.499 | 72 | 3060 | | 1800 | 2.567 | n | 2.569 | 70 | 2.570 | 70 | 2.571 | 71 | 3240 | | 1900 | 2.638 | 68 | 2.639 | ⊕ | 2.640 | 69 | 2.642
2.710 | 68
47 | 3420
3600 | | 2000 | 2.706 | 67 | 2.708 | 66
45 | 2.709
2.776 | 67
65 | 2.777 | 67
65 | 3780 | | 2100
2200 | 2.773
2.838 | 65
64 | 2.774
2.839 | 65
64 | 2.841 | 63 | 2.842 | 64 | 3960 | | 2300 | 2,902 | 62 | 2,903 | 63 | 2,904 | 63 | 2.906 | 62 | 4140 | | 2400 | 2.964 | <u>a</u> | 2.966 | 61 | 2.967 | 61 | 2.968 | 61 | 4320 | | 2500 | 3.025 | 60 | 3.027 | 60 | 3.028 | 60 | 3.029 | 60 | 4500 | | 2600 | 3.085 | 59 | 3.087
3.145 | 58
58 | 3.088
3.146 | 58
58 | 3.089
3.148 | 59
57 | 4680
4860 | | 2700 | 3.144 | 58 | | | | | | | 5040 | | 2800 | 3.202 | 56 | 3.203
3.260 | 57
55 | 3.204
3.261 | 57
5 5 | 3.205
3.262 | 57:
55 | 5220 | | 2900
3000 | 3.258
3.314 | 56 | 3.315 | 20 | 3.316 | 73 | 3.317 | | 5400 | | 3000 | 2,214 | | 2022 | | -,,- | | | | | · a/a₀ | | | ILD VELOCO | | | | | | | | |------------|--------------|------------|----------------|-------------|---------------|----------|--------------|--------|------------| | °K | 10 |) atm | 40 | atm | 70 | atm | 100 | atm | °R | | 180 | .80 | 5 | | | | | | | 324 | | 200
220 | .850
.894 | 44
42 | | | | | | | 360
396 | | 240 | .936 | 40 | .94 | 4 | .95 | 5 | .98 | 4 | 432 | | 260 | .976 | 38 | .98 | 4 | 1.00 | 4 | 1.02 | 4 | 468 | | 280 | 1.014 | 37 | 1.02 | 4 | 1.04 | 4 | 1.06 | 4 | 504 | | 300 | 1.051 | 35 | 1.06 | 4 | 1.08 | 4 | 1.10
1.14 | 4 | 540
576 | | 320 | 1.086 | 34 | 1.10 | 4 | 1.12 | 4 | 1.18 | 4 | 612 | | 340 | 1.120 | 32 | 1.14 | 3 | 1.16 | 3 | | | 648 | | 360 | 1.152 | 32 | 1.17 | 3 | 1.19 | 3 | 1.21 | 3 | | | 380 | 1.184 | 31 | 1.20 | 3 | 1.22 | 3 | 1.24 | 3 | 684 | | 400 | 1.215 | 31 | 1.232
1.264 | 32 | 1.25
1.284 | 3
30 | 1.27
1.31 | 4
3 | 720
756 | | 420 | 1.246 | 29 | | 30 | 1.314 | 29 | 1.34 | 3 | 792 | | 440 | 1.275 | 29 | 1.294 | 29 | 1.343 | 29
29 | 1.366 | 28 | 828 | | 460 | 1.304 | 28 | 1.323 | 28 | | | 1.394 | 28 | 864 | | 480 | 1.332 | 27 | 1.351 | 28 | 1.372 | 27 | | 20 | | | 500 | 1.359 | 27 | 1.379 | 26 | 1.399 | 27 | 1.422 | 26 | 900 | | 520 | 1.386 | 26 | 1.405 | 27 | 1.426 | 26 | 1,448 | 26 | 936 | | 540 | 1.412 | 26 | 1.432 | 26 | 1.452 | 26 | 1.474 | 26 | 972 | | 560 | 1.438 | 25 | 1.458 | 25 | 1.478 | 26 | 1.500 | 25 | 1008 | | 580
 1.463 | 25 | 1.483 | 25 | 1.504 | 25 | 1.525 | 25 | 1044 | | 600 | 1.488 | 25 | 1.508 | 25 | 1.529 | 24 | 1.550 | 24 | 1080 | | 620 | 1.513 | 24 | 1.533 | 24 | 1,553 | 24 | 1.574 | 24 | 1116 | | 640 | 1.537 | 23 | 1.557 | 23 | 1.577 | 24 | 1.598 | 24 | 1152 | | 660 | 1.560 | 24 | 1.580 | 23 | 1.601 | 22 | 1.622 | 22 | 1188 | | 680 | 1.584 | 23 | 1.603 | 23 | 1.623 | 23 | 1.644 | 23 | 1224 | | 700 | 1,607 | 23 | 1,626 | 23 | 1.646 | 23 | 1.667 | 22 | 1260 | | 720 | 1.630 | 22 | 1.649 | 23 | 1.669 | 22 | 1.689 | 22 | 1296 | | 740 | 1.652 | 22 | 1.672 | 21 | 1.691 | 22 | 1.711 | 22 | 1332 | | 760 | 1.674 | 22 | 1.693 | 22 | 1.713 | 22 | 1.733 | 21 | 1368 | | 780 | 1.696 | 21 | 1.715 | 21 | 1.735 | 20 | 1.754 | 21 | 1404 | | | | | | | | | 1 775 | | 1440 | | 800 | 1,717 | 104 | 1,736 | 104 | 1.755 | 103 | 1.775 | 102 | 1440 | | 900 | 1.821 | 98 | 1.840 | 97 | 1.858 | 97 | 1.877 | 95 | 1620 | | 1000 | 1.919 | 93 | 1.937 | 92 | 1.955 | 91 | 1.972 | 92 | 1800 | | 1100 | 2.012 | 89 | 2.029 | 89 | 2.046 | 89 | 2.064 | 87 | 1980 | | 1200 | 2.101 | 85 | 2.118 | . 85 | 2.135 | 84 | 2.151 | 84 | 2160 | | 1300 | 2.186 | 83 | 2,203 | 81 | 2.219 | 81 | 2.235 | 81. | 2340 | | 1400 | 2.269 | 79 | 2.284 | 79 | 2.300 | 78 | 2.316 | 78 | 2520 | | 1500 | 2.348 | 77 | 2.363 | 77 | 2.378 | 76 | 2.394 | 75 | 2700 | | 1600 | 2.425 | 74 | 2.440 | 74 | 2.454 | 73 | 2.469 | 72 | 2880 | | 1700 | 2.499 | 72 | 2.514 | 71 | 2.527 | 72 | 2.541 | 72 | 3060 | | 1800 | 2.571 | 71 | 2.585 | 70 | 2.599 | 69 | 2.613 | 69 | 3240 | | 1900 | 2.642 | 68 | 2.655 | 68 | 2.668 | 68 | 2.682 | 67 | 3420 | | 2000 | 2.710 | 67 | 2,723 | 67 | 2.736 | 66 | 2.749 | 66 | 3600 | | 2100 | 2.777 | 65 | 2.790 | 64 | 2.802 | 65 | 2.815 | 64 | 3780 | | 2200 | 2.842 | 64 | 2.854 | 64 | 2.867 | 63 | 2.879 | 62 | 3960 | | 2300 | 2,906 | 62 | 2.918 | 61 | 2.930 | 62 | 2.941 | 62 | 4140 | | 2400 | 2.968 | 61 | 2.979 | 61 | 2.992 | 60 | 3.003 | 61 | 4320 | | 2500 | 3.029 | 60 | 3.040 | 60 | 3.052 | 59 | 3.064 | 59 | 4500 | | 2600 | 3.089 | 59 | 3.100 | 58 | 3.111 | 58 | 3,123 | 58 | 4680 | | 2700 | 3.148 | 57 | 3.158 | 57 | 3.169 | 58 | 3.181 | 57 | 4860 | | 2800 | 3,205 | 57 | 3.215 | 57 | 3.227 | 56 | 3,238 | 56 | 5040 | | 2900 | 3.262 | 55 | 3,272 | 55 | 3.283 | 55 | 3.294 | 55 | 5220 | | 3000 | 3.317 | | 3.327 | | 3.338 | | 3.349 | | 5400 | Table 3-8. VISCOSITY OF ARGON AT ATMOSPHERIC PRESSURE | | | | | <u> </u> | | | | | <u> </u> | | | |------------|------------------|-----|-----|----------|-------|----|--------------|--------------|----------------|----------|----------------| | ок | 7/7 ₀ | | OR | °К | 7/70 | | °R | °К | 7/70 | | o _R | | - 50 | .1965 | 371 | 90 | ւ 550 | 1.699 | 22 | 990 | 1050 | 2.634 | 17 | 1890 | | 50
60 | .2336 | 382 | 108 | 560 | 1.721 | 21 | 1008 | 1060 | 2.651 | 17 | 1908 | | 70 | .2718 | 390 | 126 | 570 | 1.742 | 22 | 1026 | 1070 | 2.668 | 16 | 1926 | | 80 | .3108 | 398 | 144 | 580 | 1.764 | 21 | 1044 | 1080 | 2.684 | 17 | 1944 | | 90 | .3506 | 399 | 162 | 590 | 1.785 | 21 | 1062 | 1090 | 2.701 | 16 | 1962 | | 100 | .3905 | 397 | 180 | 600 | 1.806 | 21 | 1080 | 1100 | 2.717 | 16 | 1980 | | 110 | .4302 | 394 | 198 | 610 | 1,827 | 20 | 1098 | 1110 | 2.733 | 17 | 1998 | | 120 | .4696 | 386 | 216 | 620 | 1.847 | 21 | 1116 | 1120 | 2.750 | 16 | 2016 | | 130
140 | .5082 | 386 | 234 | 630 | 1.868 | 20 | 1134 | 1130 | 2.766 | 16 | 2034
2052 | | 140 | .5468 | 381 | 252 | 640 | 1.888 | 20 | 1152 | 1140 | 2.782 | 16 | | | 150 | .5849 | 372 | 270 | 650 | 1.908 | 20 | 1170 | 1150 | 2.798
2.814 | 16
16 | 2070
2088 | | 160 | .6221 | 367 | 288 | 660 | 1.928 | 20 | 1188 | 1160
1170 | 2.830 | 15 | 2106 | | 170 | .6588 | 358 | 306 | 670 | 1.948 | 20 | 1206
1224 | 1180 | 2.845 | 16 | 2124 | | 180 | .6946 | 353 | 324 | 680 | 1.968 | 20 | 1242 | 1190 | 2.861 | 15 | 2142 | | 190 | .7299 | 348 | 342 | 690 | 1.988 | 20 | 1242 | | | D | | | 200 | .7647 | 344 | 360 | 700 | 2.008 | 20 | 1260 | 1200 | 2.876 | 16 | 2160 | | 210 | .7991 | 324 | 378 | 710 | 2.028 | 19 | 1278 | 1210 | 2.892 | 16 | 2178
2196 | | 220 | .8315 | 334 | 396 | 720 | 2.047 | 20 | 1296 | 1220 | 2.908 | 16 | 2214 | | 230 | .8649 | 325 | 414 | 730 | 2.067 | 19 | 1314 | 1230 | 2.924 | 16 | 2232 | | 240 | .8974 | 315 | 432 | 740 | 2.086 | 19 | 1332 | 1240 | 2.940 | 16 | 2232 | | 250 | .9289 | 311 | 450 | 750 | 2.105 | 18 | 1350 | 1250 | 2.956 | 15 | 2250 | | 260 | .9600 | 306 | 468 | 760 | 2.123 | 19 | 1368 | 1260 | 2.971 | 16 | 2268 | | 270 | .9906 | 301 | 486 | 770 | 2.142 | 19 | 1386 | 1270 | 2.987 | 15 | 2286
2304 | | 280 | 1.0207 | 297 | 504 | 780 | 2.161 | 19 | 1404 | 1280 | 3.002 | 16 | 2322 | | 290 | 1,0504 | 291 | 522 | 790 | 2,180 | 18 | 1422 | 1290 | 3.018 | 16 | | | 300 | 1.0795 | 287 | 540 | 800 | 2.198 | 18 | 1440 | 1300 | 3.034 | 15 | 2340 | | 310 | 1.1082 | 283 | 558 | 810 | 2.216 | 19 | 1458 | 1310 | 3.049 | 16 | 2358 | | 320 | 1.1365 | 277 | 576 | 820 | 2.235 | 19 | 1476 | 1320 | 3.065 | 16 | 2376 | | 330 | 1.1642 | 278 | 594 | 830 | 2.254 | 18 | 1494 | 1330 | 3.081 | 16 | 2394 | | 340 | 1.1920 | 27 | 612 | 840 | 2.272 | 18 | 1512 | 1340 | 3.097 | 15 | 2412 | | 350 | 1.219 | 26 | 630 | 850 | 2,290 | 18 | 1530 | 1350 | 3.112 | 15 | 2430 | | 360 | 1,245 | 27 | 648 | 860 | 2.308 | 18 | 1548 | 1360 | 3.127 | 15 | 2448 | | 370 | 1.272 | 26 | 666 | 870 | 2.326 | 18 | 1566 | 1370 | 3.142 | 15 | 2466 | | 380 | 1.298 | 25 | 684 | 880 | 2.344 | 17 | 1584 | 1380 | 3.157 | 15 | 2484 | | 390 | 1.323 | 26 | 702 | 890 | 2.361 | 18 | 1602 | 1390 | 3.172 | 14 | 2502 | | 400 | 1.349 | 25 | 720 | 900 | 2.379 | 17 | 1620 | 1400 | 3.186 | 15 | 2520 | | 410 | 1.374 | 24 | 738 | 910 | 2.396 | 18 | 1638 | 1410 | 3.201 | 15 | 2538 | | 420 | 1.398 | 25 | 756 | 920 | 2.414 | 17 | 1656 | 1420 | 3.216 | 14 | 2556 | | 430 | 1,423 | 25 | 774 | 930 | 2.431 | 18 | 1674 | 1430 | 3.230 | 15 | 2574 | | 440 | 1.448 | 24 | 792 | 940 | 2.449 | 17 | 1692 | 1440 | 3.245 | 14 | 2592 | | 450 | 1.472 | 24 | 810 | 950 | 2.466 | 17 | 1710 | 1450 | 3.259 | 15 | 2610 | | 460 | 1.496 | 23 | 828 | .960 | 2.483 | 17 | 1728 | 1460 | 3.274 | 14 | 2628 | | 470 | 1.519 | 23 | 846 | 970 | 2.500 | 17 | 1746 | 1470 | 3.288 | 15 | 2646 | | 480 | 1.542 | 23 | 864 | 980 | 2.517 | 17 | 1764 | 1480 | 3.303 | 14 | 2664 | | 490 | 1,565 | 23 | 882 | 990 | 2,534 | 17 | 1782 | 1490 | 3.317 | 14 | 2682 | | 500 | 1.588 | 23 | 900 | 1000 | 2.551 | 17 | 1800 | 1500 | 3.331 | | 2700 | | 510 | 1.611 | 22 | 918 | 1010 | 2,568 | 17 | 1818 | | | | | | 520 | 1.633 | 22 | 936 | 1020 | 2.585 | 17 | 1836 | | | | | | 530 | 1.655 | 22 | 954 | 1030 | 2.602 | 16 | 1854 | | | | | | 540 | 1.677 | 22 | 972 | 1040 | 2.618 | 16 | 1872 | | | | | | 550 | 1.699 | | 990 | 1050 | 2.634 | | 1890 | 1 | | | | | | | | | | | | | | | | | Table 3-9. THERMAL CONDUCTIVITY OF ARGON AT ATMOSPHERIC PRESSURE | rable 0 | o. 1111111111 | | | |---------|---------------|----|----------------| | °к | k/k | 0 | o _R | | 90 | .361 | 33 | 162 | | 100 | .394 | 44 | 180 | | 110 | .438 | 38 | 198 | | 120 | .476 | 38 | 216 | | 130 | .514 | 36 | 234 | | 140 | .550 | 36 | 252 | | 150 | .586 | 36 | 270 | | 160 | .622 | 36 | 288 | | 170 | .658 | 35 | 306 | | 180 | .693 | 35 | 324 | | 190 | .728 | 35 | 342 | | 200 | .763 | 33 | 360 | | 210 | .796 | 34 | 378 | | 220 | .830 | 33 | 396 | | 230 | .863 | 33 | 414 | | 240 | .896 | 31 | 432 | | 250 | .927 | 31 | 450 | | 260 | .958 | 33 | 468 | | 270 | .991 | 31 | 486 | | 280 | 1.022 | 30 | 504 | | 290 | 1.052 | 29 | 522 | | 300 | 1.081 | 30 | 540 | | 310 | 1.111 | 29 | 558 | | 320 | 1.140 | 29 | 576 | | 330 | 1.169 | 29 | 594 | | 340 | 1.198 | 29 | 612 | | 350 | 1,227 | 28 | 630 | | 360 | 1.255 | 28 | 648 | | 370 | 1.283 | 27 | 666 | | 380 | 1.310 | 27 | 684 | | 390 | 1.337 | 26 | 702 | | | | | | | o _K | k/ | k ₀ | oR | |--------------------------------------|---|--------------------------|--------------------------------------| | | | | | | 400 | 1.363 | 27 | 720 | | 410 | 1.390 | 26 | 738 | | 420 | 1.416 | 26 | 756 | | 430 | 1.442 | 25 | 774 | | 440 | 1.467 | 26 | 792 | | 450 | 1.493 | 25 | 810 | | 460 | 1.518 | 25 | 828 | | 470 | 1.543 | 25 | 846 | | 480 | 1.568 | 24 | 864 | | 490 | 1.592 | 24 | 882 | | 500 | 1.616 | 24 | 900 | | 510 | 1.640 | 24 | 918 | | 520 | 1.664 | 24 | 936 | | 530 | 1.688 | 23 | 954 | | 540 | 1.711 | 23 | 972 | | 550 | 1.734 | 23 | 990 | | 560 | 1.757 | 23 | 1008 | | 570 | 1.780 | 22 | 1026 | | 580 | 1.802 | 22 | 1044 | | 590 | 1.824 | 22 | 1062 | | 600 | 1.846 | 211 | 1080 | | 700 | 2.057 | 197 | 1260 | | 800 | 2.254 | 184 | 1440 | | 900 | 2.438 | 173 | 1620 | | 1000 | 2.611 | 164 | 1800 | | 1100
1200
1300
1400
1500 | 2.775
2.932
3.081
3.225
3.362 | 157
149
144
137 | 1980
2160
2340
2520
2700 | Table 3-10. PRANDTL NUMBER OF ARGON AT ATMOSPHERIC PRESSURE $\hspace{1.5cm} \eta \; C_p/k$ | I able 0 | -10. 1101 | MDID NO. | MIDDIN OF A | HIGON AI | AIMOSIII | ERIC FILE | SSORE | • | 7 Cp/ K | |--------------------------------------|--------------------------------------|--------------------------|--------------------------------------|------------------------|--------------------------------------|---------------------|--------------------------------------|------------------|--------------------------------------| | o _K | (N _I | or) | (N _P | .) ^{2/3} | (N _{Pr} |)1/3 | (N _{Pr} |)1/2 | o _R | | 100
110
120
130
140 | .700
.686
.683
.682
.683 | -14
- 3
- 1
1 | .789
.778
.775
.774
.775 | -11
- 3
- 1
1 | .888
.882
.881
.880 | -6
-1
-1
1 | .836
.828
.826
.826 | -8
-2 | 180
198
216
234
252 | | 150
160
170
180
190 | .684
.683
.683
.683 | - 1 | .776
.775
.775
.775
.775 | - 1 | .881
.881
.881
.881 | | .827
.826
.826
.826
.826 | -1 | 270
288
306
324
342 | | 200
210
220
230
240 | .683
.681
.681
.680 | - 2
- 1 |
.775
.775
.774
.774
.774 | - 1 | .881
.881
.880
.880 | -1
-1 | .826
.826
.825
.825
.825 | -1 | 360
378
396
414
432 | | 250
260
270
280
290 | .680
.679
.678
.677 | - 1
- 1
- 1 | .774
.773
.772
.771
.771 | - 1
- 1
- 1 | .879
.879
.878
.878
.878 | -1 | .825
.824
.824
.823
.823 | -1
-1 | 450
468
486
504
522 | | 300
310
320
330
340 | .677
.676
.675
.675 | - 1
- 1
- 1
- 1 | .771
.770
.770
.770
.769 | - 1
- 1
- 1 | .878
.878
.877
.877 | -1
-1 | .823
.822
.822
.822
.821 | -1
-1
-1 | 540
558
576
594
612 | | 350
360
370
380
390 | .673
.672
.672
.671 | - 1
- 1 | .768
.767
.767
.766
.766 | - 1
- 1 | .876
.876
.876
.875
.875 | -1 | .820
.820
.820
.819
.819 | -1 | 630
648
666
684
702 | | 400
420
440
460
480 | .671
.670
.669
.668 | - 1
- 1
- 1
- 2 | .766
.766
.765
.764
.763 | - 1
- 1
- 1 | .875
.875
.875
.874
.873 | -1
-1 | .819
.819
.818
.817
.816 | -1
-1
-1 | 720
756
792
828
864 | | 500
520
540
560
580 | .666
.665
.664
.663 | - 1
- 1
- 1 | .763
.762
.761
.760
.760 | - 1
- 1
- 1 | .873
.873
.872
.872
.872 | -1 | .816
.815
.815
.814
.814 | -1
-1 | 900
936
972
1008
1044 | | 600
700
800
900
1000 | .662
.661
.660
.661 | - 1
- 1
1 | .760
.759
.758
.759
.759 | - 1
- 1
1 | .872
.871
.871
.871
.871 | -1
1 | .814
.813
.812
.813 | -1
-1
1 | 1080
1260
1440
1620
1800 | | 1100
1200
1300
1400
1500 | .663
.664
.667
.669
.671 | 1
3
2
2 | .760
.761
.763
.765
.766 | 1
2
2
1 | .872
.872
.874
.875
.875 | 2
1 | .814
.815
.817
.818
.819 | 1
2
1
1 | 1980
2160
2340
2520
2700 | Table 3-11, VAPOR PRESSURE OF ARGON | Remarks | Т | P | P | P | т | |--------------------|-----------|-------------------|-------|--------|--------------------| | | °K | m Hg | atm | psia | °R. | | Triple point | int 87.29 | .5168 | .6800 | 9.993 | 150.80 | | Normal boiling poi | | .7600 | 1.000 | 14.696 | 157.12 | | Critical point | | 36. ₄₅ | 48.0 | 705. | 271. ₁₇ | | Solid | 65. | .021 | .028 | .40 | 117. | | | 70 | .058 | .076 | 1.12 | 126. | | | 75 | .141 | .185 | 2.72 | 135. | | | 80 | .306 | .402 | 5.91 | 144. | | Liquid | 85 | .593 | .780 | 11.46 | 153. | | | 90 | 1.004 | 1.321 | 19.41 | 162. | | | 95 | 1.617 | 2.13 | 31.3 | 171. | | | 100 | 2.46 | 3.23 | 47.5 | 180. | | | 105 | 3.56 | 4.69 | 68.9 | 189. | | | 110 | 5.01 | 6.59 | 96.9 | 198. | | | 115 | 6.84 | 9.00 | 132.3 | 207. | | | 120 | 9.11 | 11.98 | 176.1 | 216. | | | 125 | 11.86 | 15.61 | 229. | 225. | | | 130 | 15.19 | 19.99 | 294. | 234. | | | 135 | 19.15 | 25.2 | 370. | 243. | | | 140. | 23.8 | 31.3 | 461. | 252. | | | 145 | 29.3 | 38.5 | 566. | 261. | | | 150 | 35.6 | 46.8 | 688. | 270. | Table 3-11/a. VAPOR PRESSURE OF LIQUID ARGON. | 200/T | Т | Log 10P (atm) | * | P | Т | 360/T | |-------------------|----------------|---------------|-------|--------|----------------|-------------------| | o _K -1 | ° _K | • | | atm | o _R | o _R -1 | | 2.4 | 83.33 | (9.810 - 10)* | * 174 | (.646) | 150.00 | 2.4 | | 2.3 | 86.96 | 9.984 - 10 | 176 | .964 | 156.52 | 2.3 | | 2.2 | 90.91 | .160 | 177 | 1.45 | 163.64 | 2.2 | | 2.1 | 95.24 | .337 | 172 | 2.17 | 171.43 | 2.1 | | 2.0 | 100.00 | .509 | 170 | 3.23 | 180.00 | 2.0 | | 1,9 | 105.26 | .679 | 171 | 4.78 | 189,47 | 1.9 | | 1.8 | 111.11 | .850 | 171 | 7.08 | 200.00 | 1.8 | | 1.7 | 117.65 | 1.021 | 172 | 10.5 | 211.76 | 1.7 | | 1.6 | 125.00 | 1.193 | 175 | 15.61 | 225.00 | 1.6 | | 1.5 | 133.33 | 1.368 | 179 | 23.3 | 240.00 | 1.5 | | 1.4 | 142.86 | 1.547 | 185 | 35.2 | 257,14 | 1.4 | | 1.3 | 153.85 | (1.732) | | (54.0) | 276.92 | 1.3 | ^{*}Tabulated values in this column are for interpolation with respect to reciprocal temperature. Table 3-11/b. CONSTANTS FOR $LOG_{10}P$ (SOLID) = A - B/T | Units of P | A | Units of T | В | |----------------------|----------------------------|------------|------------------| | mm Hg
atm
psia | 7.5344
4.6536
5.8208 | °K
°R | 403.91
727.04 | ^{**} Figures in parentheses are extrapolated to permit interpolation to the critical point and triple point. Table 3-12. IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR ARGON | • | C°p | (H° - E°) |) * | s° | | | |----------|--------|------------------|------------|--------------------|-----------------|---| | °K | R | RT _o | • | R | | | | | | | | | | | | 10 | 2.5000 | .0915 | 915 | 10.1240 | 17328 | | | 20 | | .1830 | 916 | 11.8568 | 10137 | | | 30 | | .2746 | 915 | 12.8705 | 7192 | | | 40 | | .3661 | 915 | 13.5897 | 5579 | | | 50 | | .4576 | 915 | 14.1476
14.6034 | 4558 | | | 60
70 | | .5491
.6407 | 916
915 | 14.9887 | 3853
3339 | | | 80 | | .7322 | 915 | 15.3226 | 2944 | | | 90 | | .8237 | 915 | 15.6170 | 2634 | | | 00 | | .9152 | 915 | 15.8804 | 2383 | | | 10 | | 1.0067 | 916 | 16.1187 | 2175 | | | 20 | | 1.0983 | 915 | 16.3362 | 2001 | | | 30
40 | | 1.1898
1.2813 | 915
915 | 16.5363
16.7216 | 1853
1725 | | | | | | | | | | | 50
60 | | 1.3728
1.4643 | 915
916 | 16.8941
17.0554 | 1613
1516 | | | 70 | | 1.5559 | 915 | 17.2070 | 1429 | | | 30 | | 1.6474 | 915 | 17.3499 | 1352 | | | 90 | | 1.7389 | 915 | 17.4851 | 1282 | | | 0 | | 1.8304 | 916 | 17.6133 | 1220 | | | 10 | | 1.9220 | 915 | 17.7353 | 1163 | | | 20
30 | | 2.0135
2.1050 | 915
915 | 17.8516
17.9627 | 1111
1064 | | | 0 | | 2.1965 | 915
915 | 18.0691 | 1020 | | | 0 | | 2,2880 | 916 | 18.1711 | 981 | | | 0 | | 2,3796 | 915 | 18,2692 | 944 | | | 0 | | 2.4711 | 915 | 18.3636 | 909 | | | 10
10 | | 2.5626
2.6541 | 915
915 | 18.4545
18.5422 | 877
848 | | | | | | | | | | | 00
10 | | 2.7456
2.8372 | 916
915 | 18.6270
18.7089 | 819
794 | | | 0 | | 2.9287 | 915
915 | 18.7883 | 7 69 | | | ō | | 3,0202 | 915 | 18.8652 | 747 | | | 10 | | 3.1117 | 916 | 18.9399 | 724 | | | 50 | | 3.2033 | 915 | 19.0123 | 705 | | | 50 | | 3.2948 | 915 | 19.0828 | 685 | | | 0 | | 3.3863 | 915 | 19.1513 | 666 | | | 0
0 | | 3.4778
3.5693 | 915
916 | 19.2179
19.2829 | 650
633 | | | 0 | | 3.6609 | 915 | 19.3462 | 617 | | | Ö | | 3.7524 | 915
915 | 19.4079 | 602 | | | ŏ | | 3.8439 | 915 | 19,4681 | 589 | | | 0 | | 3.9354 | 915 | 19.5270 | 574 | | | 0 | | 4.0269 | 916 | 19.5844 | 562 | | | 0 | | 4.1185 | 915 | 19.6406 | 550 | | | 50 | | 4.2100 | 915 | 19.6956 | ·537 | | | 70 | | 4.3015
4.3930 | 915
916 | 19.7493
19.8020 | 527
515 | | | 30
90 | | 4.3930
4.4846 | 916
915 | 19.8535 | 505 | | | 0 | | 4,5761 | 915 | 19.9040 | 495 | | | .0 | | 4.6676 | 915 | 19.9535 | 486 | | | 20 | | 4.7591 | 915 | 20.0021 | 476 | | | 80
10 | | 4.8506
4.9422 | 916
915 | 20.0497
20.0964 | 467
459 | | | | | • | | 20.1423 | | • | | 0 | | 5.0337
5.1252 | 915
915 | 20.1423 | 450
443 | | | 70 | | 5.2167 | 915 | 20.2316 | 435 | | | B0 | | 5.3082 | 916 | 20,2751 | 427 | | | 90 | | 5.3998 | 915 | 20.3178 | 420 | | | 0 | 2.5000 | 5.4913 | | 20.3598 | | | | | | | | | | | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). Table 3-12. IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR ARGON - Cont. | | | 1 | -0.* | | | |----------|----------------|------------------|------------------|--------------------|------------| | °K | C _p | (H* - | · E°)* | s° | | | | R | RT | <u> </u> | R | | | | | | | | | | | 2.5000 | 5.491 | | 20,3598 | 413 | |) | | 5.582 | | 20.4011 | 407 | | 0 | | 5.674 | | 20.4418 | 400 | | 0 | | 5.765 | | 20.4818 | 394 | | 0 | | 5,857 | 4 915 | 20,5212 | 387 | | | | 5.948 | | 20.5599 | 382 | | 0 | | 6.040 | | 20.5981 | 376 | | 0 | | 6.131 | | 20.6357 | 370 | | 0 | | 6.223 | | 20.6727
20.7092 | 365 | | 0 | | 6.315 | 0 915 | 20.7092 | 360 | | | | 6.406 | | 20.7452 | 355 | |) | | 6.498 | | 20.7807 | 349 | | 0 | | 6.589 | | 20.8156 | 345 | | 30 | | 6.681 | | 20.8501 | 340 | | 0 | | 6.772 | 6 915 | 20.8841 | 336 | | | | 6.864 | | 20.9177 | 331 | | 0 | | 6.955 | | 20.9508 | 327 | | 70 | | 7.047 | | 20,9835 | 322 | | 30 | | 7.138 | | 21.0157 | 319 | | 0 | | 7.230 | | 21.0476 | 314 | | | | | | | | | 0 | | 7.321 | | 21,0790 | 1516 | | 150 | | 7.779 | | 21,2306 | 1429 | | 10 | | 8,236 | | 21.3735 | 1352 | | 50 | | 8.694 | | 21.5087 | 1282 | | 00 | | 9.152 | 1 4577 | 21.6369 | 1220 | | | | 9,609 | B 4576 | 21.7589 | 1163 | | 0 | | 10.067 | | 21.8752 | 1111 | | 50 | | 10,525 | | 21.9863 | 1064 | | őő | | 10.982 | | 22,0927 | 1020 | | Ď | | 11.440 | | 22.1947 | 981 | | , | | 11.897 | 8 4576 | 22,2928 | 943 | | 0
0 | | 12.355 | | 22.3871 | 910 | | | | 12.813 | 7 93/0
0 457/ | 22.4781 | 877 | | 0 | | 13.270 | | 22.5658 | | | 50
00 | | 13.728 | | 22.6505 | 847
820 | | | | 14.105 | 0 | 22 7225 | 70.4 | |) | | 14.185 | | 22,7325 | 794 | | 0 | | 14.643 | | 22.8119 | 769 | |) | | 15.101 | | 22.8888 | 747 | | 0 | | 15.558 | | 22.9635 | 724 | |) | | 16.016 | 3 4576 | 23.0359 | 705 | | | | 16.473 | 9 4576 | 23.1064 | 684 | | | | 16.931 | | 23.1748 | 667 | | | | 17.389 | | 23.2415 | 650 | | | | 17.846 | | 23.3065 | 633 | | 0
0 | | 18.304 | | 23.3698 | 617 | |) | | 18.761 | 9 4576 | 23,4315 | 602 | | | | | | 23.4917 | | | 00 | | 19.219 | | 23.5506 | 589 | | 50 | | 19.677 | | | 574 | | 00 | | 20.134 | | 23.6080 | 562 | | 0 | | 20.592 | 3 4576 | 23.6642 | 550 | | 0 | | 21.049 | | 23.7192 | 537 | |) | | 21.507 | | 23.7729 | 527 | |) | | 21.965 | | 23.8256 | 515 | | 0 | | 22.422
22.880 | | 23.8771
23.9276 | 505
495 | | | | | | | | |) | | 23.338 | | 23.9771 | 486 | | 0 | | 23.795 | | 24.0257 | 476 | | 0 | | 24.253 | | 24.0733 | 467
| | 00 | | 24.710 | | 24.1200 | 459 | | 50 | | 25.168 | 4 4576 | 24.1659 | 450 | | 0 | 2.5000 | 25.626 | 0 | 24.2109 | | | | | | | | | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). Table 3-12. IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR ARGON - Cont. | | C° | //10 =014 | | T | | <u> </u> | |--------------|----------------|--------------------|--------------|--------------------|--------------------|--------------| | °K | C _p | (H° - E°)* | | s° | | * <i>R</i> | | | R | RT _o | | R | | | | 2000 | 2 5000 | 25 (2(2 | | 24 2222 | | | | 2800
2850 | 2.5000 | 25.6260
26.0836 | 4576 | 24.2109 | 443 | 5040 | | 2900 | | 26.5412 | 4576
4576 | 24.2552
24.2987 | 435
427 | 5130
5220 | | 2950 | | 26,9988 | 4576 | 24.3414 | 427
420 | 5310 | | 3000 | | 27.4564 | 4576 | 24.3834 | 413 | 5400 | | 3050 | | 27.9140 | 4577 | 24.4247 | 407 | 5490 | | 3100 | | 28.3717 | 4576 | 24.4654 | 400 | 5580 | | 3150 | | 28.8293 | 4576 | 24.5054 | 394 | 5670 | | 3200 | | 29.2869 | 4576 | 24.5448 | 387 | 5760 | | 3250 | | 29.7445 | 4576 | 24.5835 | 382 | 5850 | | 3300
3350 | | 30.2021 | 4576 | 24.6217 | 376 | 5940 | | 3400 | | 30.6597 | 4576 | 24.6593 | 370 | 6030 | | 3450 | | 31.1173
31.5749 | 4576 | 24.6963 | 365 | 6120 | | 3500 | | 32.0325 | 4576 | 24.7328 | 360 | 6210 | | | | | 4576 | 24.7688 | 35 5 | 6300 | | 3550 | | 32.4901 | 4576 | 24.8043 | 349 | 6390 | | 3600 | | 32.9477 | 4576 | 24.8392 | 345 | 6480 | | 3650 | | 33.4053 | 4 576 | 24.8737 | 340 | 6570 | | 3700 | | 33.8629 | 4576 | 24.9077 | 336 | 6660 | | 3750 | | 34.3205 | 4577 | 24.9413 | 331 | 6750 | | 3800 | | 34.7782 | 4576 | 24.9744 | 327 | 6840 | | 3850 | | 35.2358 | 4576 | 25.0071 | 322 | 6930 | | 3900 | | 35.6934 | 4576 | 25.0393 | 319 | 7020 | | 3950 | | 36.1510 | 4576 | 25.0712 | 314 | 7110 | | 4000 | | 36.6086 | 4576 | 25.1026 | 311 | 7200 | | 4050 | | 37,0662 | 4576 | 25,1337 | 307 | 7290 | | 4100 | | 37.5238 | 4576 | 25.1644 | 303 | 7380 | | 4150 | | 37.9814 | 4576 | 25.1947 | 299 | 7470 | | 4200 | | 38.4390 | 4576 | 25.2246 | 296 | 7560 | | 4250 | | 38.8966 | 4576 | 25.2542 | 292 | 7650 | | 4300 | | 39.3542 | 4576 | 25,2834 | 289 | 7740 | | 4350 | | 39.8118 | 4576 | 25.3123 | 286 | 7830 | | 4400 | | 40.2694 | 4576 | 25.3409 | 282 | 7920 | | 4450 | | 40.7270 | 4577 | 25.3691 | 280 | 8010 | | 4500 | | 41.1847 | 4576 | 25,3971 | 276 | 8100 | | 4550 | | 41.6423 | 4576 | 25.4247 | 273 | 8190 | | 4600 | | 42.0999 | 4576 | 25.4520 | 271 | 8280 | | 4650 | | 42.5575 | 4576 | 25.4791 | 267 | 8370 | | 4700
4750 | | 43.0151
43.4727 | 4576
4576 | 25.5058
25.5322 | 264
262 | 8460
8550 | | 4800 | | 43.9303 | 4576 | 25.5584 | 259 | 8640 | | 4850 | | 44.3879 | 4576
4576 | 25.5843 | 257
257 | 8730 | | 4900 | | 44.8455 | 4576
4576 | 25.6100 | 25/
25 4 | 8820 | | 4950 | | 45.3031 | 4576 | 25.6354 | 254
251 | 8910 | | 5000 | 2,5000 | 45.7607 | 7370 | 25,6605 | 231 | 9000 | | 5000 | +.5000 | 13.1007 | | -5.0003 | | 7000 | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). Table 3-13. COEFFICIENTS FOR THE EQUATION OF STATE FOR ARGON $Z = \frac{PV}{RT} = 1 + B_1P + C_1P^2 + D_1P^3 + E_1P^4 + F_1P^5$ | | RT | | -1- 1- | 1 4 | 19) | |------|-------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------| | Т | $\mathbf{B_1}$ | C ₁ x 10 ³ | D ₁ x 10 ⁹ | E ₁ x 10 ¹¹ | F ₁ x 10 ¹³ | | | | | | | - | | οK | atm ⁻¹ | $_{ m atm}^{-2}$ | $_{ m atm}$ -3 | atm ⁻⁴ | atm-5 | | | * | | | | | | 80 | (1)3919 | -1.82 | | | | | 90 | (1)2836 | 885 | | | | | 30 | (1/2000 | 000 | | | | | 100 | (1)2127 | 4677 | | | | | | • | 2634 | | | | | 110 | (1)1640 | | | | | | 120 | (1)1292 | 1555
\)0518 | | | | | 130 | (1)1036 | (T)9513 | | | | | 140 | (2)8432 | (1)5973 | | | | | 150 | (2)6938 | (1)3816 | | | | | 160 | (2)5765 | (1)2463 | | | | | 170 | (2)4830 | (1)1595 | | | | | 180 | (2)4072 | (1)1025 | -29.40 | -2.02 | +0.01 | | 190 | (2)3453 | (2)646 | +20.00 | -3.65 | 0.86 | | | | • • | | | | | 200 | (2)2941 | (2)391 | 28.47 | -5.16 | 1.58 | | 210 | (2)2515 | (2)219 | 31.97 | -6. 25 | 2.06 | | | • | • | 33. 24 | -6.98 | 2. 39 | | 220 | (2)2156 | (2)101 | | -7.43 | 2. 40 | | 230 | (2)1851 | (3)21 | 31.56 | | | | 240 | (2)1592 | +. (3)33 | 27.62 | -7,69 | 2. 25 | | 250 | (2)1370 | . (3)69 | 23.66 | -7.76 | 2.03 | | 260 | (2)1179 | . (3)93 | 20.12 | -7.80 | 1.80 | | 270 | (2)1012 | . (2)107 | 17.47 | -7.75 | 1.60 | | 280 | (3)868 | .(2)116 | 15.45 | -7.63 | 1.50 | | 290 | (3)742 | . (2)119 | 13.53 | -7.24 | 1. 4 5 | | | | • • • • | | | | | 300 | (3)631 | . (2)120 | 11.61 | -6.60 | 1.40 | | 310 | (3)534 | . (2)119 | 9.68 | -5.74 | 1.24 | | 320 | (3)448 | .(2)116 | 7.81 | -4.54 | 0.94 | | | (3)372 | . (2)113 | 5. 95 | -3. 21 | 0.51 | | 330 | | | | -1.90 | 0.12 | | 340 | (3)304 | . (2)109 | 4.09 | | | | 350 | (3)244 | . (2)104 | 2.75 | -0.87 | 0.02 | | 360 | (3)190 | . (3)99 | 1.88 | -0.41 | 0 | | 370 | (3)142 | . (3)94 | 1.40 | -0.30 | | | 380 | (4)99 | . (3)90 | 1.06 | -0. 29 | | | 390 | (4)61 | . (3)85 | 0.75 | -0.22 | | | 1 | | | | | | | 400 | (4)26 | . (3)81 | 0.42 | -0.10 | | | 410 | +. (5)5 | . (3)76 | 0 | 0 | | | 420 | +. (4)33 | . (3)72 | | | | | 430 | . (4)58 | . (3)68 | + | | | | 440 | . (4)81 | . (3)64 | 1 | | | | 450 | .(3)101 | . (3)61 | 1 | | | | 460 | . (3)120 | . (3)57 | | ····· | | | 470 | . (3)136 | . (3)54 | T | $\mathbf{B_1}$ | $C_1 \times 10^3$ | | 480 | .(3)152 | . (3)51 | ·oK | 1 | | | 490 | .(3)165 | . (3)49 | [] ^K | atm ⁻¹ | atm-2 | | 300 | . (0)100 | . (0/20 | 1200 | +.(3)237 | +.(4)2 | | 500 | /2)170 | . (3)46 | 1400 | . (3)213 | 0 | | 1 | . (3)178 | • . | 1600 | . (3)193 | ٠ | | 510 | . (3)189 | . (3)43 | 1 1 | 7 . | ļ | | 520 | . (3)199 | . (3)41 | 1800 | . (3)175 | ļ | | 530 | . (3)208 | . (3)39 | 2000 | . (3)159 | | | 540 | . (3)217 | . (3)37 | 2200 | . (3)146 | Į. | | 550 | . (3)224 | . (3)35 | 2400 | . (3)135 | İ | | 560 | . (3)231 | . (3)33 | 2600 | . (3)125 | | | 570 | . (3)237 | . (3)31 | 2800 | . (3)116 | | | 580 | . (3)242 | . (3)30 | 3000 | . (3)108 | | | 590 | . (3)247 | . (3)28 | 11 | • | | | | | . , | 3200 | . (3)102 | | | 600 | (3)252 | . (3)27 | 3400 | . (4)96 | ļ | | 650 | . (3)268 | .(3)21 | 3600 | . (4)90 | j | | | | . (3)16 | 3800 | . (4)85 | J | | 700 | . (3)276 | | 4000 | | | | 750 | .(3)279 | . (3)13 | 1 1 | . (4)81 | ļ | | 800 | . (3)278 | . (3)10 | 4200 | . (4)77 | 1 | | 850 | . (3)276 | . (4)8 | 4400 | . (4)73 | 1 | | 900 | . (3)272 | . (4)7 | 4600 | . (4)70 | | | 950 | . (3)267 | . (4)5 | 4800 | . (4)66 | | | 1000 | . (3)261 | . (4)4 | 5000 | . (4)63 | | | | | | → —— | | | $^{^*}$ Numbers in parentheses indicate the number of zeros immediately to the right of the decimal point. Table 3-14. A COMPARISON OF EXPERIMENTAL AND CALCULATED SECOND VIRIAL COEFFICIENTS, B, FOR ARGON** | | | | | Expe | erimenta | l * | | | Calculated | |----------------|---------|-----------------|--------|--------|----------------------|---------|---------|-------|-----------------| | Т | a | b | c | ď | е | f | g | h | NBS | | °K | | | | en | n ³ /mole | | | | | | 80 | | | | | • | -227.89 | -278.7 | | -257.3 | | 90 | | | | | | -179.31 | -217.4 | | -209.5 | | 100 | | | | | | -150.66 | -178.6 | | -174.5 | | 110 | | | | | | -130.96 | -150.9 | • | -148.0 | | 125 | | | | | | -109.02 | -120.7 | | -118.5 | | 150 | | | | | | - 82.38 | - 85.51 | | - 85.40 | | 151.92 | -82.52 | | | | | | | | - 83.41 | | 152.89 | -82.14 | | | | | | | | - 82.43 | | 153.93 | -81.17 | | | | | | | | - 81.40 | | 156.51 | -79.00 | | | | | | | | - 78.90 | | 157.27 | -79. 25 | | | | | | | | - 78.19 | | 159.33 | -75.67 | | | | | | | | - 76.29 | | 163. 25 | -72. 22 | | | | | | | | - 72.85 | | 170.62 | -65.07 | | | | | | | | - 66.89 | | 173.16 | | -64.32 | | | | | | | - 64.98 | | 186.07 | -53.83 | | | | | | | | - 56.22 | | 200.00 | | | | | | - 48.35 | - 44.55 | | - 48.27 | | 215.43 | -37.02 | | | | | | | | - 40.88 | | 223. 16 | | -37.79 | | | | | | | - 37.61 | | 250.00 | | | | | | - 28.21 | - 23.06 | | - 28.10 | | 273.16 | -16.55 | -22.08 | | -21.45 | -21.12 | | | -22.6 | - 21.62 | | 293.55 | -12.54 | | | | | | | | - 16.88 | | 298. 16 | | | -16.34 | -15.75 | -15.48 | | | | - 15.91 | | 323.16 | | -11.02 | -11.48 | -11.24 | -11.05 | | | | - 11. 20 | | 348.16 | | | - 7.49 | - 7.25 | - 7.14 | | | | - 7.28 | | 373.16 | | - 4.29 | - 4.10 | - 4.00 | - 3.89 | | | - 4.9 | - 3.92 | | 398.16 | | | 72 | - 1.18 | - 1.08 | | | | - 1.06 | | 423.16 | | + 1.16 | + 2.18 | + 1.38 | + 1.42 | | | | + 1.42 | | 447.16 | | | 3.71 | | | | | | 3. 50 | | 473.16 | | 4.67 | | | | | | | 5. 49 | | 573.16 | | 11.22 | | | | | | | 11. 23 | | 673.16 | | 15 . 2 9 | | | | | | | 1 5. 03 | ^{*} a Kamerlingh Onnes and Crommelin [1] from PVT data. b Holborn and Schultze and Holborn and Otto [3, 38, 39, 40] from PVT data. c Tanner and Masson [4] from PVT data. d Michels, et al., [6] from PVT data fitted to a third degree series. e Michels, et al., [6] from PVT data fitted to a sixth degree series. f Van Itterbeek and Van Paemel [8] from sound velocity data and Holborn's B. g Van Itterbeek and Van Paemel [8] from sound velocity data and Onnes B. h Oishi [5] from PVT data. ^{**}This coefficient appears in the equation $PV/RT = 1 + B/V + C/V^2 + D/V^3$. Cable 3-15. A COMPARISON OF EXPERIMENTAL AND CALCULATED THIRD, C, AND FOURTH, D, VIRIAL COEFFICIENTS FOR ARGON** | | | | | Exper | imental * | | | Calcu | lated | |-----------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------------|-------------------| | | a | t | | С | đ | е | | NI | 3S | | _ T | C | С | Dx10 ⁵ | С | С | C | Dx10 ⁵ | С | Dx10 ⁵ | | | _cm ⁶ _ | cm ⁶ | cm ⁹ | cm ⁶ | cm ⁶ | cm ⁶ | cm ⁹ | cm ⁶ | cm ⁹ | | °K | mole ² | mole ² | mole ³ | mole ² | mole ² | mole ² | mole3 | mole ² | mole
 | 151.92 | +2141.7 | | | | | | | 1509.6 | | | 152.89 | 2240.5 | | | | | | | 1507.3 | | | 153.93 | 2058.0 | | | | | | | 1504.7 | | | 56.51 | 2241.0 | | | | | | | 1496.8 | | | 157.27 | 2388.4 | | | | | | | 1494.0 | | | 159.33 | 2029.4 | | | | | | | 1486.4 | | | l 63. 25 | 2155.2 | | | | | | | 1469.5 | | | 170.62 | 1829.8 | | | | | | | 1432.8 | | | l 73. 16 | | +888.9 | + 3.6 | | | | | 1419.5 | | | 186.07 | 1564.5 | | | | | | | 1349. 1 | | | 215.43 | 1042.0 | | | | | | | 1204.7 | | | 223. 16 | | 1752.9 | -0.9 | | | | | 1172.7 | | | 273. 16 | 2. 45 | 1676.3 | | | +1270.1 | +1053.20 | +0.26 | 1021.8 | +1.4 | | 293. 56 | 309.39 | | | | | | | 9 8 1. 2 | | | 298.16 | | | | +1464.2 | 1157.4 | 1990.5 | 0.22 | 973. 2 | 1. 2 | | 3 23. 16 | | 1186.4 | | 1263.9 | 1129.4 | 1016. 3 | 0.095 | 936.6 | 1.1 | | 348. 16 | | • | | 1141.6 | 1039.9 | 959.0 | 0.099 | 908.6 | 0.5 | | 373. 16 | ă. | 1120.51 | | 1029.4 | 1003.5 | 918.0 | 0.12 | 886.8 | 0.3 | | 398. 16 | , | | | 822. 4 | 967.4 | 876.9 | 0.14 | 869.5 | 0.1 | | 23. 16 | | 967.1 | | 704.5 | 884.0 | 832.6 | 0.16 | 855.7 | 0.01 | | 47. 16 | | | | 835.0 | | | | 844.7 | | | 173.16 | | 991.0 | | | | | | 835.0 | | | 73.16 | | 609.9 | | | | | | 808.5 | | ^{*}a Kamerlingh Onnes and Crommelin [1] from PVT data. b Holborn and Schultze and Holborn and Otto [3, 38, 39, 40] from PVT data. c Tanner and Masson [4] from PVT data. d Michels, et al., [6] from PVT data fitted to a third degree series. e Michels, et al., [6] from PVT data fitted to a sixth degree series. ^{**}These coefficients appear in the equation $PV/RT = 1 + B/V + C/V^2 + D/V^3$. #### CHAPTER 4 #### THE THERMODYNAMIC PROPERTIES OF CARBON DIOXIDE Several compilations of thermodynamic properties of carbon dioxide are to be found in the literature [1-11]. They differ considerably from the present series in range and in the list of properties tabulated. In the present work, an equation of state has been derived from experimental heat-capacity measurements and data of state and has been used to calculate tables of the compressibility factor and density of carbon dioxide gas from near-saturation conditions to 1500°K and 100 atmospheres. Over these same ranges, quantities derived from the equation of state have been combined with new thermodynamic functions for the ideal gas to obtain tables of heat capacity, enthalpy, entropy, heat-capacity ratio, and sound velocity at low frequency for the real gas. A full discussion of the method of fitting the data and of other details of the calculation of the derived thermodynamic properties is to be found in a report by Masi [12]. ## The Correlation of the Experimental Data The PVT relationships of carbon dioxide have been investigated over rather extensive ranges in four different laboratories. The first measurements were made by Amagat [15] and published in 1891. Probably the most accurate data obtained to date are those of Michels and Michels [8], which covered the range 0° to 150°C and 16 to 3000 atmospheres. The work of MacCormack and Schneider [11] in 1950 covered the range 0° to 600°C and up to 50 atmospheres. The recent density measurements of Kennedy [16], from 0° to 1000°C and from 25 to 500 bars, became available too late for inclusion in the present correlation. Low-pressure measurements of the density of carbon dioxide gas have been made by several investigators, among whom are Maass and Mennie [17], Cooper and Maass [18], Cawood and Patterson [19], and Schäfer [20]. The heat capacity of carbon dioxide gas has been measured by a number of workers. The early work was reviewed by Partington and Shilling [21], and much of it need not be mentioned here. Swann [22] first adapted the flow calorimeter method to carbon dioxide gas and measured the heat capacity (C_p) at 1 atmosphere from 20° to 100°C. Scheel and Heuse [23], using a different flow calorimeter, made determinations at 1 atmosphere at -75° and 20°C. Michels and Strijland [24] reported measurements of C_v of the compressed gas and liquid from 20° to 40°C and from 60 to 190 atmospheres. Masi and Petkof [25] have made measurements with an accuracy of within 0.1 percent at several low pressures over the temperature range -30° to 90°C. Schrock [26] has reported measurements of C_p made with a flow calorimeter, from 100° to 1000°F and to a pressure of 1000 pounds per square inch. Among the indirect measurements of heat capacity, those for which the adiabatic expansion method was used may be mentioned here. Eucken and Von Lüde [27] have reported values at 1 atmosphere from 0° to 270°C, and Kistiakowsky and Rice [28] have made measurements at 1 atmosphere at 300.06°, 331.86°, and 367.72°K. The velocity of sound in carbon dioxide has been measured a number of times; the early work has been reviewed by Partington and Shilling [21]. King and Partington [29] and Sherratt and Griffiths [30] made measurements at 1 atmosphere to 1000° C; and Hubbard and Hodge [31], using ultrasonic frequencies, measured the sound velocity at 27° C from 1 to 60 atmospheres. These workers, using one or another equation of state, converted their results to the heat-capacity ratio, $\gamma = C_p/C_v$. Measurements of γ have been made in two other ways. Katz, Leverton, and Woods [32] used the "resonance" method to obtain values from 1.2 to 8.2 atmospheres at 29.9°C. Koehler [33] used a method of self-sustained oscillations to obtain a value at 25° C and 1 atmosphere. The Joule-Thomson coefficient of carbon dioxide has been measured by Kester [34], Jenkin and Pye [35], Jenkin and Shorthose [36], Burnett [37], and Roebuck, Murrell, and Miller [38]. The results of the last-named authors essentially supersede all of the earlier ones, since they are generally more precise and cover a larger range (-55° to 300°C and 1 to 200 atmospheres). The values of the ideal-gas thermodynamic properties tabulated here and used for obtaining the real-gas properties are the newly calculated values of Woolley [13], which are based on improved spectroscopic data. The tables of viscosity and thermal conductivity were computed from empirical equations (see summary tables 1-B and 1-C), whose coefficients were fitted to the existing experimental data. The tabulated values of the vapor pressure were obtained by interpolation in the tables of Meyers and Van Dusen [14]. The critical constants of carbon dioxide have been reported by many investigators, among whom are Plank and Kuprianoff [1], Meyers and Van Dusen [14], and Michels, Blaisse, and Michels [7]. From Michel's data, $T_c = 304.20^{\circ} \text{K}$ and $P_c = 72.85$ atmospheres, Meyers and Van Dusen [14] observed the triple point temperature of carbon dioxide as 216.56°K and the pressure as 5.112 atmospheres. From the same source, the normal sublimation temperature is 194.65°K. The dimensionless representation has been accomplished for certain properties by expressing them relative to the value at standard conditions (0°C and 1 atmosphere). Thus, for density, the property is expressed as ρ/ρ_0 , for sound velocity as a/a_0 , for thermal conductivity as k/k_0 , and for viscosity as η/η_0 . The reference values, ρ_0 , a_0 , k_0 , and η_0 result, in general, from the correlating equations which were fitted to represent the experimental data over as wide a range as possible. Values for these quantities are given in various units in table 4-b. The value of ρ_0 for carbon dioxide as given, 1.9771 gl⁻¹, is within the range of the experimental determinations [17, 18, 19, 54-60] and quite close to that of Cawood and Patterson [19]. Comparisons of the adopted values of η_0 and k_0 with the experimental data at standard conditions can be made by examining figures 4d and 4e, respectively. The value of a_0 for carbon dioxide as given, 257.0 m/sec, is within the range of the experimental determinations at standard conditions [53, 61-67], though slightly below their mean of 259.3 m/sec. #### The Reliability of the Tables The reliability of the tables of thermodynamic functions of the real gas is affected by the accuracy of the available experimental data, the method of correlation, and the extrapolations. Some idea of the closeness of fit of experimental data can be gained from the deviation plots. Figure 4a gives a comparison of the modern experimental values of Z with those of table 4-1. It is seen that the discrepancy is usually within ±0.1 percent but that larger departures occur. It is believed that the tables of the compressibility factor and of density are reliable to within 0.2 percent in the least accurate region, which is above 10 atmospheres and below 500°K. In other regions, the tables are thought to be accurate to one in the next to last place tabulated. The tabulated densities (table 4-2) have corresponding uncertainties. Figure 4a. Departures of experimental compressibility factors from the tabulated values for carbon dioxide (table 4-1) Figure 4b shows the percent departures of direct measurements of heat capacity at 1 atmosphere from the values of table 4-3. Experimental values at higher pressures are generally too scattered to warrant a comparison curve; however, a comparison with the recent data of Shrock [26] showed an average deviation of about 1.5 percent. Figure 4b. Departures of the experimental C_p at one atmosphere from the tabulated values for carbon dioxide (table 4-3) Figure 4c. Departures of experimental values of γ at 1 atmosphere from the tabulated values for carbon dioxide (table 4-6) Figure 4c shows a comparison of experimental and tabulated values of the heat-capacity ratio, γ , at 1 atmosphere. The data of Partington, et al., show a similar deviation in the case of oxygen and nitrogen. Figure 4d shows the departures of the experimental values of viscosity from those of table 4-8, in the region of 1 atmosphere. Figure 4e is
a similar plot for thermal conductivity (table 4-9). The table of low-pressure viscosities is thought to be correct to about 2 percent; the thermal conductivity, and therefore also the Prandtl number (table 4-10), are not certain to better than 5 percent. Figure 4d. Departures of experimental viscosities from the tabulated values for carbon dioxide (table 4-8) Figure 4e. Departures of experimental thermal conductivities from the tabulated values for carbon dioxide (table 4-9) ## References - [1] R. Plank and J. Kuprianoff, Z. tech. Phys. 10, 93 (1929). - [2] E. L. Quinn and C. L. Jones, Carbon dioxide, (Reinhold Publishing Corp., New York, N.Y., 1936). - [3] R. L. Sweigert, P. Weber, and R. L. Allen, Ind. Eng. Chem. 38, 185 (1946). - [4] J. A. W. Huggill, D. M. Hewitt, and M. U. Pai, Mech. Eng. Research Organization (London), Heat Div. Report No. 9 (1950). - [5] S. R. DeGroot and A. Michels, Physica 14, 218 (1948). - [6] A. Michels and S. R. DeGroot, Appl. Sci. Research [A] 1, 94 and 103 (1948). - [7] A. Michels, B. Blaisse, and C. Michels, Proc. Roy. Soc. (London) [A] 160, 358 (1937). - [8] A. Michels and C. Michels, Proc. Roy. Soc. (London) [A] 153, 201 (1935); [A] 160,348 (1937). - [9] A. Michels, C. Michels, and H. Wouters, Proc. Roy. Soc. (London) [A] 153, 214 (1935). - [10] K. E. MacCormack and W. G. Schneider, J. Chem. Phys. 18, 1273 (1950). - [11] K. E. MacCormack and W. G. Schneider, J. Chem. Phys. 18, 1269 (1950). - [12] J. F. Masi, Natl. Advisory Comm. Aeronaut. Tech. Note 3276. - [13] H. W. Woolley, J. Research Natl. Bur. Standards 52, 289 (1954) RP 2502. - [14] C. H. Meyers and M. S. Van Dusen, Bur. Standards J. Research 10, 381 (1933) RP 538. - [15] E. H. Amagat, Compt. rend. 113, 446 (1891); 114, 1093 (1892). - [16] G. C. Kennedy, Am. J. Sci. 252, 225 (1954). - [17] O. Maass and J. H. Mennie, Proc. Roy. Soc. (London) [A] 110, 198 (1926). - [18] D. Le B. Cooper and O. Maass, Can. J. Research 2, 388 (1930). - [19] W. Cawood and H. S. Patterson, J. Chem. Soc. 1933, 619. - [20] K. Schäfer, Z. physik. Chem [B] 36, 85 (1937). - [21] J. R. Partington and W. G. Shilling, The specific heats of gases, (Ernest Benn Ltd., London, 1924). - [22] W. F. G. Swann, Trans. Roy. Soc. (London) [A] 210, 199 (1910). - [23] K. Scheel and W. Heuse, Ann. Physik [4] 37, 79 (1912); [4] 40, 473 (1913); [4] 59, 86 (1919). - [24] A. Michels and J. C. Strijland, Physica 16, 813 (1950). - [25] J. F. Masi and B. Petkof, J. Research Natl. Bur. Standards 48, 179 (1952) RP 2303. - [26] V. E. Shrock, Natl. Advisory Comm. Aeronaut. Tech. Note 2838 (1952). - [27] A. Eucken and K. Von Lüde, Z. physik. Chem. [B] 5, 413 (1929). - [28] G. B. Kistiakowsky and W. W. Rice, J. Chem. Phys. 7, 281 (1939). - [29] F. E. King and J. R. Partington, Phil. Mag. [7] 9, 1020 (1930). - [30] C. G. Sherratt and E. Griffiths, Proc. Roy. Soc. (London) [A] 156, 504 (1936). - [31] J. C. Hubbard and A. H. Hodge, J. Chem. Phys. 5, 978 (1937). - [32] L. Katz, W. F. Leverton, and S. B. Woods, Can. J. Research [A] 27, 39 (1949). - [33] W. F. Koehler, J. Chem. Phys. 18, 465 (1950). - [34] F. E. Kester, Phys. Rev. [1] 21, 260 (1905). - [35] C. F. Jenkin and D. R. Pye, Trans. Roy. Soc. (London) [A] 213, 67 (1914); [A] 215, 353 (1915). - [36] C. F. Jenkin and D. N. Shorthose, Proc. Roy. Soc. (London) [A] 99, 352 (1921). - [37] E. S. Burnett, Phys. Rev. [2] 22, 590 (1923). - [38] J. R. Roebuck, T. A. Murrell, and E. E. Miller, J. Am. Chem. Soc. 64, 400 (1942). - [39] H. V. Regnault, Acad. Sci. Paris, Mém. [2] 26, 1 (1862). - [40] E. Wiedemann, Ann. Physik. [2] 157, 1 (1876). - [41] L. Holborn and F. Henning, Ann. Physik [4] 23, 809 (1907). - [42] H. L. Johnston and K. E. McCloskey, J. Phys. Chem. 44, 1038 (1940). - [43] V. Vasilesco, Ann. phys. [11] 20, 137 and 292 (1945). - [44] B. P. Sutherland and O. Maass, Can. J. Research 6, 428 (1932). - [45] M. Trautz and F. Kurz, Ann. Physik [5] 9, 981 (1931). - [46] A. Eucken, Physik. Z. 12, 1101 (1911). - [47] H. Gregory and S. Marshall, Proc. Roy. Soc. (London) [A] 114, 354 (1927). - [48] B. G. Dickins, Proc. Roy. Soc. (London) [A] 143, 517 (1934). - [49] C. T. Archer, Phil. Mag. [7] 19, 901 (1935). - [50] G. G. Sherratt and E. Griffiths, Phil. Mag. [7] 27, 68 (1939). - [51] H. L. Johnston and E. R. Grilly, J. Chem. Phys. 14, 233 (1946). - [52] E. Wichers, J. Am. Chem. Soc. <u>76</u>, 2033 (1954). - [53] O. Buckendahl, Dissertation, Heidelberg (1906). - [54] E. Moles, T. Toral, and A. Escribano, Trans. Faraday Soc. 35, 1439 (1939). - [55] Lord Rayleigh, Proc. Roy. Soc. (London) 62, 204 (1897). - [56] A. Leduc, Recherches sur les gaz (Gauthier-Villars et Fils, Paris, 1898). - [57] P. A. Guye and A. Pintza, Mem. Soc. Phys. Nat. (Geneva) 35, 556 (1908). - [58] Deshusses, Thesis, Geneva, No. 711, (1922). - [59] E. Moles and T. Toral, Anales soc. españ. fis. y quim. 35, 42 (1937); Monatsh. Chem. 69, 342 (1936). - [60] D. L. Cooper and O. Maass, Can. J. Research 4, 283 (1931). - [61] H. B. Dixon, C. Campbell, and A. Parker, Proc. Roy. Soc. (London) [A] 100, 1 (1921). - [62] P. L. Dulong, Ann. chim. et phys. 41, 113 (1829). - [63] W. Heuse, Ann. Physik [4] 59, 86 (1919). - [64] T. Martini, Atti reale ist. veneto sci. lettere ed arti 12, 566 (1888). - [65] A. P. Masson, Compt. rend. <u>44</u>, 464 (1857). - [66] G. Schweikert, Ann. Physik [4] 48, 593 (1915). - [67] A. Wüllner, Ann. Physik [3] 4, 321 (1878). Table 4-a. VALUES OF THE GAS CONSTANT, R, FOR CARBON DIOXIDE Values of R for Carbon Dioxide for Temperatures in Degrees Kelvin | Pressure
Density | atm | kg/cm ² | mm Hg | lb/in ² | |-------------------------|-----------|--------------------|------------------|--------------------| | g/cm ³ | 1.86450 | 1.92645 | 1417.02 | 27.4007 | | mole/cm ³ | 82. 0567 | 84. 7832 | 62363. 1 | 1205.91 | | mole/liter | 0.0820544 | 0.0847809 | 62. 3613 | 1. 20587 | | lb/ft ³ | 0.0298662 | 0.0308586 | 22. 6983 | 0.438914 | | lb mole/ft ³ | 1. 31441 | 1.35808 | 998. 95 2 | 19.3166 | Values of R for Carbon Dioxide for Temperatures in Degrees Rankine | Pressure
Density | atm | kg/cm ² | mm Hg | lb/in ² | | |-------------------------|-----------|--------------------|----------|--------------------|--| | g/cm ³ | 1.03583 | 1.07025 | 787. 233 | 15. 2226 | | | mole/cm ³ | 45. 5871 | 47.1018 | 34646. 2 | 669.950 | | | mole/liter | 0.0455858 | 0.0471005 | 34. 6452 | 0.669928 | | | lb/ft ³ | 0.0165923 | 0.0171437 | 12.6102 | 0. 243841 | | | lb mole/ft ³ | 0.730228 | 0.754489 | 554.973 | 10.7314 | | # Conversion Factors for Table 4-2 | To Convert
Tabulated
Value of | То | Having the Dimensions Indicated Below | Multiply
by | |-------------------------------------|----|---------------------------------------|----------------------------| | P /PD | 0 | g cm ⁻³ | 1.9770 x 10 ⁻³ | | P /P0 | • | mole cm ⁻³ | 4. 4922 x 10 ⁻⁵ | | | | g liter ⁻¹ | 1.9771 | | j | | lb in ⁻³ | 7.1424×10^{-5} | | | | lb ft ⁻³ | 0.12342 | # Conversion Factors for Tables 4-4 and 4-12 | To Convert
Tabulated
Value of | То | Having the Dimensions Indicated Below | Multiply
by | |-------------------------------------|----|--|---| | (H°-E°)/RT°, (H-E°)/RT° | | cal mole ⁻¹ cal g ⁻¹ joules g ⁻¹ Btu (lb mole) ⁻¹ Btu lb ⁻¹ | 542.821
12.3340
51.6056
976.437
22.1867 | Conversion Factors for Tables 4-3, 4-5, and 4-12 | To Convert
Tabulated
Value of | То | Having the Dimensions Indicated Below | Multiply
by | |---|-----------------------------------|---|----------------| | C_p^0/R , S^0/R , | C _p , s ^o , | cal mole ⁻¹ oK ⁻¹ (or oC ⁻¹) | 1.98719 | | C _p /R, S/R, | C _p , S, | cal g ⁻¹ OK ⁻¹ (or OC ⁻¹) | 0.0451531 | | -(F ^O - E ^O ₀)/RT | - | joules g ⁻¹ OK ⁻¹ (or OC ⁻¹) | 0.188921 | | | | Btu (lb mole) ⁻¹ OR ⁻¹ (or OF ⁻¹) | 1.98588 | | | | Btu lb ⁻¹ OR ⁻¹ (or OF ⁻¹) | 0.0451234 | Molecular weight of carbon dioxide used in these calculations is 44.010 g mole⁻¹. The recent revision in the atomic weight of carbon [52] changes this value to 44.011. This will, in general, produce changes that are less than the stated uncertainties. Unless otherwise specified, the mole is the gram-mole; the calorie is the thermochemical calorie; and the joule is the absolute joule. Conversion Factors for Table 4-7 | To Convert
Tabulated
Value of | То | Having the Dimensions
Indicated Below | Multiply
by | |-------------------------------------|----|--|------------------| | a ₀ | a | m sec ⁻¹ ft sec ⁻¹ | 257. 0
843. 2 | | | | | | Conversion Factors for Table 4-8 | To Convert
Tabulated
Value of | То | Having the Dimensions Indicated Below | Multiply
by | |-------------------------------------|----|---|--| | n/n ₀ | η | poise or g sec ⁻¹ cm ⁻¹ $kg hr^{-1} m^{-1}$ $slug hr^{-1} ft^{-1}$ $lb sec^{-1} ft^{-1}$ $lb hr^{-1} ft^{-1}$ | 1. 3701x10 ⁻⁴ 4. 9324 x 10 ⁻² 1. 0302 x 10 ⁻³ 9. 2067 x 10 ⁻⁶ 3. 3144 x 10 ⁻² | Conversion Factors for Table 4-9 | To Convert Tabulated Value of | То | Having the Dimensions Indicated Below | Multiply
by | |-------------------------------|----|---|---| | k/k ₀ | k | cal cm ⁻¹ sec ^{-1 o} K ⁻¹ Btu ft ⁻¹ hr ^{-1 o} R ⁻¹ watts cm ^{-1 o} K ⁻¹ | 3.477 x 10^{-5}
8.407 x 10^{-3}
1.455 x 10^{-4} | Table 4-1.
COMPRESSIBILITY FACTOR FOR CARBON DIOXIDE | °K | .01 | atm | .1 | atm | .4 | atm | .7 | atm | °R | |------------|--------------------|--------|------------------|-----|------------------|------|--------------------|-----------|--------------| | | | | · | | • | | <u> </u> | <u></u> | | | 200 | .99980 | 3 | .99805 | | .9922 | | | | 360 | | 210 | .99983 | 3 | .99835 | | .9934 | | | | 378 | | 220 | .99986 | 1 | .99859 | | .99438 | | .99015 | 139 | 396 | | 230
240 | .99987
.99989 | 2
1 | .99879
.99895 | | .9951
.9958 | | .99154
.99266 | 112
94 | 414
432 | | | | • | | | | | | | | | 250
260 | .99990
.99992 | 2 | .99908
.99919 | | .9963
.9967 | | .99360
.99438 | 78
66 | 450
468 | | 270 | .99992 | 1 | .99929 | | .9971 | | .99504 | 56 | 486 | | 280 | .99993 | 1 | .99937 | 7 | .99749 | 9 27 | .99560 | 49 | 504 | | 290 | .99994 | 1 | .99944 | 6 | .9977 | 6 24 | .99609 | 42 | 522 | | 300 | .99995 | | .99950 | | .99800 | | .99651 | 36 | 540 | | 310 | .99995 | 1 | .99955 | | .9982 | | .99687 | 32 | 558 | | 320 | .99996 | | .99960 | | .99839
.9985 | | .99719 | 28 | 576
594 | | 330
340 | .99996
.99996 | 1 | .99964 | | .9986 | | .99747
.99771 | 24
22 | 612 | | | | • | • | _ | - | | | | | | 350 | .99997 | | .99970 | | .9988 | | .99793 | 20 | 630 | | 360 | -99997 | | .99973 | | .9989 | | .99813 | 17 | 648
666 | | 370
380 | .99997
.99997 | _ | .99975
.99978 | | .99903
.9991 | | .99830
.99845 | 15
14 | 684 | | 390 | .99998 | 1 | .99980 | | .9991 | | .99859 | 13 | 702 | | 400 | .99998 | | .99981 | . 2 | .9992 | 7 6 | .99872 | 11 | 720 | | 410 | .99998 | | .99983 | | .9993 | | .99883 | 10 | 738 | | 420 | 99998 | | .99984 | | 99939 | | .99893 | 10 | 756 | | 430 | .99998 | | .99986 | | .9994 | | .99903 | 8 | 774 | | 440 | .99998 | | .99987 | 1 | .99949 | 9 5 | .99911 | 8 | 792 | | 450 | .99998 | 1 | .99988 | 1 | .99954 | | .99919 | 7 | 810 | | 460 | .99999 | | .99989 | | .99958 | | .99926 | 7 | 828 | | 470 | .99999 | | .99990 | | .9996 | | .99933 | 5 | 846 | | 480
490 | .99999
.99999 | | .99991
.99992 | | .99965
.99968 | | .99938
.99944 | 6
5 | 864
882 | | | • | | - | | | | | - | 000 | | 500 | .99999 | | .99992 | | .9997
.9997 | | .99949
.99954 | 5 | 900
918 | | 510
520 | .99999
.99999 | | .99993
.99994 | | .9997 | | .99958 | 4 | 936 | | 530 | .99999 | | .99994 | | .99978 | | .99962 | 3 | 954 | | 540 | 99999 | | .99995 | | .99980 | | .99965 | 4 | 972 | | 550 | .99999 | | .99995 | . 1 | .9998 | 2 2 | .99969 | 3 | 990 | | 560 | .99999 | | .99996 | , | .9998 | | .99972 | 3 | 1008 | | 570 | .99999 | | .99996 |) | .9998 | 5 2 | .99975 | 2 | 1026 | | 580 | .99999 | | .99996 | | .9998 | | .99977 | 3 | 1044 | | 590 | .99999 | | .99997 | | .9998 | B 2 | .99980 | 2 | 1062 | | 600 | .99999 | | .99997 | | .99990 | | .99982 | 3 | 1080 | | 610 | .99999 | | .99997 | | .9999 | _ | .99985 | 2 | 1098 | | 620 | .99999 | | .99998
.99998 | | .9999 | | .99987
.99988 | 1
2 | 1116
1134 | | 630
640 | .99999 | | .99998 | | .99994 | | .99990 | 2 | 1152 | | | .99999 | | .99998 | | .9999 | 5 1 | .99992 | 1 | 1170 | | 650
660 | .99999 | | .99999 | 1 | .9999 | 5 1 | .99993 | 2 | 1188 | | 670 | .99999 | 1 | .99999 | | 9999 | | .99995 | 1 | 1206 | | 680 | 1.00000 | • | .99999 | | 9999 | | .99996 | 2 | 1224 | | 690 | 1.00000 | | .99999 | | .9999 | | .99998 | 1 | 1242 | | 700 | 1.00000 | | .99999 | 1 | .9999 | 9 1 | .99999 | 1 | 1260 | | 710 | 1.00000 | | 1.00000 |) | 1.00000 | 0 | 1.00000 | 1 | 1278 | | 720 | 1.00000 | | 1.00000 | | 1.00000 | | 1.00001 | 1 | 1296 | | 730
740 | 1.00000
1.00000 | | 1.00000 | | 1.0000
1.0000 | | 1.00002
1.00003 | 1
1 | 1314
1332 | | | | | | | | | | | | | 750
760 | 1.00000 | | 1.00000 | | 1.0000 | _ | 1.00004
1.00005 | 1 | 1350
1368 | | 760
770 | 1.00000
1.00000 | | 1.00000 | | 1.0000 | | 1.00005 | 1 | 1386 | | 780 | 1.00000 | | 1.00000 | | 1.0000 | | 1.00006 | ī | 1404 | | 790 | 1.00000 | | 1.00001 | | 1.0000 | | 1.00007 | | 1422 | | 800 | 1.00000 | | 1.00001 | L | 1.0000 | 4 | 1,00007 | | 1440 | Table 4-1. COMPRESSIBILITY FACTOR FOR CARBON DIOXIDE - Cont. Z=PV/RT | °K | .OI atm | .i atm | .4 atm | .7 atm | °R | |------|---------|-----------|-----------|-----------|------| | 800 | 1.00000 | 1.00001 | 1.00004 2 | 1.00007 3 | 1440 | | 850 | 1.00000 | 1.00001 | 1.00006 i | 1.00010 2 | 1530 | | 900 | 1.00000 | 1.00001 1 | 1.00007 | 1.00012 2 | 1620 | | 950 | 1.00000 | 1,00002 | 1.00008 | 1.00014 1 | 1710 | | 1000 | 1.00000 | 1.00002 | 1.00008 1 | 1.00015 | 1800 | | 1050 | 1.00000 | 1.00002 | 1.00009 | 1.00016 | 1890 | | 1100 | 1.00000 | 1.00002 | 1.00009 | 1,00016 1 | 1980 | | 1150 | 1.00000 | 1.00002 | 1.00009 | 1.00017 | 2070 | | 1200 | 1.00000 | 1.00002 | 1.00009 1 | 1.00017 | 2160 | | 1250 | 1.00000 | 1.00002 | 1.00010 | 1.00017 | 2250 | | 1300 | 1.00000 | 1.00002 | 1.00010 | 1.00017 | 2340 | | 1350 | 1.00000 | 1.00002 | 1.00010 | 1.00017 | 2430 | | 1400 | 1.00000 | 1.00002 | 1.00010 | 1.00017 | 2520 | | 1450 | 1.00000 | 1.00002 | 1.00010 | 1.00017 | 2610 | | 1500 | 1.00000 | 1.00002 | 1.00010 | 1.00017 | 2700 | | *K | 1 | atm | 4 atı | m · | 7 atm | | IO ati | m | * R | |------------|--------------------|----------|--------------------|----------|--------------------|---------------------|--------------------|-----------|--------------| | | | | <u> </u> | | | | | | | | 220 | .9859 | 20 | | | | | | | 396 | | 230 | .9879 | 20
16 | .9495 | 77 | .9032 | 187 | | | 414 | | 240 | .9895 | 14 | .9572 | 57 | .9219 | 118 | .8813 | 209 | 432 | | | | | 0400 | | 0007 | | 0022 | | 450 | | 250 | .99085 | 112 | .9629 | 46 | .9337 | 86 | .9022
.9158 | 136 | 450
468 | | 260
270 | .99197
.99291 | 94
81 | .9675
.9713 | 38
33 | .9423
.9492 | 69
58 | .9262 | 104
86 | 486 | | 280 | .99372 | 69 | .9746 | 28 | 9550 | 50 | .9348 | 74 | 504 | | 290 | .99441 | 60 | .9774 | 24 | .9600 | 44 | .9422 | 64 | 52 2 | | 200 | 00503 | | 0700 | - | 0444 | | 0404 | | 540 | | 300
310 | .99501
.99553 | 52
45 | .9798
.9819 | 21
19 | .9644
.9681 | 37
. 33 | .9486
.9541 | 55
47 | 558 | | 320 | .99598 | 40 | .9838 | 16 | .9714 | 29 | .9588 | 42 | 576 | | 330 | .99638 | 35 | .9854 | 14 | .9743 | 25 | .9630 | 37 | 594 | | 340 | .99673 | 32 | .9868 | 13 | .9768 | 22 | .9667 | 32 | 612 | | 350 | .99705 | 27 | .98812 | 113 | .9790 | 20 | .9699 | 29 | 630 | | 360 | .99732 | 21
25 | .98925 | 100 | .9810 | 18 | .9728 | 25 | 648 | | 370 | .99757 | 22 | .99025 | 89 | .9828 | 16 | .9753 | 23 | 666 | | 380 | .99779 | 20 | .99114 | 80 | .9844 | 14 | .9776 | 21 | 684 | | 390 | .99799 | 18 | .99194 | 73 | .9858 | 13 | .9797 | 18 | 702 | | 400 | .99817 | • • • | .99267 | ,, | .98714 | 114 | .9815 | 17 | 720 | | 410 | .99833 | 16
15 | .99333 | 66
59 | .98830 | 116
104 | .9832 | 17 | 738 | | 420 | .99848 | B | .99392 | 54 | .98934 | 95 | .9847 | 14 | 756 | | 430 | .99861 | 12 | .99446 | 49 | .99029 | 86 | .9861 | 12 | 774 | | 440 | .99873 | 12 | .99495 | 44 | .99115 | 78 | .9873 | 12 | 792 | | 450 | .99885 | 10 | .99539 | 47 | .99193 | 72 | .98848 | 103 | 810 | | 460 | .99895 | 10
9 | .99580 | 41
37 | .99265 | 65 | .98951 | 93 | 828 | | 470 | .99904 | á | .99617 | 34 | .99330 | 60 | .99044 | 86 | 846 | | 480 | .99912 | 8 | .99651 | 31 | .99390 | 55 | .99130 | 79 | 864 | | 490 | .99920 | 7 | .99682 | 29 | .99445 | 51 | .99209 | 72 | 882 | | 500 | .99927 | 7 | .99711 | 26 | .99496 | 46 | .99281 | 67 | 900 | | 510 | .99934 | 6 | .99737 | 25 | .99542 | 43 | .99348 | 62 | 918 | | 520 | .99940 | 6 | .99762 | 22 | .99585 | 40 | .99410 | 57 | 936 | | 530 | .99946 | 5 | .99784 | 21 | .99625 | 36 | .99467 | 52 | 954 | | 540 | .99951 | 5 | .99805 | 20 | .99661 | 34 | .99519 | 49 | 972 | | 550 | .99956 | 4 | .99825 | 18 | .99695 | 32 | .99568 | 45 | 990 | | 560 | .99960 | 4 | .99843 | 16 | .99727 | 29 | .99613 | 42 | 1008 | | 570 | .99964 | 4 | .99859 | 16 | .99756 | 27 | .99655 | 38 | 1026 | | 580 | .99968 | 4 | .99875 | 14 | .99783 | 25 | .99693 | 36 | 1044 | | 590 | .99972 | 3 | .99889 | 14 | .99808 | 24 | .99729 | 34 | 1062 | | 600 | .999 75 | 3 | .99903 | 12 | .99832 | 22 | .99763 | 31 | 1080 | | 610 | .99978 | 3 | .99915 | 12 | .99854 | 20 | .99794 | 29 | 1098 | | 620 | .99981 | 3- | .99927 | 10 | .99874 | 19 | .99823 | 27 | 1116 | | 630 | .99984 | 2 | .99937
.99948 | 11
9 | .99893
.99911 | 18 | .99850
.99875 | 25
24 | 1134
1152 | | 640 | .99986 | 3 | •77740 | 9 | .77711 | 16 | .77075 | 24 | 11,72 | | 650 | .99989 | 2 | .99957 | 9 | .99927 | 16 | .99899 | 22 | 1170 | | 660 | .99991 | 2 | .99966 | 8 | .99943 | 14 | .99921 | 21 | 1188 | | 670 | .99993 | 2 | .99974 | 8 | .99957 | 14 | .99942 | 19 | 1206 | | 680
690 | .99995
.99997 | 2 | .99982
.99989 | 7
7 | .99971
.99984 | 13
11 | .99961
.99979 | 18
17 | 1224
1242 | | 670 | •77771 | 1 | .77707 | ' | •///04 | 11 | | 1, | 12.12 | | 700 | .99998 | 2 | .99996 | 7 | .99995 | 12 | .99996 | 16 | 1260 | | 710 | 1.00000 | 2 | 1.00003 | 6 | 1.00007 | 10 | 1.00012 | 15 | 1278 | | 720 | 1.60002 | 1 | 1.00009 | 5 | 1.00017 | 10 | 1.00027 | 14 | 1296
1314 | | 730
740 | 1.00003
1.00004 | 1
2 | 1.00014
1.00020 | 5 | 1.00027
1.00036 | 9
9 | 1.00041
1.00054 | 13
13 | 1332 | | 740 | 1.00004 | 2 | 1.00020 | , | 1.00000 | , | 1.0005 | J | 1,,,_ | | 750 | 1.00006 | 1 | 1.00025 | 4 | 1.00045 | 8 | 1.00067 | 11 | 1350 | | 760 | 1.00007 | 1 | 1.00029 | 5 | 1.00053 | 8 | 1.00078 | 11 | 1368 | | 770
780 | 1.00008
1.00009 | 1 | 1.00034
1.00038 | 4
4 | 1.00061
1.00068 | 7 | 1.00089
1.00099 | 10
10 | 1386
1404 | | 790 | 1.00010 | 1
1 | 1.00042 | 4 | 1.00075 | 6 | 1.00109 | 9 | 1422 | | | | - | | • | | = | | | | | 800 | 1.00011 | | 1.00046 | | 1.00081 | | 1.00118 | | 1440 | | | | | | | | | | | | 151 Table 4-1. COMPRESSIBILITY FACTOR FOR CARBON DIOXIDE - Cont. Z = PV/RT | ° K | 1 | atm | 4 at | rm | 7
atm | | IO at | m | *R | |--------------------------------------|--|-----|--|-------------|--|-----------------------|--|-----------------------|--------------------------------------| | 800
850
900
950
1000 | 1.0001
1.0001
1.0001
1.0002
1.0002 | 1 | 1.0004
1.0006
1.0007
1.0008
1.0008 | 2
1
1 | 1.0008
1.0010
1.0012
1.0014
1.0015 | 2
2
2
1
1 | 1.0012
1.0015
1.0018
1.0020
1.0022 | 3
3
2
2
1 | 1440
1530
1620
1710
1800 | | 1050
1100
1150
1200
1250 | 1.0002
1.0002
1.0002
1.0002
1.0002 | | 1.0009
1.0009
1.0009
1.0009
1.0010 | 1 | 1.0016
1.0016
1.0017
1.0017
1.0017 | 1 | 1.0023
1.0024
1.0024
1.0024
1.0025 | 1 | 1890
1980
2070
2160
2250 | | 1300
1350
1400
1450
1500 | 1.0002
1.0002
1.0002
1.0002
1.0002 | | 1.0010
1.0010
1.0010
1.0010
1.0010 | | 1.0017
1.0017
1.0017
1.0017
1.0017 | | 1.0025
1.0025
1.0025
1.0025
1.0025 | | 2340
2430
2520
2610
2700 | | | | | | 011 1 011 0 | inibon bi | 311DE - 001 | 16. | | | |--------------------------------------|---|-----------------------------|--|---------------------------------|--|-------------------------------|--|---------------------------------|--------------------------------------| | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | °R | | 300
310
320
330
340 | .9486
.9541
.9588
.9630
.9667 | 55
47
42
37
32 | .7611
.7946
.8206
.8415 | 335
260
209
176
149 | .6417
.6954
.7381 | 537
427
321 | .3727
.4961
.5905 | 1234
944
602 | 540
558
576
594
612 | | 350
360
370
380
390 | .9699
.9728
.9753
.9776
.9797 | 29
25
23
21
18 | .8740
.8870
.8983
.9084
.9169 | 130
113
101
85
83 | .7702
.7965
.8189
.8383 | 263
224
194
155 | .6507
.6968
.7346
.7662 | 461
378
316
238
255 | 630
648
666
684
702 | | 400
410
420
430
440 | .9815
.9832
.9847
.9861
.9873 | 17
15
14
12
11 | .9252
.9323
.9386
.9444
.9496 | 71
63
58
52
46 | .8697
.8827
.8942
.9045
.9138 | 130
115
103
93
84 | .8155
.8352
.8524
.8677
.8814 | 197
172
153
137
123 | 720
738
756
774
792 | | 450
460
470
480
490 | .98848
.98951
.99044
.99130
.99209 | 103
93
86
79
72 | .9542
.9585
.9623
.9658
.9691 | 43
38
35
33
30 | .9222
.9298
.9364
.9424
.9480 | 76
66
60
56
51 | .8937
.9049
.9140
.9219
.9294 | 112
91
79
75
71 | 810
828
846
864
882 | | 500
510
520
530
540 | .99281
.99348
.99410
.99467
.99519 | 67
62
57
52
49 | .9721
.9748
.9773
.9796
.9818 | 27
25
23
22
20 | .9531
.9580
.9624
.9665
.9703 | 49
44
41
38
35 | .9365
.9433
.9496
.9554
.9607 | 68
63
58
53
50 | 900
918
936
954
972 | | 550
560
570
580
590 | .99568
.99613
.99655
.99693
.99729 | 45
42
38
36
34 | .9838
.9856
.9873
.9888
.9903 | 18
17
15
15
13 | .9738
.9770
.9799
.9826
.9851 | 32
29
27
25
23 | .9657
.9702
.9744
.9782
.9817 | 45
42
38
35
33 | 990
1008
1026
1044
1062 | | 600
610
620
630
640 | .99763
.99794
.99823
.99850
.99875 | 31
29
27
25
24 | .9916
.9928
.9940
.9951
.9961 | 12
12
11
10
9 | .9874
.9896
.9916
.9934
.9951 | 22
20
18
17
16 | .9850
.9880
.9908
.9934
.9958 | 30
28
26
24
22 | 1080
1098
1116
1134
1152 | | 650
660
670
680
690 | .99899
.99921
.99942
.99961
.99979 | 22
21
19
18
17 | .9970
.9979
.9987
.9994
1.0001 | 9
8
7
7 | .9967
.9981
.9995
1.0008
1.0020 | 14
14
13
12
11 | .9980
1.0000
1.0019
1.0037
1.0053 | 20
19
18
16
15 | 1170
1188
1206
1224
1242 | | 700
710
720
730
740 | .99996
1.00012
1.00027
1.00041
1.00054 | 16
15
14
13 | 1.0008
1.0014
1.0020
1.0025
1.0030 | 6
6
5
5
5 | 1.0031
1.0041
1.0051
1.0060
1.0068 | 10
10
9
8
8 | 1.0068
1.0083
1.0096
1.0108
1.0119 | 15
13
12
11
11 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | 1.00067
1.00078
1.00089
1.00099
1.00109 | 11
11
10
10 | 1.0035
1.0039
1.0043
1.0047
1.0051 | 4
4
4
4
3 | 1.0076
1.0083
1.0090
1.0096
1.0102 | 7
7
6
6
6 | 1.0130
1.0140
1.0149
1.0157
1.0165 | 10
9
8
8
7 | 1350
1368
1386
1404
1422 | | 800
850
900
950
1000 | 1.0011
1.0015
1.0018
1.0020
1.0022 | 4
3
2
2
1 | 1.0054
1.0068
1.0079
1.0086
1.0092 | 14
11
7
6 | 1.0108
1.0131
1.0147
1.0159
1.0167 | 23
16
12
8
6 | 1.0172
1.0202
1.0224
1.0238
1.0248 | 30
22
14
10
7 | 1440
1530
1620
1710
1800 | | 1050
1100
1150
1200
1250 | 1.0023
1.0024
1.0024
1.0024
1.0025 | 1 | 1.0096
1.0098
1.0100
1.0101
1.0102 | 2
2
1
1 | 1.0173
1.0177
1.0179
1.0181
1.0181 | 4
2
2 | 1.0255
1.0260
1.0262
1.0263
1.0263 | 5
2
1 | 1890
1980
2070
2160
2250 | | 1300 | 1.0025 | | 1.0102 | | 1.0181 | | 1.0262 | | 2340 | | °K | 10 atm | atm 40 atm | | 70 a | tm | 100 | °R | | |----------------------|----------------------------|----------------------------|-----|----------------------------|-------------------|----------------------------|-------------------|----------------------| | 1300
1350
1400 | 1.0025
1.0025
1.0025 | 1.0102
1.0102
1.0101 | - 1 | 1.0181
1.0180
1.0179 | - 1
- 1
- 2 | 1.0262
1.0260
1.0258 | - 2
- 2
- 3 | 2340
2430
2520 | | 1450 | 1.0025 | 1.0101 | - 1 | 1.0177
1.0176 | - 1 | 1.0255
1.0253 | - 2 | 2610
2700 | | °K | .01 | atm | .1 0 | 2tm | .4 0 | ıtm | .7 | atm | °R | |------------|----------------------|-----------------|--------------------|----------------|------------------|-------------------------|------------------|-------------------|--------------| | | | | | | | | | | | | 200 | .013567 | -646 | .13591 | -651 | .54684 | -2667 | | | 360 | | 210 | .012921 | -588 | .12940 | -591 | .52017 | -2412 | | | 378 | | 220 | .012333 | -536 | .12349 | -540 | .49605 | -2194 | .8718 | - 39 1 | 396 | | 230
240 | .011797
.011305 | -492 | .11809 | - 494 | .47411 | -2005 | .8327 | -356 | 414 | | 240 | .011303 | -452 | .11315 | 454 | .45406 | -1840 | .7971 | -3 26 | 432 | | 250 | .010853 | -418 | .10861 | -419 | .43566 | -1694 | .76452 | -2999 | 450 | | 260 | .010435 | -386 | .10442 | -387 | .41872 | -1566 | .73453 | -2766 | 468 | | 270
280 | .010049 | - 359 | .10055 | -360 | .40306 | -1452 | .70687 | -2564 | 486 | | 290 | .0096898
.0093556 | -3342
-3119 | .09695
.09360 | -335
-313 | .38854
.37503 | -1351
-1258 | .68123
.65741 | -2382
-2217 | 504
522 | | | | | | | | | | LLL | ,,,, | | 300
310 | .0090437
.0087519 | -2918 | .09047 | -292 | .36245 | -1177 | .63524 | -2072 | 540 | | 320 | .0084784 | -2735
-2570 | .08755
.08481 | -274
-257 | .35068
.33966 | -1102
-10 34 | .61452
.59513 | -1939 | 558 | | 330 | .0082214 | -2418 | .08224 | -257
-243 | .32932 | 974 | .57693 | -1820
-1710 | 576
594 | | 340 | .0079796 | -2280 | .07981 | -228 | .31958 | - 917 | .55983 | -1612 | 612 | | 250 | 007751/ | | 07750 | | 43.43 | | | | | | 350
360 | .0077516
.0075362 | -2154
-2037 | .07753 | -215 | .31041 | - 865 | .54371 | -1521 | 630 | | 370 | .0073325 | -2037
-1930 | .07538
.07334 | -204
-193 | .30176
.29357 | - 819
- 775 | .52850
.51413 | 1437
1361 | 648
666 | | 380 | .0071395 | -1730
-1830 | .07141 | -184 | .28582 | - 775
735 | .50052 | -1290 | 684 | | 390 | .0069565 | -1740 | .06957 | -174 | .27847 | - 698 | .48762 | -1225 | 702 | | 400 | 00/7025 | | 0/702 | | 073.40 | | | | | | 410 | .0067825
.0066171 | -1654
-1576 | .06783
.06618 | -165
-158 | .27149
.26485 | - 664
- 632 | .47537
.46372 | -1165 | 720 | | 420 | .0064595 | -1502 | .06460 | -150 | .25853 | - 632
- 603 | .45264 | -1108
-1057 | 738
756 | | 430 | .0063093 | -1434 | .06310 | -144 | .25250 | → 575 | .44207 | -1009 | 774 | | 440 | .0061659 | -1370 | .06166 | -137 | .24675 | - 549 | .43198 | - 963 | 792 | | 450 | .0060289 | -1311 | .06029 | -131 | .24126 | - 526 | .42235 | - 921 | 810 | | 460 | .0058978 | -1255 | .05898 | -126 | .23600 | - 503 | .41314 | - 881 | 828 | | 470 | .0057723 | →1202 | .05772 | -120 | .23097 | - 481 | .40433 | - 845 | 846 | | 480
490 | .0056521
.0055367 | -1154
-1107 | .05652
.05537 | -115
-111 | .22616
.22153 | - 463 | .39588
.38778 | - 810 | 864 | | 170 | .0055507 | -1107 | .03337 | -111 | .22133 | - 443 | .50116 | - 778 | 882 | | 500 | .0054260 | -1064 | .05426 | -107 | .21710 | - 427 | .38000 | - 746 | 900 | | 510
520 | .0053196
.0052173 | -1023 | .05319 | -102 | .21283 | - 409 | .37254 | - 718 | 918 | | 530 | .0051188 |
- 985
- 948 | .05217
.05119 | - 98
- 95 | .20874
.20479 | - 395
- 379 | .36536
.35845 | - 691 | 936
954 | | 540 | .0050240 | - 913 | .05024 | - 91 | .20100 | - 366 | .35180 | - 665
- 641 | 972 | | 550 | .0049327 | 001 | 040220 | | 10724 | | 24520 | | 000 | | 560 | .0049327 | 881
850 | .049329
.048448 | - 881
- 850 | .19734
.19381 | 353
340 | .34539
.33921 | - 618
- 596 | 990
1008 | | 570 | .0047596 | - 821 | .047598 | - 821 | .19041 | - 329 | .33325 | - 576
- 576 | 1026 | | 580 | .0046775 | - 79 2 | .046777 | - 793 | .18712 | - 317 | .32749 | - 555 | 1044 | | 590 | .0045983 | - 767 | .045984 | - 767 | .18395 | - 307 | .32194 | - 538 | 1062 | | 600 | .0045216 | - 741 | .045217 | - 741 | .18088 | - 297 | .31656 | - 519 | 1080 | | 610 | .0044475 | - 717 | .044476 | - 718 | .17791 | - 287 | .31137 | - 503 | 1098 | | 620 | .0043758 | 69 5 | .043758 | - 694 | .17504 | - 278 | .30634 | - 487 | 1116 | | 630
640 | .0043063
.0042390 | - 673 | .043064 | - 673 | .17226 | - 270 | .30147 | - 472 | 1134 | | 040 | .0042370 | - 652 | .042391 | - 653 | .16956 | - 261 | .29675 | - 457 | 1152 | | 650 | .0041738 | - 632 | .041738 | - 632 | .16695 | - 253 | .29218 | - 443 | 1170 | | 660 | .0041106 | - 614 | .041106 | - 614 | .16442 | - 245 | .28775 | - 430 | 1188 | | 670
490 | .0040492 | - 595 | .040492 | - 595 | .16197 | - 239 | .28345 | - 417 | 1206 | | 680
690 | .0039897
.0039318 | 579
561 | .039897
.039318 | - 579
- 561 | .15958
.15727 | - 2 3 1
- 225 | .27928
.27523 | - 405
- 394 | 1224
1242 | | | | 5 00 | | - Ju | .13.2. | - 223 | | - 274 | 1272 | | 700
710 | .0038757 | - 546 | .038757 | - 546 | .15502 | - 218 | .27129 | - 382 | 1260 | | 710
720 | .0038211
.0037680 | - 531
- 516 | .038211
.037680 | - 531
- 516 | .15284
.15071 | - 213
- 206 | .26747
.26375 | - 372
- 361 | 1278
1296 | | 730 | .0037164 | - 502 | .037164 | - 502 | .14865 | - 201 | .26014 | - 352 | 1314 | | 740 | .0036662 | - 489 | .036662 | - 489 | .14664 | - 196 | .25662 | - 343 | 1332 | | 750 | .0036173 | - 476 | .036173 | - 476 | .14468 | - 190 | .25319 | - 333 | 1350 | | 760 | .0035697 | - 464 | .035697 | - 464 | .14278 | - 186 | .24986 | - 325 | 1368 | | 770 | .0035233 | - 451 | .035233 | - 45 2 | .14092 | - 180 | .24661 | - 316 | 1386 | | 780
790 | .0034782
.0034341 | - 441
430 | .034781 | ~ 44 0 | .13912 | - 176 | .24345 | - 308 | 1404 | | | .0034341 | - 429 | .034341 | - 429 | .13736 | - 172 | .24037 | - 301 | 1422 | | 800 | .0033912 | | .033912 | | .13564 | | .23736 | | 1440 | | | | | | | | | | | | Table 4-2. DENSITY OF CARBON DIOXIDE - Cont. | °K | .O1 atm | .OI atm .I atm | | .7 atm | °R | |--|--|--|--|--|--| | 800
850
900
950
1000
1050
1100
1250 | .0033912 -1995
.0031917 -1773
.0030144 -1587
.0028557 -1428
.0027129 -1291
.0025838 -1175
.0024663 -1072
.0023591 - 983
.0022608 - 904 | .033912 -1995
.031917 -1773
.030144 -1587
.028557 -1428
.027129 -1292
.025837 -1174
.024663 -1073
.023590 - 983
.022607 - 904
.021703 - 835 | .13564 - 798
.12766 - 710
.12056 - 634
.11422 - 572
.10850 - 516
.10334 - 470
.09864 - 429
.09435 - 393
.09042 - 362
.08680 - 334 | .23736 -1397
.22339 -1241
.21098 -1111
.19987 -1000
.18987 - 904
.18083 - 822
.17261 - 751
.16510 - 688
.15822 - 633
.15189 - 584 | 1440
1530
1620
1710
1800
1890
1980
2070
2160
2250 | | 1250
1300
1350
1400
1450
1500 | .0021704 - 835
.0020869 - 773
.0020096 - 718
.0019378 - 668
.0018710 - 624
.0018086 | .021703 - 835
.020868 - 772
.020096 - 718
.019378 - 668
.018710 - 624
.018086 | .08680 - 334
.08346 - 309
.08037 - 287
.07750 - 267
.07483 - 250
.07233 | .14605 - 541
.14064 - 502
.13562 - 468
.13094 - 436 | 2340
2430
2520
2610
2700 | | °K | 1 | atm | 4 | atm | 7 | atm | 10 | atm | P _R | |------------|------------------|------------------|------------------|----------------|------------------|-------------------------|------------------|----------------|----------------| | | | | | | | | 1 10 | | ⊥" | | 220 | 1,2508 | ~568 | | | | | | | 390 | | 230 | 1.1940 | -516 | 4.9693 | -2456 | 9,1418 | -5586 | | | 41 | | 240 | 1.1424 | -472 | 4.7237 | -2156 | 8,5832 | -4475 | 12.827 | -799 | 432 | | 250 | 1.0952 | -433 | 4.5081 | -1941 | 8,1357 | - 3844 | 12.028 | -634 | 450 | | 260 | 1.0519 | - 399 | 4.3140 | -1763 | 7.7513 | -3413 | 11.394 | -546 | 468 | | 270 | 1.0120 | -37 0 | 4.1377 | -1612 | 7.4100 | -3084 | 10.848 | -484 | 486 | | 280
290 | .9750
.9407 | -343
-319 | 3.9765
3.8284 | -1481
-1368 | 7.1016
6.8209 | -2807
-2572 | 10.364
9.928 | -436
-396 | 504
522 | | 300 | .9088 | | 2 (01 (| | | | | | | | 310 | .8790 | -298
-278 | 3.6916
3.5649 | -1267
-1179 | 6.5637
6.3277 | -2360
-2186 | 9.532
9.172 | - 360 | 540 | | 320 | .8512 | -262 | 3.4470 | -1177 | 6.1091 | -2186
-2027 | 8.841 | - 331
305 | 550
570 | | 330 | .8250 | -245 | 3.3370 | -1028 | 5.9064 | -2027
-18 8 5 | 8.536 | - 305
- 282 | 594 | | 340 | .8005 | -231 | 3,2342 | - 964 | 5.7179 | -1761 | 8.254 | -263 | 612 | | 350 | .7774 | -218 | 3.1378 | - 906 | 5,5418 | -1649 | 7,991 | -245 | 630 | | 360 | .7556 | -206 | 3.0472 | - 854 | 5.3769 | -1546 | 7.746 | -245
-229 | 648 | | 370 | .7350 | -195 | 2.9618 | - 806 | 5.2223 | -1458 | 7.517 | -215 | 666 | | 80 | .7155 | -185 | 2.8812 | - 761 | 5.0765 | -1372 | 7.302 | -202 | 684 | | 90 | .6970 | -176 | 2.8051 | - 722 | 4,9393 | -1298 | 7.100 | -191 | 702 | | 00 | .6794 | -166 | 2.7329 | - 684 | 4.8095 | -1227 | 6.909 | -180 | 720 | | 110 | .6628 | -159 | 2.6645 | ~ 650 | 4.6868 | -1164 | 6.729 | -170 | 738 | | 120 | .6469 | -152 | 2.5995 | - 618 | 4.5704 | -1107 | 6.559 | -161 | 756 | | 30
40 | .6317
.6173 | -144
-138 | 2.5377
2.4788 | - 589
- 562 | 4.4597
4.3546 | −1051
−1002 | 6.398
6.244 | -154 | 774
792 | | | | | | | | -1002 | | -145 | 174 | | 50
60 | .6035
.5903 | -132 | 2.4226 | - 536 | 4.2544 | - 9 5 5 | 6.099 | -139 | 810 | | 70 | .5777 | -126
-121 | 2.3690
2.3177 | - 513 | 4.1589 | - 911 | 5.960 | -133 | 828 | | 180 | .5656 | -115 | 2.2687 | - 490
- 470 | 4.0678
3.9806 | - 872 | 5.827 | -126 | 846 | | 90 | .5541 | -112 | 2.2217 | - 470
- 451 | 3.8972 | - 834
- 799 | 5,701
5,580 | -121
-115 | 864
882 | | 00 | .5429 | -106 | 2,1766 | - 432 | 3.8173 | - 766 | 5.465 | | 900 | | 10 | .5323 | -103 | 2.1334 | - 416 | 3.7407 | - 735 | 5.354 | -111
-106 | 918 | | 20 | .5220 | - 99 | 2.0918 | - 399 | 3.6672 | - 706 | 5.248 | -106 | 936 | | 30 | .5121 | - 95 | 2,0519 | - 384 | 3.5966 | - 679 | 5.146 | - 98 | 954 | | 40 | .5026 | - 91 | 2.0135 | - 370 | 3.5287 | - 653 | 5.048 | - 94 | 972 | | 50 | .49348 | - 883 | 1.9765 | - 357 | 3,4634 | 630 | 4.9540 | - 906 | 990 | | 60 | .48465 | - 853 | 1.9408 | - 343 | 3.4004 | - 606 | 4.8634 | - 874 | 1008 | | 70 | .47612 | - 822 | 1.9065 | - 332 | 3.3398 | - 585 | 4.7760 | - 841 | 1026 | | 80 | .46790 | - 795 | 1.8733 | - 320 | 3.2813 | - 564 | 4.6919 | - 812 | 1044 | | 90 | .45995 | ~ 768 | 1.8413 | - 309 | 3,2249 | - 545 | 4.6107 | - 784 | 1062 | | 00 | .45227 | - 743 | 1.8104 | - 299 | 3.1704 | - 527 | 4.5323 | - 757 | 1080 | | 10 | .44484 | - 719 | 1.7805 | - 290 | 3.1177 | - 509 | 4.4566 | - 731 | 1098 | | 20 | .43765 | - 696 | 1.7515 | - 280 | 3.0668 | - 492 | 4.3835 | - 708 | 1116 | | 30
40 | .43069 | - 674 | 1.7235 | - 271 | 3.0176 | - 477 | 4.3127 | - 685 | 1134 | | | .42395 | - 653 | 1.6964 | - 262 | 2.9699 | - 462 | 4.2442 | - 662 | 1152 | | 50 | .41742 | - 633 | 1.6702 | 255 | 2.9237 | - 447 | 4.1780 | - 643 | 1170 | | 60 | .41109 | - 615 | 1.6447 | - 247 | 2.8790 | - 434 | 4.1137 | - 622 | 1188 | | 70
80 | .40494
.39898 | - 596 | 1.6200 | - 2 39 | 2.8356 | - 421 | 4.0515 | 603 | 1206 | | 90 | .39898 | - 579
- 562 | 1.5961
1.5728 | - 233
- 225 | 2.7935
2.7527 | - 408 | 3.9912 | - 586 | 1224 | | | • | - 102 | | - 223 | 2.7527 | - 397 | 3.9326 | - 568 | 1242 | | 00
10 | .38757
.38210 | 547
531 | 1.5503
1.5283 | - 220
- 213 | 2.7130
2.6745 | - 385
- 374 | 3.8758 | - 552 | 1260 | | 20 | .37679 | - 517 | 1.5070 | - 213
- 207 | 2.6371 | - 374
- 364 | 3.8206
3.7669 | - 537
- 531 | 1278
1296 | | 30 | .37162 | - 503 | 1.4863 | - 202 | 2.6007 | - 364
- 354 | 3.7148 | - 521
- 507 | 1314 | | 40 | .36659 | - 489 | 1.4661 | - 196 | 2.5653 | - 344 | 3.6641 | - 493 | 1332 | | 50 | .36170 | - 476 | 1.4465 | - 191 | 2.5309 | - 335 | 3,6148 | 480 | 1350 | | 60 | .35694 | - 464 | 1.4274 | - 186 | 2.4974 | - 326 | 3.5668 | 467 | 1368 | | 70 | .35230 | - 452 | 1.4088 | - 181 | 2.4648 | - 318 | 3.5201 | - 455 | 1386 | | 80 | .34778 | - 441 | 1.3907 | - 177 | 2.4330 | - 310 | 3.4746 | - 443 | 1404 | | 90 | .34337 | - 429 | 1.3730 | - 172 | 2.4020 | - 301 | 3.4303 | - 432 | 1422 | | | .33908 | | 1.3558 | | 2.3719 | | 3.3871 | | 1440 | Table 4-2. DENSITY OF CARBON DIOXIDE - Cont. | °K | l atm
| | 4 atm | | 7 atm | | 10 atm | | *R | |--|--|---|--|---|--|---|--|---|--| | 800
850
900
950
1000
1050
1100
1150 | .33908
.31912
.30138
.28551
.27123
.25831
.24657
.23585 | -1996
-1774
-1587
-1428
-1292
-1174
-1072
-1000
- 887 | 1.3558
1.2759
1.2048
1.1413
1.0842
1.0325
.9855
.9427 | - 799
- 711
- 635
- 571
- 517
- 470
- 428
- 393
- 362 | 2.3719
2.2317
2.1073
1.9961
1.8961
1.8057
1.7235
1.6485
1.5798 | -1402
-1244
-1112
-1000
- 904
- 822
- 750
- 687
- 633 | 3.3871
3.1867
3.0088
2.8498
2.7069
2.5777
2.4604
2.3533
2.2551 | -2004
-1779
-1590
-1429
-1292
-1173
-1071
- 982
- 902 | 1440
1530
1620
1710
1800
1890
1980
2070
2160 | | 1300
1350
1350
1400
1450
1500 | .21698
.20863
.20091
.19373
.18705 | - 835
- 772
- 718
- 668
- 624 | .8672
.8339
.8030
.7743
.7476
.7227 | - 333
- 309
- 287
- 267
- 249 | 1.5165
1.4582
1.4042
1.3541
1.3073
1.2638 | - 583
- 540
- 501
- 468
- 435 | 2.1649
2.0816
2.0045
1.9329
1.8663
1.8041 | - 833
- 771
- 716
- 666
- 622 | 2250
2340
2430
2520
2610
2700 | | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | °R | |------------|------------------|---------------------|------------------|----------------|------------------|-------------------|------------------------------------|------------------|--------------| | 240 | 12.827 | -799 | | | | | | | 432 | | 250 | 12.028 | -634 | | | | | | | 450 | | 260 | 11.394 | ~546 | | | | | | | 468
486 | | 270
280 | 10.848
10.364 | - 484
- 436 | | | | | | | 504 | | 290 | 9.928 | - 396 | | | | | | | 522 | | 300 | 9.532 | -360 | 47.52
44.05 | -347
-273 | | | | | 540
558 | | 310
320 | 9.172
8.841 | - 331
- 305 | 41.32 | -225 | 92.48 | -972 | 227.48 | -6177 | 576 | | 330 | 8.536 | -282 | 39.07
37.15 | -192
-167 | 82.76
75.67 | 709
522 | 165.71
135.13 | -3058
-1601 | 594
612 | | 340 | 8.254 | -263 | | | | | | | 630 | | 350
360 | 7.991
7.746 | -245
-229 | 35.475
33.984 | -1491
-1337 | 70.448
66.230 | -4218
-3553 | 119.12
108.15 | -1097
834 | 648 | | 370 | 7.746
7.517 | -229
-215 | 32.647 | -1211 | 62.677 | -3061 | 99.81 | - 663 | 666 | | 380 | 7.302 | -202 | 31.436 | -1089 | 59.616 | -2584 | 93.18
88.06 | - 512
- 489 | 684
702 | | 390 | 7.100 | 191 | 30.347 | -1026 | 57.032 | -2432 | | | | | 400 | 6.909 | -180 | 29.321
28.389 | - 932 | 54.600
52.474 | 2126
1908 | 83.17
79.23 | - 394
- 345 | 720
738 | | 410
420 | 6.729
6.559 | -170
-161 | 27.525 | - 864
- 803 | 50.566 | -1706
-1742 | 75.78 | - 307 | 756 | | 430 | 6.398 | -154 | 26.722 | - 749 | 48.824 | 1594 | 72.71 | - 275 | 774 | | 440 | 6.244 | -145 | 25.973 | - 703 | 47.230 | -14 69 | 69.96 | 250 | 792 | | 450 | 6.099 | -139 | 25,270 | - 658 | 45.761 | -1360 | 67.457 | - 2284 | 810
828 | | 460 | 5.960
5.827 | -133
-126 | 24.612
23.992 | - 620
- 585 | 44.401
43.148 | -1253
-1167 | 65.173
63.154 | - 2019
- 1846 | 846 | | 470
480 | 5.701 | -12 6
121 | 23.407 | - 555 | 41.981 | -1098 | 61.308 | - 1737 | 864 | | 490 | 5.580 | -115 | 22.852 | - 525 | 40.883 | -1035 | 5 9. 571 | - 1634 | 882 | | 500 | 5.465 | -111 | 22.327 | - 500 | 39.848
38.870 | - 978 | 57 . 937
56 . 393 | - 1544
- 1451 | 900
918 | | 510
520 | 5.354
5.248 | -106
-102 | 21.827
21.352 | - 475
- 452 | 37.946 | - 924
- 874 | 54.942 | - 1365 | 936 | | 530 | 5.146 | - 98 | 20.900 | - 433 | 37.072 | - 828 | 53.577 | - 1285 | 954 | | 540 | 5.048 | - 94 | 20,467 | - 411 | 36.244 | - 785 | 52.292 | - 1212 | 972 | | 550 | 4.9540 | - 906 | 20.056 | - 395 | 35.459 | - 747 | 51.080
49.934 | 1146
1086 | 990
1008 | | 560
570 | 4.8634
4.7760 | - 874
- 841 | 19.661
19.283 | - 378
- 362 | 34.712
34.000 | - 712
- 678 | 48.848 | - 1030
- 1030 | 1026 | | 580 | 4,6919 | - 812 | 18.921 | - 348 | 33.322 | - 648 | 47.818 | - 981 | 1044 | | 590 | 4.6107 | → 784 | 18,573 | - 335 | 32.674 | - 620 | 46.837 | - 933 | 1062 | | 600 | 4.5323 | - 757 | 18.238 | - 321 | 32.054
31.460 | - 594
- 569 | 45.904
45.014 | - 890
- 851 | 1080
1098 | | 610
620 | 4.4566
4.3835 | - 731
- 708 | 17.917
17.607 | - 310
- 298 | 30.891 | - 547 | 44.163 | - 814 | 1116 | | 630 | 4.3127 | - 68 5 | 17.309 | - 287 | 30.344 | - 525 | 43.349 | - 780 | 1134
1152 | | 640 | 4.2442 | 662 | 17.022 | - 278 | 29.819 | - 506 | 42.569 | - 748 | | | 650 | 4.1780 | - 643 | 16.744 | - 268 | 29.313 | - 487 | 41.821 | - 717
- 691 | 1170
1188 | | 660 | 4.1137 | - 622 | 16.476
16.217 | - 259
- 250 | 28.826
28.356 | - 470
- 452 | 41.104
40.413 | - 665 | 1206 | | 670
680 | 4.0515
3.9912 | 603
586 | 15.967 | - 243 | 27.904 | - 437 | 39.748 | - 640 | 1224 | | 690 | 3.9326 | - 568 | 15.724 | - 235 | 27.467 | - 423 | 39.108 | - 617 | 1242 | | 700 | 3.8758 | - 552 | 15.489 | - 227 | 27.044 | - 408 | 38.491 | - 595 | 1260 | | 710 | 3.8206 | - 537 | 15.262 | - 221
- 214 | 26.636
26.241 | - 395
- 382 | 37.896
37.321 | - 575
- 556 | 1278
1296 | | 720
730 | 3.7669
3.7148 | - 521
- 507 | 15.041
14.827 | - 214
- 207 | 25.859 | - 362
- 371 | 36,765 | - 537 | 1314 | | 740 | 3.6641 | - 493 | 14.620 | - 202 | 25.488 | - 359 | 36.228 | - 521 | 1332 | | 750 | 3.6148 | - 480 | 14.418 | - 195 | 25.129 | - 349 | 35.707 | - 503 | 1350
1368 | | 760 | 3.5668 | - 467 | 14.223
14.031 | - 192
- 185 | 24.780
24.442 | - 338
- 329 | 35.204
34.715 | - 489
- 474 | 1386 | | 770
780 | 3.5201
3.4746 | - 455
- 443 | 13.846 | - 185
180 | 24.113 | - 319 | 34.241 | - 459 | 1404 | | 790 | 3.4303 | - 432 | 13.666 | - 175 | 23.794 | - 311 | 33.782 | - 447 | 1422 | | 800 | 3.3871 | | 13.491 | | 23.483 | | 33.335 | | 1440 | Table 4-2. DENSITY OF CARBON DIOXIDE - Cont. | 10 | atm | 40 | atm | 70 0 | ıtm | 100 | atm | °R | |--------|---|---|---|---|--|---|---
--| | | | 10.401 | | 00.400 | | 22 225 | | 1440 | | | | | | | | | | 1440 | | | -1779 | | - 71 7 | | -1259 | | - 1799 | 1530 | | 3.0088 | -1590 | | - 638 | 20.793 | -1117 | | - 1591 | 1620 | | 2.8498 | -1429 | 11.324 | - 572 | 19.676 | - 999 | 27.892 | - 1422 | 1710 | | 2.7069 | -1292 | 10.752 | - 516 | 18.677 | - 900 | 26.470 | - 12 7 7 | 1800 | | 2.5777 | -1173 | 10,236 | - 468 | 17,777 | - 80.4 | 25,193 | - 1155 | 1890 | | 2.4604 | -1071 | 9.768 | - 426 | 16,963 | - 742 | 24.038 | - 1051 | 1980 | | 2.3533 | | 9.342 | | | | 22,987 | | 2070 | | | | | | | | | | 2160 | | 2.1649 | - 833 | 8.593 | - 331 | 14.921 | - 573 | 21.147 | - 812 | 2250 | | 2.0816 | - 771 | 8,262 | - 305 | 14.348 | - 531 | 20.335 | - 750 | 2340 | | | | | | | | | | 2430 | | | | | | | | | | 2520 | | | | | | | | | | 2610 | | | - 622 | | - 241 | | - 421 | | - 004 | 2700 | | | 3.3871
3.1867
3.088
2.8498
2.7069
2.5777
2.4604
2.3533
2.2551
2.1649 | 3.3871 -2004 3.1867 -1779 3.0088 -1590 2.8498 -1429 2.7069 -1292 2.5777 -1173 2.4604 -1071 2.3533 - 982 2.2551 - 902 2.1649 - 833 2.0816 - 771 2.0045 - 716 1.9329 - 666 1.8663 - 622 | 3.3871 -2004 13.491 3.1867 -1779 12.679 3.0088 -1590 11.962 2.8498 -1429 11.324 2.7069 -1292 10.752 2.5777 -1173 10.236 2.4604 -1071 9.768 2.3533 -982 9.342 2.2551 -902 8.952 2.1649 -833 8.593 2.0816 -771 8.262 2.0045 -716 7.957 1.9329 -666 7.673 -1.8663 -622 7.409 | 3.3871 -2004 13.491 -812 3.1867 -1779 12.679 -717 3.0088 -1590 11.962 -638 2.8498 -1429 11.324 -572 2.7069 -1292 10.752 -516 2.5777 -1173 10.236 -468 2.4604 -1071 9.768 -426 2.3533 -982 9.342 -390 2.2551 -902 8.952 -399 2.1649 -833 8.593 -331 2.0816 -771 8.262 -305 2.0045 -716 7.957 -284 1.9329 -666 7.673 -264 1.9329 -666 7.673 -264 1.8663 -622 7.409 -247 | 3.3871 -2004 13.491 -812 23.483 3.1867 -1779 12.679 -717 22.052 3.0088 -1590 11.962 -638 20.793 2.8498 -1429 11.324 -572 19.676 2.7069 -1292 10.752 -516 18.677 2.5777 -1173 10.236 -468 17.777 2.4604 -1071 9.768 -426 16.963 2.3533 -982 9.342 -390 16.221 2.2551 -902 8.952 -399 15.544 2.1649 -833 8.593 -331 14.921 2.0816 -771 8.262 -305 14.348 2.0045 -716 7.957 -284 13.817 1.9329 -666 7.673 -264 13.325 1.8663 -622 7.409 -247 12.868 | 3.3871 -2004 13.491 -812 23.483 -1431 3.1867 -1779 12.679 -717 22.052 -1259 3.0088 -1590 11.962 -638 20.793 -1117 2.8498 -1429 11.324 -572 19.676 -999 2.7069 -1292 10.752 -516 18.677 -900 2.5777 -1173 10.236 -468 17.777 -814 2.4604 -1071 9.768 -426 16.963 -742 2.3533 -982 9.342 -390 16.221 -677 2.2551 -902 8.952 -399 15.544 -623 2.1649 -833 8.593 -331 14.921 -573 2.0816 -771 8.262 -305 14.348 -531 2.0045 -716 7.957 -284 13.817 -492 1.9329 -666 7.673 -264 13.325 -457 1.8663 -622 7.409 -247 12.868 -427 | 3.3871 -2004 13.491 - 812 23.483 -1431 33.335 3.1867 -1779 12.679 - 717 22.052 -1259 31.282 3.0088 -1590 11.962 - 638 20.793 -1117 29.483 2.8498 -1429 11.324 - 572 19.676 - 999 27.892 2.7069 -1292 10.752 - 516 18.677 - 900 26.470 2.5777 -1173 10.236 - 468 17.777 - 814 25.193 2.4604 -1071 9.768 - 426 16.963 - 742 24.038 2.3533 - 982 9.342 - 390 16.221 - 677 22.987 2.2551 - 902 8.952 - 359 15.544 - 623 22.028 2.1649 - 833 8.593 - 331 14.921 - 573 21.147 2.0816 - 771 8.262 - 305 14.348 - 531 20.335 2.0045 - 716 7.957 - 284 13.817 - 492 19.585 1.9329 - 666 7.673 - 264 13.325 - 457 18.890 1.8663 - 622 7.409 - 247 12.868 - 427 18.243 | 3.3871 -2004 13.491 -812 23.483 -1431 33.335 -2053 3.1867 -1779 12.679 -717 22.052 -1259 31.282 -1799 3.0088 -1590 11.962 -638 20.793 -1117 29.483 -1591 2.8498 -1429 11.324 -572 19.676 -999 27.892 -1422 2.7069 -1292 10.752 -516 18.677 -900 26.470 -1277 2.5777 -1173 10.236 -468 17.777 -814 25.193 -1155 2.4604 -1071 9.768 -426 16.963 -742 24.038 -1051 2.3533 -982 9.342 -390 16.221 -677 22.987 -959 2.2551 -902 8.952 -359 15.544 -623 22.028 -881 2.1649 -833 8.593 -331 14.921 -573 21.147 -812 2.0816 -771 8.262 -305 14.348 -531 20.335 -750 2.0045 -716 7.957 -284 13.817 -492 19.585 -695 1.9329 -666 7.673 -264 13.325 -457 18.890 -647 1.8663 -622 7.409 -247 12.868 -427 18.243 -604 | Table 4-3. SPECIFIC HEAT OF CARBON DIOXIDE | °K | .01 | atm | .1 | atm | .4 | atm | .7 | atm | °R | |------------|------------------|-------------|------------------|--------------------|------------------|--------------------|------------------|------------|--------------| | <u> </u> | · | | | | <u> </u> | | | | <u> </u> | | 200 | 3.8935 | 583 | 3.9108 | 548 | 3.9708 | 421 | | | 360 | | 210 | 3.9518 | 592 | 3.9656 | 567 | 4.0129 | 472 | | | 378 | | 220 | 4.0110 | 595 | 4.0223 | 576 | 4.0601 | 509 | 4.1002 | 427 | 396 | | 230
240 | 4.0705
4.1305 | 600
594 | 4.0799
4.1383 | 584
583 | 4.1110
4.1643 | 533
543 | 4.1429
4.1906 | 477
500 | 414
432 | | 240 | 4.1303 | 594 | 4.1303 | 263 | 4.1047 | 545 | 4.1700 | 500 | 472 | | 250 | 4.1899 | 591 | 4.1966 | 581 | 4.2186 | 55 0 | 4.2406 | 519 | 450 | | 260 | 4.2490 | 584 | 4.2547 | 576 | 4.2736 | 550 | 4.2925 | 524 | 468 | | 270 | 4.3074 | 574 | 4.3123 | 568 | 4.3286 | 547 | 4.3449
4.3975 | 526 | 486
504 | | 280
290 | 4.3648
4.4212 | 564
555 | 4.3691
4.4250 | 559
550 | 4.3833
4.4375 | 542
536 | 4.4500 | 525
519 | 522 | | 270 | | 333 | 1. 1230 | 330 | 1, 1, 2, 1, 2 | 330 | 1 | 317 | 7 | | 300 | 4.4767 | 543 | 4.4800 | 540 | 4.4911 | 527 | 4.5019 | 518 | 540 | | 310 | 4.5310 | 533 | 4.5340 | 529 | 4.5438 | 520 | 4.5537 | 509 | 558 | | 320
330 | 4.5843
4.6364 | 521
509 | 4.5869
4.6387 | 518
508 | 4.5958
4.6467 | 509
49 9 | 4.6046
4.6546 | 500
492 | 576
594 | | 340 | 4.6873 | 500 | 4.6895 | 498 | 4.6966 | 491 | 4.7038 | 485 | 612 | | | | | | | | | | | | | 350 | 4.7373 | 488 | 4.7393 | 486 | 4.7457 | 481 | 4.7523 | 474 | 630 | | 360
370 | 4.7861
4.8337 | 476 | 4.7879
4.8353 | 474 | 4.7938
4.8407 | 4 69 | 4.7997
4.8461 | 464 | 648
666 | | 380 | 4.8803 | 466
456 | 4.8817 | 464
455 | 4.8867 | 460
451 | 4.8917 | 456
446 | 684 | | 390 | 4.9259 | 446 | 4.9272 | 446 | 4.9318 | 442 | 4.9363 | 439 | 702 | | | | | | | | | | | | | 400 | 4.9705 | 436 | 4.9718 | 435 | 4.9760 | 432 | 4.9802 | 429 | 720 | | 410
420 | 5.0141
5.0567 | 426 | 5.0153
5.0578 | 425 | 5.0192
5.0614 | 422
414 | 5.0231
5.0650 | 419
411 | 738
756 | | 430 | 5.0984 | 417
409 | 5.0994 | 416
408 | 5.1028 | 406 | 5.1061 | 404 | 774 | | 440 | 5.1393 | 400 | 5.1402 | 400 | 5.1434 | 397 | 5.1465 | 395 | 792 | | | | | | | | | 5 30/0 | | 010 | | 450 | 5.1793
5.2184 | 391 | 5.1802
5.2192 | 390 | 5.1831
5.2219 | 388 | 5.1860
5.2247 | 387 | 810
828 | | 460
470 | 5.2567 | 383
376 | 5.2575 | 383
375 | 5.2600 | 381
374 | 5.2626 | 379
372 | 846 | | 480 | 5.2943 | 368 | 5.2950 | 368 | 5.2974 | 366 | 5.2998 | 365 | 864 | | 490 | 5.3311 | 361 | 5.3318 | 360 | 5.3340 | 359 | 5.3363 | 358 | 882 | | 500 | 5 2472 | | F 2/70 | | F 2/00 | | r 2721 | | 000 | | 500 | 5.3672
5.4025 | 353 | 5.3678
5.4031 | 353
346 | 5.3699
5.4051 | 352
346 | 5.3721
5.4071 | 350
345 | 900
918 | | 510
520 | 5.4372 | 347
340 | 5.4377 | 340 | 5.4397 | 338 | 5.4416 | 337 | 936 | | 530 | 5.4712 | 333 | 5.4717 | 333 | 5.4735 | 332 | 5.4753 | 391 | 954 | | 540 | 5,5045 | 327 | 5.5050 | 326 | 5.5067 | 326 | 5.5084 | 325 | 972 | | FF0 | F F272 | | E E274 | *** | E E 202 | *** | 5,5409 | *** | 990 | | 550
560 | 5.5372
5.5692 | 320
315 | 5.5376
5.5696 | 320
315 | 5.5393
5.5712 | 319
314 | 5.5727 | 318
313 | 1008 | | 570 | 5.6007 | 308 | 5.6011 | 309 | 5.6026 | 308 | 5.6040 | 308 | 1026 | | 580 | 5.6315 | 303 | 5.6320 | 302 | 5.6334 | 302 | 5.6348 | 301 | 1044 | | 590 | 5.6618 | 297 | 5.6622 | 297 | 5.6636 | 296 | 5.6649 | 296 | 1062 | | 600 | 5.6915 | 2 92 | 5,6919 | 292 | 5,6932 | 291 | 5.6945 | 291 | 1080 | | 610 | 5.7207 | 287 | 5.7211 | 287 | 5,7223 | 287 | 5.7236 | 285 | 1098 | | 620 | 5.7494 | 281 | 5.7498 | 281 | 5.7510 | 280 | 5.7521 | 280 | 1116 | | 630 | 5.7775 | 277 | 5.7779 | 277 | 5.7790 | 276 | 5.7801 | 276 | 1134 | | 640 | 5.8052 | 272 | 5.8056 | 271 | 5.8066 | 272 | 5.8077 | 271 | 1152 | | 650 | 5.8324 | 267 | 5.8327 | 267 | 5.8338 | 266 | 5.8348 | 266 | 1170 | | 660 | 5.8591 | 262 | 5.8594 | 262 | 5.8604 | 262 | 5.8614 | 261 | 1188 | | 670 | 5.8853 | 257 | 5.8856 | 257 | 5.8866 | 256 | 5.8875 | 256 | 1206 | | 680 | 5.9110 | 253 | 5.9113 | 253 | 5.9122 | 253 | 5.9131 | 253 | 1224 | | 690 | 5.9363 | 248 | 5.9366 | 248 | 5.9375 | 247 | 5.9384 | 247 | 1242 | | 700 | 5.9611 | 244 | 5.9614 | 244 | 5,9622 | 244 | 5.9631 | 243 | 1260 | | 710 | 5.9855 | 239 | 5.9858 | 239 | 5.9866 | 238 | 5.9874 | 238 | 1278 | | 720 | 6.0094 | 235 | 6.0097 | 235 | 6.0104 | 235 | 6.0112 | 235 | 1296 | | 730
740 | 6.0329
6.0559 | 230 | 6.0332
6.0561 | 229 | 6.0339
6.0569 | 230
226 | 6.0347
6.0576 | 229
226 | 1314
1332 | | 140 | 0.0337 | 227 | 0.0301 | 227 | 0.0007 | 220 | 0,00710 | 220 | 1732 | | 750 | 6.0786 | 223 | 6.0788 | 223 | 6.0795 | 223 | 6.0802 | 223 | 1350 | | 760 | 6.1009 | 219 | 6.1011 | 219 | 6.1018 | 219 | 6.1025 | 219 | 1368 | | 770
700 | 6.1228 | 214 | 6.1230
6.1444 | 214 | 6.1237
6.1450 | 213
211 | 6.1244
6.1457 | 213
210 | 1386
1404 | | 780
790 | 6.1442
6.1653 | 211
207 | 6.1655 | 2 11
207 | 6.1661 | 207 |
6.1667 | 210 | 1422 | | | 0,2000 | -41 | | | | | | | | | 800 | 6.1860 | | 6.1862 | | 6.1868 | | 6.1874 | | 1440 | Table 4-3. SPECIFIC HEAT OF CARBON DIOXIDE - Cont. | °K | .01 | atm | .1 | atm - | .4 a | tm | .7 | atm | °R | |------|--------|-----|--------|-------|--------|---------------|--------|-----|------| | 800 | 6.1860 | 983 | 6.1862 | 983 | 6.1868 | 982 | 6,1874 | 981 | 1440 | | 850 | 6.2843 | 899 | 6.2845 | 899 | 6.2850 | 898 | 6.2855 | 897 | 1530 | | 900 | 6.3742 | 823 | 6.3744 | 822 | 6.3748 | 822 | 6.3752 | 822 | 1620 | | 950 | 6.4565 | 753 | 6.4566 | 753 | 6.4570 | 753 | 6.4574 | 752 | 1710 | | 1000 | 6.5318 | 69 | 6.5319 | 69 | 6.5323 | 69 | 6.5326 | 68 | 1800 | | 1050 | 6.601 | 63 | 6,601 | 63 | 6.601 | 63 | 6.601 | 63 | 1890 | | 1100 | 6.664 | 59 | 6.664 | 59 | 6.664 | 59 | 6.664 | 59 | 1980 | | 1150 | 6.723 | 53 | 6.723 | 53 | 6.723 | 53 | 6.723 | 53 | 2070 | | 1200 | 6.776 | 50 | 6.776 | 50 | 6.776 | 50 | 6.776 | 50 | 2160 | | 1250 | 6.826 | 46 | 6.826 | 46 | 6.826 | 46 | 6.826 | 46 | 2250 | | 1300 | 6.872 | 41 | 6.872 | 41 | 6.872 | 41 | 6.872 | 41 | 2340 | | 1350 | 6.913 | 39 | 6.913 | 39 | 6.913 | 39 | 6.913 | 39 | 2430 | | 1400 | 6.952 | 36 | 6.952 | 36 | 6.952 | 36 | 6.952 | 36 | 2520 | | 1450 | 6.988 | 33 | 6,988 | 33 | 6.988 | 33 | 6.988 | 33 | 2610 | | 1500 | 7.021 | 22 | 7.021 | | 7.021 | | 7.021 | | 2700 | Table 4-3. SPECIFIC HEAT OF CARBON DIOXIDE - Cont. | *K | 1 | atm | 4 | atm | 7 | atm | 10 | atm | *R | |--|--|----------------------------------|--|------------------------------|--|----------------------------------|--|----------------------------------|--| | 220
230
240 | 4.145
4.176
4.217 | 31
41
45 | 4.822
4.608 | - 214
- 84 | 6.720
5.516 | -1204
- 543 | 7.355 | -1586 | 396
414
432 | | 250
260
270
280
290 | 4.262
4.311
4.361
4.411
4.462 | 49
50
50
51
51 | 4.524
4.509
4.519
4.552
4.587 | - 15
10
33
35
37 | 4.973
4.763
4.677
4.694
4.715 | - 210
- 86
17
21
24 | 5.769
5.129
4.842
4.844
4.852 | - 640
- 287
2
8 | 450
468
486
504
522 | | 300
310
320
330 | 4.513
4.563
4.613
4.662 | 50
50
49
49 | 4.624
4.661
4.702
4.742 | 37
41
40
41 | 4.739
4.765
4.793
4.823 | 26
28
30
33 | 4.862
4.874
4.889
4.905 | 12
15
16
26 | 540
558
576
594 | | 340
350
360
370
380 | 4.711
4.758
4.805
4.851
4.896 | 47
46
45
45 | 4.783
4.824
4.865
4.906
4.947 | 41
41
41
41
40 | 4.856
4.891
4.926
4.962
4.998 | 35
35
36
36
36 | 4.931
4.959
4.989
5.019
5.051 | 28
30
30
32
31 | 612
630
648
666
684 | | 390
400
410
420
430 | 4.941
4.984
5.027
5.068
5.109 | 43
43
41
41
40 | 4.987
5.027
5.066
5.105
5.143 | 40
39
39
38
38 | 5.034
5.070
5.107
5.142
5.178 | 36
37
35
36
36 | 5.082
5.115
5.148
5.180
5.214 | 33
33
32
34
33 | 702
720
738
756
774
792 | | 440
450
460
470
480
490 | 5.149
5.189
5.227
5.265
5.302
5.338 | 40
38
38
37
36
36 | 5,181
5,218
5,255
5,291
5,326
5,361 | 37
36
35
35
35 | 5.214
5.249
5.283
5.317
5.351
5.385 | 35
34
34
34
34
33 | 5.247
5.280
5.312
5.344
5.377
5.409 | 33
32
32
33
32
31 | 810
828
846
864
882 | | 500
510
520
530
540 | 5.374
5.409
5.443
5.477
5.510 | 35
34
34
33
32 | 5.396
5.429
5.463
5.495
5.527 | 33
34
32
32
32 | 5.418
5.450
5.482
5.514
5.545 | 32
32
32
31
30 | 5.440
5.471
5.502
5.533
5.563 | 31
31
31
30
30 | 900
918
936
954
972 | | 550
560
570
580
590 | 5.542
5.574
5.605
5.636
5.666 | 32
31
31
30
30 | 5.559
5.590
5.620
5.650
5.680 | 31
30
30
30
28 | 5.575
5.606
5.635
5.664
5.693 | 31
29
29
29
29 | 5.593
5.622
5.650
5.679
5.708 | 29
28
29
29
29 | 990
1008
1026
1044
1062 | | 600
610
620
630
640 | 5.696
5.725
5.753
5.781
5.809 | 29
28
28
28
28 | 5.708
5.737
5.765
5.792
5.819 | 29
28
27
27
27 | 5.721
5.749
5.777
5.804
5.830 | 28
28
27
26
26 | 5.734
5.762
5.789
5.815
5.841 | 28
27
26
26
26 | 1080
1098
1116
1134
1152 | | 650
660
670
680
690 | 5.836
5.862
5.888
5.914
5.939 | 26
26
26
25
25 | 5.846
5.872
5.898
5.923
5.948 | 26
26
25
25
24 | 5.856
5.882
5.907
5.932
5.957 | 26
25
25
25
25
24 | 5.867
5.892
5.917
5.942
5.966 | 25
25
25
24
23 | 1170
1188
1206
1224
1242 | | 700
710
720
730
740 | 5.964
5.988
6.012
6.035
6.058 | 24
24
23
23
23 | 5.972
5.996
6.020
6.043
6.065 | 24
24
23
22
23 | 5.981
6.004
6.028
6.050
6.073 | 23
24
22
23
22 | 5.989
6.012
6.035
6.058
6.080 | 23
23
23
22
21 | 1260
1278
1296
1314
1332 | | 750
760
770
780 | 6.081
6.103
6.125
6.146 | 22
22
21
21 | 6.088
6.110
6.131
6.153 | 22
21
22
20 | 6.095
6.117
6.138
6.159 | 22
21
21
21 | 6.101
6.124
6.145
6.165 | 23
21
20
21 | 1350
1368
1386
1404 | | 790
800 | 6.167
6.188 | 21 | 6.173
6.194 | 21 | 6.180
6.200 | 20 | 6.186
6.206 | 20 | 1422
1440 | Table 4-3. SPECIFIC HEAT OF CARBON DIOXIDE - Cont. | *K | 1 | atm | 4 | atm | 7 | atm | 10 | atm | ° R | |------|-------|---------------|-------|---------|-------|----------|-------|-----|------------| | 800 | 6.188 | | 6.194 | 97 | 6.200 | 96 | 6.206 | 95 | 1440 | | 850 | 6.286 | 98
90 | 6.291 | 89 | 6.296 | 88 | 6.301 | 88 | 1530 | | | | | 6.380 | 82 | 6.384 | 81 | 6.389 | 80 | 1620 | | 900 | 6.376 | 82 | 6.462 | ∞
74 | 6.465 | 75 | 6.469 | 74 | 1710 | | 950 | 6.458 | 75 | | | 6.540 | 68 | 6.543 | 68 | 1800 | | 1000 | 6.533 | 69 | 6.536 | 69 | 0.540 | 06 | 0.040 | 00 | 1000 | | 1050 | 6.602 | 63 | 6,605 | 63 | 6,608 | 63 | 6.611 | 63 | 1890 | | 1100 | 6.665 | 58 | 6.668 | 58 | 6.671 | 57 | 6.674 | 57 | 1980 | | 1150 | 6.723 | 53 | 6.726 | 53 | 6.728 | 53 | 6.731 | 52 | 2070 | | 1200 | 6.776 | 50 | 6.779 | 49 | 6.781 | 49 | 6.783 | 50 | 2160 | | 1250 | 6.826 | 46 | 6.828 | 46 | 6.830 | 46 | 6.833 | 45 | 2250 | | 1200 | (072 | 4- | 6.874 | 41 | 6.876 | 40 | 6.878 | 41 | 2340 | | 1300 | 6.872 | 41 | 6.915 | | 6.916 | 39 | 6.919 | 38 | 2430 | | 1350 | 6.913 | 39 | | 39 | 6.955 | 36 | 6.957 | 36 | 2520 | | 1400 | 6.952 | 36 | 6.954 | 35 | 6.991 | 30
33 | 6.993 | 32 | 2610 | | 1450 | 6.988 | 3 3 | 6.989 | 33 | 7.024 | " | 7.025 | 22 | 2700 | | 1500 | 7.021 | | 7.022 | | 1.024 | | 1.025 | | 2700 | Table 4-3. SPECIFIC HEAT OF CARBON DIOXIDE - Cont. | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | °R | |---------------------------------|---|--------------------------------|---|---|---|--------------------------------------|---|--------------------------------------|--------------------------------------| | 240 | 7.355 | -1586 | | | · | | | | 432 | | 250
260
270
280
290 | 5.769
5.129
4.842
4.844
4.852 | - 640
- 287
2
8
10 | | | | | | | 450
468
486
504
522 | | 300
310
320
330
340 | 4.862
4.874
4.889
4.905
4.931 | 12
15
16
26
28 | 7.45
7.05
6.58
5.97
5.80 | -40
-47
-61
-17
- 4 | 11.12
7.93
7.12 | -319
- 81
- 19 | 20.68
11.45
9.17 | 923
228
50 | 540
558
576
594
612 | | 350
360
370
380
390 | 4.959
4.989
5.019
5.051
5.082 | 30
30
32
31
33 | 5.76
5.72
5.68
5.65
5.63 | - 4
- 4
- 3
- 2
- 1 | 6.93
6.75
6.58
6.43
6.31 | - 18
- 17
- 15
- 12
- 8 | 8.67
8.25
7.82
7.46
7.18 | - 42
- 43
- 36
- 28
- 22 | 630
648
666
684
702 | | 400
410
420
430
440 | 5.115
5.148
5.180
5.214
5.247 | 33
32
34
33
33 | 5.615
5.608
5.600
5.602
5.605 | - 7
- 8
2
3 | 6.225
6.150
6.076
6.037
5.996 | - 75
- 74
- 39
- 41
- 43 | 6.960
6.777
6.592
6.500
6.394 | 183
185
92
106
118 | 720
738
756
774
792 | | 450
460
470
480
490 | 5.280
5.312
5.344
5.377
5.409 | 32
32
33
32
31 | 5.609
5.613
5.621
5.633
5.649 | 4
8
12
16
20 | 5.953
5.902
5.872
5.852
5.855 | ~ 51
- 30
- 20
3
20 | 6.276
6.128
6.038
5.972
5.968 | - 148
- 90
- 66
- 4 | 810
828
846
864
882 | | 500
510
520
530
540 | 5.440
5.471
5.502
5.533
5.563 | 31
31
31
30
30 | 5.669
5.691
5.714
5.734
5.753 | 22
23
20
19
20 | 5.875
5.906
5.935
5.949
5.957 | 31
29
14
8
10 | 6.014
6.086
6.150
6.167
6.168 | 72
64
17
1
- 1 | 900
918
936
954
972 | | 550
560
570
580
590
| 5.593
5.622
5.650
5.679
5.708 | 29
28
29
29
26 | 5.773
5.792
5.812
5.832
5.853 | 19
20
20
21
20 | 5.967
5.976
5.986
5.997
6.009 | 9
10
11
12
11 | 6.167
6.167
6.166
6.168
6.171 | - 1
2
3
2 | 990
1008
1026
1044
1062 | | 600
610
620
630
640 | 5.734
5.762
5.789
5.815
5.841 | 28
27
26
26
26 | 5.873
5.894
5.915
5.935
5.956 | 21
21
20
21
20 | 6.020
6.034
6.048
6.062
6.077 | 14
14
14
15
15 | 6.173
6.180
6.187
6.195
6.204 | 7
7
8
9 | 1080
1098
1116
1134
1152 | | 650
660
670
680
690 | 5.867
5.892
5.917
5.942
5.966 | 25
25
25
24
23 | 5.976
5.997
6.017
6.038
6.058 | 21
20
21
20
20 | 6.092
6.108
6.123
6.139
6.155 | 16
15
16
16
16 | 6.213
6.224
6.235
6.246
6.256 | 11
11
11
10
11 | 1170
1188
1206
1224
1242 | | 700
710
720
730
740 | 5.989
6.012
6.035
6.058
6.080 | 23
23
23
22
21 | 6.078
6.097
6.117
6.137
6.156 | 19
20
20
19
18 | 6.171
6.186
6.202
6.218
6.234 | 15
16
16
16
15 | 6.267
6.278
6.290
6.302
6.314 | 11
12
12
12
12 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | 6.101
6.124
6.145
6.165
6.186 | 23
21
20
21
20 | 6.174
6.194
6.212
6.230
6.248 | 20 ⁻
18
18
18
18 | 6.249
6.265
6.281
6.296
6.311 | 16
16
15
15
15 | 6.326
6.338
6.350
6.362
6.374 | 12
12
12
12
13 | 1350
1368
1386
1404
1422 | | 800 | 6.206 | | 6,266 | | 6.326 | | 6.387 | | 1440 | Table 4-3. SPECIFIC HEAT OF CARBON DIOXIDE - Cont. | °K | 10 | atm | 40 | atm | 70 a | tm | 100 | atm | ° R | |--------------|----------------|------------------|----------------|------------------|----------------|------------------------|----------------|----------|----------------------| | 800
850 | 6.206
6.301 | 95
88 | 6.266
6.353 | 87
80 | 6.326
6.404 | 78
72 | 6.387
6.454 | 67
64 | 1440
1530 | | 900 | 6.389
6.469 | 80 | 6.433
6.507 | 74 | 6.476
6.544 | 68
65 | 6.518
6.580 | 62
60 | 1620
1710 | | 950
1000 | 6.543 | 74
68 | 6.577 | 70
64 | 6.609 | 60 | 6.640 | 56 | 1800 | | 1050 | 6.611 | 63 | 6.641 | 59 | 6.669 | 56 | 6.696 | 53 | 1890 | | 1100
1150 | 6.674
6.731 | 57
5 2 | 6.700
6.755 | 55
5 0 | 6.725
6.777 | 52
48 | 6.749
6.798 | 49
46 | 1980
2070 | | 1200
1250 | 6.783
6.833 | 50
45 | 6.805
6.852 | 47
44 | 6.825
6.870 | 45
42 | 6.844
6.887 | 43
41 | 2160
22 50 | | 1300 | 6.878 | 41 | 6.896 | 39 | 6.912 | 38 | 6.928 | 36 | 2340 | | 1350
1400 | 6.919
6.957 | 38
36 | 6.935
6.972 | 37
34 | 6.950
6.986 | 36
33 | 6.964
6.999 | 35
32 | 2430
2520 | | 1450
1500 | 6.993
7.025 | 3 2 | 7.006
7.038 | 32 | 7.019
7.050 | 31 | 7.031
7.061 | 30 | 2610
2700 | Table 4-4. ENTHALPY OF CARBON DIOXIDE * | °K | .01 | atm | ۱. ا | atm | ,4 | g†m | .7 | atm | °R | |------------|--------------------|--------------|--------------------|--------------------------------|--------------------|---------------------------|--------------------|---------------------------|--------------| | | | | | | | | | | | | 200 | 2.6203 | 1436 | 2.6159 | 1441 | 2.6008 | 1461 | 0 7007 | | 360 | | 210
220 | 2.7639
2.9097 | 1458
1479 | 2.7600
2.9062 | 1462
1483 | 2.7469
2.8946 | 1477
1496 | 2.7337
2.8831 | 1494
1509 | 378
396 | | 230 | 3.0576 | 1501 | 3.0545 | 1505 | 3.0442 | 1515 | 3.0340 | 1526 | 414 | | 240 | 3.2077 | 1524 | 3.2050 | 1526 | 3.1957 | 1535 | 3.1866 | 1543 | 432 | | 250
260 | 3.3601
3.5145 | 1544 | 3.3576
3.5122 | 1546
1568 | 3.3492
3.5046 | 1554
1574 | 3.3409
3.4970 | 1561
1581 | 450
468 | | 270 | 3.6711 | 1566
1587 | 3.6690 | 1589 | 3.6620 | 1595 | 3.6551 | 1600 | 486 | | 280 | 3,8298 | 1608 | 3.8279 | 1610 | 3.8215 | 1614 | 3.8151 | 1620 | 504 | | 290 | 3.9906 | 1630 | 3.9889 | 1630 | 3.9829 | 1635 | 3.9771 | 1639 | 522 | | 300 | 4.1536 | 1649 | 4.1519 | 1650 | 4.1464 | 1654 | 4.1410
4.3068 | 1658 | 540
558 | | 310
320 | 4.3185
4.4853 | 1668
1688 | 4.3169
4.4839 | 1670
1689 | 4.3118
4.4791 | 1673
1 69 2 | 4.4744 | 1676
1 69 5 | 576 | | 330 | 4.6541 | 1706 | 4.6528 | 1706 | 4.6483 | 1709 | 4.6439 | 1712 | 594 | | 340 | 4.8247 | 1725 | 4.8234 | 1726 | 4.8192 | 1729 | 4.8151 | 1731 | 612 | | 350 | 4.9972 | 1744 | 4.9960 | 1745 | 4.9921 | 1747 | 4.9882
5.1631 | 1749 | 630
648 | | 360
370 | 5.1716
5.3476 | 1760
1778 | 5.1705
5.3466 | 1761
1778 | 5.1668
5.3431 | 1763
1780 | 5.3396 | 1765
1783 | 666 | | 380 | 5.5254 | 1776 | 5.5244 | 1796 | 5.5211 | 1797 | 5.5179 | 1799 | 684 | | 390 | 5.7049 | 1812 | 5.7040 | 1812 | 5.7008 | 1814 | 5 .69 78 | 1815 | 702 | | 400 | 5.8861 | 1828 | 5.8852 | 1828 | 5.8822 | 1829 | 5.8793 | 1831 | 720 | | 410 | 6.0689 | 1844 | 6.0680 | 1844 | 6.0651 | 1846 | 6.0624 | 1847 | 738 | | 420 | 6.2533 | 1859 | 6.2524
6.4384 | 1860
1874 | 6.2497
6.4358 | 1861
1876 | 6.2471
6.4333 | 1862
1877 | 756
774 | | 430
440 | 6.4392
6.6266 | 1874
1888 | 6.6258 | 1889 | 6.6234 | 1889 | 6.6210 | 1890 | 792 | | 450 | 6.8154 | 1903 | 6.8147 | 1903 | 6.8123 | 1904 | 6.8100 | 1906 | 810 | | 460 | 7.0057 | 1918 | 7.0050 | 1918 | 7.0027
7.1947 | 1920 | 7.0006
7.1926 | 1920
1933 | 828
846 | | 470
480 | 7.1975
7.3906 | 1931
1945 | 7.1968
7.3900 | 1932
1945 | 7.3879 | 19 3 2
1946 | 7.3859 | 1947 | 864 | | 490 | 7.5851 | 1958 | 7.5845 | 1958 | 7.5825 | 1959 | 7.5806 | 1960 | 882 | | 500 | 7.7809 | 1972 | 7.7803 | 1972 | 7.7784 | 1973 | 7.7766 | 1974 | 900 | | 510 | 7.9781 | 1984 | 7.9775 | 1985 | 7.9757
8.1742 | 1985
1997 | 7.9740
8.1726 | 1986
1997 | 918
936 | | 520
530 | 8.1765
8.3761 | 1996
2009 | 8.1760
8.3756 | 1996
2009 | 8.3739 | 2010 | 8.3723 | 2011 | 954 | | 540 | 8.5770 | 2021 | 8.5765 | 2021 | 8.5749 | 2022 | 8.5734 | 2022 | 972 | | 550 | 8.7791 | 2033 | 8.7786 | 2033 | 8.7771 | 2033 | 8.7756 | 2034 | 990 | | 560 | 8.9824 | 2045 | 8.9819 | 2046 | 8,9804 | 2046 | 8.9790 | 2047 | 1008 | | 570 | 9.1869
9.3925 | 2056 | 9.1865
9.3921 | 2056
2067 | 9.1850
9.3907 | 2057
20 6 8 | 9.1837
9.3894 | 2057
2068 | 1026
1044 | | 580
590 | 9.5992 | 2067
2078 | 9.5988 | 2078 | 9.5975 | 2078 | 9.5962 | 2079 | 1062 | | 600 | 9.8070 | 2089 | 9.8066 | 2089 | 9,8053 | 2090 | 9.8041 | 2090 | 1080 | | 610 | 10.0159 | 2100 | 10.0155 | 2100 | 10.0143 | 2100 | 10.0131 | 2101 | 1098 | | 620 | 10.2259 | 2110 | 10.2255 | 2111 | 10.2243 | 2111 | 10.2232 | 2111 | 1116 | | 630
640 | 10.4369
10.6489 | 2120
2130 | 10.4366
10.6486 | 2120
2130 | 10.4354
10.6475 | 2121
2130 | 10.4343
10.6464 | 2121
2131 | 1134
1152 | | 650 | 10.8619 | 2140 | 10.8616 | 2140 | 10.8605 | 2141 | 10.8595 | 2141 | 1170 | | 660 | 11.0759 | 2150 | 11.0756 | 2150 | 11.0746 | 2150 | 11.0736 | 2151 | 1188 | | 670 | 11.2909 | 2157 | 11.2906 | 2159 | 11.2896
11.5055 | 2159
2170 | 11.2887
11.5047 | 2160
2169 | 1206
1224 | | 680
690 | 11.5068
11.7237 | 2169
2177 | 11.5065
11.7234 | 2169
2177 | 11.7225 | 2177 | 11.7216 | 2178 | 1242 | | 700 | 11.9414 | 2187 | 11.9411 | 2188 | 11.9402 | 2188 | 11.9394 | 2188 | 1260 | | 710 | 12.1601 | 2196 | 12.1599
12.3795 | 2196 | 12.1590
12.3786 | 2196
2204 | 12.1582
12.3779 | 2197
2204 | 1278
1296 | | 720
730 | 12.3797
12.6001 | 2204
2213 | 12.5795 | 2204
22 13 | 12.5760 | 2214 | 12.5983 | 2214 | 1314 | | 740 | 12.8214 | 2221 | 12.8212 | 2221 | 12.8204 | 2221 | 12.8197 | 2221 | 1332 | | 750 | 13.0435 | 2229 | 13.0433 | 2229 | 13.0425 | 2230 | 13.0418 | 2230 | 1350 | | 760 | 13.2664 | 2238 | 13.2662 | 2238 | 13.2655
13.4893 | 2238
22 4 5 | 13.2648
13.4887 | 2239
2245 | 1368
1386 | | 770
780 | 13.4902
13.7147 | 2245
2253 | 13.4900
13.7145 | 22 4 5
22 5 3 | 13.7138 | 2253 | 13.7132 | 2254 | 1404 | | 790 | 13.9400 | 2261 | 13.9398 | 2262 | 13.9391 | 2262 | 13,9386 | 2261 | 1422 | | 800 | 14.1661 | | 14.1660 | | 14.1653 | | 14.1647 | | 1440 | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). Table 4-4. ENTHALPY OF CARBON DIOXIDE - Cont.* | °K | .01 | atm | .1 | atm | .4 | atm | .7 | atm | °R | |--|--|--|--|--|--|--|--|--|--| | 800
850
900
950
1000
1050
1100
1150
1200
1250 | 14.166
15.307
16.466
17.640
18.829
20.031
21.245
22.470
23.706
24.951 | 1141
1159
1174
1189
1202
1214
1225
1236
1245
1254 |
14.166
15.307
16.466
17.640
18.829
20.031
21.245
22.470
23.706
24.951 | 1141
1159
1174
1189
1202
1214
1225
1236
1245
1254 | 14.165
15.306
16.465
17.640
18.829
20.031
21.245
22.470
23.706
24.951 | 1141
1159
1175
1189
1202
1214
1225
1236
1245 | 14.165
15.306
16.465
17.639
18.828
20.030
21.245
22.470
23.706
24.951 | 1141
1159
1174
1189
1202
1215
1225
1236
1245
1254 | 1440
1530
1620
1710
1800
1890
1980
2070
2160
2250 | | 1300
1350
1400
1450
1500 | 26.205
27.466
28.735
30.011
31.293 | 1261
1269
1276
1282 | 26.205
27.466
28.735
30.011
31.293 | 1261
1269
1276
1282 | 26.205
27.466
28.735
30.011
31.293 | 1261
1269
1276
1282 | 26.205
27.466
28.735
30.011
31.293 | 1261
1269
1276
1282 | 2340
2430
2520
2610
2700 | ^{*}The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). | | (H-E8)/RT ₀ | |---------------------------------|------------------------| | *K 1 atm 4 atm 7 atm 10 | atm *R | | _ X | | i atm | 4 | atm | 7 | atm | 10 | atm | " | |------------|------------------|--------------------|------------------|-------------------|------------------|------------|------------------|------------|--------------| | | | | | - | - | | | • | | | | | | | | | | | | | | 220 | 2.871 | 152 | | | | | | | 396 | | 230
240 | 3.023
3.177 | 154
155 | 2.908
3.080 | 172 | 2.745
2.966 | 221 | 2 010 | | 414 | | | | 155 | | 167 | 2.700 | 190 | 2.818 | 236 | 432 | | 250
260 | 3.332
3.489 | 157 | 3.247 | 166 | 3.156 | 178 | 3.054 | 198 | 450 | | 270 | 3.647 | 158
161 | 3.412
3.577 | 165
166 | 3.334
3.506 | 172
172 | 3.252
3.433 | 181
177 | 468
486 | | 280 | 3.808 | 162 | 3.743 | 167 | 3,678 | 172 | 3.610 | 178 | 504 | | 290 | 3.970 | 165 | 3.910 | 169 | 3.850 | 173 | 3.788 | 177 | 522 | | 300 | 4.135 | 166 | 4.079 | 170 | 4.023 | 174 | 3,965 | 179 | 540 | | 310
320 | 4.301
4.469 | 168
169 | 4.249
4.420 | 171
173 | 4.197
4.372 | 175
176 | 4.144
4.322 | 178 | 558
574 | | 330 | 4.638 | 172 | 4.593 | 174 | 4.548 | 177 | 4.501 | 179
180 | 576
594 | | 340 | 4.810 | 174 | 4.767 | 177 | 4.725 | 179 | 4.681 | 182 | 612 | | 350 | 4.984 | 175 | 4.944 | 178 | 4.904 | 180 | 4,863 | 183 | 630 | | 360 | 5.159 | 177 | 5.122 | 178 | 5.084 | 181 | 5.046 | 183 | 648 | | 370
380 | 5.336
5.514 | 178
180 | 5.300
5.481 | 181
181 | 5.265
5.447 | 182
184 | 5.229
5.413 | 184 | 666
684 | | 390 | 5.694 | 182 | 5,662 | 184 | 5.631 | 185 | 5.598 | 185
187 | 702 | | 400 | 5.876 | 183 | 5.846 | 185 [.] | 5.816 | 101 | 5.785 | | 720 | | 410 | 6.059 | 185 | 6.031 | 186 | 6.002 | 186
188 | 5.973 | 188
189 | 720
738 | | 420 | 6.244 | 186 | 6.217 | 187 | 6.190 | 189 | 6.162 | 190 | 756 | | 430
440 | 6.430
6.618 | 188
189 | 6.404
6.593 | 189
190 | 6.379
6.569 | 190 | 6.352
6.544 | 192 | 774 | | | | | | | | 191 | | 192 | 792 | | 450
460 | 6.807
6.998 | 191
192 | 6.783
6.975 | 192
193 | 6.760
6.953 | 193
194 | 6.736
6.930 | 194 | 810
828 | | 470 | 7,190 | 193 | 7.168 | 195 | 7.147 | 195 | 7.125 | 195
196 | 846 | | 480 | 7.383 | 195 | 7.363 | 195 | 7.342 | 197 | 7.321 | 198 | 864 | | 490 | 7.578 | 196 | 7.558 | 197 | 7.539 | 198 | 7.519 | 198 | 882 | | 500 | 7.774 | 198 | 7.755 | 198 | 7.737 | 198 | 7.717 | 200 | 900 | | 510
520 | 7.972
8.170 | 198
200 | 7.953
8.153 | 200
200 | 7.935
8.136 | 201 | 7.917 | 201 | 918 | | 530 | 8.370 | 201 | 8.353 | 202 | 8.337 | 201
202 | 8.118
8.320 | 202
203 | 936
954 | | 540 | 8,571 | 203 | 8,555 | 203 | 8,539 | 204 | 8.523 | 204 | 972 | | 550 | 8.774 | 203 | 8,758 | 204 | 8,743 | 204 | 8,727 | 205 | 990 | | 560 | 8.977 | 205 | 8.962 | 205 | 8,947 | 206 | 8.932 | 207 | 1008 | | 570
580 | 9.182
9.387 | 205
207 | 9.167
9.373 | 206
208 | 9.153
9.360 | 207
208 | 9.139
9.346 | 207
208 | 1026
1044 | | 590 | 9.594 | 208 | 9.581 | 208 | 9.568 | 209 | 9.554 | 210 | 1062 | | 600 | 9.802 | 209 | 9.789 | 210 | 9,777 | 210 | 9.764 | 210 | 1080 | | 610 | 10.011 | 210 | 9.999 | 210 | 9.987 | 211 | 9.974 | 212 | 1098 | | 620
630 | 10.221
10.432 | 211
212 | 10.209
10.420 | 211 | 10.198 | 212 | 10.186 | 212 | 1116 | | 640 | 10.644 | 215 | 10.633 | 213
215 | 10.410
10.622 | 212
215 | 10.398
10.611 | 213
216 | 1134
1152 | | 650 | 10.050 | *** | | | | | | | | | 660 | 10.859
11.073 | 214
215 | 10.848
11.062 | 214
215 | 10.837
11.052 | 215
216 | 10.827
11.042 | 215
216 | 1170
1188 | | 670 | 11,288 | 216 | 11.277 | 217 | 11.268 | 217 | 11.258 | 217 | 1206 | | 680 | 11.504 | 217 | 11.494 | 217 | 11.485 | 217 | 11.475 | 218 | 1224 | | 690 | 11.721 | 217 | 11.711 | 218 | 11.702 | 219 | 11,693 | 219 | 1242 | | 700 | 11.938 | 219 | 11.929 | 219 | 11.921 | 219 | 11.912 | 220 | 1260 | | 710
720 | 12,157
12,377 | 220
220 | 12.148
12.368 | 220
221 | 12.140
12.360 | 220
221 | 12.132
12.352 | 220
221 | 1278
1296 | | 730 | 12.597 | 222 | 12,589 | 222 | 12.581 | 222 | 12.573 | 222 | 1314 | | 740 | 12.819 | 222 | 12,811 | 222 | 12.803 | 223 | 12.795 | 223 | 1332 | | 750 | 13.041 | 223 | 13,033 | 223 | 13.026 | 224 | 13.018 | 224 | 1350 | | 760
770 | 13.264
13.488 | 224 | 13.256
13.480 | 224 | 13.250
13.474 | 224 | 13.242
13.467 | 225 | 1368 | | 780 | 13.712 | 22 4
226 | 13.705 | 225
226 | 13.474 | 225
226 | 13.467 | 225
226 | 1386
1404 | | 790 | 13.938 | 226 | 13.931 | 226 | 13.925 | 226 | 13.918 | 227 | 1422 | | 800 | 14.164 | | 14.157 | | 14.151 | | 14.145 | | 1440 | | | | | | | | | | | | ^{*}The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). | Table 4-4. | ENTHALPY OF CARBON DIOXIDE - Cont. * | $(H-E_0^0)/RT$ | |------------|--------------------------------------|----------------| | | | | | °K | | l atm | 4 | atm | 7 | atm | 10 | atm | *R | |-------------|--------|-------|--------|------|--------|------|--------|------|------| | | | | | | | | | | , | | 800 | 14.164 | 1141 | 14.157 | 1143 | 14.151 | 1144 | 14.145 | 1145 | 1440 | | 850 | 15.305 | 1159 | 15.300 | 1159 | 15.295 | 1161 | 15.290 | 1161 | 1530 | | 90 0 | 16.464 | 1175 | 16.459 | 1176 | 16.456 | 1176 | 16.451 | 1177 | 1620 | | 950 | 17,639 | 1189 | 17.635 | 1189 | 17.632 | 1190 | 17.628 | 1191 | 1710 | | 1000 | 18.828 | 1203 | 18,824 | 1204 | 18.822 | 1204 | 18.819 | 1204 | 1800 | | 1050 | 20.031 | 1214 | 20.028 | 1215 | 20.026 | 1215 | 20,023 | 1216 | 1890 | | 1100 | 21.245 | 1225 | 21,243 | 1225 | 21.241 | 1227 | 21.239 | 1227 | 1980 | | 1150 | 22,470 | 1236 | 22.468 | 1236 | 22,468 | 1236 | 22.466 | 1237 | 2070 | | 1200 | 23,706 | 1245 | 23,704 | 1246 | 23.704 | 1246 | 23.703 | 1246 | 2160 | | 1250 | 24.951 | 1253 | 24.950 | 1254 | 24,950 | 1254 | 24.949 | 1254 | 2250 | | 1300 | 26,204 | 1262 | 26,204 | 1262 | 26,204 | 1262 | 26,203 | 1263 | 2340 | | 1350 | 27.466 | 1269 | 27.466 | 1269 | 27.466 | 1270 | 27.466 | 1270 | 2430 | | 1400 | 28.735 | 1276 | 28.735 | 1276 | 28.736 | 1276 | 28.736 | 1277 | 2520 | | 1450 | 30.011 | 1282 | 30.011 | 1283 | 30.012 | 1283 | 30.013 | 1283 | 2610 | | 1500 | 31.293 | | 31.294 | | 31.295 | | 31.296 | | 2700 | ^{*}The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). | Table | 4-4. ENT | HALPY OF | CARBON | DIOXIDE - | Cont. * | | | /RT ₀ | | |------------|------------------|------------|------------------|------------|------------------|--------------------|------------------|------------------|--------------| | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | °R | | | | | | | | | | | | | 240 | 2.818 | 236 | | | | | | | 432 | | 250 | 3.054 | 198 | | | | | | | 450 | | 260
270 | 3.252
3.433 | 181 | | | | | | | 468
486 | | 280 | 3.610 | 177
178 | | | | | | | 504 | | 290 | 3,788 | 177 | | | | | | | 522 | | 300 | 3.965 | 179 | 3.25 | 26 | | | | | 540 | | 310 | 4.144 | 178 | 3.51 | 25 | 3.05 | | 2.09 | | 558
576 | | 320
330 | 4.322
4.501 | 179
180 | 3.76
3.99 | 23
21 | 3.40 | 35
27 | 2.66 | 57
37 | 594 | | 340 | 4.681 | 182 | 4.20 | 22 | 3.67 | 25 | 3.03 | 32 | 612 | | 350 | 4.863 | 183 | 4.42 | 21 | 3.92 | 26 | 3.35 | 31 | 630 | | 360 | 5.046 | 183 | 4.63 | 21 | 4.18 | 24 | 3.66 | 30 | 648 | | 370
380 | 5.229
5.413 | 184
185 | 4.84
5.04 | 20
21 | 4.42
4.66 | 24
23 | 3.96
4.24 | 28
26 | 666
684 | | 390 | 5.598 | 187 | 5.25 | 22 | 4.89 | 24 | 4.50 | 27 | 702 | | 400 | 5.785 | 188 | 5.466 | 205 | 5.128 | 227 | 4.771 | 251 | 720 | | 410 | 5.973 | 189 | 5.671 | 206 | 5.355 | 223 | 5.022 | 245 | 738 | | 420 | 6.162 | 190 | 5.877 | 205 | 5.578
5.800 | 222 | 5.267 | 239 | 756 | | 430
440 | 6.352
6.544 | 192
192 | 6.082
6.287 | 205
205 | 6.020 | 220
219 | 5.506
5.743 | 237
231 | 774
792 | | 450 | 6.736 | 194 | 6.492 | 205 | 6.239 | 217 | 5.974 | 227 | 810 | | 460
470 | 6.930
7.125 | 195 | 6.697
6.903 | 206 | 6.456
6.671 | 215 | 6.201
6.424 | 223
220 | 828
846 | | 480 | 7.321 | 196
198 | 7.109 | 206
206 | 6.886 | 215
21 4 | 6,644 | 218 | 864 | | 490 | 7.519 | 198 | 7.315 | 207 | 7.100 | 215 | 6.862 | 219 | 882 | | 500 | 7.717 | 200 | 7.522 | 208 | 7.315 | 215 | 7.081 | 222 | 900 | | 510 | 7.917 | 201 | 7.730 | 209 | 7.530 | 217 | 7.303 | 224 | 918 | | 520
530 | 8.118
8.320 | 202
203 | 7.939
8.149 | 210
210 | 7.747
7.964 | 217
218 | 7.527
7.752 | 225
226 | 936
954 | | 540 | 8.523 | 204 | 8.359 | 211 | 8.182 | 219 | 7.978 | 226 | 972 | | 550 | 8.727 | 205 | 8.570 | 211 | 8,401 | 218 | 8,204 | 225 | 990 | | 560 | 8.932 | 207 | 8.781 | 213 | 8.619 | 219 | 8.429 | 226 | 1008 | |
570
580 | 9.139
9.346 | 207 | 8.994
9.207 | 213 | 8.838
9.057 | 219
220 | 8.655
8.881 | 226
226 | 1026
1044 | | 590 | 9.554 | 208
210 | 9.421 | 214
214 | 9.277 | 220 | 9.107 | 226 | 1062 | | 600 | 9.764 | 210 | 9.635 | 216 | 9.497 | 221 | 9.333 | 226 | 1080 | | 610 | 9.974 | 212 | 9.851 | 216 | 9.718
9.939 | 221
222 | 9.559
9.785 | 226
227 | 1098
1116 | | 620
630 | 10.186
10.398 | 212
213 | 10.067
10.284 | 217
218 | 10.161 | 222 | 10.012 | 227 | 1134 | | 640 | 10.611 | 216 | 10.502 | 219 | 10.383 | 224 | 10.239 | 228 | 1152 | | 650 | 10.827 | 215 | 10.721 | 219 | 10.607 | 223 | 10.467 | 228 | 1170 | | 660 | 11.042 | 216 | 10,940 | 220 | 10.830
11.054 | 224 | 10.695 | 228
228 | 1188
1206 | | 670
680 | 11.258
11.475 | 217
218 | 11.160
11.381 | 221
221 | 11.278 | 224
225 | 11.151 | 228 | 1224 | | 690 | 11.693 | 219 | 11.602 | 222 | 11.503 | 226 | 11.380 | 229 | 1242 | | 700 | 11.912 | 220 | 11.824 | 223 | 11.729 | 226 | 11.609 | 230 | 1260 | | 710 | 12.132 | 220 | 12.047 | 224 | 11.955 | 227 | 11.839 | 230 | 1278 | | 720
730 | 12.352
12.573 | 221
222 | 12.271
12.495 | 224
225 | 12.182
12.409 | 227
228 | 12.069
12.299 | 230
231 | 1296
1314 | | 740 | 12.795 | 223 | 12.720 | 225 | 12.637 | 228 | 12.530 | 231 | 1332 | | 750 | 13.018 | 224 | 12.945 | 227 | 12.865 | 229 | 12.761 | 232 | 1350 | | 760 | 13.242 | 225 | 13.172 | 227 | 13.094 | 230 | 12.993 | 232 | 1368
1386 | | 770
780 | 13.467
13.692 | 225
226 | 13.399
13.627 | 228
228 | 13.324
13.554 | 230
231 | 13.225
13.458 | 233
233 | 1404 | | 790 | 13.918 | 227 | 13.855 | 229 | 13.785 | 231 | 13.691 | 234 | 1422 | | | | | | | | | | | | 14.145 14.084 14.016 13.925 1440 *The enthalpy function is divided here by a constant RT_0 where $T_0 = 273.16^{\circ}K$ (491.688°R). 800 14.145 Table 4-4. ENTHALPY OF CARBON DIOXIDE - Cont. * | °K | 10 atm | | 40 | 40 atm | | 70 atm | | atm | °R | |--------------|--------|--------------|--------|--------|--------|--------|------------------|--------------|------| | | | | | | | | 12 025 | | 1440 | | 800 | 14.145 | 1145 | 14.084 | 1155 | 14.016 | 1165 | 13.925
15.100 | 1175
1187 | 1530 | | 850 | 15.290 | 1161 | 15.239 | 1170 | 15.181 | 1179 | 16.287 | 1199 | 1620 | | 900 | 16.451 | 1177 | 16,409 | 1184 | 16.360 | 1192 | 17.486 | 1210 | 1710 | | 950 | 17.628 | 1191 | 17.593 | 1198 | 17.552 | 1203 | 18.696 | 1221 | 1800 | | 1000 | 18.819 | 1204 | 18.791 | 1210 | 18.755 | 1216 | 10.070 | 1221 | 1000 | | 1050 | 20.023 | 1216 | 20,001 | 1221 | 19,971 | 1226 | 19.917 | 1230 | 1890 | | 1100 | 21.239 | 1227 | 21.222 | 1232 | 21.197 | 1236 | 21.147 | 1240 | 1980 | | 1150 | 22.466 | 1237 | 22.454 | 1241 | 22,433 | 1244 | 22.387 | 1248 | 2070 | | 1200 | 23.703 | 1246 | 23,695 | 1249 | 23,677 | 1254 | 23.635 | 1257 | 2160 | | 1250 | 24.949 | 1254 | 24.944 | 1258 | 24.931 | 1261 | 24.892 | 1264 | 2250 | | 1300 | 26,203 | 1263 | 26,202 | 1266 | 26.192 | 1268 | 26.156 | 1272 | 2340 | | | 27.466 | | 27.468 | 1273 | 27.460 | 1276 | 27,428 | 1277 | 2430 | | 1350
1400 | 28.736 | 1270
1277 | 28.741 | 1279 | 28.736 | 1282 | 28,705 | 1285 | 2520 | | | | | 30.020 | 1286 | 30.018 | 1287 | 29,990 | 1289 | 2610 | | 1450 | 30.013 | 1283 | 31.306 | 1200 | 31.305 | 4201 | 31.279 | | 2700 | | 1500 | 31.296 | | 21.200 | | 71,707 | 1 T | - 272 1601 | V / 401 60 | 8¢₽\ | *The enthalpy function is divided here by a constant RT_0 where $T_0 = 273.16$ K (491.688°R). | °K | .01 | atm | .1 | atm | .4 | atm | .7 | atm | ° R | |------------|--------------------|---------------------------|--------------------|--------------|--------------------|--------------------|--------------------|--------------------|--------------| | | | | | | | _ | · | | | | 200
210 | 28.6423
28.8336 | 1913
1853 | 26.3354
26.5274 | 1920
1859 | 24.9344
25.1290 | 1946 | 24,5571 | 1000 | 360 | | 220 | 29.0189 | 1795 | 26.7133 | 1800 | 25.3168 | 1878
1816 | 24.7470 | 1899
1832 | 378
396 | | 230 | 29.1984 | 1746 | 26.8933 | 1749 | 25.4984 | 1761 | 24.9302 | 1773 | 414 | | 240 | 29.3730 | 1698 | 27.0682 | 1701 | 25.6745 | 1711 | 25.1075 | 1721 | 432 | | 250
260 | 29.5428
29.7082 | 1654 | 27.2383
27.4040 | 1657 | 25.8456 | 1665 | 25.2796 | 1673 | 450 | | 270 | 29.8697 | 1615
1578 | 27.5657 | 1617
1579 | 26.0121
26.1745 | 1624
1584 | 25.4469
25.6099 | 1630
1590 | 468
486 | | 280 | 30.0275 | 1541 | 27.7236 | 1542 | 26.3329 | 1547 | 25.7689 | 1552 | 504 | | 290 | 30.1816 | 1508 | 27.8778 | 1510 | 26.4876 | 1514 | 25.9241 | 1517 | 522 | | 300 | 30.3324 | 1477 | 28.0288 | 1478 | 26.6390 | 1481 | 26.0758 | 1485 | 540 | | 310
320 | 30.4801
30.6248 | 1447 | 28.1766 | 1448 | 26.7871 | 1451 | 26.2243 | 1454 | 558 | | 330 | 30.7666 | 1418
1391 | 28.3214
28.4633 | 1419
1392 | 26.9322
27.0744 | 1422
1394 | 26.3697
26.5121 | 1424 | 576
504 | | 340 | 30.9057 | 1366 | 28.6025 | 1366 | 27.2138 | 1368 | 26.6517 | 1396
1371 | 594
612 | | 350
360 | 31.0423
31.1764 | 1341 | 28.7391 | 1342 | 27.3506 | 1343 | 26.7888 | 1345 | 630 | | 370 | 31.3083 | 1319
1295 | 28.8733
29.0052 | 1319
1296 | 27.4849
27.6171 | 1322 | 26.9233
27.0556 | 1329 | 648 | | 380 | 31.4378 | 1274 | 29.1348 | 1274 | 27.7467 | 1296
1276 | 27.1854 | 1298
1277 | 666
684 | | 390 | 31.5652 | 1253 | 29.2622 | 1253 | 27.8743 | | 27.3131 | 1255 | 702 | | 400 | 31.6905 | 1233 | 29.3875 | 1233 | 27.9997 | 1234 | 27.4386 | 1235 | 720 | | 410 | 31.8138 | 1213 | 29.5108 | 1213 | 28.1231 | 1214 | 27.5621 | 1215 | 738 | | 420
430 | 31.9351
32.0546 | 1195
1177 | 29.6321
29.7516 | 1195 | 28.2445
28.3641 | 1196 | 27.6836 | 1197 | 756 | | 440 | 32,1723 | 1159 | 29.8694 | 1178
1159 | 28.4819 | 1178
1160 | 27.8033
27.9212 | 1179
1160 | 774
792 | | 450 | 32,2882 | 1143 | 29.9853 | 1143 | 28,5979 | 1144 | 28.0372 | 1145 | 810 | | 460 | 32.4025 | 1126 | 30.0996 | 1126 | 28.7123 | 1127 | 28.1517 | 1127 | 828 | | 470
480 | 32.5151
32.6262 | 1111 | 30.2122 | 1111 | 28.8250 | 1111 | 28.2644 | 1112 | 846 | | 490 | 32.7358 | 10 9 6
1080 | 30.3233
30.4330 | 1097
1080 | 28.9361
29.0458 | 1097
1081 | 28.3756
28.4853 | 1097
1081 | 864
882 | | 500 | 32.8438 | 1066 | 30.5410 | 1066 | 29.1539 | 1066 | 28.5934 | 1067 | 900 | | 510 | 32.9504 | 1053 | 30.6476 | 1053 | 29,2605 | 1054 | 28.7001 | 1054 | 918 | | 520 | 33.0557 | 1038 | 30.7529 | 1038 | 29.3659 | 1038 | 28.8055 | 1039 | 936 | | 530
540 | 33.1595
33.2621 | 1026
1013 | 30.8567
30.9593 | 1026
1013 | 29.4697
29.5724 | 1027
1013 | 28.9094
29.0121 | 1027
1013 | 954
972 | | 550 | 33.3634 | 1001 | 31.0606 | 1001 | 29.6737 | 1001 | 29.1134 | 1002 | 990 | | 560 | 33.4635 | 988 | 31.1607 | 989 | 29.7738 | 989 | 29.2136 | 989 | 1008 | | 570
580 | 33.5623
33.6600 | 977 | 31.2596
31.3573 | 977 | 29.8727 | 977 | 29.3125 | 977 | 1026 | | 590 | 33.7566 | 966
953 | 31.4539 | 966
953 | 29.9704
30.0670 | 966
9 54 | 29.4102
29.5069 | 967
953 | 1044
1062 | | 600 | 33.8519 | 944 | 31.5492 | 944 | 30.1624 | 944 | 29,6022 | | | | 610 | 33.9463 | 932 | 31.6436 | 932 | 30.2568 | 932 | 29.6967 | 9 45
932 | 1080
1098 | | 620 | 34.0395 | 922 | 31.7368 | 922 | 30.3500 | 922 | 29.7899 | 923 | 1116 | | 630
640 | 34.1317 | 913 | 31.8290 | 913 | 30.4422 | 914 | 29.8822 | 913 | 1134 | | | 34.2230 | 902 | 31.9203 | 902 | 30.5336 | 902 | 29.9735 | 903 | 1152 | | 650
660 | 34.3132
34.4024 | 892
883 | 32.0105
32.0997 | 892 | 30.6238
30.7130 | 892 | 30.0638 | 892 | 1170 | | 670 | 34.4907 | 873 | 32.1880 | 883
873 | 30.8013 | 883
873 | 30.1530
30.2413 | 883
874 | 1188
1206 | | 680 | 34.5780 | 866 | 32.2753 | 866 | 30.8886 | 867 | 30.3287 | 866 | 1224 | | 690 | 34.6646 | 856 | 32.3619 | 856 | 30.9753 | 856 | 30,4153 | 856 | 1242 | | 700
710 | 34.7502
34.8349 | 847
839 | 32.4475
32.5322 | 847
839 | 31.0609
31.1456 | 847
839 | 30.5009
30.5856 | 847 | 1260 | | 720 | 34.9188 | 831 | 32.6161 | 831 | 31.2295 | 831 | 30.6696 | 840
831 | 1278
1296 | | 730 | 35.0019 | 821 | 32.6992 | 821 | 31.3126 | 821 | 30.7527 | 821 | 1314 | | 740 | 35.0840 | 815 | 32.7813 | 815 | 31.3947 | 815 | 30.8348 | 815 | 1332 | | 750
760 | 35.1655 | 806 | 32.8628 | 807 | 31.4762 | 807 | 30,9163 | 807 | 1350 | | 760
770 | 35.2461
35.3261 | 800
791 | 32.9435
33.0235 | 800
791 | 31.5569
31.6369 | 800 | 30.9970 | 800 | 1368 | | 780 | 35.4052 | | 33.1026 | 791
784 | 31.7160 | 791
784 | 31.0770
31.1561 | 791
784 | 1386
1404 | | 790 | 35.4836 | 777 | 33.1810 | 776 | 31.7944 | 776 | 31.2345 | 776 | 1422 | | 800 | 35.5613 | | 33.2586 | | 31.8720 | | 31.3121 | | 1440 | | | | | | | | | | | | Table 4-5. ENTROPY OF CARBON DIOXIDE - Cont. | °K | .01 | atm | .1 | atm | .4 | atm | .7 | atm | °R | |------|---------|------|---------|------|---------|------|---------|------|------| | | | | 22.250/ | | 31.8720 | 3781 | 31.3121 | 3781 | 1440 | | 800 | 35.5613 | 3780 | 33.2586 | 3780 | | | 31.6902 | 3619 | 1530 | | 850 | 35.9393 | 3618 | 33.6366 | 3618 | 32.2501 | 3618 | 32.0521 | | 1620 | | 900 | 36.3011 | 3468 | 33.9984 | 3468 | 32.6119 | 3468 | | 3468 | 1710 | | 950 | 36.6479 | 3331 | 34.3452 | 3331 | 32.9587 | 3331 | 32.3989 | 3332 | | | 1000 | 36.9810 | 320 | 34.6783 | 320 | 33.2918 | 320 | 32.7321 | 320 | 1800 | | 1850 | 37,301 | 309 | 34,998 | 309 | 33,612 | 309 | 33,052 | 309 | 1890 | | 1050 | | | 35.307 | 297 | 33.921 | 297 | 33,361 | 297 | 1980 | | 1100 | 37.610 | 297 | | | 34.218 | 287 | 33,658 | 287 | 2070 | | 1150 | 37.907 | 287 | 35.604 | 287 | 34.505 | | 33.945 | 279 | 2160 | | 1200 | 38.194 | 279 | 35.891 | 279 | | 279 | | | 2250 | | 1250 | 38,473 | 268 | 36.170 | 268 | 34.784 | 268 | 34.224 | 268 | 2230 | | 1300 | 38.741 | 261 | 36,438 | 261 | 35.052 | 261 | 34,492 | 261 | 2340 | | |
 | 36.699 | 252 | 35.313 | 252 | 34.753 | 252 | 2430 | | 1350 | 39.002 | 252 | 36.951 | | 35.565 | 244 | 35.005 | 244 | 2520 | | 1400 | 39.254 | 244 | | 244 | 35.809 | 238 | 35.249 | 238 | 2610 | | 1450 | 39.498 | 238 | 37.195 | 238 | | 238 | | 2,50 | 2700 | | 1500 | 39.736 | | 37.433 | | 36.047 | | 35.487 | | 2/00 | Table 4-5. ENTROPY OF CARBON DIOXIDE - Cont. | °K | 1 | l atm | 4 | atm | 7 | atm | 10 | atm | •R | |-------------------|----------------------------|-------------------|------------------|------------------|------------------|------------|------------------|------------|-------------------| | | • | | | | • | | · | | <u> </u> | | 220
230
240 | 24.380
24.565
24.743 | 185
178
174 | 23.079
23.279 | 200
186 | 22.365
22.621 | 256
213 | 22,132 | 263 | 396
414
432 | | 250 | 24.917 | 168 | 23,465 | 177 | 22.834 | 190 | 22.395 | 212 | 450 | | 260
270 | 25.085
25.248 | 163 | 23.642
23.812 | 170
165 | 23.024
23.202 | 178
170 | 22.607
22.794 | 187
176 | 468
486 | | 280 | 25.408 | 160
155 | 23.977 | 160 | 23.372 | 165 | 22.970 | 170 | 504 | | 290 | 25.563 | 152 | 24.137 | 156 | 23,537 | 161 | 23.140 | 165 | 522 | | 300 | 25.715 | 149 | 24.293 | 152 | 23.698 | 155 | 23.305 | 159 | 540 | | 310 | 25.864 | 146 | 24.445
24.594 | 149 | 23.853
24.005 | 152
148 | 23.464
23.619 | 155
151 | 558
576 | | 320
330 | 26.010
26.153 | 143
140 | 24.739 | 145
143 | 24.153 | 144 | 23.770 | 147 | 594 | | 340 | 26.293 | 137 | 24.882 | 139 | 24,297 | 142 | 23.917 | 143 | 612 | | 350 | 26,430 | 134 | 25.021 | 136 | 24,439 | 138 | 24.060 | 140 | 630 | | 360 | 26.564 | 133 | 25.157 | 134 | 24.577 | 135 | 24.200 | 137 | 648
666 | | 370 | 26.697
26.827 | 130 | 25.291
25.422 | 131
129 | 24.712
24.845 | 133
130 | 24.337
24.471 | 134
132 | 684 | | 380
390 | 26.954 | 127
126 | 25.551 | 127 | 24.975 | 128 | 24.603 | 129 | 702 | | 400 | 27.080 | 124 | 25,678 | 125 | 25.103 | 126 | 24.732 | 127 | 720 | | 410 | 27.204 | 121 | 25,803 | 122 | 25.229 | 123 | 24.859 | 124 | 738 | | 420 | 27.325 | 120 | 25.925 | 121 | 25.352 | 122 | 24.983
25.105 | 122
121 | 756
774 | | 430
440 | 27.445
27.563 | 118
116 | 26.046
26.165 | 119
116 | 25.474
25.593 | 119
118 | 25.226 | 118 | 792 | | 450 | 27.679 | 114 | 26.281 | 116 | 25.711 | 116 | 25.344 | 116 | 810 | | 460 | 27.793 | 113 | 26.397 | 113 | 25.827 | 114 | 25,460 | 115 | 828 | | 470 | 27.906 | 111 | 26.510 | 112 | 25.941 | 112
111 | 25.575
25.688 | 113
111 | 846
864 | | 480
490 | 28.017
28.127 | 110
108 | 26.622
26.732 | 110
108 | 26.053
26.164 | 109 | 25.799 | 109 | 882 | | 500 | 28,235 | 107 | 26,840 | 108 | 26.273 | 107 | 25.908 | 108 | 900 | | 510 | 28.342 | 105 | 26.948 | 105 | 26.380 | 106 | 26.016 | 107 | 918 | | 520 | 28.447 | 104 | 27.053 | 105 | 26.486
26.591 | 105
103 | 26.123
26.228 | 105
104 | 936
954 | | 530
540 | 28.551
28.654 | 103
101 | 27.158
27.261 | 103
101 | 26.694 | 102 | 26.332 | 102 | 972 | | 550 | 28,755 | 101 | 27.362 | 101 | 26.796 | 101 | 26.434 | 101 | 990 | | 560 | 28.856 | 99 | 27.463 | 99 | 26.897 | 100 | 26.535 | 100 | 1008 | | 570 | 28.955 | 97 | 27.562 | 98 | 26.997
27.095 | 98
97 | 26.635
26.733 | 98
98 | 1026
1044 | | 580
590 | 29.052
29.149 | 97
95 | 27.660
27.757 | 97
96 | 27.192 | 96 | 26.831 | 96 | 1062 | | 600 | 29.244 | 95 | 27.853 | 94 | 27.288 | 95 | 26.927 | 95 | 1080 | | 610 | 29.339 | 93 | 27.947 | 94 | 27.383
27.476 | 93
93 | 27.022
27.116 | 94
93 | 1098
1116 | | 620
630 | 29.432
29.524 | 92
92 | 28.041
28.133 | 92
92 | 27.569 | 92 | 27.209 | 91 | 1134 | | 640 | 29.616 | 90 | 28.225 | 90 | 27.661 | 90 | 27.300 | 91 | 1152 | | 650 | 29.706 | 89 | 28.315 | 89 | 27.751 | 90 | 27.391 | 90 | 1170
1188 | | 660 | 29.795 | 89 | 28.404 | 89 | 27.841 | 88
88 | 27.481
27.570 | 89
88 | 1206 | | 670
680 | 29.884
29 .9 71 | 87
86 | 28.493
28.580 | 87
87 | 27.929
28.017 | 87 | 27.658 | 86 | 1224 | | 690 | 30.057 | 86 | 28.667 | 86 | 28,104 | 86 | 27.744 | 86 | 1242 | | 700 | 30.143 | 85 | 28.753 | 85 | 28,190 | 85 | 27.830 | 86 | 1260
1278 | | 710 | 30.228 | 84 | 28.838
28.922 | 84 | 28.275
28.359 | 84
83 | 27.916
28.000 | 84
83 | 1276 | | 720
730 | 30.312
30.395 | 83
82 | 29,005 | 83
82 | 28.442 | 83 | 28.083 | 83 | 1314 | | 740 | 30.477 | 82 | 29.087 | 82 | 28,525 | 81 | 28.166 | 81 | 1332 | | 750 | 30,559 | 80 | 29.169 | 81 | 28.606 | 81 | 28.247 | 81 | 1350
1368 | | 760 | 30.639 | 80 | 29.250
29.330 | 8 0
79 | 28.687
28.767 | 80
80 | 28.328
28.409 | 81
79 | 1386 | | 770
780 | 30.719
30.798 | 79
79 | 29.409 | 79
78 | 28.847 | 78 | 28.488 | 79 | 1404 | | 790 | 30.877 | 77 | 29.487 | 78 | 28.925 | 78 | 28.567 | 78 | 1422 | | 800 | 30.954 | | 29.565 | | 29.003 | | 28.645 | | 1440 | | | | | | | | | | | | | °K | | I atm 4 | | l atm 4 atm 7 atm | | 10 | 10 atm | | | |--------------------------------------|--|---------------------------------|--|---------------------------------|--|---------------------------------|--|---------------------------------|--------------------------------------| | 800
850
900
950 | 30.954
31.334
31.695
32.042 | 380
361
347
333 | 29.565
29.945
30.307
30.654 | 380
362
347
333 | 29.003
29.383
29.745
30.093 | 380
362
348
333 | 28.645
29.025
29.387
29.735 | 380
362
348
334 | 1440
1530
1620
1710 | | 1000 | 32.375 | 321 | 30.987 | 321 | 30.426 | 321 | 30.069 | 321 | 1800 | | 1050
1100
1150
1200
1250 | 32.696
33.004
33.302
33.589
33.867 | 308
298
287
278
268 | 31.308
31.616
31.914
32.202
32.480 | 308
298
288
278
268 | 30.747
31.055
31.354
31.641
31.919 | 308
299
287
278
268 | 30.390
30.698
30.997
31.284
31.562 | 308
299
287
278
269 | 1890
1980
2070
2160
2250 | | 1300
1350
1400
1450
1500 | 34.135
34.395
34.647
34.892
35.129 | 260
252
245
237 | 32.748
33.008
33.260
33.505
33.742 | 260
252
245
237 | 32.187
32.447
32.700
32.945
33.182 | 260
253
245
237 | 31.831
32.091
32.343
32.588
32.825 | 260
252
245
237 | 2340
2430
2520
2610
2700 | | *K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | *R | |---------------------------------|--|---------------------------------|--|---------------------------------|--|---------------------------------------|--|---------------------------------|--------------------------------------| | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | 240 | 22.132 | 263 | | | | | | | 432 | | 250
260
270
280
290 | 22.395
22.607
22.794
22.970
23.140 | 212
187
176
170
165 | | | | | | | 450
468
486
504
522 | | 300
310
320
330
340 | 23.305
23.464
23.619
23.770
23.917 | 155
151
147 | 21.43
21.67
21.89
22.08
22.25 | 24
22
19
17 | 20.85
21.14
21.37 | 29
23
20 | 19.83
20.31
20.61 | 48
30
26 | 540
558
576
594
612 | | 350
360
370
380
390 | 24.060
24.200
24.337
24.471
24.603 | 137
134
132 | 22.42
22.58
22.74
22.89
23.04 | 16
16
15
15
14 | 21.57
21.76
21.94
22.12
22.28 | 19
18
18
16
17 | 20.87
21.11
21.33
21.53
21.72 | 24
22
20
19
18 | 630
648
666
684
702 | | 400
410
420
430
440 | 24.732
24.859
24.983
25.105
25.226 | 124
122
121 | 23.183
23.322
23.457
23.588
23.717 | 139
135
131
129
126 | 22.449
22.602
22.749
22.891
23.030 | 139 | 21.904
22.074
22.235
22.388
22.537 | 170
161
153
149
142 | 720
738
756
774
792 | | 450
460
470
480
490 | 25.344
25.460
25.575
25.688
25.799 | 115
113
111 | 23.843
23.966
24.087
24.206
24.322 | 123
121
119
116
114 | 23.164
23.294
23.421
23.544
23.665 | 127
123
121 | 22.679
22.815
22.946
23.072
23.196 | 136
131
126
124
120 | 810
828
846
864
882 | | 500
510
520
530
540 | 25.908
26.016
26.123
26.228
26.332 | 107
105
104 | 24.436
24.549
24.659
24.768
24.876 | 113
110
109
108
105 | 23.783
23.900
24.015
24.128
24.239 | 115
113
111 | 23.316
23.436
23.555
23.672
23.788 | 120
119
117
116
113 | 900
918
936
954
972 | | 550
560
570
580
590 | 26.434
26.535
26.635
26.733
26.831 | 100 2
98 2
98 3 | 24.981
25.086
25.188
25.290
25.390 | 105
102
102
100
98 | 24.349
24.456
24.562
24.666
24.769 | 106
104
103 | 23.901
24.012
24.121
24.228
24.334 | 111
109
107
106
103 | 990
1008
1026
1044
1062 | | 600
610
620
630
640 | 26.927
27.022
27.116
27.209
27.300 | 94
93
91 | 25.488
25.585
25.681
25.776
25.870 | 97
96
95
94
92 | 24.870
24.970
25.068
25.165
25.260 | 98
97
95 | 24.437
24.540
24.640
24.739
24.837 | 103
100
99
98
96 | 1080
1098
1116
1134
1152 | | 650
660
670
680
690 |
27.391
27.481
27.570
27.658
27.744 | 89 2
88 2
86 2 | 25.962
26.054
26.144
26.233
26.321 | 92
90
89
88
88 | 25.355
25.448
25.540
25.631
25.720 | 92
91
8 9 | 24.933
25.028
25.122
25.214
25.305 | 95
94
92
91
90 | 1170
1188
1206
1224
1242 | | 700
710
720
730
740 | 27.830
27.916
28.000
28.083
28.166 | 84 2
83 2
83 2 | 26.409
26.495
26.581
26.665
26.749 | 86
86
84
84
82 | 25.809
25.897
25.983
26.069
26.154 | 86
86
85 | 25.395
25.484
25.572
25.659
25.745 | 89
88
87
86
85 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | 28.247
28.328
28.409
28.488
28.567 | 81 2
79 2
79 2 | 26.831
26.913
26.994
27.075
27.154 | 82
81
81
79
79 | 26.237
26.320
26.402
26.483
26.564 | 82
81
81 | 25.830
25.914
25.996
26.079
26.160 | 84
82
83
81
80 | 1350
1368
1386
1404
1422 | | 800 | 28.645 | | 27.233 | | 26.643 | : | 26.240 | | 1440 | Table 4-5. ENTROPY OF CARBON DIOXIDE - Cont. | °K | 10 atm | | 40 | atm | 70 | atm | 100 | atm | •̂R | |--------------------------------------|--|--------------------------|--|--------------------------|--|--------------------------|--|--------------------------|--------------------------------------| | 800 | 28.645 | 380 | 27.233 | 383 | 26.643 | 387 | 26.240 | 390 | 1440 | | 850 | 29.025 | 362 | 27.616 | 366 | 27.030 | 368 | 26.630 | 371 | 1530 | | 900 | 29.387 | 348 | 27.982 | 350 | 27.398 | 352 | 27.001 | 354 | 1620 | | 950 | 29.735 | 334 | 28.332 | 335 | 27.750 | 337 | 27.355 | 339 | 1710 | | 1000 | 30.069 | 321 | 28.667 | 323 | 28.087 | 325 | 27.694 | 326 | 1800 | | 1050 | 30.390 | 308 | 28.990 | 310 | 28.412 | 311 | 28.020 | 312 | 1890 | | 1100 | 30.698 | 299 | 29.300 | 299 | 28.723 | 300 | 28.332 | 301 | 1980 | | 1150 | 30.997 | 287 | 29.599 | 288 | 29.023 | 289 | 28.633 | 290 | 2070 | | 1200 | 31.284 | 278 | 29.887 | 280 | 29.312 | 280 | 28.923 | 281 | 2160 | | 1250 | 31.562 | 269 | 30.167 | 269 | 29.592 | 270 | 29.204 | 270 | 2250 | | 1300
1350
1400
1450
1500 | 31.831
32.091
32.343
32.588
32.825 | 260
252
245
237 | 30.436
30.696
30.949
31.195
31.431 | 260
253
246
236 | 29.862
30.123
30.377
30.623
30.858 | 261
254
246
235 | 29.474
29.736
29.990
30.237
30.475 | 262
254
247
238 | 2340
2430
2520
2610
2700 | | | | | | | , | | | | р | |--------------|------------------|------------|------------------|-------------|------------------|--------------------|------------------|-----------------------------|--------------| | °K | .01 | atm | .1 | atm | .4 | atm | .7 | atm | °R | | | 1 | | <u> </u> | | · | | <u> </u> | | l | | 200 | 1.3462 | -70 | 1.3481 | -71 | 1.3555 | -89 | | | 360 | | 210 | 1.3392 | -67 | 1.3410 | -70 | 1.3466 | -78 | | | 378 | | 220 | 1.3325 | -65 | 1.3340 | -68 | 1.3388 | - 74 | 1.3436 | -81 | 396 | | 230
240 | 1.3260 | -63 | 1.3272 | -64 | 1.3314 | -70 | 1.3355 | -75 | 414 | | 240 | 1.3197 | -60 | 1.3208 | -61 | 1.3244 | -66 | 1.3280 | -71 | 432 | | 250 | 1.3137 | -57 | 1.3147 | -59 | 1.3178 | -62 | 1.3209 | -66 | 450 | | 260
270 | 1.3080
1.3026 | -54 | 1.3088 | -55 | 1.3116 | -60 | 1.3143 | -62 | 468 | | 280 | 1.2974 | -52
-49 | 1.3033
1.2980 | -53
-50 | 1.3056
1.3002 | −54
~ 53 | 1.3081
1.3023 | - 58
- 5 5 | 486
504 | | 290 | 1.2925 | -47 | 1.2930 | -47 | 1.2949 | -49 | 1.2968 | -51 | 522 | | 300 | 1.2878 | -44 | 1.2883 | 45 | 1.2900 | | 1.2917 | | 540 | | 310 | 1.2834 | -44
-43 | 1.2838 | -45
-43 | 1.2853 | -47
-44 | 1.2869 | ~48
~46 | 558 | | 320 | 1.2791 | -40 | 1.2795 | -40 | 1.2809 | -42 | 1.2823 | -43 | 576 | | 330 | 1.2751 | -38 | 1.2755 | -38 | 1.2767 | -39 | 1.2780 | -41 | 594 | | 340 | 1.2713 | 36 | 1.2717 | -37 | 1.2728 | -38 | 1.2739 | -38 | 612 | | 3 50 | 1.2677 | -35 | 1.2680 | -35 | 1.2690 | 35 | 1.2701 | -37 | 630 | | 360 | 1.2642 | -33 | 1.2645 | -33 | 1.2655 | -34 | 1.2664 | -35 | 648 | | 370 | 1.2609 | -31 | 1.2612 | -31 | 1.2621 | -33 | 1.2629 | -3 3 | 666 | | 380
390 | 1.2578
1.2548 | -30
-29 | 1.2581
1.2550 | -31
-29 | 1.2588
1.2558 | -30
-30 | 1.2596
1.2565 | -31 | 684
702 | | | | -27 | 1.2550 | -27 | 1.2330 | -50 | 1.2303 | -30 | 702 | | 400 | 1.2519 | -27 | 1.2521 | -27 | 1.2528 | -28 | 1.2535 | -29 | 720 | | 410
420 | 1.2492
1.2466 | -26 | 1.2494 | -26 | 1.2500 | -26 | 1.2506 | -27 | 738 | | 430 | 1.2441 | -25
-24 | 1.2468
1.2442 | -26
-24 | 1.2474
1.2448 | -26
-25 | 1.2479
1.2453 | -26
-25 | 756
774 | | 440 | 1.2417 | -23 | 1.2418 | -23 | 1.2423 | -23 | 1.2428 | -25
-24 | 792 | | 450 | 1.2394 | -23 | 1,2395 | -22 | 1.2400 | -23 | 1.2404 | -23 | 810 | | 460 | 1.2371 | -21 | 1.2373 | -22
-22 | 1.2377 | -23
-22 | 1.2381 | -23
-22 | 828 | | 470 | 1.2350 | -21 | 1.2351 | -21 | 1.2355 | -21 | 1.2359 | -21 | 846 | | 480 | 1.2329 | -19 | 1.2330 | -20 | 1.2334 | -20 | 1.2338 | -20 | 864 | | 490 | 1.2310 | -20 | 1.2310 | -19 | 1.2314 | -19 | 1.2318 | -20 | 882 | | 500 | 1.2290 | -18 | 1.2291 | -18 | 1.2295 | -19 | 1.2298 | -19 | 900 | | 510 | 1.2272 | -18 | 1.2273 | -18 | 1.2276 | -18 | 1.2279 | -18 | 918 | | 520
530 | 1.2254 | 17 | 1.2255 | -17 | 1.2258 | -17 | 1.2261 | -17 | 936 | | 540 | 1.2237
1.2220 | -17
-16 | 1.2238
1.2221 | -17
-16 | 1.2241
1.2224 | -17
-16 | 1.2244
1.2227 | -17
-16 | 954
972 | | | | | | | - • | | | | | | 550
560 | 1.2204
1.2189 | -15
-15 | 1.2205
1.2190 | -15
-15 | 1.2208
1.2192 | -16 | 1.2211
1.2195 | -16 | 990
1008 | | 570 | 1.2174 | -15
-14 | 1.2175 | -15
-15 | 1.2177 | -15
-15 | 1.2180 | -15
-15 | 1026 | | 580 | 1.2160 | -15 | 1.2160 | -14 | 1.2162 | -14 | 1.2165 | -14 | 1044 | | 590 | 1.2145 | -13 | 1.2146 | -14 | 1.2148 | -13 | 1.2151 | 14 | 1062 | | 600 | 1.2132 | -13 | 1.2132 | -13 | 1.2135 | -14 | 1.2137 | -14 | 1080 | | 610 | 1.2119 | -13 | 1.2119 | -13 | 1.2121 | -13 | 1.2123 | -13 | 1098 | | 620
630 | 1.2106 | -13 | 1.2106 | -12 | 1.2108 | -12 | 1.2110 | -12 | 1116 | | 640 | 1.2093
1.2081 | -12
-11 | 1.2094
1.2082 | -12
-12 | 1.2096
1.2084 | -12
-12 | 1.2098
1.2085 | -13
-12 | 1134
1152 | | | | | | | | | | | | | 650 | 1.2070 | -12 | 1.2070 | -11 | 1.2072 | -12 | 1.2073 | -11 | 1170 | | 660
670 | 1.2058
1.2047 | -11
-10 | 1.2059
1.2048 | -11
-11 | 1.2060
1.2049 | -11
-10 | 1.2062
1.2051 | -11
-11 | 1188
1206 | | 680 | 1.2037 | -10
-11 | 1.2037 | -11
-10 | 1.2039 | -11 | 1.2040 | -11
-11 | 1224 | | 690 | 1.2026 | -10 | 1.2027 | -11 | 1.2028 | -10 | 1.2029 | -10 | 1242 | | 7 0 0 | 1,2016 | -10 | 1.2016 | -10 | 1.2018 | -10 | 1.2019 | -10 | 1260 | | 710 | 1.2006 | - 9 | 1.2006 | - 9 | 1.2008 | -10
-10 | 1.2009 | -10
-10 | 1278 | | 720 | 1.1997 | -10 | 1.1997 | - 9 | 1.1998 | - 9 | 1.1999 | - 9 | 1296 | | 730
740 | 1.1987
1.1978 | - 9
- 9 | 1.1988
1.1979 | - 9
- 9 | 1.1989
1.1980 | 9
9 | 1.1990
1.1981 | - 9
- 9 | 1314
1332 | | | | | | | | | | | | | 750
760 | 1.1969
1.1961 | - 8
- 9 | 1.1970 | - 9 | 1.1971 | - 9 | 1.1972 | - 9 | 1350 | | 760
770 | 1.1951 | - 9
- 8 | 1.1961
1.1953 | - 8
- 8 | 1.1962
1.1954 | - 8
- 8 | 1.1963
1.1955 | - 8
- 8 | 1368
1386 | | 780 | 1.1944 | - 8 | 1.1945 | - 8 | 1.1946 | - 8 | 1.1947 | - 8 | 1404 | | 790 | 1.1936 | - 7 | 1.1937 | - 8 | 1.1938 | - 8 | 1.1939 | - 8 | 1422 | | 800 | 1.1929 | | 1.1929 | | 1.1930 | | 1.1931 | | 1440 | | | | | | | | | | | | Table 4-6. SPECIFIC-HEAT RATIO OF CARBON DIOXIDE - Cont. | γ | 2 | С | /C, | |---|---|---|-----| | | | P | • | | °K | .01 | atm | .1 | atm | .4 | atm | .7 | atm | °R | |--|--|--|---|---|--|---|--|---|--| | 800
850
900
950
1000
1150
1200
1250
1350
1400
1450
1500 | 1.1929
1.1893
1.1861
1.1863
1.1808
1.1786
1.1748
1.1748
1.1732
1.1717
1.1691
1.1680
1.1660 | -36
-32
-28
-25
-22
-20
-18
-16
-15
-14
-12
-11 | 1.1929
1.1893
1.1861
1.1883
1.1808
1.1786
1.1748
1.1732
1.1717
1.1703
1.1691
1.1680
1.1670
1.16661 | -36 -32 -28 -25 -22 -20 -18 -16 -15 -14 -12 -11 -10 - 9 | 1.1930
1.1894
1.1862
1.1834
1.1809
1.1786
1.1748
1.1748
1.1732
1.1717
1.1692
1.1680
1.1670 | -36 -32 -28 -25 -23 -20 -18 -16 -15 -13 -12 -12 -10 - 9 | 1.1931
1.1895
1.1863
1.1834
1.1809
1.1787
1.1767
1.1748
1.1732
1.1718
1.1704
1.1692
1.1681
1.1671
 -36
-32
-29
-25
-22
-20
-19
-16
-14
-14
-12
-11
-10 | 1440
1530
1620
1710
1800
1890
2070
2160
2250
2340
2430
2520
2610 | | °K | | l atm | 4 | atm | 7 | atm | 10 | atm | *R | |---------------------------------|---|----------------------|---|---------------------------------|---|---------------------------------|---|---------------------------------|--------------------------------------| | 220
230
240 | 1.349
1.340
1.332 | 9
8
8 | 1.385
1.367 | -18
-11 | 1.451
1.403 | -48
-16 | 1.448 | -32 | 396
414
432 | | 250 | 1.324 | 7 | 1.356 | -11 | 1.387 | -13 | 1.416 | -15 | 450 | | 260 | 1.317 | 6 | 1.345 | - 9 | 1.374 | - 9 | 1.401 | - 2 | 468 | | 270 | 1.311 | 7 | 1.336 | - 9 | 1.365 | -13 | 1.399 | -17 | 486 | | 280 | 1.304 | 5 | 1.327 | - 8 | 1.352 | -11 | 1.382 | -16 | 504 | | 290 | 1.299 | 6 | 1.319 | - 8 | 1.341 | -10 | 1.366 | -14 | 522 | | 300 | 1.293 | -5 | 1.311 | - 7 | 1.331 | -10 | 1.352 | -12 | 540 | | 310 | 1.288 | -4 | 1.304 | - 6 | 1.321 | - 8 | 1.340 | -11 | 558 | | 320 | 1.284 | -5 | 1.298 | - 6 | 1.313 | - 7 | 1.329 | - 9 | 576 | | 330 | 1.279 | -4 | 1.292 | - 5 | 1.306 | - 7 | 1.320 | - 8 | 594 | | 340 | 1.275 | -4 | 1.287 | - 5 | 1.299 | - 6 | 1.312 | - 7 | 612 | | 350
360
370
380
390 | 1.271
1.267
1.264
1.260
1.257 | -4
-3
-4
-3 | 1.282
1.277
1.273
1.269
1.265 | - 5
- 4
- 4
- 4
- 4 | 1.293
1.287
1.282
1.277
1.273 | - 6
- 5
- 5
- 4
- 5 | 1.305
1.298
1.292
1.286
1.281 | - 7
- 6
- 6
- 5
- 5 | 630
648
666
684
702 | | 400 | 1.254 | -3 | 1.261 | - 3 | 1.268 | - 3 | 1.276 | - 5 | 720 | | 410 | 1.251 | -3 | 1.258 | - 4 | 1.265 | - 4 | 1.271 | - 4 | 738 | | 420 | 1.248 | -2 | 1.254 | - 3 | 1.261 | - 4 | 1.267 | - 4 | 756 | | 430 | 1.246 | -3 | 1.251 | - 3 | 1.257 | - 3 | 1.263 | - 4 | 774 | | 440 | 1.243 | -2 | 1.248 | - 2 | 1.254 | - 3 | 1.259 | - 3 | 792 | | 450 | 1.241 | 2 | 1.246 | - 3 | 1.251 | - 3 | 1.256 | - 4 | 810 | | 460 | 1.239 | 3 | 1.243 | - 2 | 1.248 | - 3 | 1.252 | - 3 | 828 | | 470 | 1.236 | 2 | 1.241 | - 3 | 1.245 | - 3 | 1.249 | - 3 | 846 | | 480 | 1.234 | 2 | 1.238 | - 2 | 1.242 | - 2 | 1.246 | - 3 | 864 | | 490 | 1.232 | 2 | 1.236 | - 2 | 1.240 | - 3 | 1.243 | - 2 | 882 | | 500 | 1.230 | -2 | 1.234 | - 2 | 1.237 | - 2 | 1.241 | - 3 | 900 | | 510 | 1.228 | -2 | 1.232 | - 2 | 1.235 | - 2 | 1.238 | - 2 | 918 | | 520 | 1.226 | -1 | 1.230 | - 2 | 1.233 | - 2 | 1.236 | - 2 | 936 | | 530 | 1.225 | -2 | 1.228 | - 2 | 1.231 | - 2 | 1.234 | - 2 | 954 | | 540 | 1.223 | -2 | 1.226 | - 2 | 1.229 | - 2 | 1.232 | - 3 | 972 | | 550 | 1.221 | -1 | 1.224 | - 2 | 1.227 | - 2 | 1.229 | - 2 | 990 | | 560 | 1.220 | -2 | 1.222 | - 1 | 1.225 | - 2 | 1.227 | - 2 | 1008 | | 570 | 1.218 | -1 | 1.221 | - 2 | 1.223 | - 2 | 1.225 | - 2 | 1026 | | 580 | 1.217 | -2 | 1.219 | - 2 | 1.221 | - 1 | 1.223 | - 1 | 1044 | | 590 | 1.215 | -1 | 1.217 | - 1 | 1.220 | - 2 | 1.222 | - 2 | 1062 | | 600
610
620
630
640 | 1.214
1.213
1.211
1.210
1.209 | -1
-2
-1
-1 | 1.216
1.214
1.213
1.212
1.210 | - 2
- 1
- 1
- 2
- 1 | 1.218
1.216
1.215
1.214
1.212 | - 2
- 1
- 1
- 2
- 1 | 1.220
1.218
1.217
1.215
1.214 | - 2
- 1
- 2
- 1
- 2 | 1080
1098
1116
1134
1152 | | 650 | 1.208 | -2 | 1.209 | - 1 | 1.211 | - 1 | 1.212 | - 1 | 1170 | | 660 | 1.206 | -1 | 1.208 | - 1 | 1.210 | - 2 | 1.211 | - 1 | 1188 | | 670 | 1.205 | -1 | 1.207 | - 1 | 1.208 | - 1 | 1.210 | - 2 | 1206 | | 680 | 1.204 | -1 | 1.206 | - 1 | 1.207 | - 1 | 1.208 | - 1 | 1224 | | 690 | 1.203 | -1 | 1.205 | - 2 | 1.206 | - 1 | 1.207 | 1 | 1242 | | 700
710
720
730
740 | 1.202
1.201
1.200
1.199
1.198 | -1
-1
-1
-1 | 1.203
1.202
1.201
1.200
1.199 | - 1
- 1
- 1
- 1
- 1 | 1.205
1.204
1.203
1.202
1.201 | - 1
- 1
- 1
- 1 | 1.206
1.205
1.204
1.203
1.202 | - 1
- 1
- 1
- 1
- 1 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | 1.197
1.196
1.196
1.195
1.194 | -1
-1
-1
-1 | 1.198
1.197
1.197
1.196
1.195 | - 1
- 1
- 1
- 1 | 1.200
1.199
1.198
1.197
1.196 | - 1
- 1
- 1
- 1
- 1 | 1.201
1.200
1.199
1.198
1.197 | - 1
- 1
- 1
- 1
- 1 | 1350
1368
1386
1404
1422 | | 800 | 1.193 | | 1.194 | | 1.195 | | 1.196 | | 1440 | $\gamma = C_{p}/C_{v}$ | *K | | l atm | 4 | atm | 7 | atm | 10 | atm | •R | |--------------------------------------|---|----------------------|---|--------------------------|---|--------------------------|---|--------------------------|--------------------------------------| | 800 | 1.193 | -3 | 1.194 | - 4 | 1.195 | - 4 | 1.196 | - 4 | 1440 | | 850 | 1.190 | -4 | 1.190 | - 3 | 1.191 | - 3 | 1.192 | - 4 | 1530 | | 900 | 1.186 | -3 | 1.187 | - 3 | 1.188 | - 3 | 1.188 | - 3 | 1620 | | 950 | 1.183 | -2 | 1.184 | - 2 | 1.185 | - 3 | 1.185 | - 2 | 1710 | | 1000 | 1.181 | -2 | 1.182 | - 3 | 1.182 | - 2 | 1.183 | - 3 | 1800 | | 1050 | 1.179 | -2 | 1.179 | - 2 | 1.180 | - 2 | 1.180 | - 2 | 1890 | | 1100 | 1.177 | -2 | 1.177 | - 2 | 1.178 | - 2 | 1.178 | - 2 | 1980 | | 1150 | 1.175 | -2 | 1.175 | - 1 | 1.176 | - 2 | 1.176 | - 2 | 2070 | | 1200 | 1.173 | -1 | 1.174 | - 2 | 1.174 | - 2 | 1.174 | - 1 | 2160 | | 1250 | 1.172 | -2 | 1.172 | - 1 | 1.172 | - 1 | 1.173 | - 2 | 2250 | | 1300
1350
1400
1450
1500 | 1.170
1.169
1.168
1.167
1.166 | -1
-1
-1
-1 | 1.171
1.170
1.168
1.167
1.166 | - 1
- 2
- 1
- 1 | 1.171
1.170
1.169
1.168
1.167 | - 1
- 1
- 1
- 1 | 1.171
1.170
1.169
1.168
1.167 | - 1
- 1
- 1
- 1 | 2340
2430
2520
2610
2700 | | °K | IO atm | 40 atm | 70 atm | 100 atm | °R | |---------------------------------|---|---|----------------------------------|-------------------------------------|---------------------------------| | 240 | 1.448 -32 | | | | 432 | | 250
260
270
280
290 | 1.416 -15
1.401 - 2
1.399 -17
1.382 -16
1.366 -14 | | | | 450
468
486
504
522 | | 300
310
320
330
340 | 1.352 -12
1.340 -11
1.329 - 9
1.320 - 8
1.312 - 7 | 1.72 -7
1.65 -5
1.60 -5
1.55 -4
1.51 -4 | 2.23 -17
2.06 -13
1.93 -11 | 5.13 -128
3.85 - 90
2.95 - 55 | 540
558
576
594
612 | | 350 | 1.305 - 7 | 1.47 -3 | 1.82 -10 | 2.40 - 34 | 630 | | 360 | 1.298 - 6 | 1.44 -2 | 1.72 - 7 | 2.06 - 16 | 648 | | 370 | 1.292 - 6 | 1.42 -2 | 1.65 - 6 | 1.90 - 11 | 666 | | 380 | 1.286 - 5 | 1.40 -2 | 1.59 - 6 | 1.79 - 9 | 684 | | 390 | 1.281 - 5 | 1.38 -2 | 1.53 - 5 | 1.70 - 7 | 702 | | 400 | 1.276 - 5 | 1.364 -13 | 1.483 - 29 | 1.630 - 45 | 720 | | 410 | 1.271 - 4 | 1.351 -11 | 1.454 - 22 | 1.585 - 35 | 738 | | 420 | 1.267 - 4 | 1.340 -10 | 1.432 - 20 | 1.550 - 30 | 756 | | 430 | 1.263 - 4 | 1.330 - 9 | 1.412 - 18 | 1.520 - 30 | 774 | | 440 | 1.259 - 3 | 1.321 - 9 | 1.394 - 16 | 1.490 - 27 | 792 | | 450 | 1.256 - 4 | 1.312 - 7 | 1.378 - 13 | 1.463 - 24 | 810 | | 460 | 1.252 - 3 | 1.305 - 7 | 1.365 - 11 | 1.439 - 20 | 828 | | 470 | 1.249 - 3 | 1.298 - 6 | 1.354 - 8 | 1.419 - 10 | 846 | | 480 | 1.246 - 3 | 1.292 - 5 | 1.346 - 8 | 1.409 - 11 | 864 | | 490 | 1.243 - 2 | 1.287 - 6 | 1.338 - 8 | 1.398 - 11 | 882 | | 500 | 1.241 - 3 | 1.281 - 5 | 1.330 - 10 | 1.387 - 15 | 900 | | 510 | 1.238 - 2 | 1.276 - 5 | 1.320 - 8 | 1.372 - 15 | 918 | | 520 | 1.236 - 2 | 1.271 - 4 | 1.312 - 8 | 1.357 - 12 | 936 | | 530 | 1.234 - 2 | 1.267 - 5 | 1.304 - 7 | 1.345 - 10 | 954 | | 540 | 1.232 - 3 | 1.262 - 4 | 1.297 - 6 | 1.335 - 9 | 972 | | 550 | 1.229 - 2 | 1.258 - 3 | 1.291 - 6 | 1.326 - 8 | 990 | | 560 | 1.227 - 2 | 1.255 - 4 | 1.285 - 5 | 1.318 - 8 | 1008 | | 570 | 1.225 - 2 | 1.251 - 3 | 1.280 - 5 | 1.310 - 7 | 1026 | | 580 | 1.223 - 1 | 1.248 - 3 | 1.275 - 5 | 1.303 - 6 | 1044 | | 590 | 1.222 - 2 | 1.245 - 3 | 1.270 - 5 | 1.297 - 6 | 1062 | | 600 | 1.220 - 2 | 1.242 - 3 | 1.265 - 4 | 1.291 - 6 | 1080 | | 610 | 1.218 - 1 | 1.239 - 3 | 1.261 - 3 | 1.285 - 5 | 1098 | | 620 | 1.217 - 2 | 1.236 - 2 | 1.258 - 4 | 1.280 - 5 | 1116 | | 630 | 1.215 - 1 | 1.234 - 2 | 1.254 - 4 | 1.275 - 5 | 1134 | | 640 | 1.214 - 2 | 1.232 - 3 | 1.250 - 3 | 1.270 - 4 | 1152 | | 650 | 1.212 - 1 | 1.229 - 2 | 1.247 - 3 | 1.266 - 5 | 1170 | | 660 | 1.211 - 1 | 1.227 - 2 | 1.244 - 3 | 1.261 - 4 | 1188 | | 670 | 1.210 - 2 | 1.225 - 2 | 1.241 - 3 | 1.257 - 4 | 1206 | | 680 | 1.208 - 1 | 1.223 - 2 | 1.238 - 2 | 1.253 - 3 | 1224 | | 690 | 1.207 - 1 | 1.221 - 1 | 1.236 - 3 | 1.250 - 3 | 1242 | | 700 | 1.206 - 1 | 1.220 - 2 | 1.233 - 2 | 1.247 - 3 | 1260 | | 710 | 1.205 - 1 | 1.218 - 2 | 1.231 - 3 | 1.244 - 3 | 1278 | | 720 | 1.204 - 1 | 1.216 - 2 | 1.228 - 2 | 1.241 - 3 | 1296 | | 730 | 1.203 - 1 | 1.214 - 1 | 1.226 - 2 | 1.238 - 3 | 1314 | | 740 | 1.202 - 1 | 1.213 - 1 | 1.224 - 2 | 1.235 - 2 | 1332 | | 750 | 1.201 - 1 | 1.212 - 2 | 1.222 - 2 | 1.233 - 3 | 1350 | | 760 | 1.200 - 1 | 1.210 - 1 | 1.220 - 1 | 1.230 - 2 | 1368 | | 770 | 1.199 - 1 | 1.209 - 1 | 1.219 - 2 | 1.228 - 2 | 1386 | | 780 | 1.198 - 1 | 1.208 - 2 | 1.217 - 2 | 1.226 - 2 | 1404 | | 790 | 1.197 - 1 | 1.206 - 1 | 1.215 - 1 | 1.224 - 2 | 1422 | | 800 | 1,196 | 1.205 | 1.214 | 1.222 | 1440 | $\gamma = C_p/C_q$ Table 4-6. SPECIFIC-HEAT RATIO OF CARBON DIOXIDE - Cont. | °K | IO atm | | 40 | 40 atm | | 70 atm | | 100 atm | | |
--|--|----------------------------------|--|--|--|--|--|--|--|--| | 800
850
900
950
1000
1050
1100 | 1.196
1.192
1.188
1.185
1.183
1.180
1.178
1.176 | - 4
- 4
- 3
- 2
- 3 | 1.205
1.199
1.195
1.191
1.187
1.184
1.182
1.179 | 6
4
4
3
2
3
2 | 1.214
1.207
1.201
1.196
1.192
1.188
1.185
1.182 | - 7
- 6
- 5
- 4
- 4 | 1.222
1.213
1.206
1.201
1.196
1.192
1.188
1.185 | - 9
- 7
- 5
- 5
- 4
- 4
- 3
- 2 | 1440
1530
1620
1710
1800
1890
1980
2070 | | | 1200
1250
1300
1350
1400
1450 | 1.174
1.173
1.171
1.170
1.169
1.168 | -1
-2
-1
-1
-1
-1 | 1.177
1.175
1.174
1.172
1.171
1.170 | - 2
- 1
- 2
- 1
- 1
- 1 | 1.180
1.178
1.176
1.174
1.173
1.171 | - 2
- 2
- 2
- 1
- 2
- 1 | 1.183
1.180
1.178
1.176
1.174
1.173 | - 2
- 2
- 2
- 2
- 1
- 1 | 2160
2250
2340
2430
2520
2610 | | Table 4-7. SOUND VELOCITY AT LOW FREQUENCY IN CARBON DIOXIDE | a | / | a | |---|---|---| | | | | | | | | | | | | | | -, -0 | |---------------------------------|---|----------------------------|----------------------------------|---------------------------------|---|--------------------------|-------------------------|-------------------|---------------------------------| | °K | .01 | atm | .1 | atm | .4 | atm | .7 | atm | °R | | 200
210
220
230
240 | .8736
.8929
.9117
.9299
.9476 | 193
188
182
. 177 | .8727
.8922
.9110
.9293 | 195
188
183
179
174 | .8700
.8896
.9088
.9274
.9455 | 196
192
186
181 | .9065
.9254
.9437 | 189
183
178 | 360
378
396
414
432 | | 250 | .9650 | 170 | .9646 | 170 | .9631 | 172 | .9615 | 174 | 450 | | 260 | .9820 | 166 | .9816 | 167 | .9803 | 167 | .9789 | 169 | 468 | | 270 | .9986 | 163 | .9983 | 163 | .9970 | 166 | .9958 | 166 | 486 | | 280 | 1.0149 | 161 | 1.0146 | 160 | 1.0136 | 161 | 1.0124 | 163 | 504 | | 290 | 1.0310 | 157 | 1.0306 | 158 | 1.0297 | 158 | 1.0287 | 160 | 522 | | 300 | 1.0467 | 155 | 1.0464 | 155 | 1.0455 | 156 | 1.0447 | 156 | 540 | | 310 | 1.0622 | 152 | 1.0619 | 152 | 1.0611 | 153 | 1.0603 | 154 | 558 | | 320 | 1.0774 | 150 | 1.0771 | 151 | 1.0764 | 152 | 1.0757 | 152 | 576 | | 330 | 1.0924 | 147 | 1.0922 | 148 | 1.0916 | 148 | 1.0909 | 149 | 594 | | 340 | 1.1071 | 146 | 1.1070 | 145 | 1.1064 | 146 | 1.1058 | 147 | 612 | | 350 | 1.1217 | 143 | 1.1215 | 144 | 1.1210 | 145 | 1.1205 | 144 | 630 | | 360 | 1.1360 | 142 | 1.1359 | 142 | 1.1355 | 142 | 1.1349 | 143 | 648 | | 370 | 1.1502 | 140 | 1.1501 | 140 | 1.1497 | 140 | 1.1492 | 141 | 666 | | 380 | 1.1642 | 138 | 1.1641 | 138 | 1.1637 | 139 | 1.1633 | 139 | 684 | | 390 | 1.1780 | 137 | 1.1779 | 137 | 1.1776 | 137 | 1.1772 | 137 | 702 | | 400 | 1.1917 | 135 | 1.1916 | 135 | 1.1913 | 135 | 1.1909 | 136 | 720 | | 410 | 1.2052 | 133 | 1.2051 | 133 | 1.2048 | 134 | 1.2045 | 134 | 738 | | 420 | 1.2185 | 132 | 1.2184 | 132 | 1.2182 | 132 | 1.2179 | 132 | 756 | | 430 | 1.2317 | 130 | 1.2316 | 131 | 1.2314 | 130 | 1.2311 | 131 | 774 | | 440 | 1.2447 | 129 | 1.2447 | 129 | 1.2444 | 130 | 1.2442 | 130 | 792 | | 450 | 1.2576 | 128 | 1.2576 | 127 | 1.2574 | 128 | 1.2572 | 128 | 810 | | 460 | 1.2704 | 126 | 1.2703 | 127 | 1.2702 | 126 | 1.2700 | 126 | 828 | | 470 | 1.2830 | 125 | 1.2830 | 124 | 1.2828 | 125 | 1.2826 | 126 | 846 | | 480 | 1.2955 | 124 | 1.2954 | 124 | 1.2953 | 124 | 1.2952 | 124 | 864 | | 490 | 1.3079 | 122 | 1.3078 | 123 | 1.3077 | 123 | 1.3076 | 123 | 882 | | 500 | 1.3201 | 122 | 1.3201 | 121 | 1.3200 | 121 | 1.3199 | 121 | 900 | | 510 | 1.3323 | 120 | 1.3322 | 121 | 1.3321 | 121 | 1.3320 | 121 | 918 | | 520 | 1.3443 | 119 | 1.3443 | 119 | 1.3442 | 119 | 1.3441 | 120 | 936 | | 530 | 1.3562 | 118 | 1.3562 | 118 | 1.3561 | 118 | 1.3561 | 118 | 954 | | 540 | 1.3680 | 117 | 1.3680 | 117 | 1.3679 | 118 | 1.3679 | 118 | 972 | | 550 | 1.3797 | 116 | 1.3797 | 116 | 1.3797 | 116 | 1.3797 | 116 | 990 | | 560 | 1.3913 | 115 | 1.3913 | 115 | 1.3913 | 115 | 1.3913 | 115 | 1008 | | 570 | 1.4028 | 115 | 1.4028 | 114 | 1.4028 | 114 | 1.4028 | 114 | 1026 | | 580 | 1.4143 | 113 | 1.4142 | 113 | 1.4142 | 113 | 1.4142 | 114 | 1044 | | 590 | 1.4256 | 112 | 1.4255 | 113 | 1.4255 | 113 | 1.4256 | 112 | 1062 | | 600 | 1.4368 | 111 | 1.4368 | 111 | 1.4368 | 111 | 1.4368 | 112 | 1080 | | 610 | 1.4479 | 111 | 1.4479 | 110 | 1.4479 | 111 | 1.4480 | 110 | 1098 | | 620 | 1.4590 | 109 | 1.4589 | 110 | 1.4590 | 110 | 1.4590 | 110 | 1116 | | 630 | 1.4699 | 109 | 1.4699 | 109 | 1.4700 | 109 | 1.4700 | 109 | 1134 | | 640 | 1.4808 | 108 | 1.4808 | 108 | 1.4809 | 108 | 1.4809 | 108 | 1152 | | 650 | 1.4916 | 107 | 1.4916 | 108 | 1.4917 | 107 | 1.4917 | 108 | 1170 | | 660 | 1.5023 | 107 | 1.5024 | 106 | 1.5024 | 107 | 1.5025 | 107 | 1188 | | 670 | 1.5130 | 106 | 1.5130 | 106 | 1.5131 | 106 | 1.5132 | 106 | 1206 | | 680 | 1.5236 | 104 | 1.5236 | 105 | 1.2537 | 105 | 1.5238 | 105 | 1224 | | 690 | 1.5340 | 104 | 1.5341 | 104 | 1.5342 | 104 | 1.5343 | 104 | 1242 | | 700 | 1.5444 | 104 | 1.5445 | 103 | 1.5446 | 103 | 1.5447 | 103 | 1260 | | 710 | 1.5548 | 103 | 1.5548 | 103 | 1.5549 | 103 | 1.5550 | 103 | 1278 | | 720 | 1.5651 | 102 | 1.5651 | 103 | 1.5652 | 103 | 1.5653 | 103 | 1296 | | 730 | 1.5753 | 102 | 1.5754 | 102 | 1.5755 | 101 | 1.5756 | 101 | 1314 | | 740 | 1.5855 | 101 | 1.5856 | 100 | 1.5856 | 101 | 1.5857 | 101 | 1332 | | 750 | 1.5956 | 100 | 1.5956 | 100 | 1.5957 | 100 | 1.5958 | 100 | 1350 | | 760 | 1.6056 | 99 | 1.6056 | 100 | 1.6057 | 100 | 1.6058 | 100 | 1368 | | 770 | 1.6155 | 99 | 1.6156 | 99 | 1.6157 | 99 | 1.6158 | 100 | 1386 | | 780 | 1.6254 | 99 | 1.6255 | 99 | 1.6256 | 99 | 1.6258 | 98 | 1404 | | 790 | 1.6353 | 98 | 1.6354 | 98 | 1.6355 | 98 | 1.6356 | 98 | 1422 | | 800 | 1.6451 | | 1.6452 | | 1.6453 | | 1.6454 | | 1440 | Table 4-7. SOUND VELOCITY AT LOW FREQUENCY IN CARBON DIOXIDE - Cont. | °K | .01 | atm | .1 0 | atm | .4 a | tm | .7 | atm | °R | |-------------|------------------|-----|------------------|------------|------------------|------------|------------------|------------|--------------| | | | | 1 (450 | | 1 /452 | | 1 /454 | | 1440 | | 800 | 1.6451 | 481 | 1.6452 | 480 | 1.6453 | 481 | 1.6454
1.6935 | 481 | 1440
1530 | | 850
900 | 1.6932
1.7399 | 467 | 1.6932
1.7400 | 468 | 1.6934
1.7401 | 467 | 1.7403 | 468
455 | 1620 | | | 1.7855 | 456 | 1.7855 | 455 | 1.7857 | 456 | 1.7858 | 455
445 | 1710 | | 950
1000 | 1.8300 | 445 | 1.8300 | 445
434 | 1.8302 | 445
434 | 1.8303 | 445
435 | 1800 | | 1000 | 1.6500 | 434 | 1.0500 | 434 | 1.0002 | 454 | 1.000 | 433 | 1000 | | 1050 | 1.8734 | 425 | 1.8734 | 425 | 1.8736 | 424 | 1.8738 | 425 | 1890 | | 1100 | 1.9159 | 415 | 1.9159 | 416 | 1.9160 | 416 | 1.9163 | 415 | 1980 | | 1150 | 1.9574 | 408 | 1.9575 | 407 | 1.9576 | 407 | 1.9578 | 40B- | 2070 | | 1200 | 1.9982 | 399 | 1.9982 | 399 | 1.9983 | 400 | 1.9986 | 399 | 2160 | | 1250 | 2.0381 | 391 | 2.0381 | 391 | 2.0383 | 392 | 2,0385 | 391 | 2250 | | | | | | | _, | | | | | | 1300 | 2.0772 | 385 | 2.0772 | 385 | 2.0775 | 384 | 2.0776 | 385 | 2340 | | 1350 | 2.1157 | 378 | 2.1157 | 378 | 2,1159 | 378 | 2,1161 | 378 | 2430 | | 1400 | 2.1535 | 371 | 2.1535 | 372 | 2.1537 | 372 | 2.1539 | 372 | 2520 | | 1450 | 2.1906 | 366 | 2.1907 | 366 | 2.1909 | 366 | 2,1911 | 365 | 2610 | | 1500 | 2.2272 | | 2,2273 | | 2.2275 | | 2.2276 | | 2700 | Table 4-7. SOUND VELOCITY AT LOW FREQUENCY IN CARBON DIOXIDE - Cont. | a/ | a۸ | |----|----| |----|----| | °K | | atm | 4 | atm | 7 | atm | 10 | atm | *R | |---------------------------------|---|----------------------------|---|----------------------------|---|----------------------------|---|----------------------------|--------------------------------------| | 220
230
240 | .904
.923
.942 | 19
19
18 | .900
.923 | 23
21 | .868
.897 | 29
27 | .863 | 36 | 396
414
432 | | 250
260
270
280
290 | .960
.978
.995
1.011
1.028 | 18
17
16
17
16 | .944
.963
.982
1.000
1.018 | 19
19
18
18 | .924
.947
.970
.989
1.008 | 23
23
19
19
18 | .899
.928
.957
.978
.997 | 29
29
21
19
19 | 450
468
486
504
522 | | 300
310
320
330
340 | 1.044
1.060
1.075
1.090
1.105 | 16
15
15
15
15 | 1.035
1.052
1.068
1.084
1.100 | 17
16
16
16
15 | 1.026
1.043
1.060
1.077
1.093 | 17
17
17
16
16 | 1.016
1.034
1.052
1.070
1.087 | 18
18
18
17 | 540
558
576
594
612 | | 350
360
370
380
390 | 1.120
1.134
1.149
1.163
1.177 | 14
15
14
14 | 1.115
1.130
1.144
1.159
1.173 | 15
14
15
14 | 1.109
1.124
1.139
1.154
1.169 | 15
15
15
15
15 | 1.104
1.120
1.135
1.151
1.166 | 16
15
16
15 | 630
648
666
684
702 | | 400
410
420
430
440 | 1.191
1.204
1.218
1.231
1.244 | 13
14
13
13 | 1.187
1.201
1.215
1.228
1.242 |
14
14
13
14 | 1.184
1.198
1.212
1.226
1.240 | 14
14
14
14
13 | 1.181
1.195
1.210
1.224
1.238 | 14
15
14
14 | 720
738
756
774
792 | | 450
460
470
480
490 | 1.257
1.270
1.283
1.295
1.308 | 13
13
12
13 | 1.255
1.268
1.281
1.294
1.306 | 13
13
13
12
13 | 1.253
1.266
1.279
1.292
1.305 | 13
13
13
13 | 1.251
1.265
1.278
1.291
1.304 | 14
13
13
13 | 810
828
846
864
882 | | 500
510
520
530
540 | 1.320
1.332
1.344
1.356
1.368 | 12
12
12
12
12 | 1.319
1.331
1.343
1.355
1.367 | 12
12
12
12
12 | 1.318
1.330
1.343
1.355
1.367 | 12
13
12
12
12 | 1.317
1.330
1.342
1.355
1.367 | 13
12
13
12 | 900
918
936
954
972 | | 550
560
570
580
590 | 1.380
1.391
1.403
1.414
1.426 | 11
12
11
12 | 1.379
1.391
1.403
1.414
1.426 | 12
12
11
12
11 | 1.379
1.391
1.403
1.414
1.426 | 12
12
11
12
11 | 1.379
1.391
1.403
1.414
1.426 | 12
12
11
12
12 | 990
1008
1026
1044
1062 | | 600
610
620
630
640 | 1.437
1.448
1.459
1.470
1.481 | 11
11
11
11 | 1.437
1.448
1.459
1.470
1.481 | 11
11
11
11 | 1.437
1.449
1.460
1.471
1.482 | 12
11
11
11 | 1.438
1.449
1.460
1.472
1.483 | 11
11
12
11 | 1080
1098
1116
1134
1152 | | 650
660
670
680
690 | 1.492
1.503
1.513
1.524
1.534 | 11
10
11
10 | 1.492
1.503
1.514
1.525
1.535 | 11
11
11
10 | 1.493
1.504
1.515
1.525
1.536 | 11
11
10
11 | 1.494
1.504
1.515
1.526
1.537 | 10
11
11
11
10 | 1170
1188
1206
1224
1242 | | 700
710
720
730
740 | 1.545
1.555
1.565
1.576
1.586 | 10
10
11
10
10 | 1.546
1.556
1.566
1.577
1.587 | 10
10
11
10
10 | 1.546
1.557
1.567
1.578
1.588 | 11
10
11
10 | 1.547
1.558
1.568
1.579
1.589 | 11
10
11
10
10 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | 1.596
1.606
1.616
1.626
1.636 | 10
10
10
10
10 | 1.597
1.607
1.617
1.627
1.637 | 10
10
10
10 | 1.598
1.608
1.618
1.628
1.638 | 10
10
10
10 | 1.599
1.609
1.619
1.629
1.639 | 10
10
10
10 | 1350
1368
1386
1404
1422 | | 800 | 1.646 | | 1.647 | | 1.648 | | 1.649 | 10 | 1440 | Table 4-7. SOUND VELOCITY AT LOW FREQUENCY IN CARBON DIOXIDE - Cont. a/a₀ | *K | | i atm | 4 | atm | 7 0 | ıtm | 10 | atm | •̂R | |------|--------|----------|-------|----------|-------|-----|-------|-----|------| | | 2 / 4/ | | 1.647 | 40 | 1.648 | 48 | 1.649 | 49 | 1440 | | 800 | 1.646 | 48 | 1.695 | 48
47 | 1.696 | 47 | 1.698 | 47 | 1530 | | 850 | 1.694 | 46 | 1.742 | | 1.743 | 46 | 1.745 | 46 | 1620 | | 900 | 1.740 | 46 | | 46 | 1.789 | 45 | 1.791 | 44 | 1710 | | 950 | 1.786 | 45 | 1.788 | 44 | 1.834 | | 1.835 | 44 | 1800 | | 1000 | 1.831 | 43 | 1.832 | 44 | 1.834 | 43 | 1.022 | | 1000 | | 1050 | 1.874 | 42 | 1.876 | 42 | 1.877 | 43 | 1.879 | 43 | 1890 | | 1100 | 1.916 | 42 | 1.918 | 42 | 1.920 | 41 | 1.922 | 41 | 1980 | | 1150 | 1.958 | 41 | 1.960 | 40 | 1.961 | 41 | 1.963 | 41 | 2070 | | 1200 | 1.999 | 40 | 2,000 | 40 | 2.002 | 40 | 2,004 | 40 | 2160 | | 1250 | 2.039 | 39 | 2.040 | 40 | 2.042 | 39 | 2.044 | 39 | 2250 | | 1300 | 2.078 | 38 | 2,080 | 38 | 2.081 | 39 | 2,083 | 39 | 2340 | | 1350 | 2.116 | 38 | 2.118 | 38 | 2.120 | 38 | 2.122 | 38 | 2430 | | 1400 | 2.154 | 36
37 | 2.156 | 37 | 2.158 | 37 | 2.160 | 37 | 2520 | | | 2.191 | | 2.193 | 37 | 2.195 | 36 | 2.197 | 36 | 2610 | | 1450 | | 37 | 2.230 | 31 | 2.231 | ,,, | 2.233 | ,,, | 2700 | | 1500 | 2,228 | | 2,230 | | 2.271 | | | | | Table 4-7. SOUND VELOCITY AT LOW FREQUENCY IN CARBON DIOXIDE - Cont. | 0 | 1 | -7. SOUND VELOC | | 1 | | | 1 | a/a ₍ | | |------------|----------------|-----------------|------------------------|----------|----------------|----------|----------------|------------------|--------------| | ° K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | *R | | 240 | .863 | 36 | | | | | | | 432 | | 250 | .899 | 29 | | | | | | | 450 | | 260 | .928 | 29 | | | | | | | 468 | | 270 | .957 | 21 | | | | | | | 486 | | 280
290 | .978
.997 | 19
19 | | | | | | | 504
522 | | 300 | 1.016 | 18 | .889 | 47 | | | | | 540 | | 310 | 1.034 | 18 | .936 | 39 | 0.50 | | | | 558 | | 320
330 | 1.052
1.070 | 18 | .975
1.008 | 33 | .853
.924 | 71 | .657 | 167 | 576 | | 340 | 1.087 | 17
17 | 1.029 | 21
27 | .981 | 57
43 | .824
.928 | 104
35 | 594
612 | | 350 | 1.104 | 16 | 1.056 | 16 | 1.024 | 27 | .963 | 19 | 630 | | 360 | 1.120 | 15 | 1.072 | 22 | 1.051 | 21 | .982 | 39 | 648 | | 370
380 | 1.135
1.151 | 16
75 | 1.094 | 22 | 1.072 | 25 | 1.021 | 36 | 666 | | 390 | 1.166 | 15
15 | 1.116
1.136 | 20
15 | 1.097
1.109 | 12
21 | 1.057
1.082 | 25
29 | 684
702 | | 400 | 1.181 | 14 | 1.151 | 18 | 1.130 | 20 | 1.111 | 28 | 720 | | 410 | 1.195 | 15 | 1.169 | 17 | 1.150 | 21 | 1.139 | 26 | 738 | | 420
430 | 1.210
1.224 | 14 | 1.186
1.203 | 17 | 1.171 | 19 | 1.165 | 25 | 756 | | 440 | 1.238 | 14
13 | 1.220 | 17
16 | 1.190
1.209 | 19
18 | 1.190
1.212 | 22
20 | 774
792 | | 450 | 1.251 | 14 | 1,236 | 15 | 1,227 | 18 | 1.232 | 18 | 810 | | 460 | 1.265 | 13 | 1.251 | 16 | 1.245 | 17 | 1.250 | 18 | 828 | | 470
480 | 1.278
1.291 | 13 | 1.267
1.282 | 15 | 1.262 | 17 | 1.268 | 18 | 846 | | 490 | 1.304 | 13
13 | 1.297 | 15
14 | 1.279
1.296 | 17
16 | 1.286
1.304 | 18
18 | 864
882 | | 500 | 1.317 | 13 | 1.311 | 14 | 1.312 | 15 | 1.322 | 15 | 900 | | 510 | 1.330 | 12 | 1.325 | 14 | 1.327 | 15 | 1.337 | 14 | 918 | | 520
530 | 1.342
1.355 | 13
12 | 1.339
1.353 | 14 | 1.342
1.356 | 14 | 1.351 | 15 | 936 | | 540 | 1.367 | 12 | 1.366 | 13
13 | 1.371 | 15
14 | 1.366
1.381 | 15
15 | 954
972 | | 550 | 1.379 | 12 | 1.379 | 13 | 1.385 | 14 | 1.396 | 15 | 990 | | 560 | 1.391 | 12 | 1.392 | 13 | 1.399 | 14 | 1.411 | 15 | 1008 | | 570
580 | 1.403
1.414 | 11
12 | 1.405
1.418 | 13 | 1.413 | 13 | 1.426 | 14 | 1026 | | 590 | 1.426 | 12 | 1.430 | 12
13 | 1.426
1.439 | 13
13 | 1.440
1.454 | 14
13 | 1044
1062 | | 500 | 1.438 | 11 | 1.443 | 12 | 1.452 | 13 | 1.467 | 13 | 1080 | | 610 | 1.449 | 11 | 1.455 | 12 | 1.465 | 13 | 1.480 | 13 | 1098 | | 620
630 | 1.460
1.472 | 12
11 | 1.467
1.479 | 12 | 1.478 | 12 | 1.493 | 13 | 1116 | | 40 | 1.483 | n | 1.490 | 11
12 | 1.490
1.503 | 13
12 | 1.506
1.519 | 13
12 | 1134
1152 | | 550 | 1.494 | 10 | 1.502 | n | 1.515 | 11 | 1,531 | 12 | 1170 | | 660
670 | 1.504 | 11 | 1.513 | 12 | 1.526 | 12 | 1.543 | 12 | 1188 | | 670
680 | 1.515
1.526 | n
n | 1.525
1.5 36 | 11
11 | 1.538
1.550 | 12 | 1.555
1.567 | 12 | 1206 | | 590 | 1.537 | 10 | 1.547 | 11 | 1.561 | 11
12 | 1.579 | 12
11 | 1224
1242 | | 700 | 1.547 | 11 | 1.558 | 11 | 1.573 | 11 | 1.590 | 12 | 1260 | | 710 | 1.558 | 10 | 1.569 | 11 | 1.584 | 11 | 1.602 | 11 | 1278 | | 720 | 1.568 | 11 | 1.580 | 11 | 1.595 | 11 | 1.613 | 11 | 1296 | | 730
740 | 1.579
1.589 | 10
10 | 1.591
1.601 | 10
11 | 1.606
1.617 | 11
11 | 1.624
1.635 | 11
11 | 1314
1332 | | 750 | 1.599 | 10 | 1.612 | 10 | 1.628 | 10 | 1.646 | 11 | 1350 | | 760 | 1.609 | 10 | 1.622 | .11 | 1.638 | 11 | 1.657 | 11 | 1368 | | 770
700 | 1.619 | 10 | 1.633 | 10 | 1.649 | 10 | 1.668 | 11 | 1386 | | 780
790 | 1.629
1.639 | 10
10 | 1.643
1.653 | 10
10 | 1.659
1.670 | 11
10 | 1.679
1.689 | 10
10 | 1404
1422 | | 300 | 1.649 | | 1.663 | | 1.680 | | 1,699 | | 1440 | Table 4-7. SOUND VELOCITY AT LOW FREQUENCY IN CARBON DIOXIDE - Cont. | a | 1 | a | |---|---|------------| | • | • | س ر | | °K | IO atm | | 40 | 40 atm | | 70 atm | | 100 atm | | |--|---|--|---|--|---|--|---|--|--| | 800
850
900
950
1000
1050
1150
1200 | 1.649
1.698
1.745
1.791
1.835
1.879
1.922
1.963
2.004 | 49
47
46
44
44
43
41
40 | 1.663
1.713
1.761
1.807
1.852
1.896
1.939
1.981
2.022 | 50
48
46
45
44
43
42
41
40 | 1.680
1.730
1.778
1.825
1.871
1.915
1.958
2.000
2.041 | 50
48
47
46
44
43
42
41
40 | 1.699
1.749
1.798
1.845
1.890
1.935
1.978
2.020
2.060 | 50
49
47
45
45
45
42
40
40 | 1440
1530
1620
1710
1800
1890
1980
2070
2160 | | 1250 | 2.044 | 4 0
39 | 2.062 | 39 | 2.081 | 39 | 2.100 | 40 | 2250 | | 1300
1350
1400
1450
1500 | 2.083
2.122
2.160
2.197
2.233 | 39
38
37
36 | 2.101
2.140
2.178
2.215
2.252 | 39
38
37
37 | 2.120
2.159
2.197
2.234
2.271 | 39
38
37
37 | 2.140
2.178
2.216
2.253
2.290 | 38
38
37
37 | 2340
2430
2520
2610
2700 | Table 4-8.
VISCOSITY OF CARBON DIOXIDE AT ATMOSPHERIC PRESSURE | o | | .0311 1 | | | DAIDE AI | | SF HERIC | FRESSC | | | | |------------|----------------|------------|---------------------|--------------|----------------|----------|--------------|--------------|----------------|----------|--------------| | °к | η /1 | 7 0 | OR | o K | η / | η_0 | o R | o K | η/ | η_0 | OR | | 190 | .7002 | 373 | 342 | t | | | | 1 | | | | | 200 | .7375 | 370 | 360 | 700 | 2.199 | 23 | 1260 | 1200 | 3.218 | 18 | 2160 | | 210
220 | .7745
.8111 | 366
363 | 378
3 9 6 | 710
720 | 2.222
2.245 | 23
23 | 1278
1296 | 1210
1220 | 3.236
3.254 | 18
18 | 2178
2196 | | 230 | .8474 | 359 | 414 | 730 | 2.268 | 23 | 1314 | 1230 | 3.272 | 17 | 2214 | | 240 | .8833 | 356 | 432 | 740 | 2.291 | 23 | 1332 | 1240 | 3.289 | 17 | 2232 | | 250
260 | .9189
.9542 | 353
349 | 450
468 | 750
760 | 2.314
2.336 | 22
22 | 1350
1368 | 1250
1260 | 3.306
3.324 | 18
18 | 2250
2268 | | 270 | .9891 | 35 | 486 | 770 | 2.358 | 22 | 1386 | 1270 | 3.342 | 17 | 2286 | | 280
290 | 1.024 | 34 | 504 | 780 | 2.380 | 23 | 1404 | 1280 | 3.359 | 18 | 2304 | | | 1.058 | 33 | 522 | 790 | 2.403 | 22 | 1422 | 1290 | 3.377 | 17 | 2322 | | 300
310 | 1.091
1.125 | 34
33 | 540
558 | 800
810 | 2.425
2.446 | 21
22 | 1440
1458 | 1300
1310 | 3.394
3.412 | 18
18 | 2340
2358 | | 320 | 1.158 | 33 | 576 | 820 | 2.468 | 22 | 1476 | 1320 | 3.430 | 17 | 2376 | | 330 | 1.191 | 33 | 594 | 830 | 2.490 | 21 | 1494 | 1330 | 3.447 | 18 | 2394 | | 340 | 1.224 | 32 | 612 | 840 | 2.511 | 21 | 1512 | 1340 | 3.465 | 18 | 2412 | | 350 | 1.256 | 31 | 630 | 850 | 2.532 | 22 | 1530 | 1350 | 3.483 | 17 | 2430 | | 360
370 | 1.287
1.318 | 31
31 | 648
666 | 860
870 | 2.554
2.575 | 21
21 | 1548
1566 | 1360
1370 | 3.500
3.518 | 18
17 | 2448
2466 | | 380 | 1.349 | 31 | 684 | 880 | 2.596 | 21 | 1584 | 1380 | 3.535 | 18 | 2484 | | 390 | 1,380 | 30 | 702 | 890 | 2.617 | 20 | 1602 | 1390 | 3.553 | 17 | 2502 | | 400 | 1.410 | 30 | 720
738 | 900 | 2.637 | 21 | 1620 | 1400 | 3.570 | 17 | 2520 | | 410
420 | 1.440
1.470 | 30
29 | 756
756 | 910
920 | 2.658
2.678 | 20
21 | 1638
1656 | 1410
1420 | 3.587
3.604 | 17
17 | 2538
2556 | | 430 | 1.499 | 29 | 774 | 930 | 2.699 | 20 | 1674 | 1430 | 3.621 | 17 | 2574 | | 440 | 1.528 | 29 | 792 | 940 | 2.719 | 21 | 1692 | 1440 | 3.638 | 16 | 2592 | | 450 | 1.557 | 28 | 810 | 950 | 2.740 | 20 | 1710 | 1450 | 3.654 | 17 | 2610 | | 460
470 | 1.585
1.613 | 28 | 828
846 | 960
970 | 2.760
2.780 | 20 | 1728 | 1460
1470 | 3.671
3.688 | 17 | 2628 | | 480 | 1.641 | 28
28 | 864 | 980 | 2.800 | 20
20 | 1746
1764 | 1480 | 3.704 | 16
17 | 2646
2664 | | 490 | 1.669 | 28 | 882 | 990 | 2.820 | 20 | 1782 | 1490 | 3.721 | 16 | 2682 | | 500 | 1.697 | 27 | 900 | 1000 | 2.840 | 19 | 1800 | 1500 | 3.737 | 17 | 2700 | | 510
520 | 1.724
1.750 | 26
27 | 918
936 | 1010
1020 | 2.859
2.878 | 19
19 | 1818
1836 | 1510
1520 | 3.754
3.770 | 16
17 | 2718
2736 | | 530 | 1.777 | 27 | 954 | 1030 | 2.897 | 18 | 1854 | 1530 | 3.787 | 17 | 2754 | | 540 | 1.804 | 26 | 954
972 | 1040 | 2.915 | 19 | 1872 | 1540 | 3.804 | 16 | 2772 | | 550 | 1.830 | 26 | 990 | 1050 | 2.934 | 19 | 1890 | 1550 | 3.820 | 17 | 2790 | | 560
570 | 1.856
1.882 | 26
26 | 1008
1026 | 1060
1070 | 2.953
2.972 | 19
19 | 1908
1926 | 1560
1570 | 3.837
3.854 | 17
16 | 2808
2826 | | 580 | 1.908 | 26
25 | 1044 | 1080 | 2.991 | 19
19 | 1944 | 1580 | 3.870 | 16
17 | 2844 | | 590 | 1.933 | 25 | 1062 | 1090 | 3.010 | 19 | 1962 | 1590 | 3.887 | 16 | 2862 | | 600 | 1.958 | 25 | 1080 | 1100 | 3.029 | 19 | 1980 | 1600 | 3.903 | 16 | 2880 | | 610
620 | 1.983
2.008 | 25
24 | 1098
1116 | 1110
1120 | 3.048
3.067 | 19
18 | 1998
2016 | 1610
1620 | 3.919
3.935 | 16
16 | 2898
2916 | | 630 | 2.032 | 24 | 1134 | 1130 | 3.085 | 19 | 2034 | 1630 | 3.951 | 16 | 2934 | | 640 | 2.056 | 24 | 1152 | 1140 | 3.104 | 19 | 2052 | 1640 | 3.967 | 16 | 2952 | | 650 | 2.080 | 25 | 1170 | 1150 | 3.123 | 19 | 2070 | 1650 | 3.983 | 16 | 2970 | | 660
670 | 2.105
2.129 | 24
24 | 1188
1206 | 1160
1170 | 3.142
3.161 | 19
19 | 2088
2106 | 1660
1670 | 3.999
4.014 | 15
16 | 2988
3006 | | 680 | 2.153 | 23 | 1224 | 1180 | 3.180 | 19 | 2124 | 1680 | 4.030 | 16 | 3024 | | 690 | 2.176 | 23 | 1242 | 1190 | 3.199 | 19 | 2142 | 1690 | 4.046 | 16 | 3042 | | 700 | 2,199 | | 1260 | 1200 | 3.218 | | 2160 | 1700 | 4.062 | | 3060 | Table 4-9. THERMAL CONDUCTIVITY OF CARBON DIOXIDE AT ATMOSPHERIC PRESSURE | °K | k/k ₀ | | o _R | |---------------------------------|---|----------------------------|---------------------------------| | 180
190 | .567
.610 | 43
49 | 324
342 | | 200
210
220
230 | .659
.699
.743
.791 | 40
44
48
46 | 360
378
396
414
432 | | 240
250
260
270
280 | .837
.886
.935
.984 | 49
49
49
51
52 | 450
468
486
504
522 | | 300
310
320
330 | 1.087
1.139
1.191
1.242
1.297 | 52
52
51
55
55 | 540
558
576
594 | | 340
350
360
370 | 1.352
1.406
1.464
1.518 | 54
58
54
58 | 612
630
648
666 | | 380
390
400 | 1.576
1.634
1.691 | 58
57 | 684
702
720 | | o _K | k/k ₀ | | °R | |---------------------------------|---|----------------------------|-------------------------------------| | 400
410 | 1.691
1.752 | <u>ഒ</u>
ഒ | 720
738 | | 420
430
440 | 1.812
1.869
1.930 | 57
61
60 | 756
774
792 | | 450
460
470
480
490 | 1.990
2.053
2.114
2.177
2.240 | 63
61
63
64 | 810
828
846
864
882 | | 500
510
520
530
540 | 2.304
2.367
2.430
2.496
2.562 | 63
66
66
66
64 | 900
918
936
954
972 | | 550
560
570
580
590 | 2.626
2.692
2.761
2.827
2.893 | 66
69
66
66 | 990
1008
1026
1044
1062 | | 600 | 2.962 | _ | 1080 | Table 4-10. PRANDTL NUMBER OF CARBON DIOXIDE AT ATMOSPHERIC PRESSURE η C_p/k | 1 abte | 1 10. 11. | IMDID II | OMDER OF | CILIDON | | | | | ·/ Op/ I | |--------|-----------------|------------|------------------|------------|-----------------|-------------------|--------------------|----------|----------| | o K | (N _P | ,) | (N _{Pr} |)2/3 | (N _P | r) ^{1/3} | (N _{Pr}) | 1/2 | ° R | | 220 | 010 | | 075 | _ | 025 | _ | oor | | 20/ | | 220 | .818 | -11 | .875 | -8 | .935 | -4 | .905 | -6 | 396 | | 230 | .807 | - 7 | .867 | -5 | .931 | -3 | .899 | -5 | 414 | | 240 | .800 | - 7 | .862 | -5 | .928 | -3 | .894 | -4 | 432 | | 250 | .793 | - 5 | .857 | -4 | .925 | -1 | .890 | -2 | 450 | | 260 | .788 | - 4 | .853 | -3 | .924 | -2 | .888 | -2 | 468 | | 270 | .784 | - Š | .850 | -3 | .922 | _ <u></u> | .886 | -3 | 486 | | 280 | .779 | - 4 | .847 | -3 | .920 | - ī | .883 | -ś | 504 | | 290 | .775 | - Š | .844 | -4 | .919 | -2 | .880 | -2 | 522 | | | 770 | | | | | | | | | | 300 | .770 | - 2 | .840 | -1 | .917 | -2 | .878 | -3 | 540 | | 310 | .768 | - 3 | .839 | -2 | .915 | -1 | .875 | -1 | 558 | | 320 | .765 | - 4 | .837 | -3 | .914 | -1 | .874 | -2 | 576 | | 330 | .761 | - 3 | .834 | -3 | .913 | -1 | .872 | -1 | 594 | | 340 | .758 | - 3 | .831 | -2 | .912 | -1 | .871 | -2 | 612 | | 350 | .755 | - 4 | .829 | -3 | .911 | -2 | .869 | -2 | 630 | | 360 | .751 | - š | .826 | - 2 | .909 | - <u>1</u> | .867 | -2 | 648 | | 370 | .748 | - 4 | .824 | -3 | .908 | -2 | .865 | -2 | 666 | | 380 | .744 | - 3 | .821 | -3
-2 | .906 | -2
-1 | .863 | -2 | 684 | | 390 | .741 | - 3 | .819 | | .905 | | .861 | | 702 | | 270 | ./41 | - , | .017 | -2 | .705 | -1 | •001 | -2 | /02 | | 400 | .738 | - 4 | .817 | -3 | .904 | -2 | .859 | -2 | 720 | | 410 | .734 | - 4 | .814 | -3 | .902 | -2 | .857 | -2 | 738 | | 420 | .730 | - 3 | .811 | -2 | .900 | ~1 | .855 | -2 | 756 | | 430 | .727 | - 3 | .809 | -3 | .899 | -1 | .853 | -2 | 774 | | 440 | .724 | - 3 | .806 | -3 | .898 | -1 | .851 | -2 | 792 | | 450 | .721 | - 4 | .803 | -2 | .897 | -2 | .849 | -2 | 810 | | 460 | .717 | - 4 | .801 | -3 | .895 | -2 | .847 | -2
-3 | 828 | | 470 | .713 | - 4 | .798 | -3 | .893 | -2
-1 | .844 | -3
-2 | 846 | | 480 | .709 | - 4
- 3 | | | | | | | | | 490 | .706 | - 4 | .795
.792 | -3 | .892
.890 | -2 | .842
.840 | -2 | 864 | | 470 | .706 | - 4 | .192 | -2 | .890 | -1 | .840 | -2 | 882 | | 500 | .702 | - 3 | .790 | -3 | .889 | -2 | .838 | -2 | 900 | | 510 | .699 | - 3 | .787 | -2 | .887 | -1 | .836 | -2 | 918 | | 520 | .696 | - 4 | .785 | -3 | .886 | -1 | .834 | -1 | 936 | | 530 | .692 | - 4 | .782 | -2 | .885 | -2 | .833 | -3 | 954 | | 540 | .688 | - 3 | .780 | -3 | .883 | -1 | .830 | -2 | 972 | | 550 | .685 | 3 | .777 | -2 | .882 | • | .828 | | 990 | | 560 | .682 | | | | •000 | -2 | .020 | -2 | | | | | - 4 | .775 | -3 | .880 | -1 | .826 | -3 | 1008 | | 570 | .678 | - 3 | .772 | -3 | .879 | -2 | .823 | -2 | 1026 | | 580 | .675 | - 3 | .769 | -2 | .877 | -1 | .821
.819 | -2 | 1044 | | 590 | .672 | - 4 | .767 | -3 | .876 | -2 | .819 | -2 | 1062 | | 600 | .668 | | .764 | | .874 | | .817 | | 1080 | Table 4-11. VAPOR PRESSURE OF LIQUID CARBON DIOXIDE | - 4010 1 111 | | | | | | |--------------|---------------------------------------|-----------------|---------|---------|-------| | Т | Log ₁₀ P | (mmHg)* | P | Р | Т | | оĸ | · · · · · · · · · · · · · · · · · · · | | mm Hg | atm | oR | | 216 | (3.5788) ** | 189 | (3791.) | (4.988) | 388.8 | | 217 | 3.5977 | 187 | 3960. | 5.210 | 390.6 | | 218 | 3.6164 | 185 | 4134. | 5.440 | 392.4 | | 219 | 3.6349 | 183 | 4314. | 5.677 | 394.2 | | 220 | 3.6532 | 182 | 4500. | 5.922 |
396.0 | | 221 | 3.6714 | 179 | 4692. | 6.174 | 397.8 | | 222 | 3.6893 | 178 | 4890. | 6.434 | 399.6 | | 223 | 3.7071 | 176 | 5094. | 6.703 | 401.4 | | 224 | 3.7247 | 174 | 5304. | 6.979 | 403.2 | | 225 | 3.7421 | 172 | 5521. | 7.264 | 405.0 | | 226 | 3.7593 | 170 | 5744. | 7.558 | 406.8 | | 227 | 3.7763 | 1 69 | 5974. | 7.861 | 408.6 | | 228 | 3.7932 | 167 | 6211. | 8.172 | 410.4 | | 229 | 3.8099 | 165 | 6454. | 8.492 | #12.2 | | 230 | 3.8264 | 164 | 6705. | 8.822 | 414.0 | | 231 | 3.8428 | 162 | 6963. | 9.162 | 415.8 | | 232 | 3.8590 | 161 | 7227. | 9.509 | 417.6 | | 233 | 3.8751 | 159 | 7500. | 9.868 | 419.4 | | 234 | 3.8910 | 158 | 7780. | 10.237 | 421.2 | | 235 | 3.9068 | 156 | 8068. | 10.616 | 423.0 | | 236 | 3.9224 | 155 | 8363. | 11.004 | 424.8 | | 237 | 3.9379 | 153 | 8666. | 11.403 | 426.6 | | 238 | 3.9532 | 152 | 8978. | 11.813 | 428.4 | | 239 | 3.9684 | 150 | 9298. | 12.234 | 430.2 | | 240 | 3.9834 | 150 | 9625. | 12.664 | 432.0 | | 241 | 3.99836 | 1478 | 9962. | 13.108 | 433.8 | | 242 | 4.01314 | 1464 | 10307. | 13.562 | 435.6 | | 243 | 4.02778 | 1453 | 10661. | 14.028 | 437.4 | | 244 | 4.04231 | 1440 | 11023. | 14.504 | 439.2 | | 245 | 4.05671 | 1429 | 11395. | 14.993 | 441.0 | | 246 | 4.07100 | 1414 | 11776. | 15.495 | 442.8 | | 247 | 4.08514 | 1403 | 12166. | 16.008 | 444.6 | | 248 | 4.09917 | 1390 | 12565. | 16.533 | 446.4 | | 249 | 4.11307 | 1381 | 12974. | 17.071 | 448.2 | | 250 | 4.12688 | 1367 | 13393. | 17.622 | 450.0 | | 251 | 4.14055 | 1357 | 13821. | 18.186 | 451.8 | | 252 | 4.15412 | 1344 | 14260. | 18.763 | 453.6 | | 253 | 4.16756 | 1333 | 14708. | 19.353 | 455.4 | | 254 | 4.18089 | 1323 | 15167. | 19.957 | 457.2 | | 255 | 4.19412 | 1314 | 15636. | 20.574 | 459.0 | | 256 | 4.20726 | 1302 | 16116. | 21.205 | 460.8 | | 257 | 4.22028 | 1291 | 16607. | 21.851 | 462.6 | | 258 | 4.23319 | 1282 | 17108. | 22.511 | 464.4 | | 259 | 4.24601 | 1271 | 17620. | 23.184 | 466.2 | | 260 | 4.25872 | 1260 | 18143. | 23.872 | 468.0 | | 261 | 4.27132 | 1252 | 18678. | 24.576 | 469.8 | | 262 | 4.28384 | 1242 | 19224. | 25.295 | 471.6 | | 263 | 4.29626 | 1232 | 19782. | 26.029 | 473.4 | | 264 | 4.30858 | 1223 | 20351. | 26.778 | 475.2 | ^{*} Tabulated values in this column are for interpolation. ^{**} Figures in parentheses are extrapolated to permit interpolation to the triple point. Table 4-11. VAPOR PRESSURE OF LIQUID CARBON DIOXIDE - Cont. | Т | Log ₁₀ |)P (mmHg)* | P | P | т | |------------|---|------------|--------|----------------|----------------| | oK | | | mm Hg | atm | o _R | | 265 | 4.32081 | 1215 | 20932. | 27.542 | 477.0 | | 266 | 4.33296 | 1204 | 21526. | 28.324 | | | 267 | 4.34500 | 1196 | 22131. | | 478.8 | | 268 | 4.35696 | 1189 | 22749. | 29.120 | 480.6 | | 269 | 4.36885 | | | 29.933 | 482.4 | | 207 | 4, 20002 | 1177 | 23380. | 30.763 | 484.2 | | 270 | 4.38062 | 1172 | 24023. | 31,609 | 486.0 | | 271 | 4.39234 | 1162 | 24680. | 32,474 | 487.8 | | 272 | 4,40396 | 1154 | 25349. | 33.354 | 489.6 | | 273 | 4.41550 | 1145 | 26032. | 34.253 | 491.4 | | 274 | 4.42695 | 1139 | 26727. | 35.167 | 493.2 | | | | 12, | 20121. | 23.107 | 477.2 | | 275 | 4.43834 | 1129 | 27437. | 36.101 | 495.0 | | 276 | 4.44963 | 1123 | 28160. | 37.053 | 496.8 | | 277 | 4.46086 | 1115 | 28897. | 38.022 | 498.6 | | 278 | 4.47201 | 1107 | 29649. | 39.012 | 500.4 | | 279 | 4,48308 | 1102 | 30414. | 40.018 | 502.2 | | | | 1102 | JU111. | 40.010 | 302.2 | | 280 | 4.49410 | 1095 | 31196. | 41.047 | 504.0 | | 281 | 4.50505 | 1086 | 31993. | 42.096 | 505.8 | | 282 | 4.51591 | 1081 | 32803. | 43.162 | 507.6 | | 283 | 4.52672 | 1073 | 33629. | 44.249 | | | 284 | 4.53745 | 1067 | 34471. | 45.357 | 509.4 | | 204 | T• 17 C C T T T T T T T T T T T T T T T T T | 1067 | 244/1. | 40.201 | 511.2 | | 285 | 4.54812 | 1061 | 35328. | 46.484 | 513.0 | | 286 | 4.55873 | 1055 | 36202. | 47.634 | 514.8 | | 287 | 4.56928 | 1050 | 37092. | 48.805 | 516.6 | | 288 | 4.57978 | 1044 | 38000. | 50.000 | 518.4 | | 289 | 4.59022 | 1037 | 38924. | 51.216 | 520.2 | | 290 | 4.60059 | | 20245 | | | | 290
291 | | 1033 | 39865. | 52.454 | 522.0 | | | 4.61092 | 1028 | 40824. | 53.716 | 523 . 8 | | 292 | 4.62120 | 1022 | 41802. | 55.003 | 525.6 | | 293 | 4.63142 | 1018 | 42798. | 56.313 | 527.4 | | 294 | 4.64160 | 1013 | 43813. | 57 .649 | 529.2 | | 295 | 4.65173 | 1010 | 44847. | 59.009 | 531.0 | | 296 | 4.66183 | 1005 | 45902. | 60.397 | 532.8 | | 297 | 4.67188 | | | | | | 298 | 4.68190 | 1002 | 46976. | 61.811 | 534.6 | | | | 997 | 48073. | 63.254 | 536.4 | | 299 | 4.69187 | 995 | 49189. | 64.722 | 538.2 | | 300 | 4.70182 | 992 | 50329. | 66,222 | 540.0 | | 301 | 4.71174 | 989 | 51492. | 67.753 | 541.8 | | 302 | 4.72163 | 987 | 52678. | 69.313 | 543.6 | | 303 | 4.73150 | 986 | 53889. | 70.907 | | | 304 | 4.74136 | 700 | 55126. | | 545.4 | | J07 | 7./71/0 | | 22170 | 72.534 | 547.2 | $[\]ensuremath{^{*}}$ Tabulated values in this column are for interpolation. Table 4-11/a. VAPOR PRESSURE OF SOLID CARBON DIOXIDE | Table 4-11/a. | VAPOR PRESSUR | | | | | |---------------------------------|--------------------------------------|----------------------|--------------------------------------|--|---| | т | Log ₁₀ l | P (mmHg)* | P | P | т | | °K | | | mm Hg | atm | OR | | 135 | 9.77-10 | 6 | .59 | .00078 | 243.0 | | 136 | 9.85-10 | 8 | .70 | .00092 | 244.8 | | 137 | 9.93-10 | 7 | .84 | .00111 | 246.6 | | 138 | .00 | 7 | 1.00 | .00132 | 248.4 | | 139 | .075 | 69 | 1.18 | .00155 | 250.2 | | 140 | .144 | 70 | 1.39 | .00183 | 252.0 | | 141 | .214 | 69 | 1.63 | .00214 | 253.8 | | 142 | .283 | 70 | 1.92 | .00253 | 255.6 | | 143 | .353 | 66 | 2.25 | .00296 | 257.4 | | 144 | .419 | 66 | 2.62 | .00345 | 259.2 | | 145
146
147
148
149 | .485
.551
.615
.678
.741 | 66
64
63
63 | 3.05
3.55
4.12
4.76
5.50 | .00401
.00467
.00542
.00626
.00724 | 261.0
262.8
264.6
266.4
268.2 | | 150 | .802 | 61 | 6.34 | .00834 | 270.0 | | 151 | .863 | 60 | 7.29 | .00959 | 271.8 | | 152 | .923 | 59 | 8.38 | .01103 | 273.6 | | 153 | .982 | 59 | 9.60 | .01263 | 275.4 | | 154 | 1.0407 | 574 | 10.98 | .01445 | 277.2 | | 155 | 1.0981 | 567 | 12.53 | .01649 | 279.0 | | 156 | 1.1548 | 559 | 14.28 | .01879 | 280.8 | | 157 | 1.2107 | 554 | 16.24 | .02137 | 282.6 | | 158 | 1.2661 | 545 | 18.45 | .02428 | 284.4 | | 159 | 1.3206 | 536 | 20.91 | .02751 | 286.2 | | 160 | 1.3742 | 531 | 23.67 | .03114 | 288.0 | | 161 | 1.4273 | 524 | 26.74 | .03518 | 289.8 | | 162 | 1.4797 | 516 | 30.17 | .03970 | 291.6 | | 163 | 1.5313 | 510 | 33.98 | .04471 | 293.4 | | 164 | 1.5823 | 503 | 38.21 | .05028 | 295.2 | | 165 | 1.6326 | 496 | 42.91 | .05646 | 297.0 | | 166 | 1.6822 | 491 | 48.10 | .06329 | 298.8 | | 167 | 1.7313 | 485 | 53.86 | .07087 | 300.6 | | 168 | 1.7798 | 478 | 60.22 | .07924 | 302.4 | | 169 | 1.8276 | 473 | 67.24 | .08847 | 304.2 | | 170 | 1.8749 | 466 | 74.96 | .09863 | 306.0 | | 171 | 1.9215 | 461 | 83.46 | .10982 | 307.8 | | 172 | 1.9676 | 456 | 92.81 | .12212 | 309.6 | | 173 | 2.01317 | 4490 | 103.08 | .13563 | 311.4 | | 174 | 2.05807 | 4444 | 114.31 | .15041 | 313.2 | | 175 | 2.10251 | 4401 | 126.62 | .16661 | 315.0 | | 176 | 2.14652 | 4332 | 140.13 | .18438 | 316.8 | | 177 | 2.18984 | 4288 | 154.82 | .20371 | 318.6 | | 178 | 2.23272 | 4246 | 170.89 | .22486 | 320.4 | | 179 | 2.27518 | 4202 | 188.44 | .24795 | 322.2 | | 180 | 2.31720 | 4134 | 207.59 | .27314 | 324.0 | | 181 | 2.35854 | 4097 | 228.32 | .30042 | 325.8 | | 182 | 2.39951 | 4044 | 250.91 | .33014 | 327.6 | | 183 | 2.43995 | 4010 | 275.39 | .36236 | 329.4 | | 184 | 2.48005 | 3960 | 302.03 | .39741 | 331.2 | ^{*} Tabulated values in this column are for interpolation. Table 4-11/a. VAPOR PRESSURE OF SOLID CARBON DIOXIDE - Cont. | | | | | | | |-----|-------------------|-------------|-------------|--------|----------------| | т | Log ₁₀ | P (mmHg)* | P | P | Т | | οK | | | mm Hg | atm | o _R | | 185 | 2.51965 | 3925 | 330.8 | .4353 | 333.0 | | 186 | 2,55890 | 3873 | 362.1 | .4764 | 334.8 | | 187 | 2,59763 | 3834 | 395.9 | .5209 | 336.6 | | 188 | 2,63597 | 3788 | 432.4 | .5689 | 338.4 | | 189 | 2.67385 | 3758 | 471.9 | .6209 | 340.2 | | 190 | 2.71143 | 3716 | 514.5 | .6770 | 342.0 | | 191 | 2.74859 | 3676 | 560.5 | .7375 | 343.8 | | 192 | 2.78535 | 3636 | 610.0 | .8026 | 345.6 | | 193 | 2.82171 | 3605 | 663.3 | .8728 | 347.4 | | 194 | 2.85776 | 3568 | 720.7 | .9483 | 349.2 | | 195 | 2.89344 | 3529 | 782.4 | 1.0295 | 351.0 | | 196 | 2,92873 | 3498 | 848.6 | 1.1166 | 352.8 | | 197 | 2.96371 | 3463 | 919.8 | 1.2103 | 354.6 | | 198 | 2,99834 | 3430 | 996.1 | 1.3107 | 356.4 | | 199 | 3.03264 | 3402 | 1078.0 | 1.4184 | 358.2 | | 200 | 3,06666 | 3369 | 1165.8 | 1.5339 | 360.0 | | 201 | 3,10035 | 3337 | 1259.9 | 1.6578 | 361.8 | | 202 | 3.13372 | 3307 | 1360.5 | 1.7901 | 363.6 | | 203 | 3.16679 | 3279 | 1468.2 | 1.9318 | 365.4 | | 204 | 3.19958 | 3251 | 1583.3 | 2.0833 | 367.2 | | 205 | 3,23209 | 3222 | 1706.4 | 2.2453 | 369.0 | | 206 | 3.26431 | 3196 | 1837.8 | 2.4182 | 370.8 | | 207 | 3.29627 | 3168 | 1978.1 | 2.6028 | 372.6 | | 208 | 3.32795 | 3144 | 2127.8 | 2,7997 | 374.4 | | 209 | 3,35939 | 3119 | 2287.6 | 3.0100 | 376.2 | | 210 | 3.39058 | 3095 | 2457.9 | 3,2341 | 378.0 | | 211 | 3.42153 | 3072 | 2639.5 | 3.4730 | 379.8 | | 212 | 3.45225 | 3047 | 2833.0 | 3,7276 | 381.6 | | 213 | 3.48272 | 3026 | 3038.9 | 3.9986 | 383.4 | | 214 | 3.51298 | 3003 | 3258.2 | 4.2871 | 385.2 | | 215 | 3,54301 | 2983 | 3491.4 | 4.5939 | 387.0 | | 216 | 3.57284 | | 3739.7 | 4.9207 | 388.8 | | | | | | | | ^{*} Tabulated values in this column are for interpolation. Table 4-12. IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR CARBON DIOXIDE | _ | င္မွဳ | | (H° - E°)* | | s° | - | $(F^{\circ}-E_{\circ}^{\circ})$ | Į | ° _R | |------------|--------------------|------------|------------------|-------------------------------
--------------------|-------------------------------|---------------------------------|--------------|----------------| | °K | Ср
R | | RTo | | R | - | RT | ĺ | " | | | | | | | | | | 1 | | | | 2 5001 | | 4400 | 1203 | 19.0885 | 6381 | 15,5922 | 6375 | 90 | | 50
60 | 3.5001
3.5002 | 1
4 | .6400
.7681 | 1281
1281 | 19.7266 | 5396 | 16.2297 | 5391 | 108 | | 70 | 3.5006 | 14 | .8962 | 1282 | 20.2662 | 4675 | 16.7688 | 4670 | 126 | | 80 | 3.5020 | 35 | 1.0244 | 1283 | 20.7337 | 4127 | 17.2358 | 4121 | 144 | | 90 | 3.5055 | 73 | 1.1527 | 1284 | 21.1464 | 3696 | 17.6479 | 3686 | 162 | | 100 | 3,5128 | 121 | 1.2811 | 1288 | 21.5160 | 3354 | 18.0165 | 3336 | 180 | | 110 | 3.5249 | 183 | 1,4099 | 1294 | 21.8514 | 3074 | 18.3501 | 3048 | 198 | | 120 | 3.5432 | 248 | 1.5393 | 1301 | 22.1588 | 2846 | 18.6549 | 2806 | 216
234 | | 130 | 3.5680 | 315 | 1.6694
1.8006 | 1312
1325 | 22.4434
22.7090 | 2656
2 4 95 | 18.9355
19.1957 | 2602
2426 | 252 | | 140 | 3.5995 | 377 | 1.8000 | 1323 | • | | | | | | 150 | 3.6372 | 432 | 1.9331 | 1339 | 22.9585 | 2361 | 19.4383 | 2274 | 270
288 | | 160 | 3.6804 | 478 | 2.0670 | 1356 | 23.1946 | 2246 | 19.6657
19.8800 | 2143 | 306 | | 170 | 3.7282 | 518 | 2.2026 | 1374 | 23.4192 | 2 145
20 5 9 | 20.0826 | 2026
1924 | 324 | | 180 | 3.7800 | 547 | 2.3400
2.4794 | 1394
1414 | 23.6337
23.8396 | 1981 | 20.2750 | 1832 | 342 | | 190 | 3.8347 | 569 | 2.4/74 | 1414 | | | | | | | 200 | 3.8916 | 586 | 2.6208 | 1435 | 24.0377 | 1912 | 20.4582 | 1750 | 360 | | 210 | 3.9502 | 595 | 2.7643 | 1457 | 24.2289 | 1852 | 20.6332 | 1677 | 378
396 | | 220 | 4.0097 | 598 | 2.9100 | 1479 | 24.4141 | 1795 | 20.8009
20.9619 | 1610
1550 | 414 | | 230 | 4.0695 | 601 | 3.0579
3.2080 | 1501
1523 | 24.5936
24.7681 | 1745
1698 | 21.1169 | 1494 | 432 | | 240 | 4.1296 | 596 | | 1525 | | | | | | | 250 | 4.1892 | 592 | 3.3603 | 1544 | 24.9379 | 1654 | 21.2663 | 1444 | 450
468 | | 260 | 4.2484 | 584 | 3.5147 | 1566 | 25.1033 | 1615 | 21.4107
21.5505 | 1398 | 486 | | 270 | 4.3068 | 575 | 3.6713 | 1587 | 25.2648
25.4225 | 1577
1541 | 21.6860 | 1355
1315 | 504 | | 280
290 | 4.3643
4.4208 | 565
555 | 3.8300
3.9908 | 1608
1629 | 25.5766 | 1508 | 21.8175 | 1278 | 522 | | | | | | | | | 21.9453 | 1244 | 540 | | 300 | 4.4763 | 544 | 4.1537
4.3186 | 1649 | 25.7274
25.8751 | 1477
1447 | 22.0697 | 1212 | 558 | | 310
320 | 4.5307
4.5840 | 533
521 | 4.4854 | 1668
1688 | 26.0198 | 1418 | 22.1909 | 1182 | 576 | | 330 | 4.6361 | 510 | 4.6542 | 1706 | 26.1616 | 1391 | 22.3091 | 1153 | 594 | | 340 | 4.6871 | 500 | 4.8248 | 1725 | 26.3007 | 1366 | 22.4244 | 1127 | 612 | | 350 | 4.7371 | 488 | 4.9973 | 1744 | 26,4373 | 1341 | 22.5371 | 1102 | 630 | | 360 | 4.7859 | 476 | 5.1717 | 1760 | 26.5714 | 1319 | 22.6473 | 1079 | 648 | | 370 | 4.8335 | 466 | 5.3477 | 1778 | 26.7033 | 1295 | 22.7552 | 1056 | 666 | | 380 | 4.8801 | 456 | 5.5255 | 1795 | 26.8328 | 1274 | 22.8608 | 1035 | 684
702 | | 390 | 4.9257 | 447 | 5.7050 | 1812 | 26.9602 | 1252 | 22.9643 | 1014 | | | 400 | 4.9704 | 436 | 5.8862 | 1827 | 27.0854 | 1233 | 23.0657 | 996 | 720
738 | | 410 | 5.0140 | 426 | 6.0689 | 1844 | 27.2087
27.3300 | 1213 | 23.1653
23.2630 | 977
960 | 756 | | 420 | 5.0566 | 417 | 6,2533
6,4392 | 1859
1874 | 27 . 4495 | 1195
1177 | 23.3590 | 943 | 774 | | 430
440 | 5.0983
5.1392 | 409
400 | 6.6266 | 1888 | 27.5672 | 1159 | 23.4533 | 927 | 792 | | | | *** | 6.8154 | 1903 | 27,6831 | 1143 | 23.5460 | 912 | 810 | | 450
460 | 5.1792
5.2183 | 391
383 | 7.0057 | 1903 | 27.7974 | 1126 | 23.6372 | 897 | 828 | | 470 | 5.2566 | 376 | 7.1975 | 1931 | 27.9100 | 1111 | 23,7269 | 883 | 846 | | 480 | 5.2942 | 368 | 7.3906 | 1945 | 28.0211 | 1096 | 23.8152 | 870 | 864 | | 490 | 5.3310 | 361 | 7.5851 | 1958 | 28.1307 | 1080 | 23.9022 | 856 | 882 | | 500 | 5.3671 | 353 | 7.7809 | 1972 | 28.2387 | 1066 | 23.9878 | 844 | 900 | | 510 | 5.4024 | 347 | 7.9781 | 1984 | 28.3453 | 1053 | 24.0722 | 832 | 918 | | 520 | 5.4371 | 340 | 8.1765 | 1996 | 28.4506 | 1038 | 24.1554 | 820 | 936 | | 530
540 | 5.4711 | 333
327 | 8.3761
8.5770 | 200 9
2021 | 28.5544
28.6570 | 1026
1013 | 24.2374
24.3183 | 809
798 | 954
972 | | 540 | 5.5044 | 327 | | | | | | | | | 550 | 5.5371 | 320 | 8.7791 | 2033 | 28.7583 | 1001 | 24.3981
24.4769 | 788
777 | 990
1008 | | 560 | 5.5691 | 315 | 8.9824
9.1869 | 20 45
20 5 6 | 28.8584
28.9572 | 988
977 | 24.5546 | 768 | 1026 | | 570
580 | 5.6006
5.6315 | 309
303 | 9.3925 | 2067 | 29.0549 | 966 | 24.6314 | 758 | 1044 | | 590 | 5.6618 | 297 | 9.5992 | 2078 | 29.1515 | 953 | 24.7072 | 748 | 1062 | | 600 | 5,6915 | | 9.8070 | | 29.2468 | | 24.7820 | | 1080 | | 300 | 3.3713 | | | | | | | | | ^{*}The enthalpy function is divided here by a constant RT_0 where $T_0 = 273.16$ (491.688°R). Table 4-12. IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR CARBON DIOXIDE - Cont. | °K | c°p | | (H° - E° |)* | s° | | -(F° - E°) | | °R | |--------------|------------------|---------------------|--------------------|-----------------------|--------------------|------------------------------|--------------------|-----------------|--------------| | _ X | R | | RT _o | • | R | | RT | | R | | 600 | 5.6915 | 202 | 9.8070 | 2000 | 29,2468 | 044 | 24.7820 | 740 | 1080 | | 610 | 5.7207 | 292
287 | 10.0159 | 2089
2100 | 29.3412 | 944
9 3 2 | 24.7620
24.8560 | 740
731 | 1098 | | 620 | 5.7494 | 281 | 10.2259 | 2110 | 29.4344 | 922 | 24,9291 | 722 | 1116 | | 630 | 5.7775 | 277 | 10.4369 | 2120 | 29.5266 | 913 | 25,0013 | 715 | 1134 | | 640 | 5.8052 | 272 | 10.6489 | 2130 | 29,6179 | 902 | 25.0728 | 706 | 1152 | | 650 | 5.8324 | 267 | 10.8619
11.0759 | 2140 | 29.7081
29.7973 | 892 | 25.1434
25.2132 | 69 8 | 1170
1188 | | 660
670 | 5.8591
5.8853 | 262
257 | 11.2909 | 2150
21 5 9 | 29.8856 | 883
873 | 25,2823 | 691
683 | 1206 | | 680 | 5.9110 | 253 | 11.5068 | 2169 | 29,9729 | 866 | 25.3506 | 677 | 1224 | | 690 | 5.9363 | 248 | 11.7237 | 2177 | 30.0595 | 856 | 25,4183 | 669 | 1242 | | 700 | 5.9611 | 244 | 11.9414 | 2187 | 30.1451 | 847 | 25,4852 | 662 | 1260 | | 710
720 | 5.9855
6.0094 | 2 3 9
235 | 12.1601
12.3797 | 2196
2204 | 30.2298
30.3137 | 839
831 | 25.5514
25.6170 | 656
649 | 1278
1296 | | 730 | 6.0329 | 230 | 12.6001 | 2213 | 30,3968 | 821 | 25,6819 | 642 | 1314 | | 740 | 6.0559 | 227 | 12.8214 | 2221 | 30.4789 | 815 | 25.7461 | 637 | 1332 | | 750 | 6.0786 | 223 | 13.0435 | 2229 | 30.5604 | 806 | 25.8098 | 630 | 1350 | | 760 | 6.1009 | 219 | 13.2664 | 2238 | 30.6410 | 800 | 25.8728 | 625 | 1368 | | 770
780 | 6.1228
6.1442 | 214 | 13.4902 | 2245 | 30.7210
30.8001 | 791 | 25.9353
25.9971 | 618 | 1386
1404 | | 790 | 6.1653 | 211
207 | 13.7147
13.9400 | 2253
2261 | 30.8785 | 784
777 | 26.0584 | 613
608 | 1422 | | 800 | 6.1860 | 204 | 14,1661 | 2268 | 30.9562 | 770 | 26,1192 | 602 | 1440 | | 810 | 6.2064 | 200 | 14.3929 | 2276 | 31.0332 | 762 | 26.1794 | 596 | 1458 | | 820 | 6.2264 | 196 | 14.6205 | 2283 | 31.1094 | 757 | 26.2390 | 592 | 1476 | | 830
840 | 6.2460
6.2653 | 193
190 | 14.8488
15.0778 | 2290
2297 | 31,1851
31,2600 | 7 4 9
742 | 26.2982
26.3568 | 586
581 | 1494
1512 | | 850 | 6,2843 | 186 | 15.3075 | 2304 | 31.3342 | 736 | 26.4149 | 576 | 1530 | | 860 | 6.3029 | 183 | 15.5379 | 2311 | 31.4078 | 730 | 26.4725 | 57 2 | 1548 | | 870 | 6.3212 | 180 | 15.7690 | 2318 | 31.4808 | 723 | 26.5297 | 566 | 1566 | | 880
890 | 6.3392
6.3569 | 177
173 | 16.0008
16.2332 | 2324
2330 | 31.5531
31.6249 | 718
711 | 26.5863
26.6426 | 563
557 | 1584
1602 | | 900 | 6.3742 | 171 | 16.4662 | 2337 | 31.6960 | 705 | 26.6983 | 553 | 1620 | | 910 | 6.3913 | 167 | 16.6999 | 2342 | 31,7665 | 700 | 26,7536 | 549 | 1638 | | 920 | 6.4080 | 164 | 16.9341 | 2349 | 31.8365 | 693 | 26.8085 | 544 | 1656 | | 930
940 | 6.4244
6.4406 | 162
159 | 17.1690
17.4045 | 2355
2361 | 31.9058
31.9746 | 688
682 | 26.8629
26.9169 | 540
536 | 1674
1692 | | 950 | 6,4565 | 156 | 17.6406 | 2366 | 32.0428 | 677 | 26,9705 | 532 | 1710 | | 960 | 6.4721 | 153 | 17,8772 | 2373 | 32,1105 | 672 | 27.0237 | 528 | 1728 | | 970 | 6.4874 | 151 | 18.1145 | 2377 | 32.1777 | 666 | 27.0765 | 524 | 1746 | | 980 | 6.5025 | 148 | 18.3522 | 23/83 | 32.2443 | 661 | 27.1289 | 520 | 1764 | | 990 | 6.5173 | 145 | 18.5905 | 2389 | 32.3104 | 655 | 27.1809 | 516 | 1782 | | 1000 | 6.5318 | 69 | 18.8294 | 1202 | 32,3759 | 320 | 27.2325 | 252 | 1800 | | 1050 | 6.601 | 63 | 20.031 | 1214 | 32.696 | 309 | 27.485 | 244 | 1890 | | 1100 | 6.664 | 59 | 21.245 | 1225 | 33.005 | 297 | 27.729 | 236 | 1980
2070 | | 1150
1200 | 6.723
6.776 | 53
50 | 22.470
23.706 | 123 6
124 5 | 33.302
33.589 | 2 8 7
2 7 9 | 27.965
28.193 | 228
222 | 2160 | | 1250 | 6.826 | 46 | 24,951 | 1254 | 33.868 | 268 | 28.415 | 215 | 2250 | | 1300 | 6.872 | 41 | 26.205 | 1261 | 34.136 | 261 | 28,630 | 209 | 2340 | | 1350 | 6.913 | 39 | 27.466 | 1269 | 34.397 | 252 | 28.839 | 203 | 2430 | | 1400 | 6.952 | 36 | 28.735 | 1276 | 34.649 | 244 | 29.042 | 197 | 2520 | | 1450 | 6.988 | 33 | 30.011 | 1282 | 34.893 | 238 | 29.239 | 193 | 2610 | | 1500 | 7.021 | 61 | 31.293 | 2581 | 35,131 | 454 | 29.432 | 3 70 | 2700 | | 1600 | 7.082 | 52 | 33.875 | 2603 | 35.585 | 431 | 29.802 | 353 | 2880 | | 1700 | 7.134 | 46 | 36.478 | 2620 | 36.016 | 409 | 30.155
30.492 | 337 | 3060
3240 | | 1800
1900 | 7.180
7.222 | 42
36 | 39.098
41.734 | 2636
2651 | 36.425
36.815 | 390
371 | 30.492
30.815 | 323
309 | 3420 | | 2000 | 7.258 | | 44.385 | | 37.186 | | 31.124 | | 3600 | | 2000 | 1,230 | | , COC . FF | | J1.100 | | 71.167 | | 2000 | ^{*} The
enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). Table 4-12. IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR CARBON DIOXIDE - Cont. | Table 4-12. IDEAL GAS THERMODINAMIC FUNCTIONS FOR CARBON DIOXIDE - Cont. | | | | | | | | | | |--|-----------------------|----|----------|----------------------|--------|------------|---|-------------|------| | °K | C [*] p
R | | (H° - E° |)* | s° R | | $\frac{-(F^{\circ}-E_{\circ}^{\circ})}{RT}$ | | °R | | | L | | 1,10 | | | | | | | | | | | | - | | | | | | | 2000 | 7,258 | 33 | 44.385 | 2663 | 37.186 | 355 | 31.124 | 297 | 3600 | | 2100 | 7.291 | 29 | 47.048 | 2605
2675 | 37.541 | 340 | 31.421 | 286 | 3780 | | 2200 | 7.320 | | 49.723 | 26/5
2684 | 37.881 | 340
326 | 31.707 | 286
276 | 3960 | | 2300 | 7.347 | 27 | 52.407 | 2694 | 38,207 | 326
313 | 31.983 | | 4140 | | 2400 | 7.347
7.371 | 24 | 55.101 | | 38.520 | | 32.249 | 266 | 4320 | | 2400 | 1.511 | 22 | 55.101 | 2703 | 30.320 | 302 | 22.247 | 257 | 4320 | | 2500 | 7,393 | 21 | 57.804 | 2710 | 38,822 | 290 | 32,506 | 2 48 | 4500 | | 2600 | 7.414 | 19 | 60.514 | 2710
2 718 | 39.112 | 280 | 32.754 | 240
241 | 4680 | | 2700 | 7.433 | 18 | 63.232 | 2724 | 39.392 | 271 | 32.995 | 233 | 4860 | | 2800 | 7.451 | 17 | 65.956 | 2731 | 39.663 | 262 | 33,228 | 227 | 5040 | | 2900 | 7.468 | 16 | 68.687 | 2737 | 39,925 | 252
253 | 33.455 | 227 | 5220 | | 2700 | 7.400 | 10 | 00.007 | 2131 | 37.723 | 233 | 22.433 | 220 | 5220 | | 3000 | 7.484 | 15 | 71.424 | 2743 | 40.178 | 245 | 33.675 | 213 | 5400 | | 3100 | 7.499 | 14 | 74.167 | 2748 | 40.423 | 239 | 33.888 | 208 | 5580 | | 3200 | 7.513 | 14 | 76.915 | 2752 | 40.662 | 237 | 34.096 | 208 | 5760 | | 3300 | 7.526 | | 79.667 | | 40.894 | 224 | 34.299 | | 5940 | | 3400 | 7.539 | 13 | 82.425 | 2758 | 41.118 | | 34.496 | 197 | 6120 | | 2400 | 1.539 | 12 | 82.423 | 2762 | 41,116 | 219 | 24.470 | 192 | 6120 | | 3500 | 7,551 | 12 | 85.187 | 2767 | 41,337 | 213 | 34,688 | 188 | 6300 | | 3600 | 7.563 | 12 | 87.954 | 2770 | 41.550 | 207 | 34.876 | 183 | 6480 | | 3700 | 7.575 | 12 | 90.724 | | 41.757 | 207 | 35.059 | | 6660 | | 3800 | 7.586 | | 93,500 | 2776 | 41.959 | | 35.238 | 179 | 6840 | | 3900
3900 | 7.500
7.597 | 11 | 96.279 | 2779 | 42.156 | 197 | 35.413 | 175 | 7020 | | 2900 | 1.591 | 11 | 90.219 | 2783 | 42,130 | 193 | 22.412 | 171 | 7020 | | 4000 | 7,608 | 10 | 99.062 | 2787 | 42,349 | 188 | 35,584 | 167 | 7200 | | 4100 | 7.618 | 10 | 101.849 | 2787
2791 | 42.537 | 184 | 35.751 | 164 | 7380 | | 4200 | 7.628 | 10 | 104.640 | 2791
2794 | 42.721 | 179 | 35.915 | 160 | 7560 | | 4300 | 7.638 | | 107.434 | | 42.900 | | 36 . 075 | 158 | 7740 | | 4400 | | 9 | | 2798 | | 176 | | | | | 4400 | 7.647 | 10 | 110.232 | 2801 | 43.076 | 172 | 36.233 | 154 | 7920 | | 4500 | 7.657 | 9 | 113.033 | 2805 | 43.248 | 169 | 36.387 | 151 | 8100 | | 4600 | 7.666 | 10 | 115.838 | 2805
2808 | 43.417 | 165 | 36.538 | 151 | 8280 | | 4700 | 7.676 | | 118.646 | 2808
2812 | 43.582 | 161 | 36.686 | 148
145 | 8460 | | 4800 | 7 . 685 | 9 | 121.458 | | 43.743 | | 36.831 | | 8640 | | 4900 | 7.694 | 9 | 124.273 | 2815 | 43.902 | 159 | 36.974 | 143 | 8820 | | 4700 | 1.074 | 8 | 124.213 | 2818 | 43.702 | 155 | 20.7/4 | 140 | 0020 | | 5000 | 7,702 | | 127.091 | | 44.057 | | 37.114 | | 9000 | | 5000 | 1.102 | | 127.071 | | 44.057 | | 21.114 | | 7000 | | | | | | | | | | | | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). ## CHAPTER 5 ## THE THERMODYNAMIC PROPERTIES OF CARBON MONOXIDE ## The Correlation of the Experimental Data The computation of a set of mutually consistent tables of thermodynamic properties for carbon monoxide has been accomplished through the representation of the data of state by the equation $Z = PV/RT = 1 + B_1P + C_1P^2$. The virial coefficients and their temperature derivatives were used, together with the values for the ideal gas, to obtain values for the various derived thermodynamic properties. The second virial coefficient, B_1 , was obtained by fitting the available data of state to the Lennard-Jones 6-12 intermolecular potential using the force constants $\mathcal{E}/k = 100$. 8°K and $r_0 = 3$. 80 A. These force constants were obtained through a graphical treatment of the data of state. Values of the third virial coefficient, C_1 , were then obtained empirically by a graphical treatment of the experimental data. At temperatures above the experimental range, values of C_1 were extrapolated in such a way as to approach values of the third virials obtained from the above force constants. The virial coefficients are given in table 5-13. Data of state for carbon monoxide have been reported by Scott [1], Goig-Botella [2, 3], Bartlett, Hetherington, Kvalnes, and Tremearne [4], Townend and Bhatt [5], and most recently by Michels, Lupton, Wassenaar, and DeGraaff [6]. The data from Scott, Goig-Botella, and Bartlett, et al., were correlated graphically by Deming and Shupe [7], who published tables to 400°C. The experimental data have been recorrelated as indicated above in such a manner as to permit extrapolation to higher temperatures. The adequacy of the correlation is corroborated by the data and calculations of Michels, et al., [6, 8, 9] which, though not considered in this correlation, show very satisfactory agreement with the present tables (see table 5-a). The other thermodynamic data for carbon monoxide which have been considered are the specific-heat measurements of Eucken and Von Lüde [10] and Sherratt and Griffiths [11]. The tabulated viscosities were computed independently from the parameters $\epsilon/k = 110.3$ and $r_0 = 3.59$ A, for the Lennard-Jones 6-12 intermolecular potential. These constants were obtained by Hirschfelder, et al., [29] largely on the basis of the data of Johnston and Grilly [19]. No effort was made here to evaluate or reconcile the earlier data [20 - 23]. The departures of these data from the tabulated values are shown in figure 5d. The thermal conductivities were computed from an empirical equation fitted to the experimental data [24 - 28]. Summary tables 1-B and 1-C give the equations employed for both of the above transport properties. The tables and equations for the vapor pressure of carbon monoxide are based on an analysis of the data in references [12-16], which are arranged roughly in the order of the weight given to the data taken from them. Carbon monoxide has a solid phase transition point at 61.57°K and a triple point at 68.09°K [30]. The triple-point and transition-point pressures are those of Clayton and Giauque [13]; the critical temperature and pressure are from Crommelin, Bijleveld, and Brown [12]. Deviations of the experimental data [12-16] from the tabulated values are shown in figure 5f. The systematic differences appear to be due primarily to the use of different temperature scales. The tabulated ideal-gas thermodynamic properties (table 5-12) are based on the calculations of Goff and Gratch [17] below 2800°K and of Belzer, Savedoff and Johnston [18] at higher temperatures. The values joined smoothly at this point except for the values of the enthalpy function which were joined at 2000° in favor of the later values [18] which were slightly higher (0.003) at 2800°K. The uncertainties in these values are indicated in summary table 1-D. The dimensionless representation has been accomplished for certain properties by expressing them relative to the value at standard conditions (0°C and 1 atmosphere). Thus, for density, the property is expressed as ρ/ρ_0 , for sound velocity as a/a_0 , for thermal conductivity as k/k_0 , and for viscosity as η/η_0 . The reference values, ρ_0 , a_0 , k_0 , and η_0 were computed on the basis of the Lennard-Jones intermolecular potential, whose force constants were obtained in the manner outlined above. The value of k_0 was determined from an equation based on an empirical fit of the experimental data. The value of ρ_0 for carbon monoxide as given, 1.25052 g ℓ^{-1} , is within the range of the experimental determinations at standard conditions [31 - 36], though above their mean of 1.25012 g ℓ^{-1} . Comparisons of the adopted values of η_0 and k_0 with the experimental data at standard conditions can be made by examining figures 5d and 5e, respectively. The value of a_0 for carbon monoxide as given, 336.93 m/sec, is slightly below the mean value, 337.4 m/sec, of the experimental determinations [37, 38]. ## The Reliability of the Tables The departures of the experimental data from the tabulated values for ${f Z}$ (table 5-1) are shown in figure 5a. The data of Bartlett, et al., [4], part of which are shown in figure 5a (and to which little weight was given in the correlation), show a maximum deviation of 4 percent. Up to 10 atmospheres, the uncertainty in the table should not exceed 10 percent in the value of (Z - 1), except in the low-temperature region (below 250°K), between 1 and 10 atmospheres where the error may approach 20 percent in (Z - 1). Above 10 atmospheres, the uncertainty in (Z - 1) runs from 25 percent at the lowest temperatures to 10 percent at higher temperatures. These uncertainties apply also to the tabulated densities (table 5-2). The uncertainties in the values of the derived thermodynamic properties depend on the uncertainties of the ideal-gas values (see summary table 1-D) and of the corrections for gas imperfection. It is difficult to formulate precise estimates of the uncertainties in the corrections for gas imperfection, since these corrections were computed on the basis of virial coefficients fitted to the rather limited experimental PVT data. It is possible that virial coefficients somewhat different from those chosen might represent the PVT data as closely and at
the same time yield somewhat different temperature derivatives and, hence, different pressure corrections to the thermodynamic properties. The corrections for enthalpy and entropy are estimated to be accurate to within about 10 percent for pressures below 10 atmospheres and temperatures above 400°K and to within roughly 20 percent for higher pressures and lower temperatures. Figure 5a. Departures of experimental compressibility factors from the the tabulated values for carbon monoxide (table 5-1) Figure 5b shows the departures of the experimental heat-capacity data from the values contained in table 5-3. Below 10 atmospheres and above 400°K, the estimate of the uncertainty in the calculated $C_p/R - C_p^0/R$ is about 20 percent and 30 to 50 percent at higher pressures and at lower temperatures. Figure 5b. Departures of experimental specific heats from the tabulated values for carbon monoxide (table 5-3) A comparison of this correlation with the entropy and specific heats derived by Michels, et al., [8, 9] from their own PVT data is given in table 5-a. Since their data were not considered in this correlation, they may be taken as verification of the reliability of the derived thermodynamic properties. The tabulated values of the specific-heat ratio and sound velocity at low frequency are estimated to be uncertain by about $\pm .002$ between the ice point and 1000° K below 10 atmospheres. Above this pressure and at lower temperatures, the uncertainties increase to 1 percent at the Table 5-a. COMPARISON OF RECENTLY PUBLISHED RESULTS WITH THIS CORRELATION | Т | P = | l atm | P = 5 | 0 atm | P = 100 atm | | |----------------|---------|---------|---------|---------|-------------|----------------| | °K | Z (M)* | Z (NBS) | Z (M) | Z (NBS) | Z (M) | Z (NBS) | | | | | | | 07.00 | 000 | | 273. 16 | . 99939 | . 99933 | . 97689 | . 9749 | .97136 | . 966 | | 298.16 | . 99967 | . 99964 | . 99005 | . 9889 | . 99375 | .99 2 1 | | 323. 16 | . 99989 | .99986 | .99928 | . 9988 | 1.00929 | 1.00 89 | | 348.16 | 1.00005 | 1.00002 | 1.00596 | 1.0057 | 1.02026 | 1.0208 | | 373.16 | 1.00017 | 1.00014 | 1.01078 | 1.0109 | 1.02805 | 1.0293 | | 398. 16 | 1.00026 | 1.00023 | 1.01425 | 1.0145 | 1.03360 | 1.0355 | | 423. 16 | 1.00031 | 1.00029 | 1.01677 | 1.0173 | 1.03772 | 1.0399 | | ${f T}$ | P = 1 atm | | P = | 50 atm | P = 100 atm | | |---------|----------------------|-----------|----------------------|------------------------|-------------|-----------| | °K | C _p /R(M) | Cp/R(NBS) | C _p /R(M) | C _p /R(NBS) | Cp/R(M) | Cp/R(NBS) | | 273.16 | 3.51 | 3.51 | 3.86 | 3.853 | 4. 22 | 4.13 | | 298.16 | 3.51 | 3.51 | 3.80 | 3.792 | 4. 07 | 4.02 | | 323.16 | 3.51 | 3.51 | 3.75 | 3.751 | 3.97 | 3.95 | | 348.16 | 3, 52 | 3.52 | 3.72 | 3.722 | 3.90 | 3.90 | | 373.16 | 3, 52 | 3.52 | 3.69 | 3.700 | 3.85 | 3.86 | | 398.16 | 3.53 | 3, 53 | 3.68 | 3.685 | 3.81 | 3.83 | | 423.16 | 3.54 | 3. 54 | 3.66 | 3.676 | 3.78 | 3.80 | | °K | P = 1 atm | | P = 50 atm | | P = 100 atm | | |----------------|-----------|----------------|----------------|----------------|-----------------|-----------------| | | S/R(M) | S/R(NBS) | S/R(M) | S/R(NBS) | S/R(M) | S/R(NBS) | | 273. 16 | | | 19. 387 | 1 9.344 | 18. 552 | 18. 531 | | 298.16 | 23.756 | 23.757 | 19. 723 | 19.691 | 18.915 | 18.901 | | 323. 16 | 24.311 | 24.040 | 20.026 | 19.996 | 19. 23 9 | 19 . 226 | | 348.16 | 24.300 | 24.30 1 | 20.304 | 20. 275 | 19.531 | 19.521 | | 373.16 | 24. 545 | 24.546 | 20.561 | 20. 532 | 19.801 | 19.791 | | 398.16 | 24.773 | 24.775 | 20.800 | 20.771 | 20.049 | 20.040 | | 423. 16 | 24.988 | 24,990 | 21.024 | 20.996 | 20. 281 | 20, 273 | ^{* (}M) refers to data of Michels, Lupton, Wassenaar, and De Graaf [6, 8, 9]. lowest temperatures. Above 1000°K, where the gas approaches ideality, the values may be accurate to about ±.001. Figure 5c shows a comparison of the tabulated values of the heat-capacity ratios with those obtained from experimental heat capacities [10, 11]. The values of the thermal conductivity (table 5-9) are considered to be reliable to within 3 percent. Figure 5e shows the deviations of the tabulated values from the experimental data. Figure 5c. Departures of experimentally derived γ 's from the tabulated values for carbon monoxide (table 5-6) Figure 5d. Departures of experimental viscosities from the tabulated values for carbon monoxide (table 5-8) Figure 5e. Departures of experimental thermal conductivities from the tabulated values for carbon monoxide (table 5-9) Figure 5f. Departures of the experimental vapor pressures from the tabulated values for carbon monoxide (table 5-11) The values of the vapor pressure for the solid (5-11) were computed from two equations whose constants are given in table 5-11/b. The values for the solid are probably uncertain by about $+0.1^{\circ}$ K. The values for the liquid (tables 5-11 and 5-11/a) up to 85°K are reliable to about $+0.03^{\circ}$ K. At higher temperatures, where the tables are based entirely on the work of Crommelin, et al., [12], the reliability may be about $\pm 0.06^{\circ}$ K. The corresponding uncertainties in vapor pressure (mm Hg) are given below. | T, °K | 54 | 61.57 | 68.09 | 68.09 | 85 | 110 | 132.88 | |-------|-----|-------|----------|-------------|-----|-----|--------| | P(±) | 0.1 | 0.7 | 2(solid) | 0.6(liquid) | 3.5 | 30 | 70 | The triple-point and transition-point pressures are independent of temperature-scale error and are probably accurate to ± 0.2 mm Hg. See also figure 5f. ## References - [1] G. A. Scott, Proc. Roy. Soc. (London) [A] 125, 330 (1929). - [2] S. Goig-Botella, Anales soc. españ. fís. y quím. 27, 315 (1929). - [3] S. Goig, Compt. rend. 189, 236 (1929). - [4] E. P. Bartlett, H. C. Hetherington, H. M. Kvalnes, and T. H. Tremearne, J. Am. Chem. Soc. 52, 1374 (1930). - [5] D. T. A. Townend and L. A. Bhatt, Proc. Roy. Soc. (London) [A] 134, 502 (1931). - [6] A. Michels, J. M. Lupton, T. Wassenaar, and W. DeGraaff, Physica 18, 121 (1952). - [7] W. E. Deming and L. E. Shupe, Phys. Rev. [2] 38, 2245 (1931). - [8] A. Michels, R. J. Lunbeck, and G. J. Wolkers, Physica 18, 128 (1952). - [9] A. Michels, R. J. Lunbeck, and G. J. Wolkers, Appl. Sci. Research [A] 3, 253 (1952). - [10] A. Eucken and K. Von Lüde, Z. physik. Chem. [B] 5, 413 (1929). - [11] G. G. Sherratt and E. Griffiths, Proc. Roy. Soc. (London) [A] 147, 292 (1934). - [12] C. A. Crommelin, W. J. Bijleveld, and E. G. Brown, Communs. Kamerlingh Onnes Lab. Univ. Leiden No. 217b (1931). - [13] J. O. Clayton and W. F. Giauque, J. Am. Chem. Soc. <u>54</u>, 2610 (1932). - [14] T. T. H. Verschoyle, Trans. Roy. Soc. (London) [A] 230, 189 (1931). - [15] K. Clusius and W. Teske, Z. physik. Chem. [B] 6, 135 (1929). - [16] W. Heuse and J. Otto, Ann. Physik [5] 14, 185 (1932). - [17] J. A. Goff and S. Gratch, Trans. Am. Soc. Mech. Engrs. 72, 741 (1950). - [18] J. Belzer, L. G. Savedoff, and H. L. Johnston, Ohio State University Tech. Report No. 316-6 (1953). - [19] H. L. Johnston and E. R. Grilly, J. Phys. Chem. <u>46</u>, 948 (1942). - [20] M. Trautz and P. B. Baumann, Ann. Physik [5] 2, 733 (1929). - [21] M. Trautz and A. Melster, Ann. Physik [5] 7, 409 (1930). - [22] H. Vogel, Ann. Physik [4] 43, 1235 (1914). - [23] R. Wobser and F. Müller, Kolloid-Beih. <u>52</u>, 165 (1941). - [24] A. Eucken, Physik. Z. 14, 324 (1913). - [25] H. Gregory and C. T. Archer, Proc. Roy. Soc. (London) [A], 121, 285 (1928). - [26] B. G. Dickins, Proc. Roy. Soc. (London) [A] 143, 517 (1934). - [27] W. G. Kannuluik and H. L. Martin, Proc. Roy. Soc. (London) [A] 144, 496 (1934). - [28] H. L. Johnston and E. R. Grilly, J. Chem. Phys. 14, 233 (1946). - [29] J. O. Hirschfelder, R. B. Bird, and E. L. Spotz, Trans. Am. Soc. Mech. Engrs. <u>71</u>, 921 (1949). - [30] H. J. Hoge, in Am. Inst. Phys., Temperature, its measurement and control in science and industry, p. 141 (Reinhold Publishing Corp., New York, N.Y., 1941). - [31] Lord Rayleigh, Proc. Roy. Soc. (London) 62, 204 (1897). - [32] A. Leduc, Recherches sur lesgaz (Gauthier-Villars et Fils, Paris, 1898). - [33] E. Moles, Rec. trav. chim. 48, 864 (1929). - [34] E. Moles and Y. M. T. Salazar, Anales soc. españ. fís. y quím. 32, 954 (1934). - [35] E. Moles and M. T. Salazar, Anales soc. españ. fís. y quím. 30, 182 (1932). - [36] L. R. Pire and E. Moles, Anales soc. españ. fis. y quim. 27, 267 (1929). - [37] G. Schweikert, Ann. Physik [4] 48, 593 (1915). - [38] A. Wüllner, Ann. Physik [3] 321 (1878). Table 5-b. VALUES OF THE GAS CONSTANT, R, FOR CARBON MONOXIDE Values of R for Carbon Monoxide for Temperatures in Degrees Kelvin | Pressure
Density | atm | kg/cm ² | mm Hg | lb/in ² | | |-------------------------|------------------------------|--------------------|-----------------|--------------------|--| | g/cm ³ | 2. 92955 | 3.02689 | 2226. 46 | 43. 0527 | | | mole/cm ³ | mole/cm ³ 82.0567 | | 62363. 1 | 1205.91 | | | mole/liter | mole/liter 0.0820544 | | 62.3613 | 1. 20587 | | | lb/ft ³ | 0.0469264 | 0.0484858 | 35. 6641 | 0.689631 | | | Ib mole/ft ³ | 1.31441 | 1.35808 | 998.952 | 19.3166 | | Values of R for Carbon Monoxide for Temperatures in Degrees Rankine | Pressure
Density | atm | kg/cm ² | mm Hg | lb/in ² | | |-------------------------|-----------|--------------------|----------|--------------------------|--| | g/cm ³ | 1.62753 | 1.68161 | 1236.92 | 23.9182 | | | mole/cm ³ | 45. 5871 | 47. 1018 | 34646.2 | 669.950 | | | mole/liter | 0.0455858 | 0.0471005 | 34. 6452 | 0.669928 | | | lb/ft ³ | 0.0260702 | 0.0269364 | 19.8134 | 0.383128 | | | lb mole/ft ³ | 0.730228 | 0.754489 | 554.973 | 10. 73 1 4 | | ## Conversion Factors for Table 5-2 | To Convert
Tabulated
Value of | То | Having the Dimensions Indicated Below | Multiply
by | | |-------------------------------------|----|---------------------------------------|--------------------------|--| | 0/0 | | g cm ⁻³ | 1.25048x10 ⁻³ | | |
ρ/ρ_0 | ρ | mole cm ⁻³ | 4.46441×10^{-5} | | | | | g liter ⁻¹ | 1. 25052 | | | | | lb in ⁻³ | 4.51768×10^{-5} | | | | | lb ft ⁻³ | 7.80654×10^{-2} | | ## Conversion Factors for Tables 5-4 and 5-12 | To Convert
Tabulated
Value of | То | Having the Dimensions Indicated Below | Multiply
by | |---|-----------------------|---|-------------------------------| | $(H^{O} - E_{0}^{O})/RT_{0},$
$(H - E_{0}^{O})/RT_{0}$ | | cal mole ⁻¹ | 5 42. 821
19. 3795 | | (H - E ₀ //K1 ₀ | (H - E ₀) | joules g ⁻¹ Btu (lb mole) ⁻¹ Btu lb ⁻¹ | 81.0840
976.437
34.8603 | Conversion Factors for Tables 5-3, 5-5, and 5-12 | To Convert
Tabulated
Value of | То | Having the Dimensions
Indicated Below | Multiply
by | |---|-----------------------------------|--|----------------| | C _p ^o /R, S ^o /R, | C _p , s ^o , | cal mole ⁻¹ OK ⁻¹ (or OC ⁻¹) | 1.98719 | | C _p /R, S/R, | C _p , s, | cal g ^{-1 o} K ⁻¹ (or ^o C ⁻¹) | 0.0709457 | | -(F ^O - E ^O _O)/RT | 1 * | joules $g^{-1} \circ K^{-1}$ (or $\circ C^{-1}$) | 0.296838 | | -(F - E ₀ //K1 -(F - 1 | 20,72 | Btu (lb mole) ⁻¹ OR ⁻¹ (or OF ⁻¹) | 1.98588 | | | | Btu lb ⁻¹ OR ⁻¹ (or OF ⁻¹) | 0.0708989 | The molecular weight of carbon monoxide is 28.010 g mole⁻¹. Unless otherwise specified, the mole is the gram-mole; the calorie is the thermochemical calorie; and the joule is the absolute joule. Conversion Factors for Table 5-7 | To Convert Tabulated Value of | То | Having the Dimensions
Indicated Below | Multiply
by | |-------------------------------|----|--|-------------------| | a ₀ | a | m sec ⁻¹ ft sec ⁻¹ | 336.93
1105.41 | Conversion Factors for Table 5-8 | To Convert Tabulated To | | Having the Dimensions | Multiply | |-------------------------|---|---|-------------------------| | Value of | | Indicated Below | by | | η/η_0 | η | poise or g sec ⁻¹ cm ⁻¹ | 1.6568x10 ⁻⁴ | | | • | kg hr ⁻¹ m ⁻¹ | 5.9644×10^{-2} | | | | slug hr ⁻¹ ft ⁻¹ | 1.2457×10^{-3} | | | | lb sec ⁻¹ ft ⁻¹ | 1.1132×10^{-5} | | | | lb hr ⁻¹ ft ⁻¹ | 4.0079×10^{-2} | Conversion Factors for Table 5-9 | To Convert
Tabulated
Value of | То | Having the Dimensions Indicated Below | Multiply
by | |-------------------------------------|----|---|--| | k/k ₀ | k | cal cm ⁻¹ sec ^{-1 °} K ⁻¹ Btu ft ⁻¹ hr ^{-1 °} R ⁻¹ watts cm ^{-1 °} K ⁻¹ | 5.549 x 10 ⁻⁵ 1.342 x 10 ⁻² 2.322 x 10 ⁻⁴ | Table 5-1. COMPRESSIBILITY FACTOR FOR CARBON MONOXIDE | °K | .OI atm | .l atm | .4 atm | .7 atm | °R | |---------------------------------|---|--|--|--|--------------------------------------| | 200 | 1.00000 | .99973 4 | .99892 18 | .99811 31 | 360 | | 210 | 1.00000 | .99977 4 | .99910 15 | .99842 26 | 378 | | 220 | 1.00000 | .99981 3 | .99925 12 | .99868 22 | 396 | | 230 | 1.00000 | .99984 2 | .99937 10 | .99890 18 | 414 | | 240 | 1.00000 | .99986 3 | .99947 9 | .99908 16 | 432 | | 250
260
270
280
290 | 1.00000
1.00000
1.00000
1.00000
1.00000 | .99989 2
.99991 1
.99992 2
.99994 1
.99995 1 | .99956 8
.99964 7
.99971 6
.99977 5 | .99924 13
.99937 12
.99949 10
.99959 9 | 450
468
486
504
522 | | 300
310
320
330
340 | 1.00000
1.00000
1.00000
1.00000
1.00000 | .99996 1
.99997 1
.99998 1
.99999 1 | .99986 4
.99990 3
.99993 3
.99996 3
.99999 2 | .99976 6
.99982 6
.99988 6
.99994 4
.99998 4 | 540
558
576
594
612 | | 350 | 1.00000 | 1.00000 1 | 1.00001 2 | 1.00002 4 | 630 | | 360 | 1.00000 | 1.00001 | 1.00003 2 | 1.00006 3 | 648 | | 370 | 1.00000 | 1.00001 1 | 1.00005 2 | 1.00009 3 | 666 | | 380 | 1.00000 | 1.00002 | 1.00007 1 | 1.00012 2 | 684 | | 390 | 1.00000 | 1.00002 | 1.00008 1 | 1.00014 2 | 702 | | 400 | 1.00000 | 1.00002 | 1.00009 1 | 1.00016 2 | 720 | | 410 | 1.00000 | 1.00003 | 1.00010 1 | 1.00018 2 | 738 | | 420 | 1.00000 | 1.00003 | 1.00011 1 | 1.00020 1 | 756 | | 430 | 1.00000 | 1.00003 | 1.00012 1 | 1.00021 2 | 774 | | 440 | 1.00000 | 1.00003 | 1.00013 1 | 1.00023 1 | 792 | | 450
460
470
480
490 | 1.00000
1.00000
1.00000
1.00000
1.00000 | 1.00003
1.00004
1.00004
1.00004 | 1.00014
1.00014 1
1.00015
1.00015 1 | 1.00024 1
1.00025 1
1.00026 1
1.00027 1 | 810
828
846
864
882 | | 500 | 1.00000 | 1.00004 | 1.00016 | 1.00028 1 | 900 | | 510 | 1.00000 | 1.00004 | 1.00016 1 | 1.00029 | 918 | | 520 | 1.00000 | 1.00004 | 1.00017 | 1.00029 1 | 936 | | 530 | 1.00000 | 1.00004 | 1.00017 | 1.00030 | 954 | | 540 | 1.00000 | 1.00004 | 1.00017 | 1.00030 | 972 | | 550 | 1.00000 | 1.00004 | 1.00017 1 | 1.00030 1 | 990 | | 560 | 1.00000 | 1.00004 | 1.00018 | 1.00031 | 1008 | | 570 | 1.00000 | 1.00004 | 1.00018 | 1.00031 | 1026 | | 580 | 1.00000 | 1.00004 | 1.00018 | 1.00031 | 1044 | | 590 | 1.00000 | 1.00004 | 1.00018 | 1.00031 1 | 1062 | | 600 | 1.00000 | 1.00004 | 1.00018 | 1.00032 | 1080 | | 610 | 1.00000 | 1.00004 | 1.00018 | 1.00032 | 1098 | | 620 | 1.00000 | 1.00004 | 1.00018 | 1.00032 | 1116 | | 630 | 1.00000 | 1.00004 | 1.00018 | 1.00032 | 1134 | | 640 | 1.00000 | 1.00004 | 1.00018 | 1.00032 | 1152 | | 650 | 1.00000 | 1.00004 | 1.00018 | 1.00032 | 1170 | | 660 | 1.00000 | 1.00004 | 1.00018 | 1.00032 | 1188 | | 670 | 1.00000 | 1.00004 | 1.00018 | 1.00032 | 1206 | | 680 | 1.00000 | 1.00004 | 1.00018 | 1.00032 | 1224 | | 690 | 1.00000 | 1.00004 | 1.00018 | 1.00032 | 1242 | | 700
710
720
730
740 | 1.00000
1.00000
1.00000
1.00000
1.00000 | 1.00004
1.00004
1.00004
1.00004 | 1.00018
1.00018
1.00018
1.00018
1.00018 | 1.00032 - 1
1.00031
1.00031
1.00031
1.00031 | 1260
1278
1296
1314
1332 | | 750 | 1.00000 | 1.00004 | 1.00018 | 1.00031 | 1350 | | 760 | 1.00000 | 1.00004 | 1.00018 | 1.00031 | 1368 | | 770 | 1.00000 | 1.00004 | 1.00018 | 1.00031 | 1386 | | 780 | 1.00000 | 1.00004 | 1.00018 - 1 | 1.00031 - 1 | 1404 | | 790 | 1.00000 | 1.00004 | 1.00017 | 1.00030 | 1422 | | 800 | 1.00000 | 1.00004 | 1.00017 | 1.00030 | 1440 | Table 5-1. COMPRESSIBILITY FACTOR FOR CARBON MONOXIDE - Cont. | °K | .01 atm | .1 atm | .4 atm | .7 atm | °R | |--------------------------------------|---|---|---|---|--------------------------------------| | 800
850
900
950
1000 | 1.00000
1.00000
1.00000
1.00000
1.00000 | 1.00004
1.00004
1.00004
1.00004 | 1.00017
1.00017 - 1
1.00016
1.00016 - 1
1.00015 | 1.00030
1.00030 - 1
1.00029 - 1
1.00028 - 1
1.00027 - 1 | 1440
1530
1620
1710
1800 | | 1050
1100
1150
1200
1250 | 1.00000
1.00000
1.00000
1.00000
1.00000 | 1.00004
1.00004
1.00004 - 1
1.00003
1.00003 | 1.00015 - 1
1.00014
1.00014
1.00014 - 1 | 1.00026
1.00026 - 1
1.00025 - 1
1.00024 - 1
1.00023 - 1 | 1890
1980
2070
2160
2250 | | 1300
1350
1400
1450
1500 | 1.00000
1.00000
1.00000
1.00000
1.00000 | 1.00003
1.00003
1.00003
1.00003 | 1.00013 - 1
1.00012
1.00012
1.00012 - 1
1.00011 | 1.00022
1.00022 - 1
1.00021
1.00021 - 1
1.00020 | 2340
2430
2520
2610
2700 | | 1550
1600
1650
1700
1750 | 1,00000
1,00000
1,00000
1,00000 | 1.00003
1.00003
1.00003
1.00003 - 1 | 1.00011
1.00011 - 1
1.00010
1.00010
1.00010 | 1.00020 - 1
1.00019 - 1
1.00018
1.00018 - 1 | 2790
2880
2970
3060
3150 | | 1800
1850
1900
1950
2000 | 1.00000
1.00000
1.00000
1.00000
1.00000 | 1.00002
1.00002
1.00002
1.00002
1.00002 | 1.00010
1.00010 - 1
1.00009
1.00009
1.00009 | 1.00017
1.00017 - 1
1.00016
1.00016 - 1 | 3240
3330
3420
3510
3600 | | 2050
2100
2150
2200
2250 | 1.00000
1.00000
1.00000
1.00000
1.00000 | 1.00002
1.00002
1.00002
1.00002
1.00002 | 1.00009 - 1
1.00008
1.00008
1.00008
1.00008 | 1.00015
1.00015 - 1
1.00014
1.00014
1.00014 | 3690
3780
3870
3960
4050 | | 2300
2350
2400
2450
2500 | 1,00000
1,00000
1,00000
1,00000
1,00000 | 1.00002
1.00002
1.00002
1.00002
1.00002 | 1.00008
1.00008 - 1
1.00007
1.00007
1.00007 | 1.00014 - 1
1.00013
1.00013
1.00013 - 1
1.00012 | 4140
4230
4320
4410
4500 | | 2550
2600
2650
2700
2750 | 1.00000
1.00000
1.00000
1.00000
1.00000 | 1.00002
1.00002
1.00002
1.00002
1.00002 | 1,00007
1,00007
1,00007
1,00007 - 1 | 1.00012
1.00012
1.00012
1.00012 - 1 | 4590
4680
4770
4860
4950 | | 2800
2850
2900
2950
3000 | 1.00000
1.00000
1.00000
1.00000
1.00000 | 1.00002
1.00002
1.00002
1.00002
1.00002 | 1.00006
1.00006
1.00006
1.00006
1.00006 | 1.00011
1.00011
1.00011 - 1
1.00010
1.00010 | 5040
5130
5220
5310
5400 | | | r | | , | | | | | |
7 7/161 | |---------------------------------|---|----------------------------|---|--------------------------------|---|------------------------------------|---|---------------------------------|--------------------------------------| | *K | ŀ | atm | 4 | atm | 7 | atm | 10 | atm | •R | | 200
210
220
230
240 | .99730
.99774
.99811
.99843
.99869 | 44
37
32
26
23 | .98927
.99104
.99252
.99376
.99482 | 177
148
124
106
90 | .98131
.98442
.98701
.98919
.99104 | 311
259
218
185
157 | .97344
.97788
.98159
.98470
.98732 | 444
371
311
262
223 | 360
378
396
414
432 | | 250
260
270
280
290 | .99892
.99911
.99928
.99942
.99955 | 19
17
14
13 | .99572
.99649
.99716
.99773
.99823 | 77
67
57
50
43 | .99261
.99395
.99510
.99610
.99697 | 134
115
100
87
75 | .98955
.99146
.99311
.99453
.99576 | 191
165
142
123
107 | 450
468
486
504
522 | | 300
310
320
330
340 | .99966
.99975
.99984
.99991
.99998 | 9
9
7
7
5 | .99866
.99904
.99938
.99966
.99993 | 38
34
28
27
22 | .99772
.99838
.99896
.99946
.99991 | 66
58
50
4 5
40 | .99683
.99776
.99858
.99930
.99994 | 93
82
72
64
56 | 540
558
576
594
612 | | 350
360
370
380
390 | 1.00003
1.00008
1.00013
1.00017
1.00020 | 5
5
4
3
3 | 1.00015
1.00035
1.00053
1.00069
1.00083 | 20
18
16
14
12 | 1.00031
1.00066
1.00096
1.00123
1.00147 | 35
30
27
24
22 | 1.00050
1.00099
1.00142
1.00181
1.00215 | 49
43
39
34
30 | 630
648
666
684
702 | | 400
410
420
430
440 | 1.00023
1.00026
1.00029
1.00031
1.00033 | 3
3
2
2
1 | 1.00095
1.00106
1.00116
1.00124
1.00132 | 11
10
8
8
7 | 1.00169
1.00188
1.00205
1.00220
1.00233 | 19
17
15
13 | 1.00245
1.00272
1.00296
1.00317
1.00336 | 27
24
21
19
16 | 720
738
756
774
792 | | 450
460
470
480
490 | 1.00034
1.00036
1.00037
1.00038
1.00039 | 2
1
1
1 | 1.00139
1.00145
1.00150
1.00155
1.00159 | 6
5
5
4
4 | 1.00245
1.00255
1.00264
1.00273
1.00280 | 10
9
9
7
6 | 1.00352
1.00367
1.00380
1.00392
1.00402 | 15
13
12
10
9 | 810
828
846
864
882 | | 500
510
520
530
540 | 1.00040
1.00041
1.00042
1.00043
1.00043 | 1
1
1 | 1.00163
1.00166
1.00169
1.00171
1.00173 | 3
3
2
2
2 | 1.00286
1.00291
1.00296
1.00301
1.00305 | 5
5
5
4
3 | 1.00411
1.00418
1.00425
1.00431
1.00437 | 7
7
6
6
4 | 900
918
936
954
972 | | 550
560
570
580
590 | 1.00044
1.00044
1.00044
1.00044 | 1 | 1.00175
1.00177
1.00178
1.00179
1.00180 | 2
1
1 | 1.00308
1.00310
1.00312
1.00314
1.00315 | 2
2
2
1
1 | 1.00441
1.00444
1.00447
1.00450
1.00452 | 3
3
3
2
1 | 990
1008
1026
1044
1062 | | 600
610
620
630
640 | 1.00045
1.00045
1.00045
1.00045
1.00045 | | 1.00180
1.00181
1.00181
1.00182
1.00182 | 1 | 1.00316
1.00317
1.00318
1.00318
1.00319 | 1
1 | 1.00453
1.00454
1.00455
1.00456
1.00456 | 1
1
1 | 1080
1098
1116
1134
1152 | | 650
660
670
680
690 | 1.00045
1.00045
1.00045
1.00045
1.00045 | | 1.00182
1.00182
1.00181
1.00181
1.00181 | - 1
- 1 | 1.00319
1.00318
1.00318
1.00317
1.00317 | - 1
- 1
- 1 | 1.00456
1.00455
1.00454
1.00454
1.00453 | - 1
- 1
- 1
- 1 | 1170
1188
1206
1224
1242 | | 700
710
720
730
740 | 1.00045
1.00045
1.00045
1.00045
1.00044 | - 1 | 1.00180
1.00180
1.00179
1.00179
1.00178 | - 1
- 1 | 1.00316
1.00315
1.00314
1.00313
1.00312 | - 1
- 1
- 1
- 1 | 1.00452
1.00451
1.00450
1.00448
1.00446 | - 1
- 1
- 2
- 2
- 1 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | 1.00044
1.00044
1.00044
1.00044 | | 1.00178
1.00177
1.00176
1.00175
1.00174 | - 1
- 1
- 1
- 1 | 1.00311
1.00310
1.00308
1.00307
1.00306 | - 1
- 2
- 1
- 1
- 2 | 1.00445
1.00443
1.00441
1.00439
1.00437 | - 2
- 2
- 2 | 1350
1368
1386
1404
1422 | | 800 | 1.00043 | 1 | 1.00174 | | 1.00304 | | 1.00435 | | 1440 | Table 5-1. COMPRESSIBILITY FACTOR FOR CARBON MONOXIDE - Cont. Z=PV/RT | °K | | - 4 | | -4 | 7 ati | | 10 0 | ıtm . | •R | |------------|---------|------------|--------------------|------------|--------------------|------------|---------|--------------|--------------| | _ <u> </u> | 1 | atm | 4 | atm | 7 011 | | 100 | | | | | | | | _ | 1 00204 | | 1.00435 | - 11 | 1440 | | 800 | 1.00043 | - 1 | 1.00174 | - 5 | 1.00304
1.00296 | - 8
- 8 | 1.00433 | - 11
- 12 | 1530 | | 850 | 1.00042 | - <u>1</u> | 1.00169 | - 4 | 1.00288 | - 8 | 1.00424 | - 12
- 12 | 1620 | | 900 | 1.00041 | - 1 | 1.00165 | - 5 | 1.00238 | - 8 | 1.00400 | - 12
- 12 | 1710 | | 950 | 1.00040 | - 1 | 1.00160
1.00155 | - 5
- 5 | 1.00271 | - 8 | 1.00388 | - 12 | 1800 | | 1000 | 1,00039 | - 1 | 1.00155 | - 5 | | - 0 | | | | | 1050 | 1.00038 | - 2 | 1,00150 | - 4 | 1.00263 | - 8 | 1.00376 | - 12 | 1890 | | 1100 | 1.00036 | - 1 | 1,00146 | - 5 | 1.00255 | - 8 | 1.00364 | - 11 | 1980 | | 1150 | 1.00035 | - 1 | 1.00141 | - 4 | 1.00247 | - 7 | 1.00353 | - 10 | 2070 | | 1200 | 1.00034 | - 1 | 1.00137 | - 4 | 1.00240 | - 7 | 1.00343 | - 11 | 2160
2250 | | 1250 | 1.00033 | - 1 | 1.00133 | - 4 | 1,00233 | - 7 | 1.00332 | - 10 | 2250 | | 1300 | 1.00032 | - 1 | 1.00129 | - 4 | 1.00226 | - 7 | 1.00322 | - 9 | 2340 | | 1350 | 1.00031 | - 1 | 1.00125 | - 4 | 1.00219 | - 6 | 1.00313 | - 9 | 2430 | | 1400 | 1.00030 | | 1.00121 | - 3 | 1.00213 | - 6 | 1.00304 | - 9 | 2520 | | 1450 | 1.00030 | - 1 | 1.00118 | - 3 | 1.00207 | - 6 | 1.00295 | - 8 | 2610 | | 1500 | 1.00029 | - 1 | 1.00115 | - 3 | 1.00201 | - 6 | 1.00287 | - 8 | 2700 | | 1550 | 1.00028 | - 1 | 1.00112 | - 3 | 1.00195 | - 5 | 1.00279 | - 8 | 2790 | | 1600 | 1,00027 | - 1 | 1.00109 | - 3 | 1.00190 | - 5 | 1.00271 | - 7 | 2880 | | 1650 | 1.00026 | | 1.00106 | - 3 | 1.00185 | - 5 | 1.00264 | - 7 | 2970 | | 1700 | 1.00026 | - 1 | 1.00103 | - 3 | 1.00180 | - 5 | 1.00257 | - 6 | 3060 | | 1750 | 1.00025 | - 1 | 1.00100 | - 2 | 1.00175 | - 4 | 1.00251 | - 7 | 3150 | | 1800 | 1.00024 | | 1.00098 | - 3 | 1.00171 | - 4 | 1.00244 | - 6 | 3240 | | 1850 | 1.00024 | - 1 | 1.00095 | - 2 | 1.00167 | - 4 | 1.00238 | - 6 | 3330 | | 1900 | 1.00023 | | 1.00093 | - 2 | 1.00163 | - 4 | 1.00232 | - 5 | 3420 | | 1950 | 1.00023 | - 1 | 1.00091 | - 2 | 1.00159 | - 4 | 1.00227 | - 6 | 3510 | | 2000 | 1.00022 | | 1.00089 | - 2 | 1.00155 | - 4 | 1.00221 | - 5 | 3600 | | 2050 | 1.00022 | - 1 | 1.00087 | - 2 | 1.00151 | - 3 | 1.00216 | - 5 | 3690 | | 2100 | 1.00021 | | 1.00085 | - 2 | 1.00148 | - 3 | 1.00211 | - 4 | 3780 | | 2150 | 1.00021 | - 1 | 1.00083 | - 2 | 1.00145 | - 3 | 1.00207 | - 5 | 3870 | | 2200 | 1.00020 | | 1.00081 | - 2 | 1.00142 | - 3 | 1.00202 | - 4 | 3960 | | 2250 | 1.00020 | - 1 | 1.00079 | - 2 | 1.00139 | - 3 | 1.00198 | - 4 | 4050 | | 2300 | 1.00019 | | 1.00077 | - 1 | 1.00136 | - 3 | 1.00194 | - 4 | 4140 | | 2350 | 1.00019 | - 1 | 1.00076 | - 2 | 1.00133 | - 3 | 1.00190 | - 4 | 4230 | | 2400 | 1.00018 | ` | 1.00074 | - 1 | 1.00130 | - 3 | 1.00186 | - 4 | 4320 | | 2450 | 1.00018 | | 1.00073 | - 2 | 1.00127 | - 2 | 1.00182 | - 4 | 4410 | | 2500 | 1.00018 | - 1 | 1.00071 | - 1 | 1.00125 | - 3 | 1,00178 | - 3 | 4500 | | 2550 | 1.00017 | | 1.00070 | - 1 | 1.00122 | - 2 | 1.00175 | - 4 | 4590 | | 2600 | 1.00017 | | 1.00069 | - 2 | 1.00120 | - 2 | 1.00171 | - 3 | 4680 | | 2650 | 1,00017 | - 1 | 1.00067 | - 1 | 1.00118 | - 2 | 1.00168 | - 3 | 4770 | | 2700 | 1.00016 | | 1.00066 | - 1 | 1.00116 | - 3 | 1.00165 | - 3 | 4860 | | 2750 | 1.00016 | | 1.00065 | - 1 | 1.00113 | - 2 | 1.00162 | - 3 | 4950 | | 2800 | 1.00016 | | 1.00064 | - 1 | 1.00111 | - 2 | 1.00159 | - 3 | 5040 | | 2850 | 1.00016 | - 1 | 1.00063 | – 2 | 1.00109 | - 2 | 1.00156 | - 3 | 5130 | | 2900 | 1.00015 | | 1.00061 | - 1 | 1.00107 | - 1 | 1.00153 | - 2 | 5220 | | 2950 | 1.00015 | | 1.00060 | - 1 | 1.00106 | - 2 | 1.00151 | - 3 | 5310 | | 3000 | 1.00015 | | 1.00059 | | 1.00104 | | 1.00148 | | 5400 | | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | °R | |----------------------------------|--|----------------------------------|--|---------------------------------|--|---------------------------------|--|--------------------------------------|--------------------------------------| | 250
260
270
280
290 | .9896
.9915
.9931
.9945
.9958 | 19
16
14
13 | .9632
.9705
.9768
.9821
.9867 | 73
63
53
46
40 | .9669
.9756
.9831 | 87
75
65 | .9752
.9851 | 99
84 | 450
468
486
504
522 | | 300
310
320
330
340 | .9968
.9978
.9986
.9993
.9999 | 10
8
7
6
6 | .9907
.9942
.9972
.9998
1.0021 | 35
30
26
23
21 | .9896
.9952
1.0000
1.0042
1.0079 | 56
48
42
37
33 |
.9935
1.0008
1.0071
1.0125
1.0173 | 73
63
54
48
43 | 540
558
576
594
612 | | 350
360
370
380
390 | 1.0005
1.0010
1.0014
1.0018
1.0022 | 5
4
4
4
3 | 1.0042
1.0060
1.0076
1.0090
1.0102 | 18
16
14
12 | 1.0112
1.0141
1.0166
1.0188
1.0208 | 29
25
22
20
17 | 1.0216
1.0252
1.0284
1.0313
1.0338 | 36
32
29
25
21 | 630
648
666
684
702 | | 400
410
420
430
440 | 1.0025
1.0027
1.0030
1.0032
1.0034 | 2
3
2
2
1 | 1.0113
1.0123
1.0131
1.0139
1.0146 | 10
8
8
7
6 | 1.0225
1.0240
1.0254
1.0265
1.0275 | 15
14
11
10
10 | 1.0359
1.0378
1.0395
1.0410
1.0423 | 19
17
15
13 | 720
738
756
774
792 | | 450
460
470
480
490 | 1.0035
1.0037
1.0038
1.0039
1.0040 | 2
1
1
1 | 1.0152
1.0157
1.0162
1.0166
1.0169 | 5
5
4
3
3 | 1.0285
1.0293
1.0299
1.0305
1.0310 | 8
6
6
5
4 | 1.0433
1.0442
1.0451
1.0458
1.0464 | 9
9
7
6
5 | 810
828
846
864
882 | | 500
510
520
530
540 | 1.0041
1.0042
1.0043
1.0043 | 1
1 | 1.0172
1.0174
1.0177
1.0179
1.0181 | 2
3
2
2
1 | 1.0314
1.0318
1.0322
1.0325
1.0327 | 4
4
3
2
2 | 1.0469
1.0473
1.0477
1.0480
1.0482 | 4
4
3
2
2 | 900
918
936
954
972 | | 550
560
570
580
590 | 1.0044
1.0044
1.0045
1.0045 | 1 | 1.0182
1.0183
1.0184
1.0185
1.0185 | 1
1
1 | 1.0329
1.0330
1.0330
1.0331
1.0332 | 1
1
1 | 1.0484
1.0485
1.0485
1.0485
1.0485 | 1 | 990
1008
1026
1044
1062 | | 600
610
620
630
640 | 1.0045
1.0045
1.0046
1.0046
1.0046 | 1 | 1.0186
1.0186
1.0186
1.0186
1.0186 | | 1.0332
1.0332
1.0332
1.0331
1.0331 | - 1
- 1 | 1.0485
1.0484
1.0483
1.0482
1.0481 | - 1
- 1
- 1
- 1
- 2 | 1080
1098
1116
1134
1152 | | 650
660
670
680
690 | 1.0046
1.0046
1.0045
1.0045
1.0045 | - 1 | 1.0186
1.0185
1.0185
1.0184
1.0184 | - 1
- 1
- 1 | 1.0330
1.0329
1.0328
1.0327
1.0326 | - 1
- 1
- 1
- 1 | 1.0479
1.0477
1.0476
1.0474
1.0472 | - 2
- 1
- 2
- 2
- 2 | 1170
1188
1206
1224
1242 | | 700
710
720
730
740 | 1.0045
1.0045
1.0045
1.0045
1.0045 | | 1.0183
1.0182
1.0182
1.0181
1.0180 | - 1
- 1
- 1 | 1.0325
1.0323
1.0322
1.0320
1.0319 | - 2
- 1
- 2
- 1
- 2 | 1.0470
1.0467
1.0465
1.0463
1.0460 | - 3
- 2
- 2
- 3
- 2 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | 1.0045
1.0044
1.0044
1.0044
1.0044 | - 1 | 1.0180
1.0179
1.0178
1.0177
1.0176 | - 1
- 1
- 1
- 1 | 1.0317
1.0316
1.0314
1.0312
1.0311 | - 1
- 2
- 2
- 1
- 2 | 1.0458
1.0455
1.0453
1.0450
1.0448 | - 3
- 2
- 3
- 2
- 3 | 1350
1368
1386
1404
1422 | | 800
850
900
950
1000 | 1.0044
1.0042
1.0041
1.0040
1.0039 | - 2
- 1
- 1
- 1
- 1. | 1.0175
1.0170
1.0166
1.0161
1.0156 | - 5
- 4
- 5
- 5
- 5 | 1.0309
1.0300
1.0291
1.0282
1.0273 | - 9
- 9
- 9
- 9
- 9 | 1.0445
1.0431
1.0418
1.0404
1.0391 | - 14
- 13
- 14
- 13
- 14 | 1440
1530
1620
1710
1800 | | 1050 | 1.0038 | | 1.0151 | - | 1.0264 | • | 1.0377 | •4 | 1890 | Table 5-1. COMPRESSIBILITY FACTOR FOR CARBON MONOXIDE - Cont. Z = PV/RT | °K | 10 atm | 40 atm | 70 atm | 100 atm | °R | |--------------------------------------|--|--|--|--|--------------------------------------| | 1050 | 1.0038 - 2 | 1.0151 - 5 1.0146 - 4 1.0142 - 5 1.0137 - 4 1.0133 - 4 | 1.0264 - 8 | 1.0377 - 13 | 1890 | | 1100 | 1.0036 - 1 | | 1.0256 - 8 | 1.0364 - 11 | 1980 | | 1150 | 1.0035 - 1 | | 1.0248 - 8 | 1.0353 - 10 | 2070 | | 1200 | 1.0034 - 1 | | 1.0240 - 7 | 1.0343 - 11 | 2160 | | 1250 | 1.0033 - 1 | | 1.0233 - 7 | 1.0332 - 10 | 2250 | | 1300 | 1.0032 - 1 | 1.0129 - 4 | 1.0226 - 7 | 1.0322 - 9 | 2340 | | 1350 | 1.0031 - 1 | 1.0125 - 4 | 1.0219 - 7 | 1.0313 - 9 | 2430 | | 1400 | 1.0030 | 1.0121 - 3 | 1.0212 - 6 | 1.0304 - 9 | 2520 | | 1450 | 1.0030 - 1 | 1.0118 - 3 | 1.0206 - 6 | 1.0295 - 9 | 2610 | | 1500 | 1.0029 - 1 | 1.0115 - 4 | 1.0200 - 5 | 1.0286 - 8 | 2700 | | 1550 | 1.0028 - 1 | 1.0111 - 3 | 1.0195 - 5 | 1.0278 - 8 | 2790 | | 1600 | 1.0027 - 1 | 1.0108 - 2 | 1.0190 - 5 | 1.0270 - 7 | 2880 | | 1650 | 1.0026 | 1.0106 - 3 | 1.0185 - 5 | 1.0263 - 7 | 2970 | | 1700 | 1.0026 - 1 | 1.0103 - 3 | 1.0180 - 5 | 1.0256 - 7 | 3060 | | 1750 | 1.0025 - 1 | 1.0100 - 2 | 1.0175 - 4 | 1.0249 - 6 | 3150 | | 1800
1850
1900
1950
2000 | 1.0024
1.0024 - 1
1.0023
1.0023 - 1 | 1.0098 - 3
1.0095 - 2
1.0093 - 3
1.0090 - 2
1.0088 - 2 | 1.0171 - 5
1.0166 - 4
1.0162 - 4
1.0158 - 3
1.0155 - 4 | 1.0243 - 6
1.0237 - 6
1.0231 - 5
1.0226 - 5
1.0221 - 5 | 3240
3330
3420
3510
3600 | | 2050 | 1.0022 - 1 | 1.0086 - 2 | 1.0151 - 3 | 1.0216 - 5 | 3690 | | 2100 | 1.0021 | 1.0084 - 1 | 1.0148 - 4 | 1.0211 - 5 | 3780 | | 2150 | 1.0021 - 1 | 1.0083 - 2 | 1.0144 - 3 | 1.0206 - 4 | 3870 | | 2200 | 1.0020 | 1.0081 - 2 | 1.0141 - 3 | 1.0202 - 5 | 3960 | | 2250 | 1.0020 - 1 | 1.0079 - 2 | 1.0138 - 3 | 1.0197 - 4 | 4050 | | 2300 | 1.0019 | 1.0077 - 1 | 1.0135 - 3 | 1.0193 - 4 | 4140 | | 2350 | 1.0019 | 1.0076 - 2 | 1.0132 - 3 | 1.0189 - 4 | 4230 | | 2400 | 1.0019 - 1 | 1.0074 - 1 | 1.0129 - 2 | 1.0185 - 4 | 4320 | | 2450 | 1.0018 | 1.0073 - 2 | 1.0127 - 3 | 1.0181 - 3 | 4410 | | 2500 | 1.0018 - 1 | 1.0071 - 1 | 1.0124 - 2 | 1.0178 - 4 | 4500 | | 2550 | 1.0017 | 1.0070 - 2 | 1.0122 - 2 | 1.0174 - 3 | 4590 | | 2600 | 1.0017 | 1.0068 - 1 | 1.0120 - 3 | 1.0171 - 3 | 4680 | | 2650 | 1.0017 | 1.0067 - 1 | 1.0117 - 2 | 1.0168 - 3 | 4770 | | 2700 | 1.0017 - 1 | 1.0066 - 1 | 1.0115 - 2 | 1.0165 - 3 | 4860 | | 2750 | 1.0016 | 1.0065 - 1 | 1.0113 - 2 | 1.0162 - 3 | 4950 | | 2800 | 1.0016 | 1.0064 - 2 | 1.0111 - 2 | 1.0159 - 3 | 5040 | | 2850 | 1.0016 - 1 | 1.0062 - 1 | 1.0109 - 2 | 1.0156 - 3 | 5130 | | 2900 | 1.0015 | 1.0061 - 1 | 1.0107 - 2 | 1.0153 - 3 | 5220 | | 2950 | 1.0015 | 1.0060 - 1 | 1.0105 - 1 | 1.0150 - 2 | 5310 | | 3000 | 1.0015 | 1.0059 | 1.0104 | 1.0148 | 5400 | | Table 5 | able 5-2. DENSITY OF CARBON MONOXIDE | | | | | | | | | | | |------------|--------------------------------------|-----------------------|--------------------|--------------------------------|------------------|------------------------|------------------|-------------------|--------------|--|--| | °K | .01 | atm | .1 (| ıtm | .4 (| ıtm | .7 | atm | °R | | | | 200 | .013649 | - 650 | .136524 | 4507 | E44E4 | | 05700 | | | | | | 210 | .012999 | -591 | .130017 | -6507
-5914 | .54654
.52042 | -2612
-237 3 | .95722
.91135 | - 4587 | 360 | | | | 220 | .012408 | -539 | .124103 | -5400 | .49669 | ~23/3
~2165 | .86970 | -4165 | 378 | | | | 230 | .011869 | -495 | .118703 | -4949 | .47504 | -1984 | .83171 | -3799
-3480 | 396
414 | | | | 240 | .011374 | -455 | .113754 | -4553 | .45520 | -1825 | .79691 | -3480
-3200 | 432 | | | | 250 | .010919 | -420 | .109201 | -4202 | .43695 | -1684 | .76491 | -295 2 | 450 | | | | 260 | .010499 | - 389 | .104999 | -3890 | .42011 | -1559 | .73539 | -2732
-2732 | 468 | | | | 270 | .010110 | -361 | .101109 | -3613 | .40452 | -1447 | .70807 | -2536 | 486 | | | | 280 | .009749 | -336 | .097496 | -3363 | .39005 | -1347 | .68271 | -2360 | 504 | | | | 290 | .009413 | -314 | .094133 | -3138 | .37658 | -1256 | .65911 | -2202 | 522 | | | | 300 | .009099 | -293 | .090995 | -2937 | .36402 | -1176 | .63709 | -2059 | 540 | | | | 310
320 | .008806 | -276 | .088058 | ~275 2 | .35226 | -1102 | .61650 | -1930 | 558 | | | | 330 | .008530 | -258 | .085306 | -2586 | .34124 | -1035 | .59720 | ~18 13 | 576 | | | | 340 | .008272
.008029 | -243 | .082720 | -2433 | .33089 | - 974 | .57907 | -1705 | 594 | | | | | .000027 | -230 | .080287 | -2295 | .32115 | - 918 | .56202 | -1608 | 612 | | | | 350
360 | .007799 | -216 | .077992 | -2166 | .31197 | - 867 | .54594 | -1519 | 630 | | | | 370 | .007583
.007378 | -205 | .075826 | -2050 | .30330 | - 821 | .53075 | -1436 | 648 | | | | 380 | .007378 | −194
−1 8 5 | .073776
.071834 | -1942 | .29509 | - 777 | .51639 | -1360 | 666 | | | | 390 | .006999 | -1 8 5
-175 | .069992 | -1842
-1750 | .28732
.27995 | - 737 | .50279 | -1291 | 684 | | | | | | | | -1750 | .61773 | - 701 | .48988 | -1225 | 702 | | | | 400
410 | .006824 | -166 | .068242 | -1665 | .27294 | - 665 | .47763 | -1166 | 720 | | | | 420 | .006658
.006499 | -159 | .066577 | -1585 | .26629 | - 634 | .46597 | -1110 | 738 | | | | 430 | .006348 | 151
144 | .064992
.063480 | -1512
-1443 | .25995 | - 605 | .45487 | -10 59 | 756 | | | | 440 | .006204 | -138 | .062037 | -1443
-1378 | .25390
.24813 | - 577
552 | .44428
.43418 | -1010
- 966 | 774
792 | | | | 450 | .006066 | -132 | .060659 | 1010 | 242/1 | | | | | | | | 460 | .005934 | -126 | .059340 | -1319
-1263 | .24261
.23734 | - 527 | .42452
.41529 | - 923 | 810 | | | | 470 | .005808 | -121 | .058077 | -1210 | .23228 | - 506
- 484 | .40645 | ~ 884 | 828 | | | | 480 | .005687 | -116 | .056867 | -1160 | .22744 | - 464 | .39798 | - 847
- 813 | 846
864 | | | | 490 | .005571 | -112 | .055707 | -1114 | .22280
| - 446 | .38985 | - 779 | 882 | | | | 500 | .005459 | -107 | .054593 | -1071 | .21834 | - 428 | .38206 | - 750 | 900 | | | | 510 | .005352 | -103 | .053522 | -1029 | .21406 | - 412 | .37456 | - 720 | 918 | | | | 520 | .005249 | - 99 | .052493 | - 9 91 | .20994 | - 396 | .36736 | - 694 | 936 | | | | 530
540 | .005150 | - 95 | .051502 | - 953 | .20598 | - 381 | .36042 | - 667 | 954 | | | | 240 | .005055 | - 92 | .050549 | - 920 | .20217 | - 368 | .35375 | - 643 | 972 | | | | 550 | .004963 | - 88 | .049629 | - 886 | .19849 | - 354 | .34732 | - 621 | 990 | | | | 560
570 | .004875 | - 86 | .048743 | - 855 | .19495 | - 342 | .34111 | - 598 | 1008 | | | | 580 | .004789
.004706 | - 83 | .047888 | - 826 | .19153 | - 331 | .33513 | - 578 | 1026 | | | | 590 | .004627 | - 79
- 77 | .047062
.046265 | ~ 79 7 | .18822 | - 319 | .32935 | - 558 | 1044 | | | | | | - " | .040203 | - 771 | .18503 | - 308 | .32377 | 540 | 1062 | | | | 500
510 | .004550
.004475 | - 75 | .045494 | - 746 | .18195 | - 298 | .31837 | - 522 | 1080 | | | | 520 | .004475 | - 72
70 | .044748 | - 722 | .17897 | - 2 89 | .31315 | - 505 | 1098 | | | | 30 | .004333 | - 70
- 68 | .044026
.043327 | - 699 | .17608
.17329 | 279 | .30810 | - 489 | 1116 | | | | 40 | .004265 | - 65 | .042650 | - 677
- 656 | .17058 | - 271
- 263 | .30321
.29847 | - 474
- 459 | 1154 | | | | 550 | .004200 | - 64 | .041994 | _ 494 | 14705 | | 20200 | | | | | | 60 | .004136 | - 62 | .041358 | - 63 6
- 61 7 | .16795
.16541 | - 254
- 247 | .29388
.28943 | - 445 | 1170 | | | | 70 | .004074 | - 60 | .040741 | - 600 | .16294 | - 247
- 240 | .28511 | - 432 | 1188
1206 | | | | 80 | .004014 | - 58 | .040141 | - 581 | .16054 | - 232 | .28091 | - 420
- 407 | 1224 | | | | 90 | .003956 | - 56 | .039560 | - 565 | .15822 | - 226 | .27684 | - 395 | 1242 | | | | '00 | .003900 | - 55 | .038995 | ~ 550 | .15596 | - 220 | .27289 | - 384 | 1260 | | | | 10 | .003845 | - 54 | .038445 | - 534 | .15376 | - 214 | .26905 | - 374
- 374 | 1278 | | | | 20 | .003791 | - 52 | .037911 | - 519 | .15162 | - 207 | .26531 | - 364 | 1296 | | | | '30
'40 | .003739
.003689 | - 50
- 49 | .037392
.036887 | - 505
- 492 | .14955
.14753 | - 202
- 197 | .26167
.25814 | - 353 | 1314 | | | | | | | | | | - 17/ | | - 344 | 1332 | | | | '50
'60 | .003640
.003592 | - 48 | .036395 | - 479 | .14556 | - 192 | .25470 | - 335 | 1350 | | | | 70 | .003545 | - 47
- 45 | .035916
.035450 | - 466
- 466 | .14364 | - 186 | .25135 | - 327 | 1368 | | | | 80 | .003500 | - 45
- 45 | .034995 | - 455
- 443 | .14178
.13996 | - 182
- 177 | .24808 | - 318 | 1386 | | | | 90 | .003455 | - 43
- 43 | .034552 | - 443
- 432 | .13819 | - 177
- 173 | .24490
.24180 | - 310
- 302 | 1404
1422 | | | | 00 | | • | | | | -17 | | - 302 | 1766 | | | | 00 | .003412 | | .034120 | | .13646 | | .23878 | | 1440 | | | | | | | | | | | | | | | | Table 5-2. DENSITY OF CARBON MONOXIDE - Cont. | | | | - 1 | | | | | | | |--------------|--------------------|--------------|---------|----------------|---------|--------|--------|---------------|------------| | °K | .O1 at | m | .l atı | m | .4 atm | · | .7 0 | tm | ° R | | | | | 004100 | | .13646 | - 602 | .23878 | -1405 | 1440 | | 800 | .003412 | -201 | .034120 | -2007 | | | .22473 | -1248 | 1530 | | 850 | .003211 | -178 | .032113 | - 1784 | | - 714 | | -1117 | 1620 | | 900 | .003033 | -160 | .030329 | - 1596 | .12130 | - 638 | .21225 | | 1710 | | 950 | .002873 | -143 | .028733 | 1437 | .11492 | - 575 | .20108 | -1005 | | | 1000 | .002730 | -130 | .027296 | -1299 | .10917 | - 520 | .19103 | - 909 | 1800 | | 1050 | _002600 | -118 | .025997 | - 1182 | .10397 | - 472 | .18194 | - 827 | 1890 | | 1100 | .002482 | -108 | .024815 | -1079 | .099249 | - 4315 | .17367 | - 75 5 | 1980 | | 1150 | .002374 | - 99 | .023736 | - 989 | .094934 | - 3955 | .16612 | - 692 | 2070 | | 1200 | .002275 | - 91 | .022747 | - 910 | .090979 | - 3639 | .15920 | - 637 | 2160 | | 1250 | .002184 | - 84 | .021837 | - 840 | .087340 | - 3359 | .15283 | - 588 | 2250 | | 1300 | .002100 | - 78 | .020997 | - 777 | .083981 | - 3110 | .14695 | - 544 | 2340 | | | 002022 | - 72 | .020220 | - 722 | .080871 | - 2888 | .14151 | - 505 | 2430 | | 1350 | | | 019498 | - 673 | .077983 | - 2689 | .13646 | - 471 | 2520 | | 1400 | .001950 | - 67 | .018825 | - 627 | .075294 | - 2509 | .13175 | - 439 | 2610 | | 1450
1500 | .001883
.001820 | - 63
- 59 | .018198 | - 587 | .072785 | - 2348 | .12736 | - 411 | 2700 | | | ••• | | 017411 | 553 | .070437 | - 2201 | .12325 | - 385 | 2790 | | 1550 | .001761 | - 55 | .017611 | - 551 | .068236 | - 2067 | .11940 | - 361 | 2880 | | 1600 | .001706 | - 52 | .017060 | - 517 | | - 1946 | 11579 | - 341 | 2970 | | 1650 | .001654 | - 48 | .016543 | - 486 | .066169 | | .11238 | - 321 | 3060 | | 1700 | .001606 | - 46 | .016057 | - 459 | .064223 | - 1835 | .10917 | - 303 | 3150 | | 1750 | .001560 | - 43 | .015598 | - 433 | .062388 | - 1733 | .10917 | - 303 | - | | 1800 | _001517 | - 41 | .015165 | - 410 | .060655 | - 1639 | .10614 | - 287 | 3240 | | 1850 | .001476 | - 39 | .014755 | - 388 | .059016 | - 1553 | .10327 | - 272 | 3330 | | 1900 | .001437 | - 37 | .014367 | - 369 | .057463 | - 1473 | .10055 | - 258 | 3420 | | 1950 | .001400 | - 35 | .013998 | - 350 | .055990 | - 1400 | .09797 | - 245 | 3510 | | 2000 | .001365 | - 33 | .013648 | - 332 | .054590 | - 1332 | .09552 | - 233 | 3600 | | 2050 | .001332 | - 32 | .013316 | - 318 | .053258 | - 1267 | .09319 | - 222 | 3690 | | | .001300 | - 30 | .012998 | - 302 | .051991 | - 1209 | .09097 | - 211 | 3780 | | 2100 | | | .012696 | - 288 | .050782 | - 1154 | .08886 | - 202 | 3870 | | 2150 | .001270 | - 29 | .012408 | - 276 | 049628 | - 1103 | .08684 | - 193 | 3960 | | 2200
2250 | .001241
.001213 | - 28
- 26 | .012132 | - 264 | .048525 | - 1055 | .08491 | - 185 | 4050 | | | | | 011040 | - 252 | .047470 | - 1010 | .08306 | - 176 | 4140 | | 2300 | .001187 | - 25 | .011868 | - 252
- 242 | .046460 | - 968 | .08130 | - 170 | 4230 | | 2350 | .001162 | - 25 | .011616 | | .045492 | - 928 | 07960 | - 162 | 4320 | | 2400 | .001137 | - 23 | .011374 | - 232 | | | .07798 | - 156 | 4410 | | 2450 | .001114 | - 22 | .011142 | - 223 | .044564 | | .07642 | - 150 | 4500 | | 2500 | .001092 | - 22 | .010919 | - 214 | .043673 | - 857 | .07042 | - 150 | | | 2552 | 001070 | - 20 | .010705 | - 206 | .042816 | - 823 | .07492 | - 144 | 4590 | | 2550 | .001070 | | .010709 | - 198 | .041993 | - 792 | .07348 | - 139 | 4680 | | 2600 | .001050 | - 20 | .010301 | - 191 | .041201 | - 763 | .07209 | - 133 | 4770 | | 2650 | .001030 | - 19 | .010301 | - 191
- 184 | .040438 | - 735 | .07076 | - 129 | 4860 | | 2700
2750 | .001011
.000993 | - 18
- 18 | .009926 | - 104
- 177 | .039703 | - 709 | .06947 | - 124 | 4950 | | | • | | .009749 | - 171 | .038994 | - 684 | .06823 | - 120 | 5040 | | 2800 | .000975 | - 17 | | | .038310 | - 661 | .06703 | - 115 | 5130 | | 2850 | .000958 | - 17 | .009578 | - 165 | .037649 | - 638 | .06588 | - 112 | 5220 | | 2900 | .000941 | - 16 | .009413 | - 160 | .037011 | - 617 | .06476 | - 108 | 5310 | | 2950 | .000925 | - 15 | .009253 | - 154 | .036394 | - 596 | .06368 | - 104 | 5400 | | 3000 | .000910 | - 15 | .009099 | - 149 | .020274 | - 570 | .00,00 | | | | | | L atm A atm 7 atm | | | | | | 10 etm | | | |----------|------------------|-------------------------|------------------|----------------------------------|------------------|----------------|------------------|-------------------------|--------------|--| | K | l | atm | 4 | atm | 7 | atm | 10 | atm | *R | | | 00 | 1.3686 | -658 | 5,5187 | -2722 | 9.7361 | -4930 | 14.021 | -728 | 360 | | | 10 | 1.3028 | -597 | 5.2465 | -2459 | 9.2431 | -4433 | 13.293 | -65 2 | 378 | | | 20 | 1.2431 | -544 | 5.0006 | -2234 | 8.7998 | -4011 | 12.641 | -588 | 396 | | | 30
40 | 1.1887
1.1389 | -498
-458 | 4.7772
4.5733 | -20 3 9
-1 86 9 | 8.3987
8.0337 | -3650
-3335 | 12.053
11.520 | -5 3 3
-486 | 414
432 | | | 50 | 1.0931 | -423 | 4.3864 | -1720 | 7.7002 | -3062 | 11.034 | -445 | 450 | | | 60 | 1.0508 | -391 | 4.2144 | -1588 | 7.3940 | -2820 | 10.589 | -409 | 468 | | | 70 | 1.0117 | -362 | 4.0556 | -1471 | 7.1120 | -2609 | 10.180 | -377 | 486 | | | 80 | .97547 | -3376 | 3.9085 | -1367 | 6.8511 | -2420 | 9.8027 | -3497 | 504 | | | 90 | .94171 | -3149 | 3.7718 | -1273 | 6.6091 | -2252 | 9.4530 | -3249 | 522 | | | 00 | .91022 | -2944 | 3.6445 | · -1189 | 6.3839 | -2100 | 9.1281 | - 3027 | 540 | | | 10 | .88078 | -2760 | 3.5256 | -1113 | 6.1739 | -1964 | 8.8254 | -2828 | 558 | | | 20
30 | .85318
.82727 | -2591
-2430 | 3.4143
3.3099 | -1044
- 982 | 5.9775
5.7935 | -1840
1739 | 8.5426
8.2777 | -2649
-2649 | 576
594 | | | 40 | .80288 | -2 43 9
-2298 | 3.2117 | - 962
- 925 | 5.6206 | -1729
-1628 | 8.0291 | -2486
-2 3 37 | 612 | | | 50 | .77990 | -2170 | 3,1192 | - 872 | 5,4578 | -1535 | 7.7954 | -2203 | 630 | | | 60 | .75820 | -2170
-205 3 | 3.0320 | - 872
- 825 | 5.3043 | -1335
-1449 | 7.5751 | -2203
-2079 | 648 | | | 70 | .73767 | -1944 | 2.9495 | - 781 | 5.1594 | -1371 | 7.3672 | -1967 | 666 | | | 30 | .71823 | -1844 | 2.8714 | - 740 | 5.0223 | -1300 | 7.1705 | -1862 | 684 | | | 90 | .69979 | -1751 | 2.7974 | - 703 | 4.8923 | -1233 | 6.9843 | -1766 | 702 | | | 00 | .68228 | -1666 | 2.7271 | - 668 | 4.7690 | -1172 | 6.8077 | -1679 | 720 | | | 10 | .66562 | 1587 | 2.6603 | - 636 | 4.6518 | -1115 | 6.6398 | -1 5 96 | 738 | | | 20
30 | .64975
.63463 | -1512
-1444 | 2.5967
2.5361 | - 606 | 4.5403
4.4340 | -1063 | 6.4802
6.3282 | -1520 | 756
774 | | | 10 | .62019 | -1444
-1379 | 2.4783 | - 578
- 552 | 4.3327 | -1013
- 968 | 6.1832 | 1450
1384 | 792 | | | 50 | .60640 | -1319 | 2,4231 | - 528 | 4,2359 | - 925
 6.0448 | -1323 | 810 | | | 60 | .59321 | -1263 | 2.3703 | - 506 | 4.1434 | - 885 | 5.9125 | -1265 | 828 | | | 70 | .58058 | -1210 | 2.3197 | - 484 | 4.0549 | - 849 | 5.7860 | -1212 | 846 | | | В0 | .56848 | -1161 | 2.2713 | 465 | 3.9700 | - 813 | 5.6648 | -1162 | 864 | | | 90 | .55687 | -1114 | 2.2248 | - 446 | 3.8887 | ~ 78 0 | 5.5486 | -1115 | 882 | | | 00 | .54573 | -1071 | 2.1802 | - 428 | 3.8107 | - 749 | 5,4371 | -10 69 | 900 | | | 10 | .53502 | -1029 | 2.1374 | - 411 | 3.7358 | - 720 | 5.3302 | -1029 | 918 | | | 20 | .52473 | - 991 | 2.0963 | - 396 | 3,6638 | - 693 | 5.2273 | - 990 | 936 | | | 30
40 | .51482
.50529 | 953
919 | 2.0567
2.0185 | - 382
- 367 | 3.5945
3.5278 | - 667
- 643 | 5.1283
5.0331 | - 952
- 917 | 954
972 | | | 50 | .49610 | - 886 | 1.9818 | *** | 3.4635 | 410 | 4.9414 | 204 | 990 | | | 60 | .48724 | - 855 | 1.9464 | - 354
- 342 | 3.4016 | 619
597 | 4.8530 | - 884
- 853 | 1008 | | | 70 | .47869 | - 825 | 1.9122 | - 330 | 3,3419 | - 577 | 4.7677 | - 823 | 1026 | | | 30 | .47044 | - 798 | 1.8792 | - 319 | 3.2842 | - 557 | 4.6854 | - 795 | 1044 | | | 90 | .46246 | - 771 | 1.8473 | - 307 | 3.2285 | - 538 | 4.6059 | - 768 | 1062 | | | 00 | .45475 | - 745 | 1.8166 | - 298 | 3.1747 | - 521 | 4.5291 | - 743 | 1080 | | | 10 | .44730 | - 722 | 1.7868 | - 289 | 3.1226 | - 504 | 4.4548 | - 719 | 1098 | | | 20
30 | .44008
.43310 | - 698
- 677 | 1.7579
1.7300 | - 279
270 | 3.0722
3.0234 | - 488
- 472 | 4.3829
4.3133 | - 696
- 674 | 1116
1134 | | | 10 | .42633 | - 656 | 1.7030 | - 262 | 2.9762 | - 458 | 4.2459 | - 654 | 1152 | | | 0 | .41977 | - 636 | 1,6768 | - 254 | 2,9304 | - 444 | 4,1805 | - 633 | 1170 | | | 50 | .41341 | - 617 | 1.6514 | - 246 | 2.8860 | - 431 | 4.1172 | - 614 | 1188 | | | 70 | .40724 | - 599 | 1.6268 | - 240 | 2,8429 | - 418 | 4.0558 | - 596 | 1206 | | | 30 | .40125 | - 581 | 1.6028 | - 232 | 2.8011 | - 405 | 3.9962 | - 579 | 1224 | | | 0 | .39544 | - 565 | 1.5796 | - 226 | 2.7606 | - 395 | 3,9383 | - 562 | 1242 | | | 00 | .38979 | 549 | 1.5570 | - 219 | 2.7211 | - 383 | 3.8821 | - 547 | 1260 | | | 10 | .38430 | - 534 | 1.5351 | - 213 | 2.6828 | - 372 | 3.8274 | - 531 | 1278 | | | 20
30 | .37896
.37377 | 519
506 | 1.5138
1.4931 | - 207
- 202 | 2.6456 | - 362 | 3.7743
3.7227 | - 516 | 1296
1314 | | | 10 | .36872 | - 505
- 491 | 1.4729 | - 202
- 196 | 2.6094
2.5742 | - 352
- 343 | 3.1221
3.6725 | - 502
- 490 | 1332 | | | 0 | .36381 | - 479 | 1.4533 | - 191 | 2.5399 | - 334 | 3.6235 | - 476 | 1350 | | | 50 | .35902 | - 466 | 1.4342 | - 186 | 2.5065 | - 325 | 3.5759 | - 463 | 1368 | | | 70 | .35436 | - 455 | 1.4156 | - 182 | 2.4740 | - 317 | 3.5296 | - 452 | 1386 | | | B0 | .34981 | - 443 | 1.3974 | - 177 | 2.4423 | - 309 | 3.4844 | - 441 | 1404 | | | 90 | .34538 | - 431 | 1.3797 | - 172 | 2.4114 | - 301 | 3.4403 | - 429 | 1422 | | | | .34107 | | 1,3625 | | 2,3813 | | 3.3974 | | 1440 | | | °K | | atm | 4 | atm | 7 at | | 10 | atm | •̂R | |------|--------|----------------|---------|-------------------|----------|-------------------|--------|-------------------|--------------| | _^ | | <u> </u> | | | <u>.</u> | | | | | | | 24107 | | 1,3625 | - 801 | 2.3813 | -1399 | 3.3974 | -1995 | 1440 | | 800 | .34107 | -2006 | 1.2824 | - 712 | 2.2414 | -1244 | 3,1979 | -1773 | 1530 | | 850 | .32101 | -1783 | | - 112
- 637 | 2.1170 | -1112 | 3,0206 | -1586 | 1620 | | 900 | .30318 | -1595 | 1.2112 | | 2.0058 | -1001 | 2.8620 | -1428 | 1710 | | 950 | .28723 | -1436 | 1.1475 | - 573 | 1.9057 | - 906 | 2.7192 | -1292 | 1800 | | 1000 | .27287 | -1299 | 1.0902 | - 519 | 1.9057 | - 906 | 2.11/2 | -1272 | | | 1050 | .25988 | -1181 | 1.0383 | -· 471 | 1.8151 | - 824 | 2.5900 | -1174 | 1890 | | 1100 | .24807 | -1078 | .99119 | - 4305 | 1.7327 | - 752 | 2.4726 | -1073 | 1980 | | 1150 | .23729 | - 989 | .94814 | - 3947 | 1.6575 | - 69 0 | 2.3653 | - 983 | 2070 | | 1200 | .22740 | - 909 | .90867 | - 3631 | 1.5885 | - 634 | 2.2670 | - 904 | 2160 | | 1250 | .21831 | - 840 | .87236 | - 3352 | 1.5251 | - 586 | 2.1766 | - 835 | 2250 | | 1200 | .20991 | - 777 | .83884 | - 3104 | 1.4665 | - 542 | 2,0931 | - 774 | 2340 | | 1300 | | | .80780 | ~ 2882 | 1.4123 | - 503 | 2,0157 | - 718 | 2430 | | 1350 | .20214 | - 722 | .77898 | - 2684 | 1.3620 | - 4 69 | 1,9439 | - 6 69 | 2520 | | 1400 | .19492 | - 672 | .75214 | - 2505 | 1.3151 | - 438 | 1.8770 | - 624 | 2610 | | 1450 | .18820 | - 627 | | | 1.2713 | - 409 | 1.8146 | - 584 | 2700 | | 1500 | .18193 | - 587 | .72709 | - 2343 | 1.2/17 | - 407 | 1,0110 | 501 | | | 1550 | .17606 | - 550 | .70366 | - 2197 | 1.2304 | - 384 | 1.7562 | - 547 | 2790 | | | .17056 | - 516 | .68169 | - 2064 | 1.1920 | - 361 | 1.7015 | - 515 | 2880 | | 1600 | | | .66105 | - 1942 | 1.1559 | - 339 | 1.6500 | - 484 | 2970 | | 1650 | .16540 | - 487 | .64163 | - 1831 | 1.1220 | - 320 | 1.6016 | - 457 | 3060 | | 1700 | .16053 | - 458 | | - 1731 | 1.0900 | - 302 | 1.5559 | - 431 | 3150 | | 1750 | .15595 | - 433 | .62332 | - 1/31 | 1.0700 | - 302 | | | | | 1800 | .15162 | - 410 | .60601 | - 1636 | 1.0598 | - 286 | 1.5128 | - 408 | 3240 | | 1850 | .14752 | - 388 | .58965 | - 1550 | 1.0312 | - 271 | 1.4720 | - 386 | 3330 | | 1900 | .14364 | - 369 | .57415 | - 1471 | 1.0041 | - 257 | 1.4334 | - 367 | 3420 | | 1950 | .13995 | - 349 | .55944 | - 1398 | .97835 | - 2442 | 1.3967 | - 348 | 3510 | | 2000 | .13646 | - 333 | .54546 | - 1329 | .95393 | - 2323 | 1.3619 | - 332 | 3600 | | 2252 | 12212 | *** | .53217 | - 1266 | .93070 | - 2213 | 1.3287 | - 316 | 3690 | | 2050 | .13313 | - 317 | .51951 | - 1207 | .90857 | - 2110 | 1.2971 | - 301 | 3780 | | 2100 | .12996 | - 302 | | - 1207
- 1153 | .88747 | - 2015 | 1.2670 | - 287 | 3870 | | 2150 | .12694 | - 289 | .50744 | | .86732 | - 1925 | 1.2383 | - 275 | 3960 | | 2200 | .12405 | - 275 | .49591 | - 1101 | .84807 | - 1841 | 1.2108 | - 263 | 4050 | | 2250 | .12130 | - 26 4 | .48490 | - 1053 | .04607 | 1041 | 1.2200 | 203 | | | 2300 | .11866 | - 252 | .47437 | - 1009 | .82966 | - 1763 | 1.1845 | - 251 | 4140 | | | | | .46428 | - 966 | .81203 | - 1689 | 1.1594 | - 241 | 4230 | | 2350 | .11614 | - 242 | .45462 | - 927 | 79514 | - 1620 | 1.1353 | - 231 | 4320 | | 2400 | .11372 | - 2 3 2 | | | .77894 | - 1557 | 1.1122 | - 222 | 4410 | | 2450 | .11140 | - 223 | .44535 | - 890 | .76337 | - 1494 | 1.0900 | - 214 | 4500 | | 2500 | .10917 | - 214 | .43645 | 856 | .16551 | - 1474 | 1.0700 | | | | 2550 | .10703 | - 206 | .42789 | - 822 | .74843 | - 1438 | 1.0686 | - 205 | 4590
4680 | | 2600 | .10497 | - 198 | .41967 | - 791 | .73405 | - 1384 | 1.0481 | - 197 | 4770 | | 2650 | .10299 | - 190 | .41176 | - 762 | .72021 | - 1332 | 1.0284 | - 191 | | | 2700 | .10109 | - 185 | .40414 | - 734 | .70689 | - 1283 | 1,0093 | - 183 | 4860 | | 2750 | .09924 | - 177 | .39680 | - 70 9 | .69406 | - 12 38 | .9910 | - 176 | 4950 | | 2800 | .09747 | ~ 171 | .38971 | - 683 | .68168 | - 1195 | .9734 | - 171 | 5040 | | | .09576 | - 165 | .38288 | - 659 | .66973 | - 1153 | .9563 | - 164 | 5130 | | 2850 | | | .37629 | - 638 | .65820 | - 1115 | .9399 | - 160 | 5220 | | 2900 | .09411 | - 159 | .36991 | - 616 | .64705 | - 1077 | .9239 | - 153 | 5310 | | 2950 | .09252 | - 155 | .36375 | - 440 | .63628 | | .9086 | | 5400 | | 3000 | .09097 | | . 70713 | | | | | | | | | | | | | | | | | | | ble 5 | -2. DENS | Try OF C | ARBON MO | NOXIDE - | Cont. | | | | PI | |---------------------------------|---|--------------------------------------|---|--------------------------------------|---|--------------------------------------|---|---|--------------------------------------| | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | *R | | 250
260
270
280
290 | 11.03
10.59
10.18
9.803
9.454 | 44
41
38
349
326 | 45.34
43.27
41.40
39.71
38.16 | -207
-187
-169
-155
-142 | 69.95
67.02 | 293
266 | 99.97
95.55 | ~ 44 2
~ 396 | 450
468
486
504
522 | | 300 | 9.128 | - 303 | 36.74 | -131 | 64.36 | -242 | 91.59 | - 360 | 540 | | 310 | 8.825 | - 283 | 35.43 | -121 | 61.94 | -223 | 87.99 | - 329 | 558 | | 320 | 8.542 | - 264 | 34.22 | -113 | 59.71 | -205 | 84.70 | - 300 | 576 | | 330 | 8.278 | - 249 | 33.09 | -104 | 57.66 | -190 | 81.70 | - 278 | 594 | | 340 | 8.029 | - 234 | 32.05 | - 98 | 55.76 | -177 | 78.92 | - 258 | 612 | | 350 | 7.795 | -220 | 31.07 | 92 | 53.99 | -165 | 76.34 | - 238 | 630 | | 360 | 7.575 | -208 | 30.15 | 86 | 52.34 | -154 | 73.96 | - 222 | 648 | | 370 | 7.367 | -196 | 29.29 | 81 | 50.80 | -144 | 71.74 | - 208 | 666 | | 380 | 7.171 | -186 | 28.48 | 77 | 49.36 | -136 | 69.66 | - 196 | 684 | | 390 | 6.985 | -177 | 27.71 | 72 | 48.00 | -128 | 67.70 | - 182 | 702 | | 400 | 6.808 | -168 | 26.99 | 68 | 46.72 | -121 | 65.88 | - 173 | 720 | | 410 | 6.640 | -160 | 26.31 | 65 | 45.51 | -114 | 64.15 | - 163 | 738 | | 420 | 6.480 | -152 | 25.66 | 62 | 44.37 | -108 | 62.52 | - 154 | 756 | | 430 | 6.328 | -144 | 25.04 | 58 | 43.29 | -102 | 60.98 | - 146 | 774 | | 440 | 6.184 | -139 | 24.46 | 56 | 42.27 | - 98 | 59.52 | - 138 | 792 | | 450 | 6.045 | -133 | 23.90 | - 53 | 41.29 | - 93 | 58.14 | - 131 | 810 | | 460 | 5.912 | -126 | 23.37 | - 51 | 40.36 | - 88 | 56.83 | - 126 | 828 | | 470 | 5.786 | -121 | 22.86 | - 48 | 39.48 | - 85 | 55.57 | - 119 | 846 | | 480 | 5.665 | -116 | 22.38 | - 47 | 38.63 | - 81 | 54.38 | - 114 | 864 | | 490 | 5.549 | -112 | 21.91 | - 44 | 37.82 | - 77 | 53.24 | - 109 | 882 | | 500 | 5.437 | -107 | 21.47 | 43 | 37.05 | 74 | 52.15 | - 104 | 900 | | 510 | 5.330 | -102 | 21.04 | 41 | 36.31 | 71 | 51.11 | - 101 | 918 | | 520 | 5.228 | -100 | 20.63 | 39 | 35.60 | 68 | 50.10 | - 95 | 936 | | 530 | 5.128 | -
95 | 20.24 | 38 | 34.92 | 65 | 49.15 | - 92 | 954 | | 540 | 5.033 | - 92 | 19.86 | 26 | 34.27 | 63 | 48.23 | - 89 | 972 | | 550 | 4.941 | - 88 | 19.50 | - 35 | 33.64 | - 61 | 47.34 | - 85 | 990 | | 560 | 4.853 | - 85 | 19.15 | - 31 | 33.03 | - 58 | 46.49 | - 82 | 1008 | | 570 | 4.768 | - 83 | 18.81 | - 33 | 32.45 | - 56 | 45.67 | - 78 | 1026 | | 580 | 4.685 | - 79 | 18.48 | - 31 | 31.89 | - 54 | 44.89 | - 76 | 1044 | | 590 | 4.606 | - 77 | 13.17 | - 30 | 31.35 | - 53 | 44.13 | - 74 | 1062 | | 600 | 4.529 | 74 | 17.87 | - 30 | 30.82 | 50 | 43.39 | - 71 | 1080 | | 610 | 4.455 | 72 | 17.57 | 28 | 30.32 | 49 | 42.68 | - 68 | 1098 | | 620 | 4.383 | 69 | 17.29 | 27 | 29.83 | 47 | 42.00 | - 66 | 1116 | | 630 | 4.314 | 68 | 17.02 | 27 | 29.36 | 46 | 41.34 | - 65 | 1134 | | 640 | 4.246 | 65 | 16.75 | 26 | 28.90 | 44 | 40.69 | - 61 | 1152 | | 650 | 4.181 | - 64 | 16.49 | - 25 | 28.46 | - 43 | 40.08 | - 60 | 1170 | | 660 | 4.117 | - 61 | 16.24 | - 24 | 28.03 | 42 | 39.48 | - 59 | 1188 | | 670 | 4.056 | - 60 | 16.00 | - 23 | 27.61 | 40 | 38.89 | - 56 | 1206 | | 680 | 3.996 | - 58 | 15.77 | - 23 | 27.21 | 39 | 38.33 | - 55 | 1224 | | 690 | 3.938 | - 56 | 15.54 | - 22 | 26.82 | 38 | 37.78 | - 53 | 1242 | | 700 | 3.882 | - 55 | 15.32 | - 22 | 26.44 | 37 | 37.25 | - 52 | 1260 | | 710 | 3.827 | - 53 | 15.10 | - 21 | 26.07 | 36 | 36.73 | - 50 | 1278 | | 720 | 3.774 | - 51 | 14.89 | - 20 | 25.71 | 35 | 36.23 | - 49 | 1296 | | 730 | 3.723 | - 51 | 14.69 | - 20 | 25.36 | 34 | 35.74 | - 47 | 1314 | | 740 | 3.672 | - 48 | 14.49 | - 19 | 25.02 | 33 | 35.27 | - 47 | 1332 | | 750 | 3.624 | - 48 | 14.30 | - 19 | 24.69 | - 32 | 34.80 | - 45 | 1350 | | 760 | 3.576 | - 46 | 14.11 | - 18 | 24.37 | - 31 | 34.35 | - 44 | 1368 | | 770 | 3.530 | - 46 | 13.93 | - 17 | 24.06 | - 30 | 33.91 | - 42 | 1386 | | 780 | 3.484 | - 44 | 13.76 | - 18 | 23.76 | - 30 | 33.49 | - 42 | 1404 | | 790 | 3.440 | - 42 | 13.58 | - 17 | 23.46 | - 29 | 33.07 | - 40 | 1422 | | 800
850
900
950 | 3.398
3.198
3.021
2.862
2.719 | -200
-177
-159
-143
-129 | 13.41
12.63
11.93
11.31
10.75 | - 78
- 70
- 62
- 56
- 51 | 23.17
21.83
20.63
19.56
18.60 | -134
-120
-107
- 96
- 87 | 32.67
30.79
29.11
27.62
26.27 | - 188
- 168
- 149
- 135
- 122 | 1440
1530
1620
1710
1800 | | 050 | 2.590 | | 10.24 | | 17.73 | | 25.05 | | 1890 | | K | 10 | atm | | a ten | 1 70 | Atm. | 1 100 | | | |------------|----------------|-------|----------------|-------|----------------|-------------|----------------|----------------|--------------| | | | | 40 | atm | 70 | atm
———— | 100 | atm | ° R | | | 2,590 | -117 | 10.24 | - 46 | 17.73 | - 79 | 25.05 | - 111 | 1890 | | 1100 | 2.473 | -108 | 9.783 | - 421 | 16.94 | - 73 | 23,94 | - 111
- 101 | 1980 | | 1150 | 2.365 | - 98 | 9.362 | - 386 | 16.21 | - 66 | 22.93 | - 101
- 94 | 2070 | | 1200 | 2.267 | - 90 | 8.976 | - 355 | 15.55 | - 61 | 21.99 | - 85 | 2160 | | 1250 | 2,177 | - 84 | 8.621 | - 329 | 14.94 | - 57 | 21.14 | - 80 | 2250 | | 1300 | 2.093 | - 77 | 8.292 | - 304 | 14.37 | - 52 | 20.34 | - 73 | 2340 | | 1350 | 2.016 | - 72 | 7 . 988 | - 282 | 13.85 | - 48 | 19.61 | - 69 | 2430 | | 1400 | 1.944 | - 67 | 7.706 | - 264 | 13.37 | - 46 | 18.92 | - 63 | 2520 | | L450 | 1.877 | - 62 | 7.442 | - 245 | 12.91 | - 42 | 18.29 | - 60 | 2610 | | 1500 | 1.815 | - 59 | 7.197 | - 230 | 12.49 | - 40 | 17.69 | - 56 | 2700 | | 1550 | 1.756 | - 55 | 6.967 | - 216 | 12.09 | - 37 | 17,13 | - 52 | 2790 | | 1600 | 1.701 | - 51 | 6.751 | - 203 | 11.72 | - 35 | 16.61 | - 49 | 2880 | | L650 | 1,650 | - 48 | 6.548 | - 191 | 11.37 | - 33 | 16.12 | - 46 | 2970 | | 700 | 1.602 | - 46 | 6.357 | - 179 | 11.04 | - 31 | 15.66 | - 44 | 3060 | | .750 | 1.556 | - 43 | 6.178 | - 171 | 10.73 | - 29 | 15.22 | - 42 | 3150 | | 800 | 1.513 | - 41 | 6.007 | - 160 | 10.44 | - 28 | 14.80 | - 39 | 3240 | | 850 | 1.472 | - 39 | 5.847 | - 153 | 10.16 | - 26 | 14.41 | - 37 | 3330 | | 900 | 1.433 | - 36 | 5.694 | - 144 | 9.897 | - 250 | 14.04 | - 35 | 3420 | | .950 | 1.397 | - 35 | 5,550 | - 138 | 9.647 | - 239 | 13.69 | - 34 | 3510 | | 000 | 1.362 | - 33 | 5.412 | - 131 | 9.408 | - 226 | 13.35 | - 32 | 3600 | | 050 | 1.329 | - 32 | 5.281 | - 125 | 9.182 | - 216 | 13.03 | - 30 | 3690 | | 100 | 1,297 | - 30 | 5.156 | - 119 | 8.966 | 205 | 12.73 | - 29 | 3780 | | 2150 | 1.267 | - 29 | 5.037 | - 114 | 8,761 | - 196 | 12.44 | - 28 | 3870 | | 200 | 1.238 | - 27 | 4.923 | - 108 | 8.565 | - 188 | 12.16 | - 26 | 3960 | | 250 | 1.211 | - 26 | 4.815 | - 104 | 8.377 | - 180 | 11.90 | - 26 | 4050 | | 300 | 1.185 | - 26 | 4.711 | - 100 | 8.197 | - 172 | 11.64 | - 24 | 4140 | | 350 | 1.159 | - 24 | 4.611 | - 95 | 8.025 | - 165 | 11.40 | - 23 | 4230 | | 400 | 1.135 | - 23 | 4.516 | - 92 | 7.860 | - 159 | 11.17 | - 23 | 4320 | | 450
500 | 1.112 | - 22 | 4.424 | - 87 | 7.701 | - 151 | 10.94 | - 21 | 4410 | | 500 | 1.090 | - 21 | 4.337 | - 85 | 7.550 | - 147 | 10.73 | - 21 | 4500 | | 550 | 1.069 | - 21 | 4.252 | - 81 | 7.403 | - 141 | 10.52 | - 20 | 4590 | | 600
650 | 1.048 | - 20 | 4.171 | - 78 | 7.262 | - 135 | 10.32 | - 19 | 4680 | | | 1.028 | - 19 | 4.093 | - 75 | 7.127 | - 130 | 10.13 | - 18 | 4770 | | 700
750 | 1.009 | - 18 | 4.018 | - 73 | 6.997 | - 126 | 9.946 | - 178 | 4860 | | 750 | .9910 | - 177 | 3.945 | - 70 | 6.871 | - 122 | 9.768 | - 172 | 4950 | | 800 | .9733 | - 170 | 3.875 | - 67 | 6.749 | - 117 | 9.596 | - 165 | 5040 | | 850
900 | .9563 | - 164 | 3.808 | - 66 | 6.632 | - 113 | 9.431 | - 160 | 5130 | | 900
950 | .9399
.9239 | - 160 | 3.742 | - 63 | 6.519 | - 109 | 9.271 | - 154 | 5220 | | 000 | .9086 | - 153 | 3.679
3.618 | - 61 | 6.410
6.304 | - 106 | 9.117
8.966 | - 151 | 5310
5400 | Table 5-3. SPECIFIC HEAT OF CARBON MONOXIDE | °K | .01 | atm | , | atm | 1 0 | ıtm | 10 | atm | °R | |-------------------|-------------------------|-------------|-------------------------|-------------|-------------------------|-------------------|----------------------------------|-------------------|--------------------------| | ^ | .01 | uiiii . | <u> </u> | | 1 ' | | | | | | 200
210
220 | 3.501
3.501
3.501 | | 3.503
3.502
3.502 | - 1 | 3.517
3.516
3.514 | - 1
- 2
- 1 | 3.665
3.645
3.629 | -20
-16
-14 | 360
378
396 | | 230
240 | 3.501
3.502 | 1 | 3.502
3.503 | 1 | 3.513
3.513 | - 1 | 3.615
3.605 | -10
- 9 | 414
432 | | 250
260
270 | 3.502
3.502
3.503 | 1 | 3,503
3,503
3,504 | 1 | 3.512
3.511
3.511 | - 1
- 1 | 3.596
3.587
3.581
3.575 | 9
6
6
5 | 450
468
486
504 | | 280
290 | 3.503
3.504 | 1 | 3,504
3,505 | 1 | 3.510
3.511 | 1 | 3,570 | - 3 | 522 | | 300
310 | 3.505
3.506 | 1 2 | 3.506
3.507
3.509 | 1
2
1 | 3.511
3.512
3.513 | 1
1
1 | 3.567
3.563
3.561 | - 4
- 2
- 3 | 540
558
576 | | 320
330
340 | 3.508
3.509
3.511 | 1
2
2 | 3.510
3.511 | 1 2 | 3.514
3.516 | 2
1 | 3.558
3.557 | - 1 | 594
612 | | 350
360 | 3.513
3.516 | 3 | 3.513
3.516 | 3 | 3.517
3.520
3.523 | 3
3
3 | 3.557
3.557
3.558 | 1 | 630
648
666 | | 370
380
390 | 3.519
3.522
3.525 | 3
3
4 | 3.519
3.522
3.525 | 3
3
4 | 3.526
3.528 | 2
4 | 3.559
3.560 | 1 2 | 684
702 | | 400
410 | 3.529
3.533 | 4 | 3.529
3.533 | 4 | 3.532
3.536 | 4 | 3.562
3.564
3.566 | 2 2 | 720
738
756 | | 420
430
440 | 3.537
3.542
3.547 | 5
5
5 | 3.537
3.542
3.547 | 5
5
5 | 3.540
3.545
3.550 | 5
5
4 | 3.570
3.573 | 4 3 4 | 774
792 | | 450
460 | 3.552
3.558 | 6
6 | 3,552
3,558 | 6 | 3.554
3.560 | 6 | 3,577
3,582 | 5
4 | 810
828
846 | | 470
480
490 | 3.564
3.570
3.577 | 6
7
6 | 3.564
3.570
3.577 | 6
7
6 | 3.566
3.572
3.579 | 6
7
6 | 3.586
3.591
3.597 | 5
6
6 | 864
882 | | 500
510 | 3.583
3.590 | 7
7 | 3.583
3.590 | 7
7 | 3.585
3.592 | 7
7 | 3.603
3.609 | 6
6 | 900
918 | | 520
530
540 | 3.597
3.605
3.612 | 8
7
8 | 3.597
3.605
3.612 | 8
7
8 | 3.599
3.607
3.614 | 8
7
8 | 3.615
3.622
3.628 | 7
6
8 | 936
954
972 | | 550
560 | 3.620
3.628 | 8
8 | 3.620
3.628 | 8
8 | 3.622
3.630 | 8
7 | 3.636
3.643 | 7
8 | 990
1008 | | 570
580 | 3.636
3.644 | 8
9 | 3.636
3.644 | 8
9 | 3.637
3.645
3.654 | 8
9
8 | 3.651
3.658
3.666 | 7
8
8 | 1026
1044
1062 | | 590
600 | 3.653
3.661 | 8 | 3.653
3.661 | 8 | 3.662 | 9 | 3.674 | 8 | 1080 | | 610 | 3.670 | 8 | 3.670
3.678 | 8
9 | 3.671
3.679 | 8
9 | 3.682
3.690 | 8
9 | 1098
1116 | | 620
630
640 | 3.678
3.687
3.696 | 9
9
9 | 3.687
3.696 | 9
9 | 3.688
3.697 | 9
9 | 3.699
3.707 | 8 | 1134
1152 | | 650 | 3.705 | 9 | 3.705 | 9 | 3.706
3.715 | 9
8 | 3.716
3.724 | 8
8 | 1170
1188 | | 660
670 | 3.714
3.722 | 8
9 | 3.714
3.722 | 8
9 | 3.715
3.723 | 9 | 3.732 | 9 | 1206 | | 680
690 | 3.731
3.740 | 9
9 | 3.731
3.740 | 9 | 3.732
3.741 | 9
9 | 3.741
3.749 | 8
9 | 1224
1242 | | 700
710 | 3.749
3.758 | 9
9 | 3.749
3.758 | 9
9 | 3.750
3.759 | 9
9 | 3.758
3.767 | 9
9 | 1260
1278 | | 720 | 3.767 | 9 | 3.767 | 9 | 3,768 | 9 | 3.776 | 8 | 1296 | | 730
740 | 3.776
3.785 | 9
9 | 3.776
3.785 | 9
9 | 3.777
3.786 | 9 | 3.784
3.793 | 9
9 | 1314
1332 | | 750 | 3.794 | 8 | 3.794
3.802 | 8
9 | 3.795
3.803 | 8
9 | 3.802
3.810 | 8
8 | 1350
1368 | | 760
770 | 3.802
3.811 | 9
9 | 3,811 | 9 | 3.812 | 9 | 3.818 | 9 | 1386 | | 780
790 | 3.820
3.828 | 8
9 | 3.820
3.828 | 8
9 | 3.821
3.829 |
8
9 | 3.827
3.835 | 8
9 | 1404
1422 | | 800 | 3.837 | | 3.837 | 1 1 - | 3.838
atmosphere r | ange the | 3.844 | e specif | 1440
ic heat | At higher temperatures in the .01, .1, and 1 atmosphere range, the values of the specific heat are equal to the value for the ideal gas (see table 5-12). In the 10 atmosphere range, values at higher temperatures may be found on page 227. Table 5-3. SPECIFIC HEAT OF CARBON MONOXIDE - Cont. | °K | 10 | atm | 40 | atm | 70 a | ıtm | 100 | atm | °R | |---------------------------------|---|---------------------------------|---|---------------------------------|---|---------------------------------|---|---------------------------------|--------------------------------------| | 250
260
270
280
290 | 3.596
3.587
3.581
3.575
3.570 | - 9
- 6
- 6
- 5
- 3 | 3.855
3.823
3.796
3.773
3.753 | -32
-27
-23
-20
-17 | 3.984
3.945
3.913 | -39
-32
-26 | 4.091
4.049 | 4 2
33 | 450
468
486
504
522 | | 300
310
320
330
340 | 3.567
3.563
3.561
3.558
3.557 | - 4
- 2
- 3
- 1 | 3.736
3.722
3.710
3.698
3.689 | -14
-12
-12
- 9
- 9 | 3.887
3.862
3.843
3.824
3.808 | -25
-19
-19
-16
-14 | 4.016
3.986
3.960
3.937
3.916 | 30
26
23
21
19 | 540
558
576
594
612 | | 350
360
370
380
390 | 3.557
3.557
3.558
3.559
3.560 | 1
1
1
2 | 3.680
3.673
3.667
3.662
3.657 | - 7
- 6
- 5
- 5
- 2 | 3.794
3.782
3.771
3.760
3.751 | -12
-11
-11
- 9
- 8 | 3.897
3.881
3.866
3.851
3.838 | -16
-15
-15
-13
-11 | 630
648
666
684
702 | | 400
410
420
430
440 | 3.562
3.564
3.566
3.570
3.573 | 2
2
4
3
4 | 3.655
3.652
3.650
3.649
3.648 | - 3
- 2
- 1
- 1 | 3.743
3.736
3.729
3.724
3.721 | - 7
- 7
- 5
- 3
- 4 | 3.827
3.816
3.806
3.798
3.789 | -11
-10
- 8
- 9
- 6 | 720
738
756
774
792 | | 450
460
470
480
490 | 3.577
3.582
3.586
3.591
3.597 | 5
4
5
6 | 3.649
3.650
3.651
3.653
3.656 | 1
1
2
3
3 | 3.717
3.715
3.714
3.712
3.713 | - 2
- 1
- 2
1 | 3.783
3.777
3.772
3.769
3.766 | - 6
- 5
- 3
- 3
- 3 | 810
828
846
864
882 | | 500
510
520
530
540 | 3.603
3.609
3.615
3.622
3.628 | 6
6
7
6
8 | 3.659
3.663
3.667
3.672
3.676 | 4
4
5
4
5 | 3.713
3.714
3.715
3.718
3.721 | 1
1
3
3
3 | 3.763
3.761
3.762
3.763
3.764 | - 2
1
1
1 | 900
918
936
954
972 | | 550
560
570
580
590 | 3.636
3.643
3.651
3.658
3.666 | 7
8
7
8
8 | 3.681
3.687
3.693
3.698
3.705 | 6
6
5
7
6 | 3.724
3.728
3.732
3.737
3.742 | 4
4
5
5
5 | 3.765
3.767
3.770
3.773
3.777 | 2
3
3
4
3 | 990
1008
1026
1044
1062 | | 600
610
620
630
640 | 3.674
3.682
3.690
3.699
3.707 | 8
8
9
8
9 | 3.711
3.718
3.725
3.732
3.740 | 7
7
7
8
7 | 3.747
3.752
3.758
3.764
3.770 | 5
6
6
7 | 3.780
3.784
3.788
3.793
3.799 | 4
4
5
6
5 | 1080
1098
1116
1134
1152 | | 650
660
670
680
690 | 3.716
3.724
3.732
3.741
3.749 | 8
8
9
8
9 | 3.747
3.755
3.761
3.769
3.777 | 8
6
8
8 | 3.777
3.783
3.789
3.796
3.802 | 6
6
7
6
8 | 3.804
3.810
3.815
3.821
3.827 | 6
5
6
6 | 1170
1188
1206
1224
1242 | | 700
710
720
730
740 | 3.758
3.767
3.776
3.784
3.793 | 9
9
8
9 | 3.785
3.792
3.800
3.808
3.816 | 7
8
8
8
8 | 3.810
3.817
3.824
3.831
3.838 | 7
7
7
7
8 | 3.833
3.839
3.846
3.852
3.859 | 6
7
6
7
7 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | 3.802
3.810
3.818
3.827
3.835 | 8
8
9
8
9 | 3.824
3.832
3.840
3.848
3.855 | 8
8
8
7
8 | 3.846
3.852
3.860
3.867
3.874 | 6
8
7
7
8 | 3.866
3.872
3.879
3.886
3.892 | 6
7
7
6
7 | 1350
1368
1386
1404
1422 | | 800 | 3.844 | | 3.863 | | 3.882 | | 3,899 | | 1440 | | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | °R | |------|-------|-----|-------|-----|-------|-----|-------|-----|------| | | | | | | | | | | | | 800 | 3.844 | 40 | 3.863 | 38 | 3.882 | 35 | 3.899 | 33 | 1440 | | 850 | 3.884 | 39 | 3.901 | 37 | 3.917 | 35 | 3.932 | 34 | 1530 | | 900 | 3.923 | 38 | 3,938 | 36 | 3.952 | 34 | 3.966 | 32 | 1620 | | 950 | 3.961 | 34 | 3.974 | 33 | 3.986 | 32 | 3.998 | 31 | 1710 | | 1000 | 3.995 | 33 | 4.007 | 31 | 4.018 | 31 | 4.029 | 29 | 1800 | | 1050 | 4.028 | 29 | 4.038 | 29 | 4.049 | 27 | 4.058 | 26 | 1890 | | 1100 | 4.057 | 29 | 4.067 | 27 | 4.076 | 27 | 4.084 | 26 | 1980 | | 1150 | 4.086 | 27 | 4.094 | 26 | 4.103 | 25 | 4.110 | 25 | 2070 | | 1200 | 4.113 | 24 | 4.120 | 24 | 4.128 | 23 | 4.135 | 23 | 2160 | | 1250 | 4.137 | 23 | 4.144 | 23 | 4.151 | 22 | 4.158 | 21 | 2250 | | 1300 | 4.160 | 21 | 4.167 | 20 | 4.173 | 19 | 4.179 | 19 | 2340 | | 1350 | 4.181 | 20 | 4.187 | 19 | 4.192 | 19 | 4.198 | 18 | 2430 | | 1400 | 4.201 | 19 | 4.206 | 19 | 4.211 | 18 | 4.216 | 18 | 2520 | | 1450 | 4.220 | 18 | 4.225 | 17 | 4.229 | 18 | 4.234 | 17 | 2610 | | 1500 | 4.238 | 15 | 4.242 | 16 | 4.247 | 15 | 4.251 | 15 | 2700 | | 1550 | 4.253 | 15 | 4.258 | 14 | 4.262 | 14 | 4.266 | 14 | 2790 | | 1600 | 4.268 | 14 | 4.272 | 14 | 4.276 | 13 | 4.280 | 13 | 2880 | | 1650 | 4.282 | 13 | 4.286 | 12 | 4.289 | 13 | 4.293 | 12 | 2970 | | 1700 | 4.295 | 13 | 4.298 | 13 | 4.302 | 12 | 4.305 | 12 | 3060 | | 1750 | 4.308 | 12 | 4.311 | 12 | 4.314 | 12 | 4.317 | 11 | 3150 | | 1800 | 4.320 | 11 | 4.323 | 11 | 4.326 | 10 | 4.328 | 11 | 3240 | | 1850 | 4.331 | 10 | 4.334 | 9 | 4.336 | 10 | 4.339 | 9 | 3330 | | 1900 | 4.341 | 10 | 4.343 | 10 | 4.346 | 9 | 4.348 | 10 | 3420 | | 1950 | 4.351 | 9 | 4.353 | 9 | 4.355 | 9 | 4.358 | 8 | 3510 | | 2000 | 4.360 | 9 | 4.362 | 9 | 4.364 | 9 | 4.366 | 9 | 3600 | | 2050 | 4.369 | 8 | 4.371 | 8 | 4.373 | 7 | 4.375 | 7 | 3690 | | 2100 | 4.377 | 8 | 4.379 | 7 | 4.380 | 8 | 4.382 | 8 | 3780 | | 2150 | 4.385 | 7 | 4.386 | 7 | 4.388 | 7 | 4.390 | 6 | 3870 | | 2200 | 4.392 | 7 | 4.393 | 7 | 4,395 | 7 | 4.396 | 7 | 3960 | | 2250 | 4.399 | 6 | 4.400 | 7 | 4.402 | 6 | 4.403 | 7 | 4050 | | 2300 | 4.405 | 7 | 4.407 | 7 | 4.408 | 7 | 4.410 | 6 | 4140 | | 2350 | 4.412 | 6 | 4.414 | 6 | 4.415 | 6 | 4.416 | 6 | 4230 | | 2400 | 4.418 | 6 | 4.420 | 6 | 4.421 | 6 | 4.422 | 6 | 4320 | | 2450 | 4.424 | 5 | 4.426 | 5 | 4.427 | 5 | 4.428 | 5 | 4410 | | 2500 | 4.429 | 6 | 4.431 | 5 | 4.432 | 5 | 4.433 | 6 | 4500 | | 2550 | 4.435 | 5 | 4.436 | 5 | 4.437 | 5 | 4.439 | 4 | 4590 | | 2600 | 4.440 | 5 | 4.441 | 5 | 4.442 | 5 | 4.443 | 5 | 4680 | | 2650 | 4.445 | 5 | 4.446 | 5 | 4.447 | 5 | 4.448 | 5 | 4770 | | 2700 | 4.450 | 5 | 4.451 | 5 | 4.452 | 5 | 4.453 | 5 | 4860 | | 2750 | 4.455 | 5 | 4.456 | 5 | 4.457 | 5 | 4.458 | 5 | 4950 | | 2800 | 4.460 | 4 | 4.461 | 4 | 4.462 | 4 | 4.463 | 3 | 5040 | | 2850 | 4.464 | . 4 | 4.465 | 4 | 4.466 | 4 | 4.466 | 4 | 5130 | | 2900 | 4.468 | 4 . | 4.469 | 4 | 4.470 | 4 | 4.470 | 4 | 5220 | | 2950 | 4.472 | 4 | 4.473 | 4 | 4.474 | 3 | 4.474 | 4 | 5310 | | 3000 | 4.476 | | 4.477 | | 4.477 | | 4.478 | | 5400 | | , | _ | | | | | | | | , | |------------|-------------------------|--------------|------------------|--------------|------------------|--------------------------------|------------------|---------------|--------------| | °K | .01 | atm | .1 | atm | ı | atm | 10 | atm | °R | | | | | | | | | | | | | 200 | 2. 55 9 5 | 1281 | 2.5589 | 1281 | 2.5525 | 1287 | 2.4886 | 1340 | 360 | | 210 | 2.6876 | 1282 | 2.6870 | 1283 | 2.6812 | 1287 | 2,6226 | 1333 | 378 | | 220 | 2.8158 | 1282 | 2.8153 | 1282 | 2.8099 | 1286 | 2.7559 | 1328 | 396 | | 230 | 2.9440 | 1282 | 2.9435 | 1283 | 2.9385 | 1286 | 2.8887 | 1324 | 414 | | 240 | 3.0722 | 1283 | 3.0718 | 1282 | 3.0671 | 1286 | 3.0211 | 1319 | 432 | | 250 | 3.2005 | 1282 | 3.2000 | 1283 | 3.1957 | 1285 | 3.1530 | 1315 | 450 | | 260 | 3.3287 | 1282 | 3.3283 | 1282 | 3.3242 | 1286 | 3.2845 | 1313 | 468 | | 270 | 3.4569 | 1282 | 3.4565 | 1282 | 3.4528 | 1284 | 3.4158 | 1310 | 486 | | 280
290 | 3.5851
3.7134 | 1283
1283 | 3.5847
3.7130 | 1283
1284 | 3.5812
3.7098 | 1286
1285 | 3.5468
3.6777 | 1309
1307 | 504
522 | | 200 | 2 0 4 3 7 | | 2 0414 | | 2.0202 | | | | | | 300
310 | 3.8417
3.9700 | 1283
1284 | 3.8414
3.9697 | 1283
1284 | 3.8383
3.9668 | 1285
1287 | 3.8084
3.9388 | 1304
1305 | 540
558 | | 320 | 4.0984 | 1284 | 4.0981 | 1284 | 4.0955 | 1285 | 4.0693 | 1303 | 576 | | 330 | 4.2268 | 1285 | 4.2265 | 1285 | 4.2240 | 1287 | 4.1996 | 1302 | 594 | | 340 | 4.3553 | 1286 | 4.3550 | 1287 | 4.3527 | 1288 | 4.3298 | 1303 | 612 | | 350 | 4,4839 | 1287 | 4,4837 | 1287 | 4,4815 | 1288 | 4.4601 | 1302 | 630 | | 360 | 4.6126 | 1287 | 4.6124 | 1287 | 4.6103 | 1289 | 4.5903 | 1302 | 648 | | 370 | 4.7413 | 1289 | 4.7411 | 1289 | 4,7392 | 1290 | 4.7205 | 1302 | 666 | | 380 | 4.8702 | 1290 | 4.8700 | 1290 | 4.8682 | 1292 | 4.8507 | 1303 | 684 | | 390 | 4.9992 | 1291 | 4.9990 | 1291 | 4.9974 | 1292 | 4.9810 | 1303 | 702 | | 400 | 5.1283 | 1293 | 5.1281 | 1293 | 5.1266 | 1294 | 5.1113 | 1305 | 720 | | 410 | 5.2576 | 1294 | 5,2574 | 1295 | 5.2560 | 1295 | 5,2418 | 1305 | 738 | | 420 | 5.3870 | 1296 | 5.3869 |
1296 | 5.3855 | 1297 | 5.3723 | 1306 | 756 | | 430 | 5.5166 | 1297 | 5.5165 | 1297 | 5.5152 | 1298 | 5.5029 | 1307 | 774 | | 440 | 5.6463 | 1300 | 5,6462 | 1300 | 5.6450 | 1301 | 5.6336 | 1309 | 792 | | 450 | 5,7763 | 1301 | 5.7762 | 1301 | 5.7751 | 1302 | 5.7645 | 1310 | 810 | | 460 | 5.9064 | 1304 | 5.9063 | 1304 | 5.9053 | 1305 | 5.8955 | 1312 | 828 | | 470 | 6.0368 | 1306 | 6.0367 | 1306 | 6.0358 | 1307 | 6.0267 | 1314 | 846 | | 480
490 | 6.1674
6.2982 | 1308
1310 | 6.1673
6.2981 | 1308
1310 | 6.1665
6.2973 | 1308
1311 | 6.1581
6.2897 | 1316 | 864
882 | | 470 | 0.2702 | 1310 | 0.2701 | 1310 | 0.2713 | 1311 | 0,2071 | 1317 | 002 | | 500 | 6.4292 | 1314 | 6.4291 | 1314 | 6.4284 | 1315 | 6.4214 | 1321 | 900 | | 510 | 6.5606 | 1315 | 6.5605 | 1315 | 6.5599 | 1315 | 6.5535 | 1322 | 918 | | 520 | 6.6921 | 1319 | 6.6920 | 1319 | 6.6914 | 1320 | 6.6857 | 1 325 | 936 | | 530
540 | 6.8240
6.9561 | 1321 | 6.8239
6.9560 | 1321 | 6.8234 | 1322 | 6.8182 | 1 328 | 954 | | 540 | 0.7301 | 1323 | 0.7300 | 1324 | 6.9556 | 1323 | 6.9510 | 1328 | 972 | | 550 | 7.0884 | 1327 | 7.0884 | 1327 | 7.0879 | 1328 | 7.0838 | 1333 | 990 | | 560 | 7.2211 | 1330 | 7.2211 | 1330 | 7.2207 | 1330 | 7.2171 | 1335 | 1008 | | 570 | 7.3541 | 1333 | 7.3541 | 1333 | 7.3537 | 1334 | 7.3506 | 1338 | 1026 | | 580
590 | 7.4874
7.6209 | 1335 | 7.4874
7.6209 | 1335 | 7.4871
7.6206 | 1335 | 7.4844
7.6185 | 1341 | 1044 | | 370 | 7.0207 | 1339 | 7,0207 | 1339 | 1.0200 | 1340 | 1.0100 | 1 34 3 | 1062 | | 600 | 7.7548 | 1342 | 7.7548 | 1342 | 7.7546 | 1342 | 7.7528 | 1347 | 1080 | | 610 | 7.8890 | 1345 | 7.8890 | 1345 | 7.8888 | 1346 | 7.8875 | 1349 | 1098 | | 620
630 | 8.0235
8.1583 | 1348 | 8,0235 | 1348 | 8.0234 | 1348 | 8.0224 | 1353 | 1116 | | 640 | 8.2935 | 1352
1355 | 8.1583
8.2935 | 1352
1355 | 8.1582
8.2935 | 1 <i>3</i> 53
1 <i>3</i> 55 | 8.1577
8.2933 | 1356
1359 | 1134
1152 | | | | | | | | | | | | | 650
660 | 8.4290
8.5647 | 1357 | 8.4290
8.5647 | 1357 | 8.4290
8.5647 | 1357 | 8.4292 | 1361 | 1170
1188 | | 670 | 8.7008 | 1361
1365 | 8.7008 | 1361 | 8.7009 | 1362 | 8.5653
8.7018 | 1365 | 1206 | | 680 | 8.8373 | 1368 | 8.8373 | 1365
1368 | 8.8374 | 1365
1369 | 8.8386 | 1368
1372 | 1224 | | 690 | 8.9741 | 1371 | 8.9741 | 1371 | 8.9743 | 1371 | 8.9758 | 1374 | 1242 | | 700 | 9.1112 | 1 274 | 9.1112 | 1 076 | 0 1114 | | | | | | 700
710 | 9.1112
9.2485 | 1373
1378 | 9.1112
9.2485 | 1373
1378 | 9.1114
9.2487 | 1373 | 9.1132
9.2508 | 1376 | 1260
1278 | | 720 | 9.3863 | 13/8 | 9.3863 | 13/8 | 9.3866 | 1379
1381 | 9.2306 | 1382
1384 | 1276 | | 730 | 9.5244 | 1384 | 9.5244 | 1384 | 9.5247 | 1384 | 9.5274 | 1387 | 1314 | | 740 | 9.6628 | 1387 | 9.6628 | 1387 | 9.6631 | 1387 | 9.6661 | 1390 | 1332 | | 750 | 9.8015 | 1390 | 9.8015 | 1390 | 9.8018 | 1391 | 9.8051 | 1392 | 1350 | | 760 | 9.9405 | 139 | 9.9405 | 139 | 9.9409 | 139 | 9.9443 | 140 | 1368 | | 770 | 10.080 | 140 | 10.080 | 140 | 10.080 | 140 | 10.084 | 140 | 1386 | | 780 | 10.220 | 140 | 10.220 | 140 | 10.220 | 140 | 10.224 | 141 | 1404 | | 790 | 10.360 | 140 | 10.360 | 140 | 10.360 | 140 | 10.365 | 140 | 1422 | | 800 | 10.500 | | 10.500 | | 10.500 | | 10.505 | | 1440 | At higher temperatures in the .01, .1, and 1 atmosphere pressure range, the values for the enthalpy are equal to that for the ideal gas (see table 5-12). In the 10 atmosphere range, values at higher temperatures may be found on page 230. *The enthalpy function is divided by ^{*}The enthalpy function is divided here by a constant RT_0 where $T_0 = 273.16^{\circ}K$ (491.688°R). Table 5-4. ENTHALPY OF CARBON MONOXIDE - Cont.* | | | | | | | | | <u></u> | | |------------|------------------|-----------------------|---------------------|--------------|------------------|---------------|------------------|----------------------|--------------| | °K | 10 | atm . | 40 | atm | 70 | atm | 100 | atm | °R | | | | | | | | | | | | | 250 | 3.1530 | 1315 | 3.0145 | 1420 | | | | | 450 | | 260 | 3.2845 | 1313 | 3.1565 | 1407 | | | | | 468 | | 270 | 3,4158 | 1310 | 3.2972 | 1395 | 3.1857 | 1480 | | | 486 | | 280 | 3.5468 | 1309 | 3.4367 | 1386 | 3.3337 | 1462 | 3.2379 | 1538 | 504 | | 290 | 3.6777 | 1307 | 3.5753 | 1377 | 3,4799 | 1447 | 3.3917 | 1514 | 52 2 | | 300 | 3.8084 | 1304 | 3.7130 | 1369 | 3.6246 | 1430 | 3.5431 | 1491 | 540 | | 310 | 3.9388 | 1305 | 3.8499 | 1364 | 3.7676 | 1422 | 3.6922 | 1477 | 558
576 | | 320
330 | 4.0693
4.1996 | 1303 | 3.9863
4.1221 | 1358
1353 | 3.9098
4.0509 | 1411
1402 | 3.8399
3.9860 | 1461
1448 | 594 | | 340 | 4.3298 | 1302
1303 | 4.2574 | 1351 | 4.1911 | 1396 | 4.1308 | 1439 | 612 | | 350 | 4.4601 | 1302 | 4,3925 | 1347 | 4.3307 | 1390 | 4.2747 | 1430 | 630 | | 360 | 4.5903 | 1302 | 4.5272 | 1343 | 4.4697 | 1382 | 4.4177 | 1419 | 648 | | 370 | 4.7205 | 1302 | 4.6615 | 1342 | 4.6079 | 1380 | 4.5596 | 1415 | 666 | | 380 | 4.8507 | 1303 | 4.7 9 57 | 1341 | 4.7459 | 1376 | 4.7011 | 1410 | 684 | | 390 | 4.9810 | 1303 | 4.9298 | 1337 | 4.8835 | 1370 | 4.8421 | 1401 | 702 | | 400 | 5,1113 | 1305 | 5.0635 | 1339 | 5.0205 | 1 37 0 | 4.9822 | 1400 | 720 | | 410 | 5.2418 | 1305 | 5,1974 | 1335 | 5.1575 | 1365 | 5.1222 | 1393 | 738 | | 420 | 5,3723 | 1306 | 5.3309 | 1337 | 5.2940 | 1365 | 5.2615 | 1392 | 756 | | 430 | 5.5029 | 1307 | 5.4646 | 1335 | 5.4305 | 1363 | 5.4007 | 1389 | 774 | | 440 | 5,6336 | 1309 | 5 .5981 | 1336 | 5,5668 | 1361 | 5,5396 | 1385 | 792 | | 450 | 5.7645 | 1310 | 5.7317 | 1336 | 5.7029 | 1361 | 5.6781 | 1385 | 810 | | 460 | 5.8955 | 1312 | 5.8653 | 1337 | 5.8390 | 1360 | 5.8166 | 1.382 | 828 | | 470 | 6.0267 | 1314 | 5.9990 | 1337 | 5.9750 | 1360 | 5.9548 | 1381 | 846 | | 480 | 6.1581 | 1316 | 6.1327 | 1338 | 6.1110 | 1359 | 6.0929 | 1380 | 864 | | 490 | 6.2897 | 1317 | 6.2665 | 1339 | 6.2469 | 1359 | 6.2309 | 1378 | 882 | | 500 | 6.4214 | 1321 | 6.4004 | 1341 | 6.3828 | 1360 | 6.3687 | 1378 | 900 | | 510 | 6.5535 | 1322 | 6.5345 | 1341 | 6.5188 | 1359 | 6.5065 | 1.377 | 918 | | 520 | 6.6857 | 1325 | 6.6686 | 1344 | 6.6547
6.7910 | 1363 | 6.6442
6.7821 | 1379 | 936
954 | | 530
540 | 6.8182
6.9510 | 1328
1328 | 6.8030
6.9376 | 1346
1345 | 6.9272 | 1362
1362 | 6.9199 | 1378
1377 | 972 | | 550 | 7.0838 | 1333 | 7.0721 | 1349 | 7.0634 | 1363 | 7.0576 | 1377 | 990 | | 560 | 7.2171 | 1335 | 7.2070 | 1350 | 7.1997 | 1365 | 7.1953 | 1378 | 1008 | | 570 | 7,3506 | 1338 | 7.3420 | 1354 | 7.3362 | 1368 | 7.3331 | 1381 | 1026 | | 580 | 7.4844 | 1341 | 7,4774 | 1354 | 7,4730 | 1368 | 7.4712 | 1382 | 1044 | | 590 | 7.6185 | 1343 | 7,6128 | 1358 | 7.6098 | 1371 | 7.6094 | 1383 | 1062 | | 600 | 7.7528 | 1347 | 7.7486 | 1360 | 7.7469 | 1373 | 7.7477 | 1385 | 1080 | | 610 | 7.8875 | 1349 | 7.8846 | 1362 | 7.8842 | 1374 | 7.8862 | 1384 | 1098 | | 620 | 8.0224 | 1353 | 8.0208 | 1365 | 8.0216 | 1376 | 8.0246 | 1388 | 1116 | | 630
640 | 8.1577
8.2933 | 1356
1359 | 8.1573
8.2941 | 1368
1371 | 8.1592
8.2972 | 1380
1381 | 8.1634
8.3024 | 1390
1392 | 1134
1152 | | | | | | | | | | | | | 650 | 8.4292 | 1361 | 8.4312 | 1372 | 8.4353 | 1383 | 8.4416 | 1392 | 1170 | | 660 | 8.5653 | 1365 | 8.5684 | 1376 | 8.5736 | 1386 | 8.5808 | 1396 | 1188
1206 | | 670
680 | 8.7018 | 1368 | 8.7060
8.8439 | 1379
1381 | 8.7122
8.8510 | 1388
1391 | 8.7204
8.8601 | 1 397
1400 | 1224 | | 690 | 8.8386
8.9758 | 1372
1 3 74 | 8.9820 | 1384 | 8.9901 | 1393 | 9.0001 | 1402 | 1242 | | 700 | 9,1132 | 1376 | 9,1204 | 1386 | 9,1294 | 1396 | 9,1403 | 1403 | 1260 | | 710 | 9.2508 | 1382 | 9,2590 | 1391 | 9.2690 | 1399 | 9.2806 | 1408 | 1278 | | 720 | 9.3890 | 1384 | 9.3981 | 1393 | 9,4089 | 1401 | 9.4214 | 1409 | 1296 | | 730 | 9.5274 | 1387 | 9.5374 | 1395 | 9.5490 | 1404 | 9.5623 | 1411 | 1314 | | 740 | 9.6661 | 1390 | 9.6769 | 1399 | 9.6894 | 1406 | 9.7034 | 1414 | 1332 | | 750 | 9.8051 | 1392 | 9.8168 | 1400 | 9.8300 | 1408 | 9.8448 | 1415 | 1350 | | 760 | 9.9443 | 140 | 9.9568 | 140 | 9.9708 | 141 | 9.9863 | 142 | 1368 | | 770 | 10.084 | 140 | 10.097 | 141 | 10.112 | 142 | 10.128
10.271 | 143
142 | 1386
1404 | | 780
790 | 10.224
10.365 | 141
140 | 10.238
10.379 | 141
141 | 10.254
10.396 | 142
141 | 10.271 | 142 | 1422 | | 800 | 10.505 | | 10.520 | | 10.537 | | 10.555 | | 1440 | | | | | | | | | _ | | | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). Table 5-4. ENTHALPY OF CARBON MONOXIDE - Cont. * | °K | 10 | atm . | 40 | atm | 70 | atm | 100 | atm | °R | |--------------|------------------|---------------------|------------------|--------------|------------------|-----------------|------------------|--------------------|--------------| | | | uiiii | 1 40 | | 1 70 | | 1 100 | 41111 | | | | | | | | | | | | | | 800 | 10.505 | 707 | 10.520 | 711 | 10.537 | 714 | 10.555 | 717 | 1440 | | 850
900 | 11.212 | 715 | 11.231 | 718 | 11.251 | 721 | 11.272
11.995 | 723 | 1530
1620 | | 950 | 11.927
12.648 | 721
729 | 11.949
12.672 | 723
731 | 11.972
12.697 | 725
734 | 12,723 | 728
736 | 1710 | | 1000 | 13.377 | 729
7 3 3 | 13,403 | 731
736 | 13.431 | 737 | 13.459 | 736
739 | 1800 | | | | 133 | - | ,,,, | | | | 137 | | | 1050 | 14.110 | 740 | 14.139 | 742 | 14.168 | 744 | 14.198 | 745 | 1890 | | 1100 | 14.850 | 746 | 14.881 | 747 | 14.912 | 748 | 14.943 | 750 | 1980 | | 1150
1200 | 15.596 | 750 | 15.628 | 752 | 15.660 | 754 | 15.693 | 755 | 2070
2160 | | 1250 | 16.346
17.102 | 756
759 | 16.380
17.137 | 757
760 | 16.414
17.172 | 758
762 | 16.448
17.207 | 759
76 3 | 2250 | | 1250 | 17.102 | 157 | 17.137 | 760 | 17.172 | /02 | 17.207 | 100 | 2230 | | 1300 | 17.861 | 763 | 17.897 | 765 | 17.934 | 765 | 17.970 | 767 | 2340 | | 1350 | 18.624 | 768 | 18.662 | 768 | 18.699 | 770 | 18.737 | 770 | 2430 | |
1400 | 19.392 | 770 | 19.430 | 771 | 19.469 | 772 | 19.507 | 773 | 2520 | | 1450 | 20.162 | 775 | 20.201 | 775 | 20.241 | 776 | 20.280 | 777 | 2610 | | 1500 | 20.937 | 776 | 20.976 | 778 | 21.017 | 778 | 21.057 | 779 | 2700 | | 1550 | 21.713 | 780 | 21.754 | 781 | 21,795 | 781 | 21.836 | 782 | 2790 | | 1600 | 22.493 | 782 | 22,535 | 782 | 22.576 | 784 | 22,618 | 784 | 2880 | | 1650 | 23,275 | 785 | 23.317 | 786 | 23.360 | 786 | 23,402 | 787 | 2970 | | 1700 | 24.060 | 788 | 24.103 | 788 | 24.146 | 78 9 | 24.189 | 789 | 3060 | | 1750 | 24.848 | 790 | 24.891 | 791 | 24.935 | 791 | 24,978 | 792 | 3150 | | 1800 | 25.638 | 792 | 25,682 | 792 | 25,726 | 793 | 25.770 | 794 | 3240 | | 1850 | 26.430 | 793 | 26.474 | 794 | 26.519 | 794 | 26,564 | 794 | 3330 | | 1900 | 27,223 | 795 | 27.268 | 796 | 27.313 | 796 | 27,358 | 797 | 3420 | | 1950 | 28.018 | 797 | 28.064 | 797 | 28,109 | 798 | 28,155 | 798 | 3510 | | 2000 | 28.815 | 799 | 28.861 | 800 | 28.907 | 800 | 28,953 | 800 | 3600 | | 2050 | 29.614 | 801 | 29,661 | 800 | 29,707 | 801 | 29.753 | 801 | 3690 | | 2100 | 30.415 | 802 | 30.461 | 803 | 30.508 | 803 | 30.554 | 803 | 3780 | | 2150 | 31.217 | 803 | 31,264 | 803 | 31.311 | 803 | 31.357 | 804 | 3870 | | 2200 | 32,020 | 805 | 32.067 | 805 | 32,114 | 806 | 32.161 | 806 | 3960 | | 2250 | 32.82 5 | 805 | 32.872 | 806 | 32.920 | 806 | 3 2. 967 | 806 | 4050 | | 2300 | 33,630 | 807 | 33.678 | 807 | 33,726 | 807 | 33.773 | 808 | 4140 | | 2350 | 34.437 | 809 | 34,485 | 809 | 34.533 | 810 | 34.581 | 810 | 4230 | | 2400 | 35.246 | 809 | 35.294 | 810 | 35.343 | 809 | 35,391 | 810 | 4320 | | 2450 | 36.055 | 810 | 36.104 | 810 | 36.152 | 811 | 36,201 | 810 | 4410 | | 2500 | 36.865 | 811 | 36.914 | 811 | 36.963 | 811 | 37.011 | 812 | 4500 | | 2550 | 37.676 | 67.0 | 37 .72 5 | | 37,774 | 81.3 | 37.823 | 813 | 4590 | | 2600 | 38.488 | 812
814 | 38.538 | 813
814 | 38.587 | 81.5
81.4 | 38,636 | 81.4 | 4680 | | 2650 | 39.302 | 81.5 | 39.352 | 814
814 | 39.401 | 814 | 39.450 | 815 | 4770 | | 2700 | 40.117 | 815 | 40.166 | 815 | 40.215 | 816 | 40.265 | 815 | 4860 | | 2750 | 40.932 | 817 | 40.981 | 817 | 41.031 | 816 | 41.080 | 816 | 4950 | | 2800 | 41.749 | 817 | 41.798 | 817 | 41.847 | 81.6 | 41.896 | 816 | 5040 | | 2800
2850 | 41.749 | 817
818 | 42.615 | 81.7
81.7 | 42.663 | 816 | 42.712 | 816 | 5130 | | 2900 | 43.384 | 878
878 | 43.432 | 81.7
81.7 | 43.479 | 818 | 43.528 | 816 | 5220 | | 2950 | 44.202 | 819 | 44.249 | 819 | 44.297 | 818 | 44.344 | 818 | 5310 | | 3000 | 45,021 | | 45.068 | | 45.115 | | 45.162 | | 5400 | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). Table 5-5. ENTROPY OF CARBON MONOXIDE | °K | 01 | atm | | atm | | atm | .7 | atm | °R | |------------|------------------|--------------------|------------------|------------------|------------------|------------|------------------|---------------------------------------|--------------| | | 10. | J1111 | <u> </u> | | 1 | 41111 | | · · · · · · · · · · · · · · · · · · · | <u> </u> | | 200 | 24 247 | | 24,665 | 170 | 23.275 | 1-7 | 22,714 | | 360 | | 200
210 | 26.967
27.137 | 170
1 63 | 24.835 | 163 | 23,446 | 171
163 | 22.885 | 171
163 | 378 | | 220 | 27.300 | 156 | 24.998 | 156 | 23,609 | 156 | 23.048 | 156 | 396 | | 230 | 27.456 | 149 | 25.154 | 149 | 23.765 | 149 | 23,204 | 150 | 414 | | 240 | 27.605 | 143 | 25.303 | 143 | 23.914 | 143 | 23.354 | 143 | 432 | | 250 | 27.748 | 137 | 25.446 | 137 | 24.057 | 138 | 23,497 | 137 | 450 | | 260 | 27.885 | 132 | 25.583 | 132 | 24.195 | 132 | 23.634 | 133 | 468 | | 270 | 28.017 | 128 | 25.715
25.843 | 128
123 | 24.327
24.455 | 128
123 | 23.767
23.895 | 128
123 | 486
504 | | 280
290 | 28.145
28.268 | 123
119 | 25.966 | 119 | 24.578 | 119 | 24.018 | 119 | 522 | | | | | 3/ 005 | | 04 (07 | | 04.507 | | | | 300
310 | 28.387
28.502 | 115
111 | 26.085
26.200 | 115
111 | 24.697
24.812 | 115
111 | 24.137
24.252 | 115
111 | 540
558 | | 320 | 28.613 | 108 | 26.311 | 108 | 24,923 | 108 | 24.363 | 108 | 576 | | 330 | 28.721 | 105 | 26.419 | 105 | 25.031 | 105 | 24.471 | 106 | 594 | | 340 | 28.826 | 101 | 26.524 | 101 | 25,136 | 101 | 24,577 | 101 | 612 | | 350 | 28.927 | 99 | 26,625 | 99 | 25,237 | 99 | 24.678 | 99 | 630 | | 360 | 29.026 | 97 | 26.724 | 97 | 25,336 | 97 | 24.777 | 97 | 648 | | 370 | 29.123 | 94 | 26,821 | 94 | 25.433 | 94 | 24.874 | 94 | 666 | | 380
390 | 29.217
29.308 | 91
89 | 26.915
27.006 | 91
89 | 25.527
25.618 | 91
89 | 24.968
25.059 | 91
89 | 684
702 | | 370 | 27.300 | 67 | | • | | • | | 0, | ,02 | | 400 | 29.397 | 88 | 27.095 | 88 | 25.707 | 88 | 25.148 | 88 | 720 | | 410 | 29.485 | 85 | 27.183
27.268 | 85
83 | 25.795
25.880 | 85
84 | 25.236
25.321 | 85
83 | 738
756 | | 420
430 | 29.570
29.653 | 83
82 | 27.351 | 82 | 25.964 | 82 | 25.404 | 82 | 774 | | 440 | 29.735 | 79 | 27.433 | 79 | 26.046 | 79 | 25.486 | 79 | 792 | | 450 | 29.814 | 79 | 27.512 | 79 | 26,125 | 79 | 25.565 | 79 | 810 | | 460 | 29.893 | 76 | 27.591 | 76 | 26,204 | 76 | 25.644 | 76 | 828 | | 470 | 29.969 | 75 | 27.667 | 75 | 26.280 | 75 | 25,720 | 75 | 846 | | 480 | 30.044 | 73 | 27.742
27.815 | 73 | 26.355
26.428 | 73 | 25.795 | 73 | 864 | | 490 | 30.117 | 73 | 27,013 | 73 | 20.420 | 73 | 25.868 | 73 | 882 | | 500 | 30.190 | 71 | 27.888 | 71 | 26.501 | 71 | 25.941 | 71 | 900 | | 510 | 30.261 | 71 | 27,959
28,030 | 71
68 | 26.572
26.643 | n | 26.012
26.083 | 71 | 918 | | 520
530 | 30.332
30.400 | 68
67 | 28.098 | 67 | 26.711 | 68
67 | 26.151 | 68
68 | 936
954 | | 540 | 30.467 | 66 | 28.165 | 66 | 26,778 | 66 | 26.219 | 66 | 972 | | 550 | 30.533 | ., | 28.231 | 66 | 26.844 | 66 | 26,285 | 66 | 990 | | 560 | 30.599 | 66
64 | 28,297 | 64 | 26.910 | 64 | 26.351 | 64 | 1008 | | 570 | 30.663 | 63 | 28.361 | 63 | 26.974 | 63 | 26.415 | 63 | 1026 | | 580 | 30.726 | 63 | 28.424
28.487 | 63
61 | 27.037
27.100 | 63 | 26.478
26.541 | 63 | 1044 | | 590 | 30.789 | 61 | 20.407 | DT. | 27.100 | 61 | 20.341 | 61 | 1062 | | 600 | 30.850 | 61 | 28.548 | 61 | 27.161 | 61 | 26.602 | 61 | 1080 | | 610 | 30.911 | 60 | 28.609
28.669 | 60 | 27.222
27.282 | 60 | 26.663
26.723 | 60 | 1098
1116 | | 620
630 | 30.971
31.029 | 58
59 | 28.727 | 58
59 | 27.202 | 58
59 | 26.781 | 58
59 | 1134 | | 640 | 31.088 | 57 | 28.786 | 57 | 27.399 | 57 | 26.840 | 57 | 1152 | | 450 | 31.145 | | 28.843 | 57 | 27.456 | 57 | 26.897 | r- | 1170 | | 650
660 | 31.202 | 57
55 | 28.900 | 55 | 27,513 | 55 | 26.954 | 57
55 | 1188 | | 670 | 31.257 | 56 | 28.9 55 | 56 | 27,568 | 56 | 27,009 | 56 | 1206 | | 680 | 31,313 | 54 | 29.011 | 54 | 27.624 | 54 | 27.065 | 54 | 1224 | | 690 | 31.367 | 54 | 29.065 | 54 | 27.678 | 54 | 27,119 | 54 | 1242 | | 700 | 31,421 | 53 | 29.119 | 53 | 27.732 | 53 | 27.173 | 53 | 1260 | | 710 | 31.474 | 53 | 29.172
29.225 | 53
53 | 27.785
27.838 | 53 | 27.226
27.279 | 53 | 1278 | | 720
730 | 31.527
31.579 | 52
51 | 29.223 | 5 2
51 | 27.890 | 52
51 | 27.279 | 52
51 | 1296
1314 | | 740 | 31.630 | 51
51 | 29.328 | 51 | 27.941 | 51 | 27.382 | 51 | 1332 | | | 31.681 | | 29.379 | 51 | 27,992 | 51 | 27,433 | 51 | 1350 | | 750
760 | 31.732 | 51
4 9 | 29.430 | 49 | 28.043 | 49 | 27.484 | 49 | 1368 | | 770 | 31.781 | 50 | 29.479 | 50 | 28.092 | 50 | 27.533 | 50 | 1386 | | 780 | 31.831 | 48 | 29.529
29.577 | 48
49 | 28.142
28.190 | 48
49 | 27.583
27.631 | 48
4 9 | 1404
1422 | | 790 | 31.879 | 49 | | 47 | | 47 | | 47 | | | 800 | 31.928 | | 29.626 | | 28.239 | | 27.680 | | 1440 | | | | | | | | | | | | | | | <u>. </u> | | | | | | | | |-------------|--------|---|----------------|------------|---------|------------|------------------|------------|--------------| | °K | .01 | atm | ا. | atm | .4 at | 'n | .7 atı | 'n | °R | | | | | | | | | | | | | 800 | 31.928 | 233 | 29.626 | 233 | 28.239 | 233 | 27.680 | 233 | 1440 | | 850 | 32,161 | 223 | 29.859 | 223 | 28,472 | 223 | 27.913 | 223 | 1530 | | 900 | 32,384 | 213 | 30.082 | 213 | 28,695 | 213 | 28.136 | 213 | 1620 | | 9 50 | 32.597 | 204 | 30.295 | 204 | 28,908 | 204 | 28.349 | 204 | 1710 | | 1000 | 32.801 | 195 | 30.499 | 195 | 29,112 | 195 | 28.553 | 195 | 1800 | | | | | | | | -73 | 20,555 | 173 | 1000 | | 1050 | 32,996 | 188 | 30.694 | 188 | 29.307 | 188 | 28.748 | 188 | 1890 | | 1100 | 33.184 | 181 | 30.882 | 181 | 29.495 | 181 | 28.936 | 181 | 1980 | | 1150 | 33.365 | 174 | 31.063 | 174 | 29.676 | 174 | 29.117 | 174 | 2070 | | 1200 | 33.539 | 169 | 31.237 | 169 | 29.850 | 169 | 29.291 | 169 | 2160 | | 1250 | 33.708 | 162 | 31.406 | 162 | 30.019 | 162 | 29.460 | 162 | 2250 | | 1300 | 33,870 | • | 31,568 | | | | | | | | 1350 | 34.028 | 158 | 31,726 | 158 | 30.181 | 158 | 29.622 | 158 | 2340 | | 1400 | 34.180 | 152 | | 152 | 30.339 | 152 | 29.780 | 152 | 2430 | | 1450 | 34.328 | 148 | 31.878 | 148 | 30.491 | 148 | 29.932 | 148 | 2520 | | 1500 | 34.471 | 143 | 32.026 | 143 | 30.639 | 143 | 30.080 | 143 | 2610 | | 1500 | J4.4/1 | 139 | 32.169 | 139 | 30.782 | 139 | 30.223 | 139 | 2700 | | 1550 | 34,610 | 135 | 32,308 | 135 | 30,921 | | 20.242 | | 0700 | | 1600 | 34.745 | 132 | 32,443 | 132 | 31.056 | 135 | 30.362 | 135 | 2790 | | 1650 | 34.877 | 128 | 32. 575 | | | 132 | 30.497 | 132 | 2880 | | 1700 | 35.005 | 125 | 32.703 | 128
125 | 31.188 | 128 | 30.629 | 128 | 2970 | | 1750 | 35.130 | 121 | 32.828 | | 31.316 | 125 | 30.757 | 125 | 3060 | | 1150 | 22.120 | 121 | 72.020 | 121 | 31.441 | 121 | 30.882 | 121 | 3150 | | 1800 | 35,251 | 119 | 32,949 | 119 | 31,562 | 119 | 31,003 | | 2240 | | 1850 | 35.370 | 115 | 33,068 | 115 | 31.681 | | 31.122 | 119 | 3240 | | 1900 | 35.485 | 113 | 33,183 | 113 | 31.796 | 115 | | 115 | 3330 | | 1950 | 35.598
| 110 | 33,296 | 110 | 31.909 | 113
110 | 31.237
31.350 | 113 | 3420
3510 | | 2000 | 35.708 | 108 | 33,406 | 108 | 32.019 | - | | 110 | | | | | 100 | 22.100 | 106 | J2.019 | 108 | 31.460 | 108 | 3600 | | 2050 | 35.816 | 105 | 33.514 | 105 | 32.127 | 105 | 31.568 | 105 | 3690 | | 2100 | 35.921 | 103 | 33.619 | 103 | 32,232 | 103 | 31.673 | 103 | 3780 | | 2150 | 36.024 | 101 | 33.722 | 101 | 32,335 | 101 | 31.776 | 101 | 3870 | | 2200 | 36.125 | 99 | 33.823 | 99 | 32,436 | 99 | 31.877 | 99 | 3960 | | 2250 | 36.224 | 97 | 33.922 | 97 | 32.535 | 97 | 31.976 | 97 | 4050 | | 2300 | 27 221 | | 24 010 | | | | - | • • | | | | 36.321 | 95 | 34.019 | 95 | 32.632 | 95 | 32,073 | 95 | 4140 | | 2350 | 36.416 | 93 | 34.114 | 93 | 32.727 | 93 | 32.168 | 93 | 4230 | | 2400 | 36.509 | 91 | 34.207 | 91 | 32.820 | 91 | 32.261 | 91 | 4320 | | 2450 | 36.600 | 89 | 34.298 | 89 | 32.911 | 89 | 32.352 | 89 | 4410 | | 2500 | 36.689 | 88 | 34.387 | 88 | 33,000 | 88 | 32.441 | 88 | 4500 | | 2550 | 36,777 | 86 | 34.475 | 6. | 22 000 | | 20 500 | | | | 2600 | 36.863 | 96
85 | 34.561 | 86 | 33.088 | 86 | 32.529 | 86 | 4590 | | 2650 | 36.948 | 83 | 34.646 | 8 5 | 33.174 | 85 | 32.615 | 8 5 | 4680 | | 2700 | 37.031 | 83
82 | 34.729 | 83 | 33.259 | 83 | 32.700 | 83 | 4770 | | 2750 | 37.113 | 82
80 | 34.811 | 82 | 33.342 | 82 | 32.783 | 82 | 4860 | | 2130 | J1044J | æ | J4.011 | 80 | 33.424 | 80 | 32.86 5 | 80 | 4950 | | 2800 | 37.193 | | 34.891 | | 33.504 | | 32.945 | | 5040 | | | | | | | -3,30 1 | | J6,77J | | 2040 | | °K | | l atm | 4 | atm | 7 | atm | 10 | atm | *R | |------------|------------------|-------|------------------|-----------------|------------------|------------|------------------|---------------------|--------------------| | 200 | 22.355 | | 20.948 | 173 | 20.367 | 176 | 19.989 | 178 | 360 | | 210 | 22.526 | | 21.121 | 166 | 20.543 | 167 | 20.167 | 169 | 378
396 | | 220
230 | 22.689
22.846 | | 21.287
21.445 | 158
151 | 20.710
20.870 | 160
152 | 20.336
20.498 | 162
154 | 414 | | 240 | 22.995 | | 21.596 | 144 | 21.022 | 146 | 20.652 | 147 | 432 | | 250
260 | 23.139
23.276 | | 21.740
21.879 | 139
133 | 21.168
21.307 | 139
135 | 20.799
20.939 | 140
135 | 450
468 | | 270 | 23.409 | | 22.012 | 129 | 21.442 | 130 | 21.074 | 131 | 486 | | 280
290 | 23.537
23.660 | | 22.141
22.265 | 124
120 | 21.572
21.696 | 124
121 | 21.205
21.331 | 126
121 | 504
522 | | 300 | 23.779 | 115 | 22.385 | 116 | 21.817 | 116 | 21.452 | 116 | 540 | | 310 | 23.894 | | 22.501 | 112 | 21.933 | 113 | 21,568 | 113 | 558 | | 320 | 24.006 | | 22.613 | 108 | 22.046 | 109 | 21.681 | 110 | 576 | | 330
340 | 24.114
24.219 | | 22.721
22.827 | 106
101 | 22.155
22.261 | 106
102 | 21.791
21.898 | 107
102 | 5 94
612 | | 350 | 24.320 | | 22.928 | 100 | 22.363 | 99 | 22.000 | 100 | 630 | | 360
370 | 24.419 | | 23.028 | 97 | 22.462
22.560 | 98
95 | 22.100
22.198 | 98
95 | 648
666 | | 380 | 24.516
24.610 | | 23.125
23.220 | 95
91 | 22.655 | 92 | 22.293 | 92 | 684 | | 390 | 24.702 | | 23.311 | 89 | 22.747 | 89 | 22.385 | 90 | 702 | | 400 | 24.791 | | 23.400 | 86 | 22.836
22.925 | 89 | 22.475
22.564 | 89
85 | 720
738 | | 410
420 | 24.879
24.964 | | 23.488
23.573 | 85
84 | 23.010 | 85
84 | 22.649 | 85
84 | 756 | | 430 | 25.047 | | 23.657 | 82 | 23.094 | 82 | 22.733 | 83 | 774 | | 440 | 25.129 | 79 | 23.739 | 80 | 23.176 | 79 | 22.816 | 79 | 792 | | 450 | 25,208 | | 23.819 | 79 | 23.255 | 80 | 22.895 | 80 | 810 | | 460 | 25.287 | | 23.898 | 76 | 23.335 | 76 | 22.975 | 76 | 828
846 | | 470
480 | 25.363
25.438 | | 23.974
24.049 | 75
73 | 23.411
23.487 | 76
73 | 23.051
23.127 | 76
73 | 864 | | 490 | 25.511 | | 24.122 | 74 | 23.560 | 73 | 23.200 | 74 | 882 | | 500 | 25.584 | | 24.196 | 71 | 23.633 | 71 | 23.274 | 71 | 900 | | 510 | 25.655 | | 24.267 | 71 | 23.704 | 72 | 23.345 | 71 | 918 | | 520
530 | 25.726
25.794 | | 24.338
24.406 | 68
67 | 23.776
23.844 | 68
67 | 23.416
23.485 | 69
67 | 936
954 | | 540 | 25.861 | | 24.473 | 66 | 23.911 | 66 | 23.552 | 66 | 972 | | 550 | 25.927 | | 24.539 | 66 | 23.977 | 66 | 23.618 | 67 | 990 | | 560
570 | 25.993
26.057 | | 24.605
24.670 | 65
63 | 24.043
24.108 | 65
63 | 23.685
23.749 | 64
63 | 1008
1026 | | 580 | 26.120 | | 24.733 | 63 | 24.171 | 63 | 23.812 | 63 | 1044 | | 590 | 26.183 | | 24.796 | 61 | 24.234 | 61 | 23.875 | 62 | 1062 | | 600 | 26.244 | | 24.857 | 61 | 24.295 | દા | 23.937 | 61 | 1080 | | 610 | 26.305 | | 24.918 | 60 | 24.356 | 60 | 23.998
24.058 | 60 | 1098
1116 | | 620
630 | 26.365
26.424 | | 24.978
25.036 | 58
59 | 24.416
24.475 | 59
59 | 24.116 | 58
59 | 1134 | | 640 | 26.483 | | 25.095 | 57 | 24.534 | 57 | 24.175 | 57 | 1152 | | 650 | 26.540 | | 25,152 | 57 | 24.591 | 57 | 24.232 | 58 | 1170 | | 660 | 26.597 | | 25.209 | 55 | 24.648 | 55 | 24.290 | 55 | 1188 | | 670
680 | 26.652
26.708 | | 25.264
25.320 | 56 | 24.703
24.759 | 56
54 | 24.345
24.401 | 56
54 | 1206
1224 | | 690 | 26.762 | | 25.374 | 54
54 | 24.813 | 54
54 | 24.455 | 54
54 | 1242 | | 700 | 26.816 | | 25.428 | 54 | 24.867 | 54 | 24.509 | 53 | 1260 | | 710 | 26.869 | | 25.482 | 53 | 24.921
24.974 | 53
52 | 24.562
24.615 | 53
53 | 1278
1296 | | 720
730 | 26.922
26.974 | | 25,535
25,587 | 52
51 | 25.026 | 52
51 | 24.668 | 53
51 | 1314 | | 740 | 27.025 | | 25.638 | 51 | 25.077 | 51 | 24.719 | 51 | 1332 | | 750 | 27.076 | | 25.689 | 51 | 25.128 | 51 | 24.770 | 51 | 1350 | | 760
770 | 27.127
27.176 | | 25.740
25.789 | 49
49 | 25.179
25.228 | 49
50 | 24.821
24.870 | 4 9
50 | 1368
1386 | | 770
780 | 27.176 | | 25.838 | 49
49 | 25.278 | 50
48 | 24.920 | 50
48 | 1404 | | 790 | 27.274 | | 25,887 | 49 | 25.326 | 49 | 24.968 | 49 | 1422 | | 800 | 27.323 | | 25.936 | | 25,375 | | 25.017 | | 1440 | Table 5-5. ENTROPY OF CARBON MONOXIDE - Cont. | % | | l atm | 4 | atm | 7 | atm | 10 | atm | *R | |----------|--------|-------|--------|------------|--------|-----------------|--------------------|-----|------| | | | | | | | | | | | | 800 | 27,323 | 233 | 25.936 | 233 | 25,375 | 233 | 25,017 | 234 | 1440 | | 850 | 27.556 | 223 | 26.169 | 223 | 25,608 | 224 | 25.251 | 223 | 1530 | | 900 | 27,779 | 213 | 26.392 | 213 | 25.832 | 213 | 25.474 | 213 | 1620 | | 950 | 27,992 | 204 | 26,605 | 204 | 26.045 | 204 | 25.687 | 204 | 1710 | | 1000 | 28.196 | 195 | 26.809 | 195 | 26.249 | 195 | 25.891 | 195 | 1800 | | 1050 | 28.391 | 188 | 27,004 | 189 | 26.444 | 188 | 26.086 | 189 | 1890 | | 1100 | 28,579 | 181 | 27.193 | 181 | 26.632 | 181 | 26.27 5 | 181 | 1980 | | 1150 | 28,760 | 174 | 27.374 | 174 | 26.813 | 174 | 26.456 | 174 | 2070 | | 1200 | 28.934 | 169 | 27.548 | 1 <i>0</i> | 26.987 | 16 9 | 26.630 | 169 | 2160 | | 1250 | 29,103 | 162 | 27.717 | 162 | 27.156 | 163 | 26.799 | 162 | 2250 | | 1300 | 29.265 | 158 | 27.879 | 158 | 27.319 | 158 | 26.961 | 158 | 2340 | | 1350 | 29.423 | 152 | 28.037 | 152 | 27.477 | 152 | 27.11 9 | 153 | 2430 | | 1400 | 29,575 | 148 | 28.189 | 148 | 27.629 | 148 | 27.272 | 148 | 2520 | | 1450 | 29.723 | 143 | 28.337 | 143 | 27.777 | 143 | 27.420 | 143 | 2610 | | 1500 | 29.866 | 139 | 28,480 | 139 | 27.920 | 139 | 27.563 | 139 | 2700 | | 1550 | 30,005 | 135 | 28,619 | 135 | 28.059 | 135 | 27.702 | 135 | 2790 | | 1600 | 30.140 | 132 | 28,754 | 132 | 28.194 | 1 3 2 | 27.837 | 132 | 2880 | | 1650 | 30.272 | 128 | 28.886 | 128 | 28.326 | 128 | 27.969 | 128 | 2970 | | 1700 | 30,400 | 125 | 29.014 | 125 | 28.454 | 125 | 28.097 | 125 | 3060 | | 1750 | 30.525 | 121 | 29,139 | 121 | 28,579 | 121 | 28,222 | 121 | 3150 | | 1800 | 30,646 | 119 | 29,260 | 119 | 28.700 | 119 | 28,343 | 119 | 3240 | | 1850 | 30.765 | 115 | 29.379 | 115 | 28.819 | 115 | 28.462 | 115 | 3330 | | 1900 | 30.880 | 113 | 29.494 | 113 | 28.934 | 113 | 28.577 | 113 | 3420 | | 1950 | 30,993 | 110 | 29.607 | 110 | 29.047 | 110 | 28.690 | 110 | 3510 | | 2000 | 31.103 | 108 | 29.717 | 108 | 29.157 | 108 | 28.800 | 108 | 3600 | | 2050 | 31,211 | 105 | 29.825 | 105 | 29.265 | 105 | 28.908 | 105 | 3690 | | 2100 | 31.316 | 103 | 29,930 | 103 | 29.370 | 103 | 29.013 | 103 | 3780 | | 2150 | 31,419 | 101 | 30.033 | 101 | 29.473 | 101 | 29.116 | 101 | 3870 | | 2200 | 31.520 | 99 | 30.134 | 99 | 29.574 | 99 | 29.217 | 99 | 3960 | | 2250 | 31.619 | 97 | 30,233 | 97 | 29.673 | 97 | 29.316 | 97 | 4050 | | 2300 | 31.716 | 95 | 30,330 | 95 | 29.770 | 95 | 29,413 | 95 | 4140 | | 2350 | 31.811 | 93 | 30,425 | 93 | 29.865 | 93 | 29,508 | 93 | 4230 | | 2400 | 31,904 | 91 | 30.518 | 91 | 29.958 | 91 | 29.601 | 91 | 4320 | | 2450 | 31,995 | 89 | 30,609 | 89 | 30,049 | 89 | 29.692 | 89 | 4410 | | 2500 | 32.084 | 88 | 30.698 | 88 | 30,138 | 88 | 29.781 | 88 | 4500 | | 2550 | 32,172 | 86 | 30.786 | 86 | 30.226 | 86 | 29.869 | 86 | 4590 | | 2600 | 32.258 | 85 | 30.872 | 85 | 30.312 | 85 | 29.955 | 85 | 4680 | | 2650 | 32,343 | 83 | 30.957 | 83 | 30.397 | 83 | 30.040 | 83 | 4770 | | 2700 | 32.426 | 82 | 31.040 | 82 | 30.480 | 82 | 30,123 | 82 | 4860 | | 2750 | 32.508 | 80 | 31.122 | 80 | 30.562 | 80 | 30.205 | 80 | 4950 | | 2800 | 32.588 | | 31.202 | | 30.642 | | 30.285 | | 5040 | | 250 20,799 140 19,291 152 450 468 270 21,074 131 19,443 146 468 270 21,074 131 19,588 139 18,932 147 486 280 21,205 126 19,727 133 19,079 140 18,638 147 504 486 280 21,205 126 19,727 133 19,079 140 18,638 147 504 486 280 21,205 126 19,727 133 19,079 140 18,638 147 504 290 21,333 121 19,866 127 19,219 135 18,785 141 522 300 21,452 116 19,987 123 19,354 128 18,926 133 540 131 21,566 113 20,110 118 19,482 123 19,059 128 558 310 21,691 110 20,228 114 19,605 118 19,187 123 576 330 21,691 110 20,228 114 19,652 118 19,187 123 576 330 21,791 100 20,255 114 19,685 110 19,428
111 612 30,435 114 19,888 110 19,428 115 612 30,435 106 119,888 110 19,428 115 612 30,435 106 12,293 19,999 19,758 105 666 310 22,190 19 19,758 105 668 380 22,299 19 20,764 18 20,159 100 19,758 105 668 380 22,299 19 20,862 14 20,259 18 19,961 100 684 370 22,198 19 20,764 18 20,159 100 19,758 105 668 380 22,299 19 20,862 14 20,259 19 19,758 105 664 370 22,198 19 20,056 149 20,451 19 30,055 149 19,610 100 684 370 22,193 18 19,214 19 19 19,591 19 19 19,758 105 664 370 22,193 18 19,214 19 19 19 19,758 105 664 370 22,193 18 19,214 19 19 19 19,758 105 664 370 22,193 18 19,214 19 19,214 110 630 100 100 100 100 100 100 100 100 100 1 | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | °R | |--|-----|----------------|-----|--------|-----|--------|------------|---------|-----|------| | 260 20,939 198 19,443 168 468 270 21,074 131 19,588 199 18,932 147 486 280 21,205 126 19,727 133 19,079 140 18,638 147 504 486 290 21,333 121 19,866 127 19,219 135 18,785 141 522 300 21,452 116 19,987 123 19,354 128 18,926 133 540 312 21,568 113 20,110 118 19,482 123 19,059 128 558 22,168 113 20,228 114 19,605 118 19,187 123 576 310 21,781 107 20,342 111 19,723 115 19,310 116 594 402 12,168 102 30,435 111 19,723 115 19,310 116 594 402 12,100 49 20,663 101 20,055 104 19,681 119,482 113 612 330 22,100 49 20,663 101 20,055 104 19,681 101 19,488 101 10 630 22,199 95 20,764 98 20,159 100 19,788 106 648 370 22,199 95 20,764 98 20,159 100 19,788 106 668 390 22,293 92 20,862 94 20,259 98 19,861 100 668 390 22,293 92 20,862 94 20,259 98 19,861 100 668 490 22,385 99 20,956 92 20,357 94 19,961 97 702 400 22,475 89 21,048 89 20,543 87 20,259 89 19,861 100 668 420 22,733 83 21,333 82 20,534 87 20,243 87 702 400 22,475 84 21,277 88 20,634 87 20,243 87 702 400 22,475 84 21,275 88 20,634 87 20,243 87 702 400 22,475 89 21,144 92 20,550 80 80 80 20,566 80 20,473 80 20,473 80 20,473 80 20,473 80 20,473 80 20,473 80 20,473 80 20,473 80 20,473 | 250 | 20.700 | | 10.001 | | | | | | | | 200 21,074 131 19,588 139 18,932 147 486 280 21,205 126 19,727 133 19,079 140 18,638 147 504 290 21,331 121 19,860 127 19,219 135 18,785 141 522 300 21,452 116 19,987 123 19,482 123 19,059 128 558 320 21,568 110 20,228 114 19,605 118 19,187 123 576 300 21,791 107 20,342 111 19,723 115 19,310 118 594 340 21,598 102 30,455 106 19,888 110 19,482 113 514 330 22,100 98 20,663 110 20,055 104 19,482 113 116 620 330 22,100 98 20,663 110 20,055 104 19,481 110 19,482 113 612 330 22,198 99 20,764 98 20,159 100 19,758 100 666 380 22,293 92 20,862 94 20,259 98 19,861 100 684 390 22,385 90 20,956 92 20,357 94 19,961 97 702 400 22,475 89 21,048 92 20,451 93 20,058 95 720 410 22,564 86 21,140 87 20,544 90 20,153 91 738 420 22,649 84 21,227 86 20,634 87 20,244 97 756 430 22,733 83 21,313 82 20,721 86 20,334 87 774 440 22,651 76 21,1560 78 20,973 78 20,441 87 20,441 87 20,544 90 20,153 91 738 440 22,975 76 21,1560 78 20,973 79 20,596 84 810 42,2775 76 21,1560 78 20,973 79 20,596 84 810 42,2775 76 21,1560 78 20,973 79 20,590 80 828 80 22,277 79 21,778 79 | | | | | | | | | | | | 280 21,205 126 127,727 133 19,079 140 18,638 147 504 279 21,331 121 19,860 127 19,219 135 18,785 141 504 21,331 121 19,860 127 19,219 135 18,785 141 504 21,331 121 19,860 127 19,219 135 18,785 141 504 21,331 121 19,987 123 19,354 128 18,926 133 540 310 21,568 113 02,110 118 19,482 123 19,059 128 558 220 21,681 110 20,228 114 19,605 118 19,187 123 576 330 21,791 107 20,342 111 19,723 115 19,187 123 576 330 21,791 107 20,342 111 19,723 115 19,310 118 594 340 21,098 102 30,453 106 19,838 110 19,428 113 612 30,453 106 19,838 110 19,428 113 612 30,653 106 22,100 98 20,663 101 20,055 104 19,561 100 19,578 100 684 370 22,198 99 20,764 98 20,159 100 19,758 100 684 390 22,293 92 20,862 94 20,259 98 19,861 100 684 390 22,285 99 20,956 92 20,357 94 19,961 100 684 400 22,475 89 21,048 92 20,451 93 20,058 95 720 400 22,455 46 21,140 87 20,544 90 20,153 91 738 420 22,654 86 21,140 87 20,544 90 20,153 91 738 420 22,733 85 21,313 82 20,721 86 20,334 87 774 440 22,616 79 21,195 89 20,890 83 20,521 86 23,344 87 774 440 22,616 79 21,195 89 20,890 83 20,506 84 840 22,733 85 21,313 82 20,721 86 20,334 87 774 440 22,616 79 21,195 75 21,130 76 20,773 79 20,590 88 284 470 23,051 76 21,638 76 21,734 82 20,890 83 20,421 85 792 840 23,127 73 21,144 75 21,130 76 20,749 77 884 480 23,127 73 21,714 75 21,130 76 20,749 77 884 480 23,127 73 21,714 75 21,130 76 20,749 77 884 480 23,127 73 21,714 75 21,130 76 20,749 77 884 480 23,127 73 21,714 75 21,130 76 20,749 77 884 480 23,127 73 21,714 75 21,130 76 20,749 77 884 480 23,127 73 21,714 67 21,795 77 21,195 77 21, | | | | | | 10.022 | | | | | | 290 21,331 121 19,860 127 19,219 135 18.785 141 522 300 21,452 116 19,987 123 19,354 128 18,926 133 540 310 21,568 113 20,110 118 19,482 123 19,059 128 558 320 21,681 110 20,228 114 19,605 118 19,187 123 558 320 21,691 107 20,342 111 19,723 115 19,1310 118 594 340 21,998 122 30,453 106 19,838 110 19,428 113 612 350 22,000 100 20,559 104 19,948 107 19,541 110 648 350 22,100 39 9 20,663 101 20,055 104 13,651 107 648 370 22,198 9 20,664 9 20,559 104 13,651 107 648 380 22,293 9 20,862 9 20,255 9 104 13,651 107 648 390 22,385 90 20,956 9 20,451 9 30 13,768 106 684 390 22,475 89 21,048 9 20,451 9 3 20,058 10 684 400 22,475 89 21,048 9 20,454 9 20,451 9 3 20,564 68 21,140 87 20,544 90 20,153 9 702 410 22,564 88 21,140 87 20,544 90 20,153 9 738 420 22,649 94 21,227 86 20,634 87 20,244 9 756 440 22,649 94 21,227 86 20,634 87 20,244 9 756 440 22,616 79 21,395 83 20,807 83 20,421 87 772 450 22,895 80 21,478 82 20,890 83 20,506 84 810 460 22,975 76 21,560 78 20,973 79 20,590 80 828 470 23,515 76 21,558 76 21,558 76 21,052 78 20,670 79 846 480 22,127 73 12,114 75 21,130 76 20,749 77 8646 480 23,127 73 21,139 75 21,266 76 20,626 77 882 500 23,274 71 21,896 77 21,395 77 20,903 75 900 500 23,274 71 21,896 77 21,396 77 21,396 77 20,903 75 900 500 23,274 71 21,896 77 21,396 77 21,296 68 21,193 99 972 500 23,274 71 21,896 77 21,396 77 21,296 77 20,903 75 900 500 23,274 71 21,896 77 21,396 77 21,296 77 864 600 23,274 71 72,864 72,277 66 12,658 77 22,207 86 21,479 69 21,179 97 110 86 600 23,475 77 78 78 22,776 78 22,207 78 82 500 23,476 79 79 79 79 79 79 79 79 79 79 79 79 79 | | | | | | | | 10 / 00 | | | | 300 21,452 116 19,987 123 19,354 128 18,926 133 540 310 21,568 113 20,110 118 19,482 123 19,059 128 556 320 21,681 110 20,228 114 19,605 118 19,187 123 576 330 21,791 107 22,342 111 19,723 115 19,310 118 5943 30 21,791 107 22,342 111 19,723 115 19,310 118 5943 30 21,791 107 22,342 111 19,723 115 19,310 118 5943 30 21,791 107 22,342 111 19,723 115 19,310 118 5943 30 22,109 190 20,653 100 20,055 104 19,681 107 19,428 113 612 30,453 106 19,838 110 19,428 113 612 30,453 106
19,838 110 19,428 113 612 30,259 100 19,558 100 666 300 22,193 105 20,664 107 60,498 10,199 100 19,758 100 666 300 22,293 105 20,862 107 20,357 100 19,758 100 666 300 22,293 107 20,862 107 20,357 100 19,758 100 666 300 22,293 107 20,862 107 20,357 100 19,758 100 666 300 22,293 107 20,862 107 20,357 100 19,758 100 666 300 22,293 107 20,862 107 20,357 100 19,758 100 666 300 22,293 107 20,862 107 20,357 100 19,758 100 666 300 22,293 107 20,862 107 20,357 100 19,758 100 666 300 22,293 107 20,862 107 20,357 100 19,758 100 666 300 22,293 107 20,862 107 20,357 100 19,758 100 666 300 22,293 107 20,862 107 20,357 100 19,758 100 666 300 22,293 107 20,862 107 20,357 100 100 100 20,559 100 19,758 100 666 300 22,293 100 100 100 20,559 100 19,758 100 666 300 22,285 100 100 100 20,559 100 19,758 100 666 300 22,285 100 100 100 100 100 100 100 100 100 10 | | | | | | | | | | | | 310 21.568 113 20.110 118 19.482 123 19.059 128 558 220 21.681 110 20.228 114 19.605 118 19.187 123 576 330 21.791 107 20.342 111 19.723 115 19.310 118 59.340 21.988 102 30.453 106 19.838 110 19.428 113 612 30.453 106 19.838 110 19.428 113 612 30.453 106 19.838 110 19.428 113 612 30.500 22.100 98 20.663 101 20.055 104 19.651 107 648 300 22.198 95 20.764 98 20.159 100 19.758 103 666 330 22.298 97 20.862 94 20.259 98 19.861 100 684 390 22.885 90 20.896 92 20.357 94 19.661 100 684 390 22.885 90 20.996 92 20.357 94 19.661 100 684 410 22.644 86 21.140 87 20.554 49 20.159 100 19.758 103 666 410 20.256 42 20.259 98 19.861 100 684 410 22.654 86 21.140 87 20.554 49 20.159 100 19.758 103 666 410 20.2564 86 21.140 87 20.554 49 20.159 98 19.861 100 684 410 22.654 86 21.148 82 20.654 97 20.554 40 22.2649 40 22.277 87 20.544 90 20.153 97 738 410 22.654 87 21.395 88 20.671 88 20.394 87 774 400 22.915 88 21.478 82 20.694 87 20.421 87 772 440 22.816 77 21.395 88 20.807 88 20.421 87 772 440 22.915 77 21.395 88 20.807 88 20.421 87 772 440 23.951 78 21.395 88 20.807 88 20.421 87 772 440 23.951 78 21.560 78 20.973 79 20.990 88 28 470 23.951 78 21.560 78 20.973 79 20.990 88 28 470 23.951 78 21.560 78 20.973 79 20.990 88 28 20.807 78 20.421 87 772 864 80 23.127 73 21.714 75 21.130 76 20.749 77 864 80 23.127 73 21.714 75 21.130 76 20.749 77 864 80 23.200 74 21.789 75 21.206 76 20.826 77 882 500 23.274 71 21.936 72 21.395 74 20.978 87 91 91 550 23.345 71 21.936 72 21.355 74 20.978 87 91 91 550 23.485 67 22.208 80 21.479 62 21.557 80 22.555 61 22.208 62 21.478 62 21.550 67 92.208 62 21.478 62 21.550 67 92.208 62 21.479 62 21.557 81 1062 77 80.44 80 23.209 75 80 22.208 77 80 80 21.479 62 21.557 81 1062 70 20.445 81 108 108 108 108 108 108 108 108 108 | | 21,331 | 121 | 17.860 | 127 | 19.219 | 135 | 18.785 | 141 | 522 | | 200 21.681 110 20.228 114 19.605 118 19.187 123 576 330 21.791 107 20.342 111 19.723 115 19.310 118 594 340 21.898 102 30.453 106 19.838 110 19.428 113 612 | | | | | | | | | | | | 330 21.791 107 20.342 111 19.723 115 19.310 118 694 340 21.898 102 30.453 106 19.838 110 19.428 113 612 350 22.000 100 20.559 104 19.948 107 19.541 110 630 360 22.100 98 20.663 101 20.055 104 19.651 107 648 370 22.198 95 20.764 98 20.159 100 19.758 103 666 380 22.293 92 20.862 94 20.259 98 19.861 100 668 380 22.293 92 20.862 94 20.259 98 19.861 100 668 390 22.385 90 20.956 92 20.357 94 19.961 107 702 400 22.475 89 21.048 92 20.451 93 20.058 95 720 410 22.564 85 21.140 87 20.544 90 20.153 91 738 420 22.649 84 21.227 86 20.634 87 20.244 90 756 430 22.733 83 21.313 82 20.721 86 20.334 87 774 440 22.816 79 21.395 83 20.807 83 20.421 85 792 450 22.895 80 21.478 82 20.890 83 20.421 85 792 450 22.895 80 21.478 82 20.890 83 20.506 84 810 460 22.975 76 21.560 78 20.973 79 20.590 80 828 470 23.051 76 21.5638 76 21.052 78 20.670 79 846 480 23.127 73 21.714 75 21.130 76 20.749 77 864 490 23.200 74 21.789 75 21.206 76 20.787 77 864 490 23.200 74 21.789 75 21.206 76 20.787 77 864 490 23.200 74 21.789 75 21.206 76 20.788 77 882 500 23.274 71 21.864 72 21.282 73 20.903 75 900 23.245 67 22.038 70 21.479 99 21.123 70 954 40 23.555 68 22.146 67 22.008 70 21.429 70 21.052 71 936 600 23.416 69 22.008 70 21.429 99 21.123 70 954 600 23.475 69 22.280 66 21.790 69 21.123 70 954 600 23.937 64 22.280 66 21.790 69 21.123 70 954 600 23.937 64 22.280 66 21.790 69 21.123 70 954 600 23.937 64 22.280 66 21.790 69 21.123 70 954 600 24.359 59 22.845 69 22.2473 62 21.839 62 21.550 63 1106 600 24.359 59 23.875 69 22.476 59 22.285 59 21.952 59 1186 600 24.455 54 23.058 59 22.484 57 22.262 58 21.894 59 1170 660 24.545 54 23.058 59 22.486 59 22.276 59 22.285 59 1152 650 24.685 59 23.316 59 22.477 59 22.575 59 22.290 57 1188 670 24.509 59 23.875 59 22.776 59 22.685 59 22.990 57 1152 660 24.695 59 23.875 59 22.776 59 22.695 59 22.895 59 1152 660 24.615 59 23.374 59 22.655 59 22.895 59 1152 670 24.668 51 23.374 59 22.776 59 22.695 59 22.494 59 1368 670 24.590 59 23.875 59 22.776 59 22.776 59 22.494 59 1368 670 24.509 59 23.875 59 22.895 59 22.995 59 | | | | | | | | | | | | 340 21.898 102 30.453 106 19.838 110 19.428 113 612 350 22.000 100 20.559 104 19.948 107 19.541 110 630 360 22.100 98 20.663 101 20.0555 104 19.651 107 648 370 22.198 95 20.764 98 20.159 100 19.758 103 666 380 22.293 92 20.862 94 20.259 98 19.861 100 684 390 22.385 90 20.956 92 20.357 94 19.961 100 684 400 22.475 89 21.048 92 20.451 93 20.058 95 720 410 22.564 86 21.140 87 20.544 90 20.153 97 738 420 22.564 86 21.140 87 20.544 90 20.153 97 738 420 22.649 84 21.227 86 20.634 87 20.244 90 756 430 22.973 83 21.313 82 20.721 86 20.334 87 774 440 22.816 79 21.395 83 20.807 83 20.421 85 792 450 22.895 80 21.478 82 20.890 83 20.509 88 810 460 22.975 76 21.560 78 20.973 79 20.599 80 828 470 23.051 76 21.638 76 20.973 79 20.599 80 828 470 23.200 74 21.789 75 21.206 76 20.749 77 864 480 23.127 73 21.714 75 21.130 76 20.749 77 864 490 23.200 74 21.789 75 21.206 76 20.826 77 882 500 23.274 71 21.864 72 21.396 77 21.395 77 20.973 79 20.794 785 550 23.466 69 22.008 70 21.039 77 69 21.052 77 864 550 23.345 71 21.936 77 22.139 79 21.052 77 864 550 23.346 69 22.008 70 21.429 70 21.052 77 864 550 23.485 67 22.078 66 21.449 66 21.297 70 21.052 77 864 550 23.685 64 22.280 67 22.134 67 21.568 68 21.193 69 972 550 23.685 64 22.280 67 22.134 67 21.568 68 21.193 69 972 550 23.685 64 22.280 67 22.134 67 21.568 68 21.193 69 972 550 23.685 64 22.280 67 22.134 67 21.568 68 21.292 79 31.662 600 23.978 60 22.576 68 22.447 62 21.899 62 21.527 63 1066 600 23.979 61 22.233 68 22.647 98 22.647 65 21.895 99 21.715 99 1166 600 23.979 61 22.233 68 22.657 99 22.085 99 21.715 99 1166 600 23.979 63 22.345 64 22.280 65 21.704 66 21.390 67 1008 560 23.685 54 22.280 55 22.597 59 22.085 99 21.715 99 1166 600 23.979 63 22.247 65 22.473 62 21.899 62 21.527 63 1066 600 24.401 54 23.003 55 22.897 59 22.085 59 21.715 59 1168 670 24.509 53 23.126 59 22.575 59 22.099 57 1206 680 24.401 54 23.003 55 22.897 59 22.655 53 1296 700 24.509 53 23.374 59 22.657 59 22.645 50 1386 700 24.509 69 22.442 50 1386 700 24.509 69 22.544 69 | | | | | | | | | | | | 350 22,000 100 20,559 104 19,948 107 19,541 100 630 360 22,108 98 20,663 101 20,055 104 19,651 107 648 370 22,198 95 20,764 98 20,159 100 19,758 103 666 380 22,293 92 20,862 94 20,259 98 19,861 100 684 390 22,385 90 20,956 92 20,357 94 19,961 97 7702 400 22,475 89 21,048 92 20,451 99 20,058 95 720 410 22,544 85 21,140 87 20,544 90 20,153 91 738 420 22,649 84 21,227 86 20,544 90 20,153 91 738 420 22,649 84 21,227 86 20,634 87 20,244 90 756 430 22,733 83 21,313 86 20,544 90 20,153 91 758 440 22,816 79 21,395 83 20,807 83 20,421 85 772 440 22,816 79 21,395 83 20,807 83 20,506 84 810 460 22,975 76 21,550 86 21,973 79 20,590 80 829 470 23,051 76 21,550 86 20,973 79 20,590 80 829 470 23,051 76 21,538 76 21,548 51 21,150 76 20,749 77 864 480 23,127 73 21,714 75 21,120 76 20,749 77 864 490 23,200 74 21,789 75 21,268 76 20,903 75 90,903 500 23,274 71 21,864 72 21,282 79 21,055 77 882 500 23,274 71 21,864 72 21,282 79 21,055 77 882 500 23,274 71 21,864 77 21,285 77 22,090 77 862 500 23,274 71 22,864 77 21,286 77 21,296 77 882 500 23,274 71 22,864 77 21,286 77 21,286 77 22,090 77 864 500 23,274 71 22,864 77 21,286 77 21,286 77 22,090 77 864 500 23,274 71 22,864 77 21,286
77 21,286 77 21,2 | | | | | | | | | | | | 360 22.109 98 20.663 100 20.055 104 19,651 107 648 370 22.198 99 20.764 98 20.159 100 19,558 103 666 380 22.293 92 20.862 94 20.259 98 19.861 100 6684 380 22.385 90 20.956 92 20.357 94 19,961 100 684 400 22.475 88 21.148 97 20.544 90 20.153 97 702 410 22.564 88 21.140 87 20.544 90 20.153 97 702 420 22.649 94 21.227 86 20.634 87 20.153 97 736 430 22.733 83 21.313 82 20.721 86 20.334 87 774 440 22.816 79 21.395 83 20.807 83 20.421 85 792 450 22.895 80 21.478 82 20.890 83 20.506 84 810 460 22.975 76 21.560 78 20.973 79 20.590 80 828 470 23.051 76 21.638 76 21.052 78 20.570 88 20.421 480 23.127 77 21.714 75 21.150 76 20.749 77 864 490 23.200 74 21.789 75 21.206 76 20.626 77 882 500 23.274 1 21.864 72 21.282 73 20.978 74 918 500 23.274 1 21.864 72 21.355 77 20.978 74 918 500 23.274 1 21.864 72 21.355 77 20.978 74 918 500 23.274 21.749 75 21.150 76 20.749 77 864 500 23.274 21.749 75 21.150 76 20.749 77 864 500 23.274 21.749 75 21.282 73 20.978 74 918 500 23.274 21.749 75 21.150 76 20.749 77 864 500 23.274 21.749 75 21.150 76 20.749 77 864 500 23.274 21.749 75 21.150 76 20.749 77 864 500 23.274 21.748 66 21.499 67 21.125 70 954 500 23.485 67 22.078 66 21.429 70 21.1052 71 955 500 23.685 67 22.078 66 21.429 70 21.1052 71 955 500 23.685 67 22.078 66 21.499 67 21.125 70 954 500 23.749 63 22.345 64 21.636 66 21.262 68 990 500 23.875 62 22.186 67 21.586 86 21.193 67 1088 500 23.685 67 22.078 66 21.499 67 21.125 70 954 500 23.875 62 22.186 67 22.185 67 21.566 57 22.078 66 21.704 66 21.397 66 1026 500 23.998 60 22.2556 61 22.1899 62 21.557 63 1062 600 23.998 60 22.473 62 22.489 65 21.704 66 21.397 66 1026 600 24.290 53 23.125 66 22.473 62 22.488 55 22.121 55 1224 700 24.509 53 23.166 53 22.2716 60 22.144 60 21.774 61 1134 640 24.175 57 22.776 58 22.276 58 22.499 59 21.775 51 122.977 59 22.2776 58 2 | | 21.070 | 102 | 20.432 | 106 | 17.000 | 110 | 19.428 | 113 | 612 | | 370 22,198 95 20,764 98 20,159 100 19,758 109 664 380 22,293 92 20,862 94 20,259 98 19,861 100 684 390 22,385 90 20,956 92 20,357 98 19,861 100 684 420,22,564 86 21,140 87 20,544 90 20,158 95 720 420 22,564 86 21,140 87 20,544 90 20,153 95 720 420 22,649 84 21,227 86 20,634 87 20,244 90 756 430 22,733 83 21,315 82 20,721 86 20,334 87 774 440 22,816 79 21,395 83 20,807 83 20,421 85 792 440 22,816 79 21,395 83 20,807 83 20,421 85 792 440 22,816 79 21,395 83 20,807 83 20,506 84 810 460 22,975 76 21,638 76 21,052 78 20,670 79 846 480 23,127 73 21,714 75 21,206 76 20,826 77 882 500 23,274 71 21,864 72 21,282 73 20,903 75 900 23,274 71 21,864 72 21,282 73 20,903 75 900 23,274 71 21,864 72 21,282 73 20,903 75 900 23,274 71 21,864 72 21,282 73 20,903 75 900 23,274 71 21,864 72 21,282 73 20,903 75 900 23,274 71 21,864 72 21,282 73 20,903 75 900 23,274 71 21,864 72 21,282 73 20,903 75 900 23,274 71 21,864 72 21,282 73 20,903 75 900 23,274 71 21,864 72 21,282 73 20,903 75 900 23,274 71 21,864 72 21,282 73 20,903 75 900 500 23,274 71 21,864 72 21,282 73 20,903 75 900 23,274 71 21,864 72 21,282 73 20,903 75 900 23,274 71 21,864 72 21,282 73 20,903 75 900 500 23,274 71 21,864 72 21,282 73 20,903 75 900 500 23,485 67 22,008 70 21,429 70 21,052 71 936 500 23,485 67 22,008 70 21,429 70 21,052 71 936 500 23,485 67 22,008 70 21,429 70 21,052 71 936 500 23,485 67 22,008 70 21,429 70 21,052 71 936 500 23,485 67 22,345 64 21,769 66 21,397 66 1026 600 23,998 60 22,249 64 21,899 62 21,597 65 1026 600 24,290 55 22,891 56 22,447 66 21,997 65 1026 600 24,290 55 22,891 56 22,447 66 22,280 59 21,714 60 21,834 65 21,462 65 1044 640 24,175 57 22,776 58 22,247 56 22,447 66 22,280 59 21,715 59 1116 600 24,490 55 22,891 56 22,497 57 22,498 57 22,498 57 22,498 57 22,498 57 22,498 57 22,498 57 22,498 57 22,498 57 22,494 50 1368 57 22,498 50 24,490 50 23,475 51 | | | 100 | 20.559 | 104 | 19.948 | 107 | 19,541 | 110 | 630 | | 380 22.293 92 20.862 94 20.2559 98 19.861 100 684 399 22.385 90 20.956 92 20.357 94 19.961 100 684 19.861 100 684 100 684 19.861 100 684 | | | 98 | | 101 | 20.055 | 104 | 19.651 | 107 | 648 | | 390 | | | | | 98 | | 100 | 19.758 | 103 | 666 | | 400 22.475 89 21.088 92 20.451 93 20.058 95 720 410 22.564 85 21.140 87 20.544 90 20.153 91 738 420 22.649 84 21.227 86 20.634 87 20.244 90 755 430 22.733 83 21.313 82 20.721 86 20.334 87 774 440 22.816 79 21.395 83 20.807 83 20.421 85 792 450 22.895 80 21.478 82 20.890 83 20.506 84 810 450 22.975 76 21.550 78 20.973 79 20.590 80 828 470 23.051 76 21.638 76 21.052 78 20.670 79 846 480 23.127 73 21.714 75 21.130 76 20.749 77 864 490 23.200 74 21.789 75 21.206 76 20.826 77 882 500 23.274 71 21.864 72 21.282 73 20.973 79 82.500 510 23.345 71 21.936 72 21.355 74 20.978 74 918 520 23.416 69 22.008 70 21.429 70 21.052 71 936 530 23.485 67 22.078 68 21.499 69 21.123 70 954 540 23.552 66 22.146 67 21.568 68 21.193 69 972 550 23.618 67 22.213 67 21.636 68 21.193 69 972 550 23.618 67 22.213 67 21.636 68 21.193 69 972 550 23.875 62 22.473 62 21.384 66 21.397 66 1026 550 23.875 67 22.786 67 22.787 68 21.568 68 21.193 69 972 550 23.685 69 22.249 64 21.769 65 21.397 66 1026 550 23.875 62 22.473 62 21.899 62 21.527 63 1060 600 23.937 61 22.535 61 21.961 62 21.590 63 1080 610 23.998 60 22.596 61 22.196 60 21.774 60 21.330 67 1008 610 23.998 60 22.596 61 22.196 60 21.774 61 1026 600 24.058 58 22.657 59 22.085 59 1.715 59 1116 630 24.116 59 22.716 60 22.144 60 21.774 61 1134 640 24.175 57 22.776 58 22.204 58 21.899 62 21.557 63 1062 640 24.290 55 22.891 56 22.320 56 21.952 57 1266 640 24.290 55 22.891 56 22.320 56 21.952 57 1266 640 24.290 55 22.891 56 22.320 56 21.952 57 1266 640 24.290 55 22.891 56 22.320 56 21.952 57 1266 640 24.290 55 22.891 56 22.320 56 21.952 57 1266 640 24.290 55 22.891 56 22.320 56 21.952 57 1266 640 24.290 55 22.891 56 22.320 56 21.952 57 1266 640 24.290 55 22.891 56 22.320 56 21.952 57 1266 640 24.290 55 22.891 56 22.320 56 21.952 57 1266 640 24.290 55 22.891 56 22.320 56 21.952 57 1266 640 24.401 54 23.003 55 22.488 55 22.121 55 1242 700 24.562 53 23.166 53 22.596 59 22.597 54 22.231 59 1274 740 24.770 51 23.374 52 22.887 59 22.594 59 22.594 59 22.594 59 22.594 59 22.594 59 22.594 59 22.594 59 2 | | | _ | | 94 | | 98 | | 100 | 684 | | 410 22.564 8 21.140 67 20.544 90 20.153 91 738 420 22.649 84 21.227 86 20.634 87 20.244 90 756 430 22.733 83 21.313 82 20.721 86 20.334 87 774 440 22.816 79 21.395 83 20.807 83 20.421 85 792 450 22.895 80 21.478 82 20.890 83 20.590 84 810 22.975 76 21.560 78 20.973 79 20.590 80 828 470 23.051 76 21.638 76 21.052 78 20.670 79 846 840 23.127 73 21.714 75 21.130 76 20.749 77 864 490 23.200 74 21.789 75 21.206 76 20.826 77 862 20.895 80 23.274 71 21.864 72 21.282 73 20.903 75 900 23.274 71 21.864 72 21.282 73 20.903 75 900 23.274 71 21.936 72 21.355 74 20.978 74 918 520 23.416 69 22.008 70 21.429 70 21.052 71 936 550 23.485 67 22.078 66 21.499 69 21.123 70 954 540 23.552 66 22.146 67 21.568 68 21.193 69 972 550 23.685 64 22.280 65 21.704 65 21.330 67 10.88 570 23.749 63 22.345 64 22.280 65 21.704 65 21.330 67 10.88 570 23.749 63 22.345 64 22.280 65 21.704 65 21.330 67 10.88 570 23.749 63 22.345 64 22.280 65 21.704 65 21.330 67 10.88 570 23.749 63 22.345 64 21.769 65 21.397 65 10.26 580 23.812 63 22.409 64 21.899 62 21.527 63 10.80 570 23.985 68 22.146 69 22.280 65 21.704 65 21.330 67 10.88 570 23.749 63 22.345 64 21.769 65 21.397 65 10.26 580 23.812 63 22.409 64 21.894 65 21.462 65 10.44 590 23.895 68 22.146 69 22.280 65 21.704 65 21.330 67
10.88 60 23.998 60 22.595 61 22.449 64 21.834 65 21.462 65 10.44 60 23.998 60 22.595 61 22.449 64 21.834 65 21.462 65 10.44 66 24.175 57 22.776 58 22.276 58 22.2473 62 21.899 62 21.527 63 10.80 600 23.998 60 22.595 61 22.294 58 22.204 58 21.894 58 1170 600 24.495 54 23.003 55 22.493 55 22.206 55 11.52 59 11.52 50 23.465 54 23.203 55 22.493 55 22.206 55 11.52 57 11.88 670 24.455 54 23.003 55 22.489 55 22.204 58 21.894 55 22.207 55 22.2776 58 22.207 58 22.209 57 11.88 670 24.455 54 23.003 55 22.483 55 22.206 55 11.204 50 22.494 50 13.80 50 22.495 59 22.115 55 1260 710 24.552 59 23.166 53 22.2967 59 22.205 59 21.715 59 22.209 57 12.60 600 24.495 54 23.058 54 22.488 55 22.212 55 12.40 50 24.495 54 23.058 54 22.498 55 22.206 55 12.209 59 22.494 50 13.68 770 24.455 54 23.058 54 22.257 | 390 | 22.385 | 90 | 20.956 | 92 | 20.357 | 94 | 19.961 | 97 | 702 | | 410 22.564 85 21.140 87 20.544 90 20.153 91 738 420 22.649 84 21.227 86 20.634 87 20.244 90 756 430 22.733 83 21.313 82 20.721 86 20.334 87 774 440 22.816 79 21.395 83 20.807 83 20.421 85 792 450 22.875 76 21.550 78 20.890 83 20.506 84 810 460 22.975 76 21.550 78 20.973 79 20.590 80 828 470 23.051 76 21.638 76 21.052 78 20.670 79 846 480 23.127 73 21.714 75 21.130 76 20.749 77 864 490 23.200 74 21.789 75 21.206 76 20.826 77 882 20.3345 71 21.936 72 21.255 74 20.978 74 918 520 23.416 69 22.008 70 21.429 70 21.052 71 936 550 23.485 67 22.078 66 21.499 69 21.123 70 954 550 23.685 64 22.280 66 21.704 66 21.397 66 1024 550 23.875 62 22.440 67 21.769 66 21.397 66 1024 550 23.875 62 22.473 62 21.894 65 21.527 63 1082 550 23.875 62 22.473 62 21.899 62 21.527 63 1082 550 23.875 62 22.473 62 21.899 62 21.527 63 1082 550 23.875 62 22.473 62 21.899 62 21.527 63 1082 550 23.875 62 22.473 62 21.899 62 21.527 63 1082 550 23.875 62 22.473 62 21.899 62 21.527 63 1082 550 23.875 62 22.473 62 21.899 62 21.527 63 1082 550 23.875 62 22.473 62 21.899 62 21.527 63 1082 560 23.685 54 22.280 65 21.704 66 21.397 66 1024 560 23.998 60 22.2586 64 22.280 65 21.704 66 21.397 66 1024 560 23.899 60 22.555 64 22.140 60 21.774 63 1026 60 24.175 57 22.776 58 22.249 64 21.834 65 21.462 65 1044 590 23.875 62 22.473 62 21.899 62 21.527 63 1062 600 24.155 59 22.776 69 22.473 62 21.899 62 21.527 63 1088 610 24.116 59 22.776 60 22.473 62 21.899 62 21.527 63 1088 610 24.116 59 22.776 59 22.085 59 21.715 59 1116 600 24.175 57 22.776 58 22.204 58 21.835 59 1152 600 24.455 54 23.003 55 22.473 55 22.204 58 21.835 59 1152 600 24.456 54 23.303 55 22.476 59 22.2473 59 22.2473 59 22.2473 59 22.255 59 22.2473 59 22.255 59 22.2473 59 22.255 59 22.2473 59 22.255 59 22. | | | 89 | 21.048 | 92 | 20,451 | 93 | 20.058 | 95 | 720 | | 420 22.649 84 21.227 86 20.634 87 20.244 90 756 4300 22.733 83 21.313 82 20.721 86 20.334 87 774 440 22.816 79 21.395 83 20.807 83 20.421 85 792 450 22.895 80 21.478 82 20.890 83 20.506 84 810 460 22.975 76 21.550 78 20.5973 79 20.590 80 828 470 23.051 76 21.638 76 21.052 78 20.670 79 846 480 23.127 73 21.714 75 21.130 76 20.749 77 864 470 23.200 74 21.789 75 21.206 76 20.826 77 882 500 23.274 71 21.864 72 21.282 73 20.903 75 900 510 23.345 71 21.936 72 21.355 74 20.978 74 918 520 23.416 69 22.008 70 21.429 70 21.052 71 936 530 23.485 67 22.078 68 21.499 69 21.123 70 954 540 23.552 66 22.146 67 21.568 68 21.193 69 972 550 23.618 67 22.213 67 21.636 68 21.262 68 990 560 23.685 64 22.280 65 21.704 66 21.390 67 1008 570 23.749 63 22.345 64 21.769 66 21.397 66 1026 580 23.812 63 22.409 64 21.834 65 21.397 66 1026 580 23.812 63 22.409 64 21.834 65 21.397 66 1026 600 23.937 61 22.595 61 21.834 65 21.397 66 1026 600 23.937 61 22.595 61 21.834 65 21.577 63 1008 620 24.058 59 22.473 62 21.899 62 21.527 63 1002 640 24.175 57 22.776 58 22.204 58 21.895 97 1162 650 24.232 58 22.891 56 22.247 56 22.248 58 21.895 97 1162 660 24.435 56 22.947 56 22.276 59 22.085 59 21.715 59 1116 660 24.435 56 22.947 56 22.276 59 22.085 59 21.715 59 1116 670 24.345 56 22.947 56 22.276 58 22.204 58 21.895 59 1152 660 24.456 53 23.166 53 22.576 59 22.085 59 21.715 59 1116 670 24.455 54 23.003 55 22.443 55 22.209 57 1208 670 24.455 54 23.003 55 22.433 55 22.066 55 1224 700 24.509 53 23.112 54 22.543 54 22.276 55 1260 710 24.562 53 23.166 53 22.597 54 22.231 54 1278 770 24.870 50 23.475 51 22.909 57 1208 770 24.870 50 23.475 51 22.909 57 1208 770 24.870 50 23.475 51 22.909 57 1208 770 24.870 50 23.475 51 22.909 51 22.594 50 1368 770 24.870 50 23.475 51 22.909 51 22.594 50 1368 770 24.970 50 23.475 51 22.909 51 22.594 50 1368 770 24.970 50 23.475 51 22.909 51 22.594 50 1368 770 24.970 50 23.475 51 22.909 51 22.594 50 1368 770 24.970 50 23.475 51 22.909 51 22.594 50 1368 770 24.970 50 23.475 51 22.909 51 22.594 50 1368 770 24.970 50 23.475 51 22 | | | 85 | 21.140 | 87 | 20.544 | 90 | 20,153 | | | | 430 22.733 83 21.313 82 20.721 86 20.334 87 774 440 22.816 79 21.395 83 20.807 83 20.421 85 792 450 22.895 80 21.478 82 20.890 83 20.506 84 810 460 22.975 76 21.560 78 20.973 79 20.590 80 828 470 23.051 76 21.638 76 21.052 78 20.670 79 846 480 23.127 73 21.714 75 21.130 76 20.749 77 864 490 23.200 74 21.789 75 21.206 76 20.826 77 882 500 23.274 71 21.864 72 21.282 73 20.903 75 900 510 23.345 71 21.936 72 21.355 74 20.978 74 918 520 23.416 69 22.008 70 21.429 70 21.052 71 936 530 23.485 67 22.078 66 21.499 69 21.123 70 954 540 23.552 66 22.146 67 21.568 68 21.193 69 972 550 23.618 67 22.213 67 21.568 68 21.193 69 972 550 23.618 67 22.213 67 21.568 68 21.193 69 972 550 23.618 67 22.213 67 21.636 68 21.202 68 990 560 23.685 64 22.280 66 21.704 66 21.330 67 1008 570 23.749 63 22.345 64 21.769 66 21.397 66 1026 580 23.812 63 22.409 64 21.834 65 21.397 66 1026 580 23.875 62 22.473 62 21.899 62 21.557 63 1062 600 23.9978 60 22.596 61 22.093 62 21.653 62 1044 590 23.875 62 22.473 62 21.899 62 21.557 63 1062 600 23.9978 60 22.596 61 22.023 62 21.557 63 1062 600 23.9978 60 22.596 61 22.023 62 21.557 63 1062 600 23.9978 60 22.596 61 22.023 62 21.653 62 1098 620 24.058 58 22.657 59 22.085 59 21.715 59 1116 630 24.116 59 22.716 60 22.144 60 21.774 61 1134 640 24.175 57 22.776 58 22.204 58 21.835 59 1152 650 24.232 58 22.834 57 22.262 58 21.835 59 1152 660 24.232 58 22.834 57 22.262 58 21.835 59 1152 660 24.232 58 22.834 57 22.262 58 21.835 59 1152 660 24.232 58 22.834 57 22.262 58 21.835 59 1152 670 24.509 53 23.112 54 22.596 57 22.009 57 1206 680 24.401 54 23.303 55 22.438 55 22.121 55 1260 770 24.509 53 23.112 54 22.597 54 22.231 55 1260 770 24.509 53 23.166 53 22.597 54 22.231 59 1296 770 24.668 51 23.271 52 22.704 51 22.338 52 1314 770 24.668 51 23.271 52 22.704 51 22.338 52 1314 770 24.509 53 23.166 69 22.596 69 22.599 99 22.594 50 1388 770 24.668 61 23.271 59 22.795 59 22.594 50 1388 770 24.790 50 23.475 51 22.998 51 22.594 50 1388 770 24.900 48 23.526 48 22.959 99 22.594 50 1382 | | | 84 | 21.227 | 86 | 20.634 | 87 | | | | | 450 | | 22.733 | 83 | 21.313 | 82 | 20.721 | 86 | 20.334 | | | | 460 22.975 76 21.560 78 20.973 79 20.590 80 828 470 23.051 76 21.638 76 21.052 78 20.670 79 846 480 23.127 73 21.714 75 21.130 76 20.749 77 864 490 23.200 74 21.789 75 21.206 76 20.826 77 882 50 23.274 71 21.864 72 21.282 73 20.903 75 900 510 23.345 71 21.936 72 21.255 74 20.978 74 918 520 23.416 69 22.008 70 21.459 70 21.052 71 936 530 23.485 67 22.078 68 21.499 69 21.123 70 954 540 23.552 66 22.146 67 21.568 68 21.193 69 972 550 23.618 67 22.213 67 21.636 68 21.262 68 990 560 23.685 64 22.280 65 21.704 65 21.330 67 1008 570 23.749 63 22.345 64 21.789 64 21.834 65 21.462 65 1044 590 23.875 62 22.473 62 21.899 62 21.527 63 1062 600 23.937 61 22.596 61 22.596 61 22.098 59 22.716 60 22.144 60 21.774 61 1036 640 24.175 57 22.776 68 22.244 60 21.444 60 21.774 61 1134 640 24.175 57 22.776 68 22.848 55 22.249 56 22.144 60 21.774 61 1134 640 24.175 57 22.776 68 22.891 66 22.144 60 21.774 61 1134 640 24.175 57 22.776 58 22.205 59 21.715 59 1116 630 24.116 59 22.716 60 22.144 60 21.774 61 1134 640 24.175 57 22.776 58 22.205 59 21.715 59 1116 630 24.116 59 22.716 60 22.144 60 21.774 61 1134 640 24.175 57 22.776 58 22.205 59 21.715 59 1166 670 24.395 56 22.891 56 22.396 59 21.715 59 1166 670 24.395 56 22.891 56 22.396 59 21.715 59 1166 670 24.395 56 22.891 56 22.396 59 21.715 59 1166 670 24.395 56 22.891 56 22.396 59 21.715 59 1166 670 24.395 56 22.947 56 22.396 59 22.206 55 1224 690 24.455 54 23.003 55 22.493 55 22.206 55 1224 690 24.455 54 23.003 55 22.493 55 22.206 55 1224 690 24.455 54 23.003 55 22.493 55 22.206 55 1224 690 24.455 54 23.003 55 22.493 55 22.207 55 22.207 59 22.208 59 1320 50 1332 50 134 | 440 | 22.816 | 79 | 21.395 | 83 | 20.807 | 83 | 20.421 | | | | 460 22.975 76 21.560 78 20.973 79 20.590 80 828 470 23.051 76 21.638 76 21.052 78 20.670 79 846 480 23.127 73 21.714 75 21.130 76 20.749 77 864 480 23.200 74 21.789 75 21.206 76 20.826 77 882 500 23.274 71 21.864 72 21.282 73 20.903 75 900 510 23.345 71 21.936 72 21.355 74 20.978 74 918 520 23.416 69 22.008 70 21.429 70 21.052 71 936 530 23.485 67 22.078 68 21.499 69 21.123 70 956 540 23.552 66 22.146 67 21.568 68 21.193 69 972 550 23.618 67 22.213 67 21.636 68 21.193 69 972 550 23.618 67 22.213 67 21.636 68 21.262 68 990 560 23.685 64 22.280 65 21.704 65 21.330 67 1008 570 23.749 63 22.345 64 21.769 66 21.330 67 1008 570 23.812 63 22.409 64 21.834 65 21.462 65 1044 590 23.875 62 22.473 62
21.899 62 21.527 63 1062 600 23.937 61 22.595 61 21.690 62 21.590 63 1062 600 23.937 61 22.596 61 22.093 62 21.653 62 10.98 620 24.058 58 22.657 59 22.085 59 21.715 59 1116 630 24.116 59 22.716 60 22.144 60 21.774 61 1134 640 24.175 57 22.776 63 22.203 65 22.204 69 21.835 59 1152 650 24.232 58 22.834 57 22.262 58 21.894 58 1170 660 24.290 55 22.891 56 22.204 58 21.835 59 1152 650 24.232 58 22.834 57 22.262 58 21.894 58 1170 660 24.290 55 22.891 56 22.376 57 22.005 59 21.715 59 1116 670 24.395 59 22.716 60 22.144 60 21.774 61 1134 670 24.395 59 22.716 50 22.345 59 22.835 59 1152 670 24.455 54 23.058 59 22.849 55 22.204 58 21.895 59 1152 670 24.240 55 22.891 56 22.376 57 22.262 58 21.894 58 1170 680 24.401 54 23.003 55 22.343 55 22.209 57 1188 670 24.395 59 23.112 54 22.376 57 22.262 58 21.895 59 1152 670 24.455 54 23.058 59 22.597 54 22.231 59 1296 670 24.450 59 23.475 59 22.891 56 22.376 59 22.285 59 1296 670 24.455 54 23.058 59 22.891 56 22.390 59 1320 680 24.401 54 23.003 55 22.391 59 22.265 59 1296 670 24.450 59 23.475 59 22.895 49 22.2442 52 1350 670 24.450 59 23.475 59 22.895 49 22.494 50 1368 670 24.290 50 23.475 59 22.895 49 22.494 50 1368 670 24.900 48 23.526 48 22.959 49 22.494 50 1368 670 24.900 48 23.526 48 22.959 49 22.594 50 1368 670 24.900 48 23.526 48 22.959 49 22.594 50 1368 670 24.900 48 23.526 48 22.959 49 2 | 450 | | 80 | 21.478 | 82 | 20.890 | 83 | 20,506 | 84 | 810 | | 470 23.051 76 21.638 76 21.052 78 20.670 79 846 480 23.127 73 21.714 75 21.130 76 20.749 77 864 490 23.200 74 21.789 75 21.206 76 20.826 77 882 500 23.274 71 21.864 72 21.282 73 20.903 75 900 510 23.345 71 21.936 72 21.355 74 20.978 74 918 520 23.416 69 22.008 70 21.429 70 21.052 71 936 530 23.485 67 22.078 68 21.499 99 21.123 70 954 540 23.552 66 22.146 67 21.568 68 21.193 69 972 550 23.618 67 22.213 67 21.636 68 21.193 69 972 550 23.618 67 22.213 67 21.636 68 21.262 68 990 570 23.749 63 22.345 64 21.769 65 21.397 66 1026 580 23.812 63 22.409 64 21.834 65 21.462 66 1044 570 23.978 69 22.473 62 21.899 62 21.527 63 1062 600 23.937 61 22.535 61 21.961 62 21.557 63 1062 600 23.998 60 22.596 61 22.023 62 21.653 62 1048 620 24.058 58 22.657 59 22.085 59 21.715 59 1116 630 24.116 59 22.716 60 22.144 60 21.774 61 1134 640 24.175 57 22.776 58 22.204 58 21.895 59 11.715 59 1162 660 24.232 58 22.891 56 22.345 56 22.346 57 22.345 56 22.144 60 21.774 61 1134 640 24.175 57 22.776 58 22.204 58 21.835 59 1152 650 24.232 58 22.891 56 22.343 57 22.662 58 21.894 58 1170 660 24.395 55 22.891 56 22.376 57 22.009 57 1206 680 24.401 54 23.003 55 22.493 54 22.176 55 1260 700 24.345 56 22.947 56 22.376 57 22.009 57 1206 680 24.401 54 23.003 55 22.433 55 22.009 57 1206 680 24.455 54 23.058 59 22.488 55 22.121 55 1242 700 24.562 53 23.112 54 22.559 59 22.212 55 1244 700 24.562 53 23.166 53 22.597 54 22.231 54 1278 720 24.615 53 23.219 52 22.651 53 22.285 53 1296 730 24.668 51 23.271 52 22.755 52 22.330 52 1332 750 24.770 51 23.374 52 22.807 52 22.442 52 1350 740 24.590 48 23.526 48 22.959 49 22.494 50 1368 780 24.920 48 23.526 48 22.959 49 22.594 50 1368 780 24.920 48 23.526 48 22.959 49 22.594 50 1368 780 24.920 48 23.526 48 22.959 49 22.594 50 1368 780 24.920 48 23.526 48 22.959 49 22.594 50 1368 780 24.920 48 23.526 48 22.959 49 22.594 50 1368 780 24.920 48 23.526 48 22.959 49 22.594 50 1368 780 24.920 48 23.526 48 22.959 49 22.594 50 1368 | 460 | 22.97 5 | 76 | 21,560 | | | | | | | | 480 23.127 73 21.714 75 21.130 76 20.749 77 882 490 23.200 74 21.789 75 21.206 76 20.826 77 882 500 23.274 71 21.864 72 21.282 73 20.903 75 900 510 23.345 71 21.936 72 21.355 74 20.978 74 918 520 23.416 69 22.008 70 21.429 70 21.052 71 936 530 23.485 67 22.136 68 21.499 69 21.123 70 954 540 23.552 66 22.146 67 21.568 68 21.193 69 972 550 23.618 67 22.213 67 21.568 68 21.193 69 972 550 23.618 67 22.213 67 21.636 68 21.262 68 990 560 23.685 64 22.280 66 21.704 66 21.330 67 1008 570 23.749 63 22.345 64 21.769 66 21.397 66 1026 580 23.812 63 22.409 64 21.834 65 21.3462 65 1024 590 23.875 62 22.473 62 21.899 62 21.527 63 1062 600 23.937 61 22.535 61 21.991 62 21.557 63 1062 600 23.937 61 22.535 61 21.991 62 21.5590 63 1080 610 23.998 60 22.596 61 22.095 59 21.715 59 1116 630 24.116 59 22.716 60 22.144 60 21.774 61 1134 640 24.175 57 22.776 58 22.204 58 21.894 58 1170 660 24.232 58 22.834 57 22.262 58 21.894 58 1170 660 24.230 55 22.891 56 22.320 56 21.975 57 1186 670 24.232 58 22.834 57 22.262 58 21.894 58 1170 660 24.290 55 22.891 56 22.320 56 21.952 57 1186 670 24.345 56 22.947 56 22.376 57 22.066 55 1224 690 24.455 54 23.003 55 22.433 55 22.066 55 1224 690 24.455 54 23.003 55 22.433 55 22.066 55 1246 690 24.450 53 23.112 54 22.543 54 22.231 54 1278 700 24.509 53 23.112 54 22.545 54 23.058 54 22.455 59 22.121 55 1242 700 24.509 53 23.112 54 22.543 54 22.231 54 1278 720 24.615 53 23.219 52 22.651 53 22.285 53 1296 730 24.668 51 23.374 52 22.807 52 22.442 52 1350 740 24.509 55 23.475 57 22.775 51 22.909 57 1206 740 24.509 53 23.112 54 22.544 50 1368 770 24.668 51 23.475 57 22.775 51 22.909 52 1332 750 24.770 51 23.474 52 22.807 52 22.442 52 1350 780 24.790 50 23.475 57 51 22.908 59 99 22.594 49 1404 790 24.968 49 23.574 49 23.008 49 22.643 50 1422 | 470 | 23.0 51 | 76 | 21.638 | 76 | | | | | | | 490 23,200 74 21,789 75 21,206 76 20,826 77 882 500 23,274 71 21,864 72 21,282 73 20,903 75 900 510 23,345 71 21,936 72 21,355 74 20,978 74 918 520 23,416 69 22,008 70 21,429 70 21,052 71 936 530 23,485 67 22,078 68 21,499 69 21,123 70 954 540 23,618 67 22,213 67 21,568 68 21,193 69 972 550 23,618 67 22,213 67 21,636 68 21,193 67 1008 570 23,749 63 22,345 64 21,769 66 21,397 61 1026 580 23,812 63 22,493 62 21,834 | | | 73 | 21.714 | | | | | | | | 510 23,345 71 21,936 72 21,355 74 20,978 74 918 520 23,416 69 22,008 70 21,429 70 21,052 71 936 530 23,485 67 22,078 68 21,499 69 21,123 70 954 540 23,552 66 22,146 67 21,568 68 21,193 69 972 550 23,618 67 22,213 67 21,636 68 21,297 69 972 550 23,618 67 22,280 65 21,704 65 21,330 67 1008 570 23,749 63 22,345 64 21,769 65 21,397 66 1026 580 23,812 63 22,409 64 21,834 65 21,462 65 1044 590 23,878 60 22,596 61 22,023 | 490 | 23.200 | 74 | 21.789 | 75 | 21.206 | | | | | | 510 23,345 71 21,936 72 21,355 74 20,978 74 918 520 23,485 67 22,078 68 21,429 70 21,123 70 954 540 23,552 66 22,146 67 21,558 68 21,193 69 972 550 23,618 67 22,213 67 21,636 68 21,193 69 972 550 23,6185 64 22,280 65 21,704 65 21,330 67 1008 570 23,749 63 22,345 64 21,769 66 21,397 66 1024 580 23,812 63 22,409 64 21,834 65 21,462 65 1044 590 23,875 62 22,473 62 21,899 62 21,527 63 1062 600 23,937 61 22,535 61 21,961 | 500 | 23.274 | 71 | 21.864 | 72 | 21,282 | 73 | 20.903 | 75 | 900 | | 520 23,416 69 22,008 70 21,429 70 21,052 71 936 530 23,485 67 22,078 68 21,499 69 21,123 70 954 540 23,552 66 22,146 67 21,568 68 21,193 69 972 550 23,618 67 22,213 67 21,568 68 21,193 69 972 550 23,685 64 22,280 65 21,704 66 21,330 67 1008 570 23,749 63 22,345 64 21,769 66 21,397 65 1026 580 23,812 63 22,409 64 21,834 65 21,462 65 1044 590 23,875 62 22,473 62 21,899 62 21,527 63 1062 600 23,937 61 22,535 61 21,961 62 21,590 63 1080 610 23,998 60 22,596 61 22,023 62 21,653 62 1098 620 24,058 58 22,657 59 22,085 59 21,715 59 1116 630 24,116 59 22,716 60 22,144 60 21,774 61 1134 640 24,175 57 22,776 58 22,204 58 21,835 59 1152 650 24,232 58 22,834 57 22,262 58 21,894 58 1170 660 24,290 55 22,891 56 22,320 56 21,952 57 1188 670 24,345 56 22,947 56 22,320 56 21,952 57 1186 670 24,401 54 23,003 55 22,433 55 22,066 55 1224 670 24,455 54 23,058 54 22,488 55 22,121 55 1242 700 24,569 53 23,112 54 22,543 54 22,176 55 1260 710 24,562 53 23,166 53 22,270 51 22,338 52 1314 740 24,719 51 23,323 51 22,755 52 22,390 52 1332 750 24,770 51 23,323 51 22,755 52 22,390 52 1332 750 24,770 51 23,323 51 22,755 52 22,390 52 1332 750 24,770 51 23,323 51 22,755 52 22,494 50 1368 770 24,870 50 23,475 51 22,908 51 22,544 50 1386 780 24,920 48 23,526 48 22,959 49 22,594 49 1404 790 24,968 49 23,574 49 23,008 49 22,643 50 1422 | | 23.345 | 71 | 21.936 | | 21.355 | | | | | | 530 23,485 67 22,078 68 21,499 69 21,123 70 954 540 23,552 66 22,146 67 21,568 68 21,193 69 972 550 23,618 67 22,213 67 21,636 68 21,262 68 990 570 23,749 63 22,345 64 21,769 65 21,397 65 1026 580 23,812 63 22,409 64 21,834 65 21,462 65 1044 590 23,937 61 22,535 61 21,961 62 21,590 63 1080 610 23,938 60 22,596 61 22,023 62 21,653 62 1098 620 24,058 58 22,657 59 22,085 59 21,715 59 1116 630 24,116 59 22,776 58 22,204 | | 23.416 | 69 | | 70 | | | | | | | 540 23.552 66 22.146 67 21.568 68 21.193 69 972 550 23.618 67 22.213 67 21.636 68 21.262 68 990 560 23.685 64 22.280 65 21.704 65 21.330 67 1008 570 23.749 63 22.345 64 21.769 65 21.397 65 1026 580 23.812 63 22.409 64 21.834 65 21.462 65 1044 590 23.875 62 22.473 62 21.899 62 21.527 63 1062 600 23.937 61 22.535 61 21.961 62 21.590 63 1080 610 23.998 60 22.596 61 22.023 62 21.653 62 1098 620 24.058 58 22.657 59 22.085 59 21.715 59 1116 630 24.116 59 22.716 60 22.144 60 21.774 61 1134 640 24.175 57 22.776 58 22.204 58 21.835 59 1152 650 24.232 58 22.834 57 22.262 58 21.894 58 1170 660 24.290 55 22.891 56 22.320 56 21.952 57 1188 670 24.345 56 22.947 56 22.376 57 22.009 57 1206 680 24.401 54 23.003 55 22.433 55 22.006 55 1224 690 24.455 54 23.058 54 22.488 55 22.121 55 1242 700 24.509 53 23.112 54 22.543 54 22.176 55 1260 710 24.562 53 23.166 53 22.597 54 22.231 54 1278 720 24.615 53 23.219 52 22.651 53 22.289 52 22.390 52 23.390 52 1332 750 24.770 51 23.323 51 22.755 52 22.390 52 1332 750 24.770 51 23.323 51 22.755 52 22.390 52 1332 750 24.770 51 23.374 52 22.807 52 22.442 52 1350 760 24.891 49 23.426 49 22.859 49 22.594 59 1326 770 24.968 49 23.526 48 22.959 49 22.594 59 1386 780 24.900 48 23.526 48 22.859 49 22.594 59 1386 780 24.908 49 23.574 49 23.008 49 22.643 50 1422 | | | 67 | 22.078 | 68 | 21,499 | | | | | | 560 23.685 64 22.280 65 21.704 65 21.330 67 1008 570 23.749 63 22.345 64 21.769 65 21.397 65 1026 580 23.812 63 22.409 64 21.834 65 21.462 65 1044 590 23.875 62 22.473 62 21.899
62 21.570 63 1062 600 23.937 61 22.535 61 21.961 62 21.590 63 1080 610 23.998 60 22.596 61 22.023 62 21.653 62 1098 620 24.058 58 22.657 59 22.085 59 21.715 59 1116 630 24.116 59 22.716 60 22.144 60 21.774 61 1134 640 24.232 58 22.834 57 22.262 <td>540</td> <td>23.552</td> <td>66</td> <td>22.146</td> <td>67</td> <td>21.568</td> <td></td> <td></td> <td></td> <td></td> | 540 | 23.552 | 66 | 22.146 | 67 | 21.568 | | | | | | 560 23,685 64 22,280 65 21,704 65 21,330 67 1008 570 23,749 63 22,345 64 21,769 65 21,397 65 1026 580 23,812 63 22,409 64 21,834 65 21,462 65 1042 590 23,875 62 22,473 62 21,899 62 21,590 63 1062 600 23,937 61 22,535 61 21,961 62 21,590 63 1080 610 23,938 60 22,596 61 22,023 62 21,653 62 1098 620 24,058 58 22,657 59 22,085 59 21,715 59 1116 630 24,116 59 22,716 60 22,144 60 21,774 61 1134 640 24,232 58 22,834 57 22,262 58 21,894 58 1170 660 24,232 58 | 550 | 23.618 | 67 | 22.213 | 67 | 21.636 | 68 | 21,262 | 68 | 990 | | 570 23,749 63 22,345 64 21,769 65 21,397 65 1026 580 23,812 63 22,409 64 21,834 65 21,462 65 1044 590 23,875 62 22,473 62 21,899 62 21,527 63 1062 600 23,937 61 22,535 61 21,961 62 21,590 63 1080 610 23,998 60 22,596 61 22,023 62 21,653 62 1098 620 24,058 58 22,657 59 22,085 59 21,715 59 1116 630 24,116 59 22,716 60 22,144 60 21,774 61 1134 640 24,232 58 22,834 57 22,262 58 21,894 58 1170 660 24,232 58 22,834 57 22,262 58 21,894 58 1170 660 24,232 56 | | 23.685 | 64 | 22,280 | | | | | | | | 580 23,812 63 22,409 64 21,834 65 21,462 65 1044 590 23,875 62 22,473 62 21,899 62 21,527 63 1062 600 23,937 61 22,535 61 21,961 62 21,590 63 1080 610 23,998 60 22,535 61 21,961 62 21,553 62 1098 620 24,058 58 22,657 59 22,085 59 21,715 59 1116 630 24,116 59 22,716 60 22,144 60 21,774 61 1134 640 24,175 57 22,776 58 22,204 58 21,835 59 1152 650 24,232 58 22,834 57 22,262 58 21,894 58 1170 660 24,290 55 22,891 56 22,320 56 21,952 57 1188 670 24,345 56 | | 23.749 | 63 | 22.345 | 64 | 21.769 | | | | | | 590 23.875 62 22.473 62 21.899 62 21.527 63 1062 600 23.937 61 22.535 61 21.961 62 21.590 63 1080 610 23.998 60 22.596 61 22.023 62 21.653 62 1098 620 24.058 58 22.657 59 22.085 59 21.715 59 1116 630 24.116 59 22.716 60 22.144 60 21.774 61 1134 640 24.175 57 22.776 58 22.204 58 21.835 59 1152 650 24.232 58 22.834 57 22.262 58 21.894 58 1170 660 24.232 58 22.891 56 22.376 57 22.009 57 1206 670 24.345 56 22.947 56 22.376 <td></td> <td>23.812</td> <td>63</td> <td>22.409</td> <td>64</td> <td>21.834</td> <td></td> <td></td> <td></td> <td></td> | | 23.812 | 63 | 22.409 | 64 | 21.834 | | | | | | 610 23,998 60 22,596 61 22,023 62 21,653 62 1098 620 24,058 58 22,657 59 22,085 59 21,715 59 1116 630 24,116 59 22,716 60 22,144 60 21,774 61 1134 640 24,175 57 22,776 58 22,204 58 21,835 59 1152 650 24,232 58 22,834 57 22,262 58 21,894 58 1170 660 24,290 55 22,891 56 22,320 56 21,952 57 1188 670 24,345 56 22,947 56 22,376 57 22,009 57 1206 680 24,401 54 23,003 55 22,433 55 22,066 55 1224 690 24,455 54 23,058 54 22,488 55 22,121 55 1242 700 24,509 53 23,112 54 22,488 55 22,121 55 1242 700 24,562 53 23,166 53 22,597 54 22,231 54 1278 720 24,615 53 23,219 52 22,651 53 22,285 53 1296 730 24,668 51 23,271 52 22,651 53 22,285 53 1296 730 24,668 51 23,271 52 22,651 53 22,238 52 1314 740 24,719 51 23,323 51 22,755 52 22,390 52 1332 750 24,870 50 23,475 51 22,908 51 22,444 50 1386 770 24,870 50 23,475 51 22,908 51 22,594 49 1404 790 24,908 49 23,574 49 23,508 49 22,643 50 1422 | 590 | 23.8 75 | 62 | 22.473 | 62 | | | | | | | 610 23.998 60 22.596 61 22.023 62 21.653 62 1098 620 24.058 58 22.657 59 22.085 59 21.715 59 1116 630 24.116 59 22.716 60 22.144 60 21.774 61 1134 640 24.175 57 22.776 58 22.204 58 21.835 59 1152 650 24.232 58 22.834 57 22.262 58 21.894 58 1170 660 24.290 55 22.891 56 22.320 56 21.952 57 1188 670 24.345 56 22.947 56 22.376 57 22.009 57 1206 680 24.401 54 23.003 55 22.433 55 22.066 55 1224 690 24.455 54 23.058 54 22.488 55 22.121 55 1242 700 24.509 53 23.112 54 22.488 55 22.121 55 1242 700 24.509 53 23.112 54 22.543 54 22.231 54 1278 720 24.615 53 23.219 52 22.651 53 22.285 53 1296 730 24.668 51 23.271 52 22.651 53 22.285 53 1296 730 24.668 51 23.271 52 22.651 53 22.285 53 1296 730 24.668 51 23.271 52 22.651 53 22.285 53 1296 730 24.668 51 23.271 52 22.651 53 22.285 53 1296 730 24.668 51 23.271 52 22.704 51 22.338 52 1314 740 24.719 51 23.323 51 22.755 52 22.390 52 1332 750 24.870 50 23.475 51 22.859 49 22.442 52 1350 760 24.821 49 23.426 49 22.859 49 22.442 52 1350 760 24.821 49 23.426 49 22.859 49 22.444 50 1386 770 24.870 50 23.475 51 22.908 51 22.554 50 1386 770 24.870 50 23.475 51 22.908 51 22.554 50 1386 770 24.870 50 23.475 51 22.908 51 22.554 50 1386 770 24.870 50 23.475 51 22.908 51 22.554 50 1386 770 24.870 50 23.475 51 22.908 51 22.554 50 1386 770 24.970 84 23.574 49 23.574 49 23.008 49 22.643 50 1422 | 600 | 23.937 | 61 | 22,535 | 61 | 21.961 | ы | 21 590 | 43 | 1080 | | 620 | 610 | 23,998 | | | | | | | | | | 630 | 620 | 24.058 | 58 | | | | | | | | | 640 24.175 57 22.776 58 22.204 58 21.835 59 1152 650 24.232 58 22.834 57 22.262 58 21.894 58 1170 660 24.290 55 22.891 56 22.320 56 21.952 57 1188 670 24.345 56 22.947 56 22.376 57 22.009 57 1206 680 24.401 54 23.003 55 22.433 55 22.066 55 1224 690 24.455 54 23.058 54 22.488 55 22.121 55 1242 700 24.509 53 23.112 54 22.543 54 22.176 55 1260 710 24.562 53 23.166 53 22.597 54 22.231 54 1278 720 24.615 53 23.219 52 22.651 53 22.285 53 1296 730 24.668 51 23.271 52 22.704 51 22.338 52 1314 740 24.719 51 23.323 51 22.755 52 22.390 52 1332 750 24.770 51 23.374 52 22.807 52 22.442 52 1350 760 24.821 49 23.426 49 22.859 49 22.494 50 1368 770 24.870 50 23.475 51 22.908 51 22.544 50 1386 780 24.920 48 23.526 48 22.959 49 22.594 49 1404 790 24.968 49 23.574 49 23.008 49 22.643 50 1422 | 630 | 24.116 | 59 | 22.716 | 60 | | | | | | | 660 24.290 55 22.891 56 22.320 56 21.952 57 1188 670 24.345 56 22.947 56 22.376 57 22.009 57 1206 680 24.401 54 23.003 55 22.433 55 22.066 55 1224 690 24.455 54 23.058 54 22.488 55 22.121 55 1242 700 24.509 53 23.112 54 22.543 54 22.176 55 1242 700 24.509 53 23.112 54 22.543 54 22.211 55 1242 700 24.562 53 23.166 53 22.597 54 22.231 54 1278 720 24.615 53 23.219 52 22.651 53 22.285 53 1296 730 24.668 51 23.271 52 22.704 51 22.338 52 1314 740 24.719 51 23.323 51 22.755 52 22.390 52 1332 750 24.821 49 23.426 49 22.859 49 22.494 50 1368 770 24.870 50 23.475 51 22.908 51 22.544 50 1386 780 24.920 48 23.526 48 22.959 49 22.494 50 1386 780 24.920 48 23.526 48 22.959 49 22.594 49 1404 790 24.968 49 23.574 49 23.008 49 22.643 50 1422 | 640 | 24.175 | 57 | 22.776 | 58 | 22.204 | | | | | | 660 24,290 55 22,891 56 22,320 56 21,952 57 1188 670 24,345 56 22,947 56 22,376 57 22,009 57 1206 680 24,401 54 23,003 55 22,433 55 22,066 55 1224 690 24,455 54 23,058 54 22,488 55 22,121 55 1242 700 24,509 53 23,112 54 22,543 54 22,176 55 1242 700 24,509 53 23,112 54 22,543 54 22,231 54 1278 720 24,615 53 23,219 52 22,651 53 22,285 53 1296 730 24,668 51 23,271 52 22,704 51 22,338 52 1314 740 24,719 51 23,323 51 22,755 52 22,390 52 1332 750 24,770 51 23,374 52 22,807 52 22,442 52 1350 760 24,821 49 23,426 49 22,859 49 22,494 50 1368 770 24,870 50 23,475 51 22,908 51 22,544 50 1386 780 24,920 48 23,526 48 22,959 49 22,594 49 1404 790 24,968 49 23,574 49 23,008 49 22,643 50 1422 | 650 | 24.232 | 58 | 22.834 | 57 | 22,262 | 58 | 21.894 | 58 | 1170 | | 670 | 660 | 24.290 | | | | | | | | | | 680 | 670 | 24.345 | | | | | | | | | | 690 24.455 54 23.058 54 22.488 55 22.121 55 1242 700 24.509 53 23.112 54 22.543 54 22.176 55 1260 710 24.562 53 23.166 53 22.597 54 22.231 54 1278 720 24.615 53 23.219 52 22.651 53 22.285 53 1296 730 24.668 51 23.271 52 22.704 51 22.338 52 1314 740 24.719 51 23.323 51 22.755 52 22.390 52 1332 750 24.770 51 23.374 52 22.807 52 22.390 52 1332 750 24.821 49 23.426 49 22.859 49 22.494 50 1368 770 24.870 50 23.475 51 22.908 51 22.544 50 1386 780 24.920 48 23.526 48 22.959 49 22.594 49 1404 790 24.968 49 23.574 49 23.008 49 22.643 50 1422 | 680 | 24.401 | 54 | | | | | | | | | 710 | 690 | 24.455 | 54 | 23.058 | | | | | | | | 710 | 700 | 24.509 | 53 | 23,112 | 54 | 22,543 | 54 | 22 176 | 56 | 1260 | | 720 24.615 53 23.219 52 22.651 53 22.285 53 1296 730 24.668 51 23.271 52 22.704 51 22.338 52 1314 740 24.719 51 23.323 51 22.755 52 22.390 52 1332 750 24.770 51 23.374 52 22.807 52 22.390 52 1332 750 24.821 49 23.426 49 22.859 49 22.494 50 1368 770 24.870 50 23.475 51 22.908 51 22.544 50 1386 780 24.920 48 23.526 48 22.959 49 22.594 49 1404 790 24.968 49 23.574 49 23.008 49 22.643 50 1422 | | | | | | | | | | | | 730 | | | | | | | | | | | | 740 24.719 51 23.323 51 22.755 52 22.390 52 1332 750 24.770 51 23.374 52 22.807 52 22.442 52 1350 760 24.821 49 23.426 49 22.859 49 22.494 50 1368 770 24.870 50 23.475 51 22.908 51 22.544 50 1386 780 24.920 48 23.526 48 22.959 49 22.594 49 1404 790 24.968 49 23.574 49 23.008 49 22.643 50 1422 | 730 | | | | | | | | | | | 760 24.821 49 23.426 49 22.859 49 22.494 50 1368 770 24.870 50 23.475 51 22.908 51 22.544 50 1386 780 24.920 48 23.526 48 22.959 49 22.594 49 1404 790 24.968 49 23.574 49 23.008 49 22.643 50 1422 | | | | | | | | | | | | 760 24.821 49 23.426 49 22.859 49 22.494 50 1368 770 24.870 50 23.475 51 22.908 51 22.544 50 1386 780 24.920 48 23.526 48 22.959 49 22.594 49 1404 790 24.968 49 23.574 49 23.008 49 22.643 50 1422 | 750 | 24.770 | 51 | 23,374 | 52 | 22,807 | 5 2 | 22 442 | EO | 1350 | | 770 24.870 50 23.475 51 22.908 51 22.544 50 1386 780 24.920 48 23.526 48 22.959 49 22.594 49 1404 790 24.968 49 23.574 49 23.008 49 22.643 50 1422 | | | | | | | | | | | | 780 24.920 48 23.526 48 22.959 49 22.594 49 1404 790 24.968 49 23.574 49 23.008 49 22.643 50 1422 | | | | | | | | | | | | 790 24.968 49 23.574 49 23.008 49 22.643 50 1422 | | | | | | | | | | | | 800 25.017 23.623 23.057 22.693 1440 | | | | | | | | | | | | | 800 | 25.017 | | 23.623 | | 23.057 | | 22.693 | | 1440 | | \$\begin{align*} \begin{align*} \begin* \begin{align*} \begin{align*} \begin{align*} \begin{align*}
\begin{align*} \begin{align*} \begin{align*} \begin{align*} \begin* \begin{align*} \begin{align*} \begin{align*} \begin{align*} \begin{align*} \begin{align*} \begin{align*} \begin{align*} \begin* \begin{align*} \begin{align*} \begin{align*} \begin{align*} \begin{align*} \begin{align*} \begin{align*} \begin{align*} \begin* \begin{align*} \begin{align*} \begin{align*} \begin{align*} \begin{align*} \begin{align*} \begin{align*} \begin{align*} \begin* \begin{align*} \begin{align*} \begin{align*} \begin{align*} \begin{align*} \begin{align*} \begin{align*} \begin{align*} \begin* \begin{align*} | | · | | | | | | | · | | |--|------|-------------|---------------|--------|-----|--------|-----|--------|-----|------------| | \$\begin{array}{c c c c c c c c c c c c c c c c c c c | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | ° R | | \$\begin{array}{c c c c c c c c c c c c c c c c c c c | | | | | | · | | | | • | | 850 25.251 223 23.858 224 23.292 226 22.292 27 1530 900 25.474 213 24.082 214 23.518 214 23.156 215 1620 950 25.6871 294 24.296 205 23.732 206 23.771 206 1710 1000 25.891 195 24.501 196 23.732 206 23.771 206 1710 1100 25.891 195 24.501 196 23.732 206 23.771 206 1711 1100 26.275 181 24.885 182 24.324 181 23.963 182 1980 1150 26.630 199 25.241 170 24.680 199 24.132 170 21.081 175 24.145 175 2070 1250 26.799 162 25.411 162 24.849 163 24.490 163 2250 | 800 | 25.017 | 234 | 23.623 | 235 | 23.057 | 225 | 22 603 | 22/ | 1440 | | 900 25.474 213 24.082 214 23.518 214 23.156 215 1620 25.687 204 24.296 205 23.732 206 23.371 206 17.10 1000 25.891 195 24.501 196 23.938 196 23.577 197 1800 1000 25.891 195 24.501 196 23.938 196 23.577 197 1800 1000 25.891 195 24.501 196 23.938 196 23.577 197 1800 1000 26.275 181 24.885 182 24.324 181 23.963 182 1980 1150 26.456 174 25.067 174 24.505 175 24.145 175 2070 1200 26.630 169 25.241 170 24.660 169 24.320 170 2160 1250 26.630 169 25.241 170 24.660 169 24.320 170 2160 1250 26.630 189 25.241 170 24.660 169 24.320 170 2160 1250 26.799 162 25.411 162 24.849 163 24.490 163 2250 1300 26.961 158 25.731 158 25.171 152 24.653 159 23.40 1350 27.119 153 25.731 153 25.171 152 24.812 152 24.812 152 24.81 1400 27.272 148 25.884 148 25.323 149 24.964 149 25.20 1450 27.420 143 26.032 143 25.472 143 25.113 144 26.10 27.420 143 26.032 145 25.472 143 25.113 144 26.10 27.363 159 26.175 159 25.615 159 25.257 159 2700 1550 27.702 135 26.450 152 25.890 152 25.552 152 2880 1650 27.969 128 26.582 128 26.022 128 25.664 128 2970 1700 28.202 121 26.835 121 26.275 122 25.918 121 3150 1800 28.343 119 26.956 119 25.615 125 25.918 121 3150 1800 28.843 119 26.956 119 25.651 113 26.631 113 32.00 28.222 121 26.835 121 26.275 122 25.918 121 3150 1800 28.843 119 26.956 119 26.575 113 27.075 115 26.516 115 26.516 115 26.158 115 3330 1100 28.577 113 27.190 113 26.651 113 26.273 114 3420 110 27.303 110 26.744 110 26.387 110 3510 2000 28.800 100 27.303 110 26.744 110 26.387 110 3510 2000 28.800 100 27.303 110 26.746 110 27.303 110 26.744 110 26.387 110 3510 2000 29.217 99 27.831 99 27.272 99 26.914 99 3960 29.013 103 27.627 103 27.667 103 27.667 103 26.710 103 3780 2200 29.217 99 27.831 99 27.7563 93 27.206 93 4230 29.013 103 27.627 103 27.667 103 27.667 103 27.007 103 27. | 850 | 25,251 | | | | | | | | | | 950 | | | | | | | | | | | | 1000 | | | | | | | | | | | | 1050 26.086 189 24.697 188 24.134 190 23.744 189 1890 1100 26.275 181 24.885 182 24.324 181 23.963 182 1980 1150 26.456 174 25.067 174 24.505 175 24.145 175 2070 1200 26.630 189 25.241 170 24.680 189 24.490 163 2250 1250 26.799 182 25.411 182 24.849 163 24.490 163 2250 1300 26.961 188 25.573 188 25.012 189 24.653 189 2340 1830 27.119 183 25.731 183 25.171 182 24.8812 182 2430 1400 27.272 148 25.884 148 25.323 149 24.964 149 2520 1450 27.420 143 26.032 143 25.472 143 25.133 144 2610 27.2563 189 26.175 189 25.615 | | | | | | | | | | | | 1100 | 1000 | 23.071 | 173 | 24.501 | 176 | 23.730 | 196 | 23,511 | 197 | 1800 | | 1150 26.456 174 25.067 174 24.505 175 24.145 175 2700 1200 26.630 169 25.241 170 24.680 169 24.320 170 2160 1250 26.799 162 25.411 162 24.889 163 2250 170 2160 139 2250 1300 26.961 158 25.573 158 25.012 159 24.653 159 2340 1350 27.119 153 25.731 153 25.171 152 24.812 152 2430 1400 27.272 148 25.884 148 25.323 149 24.964 149 2520 1450 27.420 143 26.032 143 25.472 143 25.113 144 2610 1500 27.563 159 26.175 159 25.615 159 25.257 159 2700 1550 27.702 135 26.314 136 25.754 136 25.396 136 27.900 1600 27.837 132 26.450 132 25.889 132 25.5532 132 2880 1650 27.969 128 26.582 128 26.022 128 25.664 128 2970 1700 28.097 125 26.710 125 26.150 125 25.792 126 3060 1750 28.222 121 26.835 121 26.275 122 25.918 121 3150 1800 28.343 119 26.956 119 26.397 119 26.039 119 3240 1800 28.343 119 26.956 119 26.397 119 26.039 119 3240 1850 28.462 115 27.075 115 26.516 115 26.158 115 3330 1800 28.343 119 26.956 119 26.397 119 26.039 119 3240 1850 28.462 115 27.075 115 26.516 115 26.158 115 3350 1900 28.577 113 27.190 113 26.651 113 26.257 113 27.190 113 26.651 113 26.273 114 3420 1950 28.800 108 27.413 109 26.684 108 26.497 108 3600 2050 28.800 108 27.413 109 26.684 108 26.497 108 3600 2050 29.013 103 27.627 103 27.067 103 27.067 103 3780 2250 29.316 97 27.831 99 27.272 99 26.914 99 3960 29.013 103 27.627 103 27.067 103 27.067 103 3780 2250 29.316 97 27.930 97 27.371 97 27.272 99 26.914 99 3960 29.413 95 28.225 19 28.207 95 27.468 95 27.110 96 4140 2500 29.913 80 28.207 95 27.522 105 26.966 93 27.206 93 4230 29.413 95 28.207 95 27.468 95 27.100 97 27.373 97 27.272 99 26.914 99 3960 29.915 80 28.306 89 27.747 89 27.390 89 4410 2500 29.969 80 28.306 89 27.747 89 27.390 89 4410 2500 29.969 80 28.306 89 27.747 89 27.390 89 4410 2500 29.969 80 28.809 80 28.809 80 27.627 80 27.563 80 27.663 80 27.663 80 27.903 80 4850 27.903 80 4850 27.903 80 4850 27.903 80 4850 27.903 80 4850 27.903 80 27.905 80 28.809 80 28.809 80 28.809 80 27.627 80 28.809 80 27.600 29.955 80 28.809 80 28.809 80 27.626 80 27.903 80 4850 27.903 80 4850 27.903 80 27.905 80 28. | | | 189 | | 188 | 24.134 | 190 | 23.744 | 189 | 1890 | | 1150 | | | 181 | 24.885 | 182 | 24.324 | 181 | 23.963 | 182 | 1980 | | 1200 26.630 169
25.241 170 24.680 169 24.320 170 2160 1250 26.799 162 25.411 162 24.849 163 24.490 163 2250 1300 26.961 158 25.573 158 25.012 159 24.653 159 2340 1350 27.119 153 25.731 153 25.171 152 24.812 152 2430 1400 27.272 148 25.884 148 25.323 149 24.964 169 2520 1450 27.420 143 26.032 143 25.472 143 25.113 144 2610 1500 27.563 139 26.175 139 25.615 139 25.257 139 2700 1550 27.702 135 26.314 136 25.754 136 25.396 136 2790 1600 27.837 132 26.450 132 25.890 132 25.532 132 2880 1650 27.969 128 26.582 128 26.022 128 25.664 128 2970 1700 28.097 125 26.710 125 26.150 125 25.792 126 3060 1750 28.222 121 26.835 121 26.275 122 25.918 121 3150 1800 28.343 119 26.956 119 26.397 119 26.039 119 3240 1850 28.462 115 27.075 115 26.516 115 26.158 115 3330 1900 28.577 113 27.190 113 26.631 113 26.273 114 3420 1950 28.690 110 27.303 110 26.744 110 26.387 110 3510 2000 28.800 108 27.427 103 27.067 103 26.6710 103 3780 2000 29.013 103 27.627 103 27.067 103 26.613 101 3870 2000 29.913 103 27.627 103 27.067 103 26.613 101 3870 2000 29.914 97 97 27.831 99 27.272 99 26.914 99 3960 2000 29.413 95 28.027 95 27.468 95 27.110 96 4140 2350 29.916 97 27.831 99 27.747 99 27.391 97 27.013 97 4050 2550 29.869 86 28.483 86 27.747 89 27.390 89 4410 2550 29.969 86 28.483 86 27.747 89 27.390 89 4410 2550 29.969 86 28.483 86 27.747 89 27.390 89 4410 2550 29.969 86 28.483 86 27.747 89 27.390 89 4410 2550 29.020 29.055 86 28.659 85 28.005 80 27.903 80 27 | | | 174 | | 174 | 24.505 | 175 | 24.145 | | | | 1250 26.799 162 25.411 162 24.849 163 24.490 163 2250 | | | 169 | 25.241 | 170 | 24.680 | 169 | 24,320 | | 2160 | | 1350 27.119 153 25.731 153 25.171 152 24.812 152 2430 1440 27.272 148 25.884 148 25.323 149 24.964 149 25.20 1450 27.420 143 26.032 143 25.472 143 25.113 144 26.10 1500 27.563 139 26.175 139 25.615 139 25.257 139 2700 1550 27.702 135 26.314 136 25.754 136 25.396 136 27.90 1600 27.837 132 26.450 132 25.890 132 25.552 132 2880 1650 27.969 128 26.582 128 26.022 128 25.664 128 2970 1700 28.097 125 26.710 125 26.150 125 25.792 126 3060 1750 28.222 121 26.835 121 26.275 122 25.918 121 3150 1800 28.343 119 26.956 119 26.397 119 26.039 119 3240 1850 28.462 115 27.075 115 26.516 115 26.516 115 26.158 115 3330 1900 28.577 113 27.190 113 26.631 113 26.273 114 3420 1950 28.800 108 27.413 109 26.854 108 26.497 108 3600 2000 28.800 108 27.413 109 26.854 108 26.497 108 3600 2000 28.908 105 27.522 105 26.962 105 26.605 105 3690 2100 29.013 103 27.627 103 27.067 103 26.710 103 3780 2150 29.116 101 27.730 101 27.170 102 26.813 101 3870 2200 29.217 99 27.831 99 27.272 99 26.914 99 3960 2250 29.217 99 27.831 99 27.272 99 26.914 99 3960 2250 29.217 99 27.831 99 27.272 99 26.914 99 3960 2250 29.508 93 28.122 93 27.563 93 27.206 93 4230 2400 29.601 91 28.215 91 27.656 91 27.299 91 4320 2450 29.692 89 28.306 89 27.747 89 27.308 89 4550 29.508 89 28.819 80 28.809 80 27.903 80 4950 27.503 80 4950 27.503 80 4950 27.503 80 4950 27.503 80 4950 27.503 80 27.821 80 28.809 80 27.800 80 | 1250 | 26.799 | 162 | 25.411 | 162 | 24.849 | 163 | | | | | 1350 27.119 153 25.731 153 25.171 152 24.812 152 2430 1400 27.272 148 25.884 148 25.323 149 24.964 149 2520 27.420 143 26.032 143 25.472 143 25.113 144 2610 1500 27.563 139 26.175 139 25.615 139 25.257 139 2700 1550 27.702 135 26.314 136 25.754 136 25.396 136 2790 1600 27.837 132 26.450 132 25.890 132 25.532 132 2880 1650 27.969 128 26.582 128 26.022 128 25.664 128 2970 1700 28.097 125 26.710 125 26.150 125 25.792 126 3060 1750 28.222 121 26.835 121 26.275 122 25.918 121 3150 1800 28.343 119 26.956 119 26.397 119 26.039 119 3240 1850 28.462 115 27.075 115 26.516 115 26.158 115 3330 1800 28.577 113 27.190 113 26.631 113 26.273 114 3420 1950 28.690 110 27.303 110 26.744 110 26.387 110 3510 2000 28.800 108 27.413 109 26.854 108 26.497 108 3600 2000 28.800 108 27.413 109 26.854 108 26.497 108 3600 2000 29.013 103 27.627 103 27.067 103 26.710 103 3780 2150 29.116 101 27.730 101 27.170 102 26.813 101 3870 2200 29.217 99 27.831 99 27.272 99 26.914 99 3960 27.9316 97 27.930 97 27.371 97 27.013 97 4050 2450 29.692 89 28.306 99 27.272 99 26.914 99 3960 29.013 103 28.122 93 27.565 91 27.206 93 4230 2400 29.601 91 28.215 91 27.656 91 27.299 91 4320 2450 29.692 89 28.306 89 27.747 89 27.390 89 4410 2550 29.986 86 28.483 86 27.924 86 27.567 86 4500 29.955 85 28.569 85 28.659 85 2 | 1300 | 26 961 | 150 | 25 573 | 150 | 25.012 | 150 | 24 (52 | | 2240 | | 1400 27.272 148 25.884 148 25.323 149 24,964 149 2520 1450 27.420 143 26.032 143 25,472 143 25,113 144 2610 1500 27.563 139 26.175 139 25.615 139 25.257 139 2700 1550 27.702 135 26.314 136 25.754 136 25.396 136 2790 1600 27.837 132 26.450 132 25.890 132 25.532 132 2880 1650 27.969 128 26.582 128 26.022 128 25.792 126 3060 1750 28.027 125 26.710 125 26.150 125 25.792 126 3060 1750 28.222 121 26.835 121 26.275 122 25.918 121 3150 1800 28.343 119 26.956 | | | | | | | | | | | | 1450 27,420 143 26,032 143 25,472 143 25,113 144 2610 1500 27,563 139 26,175 139 25,615 139 25,257 139 2700 1550 27,702 135 26,314 136 25,754 136 25,396 136 2790 1600 27,837 132 26,450 132 25,890 132 25,532 132 2880 1650 27,969 128 26,582 128 26,022 128 25,664 128 2970 1700 28,097 125 26,710 125 26,150 125 25,792 126 3060 1750 28,222 121 26,835 121 26,275 122 25,918 121 3150 1800 28,343 119 26,956 119 26,397 119 26,039 119 26,039 119 326,039 119 26,039 119 326,031 113 26,273 114 3420 1850 28,4 | | | | | | | - | | | | | 1500 27.563 139 26.175 139 25.615 139 25.257 139 2700 1550 27.702 135 26.314 136 25.754 136 25.396 136 2790 1600 27.837 132 26.450 132 25.890 132 25.532 132 2880 1650 27.969 128 26.582 128 26.022 128 25.664 128 2970 1700 28.097 125 26.710 125 26.150 125 25.792 126 3060 1750 28.222 121 26.835 121 26.275 122 25.918 121 3150 1800 28.343 119 26.956 119 26.397 119 26.039 119 3240 1850 28.462 115 27.075 115 26.516 115 26.158 115 3330 1900 28.577 113 27.190 113 26.631 113 26.273 114 3420 1950 28.690 110 27.303 110 26.744 110 26.387 110 3510 2000 28.800 108 27.413 109 26.854 108 26.497 108 3600 2050 28.908 105 27.522 105 26.962 105 26.407 108 3600 2050 29.013 103 27.627 103 27.067 103 26.710 103 3780 2150 29.116 101 27.730 101 27.170 102 26.813 101 3870 2200 29.217 99 27.831 99 27.272 99 26.914 99 3960 2250 29.316 97 27.930 97 27.371 97 27.013 97 4050 2300 29.413 95 28.027 95 27.468 95 27.110 96 4140 2350 29.508 93 28.122 93 27.565 91 27.206 93 4230 2450 29.692 89 28.306 89 27.747 89 27.390 89 4410 2550 29.508 93 28.122 93 27.565 91 27.656 91 27.299 91 4320 2450 29.692 89 28.306 89 27.747 89 27.390 89 4410 2550 29.869 86 28.483 86 27.924 86 27.567 86 4590 2600 29.955 85 28.569 85 28.010 85 27.653 85 4680 2750 30.040 83 28.654 83 28.095 83 27.738 83 4770 2700 30.123 82 28.737 82 28.178 88 27.831 82 27.821 82 4860 2750 30.025 80 28.819 80 28.260 80 27.903 80 4950 | | | | | | | | | | | | 1550 27,702 135 26,314 136 25,754 136 25,396 136 2790 1600 27,837 132 26,450 132 25,890 132 25,532 132 2880 1650 27,969 128 26,582 128 26,022 128 25,664 128 2970 1700 28,097 125 26,710 125 26,150 125 25,792 126 3060 1750 28,222 121 26,835 121 26,275 122 25,918 121 3150 1800 28,343 119 26,956 119 26,397 119 26,039 119 3240 1850 28,462 115 27,075 115 26,516 115 26,158 115 3330 1900 28,577 113 27,190 113 26,631 113 26,273 114 3420 1950 28,690 110 27,303 110 26,744 110 26,387 110 3510 2000 28,800 108 27,413 109 26,854 108 26,497 108 3600 2050 28,908 105 27,522 105 26,962 105 26,605 105 3690 2100 29,013 103 27,627 103 27,067 103 26,710 103 3780 2150 29,116 101 27,730 101 27,170 102 26,813 101 3870 2200 29,217 99 27,831 99 27,272 99 26,914 99 3960 2200 29,217 99 27,831 99 27,272 99 26,914 99 3960 2300 29,413 95 28,027 95 27,468 95 27,110 96 4140 2350 29,508 93 28,122 93 27,563 93 27,206 93 4230 2450 29,692 89 28,396 89 27,747 89 27,390 89 4410 2550 29,869 86 28,483 86 27,924 86 27,567 86 4590 2550 29,869 86 28,483 86 27,924 86 27,567 86 4590 2550 29,869 86 28,483 86 27,924 86 27,567 86 4590 2550 29,869 86 28,483 86 27,924 86 27,567 86 4590 2550 29,869 86 28,883 86 27,924 86 27,567 86 4590 2550 29,955 85 28,569 85 28,010 85 27,338 83 4770 2500 29,955 85 28,569 85 28,010 85 27,338 83 4770 2500 29,955 85 28,569 85 28,010 85 27,338 83 4770 2500 29,050 80 28,899 80 28,260 80 27,903 80 4950 2550 2500 2500 2500 2500 2500 2500 | | | | | | | | | | | | 1600 27.837 1x 26.450 1x 25.890 1x 25.532 1x 2880 1650 27.969 128 26.582 128 26.022 128 25.664 128 2970 1700 28.097 125 26.710 125 26.150 125 25.792 126 3060 1750 28.222 121 26.835 121 26.275 122 25.918 121 3150 1800 28.343 119 26.956 119 26.397 119 26.039 119 3240 1850 28.462 115 27.075 115 26.516 115
26.158 115 3330 1900 28.577 113 27.190 113 26.631 113 26.273 114 3420 1950 28.690 100 27.303 110 26.744 110 26.387 110 3510 2050 28.908 105 27.522 | 1300 | 27.505 | 137 | 20.175 | 139 | 23.013 | 139 | 25.257 | 139 | 2/00 | | 1600 27,837 132 26,450 132 25,890 132 25,532 132 2880 1650 27,969 128 26,582 128 26,022 128 25,664 128 2970 1700 28,097 125 26,710 125 26,150 125 25,792 126 3060 1750 28,222 121 26,835 121 26,275 122 25,918 121 3150 1800 28,343 119 26,956 119 26,397 119 26,039 119 3240 1850 28,462 115 27,075 115 26,516 115 26,158 115 3330 1900 28,577 113 27,190 113 26,631 113 26,273 114 3420 1950 28,690 110 27,303 110 26,744 110 26,387 110 3510 2000 28,800 108 27,522 105 26,962 105 26,605 105 3690 2100 <td></td> <td></td> <td>135</td> <td>26.314</td> <td>136</td> <td>25.754</td> <td>136</td> <td>25,396</td> <td>136</td> <td>2790</td> | | | 135 | 26.314 | 136 | 25.754 | 136 | 25,396 | 136 | 2790 | | 1650 27,969 128 26,582 128 26,022 128 25,664 128 2970 1700 28,097 125 26,710 125 26,150 125 25,792 126 3060 1750 28,222 121 26,835 121 26,275 122 25,918 121 3150 1800 28,343 119 26,956 119 26,397 119 26,039 119 3240 1850 28,462 115 27,075 115 26,516 115 26,158 115 3330 1900 28,577 113 27,190 113 26,631 113 26,273 114 3420 1950 28,690 110 27,303 110 26,744 110 26,387 110 3510 2000 28,800 108 27,413 109 26,854 108 26,497 108 3600 2100 29,013 103 27,522 | 1600 | 27.837 | 132 | 26,450 | 132 | 25,890 | | | | | | 1700 28,097 125 26,710 125 26,150 125 25,792 126 3060 1750 28,222 121 26,835 121 26,275 122 25,918 121 3150 1800 28,343 119 26,956 119 26,397 119 26,039 119 3240 1850 28,462 115 27,075 115 26,516 115 26,158 115 3330 1900 28,577 113 27,190 113 26,631 113 26,273 114 3420 1950 28,690 110 27,303 110 26,744 110 26,387 110 3510 2000 28,908 105 27,522 105 26,962 105 26,605 105 3690 2150 29,013 103 27,627 103 27,067 103 26,710 103 3780 2150 29,116 101 27,730 101 27,170 102 26,813 101 3870 2250 29,217 99 27,831 99 27,272 99 26,914 99 3960 2250 29,316 97 <td>1650</td> <td>27,969</td> <td>128</td> <td>26.582</td> <td>128</td> <td>26,022</td> <td></td> <td></td> <td></td> <td></td> | 1650 | 27,969 | 128 | 26.582 | 128 | 26,022 | | | | | | 1750 28.222 121 26.835 121 26.275 122 25.918 121 3150 1800 28.343 119 26.956 119 26.397 119 26.039 119 3240 1850 28.462 115 27.075 115 26.516 115 26.158 115 3330 1900 28.577 113 27.190 113 26.631 113 26.273 114 3420 1950 28.690 110 27.303 110 26.744 110 26.387 110 3510 2000 28.800 108 27.413 109 26.854 108 26.497 108 3600 2050 28.908 105 27.522 105 26.962 105 26.605 105 3690 2100 29.013 103 27.627 103 27.067 103 26.710 103 3780 2150 29.116 101 27.730 101 27.170 102 26.813 101 3870 2200 <td>1700</td> <td>28.097</td> <td>125</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | 1700 | 28.097 | 125 | | | | | | | | | 1800 28.343 119 26.956 119 26.397 119 26.039 119 3240 1850 28.462 115 27.075 115 26.516 115 26.158 115 3330 1900 28.577 113 27.190 113 26.631 113 26.273 114 3420 1950 28.690 110 27.303 110 26.744 110 26.387 110 3510 2000 28.800 108 27.413 109 26.854 108 26.497 108 3600 2050 28.908 105 27.522 105 26.962 105 26.605 105 3690 2100 29.013 103 27.627 103 27.067 103 26.710 103 3780 2150 29.116 101 27.730 101 27.170 102 26.813 101 3870 2250 29.316 97 27.831 99 27.272 99 26.914 99 3960 2300 | 1750 | 28,222 | | | | | | | | | | 1850 28.462 115 27.075 115 26.516 115 26.158 115 3330 1900 28.577 113 27.190 113 26.631 113 26.273 114 3420 1950 28.690 110 27.303 110 26.744 110 26.387 110 3510 2000 28.800 108 27.413 109 26.854 108 26.497 108 3600 2050 28.908 105 27.522 105 26.962 105 26.605 105 3690 2100 29.013 103 27.627 103 27.167 103 26.710 103 3780 2150 29.116 101 27.730 101 27.170 102 26.813 101 3870 2200 29.217 99 27.831 99 27.272 99 26.914 99 3960 2250 29.316 97 27.930 97 27.371 97 27.013 97 4050 2300 | | | | | | | | | | | | 1900 28.577 113 27.190 113 26.631 113 26.273 114 3420 1950 28.690 110 27.303 110 26.744 110 26.387 110 3510 2000 28.800 108 27.413 109 26.854 108 26.497 108 3600 2050 28.908 105 27.522 105 26.962 105 26.605 105 3690 2100 29.013 103 27.627 103 27.067 103 26.710 103 3780 2150 29.116 101 27.730 101 27.170 102 26.813 101 3870 2200 29.217 99 27.831 99 27.272 99 26.914 99 3960 2250 29.316 97 27.930 97 27.371 97 27.013 97 27.013 97 27.013 97 27.013 97 27.013 97 27.013 97 27.371 97 27.013 97 <t< td=""><td></td><td></td><td>119</td><td></td><td>119</td><td>26.397</td><td>119</td><td>26.039</td><td>119</td><td>3240</td></t<> | | | 119 | | 119 | 26.397 | 119 | 26.039 | 119 | 3240 | | 1900 28.577 113 27.190 113 26.631 113 26.273 114 3420 1950 28.690 110 27.303 110 26.744 110 26.387 110 3510 2000 28.800 108 27.413 109 26.854 108 26.497 108 3600 2050 28.908 105 27.522 105 26.962 105 26.605 105 3690 2100 29.013 103 27.627 103 27.067 103 26.710 103 3780 2150 29.116 101 27.730 101 27.170 102 26.813 101 3870 2200 29.217 99 27.831 99 27.272 99 26.914 99 3960 2250 29.316 97 27.930 97 27.371 97 27.013 97 4050 2300 29.413 95 28.027 95 27.468 95 27.110 96 4140 2350 | | | 115 | | 115 | 26.516 | 115 | 26.158 | 115 | 3330 | | 1950 28.690 110 27.303 110 26.744 110 26.387 110 3510 2000 28.800 108 27.413 109 26.854 108 26.497 108 3600 2050 28.908 105 27.522 105 26.962 105 26.605 105 3690 2100 29.013 103 27.627 103 27.067 103 26.710 103 3780 2150 29.116 101 27.730 101 27.170 102 26.813 101 3870 2200 29.217 99 27.831 99 27.272 99 26.914 99 3960 2250 29.316 97 27.930 97 27.371 97 27.013 97 37.013 97 27.013 97 27.013 97 27.013 97 27.013 97 27.013 97 27.013 97 27.013 97 27.013 97 27.013 97 27.013 97 27.101 96 4140 2 | | | 113 | 27.190 | 113 | 26.631 | 113 | 26,273 | 114 | 3420 | | 2050 28.908 105 27.522 105 26.962 105 26.605 105 3690 2100 29.013 103 27.627 103 27.067 103 26.710 103 3780 2150 29.116 101 27.730 101 27.170 102 26.813 101 3870 2200 29.217 99 27.831 99 27.272 99 26.914 99 3960 2250 29.316 97 27.930 97 27.371 97 27.013 97 4050 2300 29.413 95 28.027 95 27.468 95 27.110 96 4140 2350 29.508 93 28.122 93 27.563 93 27.206 93 4230 2400 29.601 91 28.215 91 27.656 91 27.299 91 4320 2450 29.692 89 28.306 89 27.747 89 27.390 89 4410 2500 29.781 88 28.395 88 27.836 88 27.479 88 4500 2550 29.869 86 28.483 86 27.924 86 27.567 86 4590 2650 30.040 83 28.654 83 28.095 83 27.638 83 4770 2700 30.123 82 28.737 82 28.178 82 27.821 82 4860 27.503 30.205 80 28.819 80 28.260 80 27.903 80 4950 | | | 110 | | 110 | 26.744 | 110 | 26,387 | 110 | | | 2100 29.013 103 27.627 103 27.067 103 26,710 103 3780 2150 29.116 101 27.730 101 27.170 102 26,813 101 3870 2200 -29.217 99 27.831 99 27.272 99 26,914 99 3960 2250 29.316 97 27,930 97 27,371 97 27,013 97 4050 2300 29.413 95 28.027 95 27,468 95 27,110 96 4140 2350 29.508 93 28.122 93 27.563 93 27.206 93 4230 2400 29.601 91 28.215 91 27.656 91 27.299 91 4320 2450 29.692 89 28.306 89 27.747 89 27.390 89 4410 2500 29.781 88 28.395 88 27.836 88 27.479 88 4500 2550 29.869 | 2000 | 28.800 | 108 | 27.413 | 109 | 26.854 | 108 | 26.497 | 108 | 3600 | | 2100 29.013 103 27.627 103 27.067 103 26,710 103 3780 2150 29.116 101 27.730 101 27.170 102 26,813 101 3870 2200 -29.217 99 27.831 99 27.272 99 26,914 99 3960 2250 29.316 97 27,930 97 27,371 97 27,013 97 4050 2300 29.413 95 28.027 95 27.468 95 27.110 96 4140 2350 29.508 93 28.122 93 27.563 93 27.206 93 4230 2400 29.601 91 28.215 91 27.656 91 27.299 91 4320 2450 29.692 89 28.306 89 27.747 89 27.390 89 4410 2500 29.781 88 28.395 88 27.836 88 27.479 88 4500 2550 29.869 | 2050 | 28 908 | 105 | 27 522 | 100 | 24 042 | 100 | 26 605 | | 2/00 | | 2150 29.116 101 27.730 101 27.170 102 26.813 101 3870 2200 29.217 99 27.831 99 27.272 99 26.914 99 3960 2250 29.316 97 27.930 97 27.371 97 27.013 97 4050 2300 29.413 95 28.027 95 27.468 95 27.110 96 4140 2350 29.508 93 28.122 93 27.563 93 27.206 93 4230 2400 29.601 91 28.215 91 27.656 91 27.299 91 4320 2450 29.692 89 28.306 89 27.747 89 27.390 89 4410 2500 29.781 88 28.395 88 27.836 88 27.479 88 4500 2550 29.869 86 28.483 86 27.924 86 27.567 86 4590 2600 29.955 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | | | | | | 2200 29.217 99 27.831 99 27.272 99 26.914 99 3960 2250 29.316 97 27.930 97 27.371 97 27.013 97 4050 2300 29.413 95 28.027 95 27.468 95 27.110 96 4140 2350 29.508 93 28.122 93 27.563 93 27.206 93 4230 2400 29.601 91 28.215 91 27.656 91 27.299 91 4320 2450 29.692 89 28.306 89 27.747 89 27.390 89 4410 2500 29.781 88 28.395 88 27.836 88 27.479 88 4500 2550 29.869 86 28.483 86 27.924 86 27.567 86 4590 2650 30.040 83 28.569 85 28.010 85 27.653 85 4680 2750 30.123 82 28.737 82 28.178 82 27.821 82 4860 2750 30.205 80 28.819 80 <td></td> | | | | | | | | | | | | 2250 29.316 97 27.930 97 27.371 97 27.013 97 4050 2300 29.413 95 28.027 95 27.468 95 27.110 96 4140 2350 29.508 93 28.122 93 27.563 93 27.206 93 4230 2400 29.601 91 28.215 91 27.656 91 27.299 91 4320 2450 29.692 89 28.306 89 27.747 89 27.390 89 4410 2500 29.781 88 28.395 88 27.836 88 27.479 88 4500 2550 29.869 86 28.483 86 27.924 86 27.567 86 4590 2600 29.955 85 28.569 85 28.010 85 27.653 85 4680 2650 30.040 83 28.654 83 28.095 83 27.738 83 27.738 83 27.738 83 27.738 83 27.821 82 28.819 80 28.260 80 27.903 80 4950 | | | | | | | | | | | | 2300 29.413 95 28.027 95 27.468 95 27.110 96 4140 2350 29.508 93 28.122 93 27.563 93 27.206 93 4230 2400 29.601 91 28.215 91 27.656 91 27.299 91 4320 2450 29.692 89 28.306 89 27.747 89 27.390 89 4410 2500 29.781 88 28.395 88 27.836 88 27.479 88 4500 29.696 96 28.483 86 27.924 86 27.567 86 4590 2550 29.869 86 28.483 86 27.924 86 27.567 86 4590 2600 29.955 85 28.569 85 28.010 85 27.653 85 4680 2650 30.040 83 28.654 83 28.095 83 27.738 83 4770 2700 30.123 82 28.737 82 28.178 82 27.821 82 4860 2750 30.205 80 28.819 80 28.260 80 27.903 80 4950 | | | | | | | | | | | | 2350 29.508 93 28.122 93 27.563 93 27.206 93 4230 2400 29.601 91 28.215 91 27.656 91 27.299 91 4320 2450 29.692 89 28.306 89 27.747 89 27.390 89 4410 2500 29.781 88 28.395 88 27.836 88 27.479 88 4500 2550 29.869 86 28.483 86 27.924 86 27.567 86 4590
2600 29.955 85 28.569 85 28.010 85 27.653 85 4680 2700 30.123 82 28.737 82 28.178 82 27.821 82 4860 2750 30.205 80 28.819 80 28.260 80 27.903 80 4950 | 2230 | 27.510 | 71 | 21.730 | 97 | 21.311 | 97 | 27.013 | 97 | 4050 | | 2350 29.508 93 28.122 93 27.563 93 27.206 93 4230 2400 29.601 91 28.215 91 27.656 91 27.299 91 4320 2450 29.692 89 28.306 89 27.747 89 27.390 89 4410 2500 29.781 88 28.395 88 27.836 88 27.479 88 4500 2550 29.869 86 28.483 86 27.924 86 27.567 86 4590 2600 29.955 85 28.569 85 28.010 85 27.653 85 4680 2650 30.040 83 28.654 83 28.095 83 27.738 83 4770 2700 30.123 82 28.737 82 28.178 82 27.821 82 4860 2750 30.205 80 28.819 80 28.260 80 27.903 80 4950 | | 29.413 | 95 | 28.027 | 95 | 27.468 | 95 | 27,110 | 96 | 4140 | | 2400 29.601 91 28.215 91 27.656 91 27.299 91 4320 2450 29.692 89 28.306 89 27.747 89 27.390 89 4410 2500 29.781 88 28.395 88 27.836 88 27.479 88 4500 2550 29.869 86 28.483 86 27.924 86 27.567 86 4590 2600 29.955 85 28.569 85 28.010 85 27.653 85 4680 2650 30.040 83 28.654 83 28.095 83 27.738 83 4770 2700 30.123 82 28.737 82 28.178 82 27.821 82 4860 2750 30.205 80 28.819 80 28.260 80 27.903 80 4950 | 2350 | 29.508 | 93 | 28.122 | | | | | | | | 2450 29.692 89 28.306 89 27.747 89 27.390 89 4410 2500 29.781 88 28.395 88 27.836 88 27.479 88 4500 2550 29.869 86 28.483 86 27.924 86 27.567 86 4590 2600 29.955 85 28.569 85 28.010 85 27.653 85 4680 2650 30.040 83 28.654 83 28.095 83 27.738 83 4770 2700 30.123 82 28.737 82 28.178 82 27.821 82 4860 2750 30.205 80 28.819 80 28.260 80 27.903 80 4950 | 2400 | 29.601 | 91 | 28.215 | | | | | | | | 2500 29.781 88 28.395 88 27.836 88 27.479 88 4500 2550 29.869 86 28.483 86 27.924 86 27.567 86 4590 2600 29.955 85 28.569 85 28.010 85 27.653 85 4680 2650 30.040 83 28.654 83 28.095 83 27.738 83 4770 2700 30.123 82 28.737 82 28.178 82 27.821 82 4860 2750 30.205 80 28.819 80 28.260 80 27.903 80 4950 | 2450 | 29,692 | 89 | 28,306 | | | • | | | | | 2600 29.955 85 28.569 85 28.010 85 27.653 85 4680 2650 30.040 83 28.654 83 28.095 83 27.738 83 4770 2700 30.123 82 28.737 82 28.178 82 27.821 82 4860 2750 30.205 80 28.819 80 28.260 80 27.903 80 4950 | 2500 | 29.781 | | | | | | | | | | 2600 29.955 85 28.569 85 28.010 85 27.653 85 4680 2650 30.040 83 28.654 83 28.095 83 27.738 83 4770 2700 30.123 82 28.737 82 28.178 82 27.821 82 4860 2750 30.205 80 28.819 80 28.260 80 27.903 80 4950 | 2550 | 20 040 | | 20 402 | | 27.004 | | | | | | 2650 30.040 83 28.654 83 28.095 83 27.738 83 4770 2700 30.123 82 28.737 82 28.178 82 27.821 82 4860 2750 30.205 80 28.819 80 28.260 80 27.903 80 4950 | | | | | | | | | | | | 2700 30.123 & 28.737 & 28.178 & 27.821 & 4860 2750 30.205 & 80 28.819 & 80 28.260 & 80 27.903 & 80 4950 | | | | | | | | | 85 | | | 2750 30.205 80 28.819 80 28.260 80 27.903 80 4950 | | | | | | | | | 83 | | | 2000 20 200 | | | | | | | | | | | | 45UU 3U.45D 28.899 28.340 27 983 50AO | | | 80 | | 80 | | 80 | | 80 | | | 2000 2000 | 2500 | JU.285 | | 28.899 | | 28.340 | | 27.983 | | 5040 | Table 5-6. SPECIFIC-HEAT RATIO OF CARBON MONOXIDE | °K | .01 | atm |] .1 | atm | 1 0 | tm | 10 | atm | °R | |---------------------------------|---|----------------------------|---|----------------------------|---|----------------------------|---|----------------------------|--------------------------------------| | 200
210
220
230
240 | 1.400
1.400
1.400
1.400
1.400 | | 1.400
1.400
1.400
1.400
1.400 | | 1.405
1.404
1.404
1.404
1.403 | -1
-1 | 1.456
1.448
1.444
1.439
1.435 | -8
-4
-5
-4
-3 | 360
378
396
414
432 | | 250
260
270
280
290 | 1.400
1.400
1.400
1.400
1.399 | -1. | 1.400
1.400
1.400
1.400
1.399 | -1 | 1.403
1.402
1.402
1.402
1.402 | -1 | 1.432
1.429
1.426
1.424
1.422 | -3
-3
-2
-2
-2 | 450
468
486
504
522 | | 300
310
320
330
340 | 1.399
1.399
1.399
1.399
1.398 | -1 | 1.399
1.399
1.399
1.399
1.398 | -1 | 1.401
1.401
1.401
1.401
1.400 | -1
-1 | 1.420
1.418
1.416
1.415
1.414 | -2
-2
-1
-1
-2 | 540
558
576
594
612 | | 350
360
370
380
390 | 1.398
1.397
1.397
1.397
1.396 | -1
-1
-1 | 1.398
1.398
1.397
1.397 | -1
-1
-1 | 1.399
1.399
1.398
1.398
1.397 | -1
-1
-1 | 1.412
1.411
1.409
1.408
1.407 | -1
-2
-1
-1 | 630
648
666
684
702 | | 400
410
420
430
440 | 1.395
1.395
1.394
1.393
1.393 | -1
-1 | 1.395
1.395
1.394
1.393
1.393 | -1
-1 | 1.396
1.396
1.395
1.394
1.393 | -1
-1
-1
-1 | 1.406
1.405
1.403
1.402
1.401 | -1
-2
-1
-1 | 720
738
756
774
792 | | 450
460
470
480
490 | 1.392
1.391
1.390
1.389
1.388 | -1
-1
-1
-1 | 1.392
1.391
1.390
1.389
1.388 | -1
-1
-1
-1 | 1.392
1.391
1.390
1.389
1.388 | -1
-1
-1
-1 | 1.400
1.398
1.397
1.396
1.394 | -2
-1
-1
-2
-1 | 810
828
846
864
882 | | 500
510
520
530
540 | 1.387
1.386
1.385
1.384
1.383 | -1
-1
-1
-1 | 1.387
1.386
1.385
1.384
1.383 | -1
-1
-1
-1
-1 | 1.387
1.386
1.385
1.384
1.383 | -1
-1
-1
-1 | 1.393
1.392
1.390
1.389
1.388 | -1
-2
-1
-1 | 900
918
936
954
972 | | 550
560
570
580
590 | 1.382
1.381
1.379
1.378
1.377 | -1
-2
-1
-1 | 1.382
1.381
1.379
1.378
1.377 | -1
-2
-1
-1 | 1.382
1.381
1.380
1.378
1.377 | -1
-1
-2
-1 | 1.387
1.386
1.385
1.384
1.382 | -1
-1
-1
-2
-1 | 990
1008
1026
1044
1062 | | 600
610
620
630
640 | 1.376
1.375
1.373
1.372
1.371 | -1
-2
-1
-1 | 1.376
1.375
1.373
1.372
1.371 | -1
-2
-1
-1 | 1.376
1.375
1.374
1.372
1.371 | -1
-1
-2
-1 | 1.381
1.379
1.377
1.375
1.374 | -2
-2
-2
-1
-1 | 1080
1098
1116
1134
1152 | | 650
660
670
680
690 | 1.370
1.368
1.367
1.366
1.365 | -2
-1
-1
-1 | 1.370
1.368
1.367
1.366
1.365 | -2
-1
-1
-1 | 1.370
1.369
1.367
1.366
1.365 | -1
-2
-1
-1 | 1.373
1.371
1.370
1.369
1.368 | -2
-1
-1
-1
-2 | 1170
1188
1206
1224
1242 | | 700
710
720
730
740 | 1.364
1.363
1.361
1.360
1.359 | -1
-2
-1
-1 | 1.364
1.363
1.361
1.360
1.359 | -1
-2
-1
-1 | 1.364
1.363
1.361
1.360
1.359 | -1
-2
-1
-1 | 1.366
1.365
1.364
1.362
1.361 | -1
-1
-2
-1 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | 1.358
1.357
1.356
1.355
1.354 | -1
-1
-1
-1
-2 | 1.358
1.357
1.356
1.355
1.354 | -1
-1
-1
-1
-2 | 1.358
1.357
1.356
1.355
1.354 | -1
-1
-1
-1
-2 | 1.360
1.359
1.358
1.356
1.355 | -1
-1
-2
-1 | 1350
1368
1386
1404
1422 | | 800 | 1.352 | | 1.352 | | 1.352 | | 1,354 | | 1440 | | °K | .01 | atm | .1 | atm | 1 0 | ıtm | 10 | atm | °R | |------------|----------------|----------|----------------|----------|----------------|------------|----------------|----------|--------------| | | 1.050 | | 1.050 | | 1 252 | _ | 1 254 | _ | 1440 | | 800 | 1.352 | -5 | 1.352 | -5 | 1.352 | -5 | 1.354 | -5 | 1440 | | 850 | 1.347 | -4 | 1.347 | -4 | 1.347 | -4 | 1.349
1.344 | -5 | 1530
1620 | | 900
950 | 1.343
1.338 | -5 | 1.343
1.338 | -5 | 1.343
1.338 | - 5 | 1.344 | -5 | 1710 | | 1000 | 1.334 | -4 | 1.334 | -4 | 1.334 | -4 | 1.335 | -4 | 1800 | | 1000 | 1,554 | -3 | 1.334 | -3 | 1.554 | -3 | 1.999 | -4 | 1000 | | 1050 | 1.331 | -4 | 1.331 | -4 | 1.331 | -4 | 1.331 | -3 | 1890 | | 1100 | 1.327 | -3 | 1.327 | -3 | 1.327 | -3 | 1.328 | -3 | 1980 | | 1150 | 1.324 | -2 | 1.324 | -2 | 1.324 | -2 | 1,325 | -3 | 2070 | | 1200 | 1,322 | -3 | 1.322 | -3 | 1.322 | -3 | 1.322 | -3 | 2160 | | 1250 | 1.319 | -2 | 1.319 | -2 | 1.319 | -2 | 1.319 | -2 | 2250 | | 1300 | 1.317 | -2 | 1.317 | -2 | 1.317 | -2 | 1,317 | -2 | 2340 | | 1350 | 1,315 | -2 | 1.315 | -2 | 1.315 | -2 | 1.315 | -2 | 2430 | | 1400 | 1.313 | -2 | 1.313 | -2 | 1.313 | -2 | 1.313 | -2 | 2520 | | 1450 | 1.311 | -2 | 1.311 | -2 | 1.311 | -2 | 1.311 | -2 | 2610 | | 1500 | 1.309 | -1 | 1.309 | -1 | 1.309 | -1 | 1.309 | -1 | 2700 | | 1550 | 1.308 | _ | 1.308 | | 1.308 | | 1.308 | _ | 2790 | | 1600 | 1.306 | -2
-1 | 1.306 | -2
-1 | 1.306 | -2
-1 | 1.306 | -2
-1 | 2880 | | 1650 | 1.305 | -1
-1 | 1.305 | -1
-1 | 1.305 | -1
-1 | 1.305 | -1
-1 | 2970 | | 1700 | 1.304 | -1
-2 | 1.304 | -1
-2 | 1.304 | -1
-2 | 1.304 | -1
-2 | 3060 | | 1750 | 1.302 | -1 | 1.302 | -1 | 1.302 | -1 | 1.302 | -1 | 3150 | | 2,20 | 2,502 | - | 2,502 | - | ,,, | • | 2,502 | - | 2230 | | 1800 | 1,301 | -1 | 1.301 | -1 | 1.301 | -1 | 1.301 | -1 | 3240 | | 1850 | 1.300 | -1 | 1.300 | -1 | 1.300 | -1 | 1.300 | -1 | 3330 | | 1900 | 1.299 | | 1.299 | | 1,299 | | 1.299 | -1 | 3420 | | 1950 | 1.299 | -1 | 1.299 | -1 | 1.299 | -1 | 1.298 | | 3510 | | 2000 | 1.298 | -3 | 1.298 | - 3 | 1.298 | - 3 | 1.298 | - 3 | 3600 | | 2200 | 1.295 | -3 | 1.295 | - 3 | 1.295 | - 3 | 1.295 | - 3 | 3960 | | 2400 | 1.292 | -1 | 1.292 | - i | 1.292 | - î | 1.292 | - 1 | 4320 | | 2600 | 1.291 | -2 | 1.291 | - 2 | 1.291 | - 2 | 1.291 | - 2 | 4680 | | 2800 | 1.289 | -1 | 1.289 | - 1 | 1.289 | - ī | 1.289 | - ī | 5040 | | 3000 | 1.288 | | 1.288 | | 1.288 | | 1.288 | | 5400 | | | | | | | | | | | PV | |----------------------------------
---|----------------------------|---|---------------------------------|---|---------------------------------|---|---------------------------------|--------------------------------------| | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | °R | | 250
260
270
280
290 | 1.432
1.429
1.426
1.424
1.422 | -3
-3
-2
-2
-2 | 1.543
1.527
1.514
1.503
1.494 | -16
-13
-11
- 9
- 9 | 1.617
1.593
1.573 | -24
-20
-18 | 1.698
1.663 | 35
30 | 450
468
486
504
522 | | 300
310
320
330
340 | 1.420
1.418
1.416
1.415
1.414 | -2
-2
-1
-1
-2 | 1.485
1.478
1.471
1.465
1.460 | - 7
- 7
- 6
- 5
- 5 | 1.555
1.541
1.528
1.517
1.507 | -14
-13
-11
-10
- 8 | 1.633
1.609
1.588
1.571
1.556 | -24
-21
-17
-15
-14 | 540
558
576
594
612 | | 350
360
370
380
390 | 1.412
1.411
1.409
1.408
1.407 | -1
-2
-1
-1 | 1.455
1.451
1.447
1.443
1.440 | - 4
- 4
- 4
- 3
- 4 | 1.499
1.491
1.484
1.477
1.471 | - 8
- 7
- 7
- 6
- 5 | 1.542
1.530
1.520
1.510
1.502 | -12
-10
-10
- 8
- 8 | 630
648
666
684
702 | | 400
410
420
430
440 | 1.406
1.405
1.403
1.402
1.401 | -1
-2
-1
-1 | 1.436
1.433
1.430
1.428
1.425 | - 3
- 3
- 2
- 3
- 3 | 1.466
1.461
1.456
1.452
1.448 | - 5
- 5
- 4
- 4 | 1.494
1.487
1.480
1.474
1.469 | - 7
- 7
- 6
- 5
- 6 | 720
738
756
774
792 | | 450
460
470
480
490 | 1.400
1.398
1.397
1.396
1.394 | -2
-1
-1
-2
-1 | 1.422
1.420
1.417
1.415
1.413 | - 2
- 3
- 2
- 2
- 3 | 1.444
1.440
1.436
1.433
1.429 | - 4
- 4
- 3
- 4
- 3 | 1.463
1.458
1.454
1.449
1.445 | - 5
- 4
- 5
- 4
- 4 | 810
828
846
864
882 | | 500
510
520
530
540 | 1.393
1.392
1.390
1.389
1.388 | -1
-2
-1
-1 | 1.410
1.408
1.406
1.404
1.402 | - 2
- 2
- 2
- 2
- 2 | 1.426
1.423
1.420
1.418
1.415 | - 3
- 3
- 2
- 3
- 3 | 1.441
1.437
1.433
1.430
1.426 | - 4
- 4
- 3
- 4
- 3 | 900
918
936
954
972 | | 550
560
570
580
590 | 1.387
1.386
1.385
1.384
1.382 | -1
-1
-1
-2
-1 | 1.400
1.398
1.396
1.394
1.392 | - 2
- 2
- 2
- 2
- 2 | 1.412
1.410
1.407
1.405
1.402 | - 2
- 3
- 2
- 3
- 2 | 1.423
1.420
1.417
1.414
1.411 | - 3
- 3
- 3
- 3
- 2 | 990
1008
1026
1044
1062 | | 600
610
620
630
640 | 1.381
1.379
1.377
1.375
1.374 | -2
-2
-2
-1
-1 | 1.390
1.388
1.387
1.385
1.383 | - 2
- 1
- 2
- 2
- 2 | 1.400
1.398
1.395
1.393
1.391 | - 2
- 3
- 2
- 2
- 2 | 1.409
1.406
1.404
1.401
1.399 | - 3
- 2
- 3
- 2
- 3 | 1080
1098
1116
1134
1152 | | 650
660
670
680
690 | 1.373
1.371
1.370
1.369
1.368 | -2
-1
-1
-1
-2 | 1.381
1.380
1.378
1.376
1.375 | - 1
- 2
- 2
- 1
- 2 | 1.389
1.387
1.385
1.383
1.382 | - 2
- 2
- 2
- 1
- 2 | 1.396
1.394
1.392
1.390
1.388 | - 2
- 2
- 2
- 2
- 2 | 1170
1188
1206
1224
1242 | | 700
710
720
730
740 | 1.366
1.365
1.364
1.362
1.361 | -1
-1
-2
-1 | 1.373
1.372
1.370
1.369
1.367 | - 1
- 2
- 1
- 2
- 1 | 1.380
1.378
1.376
1.374
1.373 | - 2
- 2
- 2
- 1
- 2 | 1.386
1.384
1.381
1.380
1.378 | - 2
- 3
- 1
- 2
- 2 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | 1.360
1.359
1.358
1.356
1.355 | -1
-1
-2
-1 | 1.366
1.364
1.363
1.362
1.360 | - 2
- 1
- 1
- 2
- 1 | 1.371
1.370
1.368
1.366
1.365 | - 1
- 2
- 2
- 1
- 2 | 1.376
1.374
1.372
1.371
1.369 | - 2
- 2
- 1
- 2
- 1 | 1350
1368
1386
1404
1422 | | 800
850
900
950
1000 | 1.354
1.349
1.344
1.339
1.335 | -5
-5
-5
-4
-4 | 1.359
1.353
1.347
1.342
1.338 | 6
6
5
4
4 | 1.363
1.357
1.351
1.345
1.340 | - 6
- 6
- 6
- 5
- 4 | 1.368
1.360
1.353
1.347
1.342 | - 8
- 7
- 6
- 5
- 5 | 1440
1530
1620
1710
1800 | | 1050 | 1,331 | • | 1.334 | 7 | 1.336 | - 4 | 1.337 | - 5 | 1890 | | Table ! | 5-6. SPEC | CIFIC-HEA | T RATIO O | F CARBO | n monoxid | E - Cont. | | · Y | · C _p /C _v | |--------------------------------------|---|----------------------------|---|---------------------------------|---|---------------------------------|---|---------------------------------|--------------------------------------| | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | °R | | 1050
1100
1150
1200
1250 | 1.331
1.328
1.325
1.322
1.319 | -3
-3
-3
-3 | 1.334
1.330
1.327
1.323
1.321 | - 4
- 3
- 4
- 2
- 3 | 1.336
1.332
1.328
1.325
1.322 | - 4
- 4
- 3
- 3
- 3 | 1.337
1.333
1.329
1.326
1.323 | - 4
- 4
- 3
- 3
- 3 | 1890
1980
2070
2160
2250 | | 1300
1350
1400
1450
1500 | 1.317
1.315
1.313
1.311
1.309 | -2
-2
-2
-2
-1 | 1.318
1.316
1.314
1.312
1.310 | - 2
- 2
- 2
- 2
- 2 | 1.319
1.317
1.314
1.312
1.310 | - 2
- 3
- 2
- 2
- 1 | 1.320
1.317
1.315
1.313
1.311 | - 3
- 2
- 2
- 2
- 2 | 2340
2430
2520
2610
2700 | | 1550
1600
1650
1700
1750 | 1.308
1.306
1.305
1.304
1.302 | -2
-1
-1
-2
-1 | 1.308
1.307
1.305
1.304
1.303 | - 1
- 2
- 1
- 1 | 1.309
1.307
1.306
1.304
1.303 | - 2
- 1
- 2
- 1
- 1 | 1.309
1.307
1.306
1.305
1.303 | - 2
- 1
- 1
- 2
- 1 | 2790
2880
2970
3060
3150 | | 1800
1850
1900
1950
2000 | 1.301
1.300
1.299
1.298
1.298 | -1
-1
-1 | 1.302
1.301
1.300
1.299
1.298 | - 1
- 1
- 1
- 1 | 1.302
1.301
1.300
1.299
1.298 | - 1
- 1
- 1
- 1 | 1.302
1.301
1.300
1.299
1.298 | - 1
- 1
- 1
- 1 | 3240
3330
3420
3510
3600 | | 2200
2400
2600
2800
3000 | 1.295
1.292
1.291
1.289
1.288 | -3
-1
-2
-1 | 1.295
1.292
1.291
1.289
1.288 | - 3
- 1
- 2
- 1 | 1.295
1.292
1.291
1.289
1.288 | - 3
- 1
- 2
- 1 | 1.295
1.292
1.291
1.289
1.288 | - 3
- 1
- 2
- 1 | 3960
4320
4680
5040
5400 | | °K | .01 | atm | .1 | atm | 1 | atm | 10 | atm | °R | |---------------------------------|---|----------------------------|---|----------------------------|---|----------------------------|---|----------------------------|--------------------------------------| | 200
210
220
230
240 | .856
.877
.897
.917
.937 | 21
20
20
20
20 | .856
.877
.897
.917 | 21
20
20
20
20 | .855
.876
.897
.917
.937 | 21
21
20
20
20 | .850
.872
.894
.916
.937 | 22
22
22
21
21 | 360
378
396
414
432 | | 250
260
270
280
290 | .957
.976
.994
1.012
1.030 | 19
18
18
18
18 | .957
.976
.994
1.012
1.030 | 19
18
18
18
18 | .957
.976
.994
1.013
1.031 | 19
18
19
18
17 | .958
.977
.997
1.016
1.034 | 19
20
19
18
18 | 450
468
486
504
522 | | 300
310
320
330
340 | 1.048
1.065
1.082
1.099
1.115 | 17
17
17
16
16 | 1.048
1.065
1.082
1.099
1.115 | 17
17
17
16
16 | 1.048
1.066
1.083
1.099
1.116 | 18
17
16
17
16 | 1.052
1.070
1.087
1.104
1.121 | 18
17
17
17 | 540
558
576
594
612 | | 350
360
370
380
390 | 1.131
1.147
1.163
1.178
1.193 | 16
16
15
15 | 1.131
1.147
1.163
1.178
1.193 | 16
16
15
15 | 1.132
1.148
1.163
1.179
1.194 | 16
15
16
15
15 | 1.138
1.154
1.169
1.185
1.200 | 16
15
16
15
16 | 630
648
666
684
702 | | 400
410
420
430
440 | 1.208
1.223
1.237
1.252
1.266 | 15
14
15
14
14 | 1.208
1.222
1.237
1.252
1.266 | 14
15
15
14
14 | 1.209
1.224
1.238
1.252
1.266 | 15
14
14
14
14 | 1.216
1.231
1.245
1.260
1.274 | 15
14
15
14
14 | 720
738
756
774
792 | | 450
460
470
480
490 | 1.280
1.294
1.307
1.320
1.334 | 14
13
13
14
13 | 1.280
1.294
1.307
1.320
1.334 | 14
13
13
14
13 | 1.280
1.294
1.308
1.321
1.334 | 14
14
13
13 | 1.288
1.302
1.315
1.329
1.342 | 14
13
14
13
13 | 810
828
846
864
882 | | 500
510
520
530
540 | 1.347
1.360
1.372
1.385
1.397 | 13
12
13
12
13 | 1.347
1.360
1.372
1.385
1.397 |
13
12
13
12
13 | 1.347
1.360
1.373
1.386
1.398 | 13
13
13
12
13 | 1.355
1.368
1.381
1.393
1.406 | 13
13
12
13 | 900
918
936
954
972 | | 550
560
570
580
590 | 1.410
1.422
1.434
1.446
1.458 | 12
12
12
12
12 | 1.410
1.422
1.434
1.446
1.458 | 12
12
12
12
12 | 1.411
1.423
1.435
1.447
1.458 | 12
12
12
11
11 | 1.419
1.431
1.443
1.455
1.467 | 12
12
12
12
12 | 990
1008
1026
1044
1062 | | 600
610
620
630
640 | 1.470
1.481
1.492
1.503
1.515 | 11
11
11
12
11 | 1.470
1.481
1.492
1.503
1.515 | 11
11
11
12
11 | 1.470
1.482
1.493
1.504
1.516 | 12
11
11
12
11 | 1.479
1.490
1.501
1.512
1.523 | 11
11
11
11 | 1080
1098
1116
1134
1152 | | 650
660
670
680
690 | 1.526
1.537
1.548
1.559
1.569 | 11
11
11
10
11 | 1.526
1.537
1.548
1.559
1.569 | 11
11
11
10
11 | 1.527
1.538
1.548
1.559
1.570 | 11
10
11
11 | 1.534
1.545
1.556
1.567
1.578 | 11
11
11
11
10 | 1170
1188
1206
1224
1242 | | 700
710
720
730
740 | 1.580
1.591
1.601
1.611
1.622 | 11
10
10
11
10 | 1.580
1.591
1.601
1.611
1.622 | 11
10
10
11
10 | 1.581
1.592
1.602
1.612
1.623 | 11
10
10
11
11 | 1.588
1.599
1.610
1.620
1.630 | 11
11
10
10 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | 1.632
1.642
1.652
1.662
1.672 | 10
10
10
10
10 | 1.632
1.642
1.652
1.662
1.672 | 10
10
10
10 | 1.633
1.643
1.653
1.663
1.673 | 10
10
10
10
10 | 1.640
1.651
1.661
1.670
1.680 | 11
10
9
10
10 | 1350
1368
1386
1404
1422 | | 800 | 1.682 | | 1.682 | | 1.683 | | 1.690 | | 1440 | Table 5-7. SOUND VELOCITY AT LOW FREQUENCY IN CARBON MONOXIDE - Cont. | Table 5-7. SOUND VELOCITY AT LOW FREQUENCY IN CARBON MONOXIDE - Cont. | | | | | | | | | a/a ₀ | |---|----------------|------------|----------------|----------|----------------|----------|----------------|----------|------------------| | °K | .01 | atm |] .1 | atm | 1 0 | ıtm | 10 | atm | °R | | 000 | 7 (00 | | 1 (00 | | 1.400 | | | | | | 800
850 | 1.682
1.730 | 48 | 1.682 | 48 | 1.683 | 48 | 1.690 | 52 | 1440 | | 900 | 1.777 | 47 | 1.730 | 47 | 1.731 | 47 | 1.742 | 44 | 1530 | | 950
950 | 1.823 | 46 | 1.777
1.823 | 46 | 1.778 | 46 | 1.786 | 45 | 1620 | | 1000 | 1.868 | 45
44 | 1.868 | 45
44 | 1.824
1.869 | 45
43 | 1.831
1.875 | 44
44 | 1710
1800 | | | | ** | | ** | - | ٠, | | 44 | 1000 | | 1050 | 1.912 | 42 | 1.912 | 42 | 1.912 | 42 | 1.919 | 43 | 1890 | | 1100 | 1.954 | 41 | 1.954 | 41 | 1.954 | 42 | 1.962 | 41 | 1980 | | 1150 | 1.995 | 41 | 1.995 | 41 | 1.996 | 41 | 2.003 | 40 | 2070 | | 1200 | 2.036 | 40 | 2.036 | 40 | 2.037 | 40 | 2.043 | 40 | 2160 | | 1250 | 2.076 | 40 | 2.076 | 40 | 2.077 | 39 | 2.083 | 39 | 2250 | | 1300 | 2.116 | 39 | 2.116 | 39 | 2.116 | 39 | 2,122 | 39 | 2340 | | 1350 | 2.155 | 38 | 2.155 | 38 | 2.155 | 38 | 2.161 | 38 | 2430 | | 1400 | 2,193 | 37 | 2.193 | 37 | 2.193 | 37 | 2,199 | 37 | 2520 | | 1450 | 2,230 | 36 | 2.230 | 36 | 2,230 | 36 | 2.236 | 37 | 2610 | | 1500 | 2.266 | 36 | 2.266 | 37 | 2.266 | 37 | 2.273 | 36 | 2700 | | 1550 | 2,302 | 36 | 2,303 | 35 | 2:303 | 35 | 2,309 | 35 | 2790 | | 1600 | 2.338 | 35 | 2.338 | 35 | 2.338 | 35 | 2.344 | 35 | 2880 | | 1650 | 2.373 | 34 | 2.373 | 34 | 2.373 | 34 | 2.379 | 35 | 2970 | | 1700 | 2.407 | 34 | 2.407 | 34 | 2.407 | 34 | 2.414 | 33 | 3060 | | 1750 | 2.441 | 34 | 2.441 | 34 | 2.441 | 34 | 2.447 | 33 | 3150 | | 1800 | 2.475 | 38 | 2.475 | 33 | 2.475 | 33 | 2,480 | 33 | 3240 | | 1850 | 2.508 | 32 | 2.508 | 33 | 2.508 | 33 | 2.513 | رڊ
33 | 3330 | | 1900 | 2.540 | 33 | 2.541 | 33 | 2.541 | 33 | 2.546 | 33 | 3420 | | 1950 | 2.573 | 32 | 2.574 | 32 | 2.574 | 32 | 2.579 | 33
32 | 3510 | | 2000 | 2.605 | 32 | 2.606 | 31 | 2.606 | 31 | 2.611 | 32
32 | 3600 | | 2050 | 2,637 | 31 | 2.637 | | 2,637 | | | | 2/00 | | 2100 | 2.668 | 31
31 | 2.668 | 31 | | 31 | 2.643 | 31 | 3690 | | 2150 | 2.699 | 31
30 | 2.699 | 31 | 2.668
2.699 | 31 | 2.674 | 30 | 3780 | | 2200 | 2.729 | | 2.729 | 30 | | 31 | 2.704 | 31 | 3870 | | 2250 | 2.759 | 3 0 | | 30 | 2.730 | 30 | 2.735 | 30 | 3960 | | 2230 | 2.137 | 31 | 2.759 | 30 | 2.760 | 30 | 2.765 | 30 | 4050 | | 2300 | 2.790 | 29 | 2.789 | 30 | 2.790 | 29 | 2.795 | 29 | 4140 | | 2350 | 2.819 | 29 | 2.819 | 30 | 2.819 | 29 | 2.824 | 29 | 4230 | | 2400 | 2.848 | 29 | 2.849 | 28 | 2.848 | 29 | 2.853 | 29 | 4320 | | 2450 | 2.877 | 29 | 2.877 | 29 | 2.877 | 29 | 2.882 | 29 | 4410 | | 250 0 | 2.906 | 28 | 2.906 | 28 | 2.906 | 28 | 2.911 | 28 | 4500 | | 2550 | 2.934 | 28 | 2.934 | 28 | 2.934 | 28 | 2,939 | 28 | 4590 | | 2600 | 2.962 | 28 | 2,962 | 28 | 2.962 | 28 | 2.967 | 28 | 4680 | | 2650 | 2.990 | 28 | 2,990 | 28 | 2.990 | 28 | 2.995 | 28 | 4770 | | 2700 | 3.018 | 27 | 3.018 | 27 | 3,018 | 27 | 3.023 | 27 | 4860 | | 2750 | 3.045 | 27 | 3.045 | 27 | 3.045 | 27 | 3.050 | 27 | 4950 | | 2800 | 3.072 | 27 | 3.072 | 27 | 3,072 | 27 | 3. 077 | 26 | 5040 | | 2850 | 3.099 | 27 | 3.099 | 27
27 | 3.099 | 21
27 | 3.103 | 26
27 | 5130 | | 2900 | 3.126 | 26 | 3.126 | 21
26 | 3.126 | 27
27 | 3.130 | | 5220 | | 2950 | 3.152 | 26 | 3.152 | 26
26 | 3.153 | 26 | 3.157 | 27 | 5310 | | 3000 | 3.178 | ** | 3.178 | 20 | 3.179 | ∠0 | 3.183 | 26 | 5400 | | | | | 2.210 | | J. 117 | | 2.103 | | 2400 | Table 5-7. SOUND VELOCITY AT LOW FREQUENCY IN CARBON MONOXIDE - Cont. | a / | • | |-----|----| | ~/ | an | | | | | 0,, | <u> </u> | | | | | | 1 | | T_ T | | |---------------------------------|---|----------------------------|---|----------------------------|---|----------------------------|---|----------------------------|--------------------------------------|--| | °K | 10 | atm | 40 | atm | 70 | atm . | 100 | atm | ° R | | | 250
260
270
280 | .958
.977
.997
1.016 | 19
20
19
18 | .971
.992
1.013
1.033 | 21
21
20
20 | 1.042
1.062 | 20
20 | 1.106 | 18 | 450
468
486
504 | | | 290 | 1.034 | 18 | 1.053 | 19 | 1.082 | 19 | 1.124 | . 17 | 522 | | | 300
310
320
330 | 1.052
1.070
1.087
1.104 | 18
17
17
17 | 1.072
1.090
1.108
1.126 | 18
18
16
17 | 1.101
1.119
1.137
1.155 | 18
18
18
17 | 1.141
1.158
1.175
1.192 | 17
17
17
17 | 540
558
576
594 | | | 340 | 1.121 | 17 | 1.143 | 17 | 1.172 | 18 | 1.209 | 16 | 612 | | | 350
360
370
380
390 | 1.138
1.154
1.169
1.185
1.200 | 16
15
16
15 | 1.160
1.177
1.194
1.210
1.226 | 17
17
16
16
15 | 1.190
1.207
1.223
1.239
1.255 | 17
16
16
16
15 | 1.225
1.241
1.257
1.272
1.288 | 16
16
15
16
15 | 630
648
666
684
702 | | | 400
410
420
430
440 | 1.216
1.231
1.245
1.260
1.274 | 15
14
15
14 | 1.241
1.256
1.271
1.286
1.300 | 15
15
15
14
14 | 1.270
1.285
1.300
1.315
1.329 | 15
15
15
14
15 | 1.303
1.318
1.333
1.347
1.361 | 15
15
14
14
14 | 720
738
756
774
792 | | | 450
460
470
480
490 | 1.288
1.302
1.315
1.329
1.342 | 14
13
14
13 | 1.314
1.328
1.342
1.356
1.369 | 14
14
14
13 | 1.344
1.357
1.371
1.385
1.397 | 13
14
14
12
14 | 1.375
1.389
1.403
1.416
1.429 | 14
14
13
13 | 810
828
846
864
882 | | | 500
510
520
530
540 | 1.355
1.368
1.381
1.393
1.406 | 13
13
12
13 | 1.382
1.395
1.408
1.420
1.433 | 13
13
12
13 | 1.411
1.424
1.437
1.449
1.462 | 13
13
12
13 | 1.441
1.453
1.467
1.479
1.491 | 12
14
12
12
12 | 900
918
936
954
972 | | | 550
560
570
580
590 | 1.419
1.431
1.443
1.455
1.467 | 12
12
12
12
12 | 1.446
1.458
1.470
1.482
1.493 | 12
12
12
11
11 | 1.474
1.486
1.497
1.509
1.521 | 12
11
12
12
12 | 1.503
1.515
1.527
1.538
1.550 | 12
12
11
12
12 | 990
1008
1026
1044
1062 | | | 600
610
620
630
640 | 1.479
1.490
1.501
1.512
1.523 | 11
11
11
11 | 1.505
1.516
1.528
1.539
1.550 | 11
12
11
11 | 1.533
1.544
1.555
1.566
1.577 | 11
11
11
11 | 1.562
1.573
1.584
1.595
1.606 | 11
11
11
11 | 1080
1098
1116
1134
1152 | | | 650
660
670
680
690 | 1.534
1.545
1.556
1.567
1.578 | 11
11
11
11
10 | 1.561
1.572
1.583
1.593
1.604 | 11
11
10
11
11 | 1.588
1.599
1.610
1.620
1.631 | 11
11
10
11 | 1.616
1.627
1.638
1.648
1.659 | 11
11
10
11 | 1170
1188
1206
1224
1242 | | | 700
710
720
730
740 | 1.588
1.599
1.610
1.620
1.630 | 11
11
10
10 | 1.615
1.625
1.635
1.646
1.656 | 10
10
11
10
10 | 1.642
1.652
1.662
1.672
1.682 | 10
10
10
10
10 | 1.669
1.679
1.689
1.699
1.709 | 10
10
10
10
10 | 1260
1278
1296
1314
1332 | | | 750
760
770
780
790 | 1.640
1.651
1.661
1.670
1.680 |
11
10
9
10 | 1.666
1.676
1.686
1.696
1.706 | 10
10
10
10 | 1.692
1.702
1.712
1.722
1.732 | 10
10
10
10
9 | 1.719
1.729
1.739
1.749
1.758 | 10
10
10
9
10 | 1350
1368
1386
1404
1422 | | | 800 | 1.690 | | 1.716 | | 1.741 | | 1.768 | | 1440 | | Table 5-7. SOUND VELOCITY AT LOW FREQUENCY IN CARBON MONOXIDE - Cont. | Γ_ | I | | 1 | ·· | | | 1 | | т—й | |--------------|----------------|----------|----------------|----------|----------------|-----------------|----------------|----------|--------------| | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | °∕R | | | | | | | | | | | | | 800 | 1.690 | 52 | 1.716 | 48 | 1.741 | 48 | 1.768 | 46 | 1440 | | 850
900 | 1.742
1.786 | 44
45 | 1.764
1.810 | 46 | 1.789
1.835 | 46 | 1.814 | 45 | 1530 | | 950 | 1.831 | 45 | 1.856 | 46
44 | 1.879 | 44
44 | 1.859
1.904 | 45 | 1620
1710 | | 1000 | 1.875 | 44 | 1.900 | 43 | 1.923 | 43 | 1.947 | 43
42 | 1800 | | 1050 | 1.919 | 43 | 1,943 | 41 | 1.966 | 41 | 1.989 | 41 | 1890 | | 1100 | 1.962 | 41 | 1.984 | 41 | 2.007 | 41 | 2.030 | 40 | 1980 | | 1150 | 2.003 | 40 | 2.025 | 40 | 2.048 | 40 | 2.070 | 40 | 2070 | | 1200 | 2.043 | 40 | 2.065 | 40 | 2.088 | 39 | 2.110 | 39 | 2160 | | 1250 | 2.083 | 39 | 2.105 | 39 | 2.127 | 39 | 2.149 | 38 | 2250 | | 1300 | 2.122 | 39 | 2.144 | 38 | 2.166 | 38 | 2.187 | 37 | 2340 | | 1350 | 2.161 | 38 | 2.182 | 38 | 2.204 | 36 | 2.224 | 37 | 2430 | | 1400 | 2.199 | 37 | 2.220 | 36 | 2.240 | 36 | 2.261 | 36 | 2520 | | 1450
1500 | 2.236
2.273 | 37 | 2.256 | 37 | 2.276 | 36 | 2.297 | 35 | 2610 | | 1500 | 2,213 | 36 | 2.293 | 35 | 2.312 | 36 | 2.332 | 35 | 2700 | | 1550 | 2.309 | 35 | 2.328 | 36 | 2.348 | 35 | 2.367 | 34 | 2790 | | 1600 | 2.344 | 35 | 2.364 | 34 | 2.383 | 35 | 2.401 | 35 | 2880 | | 1650 | 2.379 | 35 | 2.398 | 34 | 2.418 | 33 | 2.436 | 34 | 2970 | | 1700
1750 | 2.414
2.447 | 33 | 2.432 | 34 | 2.451 | 34 | 2.470 | 32 | 3060 | | | 2.447 | 33 | 2.466 | 34 | 2.485 | 33 | 2.502 | 34 | 3150 | | 1800 | 2.480 | 33 | 2.500 | 32 | 2.518 | 33 | 2.536 | 32 | 3240 | | 1850 | 2.513 | 33 | 2.532 | 33 | 2.551 | 32 | 2.568 | 32 | 3330 | | 1900
1950 | 2.546
2.579 | 33 | 2.565 | 32 | 2.583 | 31 | 2.600 | 31 | 3420 | | 2000 | 2.611 | 32
32 | 2.597
2.628 | 31
31 | 2.614
2.646 | 32
31 | 2.631
2.662 | 31 | 3510 | | | | | | | - | 31 | | 31 | 3600 | | 2050
2100 | 2.643 | 31 | 2.659 | 31 | 2.677 | 31 | 2.693 | 31 | 3690 | | 2150 | 2.674
2.704 | 30 | 2.690
2.721 | 31 | 2.708 | 31 | 2.724 | 30 | 3780 | | 2200 | 2.735 | 31
30 | 2.751 | 30
30 | 2.739
2.768 | 29 | 2.754
2.784 | 30 | 3870 | | 2250 | 2.765 | 30 | 2.781 | 30
30 | 2.797 | 29
30 | 2.784 | 30
30 | 3960
4050 | | 2200 | 2.705 | | - | | | - | | | | | 2300
2350 | 2.795
2.824 | 29 | 2.811
2.840 | 29 | 2.827 | 29 | 2.844 | 28 | 4140 | | 2400 | 2.853 | 29
29 | 2.840 | 29
29 | 2.856
2.885 | 29 | 2.872 | 28 | 4230 | | 2450 | 2.882 | 29 | 2.898 | 29 | 2.913 | 28
28 | 2.900
2.929 | 29 | 4320 | | 2500 | 2.911 | 28 | 2.926 | 28 | 2.941 | 28
29 | 2.957 | 28
28 | 4410
4500 | | 2550 | 2,939 | 28 | 2.954 | 28 | 2.970 | 28 | 2.985 | 27 | 4590 | | 2600 | 2.967 | 28 | 2.982 | 28
28 | 2.998 | 26
27 | 3.012 | 27
28 | 4680 | | 2650 | 2,995 | 28 | 3.010 | 28 | 3.025 | 28 | 3.040 | 26 | 4770 | | 2700 | 3.023 | 27 | 3.038 | 26 | 3,053 | 26 | 3.066 | 28 | 4860 | | 2750 | 3.050 | 27 | 3.064 | 27 | 3.079 | 27 | 3.094 | 26 | 4950 | | 2800 | 3.077 | 26 | 3.091 | 27 | 3.106 | 27 | 3.120 | 27 | 5040 | | 2850 | 3.103 | 27 | 3.118 | 27 | 3.133 | 26 | 3.147 | 26 | 5130 | | 2900 | 3.130 | 27 | 3.145 | 26 | 3.159 | 26 | 3.173 | 26 | 5220 | | 2950
3000 | 3.157
3.183 | 26 | 3.171
3.197 | 26 | 3.185 | 26 | 3.199 | 27 | 5310 | | 2000 | 2.103 | | J. 171 | | 3.211 | | 3,226 | | 5400 | Table 5-8. VISCOSITY OF CARBON MONOXIDE AT ATMOSPHERIC PRESSURE | °K | 7/70 | | o _R | oĸ | 7/70 | | o _R | °K | 7/70 | | OR | |-----|--------|-----------------|----------------|------|-------|----|----------------|------|-------|----|------| | 50 | .1982 | 383 | 90 | 550 | 1.683 | 21 | 990 | 1050 | 2,601 | 17 | 1890 | | 60 | .2365 | 393 | 108 | 560 | 1.704 | 21 | 1008 | 1060 | 2.618 | 16 | 1908 | | 70 | .2758 | 401 | 126 | 570 | 1.725 | 21 | 1026 | 1070 | 2.634 | 16 | 1926 | | 80 | .3159 | 404 | 144 | 580 | 1.746 | 20 | 1044 | 1080 | 2,650 | 16 | 1944 | | 90 | .3563 | 403 | 162 | 590 | 1.766 | 21 | 1062 | 1090 | 2.666 | 16 | 1962 | | 100 | .3966 | 401 | 180 | 600 | 1.787 | 20 | 1080 | 1100 | 2.682 | 16 | 1980 | | 110 | .4367 | 395 | 198 | 610 | 1.807 | 21 | 1098 | 1110 | 2.698 | 16 | 1998 | | 120 | .4762 | 389 | 216 | 620 | 1.828 | 20 | 1116 | 1120 | 2.714 | 16 | 2016 | | 130 | .5151 | 384 | 234 | 630 | 1.848 | 20 | 1134 | 1130 | 2.730 | 16 | 2034 | | 140 | .5535 | 376 | 252 | 640 | 1.868 | 20 | 1152 | 1140 | 2.746 | 16 | 2052 | | | | | | 1 | | | | | - | | | | 150 | .5911 | 370 | 270 | 650 | 1.888 | 20 | 1170 | 1150 | 2.762 | 15 | 2070 | | 160 | .6281 | 363 | 288 | 660 | 1.908 | 20 | 1188 | 1160 | 2.777 | 16 | 2088 | | 170 | .6644 | 356 | 306 | 670 | 1.928 | 19 | 1206 | 1170 | 2.793 | 16 | 2106 | | 180 | .7000 | 350 | 324 | 680 | 1.947 | 20 | 1224 | 1180 | 2.809 | 16 | 2124 | | 190 | .7350 | 342 | 342 | 690 | 1.967 | 19 | 1242 | 1190 | 2,825 | 17 | 2142 | | 200 | .7692 | 334 | 360 | 700 | 1.986 | 19 | 1260 | 1200 | 2.842 | 17 | 2160 | | 210 | .8026 | 327 | 378 | 710 | 2.005 | 18 | 1278 | 1210 | 2.859 | 16 | 2178 | | 220 | .8353 | 321 | 396 | 720 | 2.023 | 19 | 1296 | 1220 | 2.875 | 15 | 2196 | | 230 | .8674 | 316 | 414 | 730 | 2.042 | 19 | 1314 | 1230 | 2.890 | 15 | 2214 | | 240 | .8990 | 310 | 432 | 740 | 2,061 | 19 | 1332 | 1240 | 2,905 | 16 | 2232 | | 250 | .9300 | 305 | 450 | 750 | 2.080 | 19 | 1350 | 1250 | 2,921 | 15 | 2250 | | 260 | .9605 | 301 | 468 | 760 | 2.099 | 18 | 1368 | 1260 | 2.936 | 15 | 2268 | | 270 | .9906 | 294 | 486 | 770 | 2,117 | 19 | 1386 | 1270 | 2.951 | 15 | 2286 | | 280 | 1.0200 | 290 | 504 | 780 | 2.136 | 18 | 1404 | 1280 | 2.966 | 14 | 2304 | | 290 | 1.0490 | 286 | 522 | 790 | 2.154 | 18 | 1422 | 1290 | 2.980 | 15 | 2322 | | 300 | 1.0776 | 277 | 540 | 800 | 2,172 | 19 | 1440 | 1300 | 2.995 | 15 | 2340 | | 310 | 1.1053 | 276 | 558 | 810 | 2.191 | 18 | 1458 | 1310 | 3.010 | 15 | 2358 | | 320 | 1.1329 | 271 | 576 | 820 | 2.209 | 17 | 1476 | 1320 | 3.025 | 14 | 2376 | | 330 | 1.1600 | 2 69 | 594 | 830 | 2.226 | 18 | 1494 | 1330 | 3.039 | 15 | 2394 | | 340 | 1.1869 | 26 | 612 | 840 | 2.244 | 18 | 1512 | 1340 | 3.054 | 15 | 2412 | | 350 | 1.213 | 26 | 630 | 850 | 2,262 | 17 | 1530 | 1350 | 3.069 | 15 | 2430 | | 360 | 1.239 | 26 | 648 | 860 | 2.279 | 18 | 1548 | 1360 | 3.084 | 14 | 2448 | | 370 | 1.265 | 25 | 666 | 870 | 2.297 | 18 | 1566 | 1370 | 3.098 | 15 | 2466 | | 380 | i.290 | 25 | 684 | 880 | 2.315 | 17 | 1584 | 1380 | 3.113 | 14 | 2484 | | 390 | 1.315 | 25 | 702 | 890 | 2.332 | 17 | 1602 | 1390 | 3.127 | 15 | 2502 | | 400 | 1.340 | 25 | 720 | 900 | 2.349 | 17 | 1620 | 1400 | 3.142 | 14 | 2520 | | 410 | 1.365 | 24 | 738 | 910 | 2.366 | 17 | 1638 | 1410 | 3.156 | 15 | 2538 | | 420 | 1.389 | 24 | 756 | 920 | 2.383 | 17 | 1656 | 1420 | 3,171 | 14 | 2556 | | 430 | 1.413 | 24 | 774 | 930 | 2.400 | 17 | 1674 | 1430 | 3.185 | 15 | 2574 | | 440 | 1.437 | 23 | 792 | 940 | 2.417 | 17 | 1692 | 1440 | 3.200 | 14 | 2592 | | 450 | 1.460 | 24 | 810 | 950 | 2,434 | 17 | 1710 | 1450 | 3.214 | 14 | 2610 | | 460 | 1.484 | 23 | 828 | 960 | 2.451 | 17 | 1728 | 1460 | 3.228 | 15 | 2628 | | 470 | 1.507 | 22 | 846 | 970 | 2.468 | 17 | 1746 | 1470 | 3.243 | 14 | 2646 | | 480 | 1.529 | 23 | 864 | 980 | 2.485 | 17 | 1764 | 1480 | 3.257 | 14 | 2664 | | 490 | 1.552 | 22 | 882 | 990 | 2.502 | 17 | 1782 | 1490 | 3.271 | 14 | 2682 | | 500 | 1.574 | 22 | 90 0 | 1000 | 2,519 | 17 | 1800 | 1500 | 3,285 | | 2700 | | 510 | 1.596 | 22 | 918 | 1010 | 2.536 | 16 | 1818 | 1 | | | | | 520 | 1.618 | 22 | 936 | 1020 | 2.552 | 16 | 1836 | 1 | | | | | 530 | 1.640 | 22 | 954 | 1030 | 2,568 | 16 | 1854 | 1 | | | | | 540 | 1.662 | 21 | 972 | 1040 | 2,584 | 17 | 1872 | | | | | | 550 | 1.683 | | 990 | 1050 | 2.601 | | 1890 | 1 | | | | Table 5-9. THERMAL CONDUCTIVITY OF CARBON MONOXIDE AT ATMOSPHERIC PRESSURE | οK | k/k ₀ | | o _R | |----------------|------------------|----|----------------| | 70 | .260 | 37 | 126 | | 80 | .297 | 38 | 144 | | 9 0 | .335 | 39 | 162 | | 100 | .374 | 39 | 180 | | 110 | .413 | 39 | 198 | | 120 | .452 | 38 | 216 | | 130 | .490 | 38 | 234 | | 140 | .528 | 38 | 252 | | 150 | .566 | 37 | 270 | | 160 | .603 | 37 | 288 | | 170 | .640 | 37 | 306 | | 180 | .677 | 37 | 324 | | 190 | .714 | 36 | 342 | | 200 | .750 | 35 | 360 | | 210 | .785 | 35 | 378 | | 220 | .820 | 34 | 396 | | 230 | .854 | 34 | 414 | | 240 | .888 | 35 | 432 | | 250 | .923 | 33 | 450 | | 260 | .956 | 33 | 468 | | 270 | .989 | 33 | 486 | | 280 | 1.022 | 32 | 504 | | 290 | 1.054 | 33 | 522 | | 300 | 1.087 | 32 | 540 | | 310 | 1.119 | 31 | 558 | | 320 | 1.150 | 31 | 576 | | 330 | 1.181 | 31 | 594 | | 340 | 1.212 | 30 | 612 | | 350 | 1.242 | | 630 | | l | | | | | °K | k/k ₀ | | o _R | |------------|------------------|------------------|----------------| | | | | | | • | | | | | 350
360 | 1.242
1.272 | 30
30 | 630
648 | | 370 | 1.302 | 29 | 666 | | 380
390 | 1.331
1.360 | 29
29 | 684
702 | | 5,0 | | 27 | • • • | | 400 | 1.389 | 29 | 720
738 | | 410
420 | 1.418
1.446 | 28
28 | 756 | | 430 | 1.474 | 28 | 774 | | 440 | 1.502 | 28 | 792 | | 450 | 1.530 | 27 | 810 | | 460 | 1.557 | 27 | 828 | | 470
480 | 1.584
1.611 | 27
27 | 846
864 | | 490 | 1.638 | 26 | 882 | | 500 | 1.664 | 26 | 900 | | 510 | 1.690 | 26
26 | 918 | | 520 | 1.716 | 25 | 936 | | 530 | 1.741 | 25 | 954
972 | | 540 | 1.766 | 25 | 712 | | 550 | 1.791 | 25 | 990 | | 560
570 | 1.816
1.841 | 25
2 4 | 1008
1026 | | 580 | 1.865 | 2 5 | 1044 | | 590
 1.890 | 24 | 1062 | | 600 | 1.914 | | 1080 | | ĺ | | | | | 1 | | | | Table 5-10. PRANDTL NUMBER OF CARBON MONOXIDE AT ATMOSPHERIC PRESSURE 7 C_D/k | | TO THE STATE OF CHARDON MONORIDE AT ATMOSPHERIC PRESSURE | | | | | | | | | | |--------------|--|----------|------------------|------------------|-----------------|-------|------------------|----------|------------|--| | o K | (N _P | r) | (N _{Pr} |) ^{2/3} | (N _P | r)1/3 | (N _{Pr} | 1/2 | ° R | | | 200 | .764 | -3 | .836 | -2 | .914 | -1 | .874 | _ | | | | 210 | .761
.758 | -3 | .834 | -3 | .913 | | | -2 | 360 | | | 220 | .758 | -2 | .831 | -J
-1 | .912 | -1 | .872 | -1 | 378 | | | 230 | .756 | -3 | .830 | -1
-2 | .712 | -1 | .871 | -1 | 396 | | | 240 | .753 | -3 | .828 | | .911 | -1 | .870 | -2 | 414 | | | | • | -, | .020 | -2 | .910 | -1 | .868 | -2 | 432 | | | 250 | .750 | -3 | .826 | -3 | .909 | -2 | .866 | -2 | 450 | | | 260 | .747 | -2 | .823 | -1 | .907 | - | .864 | -2
-1 | 468 | | | 270 | .745 | -3 | .822 | -2 | .907 | -2 | .863 | -2 | 486 | | | 280 | .742 | -2 | .820 | -2 | .905 | - | .861 | -2
-1 | 504 | | | 290 | .740 | -3 | .818 | -2 | .905 | -2 | .860 | -2 | 522 | | | 300 | .737 | -2 | .816 | _ | | | | | | | | 310 | .735 | -2
-2 | | -2 | .903 | -1 | .858 | -1 | 540 | | | 320 | 733 | -2
-2 | .814 | -1 | .902 | | .857 | -1 | 558 | | | 330 | .733
.731 | | .813 | -2 | .902
.901 | -1 | .856 | -1 | 576 | | | 340 | .729 | -2 | .811 | -1 | .901 | -1 | .855 | -1 | 594 | | | 740 | .127 | -1 | .810 | -1 | .900 | | .854 | -1 | 612 | | | 350 | .728 | -2 | .809 | -1 | .900 | -1 | .853 | _ | /20 | | | 360 | .726 | -1 | .808 | -ī | .899 | -1 | .852 | -1 | 630 | | | 370 | .725 | -1 | .807 | -1 | .898 | -1 | .052 | -1 | 648 | | | 380 | .724 | -1 | .806 | - | .898 | | .851
.851 | _ | 666 | | | 390 | .723 | -1 | .806 | -1 | .898 | | .850 | -1 | 684 | | | | | _ | | -1 | •070 | -1 | .850 | | 702 | | | 400 | .722 | -1 | .805 | -1 | .897 | | .850 | -1 | 720 | | | 410 | .721 | -1 | .804 | -1 | .897 | -1 | .849 | -1 | 720
738 | | | 420 | .720 | | .803 | - | .896 | -1 | .849 | | 756 | | | 430 | .720 | -1 | .803 | | .896 | | .849 | _ | 756 | | | 440 | .719 | -1 | .803 | -1 | .896 | -1 | .848 | -1 | 774 | | | 450 | | | | • | •070 | -1 | .040 | -1 | 792 | | | 450 | .718 | 1 | .802 | 1 | .895 | 1 | .847 | 1 | 810 | | | 460 | .719 | | .803 | | .896 | _ | .848 | • | 828 | | | 470 | .719 | -1 | .803 | -1 | .896 | -1 | .848 | -1 | 846 | | | 480 | .718 | | .802 | | .895 | - | .847 | -1 | 864 | | | 490 | .718 | | .802 | | .895 | | .847 | | 882 | | | 500 | .718 | | 902 | _ | 205 | | | | | | | 510 | .718 | | .802 | 1 | .895 | 1 | .847 | 1 | 900 | | | 520 | .719 | 1 | .803 | | .896 | | .848 | | 918 | | | 530 | .720 | 1 | .803 | | .896 | | .848 | 1 | 936 | | | 540 | | | .803 | | .896 | | .849 | | 954 | | | 9 4 0 | .720 | 1 | .803 | 1 | .896 | 1 | .849 | 1 | 972 | | | 550 | .721 | 1 | .804 | 1 | .897 | | .850 | | 000 | | | 560 | .722 | - | .805 | • | .897 | | | | 990 | | | 570 | .722 | 1 | .805 | 1 | .897 | | .850 | | 1008 | | | 580 | .723 | • | .806 | | .898 | 1 | .850 | | 1026 | | | 590 | .723 | 1 | .806 | | .898 | | .850 | | 1044 | | | | | • | .000 | | .070 | | .850 | 1 | 1062 | | | 600 | .724 | | .806 | | .898 | | .851 | | 1080 | | | | | | | | | | • | | _000 | | Table 5-11. VAPOR PRESSURE OF CARBON MONOXIDE | Remarks | т | P | P | P | т | |------------------------|--------------------------------|--|--|--|---------------------------------| | | o K | m Hg | atm atm | psia | ° R | | Transition | 61.5 ₇ | .0281 | .0370 | .543 | 110.83 | | Triple point | , | .1153 | .1517 | 2,230 | 122.5 | | Normal boiling point- | | .7600 | 1.000 | 14.696 | 146.92 | | Critical point | - 132.8 ₈ | 26.2 ₄₂ | 34.529 | 507 . 4 | 239.18 | | Solid below transition | 55
60 | .0042
.0186 | .0055
.0244 | .081
.359 | 99
108 | | Solid above transition | 65 | .061 | .081 | 1.183 | 117 | | Liquid | 70
75
80
85
90 | .158
.332
.629
1.098
1.796 | .208
.437
.828
1.445
2.36 | 3.06
6.42
12.16
21.2
34.7 | 126
135
144
153
162 | | | 95
100
105
110
115 | 2.78
4.11
5.84
8.04
10.77 | 3.66
5.41
7.68
10.57
14.17 | 53.8
79.5
112.9
155.4
208. | 171
180
189
198
207 | | | 120
125
130 | 14.11
18.14
22.99 | 18.57
23.87
30.25 | 273.
351.
445. | 216
225
234 | Table 5-11/a. VAPOR PRESSURE OF LIQUID CARBON MONOXIDE | | | | | | | | |-------------------|-------------|--------------|-----|---------------|------------------|-------------------| | 40/T | Т | Log P (atm) | * | P | т | 72/T | | o _K -1 | °ĸ | , | | atm | o _R | o _R -1 | | .59 | 67.80 | (9.1591 -10) | 859 | (.144) | 122.03 | .59 | | .58 | 68.97 | 9.2450 -10 | 855 | .176 | 124.14 | .58 | | .57 | 70.18 | 9.3305 -10 | 851 | .214 | 126.32 | .57 | | .56 | 71,43 | 9.4156 -10 | 846 | .260 | 128.57 | .56 | | .55 | 72.73 | 9.5002 -10 | 842 | .316 | 130.91 | .55 | | | , | 7,5002 10 | 042 | .,,10 | 150.71 | .55 | | .54 | 74.07 | 9.5844 -10 | 838 | .384 | 133.33 | .54 | | .53 | 75.47 | 9.6682 -10 | 835 | .466 | 135.85 | .53 | | .52 | 76.92 | 9.7517 -10 | 832 | .565 | 138.46 | .52 | | .51 | 78.43 | 9.8349 -10 | 830 | .684 | 141.18 | .51 | | .50 | 80.00 | 9.9179 -10 | 826 | .828 | 144.00 | .51
.50 | | | | | | • | | | | .49 | 81.63 | .0005 | 823 | 1.001 | 146.94 | .49 | | .48 | 83.33 | .0828 | 820 | 1.210 | 150.00 | .48 | | .47 | 85.11 | .1648 | 818 | 1.462 | 153.19 | .47 | | .46 | 86.96 | .2466 | 816 | 1.76 | 156.52 | .46 | | .45 | 88.89 | .3282 | 816 | 2.13 | 160.00 | .45 | | | | | | | | | | .44 | 90.91 | .4098 | 814 | 2. 57 | 163.64 | .44 | | .43 | 93.02 | .4912 | 810 | 3.10 | 167,44 | .43 | | .42 | 95.24 | .5722 | 807 | 3.73 | 171.43 | .42 | | .41 | 97.56 | .6529 | 802 | 4.50 | 175.61 | .41 | | .40 | 100.00 | .7331 | 800 | 5.41 | 180.00 | .40 | | .39 | 102.53 | .8131 | | | 104 (0 | 20 | | .38 | 105.26 | .8931 | 800 | 6.50 | 184.62 | .39 | | .37 | 108.11 | .9732 | 801 | 7.82
9.40 | 189.47 | .38 | | .36 | 111.11 | 1.0534 | 802 | 9.40
11.31 | 194.59 | .37 | | .35 | 114.29 | 1.1339 | 805 | 13.61 | 200.00
205.71 | .36 | | • 20 | 114,27 | 1.1337 | 808 | 13.01 | 205.71 | .35 | | .34 | 117.65 | 1.2147 | 812 | 16.40 | 211.76 | .34 | | .33 | 121.21 | 1.2959 | 819 | 19.77 | 218.18 | .33 | | .32 | 125,00 | 1.3778 | 834 | 23.87 | 225.00 | .32 | | .31 | 129.03 | 1.4612 | 859 | 28.92 | 232.26 | .31 | | .30 | 133.33 | (1.5471) | 896 | (35.25) | 240.00 | .30 | | | | (, | 0,0 | (> > = >) | E 10.00 | .,,, | | .29 | 137.93 | (1.6367) | | (43.32) | 248,28 | .29 | | • | | (, | | (.2.52) | | , | ^{*}Tabulated values in this column are for interpolation in terms of reciprocal temperature. Table 5-11/b. CONSTANTS FOR LOG $_{10}$ P (SOLID) = A - B/T | | | | 10 | | |----------------------|----------------------|----------------------------|------------|------------------| | | Units of P | A | Units of T | В | | Below the transition | mm Hg | 8. 3509
5. 4701 | ° K | 424.94
764.89 | | Above the | psia | 6. 6373 | | 104.09 | | transition | mm Hg
atm
psia | 7.8469
4.9661
6.1333 | ° K
° R | 393.91
709.04 | | | | 1 | l . | | Figures in parentheses are extrapolated to permit interpolation to the critical point and triple point. Table 5-12. IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR CARBON MONOXIDE | • | C _p | | (H° - E°) |)* | s° | | -(F° E°) | | | |---------------------|-------------------------|-------------|----------------------------|------------------------------|----------------------------|-------------------|----------------------------|---------------------|--------------------| | °K | R. | | RT _o | • | R | | RT | - | ° R | | | | | | | | | | | | | 60 | 3.500 | | .76543 | 12814 | 18.147 | 540 | 14.662
15.200 | 538
465 | 108
126 | | 70
80
90 | 3.500
3.500
3.500 | | .89357
1.0217
1.1498 | 1281
1281
1282 | 18.687
19.154
19.566 | 467
412
369 | 15.665
16.077 | 412
367 | 144
162 | | 100 | 3.500 | 1 | 1.2780 | 1282 | 19.935
20.269 | 334 | 16,444 | 333 | 180
198 | | 110
120
130 | 3.501
3.501
3.501 | | 1.4062
1.5343
1.6625 | 1281
1282
1281 | 20.269
20.573
20.854 | 304
281
259 | 16.777
17.081
17.360 | 304
279
259 | 216
234 | | 140 | 3.501 | | 1.7906 | 1282 | 21.113 | 241 | 17.619 | 241 | 252 | | 150
160 | 3.501
3.501 | | 1.9188
2.0469 | 1281
1282 | 21.354
21.580 | 226
213 | 17.860
18.086 | 226
212 | 270
288 | | 170
180 | 3.501
3.501 | | 2.1751
2.3032 | 1281
1282 | 21.793
21.993 | 200
189 | 18.298
18.497
18.686 | 199
189 | 306
324
342 | | 190
200 | 3.501
3.501 | | 2.4314
2.5596 | 1282
1281 | 22.182 | 180
170 | 18,866 | 180
170 | 360 | | 210
220 | 3.501
3.501 | | 2.6877
2.8159 | 1282
1282 | 22.532
22.695 | 163
156 | 19.036
19.199 | 163
155 | 378
396 | | 230
240 | 3.501
3.502 | 1 | 2.9441
3.0723 | 1282
1282 | 22.851
23.000 | 149
143 | 19.354
19.503 | 149
143 | 414
432 | | 2 50 | 3.502 | _ | 3.2005 | 1282 | 23.143
23.280 | 137 | 19.646
19.783 | 137
132 | 450
468 | | 260
270
280 | 3,502
3,503
3,503 | 1 | 3.3287
3.4569
3.5851 | 1282
1282
1283 | 23.412
23.540 | 132
128
123 | 19.915
20.042 | 127
123 | 486
504 | | 290 | 3.504 | i | 3.7134 | 1283 | 23.663 | 119 | 20,165 | 119 | 522 | | 300
310 | 3.505
3.506 | 1
2 | 3.8417
3.9700 | 128 3
12 84 | 23.782
23.897 | 115
111 | 20,284
20,398 | 114
111 | 540
558 | | 320
330 | 3.508
3.509 | 1 2 | 4.0984
4.2268
4.3553 | 1284
1285 | 24.008
24.116
24.221 | 108
105
101 |
20.509
20.617
20.721 | 108
104
102 | 576
594
612 | | 340
350 | 3.511
3.513 | 2 | 4.4839 | 1286
1287 | 24.322 | 99 | 20.823 | 98 | 630 | | 360
370 | 3.516
3.519 | 3 | 4.6126
4.7413 | 1287
1289 | 24.421
24.518 | 97
94 | 20.921
21.017 | 96
94 | 648
666 | | 380
390 | 3.522
3.525 | 3
4 | 4.8702
4.9992 | 1290
1291 | 24.612
24.703 | 91
89 | 21.111
21.202 | 91
88 | 684
702 | | 400
410 | 3.529
3.533 | 4
4 | 5.1283
5.2576 | 1293
1294 | 24.792
24.880 | 88
85 | 21.290
21.377 | 87
84 | 720
738 | | 420
430 | 3.537
3.542 | 5 | 5.3870
5.5166 | 1296
1297 | 24.965
25.048 | 83
82 | 21.461
21.544 | 83
80 | 756
77 4 | | 440 | 3.547 | 5 | 5.6463 | 1300 | 25,130 | 79 | 21.624 | 79
— | 792 | | 450
460 | 3.552
3.558 | 6 | 5.7763
5.9064 | 1301
1304 | 25.209
25.288
25.364 | 79
76 | 21.703
21.780
21.856 | 77
76
73 | 810
828
846 | | 470
480
490 | 3.564
3.570
3.577 | 6
7
6 | 6.0368
6.1674
6.2982 | 1306
1308
1310 | 25.439
25.512 | 75
73
73 | 21.929
22.001 | 72
72 | 864
882 | | 500 | 3.583 | 7 | 6.4292 | 1314 | 25,585 | 71 | 22,073 | 69 | 900 | | 510
5 2 0 | 3.590
3.597 | 7
8 | 6.5606
6.6921 | 1315
1319 | 25.656
25.727 | 71
68 | 22.142
22.211 | 69
67 | 918
936 | | 530
540 | 3.605
3.612 | 7
8 | 6.8240
6.9561 | 1321
1323 | 25.795
25.862 | 67
66 | 22.278
22.343 | 65
65 | 954
972 | | 550
560 | 3.620
3.628 | 8
8 | 7.0884
7.2211 | 1327
1330 | 25.928
25.994 | 66
64 | 22.408
22.471 | 63
63 | 990
1008 | | 570
580 | 3.636
3.644 | 8
9 | 7.3541
7.4874 | 1333
1335 | 26.058
26.121 | 63
63 | 22.534
22.595 | 61
60 | 1026
1044 | | 590 | 3.653 | 8 | 7.6209 | 1339 | 26.184 | 61 | 22.655 | 60 | 1062
1080 | | 600 | 3.661 | | 7.7548 | | 26,245 | | 22.715 | | 1000 | ^{*}The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). Table 5-12. IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR CARBON MONOXIDE - Cont. | | C° | | //10 F0 | * * | 7 00 | | .=9 =9\ | | | |--------------------------------------|---|----------------------------|--|--------------------------------------|--|---------------------------------|--|---------------------------------|--------------------------------------| | °K | C _p | | (H° - E° | ,) · | s° | | -(F° - E°) | • | ° _R | | | R | | RT _o | | R | | RT | | <u> </u> | | 600
610
620
630
640 | 3.661
3.670
3.678
3.687
3.696 | 9
8
9
9 | 7.7548
7.8890
8.0235
8.1583
8.2935 | 1342
1345
1348
1352
1355 | 26.245
26.306
26.366
26.424
26.483 | 61
60
58
59
57 | 22.715
22.773
22.830
22.887
22.943 | 58
57
57
56
55 | 1080
1098
1116
1134
1152 | | 650
660
670
680
690 | 3.705
3.714
3.722
3.731
3.740 | 9
8
9
9 | 8.4290
8.5647
8.7008
8.8373
8.9741 | 1357
1361
1365
1368
1371 | 26.540
26.597
26.652
26.708
26.762 | 57
55
56
54
54 | 22.998
23.052
23.105
23.158
23.210 | 54
53
53
52
51 | 1170
1188
1206
1224
1242 | | 700
710
720
730
740 | 3.749
3.758
3.767
3.776
3.785 | 9
9
9
9 | 9.1112
9.2485
9.3863
9.5244
9.6628 | 1373
1378
1381
1384
1387 | 26.816
26.869
26.922
26.974
27.025 | 53
53
52
51
51 | 23.261
23.311
23.361
23.410
23.459 | 50
50
49
49
47 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | 3.794
3.802
3.811
3.820
3.828 | 8
9
9
8
9 | 9.8015
9.9405
10.080
10.220
10.360 | 1390
139
140
140
140 | 27.076
27.127
27.176
27.226
27.274 | 51
49
50
48
49 | 23.506
23.554
23.600
23.647
23.692 | 48
46
47
45
45 | 1350
1368
1386
1404
1422 | | 800
850
900
950
1000 | 3.837
3.878
3.918
3.956
3.991 | 41
40
38
35
33 | 10.500
11.206
11.920
12.640
13.368 | 706
714
720
728
733 | 27.323
27.556
27.779
27.992
28.196 | 233
223
213
204
195 | 23.737
23.955
24.162
24.358
24.544 | 218
207
196
186
179 | 1440
1530
1620
1710
1800 | | 1050
1100
1150
1200
1250 | 4.024
4.054
4.083
4.110
4.135 | 30
29
27
25
23 | 14.101
14.840
15.585
16.335
17.090 | 739
745
750
755
759 | 28.391
28.579
28.760
28.934
29.103 | 188
181
174
169
162 | 24.723
24.894
25.058
25.216
25.369 | 171
164
158
153
146 | 1890
1980
2070
2160
2250 | | 1300
1350
1400
1450
1500 | 4.158
4.179
4.199
4.218
4.236 | 21
20
19
18
16 | 17.849
18.612
19.379
20.149
20.923 | 763
767
770
774
776 | 29.265
29.423
29.575
29.723
29.866 | 158
152
148
143
139 | 25.515
25.657
25.794
25.927
26.056 | 142
137
133
129
125 | 2340
2430
2520
2610
2700 | | 1550
1600
1650
1700
1750 | 4.252
4.267
4.281
4.294
4.307 | 15
14
13
13 | 21.699
22.479
23.261
24.046
24.833 | 780
782
785
787
790 | 30.005
30.140
30.272
30.400
30.525 | 135
132
128
125
121 | 26.181
26.303
26.421
26.536
26.648 | 122
118
115
112
110 | 2790
2880
2970
3060
3150 | | 1800
1850
1900
1950
2000 | 4.319
4.330
4.340
4.350
4.359 | 11
10
10
9 | 25.623
26.415
27.208
28.003
28.801 | 792
793
795
798
799 | 30.646
30.765
30.880
30.993
31.103 | 119
115
113
110
108 | 26.758
26.864
26.969
27.070
27.170 | 106
105
101
100
97 | 3240
3330
3420
3510
3600 | | 2050
2100
2150
2200
2250 | 4.368
4.376
4.384
4.391
4.398 | 8
7
7 | 29.600
30.401
31.203
32.006
32.810 | 801
802
803
804
806 | 31.211
31.316
31.419
31.520
31.619 | 105
103
101
99
97 | 27.267
27.362
27.455
27.547
27.636 | 95
93
92
89
88 | 3690
3780
3870
3960
4050 | | 2300
2350
2400
2450
2500 | 4.405
4.412
4.418
4.424
4.429 | 6
6
5 | 33.616
34.423
35.232
36.041
36.851 | 807
809
809
810
812 | 31.716
31.811
31.904
31.995
32.084 | 95
93
91
89
88 | 27.724
27.810
27.894
27.977
28.058 | 86
84
83
81
80 | 4140
4230
4320
4410
4500 | | 2550
2600
2650
2700
2750 | 4.435
4.440
4.445
4.450
4.454 | 5
5
4 | 37.663
38.475
39.289
40.103
40.918 | 812
814
814
815
816 | 32.172
32.258
32.343
32.426
32.508 | 86
85
83
82
80 | 28.138
28.216
28.293
28.369
28.444 | 78
77
76
75
73 | 4590
4680
4770
4860
4950 | | 2800 | 4.459 | • | 41.734 | | 32.588 | | 28.517 | | 5040 | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). Table 5-12. IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR CARBON MONOXIDE - Cont. | Table 5-12. IDEAL GAD THE SAME STATE OF | | | | | | | | | | |--|----------------|--------|------------------|--------------------|--------|------------|---------------------------------------|----|------| | •,, | C _p | | (H° - E°) | * | s° | |
$\frac{-(F^{\circ}-E_{o}^{\circ})}{}$ | | °R | | °K | R | | RT _o | | R | | RT | | | | 1 | | | • | | | | | | | | 2800 | 4.459 | 5 | 41.734 | 81.7 | 32.588 | 79 | 28.517 | 71 | 5040 | | 2850 | 4.464 | 4 | 42.551 | 81.7 | 32.667 | 77 | 28,588 | 71 | 5130 | | 2900 | 4.468 | 4 | 43.368 | 818 | 32.744 | 77 | 28.659 | 70 | 5220 | | 2950 | 4.472 | 4 | 44.186 | 819 | 32.821 | 75 | 28.729 | 69 | 5310 | | 3000 | 4.476 | 4 | 45.005 | 820 | 32.896 | 74 | 28.798 | 68 | 5400 | | 3050 | 4.480 | 4 | 45.825 | 820 | 32.970 | 73 | 28.866 | 67 | 5490 | | 3100 | 4.484 | 3 | 46.645 | 821 | 33.043 | 72 | 28.933 | 65 | 5580 | | 3150 | 4.487 | 4 | 47.466 | 822 | 33.115 | 70 | 28.998 | 65 | 5670 | | 3200 | 4.491 | 3 | 48.288 | 822 | 33.185 | 70 | 29.063 | 64 | 5760 | | 3250 | 4.494 | 3 | 49.110 | 823 | 33.255 | 69 | 29.127 | 63 | 5850 | | 3300 | 4.497 | 3 | 49,933 | 824 | 33.324 | 67 | 29.190 | 62 | 5940 | | 3350 | 4.500 | 4 | 50.757 | 824 | 33,391 | 67 | 29,252 | 62 | 6030 | | | 4.504 | | 51.581 | 824 | 33.458 | 66 | 29.314 | 60 | 6120 | | 3400 | | 3 | 52.405 | 826 | 33.524 | 65 | 29.374 | 60 | 6210 | | 3450
3500 | 4.507
4.510 | 3
2 | 53.231 | 825 | 33.589 | 64 | 29.434 | 59 | 6300 | | 2550 | 4.512 | | 54.056 | 827 | 33,653 | 63 | 29,493 | 58 | 6390 | | 3550 | 4.512 | 3 | 54.883 | 826 | 33.716 | 62 | 29.551 | 58 | 6480 | | 3600 | 4.515 | 3 | 55.709 | 828 | 33.778 | <u>er</u> | 29.609 | 57 | 6570 | | 3650 | 4.518 | 3 | | 827 | 33.839 | 9 <u>1</u> | 29,666 | 56 | 6660 | | 3700
3750 | 4.521
4.523 | 2
3 | 56.537
57.364 | 82 <i>1</i>
828 | 33.900 | . 60 | 29.722 | 55 | 6750 | | | - | | 58,192 | 829 | 33,960 | 59 | 29.777 | 55 | 6840 | | 3800 | 4.526 | 3 | 59.021 | 829 | 34.019 | 59 | 29.832 | 54 | 6930 | | 3850 | 4.529 | 2 | | 830 | 34.078 | 57 | 29.886 | 53 | 7020 | | 3900 | 4.531 | 3 | 59.850 | 830 | 34.135 | 57 | 29,939 | 53 | 7110 | | 3950
4000 | 4.534
4.536 | 2
3 | 60.680
61.510 | 830 | 34.192 | 57 | 29.992 | 52 | 7200 | | | | _ | 62,340 | 831 | 34,249 | 56 | 30.044 | 52 | 7290 | | 4050 | 4.539 | 2 | | | 34.305 | 55 | 30.096 | 51 | 7380 | | 4100 | 4.541 | 2 | 63.171 | 832 | 34.360 | 54 | 30.147 | 50 | 7470 | | 4150 | 4.543 | 3 | 64.003 | 832 | 34.414 | 54
54 | 30.197 | 50 | 7560 | | 4200 | 4.546 | 2 | 64.835
65.667 | 832
832 | 34.468 | 53 | 30.247 | 50 | 7650 | | 4250 | 4.548 | 2 | 65.667 | 632 | | | | | 7740 | | 4300 | 4.550 | 2 | 66.499 | 834 | 34.521 | 53 | 30.297 | 48 | 7740 | | 4350 | 4.552 | 2 | 67.333 | 833 | 34.574 | 52 | 30.345 | 49 | 7830 | | 4400 | 4.554 | 3 | 68.166 | 834 | 34.626 | 51 | 30.394 | 48 | 7920 | | 4450 | 4.557 | 2 | 69.000 | 834 | 34.677 | 51 | 30.442 | 47 | 8010 | | 4500 | 4.559 | 2 | 69.834 | 835 | 34.728 | 50 | 30.489 | 47 | 8100 | | 4550 | 4.561 | 2 | 70.669 | 835 | 34.778 | 50 | 30.536 | 46 | 8190 | | 4600 | 4.563 | 2 | 71.504 | 835 | 34.828 | 50 | 30.582 | 46 | 8280 | | 4650 | 4.565 | 2 | 72.339 | 836 | 34.878 | 49 | 30.628 | 46 | 8370 | | 4700 | 4.567 | 2 | 73.175 | 836 | 34.927 | 48 | 30.674 | 45 | 8460 | | 4750 | 4.569 | 2 | 74.011 | 837 | 34.975 | 48 | 30.719 | 44 | 8550 | | 4000 | 4.571 | 2 | 74.848 | 837 | 35,023 | 47 | 30.763 | 44 | 8640 | | 4800 | 4.573 | 2 | 75.685 | 837 | 35.070 | 47 | 30.807 | 44 | 8730 | | 4850 | 4.575
4.575 | 2 | 76.522 | 838 | 35.117 | 46 | 30.851 | 43 | 8820 | | 4900 | | 2 | 77.360 | 837 | 35.163 | 46 | 30.894 | 43 | 8910 | | 4950
5000 | 4.577
4.579 | ۷ | 78 . 197 | w, | 35.209 | | 30.937 | | 9000 | | 2000 | 7.717 | | | | | | | | | ^{*}The enthalpy function is divided here by a constant RT_0 where $T_0 = 273.16^{\circ}K$ (491.688°R). Table 5-13. COEFFICIENTS FOR THE EQUATION OF STATE FOR CARBON MONOXIDE $Z \ = \ 1 + B_1 P + C_1 P^2$ | | | | • • | | | |-------------|-------------------|-------------------------|------------|----------------------|-------------------| | T | $\mathbf{B_1}$ | $\mathtt{c}_\mathtt{i}$ | T | В ₁ | $\mathbf{c_1}$ | | °K | atm ⁻¹ | atm ⁻² | °K | atm-1 | atm ⁻² | | 200 | *
(2)2701 | *
+ . (5)4485 | 800 | *
+ /9\494 | *
• (6)111 | | 210 | (2)2260 | . (5)4873 | | + . (3)434 | + . (6)111 | | 220 | (2)1890 | . (5)4851 | 810 | . (3)432 | . (6)105 | | 230 | (2)1578 | . (5)4714 | 820
830 | . (3)430
. (3)427 | . (7)99 | | 240 | (2)1313 | . (5)4480 | | • | . (7)94 | | 250 | (2)1087 | . (5)4200 | 840 | . (3)425 | . (7)89 | | 260 | (3)893 | . (5)3904 | 850 | (3)423 | . (7)84 | | 270 | (3)725 | . (5)3608 | 860
870 | . (3)421 | . (7)79 | | 280 | (3)580 | . (5)3323 | 870 | . (3)418 | . (7)75 | | 290 | (3)455 | . (5)3053 | 880
890 | . (3)416 | . (7)71 | | 200 | . (0/100 | . (0/0000 | 880 | . (3)414 | . (7)67 | | 300 | (3)345 | . (5)2803 | 900 | . (3)411 | . (7)64 | | 310 | (3)249 | . (5)2574 | 910 | . (3)409 | . (7)60 | | 320 | (3)165 | . (5)2365 | 920 | . (3)406 | . (7)57 | | 330 | (4)92 | . (5)2174 | 930 | . (3)404 | . (7)54 | | 340 | (4)26 | . (5)2002 | 940 | . (3)402 | . (7)51 | | 350 | +. (4)31 | . (5)1847 | 950 | . (3)399 | . (7)48 | | 360 | . (4)82 | . (5)1706 | 960 | . (3)397 | . (7)45 | | 370 | . (3)126 | . (5)1581 | 970 | . (3)394 | . (7)43 | | 380 | . (3)166 | . (5)1466 | 980 | (3)392 | . (7)40 | | 390 | . (3)201 | . (5)1362 | 990 | . (3)390 | . (7)38 | | ••• | 1,0,201 | . (0,1002 | 000 | . (0/000 | . (1730 | | 400 | . (3)232 | . (5)1269 | 1000 | . (3)387 | . (7)36 | | 410 | . (3)260 | . (5)1182 | 1050 | . (3)376 | . (7)26 | | 420 | . (3)285 | .(5)1104 | 1100 | . (3)364 | . (7)19 | | 430 | . (3)307 | . (5)1031 | 1150 | . (3)353 | . (7)13 | | 440 | . (3)326 | . (6)965 | 1200 | . (3)342 | . (8)9 | | 450 | . (3)343 | . (6)903 | 1250 | . (3)332 | . (8)6 | | 460 | . (3)359 | . (6)846 | 1300 | . (3)322 | . (8)3 | | 470 | . (3)372 | . (6)792 | 1350 | . (3)313 | • | | 480 | . (3)384 | . (6)742 | 1400 | . (3)304 | | | 490 | . (3)395 | . (6)696 | 1450 | . (3)295 | | | 500 | . (3)404 | . (6)652 | 1500 | (0)005 | | | 510 | . (3)412 | . (6)612 | 1500 | . (3)287 | | | 520 | . (3)412 | . (6)574 | 1550 | . (3)279 | | | 530 | . (3)426 | . (6)538 | 1600 | . (3)271 | | | 540 | . (3)432 | . (6)505 | 1650 | . (3)264 | | | 550 | . (3)437 | .(6)474 | 1700 | . (3)257 | | | 560 | . (3)440 | . (6)447 | 1750 | . (3)250 | | | 570 | | | 1800 | . (3)244 | | | 58 0 | . (3)443 | . (6)420 | 1850 | . (3)238 | | | 590 | . (3)446 | . (6)395 | 1900 | . (3)232 | | | 350 | . (3)448 | . (6)372 | 1950 | . (3)227 | | | 600 | . (3)450 | . (6)350 | 2000 | . (3)221 | | | 610. | . (3)451 | . (6)330 | 2050 | . (3)216 | | | 620 | . (3)452 | . (6)311 | 2100 | . (3)211 | | | 630 | . (3)453 | . (6)293 | 2150 | . (3)207 | | | 640 | . (3)453 | . (6)276 | 2200 | . (3)202 | | | 650 | . (3)453 | . (6)260 | 2250 | . (3)198 | | | 660 | . (3)453 | . (6)245 | 2300 | . (3)194 | | | 670 | . (3)453 | . (6)231 | 2350 | . (3)190 | | | 680 | . (3)452 | . (6)218 | 2400 | . (3)186 | | | 690 | . (3)451 | . (6)206 | 2450 | . (3)182 | | | 700 | (0) (50 | (0):0= | | | | | 700
710 | . (3)450 | . (6)195 | 2500 | . (3)178 | | | | . (3)449 | . (6)184 | 2550 | . (3)175 | | | 720
720 | . (3)448 | . (6)174 | 2600 | . (3)171 | | | 730 | . (3)446 | . (6)164 | 2650 | . (3)168 | | | 740 | . (3)445 | . (6)155 | 2700 | . (3)165 | | | 750 | . (3)443 | . (6)146 | 2750 | . (3)162 | | | 760 | . (3)442 | . (6)139 | 2800 | . (3)159 | | | 770 | . (3)440 | . (6)131 | 2850 | . (3)156 | | | 780 | . (3)438 | . (6)124 | 2900 | . (3)153 | | | 790 | . (3)436 | . (6)117 | 2950 | . (3)151 | | | | | | 3000 | . (3)148 | | | | | | | | | ^{*}Numbers in parentheses indicate the number of zeros immediately to the right of the decimal point. #### CHAPTER 6 # THE THERMODYNAMIC PROPERTIES OF HYDROGEN ## The Correlation of the Experimental Data The most extensive correlation of the thermodynamic properties of hydrogen available is contained in the publication by Woolley, Scott, and Brickwedde [1]. That correlation, partly analytical and partly graphical, treated the region from near condensation to 600°K to a density of 500 Amagats. A full discussion of the experimental data and of the method of correlation is to be found in the above-cited work, where the properties are tabulated as a function of density in Amagat units. Figure 6a, which is taken from this work, shows the extent and distribution of the PVT data employed in this correlation. The deviations of the correlation from the data are shown by the comparison between the solid curves and the plotted experimental points. The calculations in reference 1 of the real-gas corrections or the thermodynamic effects of the deviation from ideality of the gas were carried out by numerical integration and differentiation, with smoothing, of the tabulated compressibility factors. The thermodynamic properties have been calculated for the real gas by combining thermodynamic functions for the ideal gas with the real-gas corrections. The ideal-gas values for the thermodynamic functions for molecular hydrogen are from reference 1. The effect of mixing of the ortho and para forms has been included in the values of the entropy and of the free energy function in tables 6-5 and 6-12; the effect of nuclear spin is not included. The values for atomic hydrogen (table 6-12/a) were calculated by standard methods of statistical mechanics. The present tabulation of the properties of hydrogen was obtained by interpolation from the values tabulated in reference 1. The tables given below (except for tables 6-11, 6-11/a, and 6-12/a) are for normal hydrogen (75 percent ortho and 25 percent para). The variation of the thermodynamic properties with ortho-para composition is negligible in tables 6-1 and 6-2. For tables 6-3 through 6-6, the influence is essentially dependent on the variation of the ideal-gas thermodynamic properties with composition. The ideal-gas properties for ortho and para hydrogen are given by Woolley, Scott, and Brickwedde [1]. The change in the sound velocity can be computed from the changes in the specific-heat ratio. The directly determined experimental data include: specific heat by Scheel and Heuse [19], Eucken
[20], and Workman [21]; isentropic cooling by expansion in the Lummer-Pringsheim method by Brinkworth [22], Eucken and Mücke [23], and Partington and Howe [24]; apparent values of C_V from the heat required for increases in gas pressure by Giacomini [25]; isentropic heating by compression of mixtures to ignition by Crofts [26]; the ratio of specific heats or the isentropic expansion coefficient in the resonance method of Clark and Katz [27, 28] and Koehler [29]; and the velocity of sound by Cornish and Eastman [30], Van Itterbeek and Mariens [31], Van Itterbeek and Van Doninck [32, 33], and Hodge [34]. Joule-Thomson data by Johnston, et al., [35, 36] are in fair agreement with this correlation. $V_{\rm O}$ is the molar volume of gas at 1 - atm. pressure and the ice point. Figure 6a. PVT data for hydrogen available in 1948 The dimensionless representation has been accomplished for certain properties by expressing them relative to the value at standard conditions (OC and 1 atmosphere). Thus, for density, the property is expressed as P/P_0 , for sound velocity as a/a_0 , for thermal conductivity as k/k_0 , and for viscosity as η/η_0 . The reference values, ρ_0 , a_0 , k_0 , and η_0 , result, in general, from the correlating equations which were fitted to represent the experimental data over as wide a range as possible. Values for these quantities are given in various units in table 6-b. The value of ρ_0 for hydrogen, as given, 0.0898879 g ℓ^{-1} , is slightly higher than the experimental measurements [74-78] averaging 0.08985 g ℓ^{-1} , though they may be of lower accuracy than for some gases because of the smaller mass of gas involved. The most recent determination listed here was published in 1918. The value of η_0 for hydrogen as given, 8.411×10^{-5} poise, is well within the range of measured values [49, 51, 79-87], for which an average is 8.4522×10^{-5} poise, and near to the latest of these, 8.416 x 10⁻⁵ poise [49]. The value of k0 for hydrogen as given, $4.021 \times 10^{-4} \text{ cal cm}^{-1} \text{ sec}^{-1} \text{ °K}^{-1}$, is well within the range of measured values [64 - 66, 69, 70, 73, 88-101] for which an average is 3.998 x 10^{-4} cal cm⁻¹ sec⁻¹ °K⁻¹, with one recent value of $3.965 \times 10^{-4} \text{ cal cm}^{-1} \text{ sec}^{-1} \cdot \text{K}^{-1}$ [70] and another of $4.21 \times 10^{-4} \text{ cal cm}^{-1} \text{ sec}^{-1} \cdot \text{K}^{-1}$ [102]. The value of an for hydrogen as given, 1261.1 m sec⁻¹, is within the range of experimental values [19, 30, 43, 103-108], for which an average is 1269.9 m sec⁻¹, and quite close to some of them such as 1260.9 m sec⁻¹ [30], though the most recent determination listed here is 1286 m sec⁻¹ [108]. The tables of viscosity and thermal conductivity were computed from the equations given in summary tables 1-B and 1-C, and the Prandtl numbers were computed from these and the tabulated specific heats. The tables and equations selected to represent the vapor pressures of liquid $e-H_2$ are based on the work of Hoge and Arnold [37]; the critical points are those of Hoge and Lassiter [38]; and the vapor pressures of the solid and the triple point are taken from Woolley, Scott, and Brickwedde [1]. The prefix "e-" indicates an ortho-para composition corresponding to equilibrium at 20.4°K (0.21 percent ortho and 99.79 percent para). When approximate values of vapor pressures of normal hydrogen (n-H₂:75 percent ortho, 25 percent para) are desired, they may be obtained by computing the values for $e-H_2$ at the same temperatures and multiplying by 0.96. More accurate values of vapor pressure for any mixture of para and ortho hydrogen in the range from the triple point to the boiling point may be computed from equations in reference 39. #### The Reliability of the Tables The tables are thought to be more reliable in the region from OC to 100°C than at temperatures considerably higher or lower where experimental difficulties are considerably greater. Inspection of figure 6a indicates that the best data have been fitted so closely in the good experimental region that the uncertainty here is of the order of a percent or two of Z-1 and probably somewhat better over most of the range of densities. For temperatures considerably higher or lower, the uncertainties are much greater. Although the fitting of virial coefficients with functions based on a suitable model would have been appropriate, the calculation of the present tables has not been based on such a procedure. Rather, the tables are a more direct representation of the data, though with some similarity to the results obtained using the Lennard-Jones 6-12 potential in the treatment for the region above O°C. There is considerable uncertainty in the extrapolation Figure 6b. The effect of dissociation on the enthalpy of hydrogen Figure 6c. The effect of dissociation on the entropy of hydrogen to 600°K, the highest temperature covered, probably more than if the calculation had been based on a definite, reasonably acceptable intermolecular potential function. The derived corrections to the thermodynamic properties are, in the main, uncertain by amounts much greater than the 1 or 2 percent of Z-1, because of the increase in uncertainty in differentiation. The accuracy of the specific-heat values (table 6-3) is doubtless not uniform throughout the table. The error in $(C_P - C_P^O)/R$ may possibly be about 10 percent, and may be considerably larger than this at low and at high temperatures. The effect of dissociation is not included here, but its magnitude may be estimated in the way indicated in reference 40. The effect on entropy and enthalpy can be estimated from figures 6b and 6c. The uncertainty in the tabulated values of enthalpy for the real gas has been very roughly estimated as 5 percent of the difference between the values of the function for the real and for the ideal gas. At 400°K and 100 atmospheres, the uncertainty in $(H - E_0^O)/RT_0$ amounts to about 0.003. The numerical uncertainty is probably considerably greater at higher temperatures and at quite low temperatures at this pressure, but is less at lower pressures. The values of S/R at 100 atmospheres appear to be uncertain by about 0.003 near 200°K with values less certain at lower temperature and possibly at the highest temperatures tabulated. At lower pressures, the values are thought to be more reliable. On the basis of the reliabilities estimated for specific heats and compressibility factors, the values of γ (table 6-6) are considered to be reliable to within 10 percent of the departure from values for the ideal gas. A comparison with indirect experimental determinations of γ is shown in figure 6d. The values of sound velocity at low frequency are thought to be quite reliable except at the lowest temperatures and at elevated pressures. The uncertainty is probably less than 0.001 for pressures of 10 atmospheres or less. For 100 atmospheres, it is probably less than 0.006 up to 100°K, 0.002 up to 200°K, and 0.001 at higher temperatures. Figure 6e shows the departure between the experimental data and the tabulated values. The values of viscosity (table 6-8) were computed from the empirical equations given in summary table 1-B. Below 100°K, small corrections were applied to take into account the effect of density below the boiling point. Figure 6f is a comparison of the experimental results with those obtained from the empirical formula. The solid curve below the zero line represents the Sutherland equation fitted to the best data at 300°K and shows the inapplicability of this formula to the data for hydrogen. It is thought that the values of viscosity are reliable to within 0.4 percent between 200°K and 400°K. Below 100°K, the uncertainty is probably as great as 1 percent. The values of thermal conductivity (table 6-9) were computed from the empirical formula given in table 1-C. The estimated accuracy of the tabulated thermal conductivity is about 5 percent as is illustrated by figure 6g. Figure 6h shows the experimental vapor pressure data of [37] plotted as deviations from table 6-11. The pressures given for e- $\rm H_2$ are believed to be accurate to 0.2 or 0.3 mm Hg up to about 1 atmosphere. Above 1 atmosphere, the uncertainty gradually increases, reaching perhaps ± 8 mm Hg near the critical points. Uncertainty in the temperature scale is perhaps $\pm .020$ degree, which is greater than the scatter of the data. The reliability of the ideal-gas properties is indicated in summary table 1-D. Figure 6d. Departures of experimental values of γ from the tabulated values for hydrogen (table 6-6) Figure 6e. Ratios of tabulated and experimental sound velocities to the calculated low-pressure values Figure 6f. Departures of experimental viscosities from the tabulated values for hydrogen (table 6-8) Figure 6g. Departures of experimental thermal conductivities from the tabulated values for hydrogen (table 6-9) Figure 6h. Departures of experimental vapor pressures from the tabulated values for hydrogen (table 6-11) #### References - [1] H. W. Woolley, R. B. Scott, and F. G. Brickwedde, J. Research Natl. Bur. Standards 41, 379 (1948) RP1932. - [2] E. Bartholomé, Z. physik. Chem. [B] 33, 387 (1936). - [3] E. P. Bartlett, J. Am. Chem. Soc. <u>49</u>, 687 (1927). - [4] E. P. Bartlett, H. L. Cupples, and T. H. Tremearne, J. Am. Chem. Soc. 50, 1275 (1928). - [5] E. P. Bartlett, H. C. Hetherington, H. M. Kvalnes, and T. H. Tremearne, J. Am. Chem. Soc. 52, 1363 (1930). - [6] L. Holborn and J. Otto, Z. Physik 33, 1 (1925). - [7] L. Holborn and J. Otto, Z. Physik 38, 359 (1926). - [8] P. Kohnstamm and K. W. Walstra, Proc. Koninkl. Akad. Wetenschap. Amsterdam 17, 203 (1914). - [9] H. Kamerlingh Onnes, C. A. Crommelin, and P. G. Cath, Communs. Phys. Lab. Univ. Leiden No. 151c (1917). - [10] C. A. Crommelin and J. C. Swallow, Communs. Phys. Lab. Univ. Leiden No. 172a (1924).
- [11] H. Kamerlingh Onnes and C. Braak, Communs. Phys. Lab. Univ. Leiden No. <u>97a</u> (1906); No. <u>99a</u>, No. <u>100a</u> (1907). - [12] H. Kamerlingh Onnes and W. J. de Haas, Communs. Phys. Lab. Univ. Leiden No. 127c (1912). - [13] J. P. Martinez and H. Kamerlingh Onnes, Communs. Phys. Lab. Univ. Leiden No. 164 (1923). - [14] H. Kamerlingh Onnes and F. M. Penning, Communs. Phys. Lab. Univ. Leiden No. 165b (1923). - [15] F. P. G. A. J. Van Agt and H. Kamerlingh Onnes, Communs. Phys. Lab. Univ. Leiden No. <u>176b</u> (1925). - [16] G. P. Nijhoff and W. H. Keesom, Communs. Phys. Lab. Univ. Leiden No. 188d (1927). - [17] A. Michels, G. P. Nijhoff, and A. J. J. Gerver, Ann. Physik [5] 12, 562 (1932). - [18] R. Wiebe and V. L. Gaddy, J. Am. Chem. Soc. 60, 2300 (1938). - [19] K. Scheel and W. Heuse, Ann. Physik [4] 40, 473 (1913). - [20] A. Eucken, Sitzber. kgl. preuss. Akad. Wiss. 1912, 141. - [21] E. J. Workman, Phys. Rev. [2] 37, 1345 (1931). - [22] J. H. Brinkworth, Proc. Roy. Soc. (London) [A] 107, 510 (1925). - [23] A. Eucken and O. Mücke, Z. physik. Chem. [B] 18, 167 (1932). - [24] J. H. Partington and A. B. Howe, Proc. Roy. Soc. (London) [A] 109, 286 (1925). - [25] F. A. Giacomini, Phil. Mag. [6] 50, 146 (1925). - [26] J. M. Crofts, J. Chem. Soc. 107, 290 (1915). - [27] A. L. Clark and L. Katz, Can. J. Research [A] 18, 39 (1940). - [28] A. L. Clark and L. Katz, Can. J. Research [A] 21, 1 (1943). - [29] W. F. Koehler, J. Chem. Phys. 18, 465 (1950). - [30] R. E. Cornish and E. D. Eastman, J. Am. Chem. Soc. 50, 627 (1928). - [31] A. Van Itterbeek and P. Mariens, Physica 4, 609 (1937). - [32] A. Van Itterbeek and W. Van Doninck, Ann. phys. [11] 19, 88 (1944). - [33] A. Van Itterbeek and W. Van Doninck, Proc. Phys. Soc. (London) [B] 62, 62 (1949). - [34] A. H. Hodge, J. Chem. Phys. 5, 974 (1937). - [35] H. L. Johnston, I. I. Bezman, and C. B. Hood, J. Am. Chem. Soc. 68, 2367 (1946). - [36] H. L. Johnston, C. A. Swanson, and H. E. Wirth, J. Am. Chem. Soc. 68, 2373 (1946). - [37] H. J. Hoge and R. D. Arnold, J. Research Natl. Bur. Standards 47, 63 (1951) RP2228. - [38] H. J. Hoge and J. W. Lassiter, J. Research Natl.Bur. Standards 47, 75 (1951) RP2229. - [39] H. W. Woolley, unpublished results. - [40] H. W. Woolley, Natl. Advisory Comm. Aeronaut. Tech. Note 3270 (1955). - [41] M. Trautz and O. Grosskinsky, Ann. Physik [4] 67, 462 (1922). - [42] W. Rucker, Ann. Physik [4] 65, 393 (1921). - [43] E. Gruneisen and E. Merkel, Ann. Physik [4] 66, 344 (1921). - [44] W. Escher, Ann. Physik [4] 42, 761 (1913). - [45] M. C. Shields, Phys. Rev. [2] 10, 525 (1917). - [46] O. Lummer and E. Pringsheim, Ann. Physik [3] 64, 555 (1898). - [47] A. Cazin, Phil. Mag. [4] 40, 81, 197, 268 (1870); Ann. chim. et phys. [3] 66, 206 (1862). - [48] H. Adzumi, Bull. Chem. Soc. Japan 12, 199 (1937). - [49] H. L. Johnston and K. E. McCloskey, J. Phys. Chem. 44, 1038 (1940). - [50] W. H. Keesom and P. H. Keesom, Physica 7, 29 (1940). - [51] B. P. Sutherland and O. Maass, Can. J. Research 6, 428 (1932). - [52] M. Trautz and P. B. Baumann, Ann. Physik [5] 2, 733 (1929). - [53] M. Trautz and F. W. Stauf, Ann. Physik [5] 2, 737 (1929). - [54] M. Trautz and W. Ludewigs, Ann. Physik [5] 3, 409 (1929). - [55] M. Trautz and H. E. Binkele, Ann. Physik [5] 5, 561 (1930). - [56] M. Trautz and A. Melster, Ann. Physik [5] 7, 409 (1930). - [57] M. Trautz and R. Zink, Ann. Physik [5] 7, 427 (1930). - [58] M. Trautz and F. Kurz, Ann. Physik [5] 9, 981 (1931). - [59] M. Trautz and K. G. Sorg, Ann. Physik [5] 10, 81 (1931). - [60] M. Trautz and R. Heberling, Ann. Physik [5] 20, 118 (1934). - [61] A. Van Itterbeek and A. Claes, Nature 142, 793 (1938); Physica 5, 938 (1938). - [62] A. Van Itterbeek and O. Van Paemal, Physica 7, 265 (1940). - [63] R. Wobser and F. Müller, Kolloid-Beih. 52, 165 (1941). - [64] A. Eucken, Physik. Z. 12, 1101 (1911). - [65] A. Eucken, Physik. Z. 14, 324 (1913). - [66] H. Gregory and C. T. Archer, Proc. Roy. Soc. (London)[A] 110, 91 (1926). - [67] H. Gregory, Proc. Roy. Soc. (London) [A] 149, 35 (1935). - [68] H. Gregory and E. H. Dock, Phil. Mag. [7] 25, 129 (1938). - [69] N. B. Vargaftik and I. D. Parfenov, J. Exptl. Theoret. Phys. (U.S.S.R.) 8, 189 (1938). - [70] H. L. Johnston and E. R. Grilly, J. Chem. Phys. 14, 233 (1946). - [71] J. B. Ubbink and W. J. de Haas, Physica 10, 451 (1943). - [72] E. Schneider, Ann. Physik [4] 79, 177 (1926). - [73] E. Schneider, Ann. Physik [4] 80, (1926). - [74] A. Leduc, Compt. rend. 113, 186 (1891). - [75] A. Leduc, Recherches sur le gaz (Gauthier-Villars et Fils, Paris, 1898). - [76] E. W. Morley, Z. physik. Chem. 20, 242 (1896). - [77] E. W. Morley, Amer. Chem. J. 17, 267 (1895). - [78] P. A. Guye, J. chim. phys. 16, 46 (1918). - [79] O. E. Meyer, Ann. Physik. [2] 127, 253 (1866). - [80] T. Graham, Trans. Roy. Soc. (London) 136, 573 (1846). - [81] J. Pului, Sitzber. Akad. Wiss. Wien Math. naturw. Kl. [2] 78, 279 (1878). - [82] H. Markowski, Ann. Physik [4] 14, 742 (1904). - [83] E. Volker, Dissertation, Halle (1910). - [84] P. Gunther, Sitz ber. deut. Akad. Wiss. Berlin Kl. Gesellschaftswiss., 720 (1920). - [85] P. Gunther, Z. physik. Chem. 110, 626 (1924). - [86] H. Vogel, Ann. Physik [4] 43, 1235 (1914). - [87] A. Klemenč and W. Remi, Monatsh. Chem. 44, 307 (1924). - [88] A. Kundt and E. Warburg, Ann. Physik [2] 156, 177 (1875). - [89] P. A. Eckerlein, Ann. Physik [4] 3, 120 (1900). - [90] A. Winkelmann, Ann. Physik [3] 44, 177 and 429 (1891). - [91] P. Gunther, Dissertation, Halle (1906). - [92] S. Weber, Ann. Physik [4] 54, 437 (1917). - [93] A. Schleiermacher, Ann. Physik [3] 34, 623 (1888). - [94] E. O. Hercus and T. H. Laby, Phil. Mag. [7] 3, 1061 (1927). - [95] W. G. Kannuluik and L. H. Martin, Proc. Roy. Soc. (London) [A] 144, 496 (1934). - [96] L. Graetz, Ann. Physik [3] 14, 232 (1881). - [97] C. T. Archer, Proc. Roy. Soc. (London) [A] 165, 474 (1938). - [98] S. Weber, Ann. Physik [4] 82, 479 (1927). - [99] B. G. Dickins, Proc. Roy. Soc. (London) [A] 143, 517 (1934). - [100] T. L. Ibbs and A. A. Hirst, Proc. Roy. Soc. (London) [A] 123, 134 (1929). - [101] W. Nothdurft, Ann. Physik [5] 28, 137 (1937). - [102] J. B. Ubbink, Physica 14, 165 (1948). - [103] P. L. Dulong, Ann. chim. et phys. [2] 41, 113 (1829). - [104] I.B. Zoch, Ann. Physik [2] 128, 497 (1866). - [105] K. K. Darrow, Phys. Rev. [2] 7, 413 (1916). - [106] K. Scheel and W. Heuse, Ann. Physik [4] 37, 79 (1912). - [107] O. Stierstadt, in Landolt-Börnstein Physikalisch-chemische Tabellen, 5th Auf., 2nd Ergbd., (Julius Springer, Berlin, 1931). - [108] A. Pitt and W. J. Jackson, Can. J. Research 12, 686 (1935). - [109] A. Michels and A. J. J. Gerver, Ann. Physik [5] 16, 745 (1933). Table 6-a. VALUES OF THE GAS CONSTANT, R, FOR MOLECULAR HYDROGEN Values of R for Molecular Hydrogen for Temperatures in Degrees Kelvin | Pressure
Density | atm | atm kg/cm ² mm Hg | | lb/in ² | | |-------------------------|----------------------|------------------------------|----------|--------------------|--| | g/cm ³ | 40.7027 | 42.0551 | 30934.1 | 598.169 | | | mole/cm ³ | 82.0567 | 84.7832 | 62363. 1 | 1205, 91 | | | mole/liter | mole/liter 0.0820544 | | 62. 3613 | 1. 20587 | | | lb/ft ³ | 0.651989 | 0.673653 | 495. 512 | 9.58163 | | | lb mole/ft ³ | 1.31441 | 1.35808 | 998.952 | 19.3166 | | Values of R for Molecular Hydrogen for Temperatures in Degrees Rankine | Pressure
Density | atm | kg/cm ² | mm Hg | lb/in ² | |-------------------------|---------------------------|--------------------|----------|--------------------| | g/cm ³ | g/cm ³ 22.6126 | | 17185.6 | 332. 316 | | mole/cm ³ | 45.5871 | 47.1018 | 34646.2 | 669.950 | | mole/liter | 0.045585 8 | 0.0471005 | 34.6452 | 0.669928 | | lb/ft ³ | 0.362216 | 0.374252 | 275. 284 | 5. 32313 | | lb mole/ft ³ | 0.730228 | 0.754489 | 554.973 | 10.7314 | Conversion Factors for Table 6-2 | To Convert Tabulated To Value of | | Having the Dimensions Indicated Below | Multiply
by | |----------------------------------|---|---------------------------------------|--| | P / P0 | ρ | g cm ⁻³ | 8.98854×10^{-5} 4.45860×10^{-5} | | | 1 | g liter ⁻¹ | 8.98879 x 10 ⁻²
3.24734 x 10 ⁻⁶ | | | | lb ft ⁻³ | 5. 61140 x 10 ⁻³ | Conversion Factors for Tables 6-4 and 6-12 | To Convert Tabulated Value of | То | Having the Dimensions Indicated Below | Multiply
by | |-------------------------------|-------------|--|---| | (H°-E°)/RT0,
(H-E°)/RT0 | (H° - E°0), | cal mole ⁻¹ cal g ⁻¹ joules g ⁻¹ Btu (lb mole) ⁻¹ Btu lb ⁻¹ | 542.821
269.256
1126.57
976.437
484.344 | Conversion Factors for Tables 6-3, 6-5, and 6-12 | To Convert
Tabulated
Value of | То | Having the Dimensions Indicated Below | Multiply
by | |---|---------------------|--|---| | C_p^0/R , S^0/R , C_p/R , S/R , $-(F^0-E_0^0)/RT$ | C _p , s, | cal mole ⁻¹ °K ⁻¹ (or °C ⁻¹) cal g ⁻¹ °K ⁻¹ (or °C ⁻¹) joules g ⁻¹ °K ⁻¹ (or °C ⁻¹) Btu (lb mole) ⁻¹ °R ⁻¹ (or °F ⁻¹) Btu lb ⁻¹ °R ⁻¹ (or °F ⁻¹) | 1.98719 0.985709 4.12422 1.98588 0.985060 | The molecular weight of hydrogen is 2.016 g mole⁻¹. Unless otherwise specified, the mole is the gram-mole; the calorie is the thermochemical calorie; and the joule is the absolute joule. ## Conversion Factors for Table 6-7 | To Convert
Tabulated
Value of | То | Having the Dimensions Indicated Below | Multiply
by | |
-------------------------------------|----|--|------------------|--| | a ₀ | a | m sec ⁻¹ ft sec ⁻¹ | 1261.1
4137.5 | | | | | | | | #### Conversion Factors for Table 6-8 | To Convert Tabulated Value of | То | Having the Dimensions Indicated Below | Multiply
by | |-------------------------------|----|--|--| | n / n ₀ | η | poise or g sec ⁻¹ cm ⁻¹ kg hr ⁻¹ m ⁻¹ slug hr ⁻¹ ft ⁻¹ lb sec ⁻¹ ft ⁻¹ | 8.411×10^{-5} 3.028×10^{-2} 6.324×10^{-4} 5.652×10^{-6} 2.035×10^{-2} | ### Conversion Factors for Table 6-9 | To Convert Tabulated Value of | То | Having the Dimensions Indicated Below | Multiply
by | |-------------------------------|----|---|---| | k/k ₀ | k | cal cm ⁻¹ sec ^{-1 °} K ⁻¹ Btu ft ⁻¹ hr ^{-1 °} R ⁻¹ watts cm ^{-1 °} K ⁻¹ | 4. 021×10^{-4}
9. 724×10^{-2}
1. 682×10^{-3} | Table 6-c. CONVERSION FACTORS FOR THE ATOMIC HYDROGEN TABLES Conversion Factors for Table 6-12/a | Conversion | | | | |-------------------------------------|---|---------------------------------------|-----------------| | To Convert
Tabulated
Value of | То | Having the Dimensions Indicated Below | Multiply
by | | $(H^{O} - E_{0}^{O})/RT_{0}$ | (H ^o - E ^o ₀) | cal mole ⁻¹ | 542.821 | | | | cal g ⁻¹ | 538.51 2 | | | | joules g^{-1} | 2253.14 | | | | Btu (lb mole) ⁻¹ | 976.437 | | | | Btu lb ⁻¹ | 968.688 | Conversion Factors for Table 6-12/a | Conversion | Factors for Tar | ole 0-12/a | | |---|-----------------|---|----------------| | To Convert Tabulated Value of | То | Having the Dimensions Indicated Below | Multiply
by | | C _p ^o /R, S ^o /R, | Co, so, | cal mole ⁻¹ oK ⁻¹ (or oC ⁻¹) | 1.98719 | | -(F ^o - E ^o ₀)/RT | _ | cal g ⁻¹ OK ⁻¹ (or OC ⁻¹) | 1.97142 | | | | joules g ^{-1 o} K ⁻¹ (or ^o C ⁻¹) | 8.24844 | | | | Btu (lb mole) ⁻¹ OR ⁻¹ (or OF ⁻¹) | 1.98588 | | | : | Btu lb ⁻¹ oR ⁻¹ (or oF ⁻¹) | 1.97012 | | 1 | 1 | | | Table 6-1. COMPRESSIBILITY FACTOR FOR HYDROGEN | °K | .01 | atm | .1 | atm | l a | tm | °R | |---------------------------------|--|-------------|--|------------------|--|--------------------------|-------------------------------------| | 20
30
40 | .9991
.9997
.9998 | 6
1
1 | .9909
.9967
.9985 | 58
18
7 | .9662
.9845 | 183
74 | 36
54
72 | | 50
60
70
80
90 | .9999
1.0000
1.0000
1.0000 | 1 | .9992
.9995
.9997
.9999 | 3
2
2
1 | .9919
.9955
.9975
.9986
.9993 | 36
20
11
7
5 | 90
108
126
144
162 | | 100
110
120
130
140 | 1.0000
1.0000
1.0000
1.0000
1.0000 | | 1.0000
1.0000
1.0000
1.0000
1.0000 | 1 | .9998
1.0001
1.0003
1.0004
1.0005 | 3
2
1
1 | 180
198
216
234
252 | | 150
160
170
180
190 | 1.0000
1.0000
1.0000
1.0000
1.0000 | | 1.0001
1.0001
1.0001
1.0001
1.0001 | | 1.0006
1.0006
1.0006
1.0007 | 1 | 270
288
306
324
342 | | 200
210
220
230
240 | 1.0000
1.0000
1.0000
1.0000 | | 1.0001
1.0001
1.0001
1.0001
1.0001 | | 1.0007
1.0007
1.0007
1.0007
1.0007 | - 1 | 360
378
396
414
432 | | 250
260
270
280
290 | 1.0000
1.0000
1.0000
1.0000 | | 1.0001
1.0001
1.0001
1.0001
1.0001 | | 1.0006
1.0006
1.0006
1.0006
1.0006 | | 450
468
486
504
522 | | 300
310
320
330
340 | 1.0000
1.0000
1.0000
1.0000
1.0000 | | 1.0001
1.0001
1.0001
1.0001
1.0001 | | 1.0006
1.0006
1.0006
1.0006
1.0005 | - 1 | 540
558
576
594
612 | | 350
360
370
380
390 | 1.0000
1.0000
1.0000
1.0000
1.0000 | | 1.0001
1.0001
1.0001
1.0001
1.0001 | - 1 | 1.0005
1.0005
1.0005
1.0005
1.0005 | | 630
648
666
684
702 | | 400
410
420
430
440 | 1.0000
1.0000
1.0000
1.0000
1.0000 | | 1.0000
1.0000
1.0000
1.0000
1.0000 | | 1.0005
1.0005
1.0005
1.0005
1.0004 | - 1 | 720
738
756
774
792 | | 450
460
470
480
490 | 1.0000
1.0000
1.0000
1.0000
1.0000 | | 1.0000
1.0000
1.0000
1.0000
1.0000 | | 1.0004
1.0004
1.0004
1.0004
1.0004 | | 810
828
846
864
882 | | 500
510
520
530
540 | 1.0000
1.0000
1.0000
1.0000
1.0000 | - | 1.0000
1.0000
1.0000
1.0000
1.0000 | | 1.0004
1.0004
1.0004
1.0004
1.0004 | | 900
918
936
954
972 | | 550
560
570
580
590 | 1.0000
1.0000
1.0000
1.0000
1.0000 | | 1.0000
1.0000
1.0000
1.0000
1.0000 | | 1.0004
1.0004
1.0004
1.0003
1.0003 | - 1 | 990
1008
1026
1044
1062 | | 600 | 1.0000 | | 1.0000 | | 1.0003 | | 1080 | | | | | | | | | | | • | |---------------------------------|--|--------------------------|--|-----------------------------|--|------------------------------|--|---------------------------------|-------------------------------------| | °K | | i atm | 4 | atm | 7 | atm | 10 | atm | °R | | 30
40 | .9662
.9845 | 183
74 | .9362 | 313 | .8853 | 578 | .8317 | 869 | 54
72 | | 50
60
70
80
90 | .9919
.9955
.9975
.9986
.9993 | 36
20
11
7
5 | .9675
.9822
.9901
.9946
.9973 | 147
79
45
27
19 | .9431
.9691
.9830
.9908
.9956 | 260
139
78
48
31 | .9186
.9564
.9760
.9872
.9940 | 378
196
112
68
43 | 90
108
126
144
162 | | 100
110
120
130
140 | .9998
1.0001
1.0003
1.0004
1.0005 | 3
2
1
1 | .9992
1.0001
1.0012
1.0016
1.0020 | 9
11
4
4 | .9987
1.0005
1.0021
1.0029
1.0036 | 18
16
8
7
5 | .9983
1.0011
1.0030
1.0043
1.0052 | 28
19
13
9
6 | 180
198
216
234
252 | | 150
160
170
180
190 | 1.0006
1.0006
1.0006
1.0007
1.0007 | 1 | 1.0024
1.0024
1.0025
1.0028
1.0028 | 1 3 | 1.0041
1.0043
1.0044
1.0048
1.0048 | 2
1
4 | 1.0058
1.0062
1.0065
1.0067
1.0068 | . 4
3
2
1 | 270
288
306
324
342 | | 200
210
220
230
240 | 1.0007
1.0007
1.0007
1.0007
1.0007 | - 1 | 1.0028
1.0028
1.0028
1.0028
1.0027 | - 1
- 2 | 1.0048
1.0048
1.0048
1.0048
1.0047 | - 1
- 3 | 1.0068
1.0068
1.0067
1.0067 | - 1
- 1
- 1 | 360
378
396
414
432 | | 250
260
270
280
290 | 1.0006
1.0006
1.0006
1.0006
1.0006 | | 1.0025
1.0024
1.0024
1.0024
1.0024 | - 1 | 1.0044
1.0044
1.0043
1.0042
1.0042 | - 1
- 1 | 1.0065
1.0064
1.0063
1.0061
1.0060 | - 1
- 1
- 2
- 1
- 1 | 450
468
486
504
522 | | 300
310
320
330
340 | 1.0006
1.0006
1.0006
1.0006
1.0005 | - 1 | 1.0024
1.0024
1.0024
1.0023
1.0021 | - 1
- 2
- 1 | 1.0042
1.0041
1.0041
1.0040
1.0037 | - 1
- 1
- 3
- 1 | 1.0059
1.0058
1.0057
1.0056
1.0054 | - 1
- 1
- 1
- 2
- 1 | 540
558
576
594
612 | | 350
360
370
380
390 | 1.0005
1.0005
1.0005
1.0005
1.0005 | | 1.0020
1.0020
1.0020
1.0020
1.0020 | | 1.0036
1.0036
1.0035
1.0035 | - 1
- 1 | 1.0053
1.0052
1.0051
1.0050
1.0049 | - 1
- 1
- 1
- 1
- 1 | 630
648
666
684
702 | | 400
410
420
430
440 | 1.0005
1.0005
1.0005
1.0005
1.0004 | - 1 | 1.0020
1.0020
1.0019
1.0019
1.0017 | - 1
- 2
- 1 | 1.0034
1.0034
1.0033
1.0033 | - 1
- 3 | 1.0048
1.0047
1.0046
1.0046
1.0045 | - 1
- 1
- 1 | 720
738
756
774
792 | | 450
460
470
480
490 | 1.0004
1.0004
1.0004
1.0004
1.0004 | | 1.0016
1.0016
1.0016
1.0016
1.0016 | | 1.0030
1.0029
1.0029
1.0028
1.0028 | - 1
- 1 | 1.0044
1.0043
1.0042
1.0041
1.0040 | - 1
- 1
- 1
- 1 | 810
828
846
864
882 | | 500
510
520
530
540 | 1.0004
1.0004
1.0004
1.0004
1.0004 | | 1.0016
1.0016
1.0016
1.0016
1.0016 | - 1 | 1.0028
1.0028
1.0028
1.0027
1.0026 | - 1
- 1 | 1.0040
1.0040
1.0039
1.0038
1.0037 | - 1
- 1
- 1
- 1 | 900
918
936
954
972 | | 550
560
570
580
590 | 1.0004
1.0004
1.0004
1.0003
1.0003 | - 1 | 1.0015
1.0015
1.0015
1.0013
1.0013 | - 2
- 1 | 1.0026
1.0026
1.0025
1.0024
1.0023 | - 1 | 1.0036
1.0036
1.0036
1.0035
1.0035 | - 1
- 1 | 990
1008
1026
1044
1062 | | 600 | 1.0003 | | 1.0012 | | 1.0023 | | 1.0034 | | 1080 | Table 6-1. COMPRESSIBILITY FACTOR FOR HYDROGEN - Cont. | °K | 10 | atm | 40 0 | tm | 70 at | m | 100 | atm | ° R
| |---------------------------------|--|---------------------------------|--|---------------------------------|--|------------------------------------|--|--------------------------------------|-------------------------------------| | 40 | .8317 | 869 | , | | | | | | 72 | | 50
60
70
80
90 | .9186
.9564
.9760
.9872
.9940 | 378
196
112
68
43 | .8757
.9338
.9682
.9894 | 581
344
212
135 | .8700
.9361
.9782
1.0050 | 661
421
268
172 | .9395
.9831
1.0174
1.0407 | 436
343
233
153 | 90
108
126
144
162 | | 100
110
120
130
140 | .9983
1.0011
1.0030
1.0043
1.0052 | 28
19
13
9
6 | 1.0029
1.0117
1.0176
1.0216
1.0243 | 88
59
40
27
17 | 1.0222
1.0332
1.0405
1.0457
1.0488 | 110
73
52
31
19 | 1.0560
1.0663
1.0726
1.0765
1.0786 | 103
63
39
21
10 | 180
198
216
234
252 | | 150
160
170
180
190 | 1.0058
1.0062
1.0065
1.0067
1.0068 | . 2 | 1.0260
1.0271
1.0279
1.0283
1.0284 | 11
8
4
1
- 1 | 1.0507
1.0516
1.0522
1.0523
1.0519 | 9
6
1
- 4
- 6 | 1.0796
1.0798
1.0794
1.0785
1.0773 | 2
- 4
- 9
- 12
- 13 | 270
288
306
324
342 | | 200
210
220
230
240 | 1.0068
1.0068
1.0067
1.0067 | - 1
- 1
- 1 | 1.0283
1.0281
1.0276
1.0274
1.0269 | - 2
- 5
- 2
- 5
- 5 | 1.0513
1.0506
1.0497
1.0489
1.0480 | - 7
- 9
- 8
- 9
- 11 | 1.0760
1.0745
1.0730
1.0714
1.0698 | - 15
- 15
- 16
- 16
- 16 | 360
378
396
414
432 | | 250
260
270
280
290 | 1.0065
1.0064
1.0063
1.0061
1.0060 | - 1
- 1
- 2
- 1
- 1 | 1.0264
1.0259
1.0255
1.0247
1.0242 | - 5
- 4
- 8
- 5
- 4 | 1.0469
1.0459
1.0450
1.0439
1.0429 | - 10
- 9
- 11
- 10
- 9 | 1.0682
1.0667
1.0651
1.0636
1.0621 | - 15
- 16
- 19
- 15
- 14 | 450
468
486
504
522 | | 300
310
320
330
340 | 1.0059
1.0058
1.0057
1.0056
1.0054 | - 1
- 1
- 1
- 2
- 1 | 1.0238
1.0234
1.0229
1.0225
1.0217 | - 4
- 5
- 4
- 8
- 4 | 1.0420
1.0412
1.0402
1.0395
1.0384 | - 8
- 10
- 7
- 11
- 8 | 1.0607
1.0594
1.0579
1.0566
1.0553 | - 13
- 15
- 13
- 13
- 12 | 540
558
576
594
612 | | 350
360
370
380
390 | 1.0053
1.0052
1.0051
1.0050
1.0049 | - 1
- 1
- 1
- 1 | 1.0213
1.0209
1.0205
1.0201
1.0197 | - 4
- 4
- 4
- 4 | 1.0376
1.0367
1.0361
1.0353
1.0346 | - 9
- 6
- 8
- 7
- 7 | 1.0541
1.0529
1.0518
1.0507
1.0496 | - 12
- 11
- 11
- 11
- 10 | 630
648
666
684
702 | | 400
410
420
430
440 | 1.0048
1.0047
1.0046
1.0046
1.0045 | - 1
- 1
- 1 | 1.0193
1.0190
1.0185
1.0184
1.0180 | - 3
- 5
- 1
- 4
- 4 | 1.0339
1.0332
1.0325
1.0321
1.0314 | - 7
- 7
- 4
- 7
- 7 | 1.0486
1.0476
1.0466
1.0457
1.0448 | - 10
- 10
- 9
- 9
- 9 | 720
738
756
774
792 | | 450
460
470
480
490 | 1.0044
1.0043
1.0042
1.0041
1.0040 | - 1
- 1
- 1
- 1 | 1.0176
1.0172
1.0168
1.0165
1.0161 | - 4
- 4
- 3
- 4
- 1 | 1.0307
1.0301
1.0295
1.0289
1.0283 | - 6
- 6
- 6
- 3 | 1.0439
1.0431
1.0423
1.0415
1.0407 | - 8
- 8
- 8
- 8
- 7 | 810
828
846
864
882 | | 500
510
520
530
540 | 1.0040
1.0040
1.0039
1.0038
1.0037 | - 1
- 1
- 1
- 1 | 1.0160
1.0159
1.0155
1.0152
1.0148 | - 1
- 4
- 3
- 4
- 3 | 1.0280
1.0276
1.0271
1.0265
1.0260 | - 4
- 5
- 6
- 5
- 5 | 1.0400
1.0392
1.0385
1.0378
1.0372 | - 8
- 7
- 7
- 6
- 6 | 900
918
936
954
972 | | 550
560
570
580
590 | 1.0036
1.0036
1.0036
1.0035
1.0035 | - 1
- 1 | 1.0145
1.0144
1.0143
1.0140
1.0139 | - 1
- 1
- 3
- 1
- 3 | 1.0255
1.0252
1.0249
1.0244
1.0241 | - 3
- 3
- 5
- 3
- 4 | 1.0366
1.0360
1.0354
1.0348
1.0342 | - 6
- 6
- 6
- 5 | 990
1008
1026
1044
1062 | | 600 | 1.0034 | | 1.0136 | | 1.0237 | | 1.0337 | | 1080 | | °K | .Oi atm | .1 atm | ı atm | °R | |----------------|--|--|--------------------------------|----------------| | 20
30
40 | .13679 -4565
.091137 -22791
.068346 -13675 | 1.3792 -4651
.91411 -22976
.68435 -13725 | 9.4297 –24889
6.9408 –14296 | 36
54
72 | | 50 | .054671 - 9116 | .54710 - 9132 | 5.5112 - 9351 | 90 | | 60 | .045555 - 6508 | .45578 - 6519 | 4.5761 - 6616 | 108 | | 70 | .039047 - 4881 | .39059 - 4889 | 3.9145 - 4931 | 126 | | 80 | .034166 - 3796 | .34170 - 3797 | 3.4214 - 3823 | 144 | | 90 | .030370 - 3037 | .30373 - 3040 | 3.0391 - 3053 | 162 | | 100 | .027333 - 2485 | .27333 - 2485 | 2.7338 - 2492 | 180 | | 110 | .024848 - 2071 | .24848 - 2071 | 2.4846 - 2075 | 198 | | 120 | .022777 - 1752 | .22777 - 1752 | 2.2771 - 1754 | 216 | | 130 | .021025 - 1502 | .21025 - 1502 | 2.1017 - 1503 | 234 | | 140 | .019523 - 1301 | .19523 - 1303 | 1.9514 - 1303 | 252 | | 150 | .018222 - 1139 | .18220 - 1139 | 1.8211 - 1138 | 270 | | 160 | .017083 - 1005 | .17081 - 1004 | 1.7073 - 1004 | 288 | | 170 | .016078 - 893 | .16077 - 894 | 1.6069 - 895 | 306 | | 180 | .015185 - 799 | .15183 - 799 | 1.5174 - 798 | 324 | | 190 | .014386 - 720 | .14384 - 719 | 1.4376 - 719 | 342 | | 200 | .013666 - 650 | .13665 - 651 | 1.3657 - 650 | 360 | | 210 | .013016 - 592 | .13014 - 591 | 1.3007 - 592 | 378 | | 220 | .012424 - 540 | .12423 - 540 | 1.2415 - 539 | 396 | | 230 | .011884 - 495 | .11883 - 495 | 1.1876 - 495 | 414 | | 240 | .011389 - 456 | .11388 - 456 | 1.1381 - 454 | 432 | | 250 | .010933 - 420 | .10932 - 420 | 1.0927 - 421 | 450 | | 260 | .010513 - 390 | .10512 - 390 | 1.0506 - 389 | 468 | | 270 | .010123 - 361 | .10122 - 361 | 1.0117 - 361 | 486 | | 280 | .009762 - 337 | .09761 - 337 | .9756 - 336 | 504 | | 290 | .009425 - 314 | .09424 - 314 | .9420 - 314 | 522 | | 300 | .009111 - 294 | .09110 - 294 | .9106 - 294 | 540 | | 310 | .008817 - 275 | .08816 - 275 | .8812 - 276 | 558 | | 320 | .008542 - 259 | .08541 - 259 | .8536 - 258 | 576 | | 330 | .008283 - 244 | .08282 - 244 | .8278 - 243 | 594 | | 340 | .008039 - 230 | .08038 - 229 | .8035 - 229 | 612 | | 350 | .007809 - 216 | .07809 - 217 | .7806 - 217 | 630 | | 360 | .007593 - 206 | .07592 - 205 | .7589 - 205 | 648 | | 370 | .007387 - 194 | .07387 - 195 | .7384 - 195 | 666 | | 380 | .007193 - 185 | .07192 - 184 | .7189 - 184 | 684 | | 390 | .007008 - 175 | .07008 - 175 | .7005 - 175 | 702 | | 400 | .006833 - 166 | .06833 - 166 | .6830 - 167 | 720 | | 410 | .006667 - 159 | .06667 - 159 | .6663 - 158 | 738 | | 420 | .006508 - 151 | .06508 - 151 | .6505 - 149 | 756 | | 430 | .006357 - 145 | .06357 - 145 | .6356 - 146 | 774 | | 440 | .006212 - 138 | .06212 - 138 | .6210 - 138 | 792 | | 450 | .006074 - 132 | .06074 - 132 | .6072 - 132 | 810 | | 460 | .005942 - 126 | .05942 - 126 | .5940 - 127 | 828 | | 470 | .005816 - 122 | .05816 - 122 | .5813 - 121 | 846 | | 480 | .005694 - 116 | .05694 - 116 | .5692 - 116 | 864 | | 490 | .005578 - 111 | .05578 - 111 | .5576 - 112 | 882 | | 500 | .005467 - 108 | .05467 - 108 | .5464 - 107 | 900 | | 510 | .005359 - 103 | .05359 - 103 | .5357 - 103 | 918 | | 520 | .005256 - 99 | .05256 - 99 | .5254 - 99 | 936 | | 530 | .005157 - 95 | .05157 - 95 | .5155 - 95 | 954 | | 540 | .005062 - 92 | .05062 - 92 | .5060 - 92 | 972 | | 550 | .004970 - 89 | .04970 - 89 | .4968 - 89 | 990 | | 560 | .004881 - 86 | .04881 - 86 | .4879 - 86 | 1008 | | 570 | .004795 - 82 | .04795 - 82 | .4793 - 82 | 1026 | | 580 | .004713 - 80 | .04713 - 80 | .4711 - 80 | 1044 | | 590 | .004633 - 77 | .04633 - 77 | .4631 - 77 | 1062 | | 600 | .004556 | .04556 | .4554 | 1080 | | | T: | | | | | | | | | |--------------------|------------------|------------------|------------------|------------------|------------------|--------------------|------------------|------------------|-------------| | *K | 1 | atm | 4 | atm | 7 | atm | 10 | atm | ° R | | 20 | 0.4207 | 24000 | | | | · | | | 54 | | 30
40 | 9.4297
6.9408 | -24889
-14296 | 29.195 | 6595 | 54.029 | -13455 | 82.16 | -2265 | 72 | | 50 | 5,5112 | - 9351 | 22.600 | -4048 | 40.574 | - 76 69 | 59.51 | -1188 | 90 | | 60
70 | 4.5761
3.9145 | - 6616
- 4931 | 18.552
15.775 | -2777
-2035 | 32.905
27.805 | - 5100
- 3667 | 47.632
40.007 | - 7625
- 5398 | 108
126 | | 80 | 3.4214 | - 3823 | 13.740 | -1559 | 24.138 | - 2816 | 34.609 | - 4056 | 144 | | 90 | 3.0391 | - 3053 | 12.181 | -1239 | 21.352 | - 2194 | 30.553 | - 3174 | 162 | | 100 | 2.7338 | - 2492 | 10.942 | -1004 | 19.158 | - 1773 | 27.379 | - 2558 | 180 | | 110
120 | 2.4846
2.2771 | - 2075
- 1754 | 9.938
9.100 | - 838
- 703 | 17.385
15.910 | - 1475
- 1235 | 24.821
22.709 | - 2112
- 1774 | 198
216 | | 130 | 2.1017 | - 1503 | 8.397 | - 603 | 14.675 | - 1058 | 20.935 | - 1513 | 234 | | 140 | 1.9514 | - 1303 | 7.794 | - 523 | 13.617 | - 914 | 19,422 | - 1305 | 252 | | 150 | 1.8211 | - 1138 | 7.271 | - 454 | 12.703
11.907 | - 796 | 18.117
16.978 | - 1139 | 270
288 | | 160
170 | 1.7073
1.6069 | - 1004
895 | 6.817
6.415 | - 402
- 358 | 11.205 | - 702
- 627 | 15.974 | 1004
890 | 306 | | 180 | 1.5174 | - 798 |
6.057 | - 319 | 10.578 | - 556 | 15.084 | - 795 | 324 | | 190 | 1.4376 | - 719 | 5.738 | - 287 | 10.022 | - 501 | 14.289 | - 715 | 342 | | 200 | 1.3657 | - 650 | 5.451 | - 259 | 9.521
9.067 | - 454 | 13.574
12.928 | - 646 | 360
378 | | 210
220 | 1.3007
1.2415 | - 592
- 539 | 5.192
4.956 | - 236
- 216 | 9.067
8.655 | - 412
- 376 | 12.926 | - 587
536 | 396 | | 230 | 1.1876 | - 495 | 4.740 | - 197 | 8.279 | - 344 | 11.805 | - 491 | 414 | | 240 | 1.1381 | - 454 | 4.543 | - 181 | 7.935 | - 315 | 11.314 | - 451 | 432 | | 250 | 1.0927 | - 421 | 4.362 | - 167 | 7.620 | - 293 | 10.863 | - 417 | 450
468 | | 260
270 | 1.0506
1.0117 | - 389
- 361 | 4.195
4.040 | - 155
- 145 | 7.327
7.056 | - 271
- 251 | 10.446
10.060 | - 386
- 357 | 486 | | 280 | .9756 | ~ 336 | 3.895 | - 134 | 6.805 | - 235 | 9.703 | - 334 | 504 | | 290 | .9420 | - 314 | 3.761 | - 125 | 6.570 | - 219 | 9.369 | - 311 | 522 | | 300 | .9106 | - 294 | 3.6356 | - 1173 | 6.351 | - 204 | 9.058 | - 292 | 540
558 | | 310
320 | .8812
.8536 | - 276
- 258 | 3.5183
3.4084 | - 1099
- 1030 | 6.147
5.955 | - 192
- 180 | 8.766
8.493 | - 273
- 256 | 576 | | 330 | .8278 | - 243 | 3.3054 | - 966 | 5.775 | - 168 | 8.237 | - 241 | 594 | | 340 | .8035 | - 229 | 3.2088 | - 913 | 5.607 | - 160 | 7.996 | - 228 | 612 | | 350 | .7806 | - 217 | 3.1175 | - 866 | 5.447 | - 151 | 7.768 | - 215 | 630 | | 360
370 | .7589
.7384 | ÷ 205 | 3.0309
2.9490 | - 819 | 5.296
5.153 | - 143
- 136 | 7.553
7.350 | - 203
- 193 | 648
666 | | 380 | .7189 | - 195
- 184 | 2.8714 | - 776
- 737 | 5.017 | - 128 | 7.157 | - 183 | 684 | | 390 | .7005 | - 175 | 2.7977 | - 699 | 4.889 | - 122 | 6.974 | - 173 | 702 | | 400 | .6830 | - 167 | 2.7278 | - 665 | 4.767 | - 116 | 6.801 | - 166 | 720 | | 410 | .6663 | - 158 | 2.6613
2.5982 | - 631 | 4.651
4.540 | - 111 | 6.635
6.478 | - 157
- 151 | 738
756 | | 420
430 | .6505
.6356 | 149
146 | 2.5377 | - 605
- 571 | 4.435 | - 105
100 | 6.327 | - 143 | 774 | | 440 | .6210 | - 138 | 2.4806 | - 549 | 4.335 | - 96 | 6.184 | - 137 | 792 | | 450 | .6072 | - 132 | 2.4257 | - 528 | 4.239
4.147 | - 92 | 6.047
5.917 | - 130
- 126 | 810
828 | | 460
4 70 | .5940
.5813 | - 127
- 121 | 2.3729
2.3225 | - 504
- 484 | 4.059 | 88
84 | 5.791 | - 126
- 120 | 846 | | 480 | .5692 | - 115 | 2.2741 | - 464 | 3.975 | - 81 | 5.671 | - 115 | 864 | | 490 | .5576 | - 112 | 2.2277 | - 446 | 3.894 | - 78 | 5.556 | - 111 | 882 | | 500
510 | .5464
5357 | - 107 | 2.1831 | - 428
- 413 | 3.8159
3.7410 | - 749
- 719 | 5.445
5.338 | - 107
- 102 | 900
918 | | 510
520 | .5357
.5254 | - 103
- 99 | 2.1403
2.0991 | - 412
- 396 | 3.6691 | - 719
- 689 | 5.236 | - 102
- 98 | 936 | | 530 | .5155 | - 95 | 2.0595 | - 381 | 3,6002 | - 663 | 5.138 | - 95 | 954 | | 540 | .5060 | - 92 | 2.0214 | - 366 | 3.5339 | - 642 | 5.043 | - 91 | 972 | | 550 | .4968 | - 89 | 1.9848 | - 354 | 3.4697 | - 620 | 4.952
4.863 | - 89 | 990
1008 | | 560
570 | .4879
.4793 | - 86
- 82 | 1.9494
1.9152 | - 342
- 326 | 3.4077
3.3482 | 595
574 | 4.778 | ~ 85
~ 82 | 1026 | | 580 | .4711 | - 80 | 1.8826 | - 320 | 3,2908 | - 554 | 4.696 | - 79 | 1044 | | 590 | .4631 | - 77 | 1.8506 | - 306 | 3.2354 | - 539 | 4.617 | - 77 | 1062 | | 600 | .4554 | | 1.8200 | | 3.1815 | | 4.540 | | 1080 | | | | | | | | | | | , , | |---------------------------------|--|--|--|---|--|---------------------------------------|--|---|---------------------------------| | °K | 10 |) atm | 40 | atm | 70 | atm | 100 | atm | °R | | 40 | 82.16 | -2265 | | | | | | | 72 | | 50
60
70
80
90 | 59.51
47.632
40.007
34.609
30.553 | -1188
- 7625
- 5398
- 4056 | 208.08
167.26
141.15
122.78 | -4082
-2611
-1837
-1377 | 366.53
291.98
244.49
211.53 | -7455
4749
3296
2436 | 484.88
397.18
335.82
291.82 | -8770
-6136
-4400
-3299 | 90
108
126
144
162 | | 100
110
120
130
140 | 27.379
24.821
22.709
20.935
19.422 | - 3174
- 2558
- 2112
- 1774
- 1513
- 1305 | 109.01
98.24
89.53
82.32
76.24 | -1077
- 871
- 721
- 608
- 520 | 187.17
168.34
153.23
140.74
130.30 | - 1883
1511
1249
1044
890 | 258.83
233.03
212.36
195.31
181.01 | -2580
-2067
-1705
-1430
-1223 | 180
198
216
234
252 | | 150 | 18.117 | - 1139 | 71.04 | - 451 | 121.40 | - 769 | 168.78 | -1057 | 270 | | 160 | 16.978 | - 1004 | 66.53 | - 396 | 113.71 | - 675 | 158.21 | - 926 | 288 | | 170 | 15.974 | - 890 | 62.57 | - 350 | 106.96 | - 595 | 148.95 | - 815 | 306 | | 180 | 15.084 | - 795 | 59.07 | - 312 | 101.01 | - 528 | 140.80 | - 726 | 324 | | 190 | 14.289 | - 715 | 55.95 | - 279 | 95.73 | - 473 | 133.54 | - 653 | 342 | | 200 | 13.574 | - 646 | 53.16 | - 252 | 91.00 | - 428 | 127.01 | - 588 | 360 | | 210 | 12.928 | - 587 | 50.64 | - 228 | 86.72 | - 387 | 121.13 | - 534 | 378 | | 220 | 12.341 | - 536 | 48.36 | - 209 | 82.85 | - 354 | 115.79 | - 487 | 396 | | 230 | 11.805 | - 491 | 46.27 | - 191 | 79.31 | - 324 | 110.92 | - 446 | 414 | | 240 | 11.314 | - 451 | 44.36 | - 175 | 76.07 | - 297 | 106.46 | - 411 | 432 | | 250 | 10.863 | - 417 | 42.61 | - 162 | 73.10 | - 274 | 102.35 | - 380 | 450 | | 260 | 10.446 | - 386 | 40.99 | - 150 | 70.36 | - 255 | 98.55 | - 350 | 468 | | 270 | 10.060 | - 357 | 39.49 | - 138 | 67.81 | - 235 | 95.05 | - 327 | 486 | | 280 | 9.703 | - 334 | 38.11 | - 130 | 65.46 | - 220 | 91.78 | - 304 | 504 | | 290 | 9.369 | - 311 | 36.81 | - 121 | 63.26 | - 205 | 88.74 | - 284 | 522 | | 300 | 9.058 | - 292 | 35.596 | - 1135 | 61.21 | - 193 | 85.90 | - 267 | 540 | | 310 | 8.766 | - 273 | 34.461 | - 1060 | 59.28 | - 180 | 83.23 | - 249 | 558 | | 320 | 8.493 | - 256 | 33.401 | - 1000 | 57.48 | - 170 | 80.74 | - 235 | 576 | | 330 | 8.237 | - 241 | 32.401 | - 928 | 55.78 | - 159 | 78.39 | - 221 | 594 | | 340 | 7.996 | - 228 | 31.473 | - 887 | 54.19 | - 151 | 76.18 | - 209 | 612 | | 350 | 7.768 | - 215 | 30.586 | - 838 | 52.68 | - 141 | 74.09 | - 198 | 630 | | 360 | 7.553 | - 203 | 29.748 | - 793 | 51.27 | - 136 | 72.11 | - 187 | 648 | | 370 | 7.350 | - 193 | 28.955 | - 751 | 49.91 | - 128 | 70.24 | - 178 | 666 | | 380 | 7.157 | - 183 | 28.204 | - 712 | 48.63 | - 121 | 68.46 | - 169 | 684 | | 390 | 6.974 | - 173 | 27.492 | - 677 | 47.42 | - 113 | 66.77 | - 160 | 702 | | 400 | 6.801 | - 166 | 26.815 | - 646 | 46.29 | - 112 | 65.17 | - 153 | 720 | | 410 | 6.635 | - 157 | 26.169 | - 611 | 45.17 | - 105 | 63.64 | - 146 | 738 | | 420 | 6.478 | - 151 | 25.558 | - 592 | 44.12 | - 101 | 62.18 | - 139 | 756 | | 430 | 6.327 | - 143 | 24.966 | - 558 | 43.11 | - 95 | 60.79 | - 133 | 774 | | 440 | 6.184 | - 137 | 24.408 | - 533 | 42.16 | - 91 | 59.46 | - 127 | 792 | | 450 | 6.047 | - 130 | 23.875 | - 510 | 41.25 | - 87 | 58.19 | - 123 | 810 | | 460 | 5.917 | - 126 | 23.365 | - 488 | 40.38 | - 84 | 56.96 | - 116 | 828 | | 470 | 5.791 | - 120 | 22.877 | - 470 | 39.54 | - 80 | 55.80 | - 112 | 846 | | 480 | 5.671 | - 115 | 22.407 | - 448 | 38.74 | - 77 | 54.68 | - 108 | 864 | | 490 | 5.556 | - 111 | 21.959 | - 437 | 37.97 | - 75 | 53.60 | - 104 | 882 | | 500 | 5.445 | 107 | 21.522 | - 420 | 37.223 | - 716 | 52.56 | - 99 | 900 | | 510 | 5.338 | 102 | 21.102 | - 398 | 36.507 | - 684 | 51.57 | - 95 | 918 | | 520 | 5.236 | 98 | 20.704 | - 385 | 35.823 | - 656 | 50.62 | - 93 | 936 | | 530 | 5.138 | 95 | 20.319 | - 368 | 35.167 | - 634 | 49.69 | - 89 | 954 | | 540 | 5.043 | 91 | 19.951 | - 357 | 34.533 | - 611 | 48.80 | - 86 | 972 | | 550 | 4.952 | - 89 | 19.594 | - 348 | 33.922 | - 596 | 47.94 | - 83 | 990 | | 560 | 4.863 | - 85 | 19.246 | - 336 | 33.326 | - 575 | 47.11 | - 80 | 1008 | | 570 | 4.778 | - 82 | 18.910 | - 320 | 32.751 | - 549 | 46.31 | - 77 | 1026 | | 580 | 4.696 | - 79 | 18.590 | - 314 | 32.202 | - 537 | 45.54 | - 74 | 1044 | | 590 | 4.617 | - 77 | 18.276 | - 299 | 31.665 | - 515 | 44.80 | - 73 | 1062 | | 600 | 4.540 | | 17.977 | | 31.150 | | 44.07 | | 1080 | Table 6-3. SPECIFIC HEAT OF HYDROGEN | °K | 0 | atm | 1 | atm | 10 | atm | 100 | atm | °R | |---------------------------------|---|----------------------------|---|----------------------------|---|---------------------------------|---|------------------------------|-----------------------------------| | 20
30
40 | 2.500
2.500
2.501 | 1 4 | 2.628
2.564 | 64
21 | 3.463 | -516 | | | 36
54
72 | | 50
60
70
80
90 | 2.505
2.519
2.547
2.591
2.648 | 14
28
44
57
66 | 2.543
2.544
2.565
2.605
2.658 | 1
21
40
53
64 | 2.947
2.780
2.732
2.723
2.747 | -167
- 48
- 9
24
43 | 3.957
3.786
3.564
3.366 | -171
-222
-198
- 71 | 90
108
126
144
162 | | 100
110
120
130
140 | 2.714
2.785
2.857
2.927
2.993 | 71
72
70
66
60 | 2.722
2.791
2.862
2.931
2.996 | 69
71
69
65
60 | 2.790
2.845
2.905
2.967
3.026 | 55
60
62
59
57 | 3.295
3.251
3.242
3.244
3.264 | - 44
- 9
2
20
29 | 180
198
216
234
252 | | 150
160
170
180
190 | 3.053
3.108
3.158
3.204
3.244 | 55
50
46
40
36 | 3.056
3.111
3.161
3.206
3.246 | 55
50
45
40
36 | 3.083
3.135
3.183
3.226
3.263 |
52
48
43
37
33 | 3.293
3.326
3.355
3.377
3.396 | 33
29
22
19
17 | 270
288
306
324
342 | | 200
210
220
230
240 | 3.280
3.312
3.340
3.366
3.387 | 32
28
26
21
20 | 3.282
3.313
3.341
3.367
3.388 | 31
28
26
21
20 | 3.296
3.327
3.355
3.379
3.399 | 31
28
24
20
18 | 3.413
3.433
3.454
3.472
3.486 | 20
21
18
14
10 | 360
378
396
414
432 | | 250
260
270
280
290 | 3.407
3.424
3.438
3.450
3.460 | 17
14
12
10
9 | 3.408
3.425
3.439
3.451
3.462 | 17
14
12
11
8 | 3.417
3.433
3.446
3.458
3.468 | 16
13
12
10
8 | 3.496
3.504
3.510
3.516
3.521 | 8
6
6
5 | 450
468
486
504
522 | | 300
320
340
360
380 | 3.469
3.483
3.494
3.501
3.507 | 14
11
7
6
3 | 3.470
3.484
3.495
3.502
3.508 | 14
11
7
6
3 | 3.476
3.489
3.499
3.506
3.510 | 13
10
7
4 | 3.526
3.532
3.536
3.539
3.539 | 6
4
3 | 540
576
612
648
684 | | 400
420
440
460
480 | 3.510
3.513
3.515
3.516
3.518 | 3
2
1
2 | 3.511
3.514
3.516
3.517
3.518 | 3
2
1
1 | 3.514
3.516
3.518
3.519
3.520 | 2
2
1
1 | 3.539
3.539
3.538
3.538
3.537 | - 1
- 1
- 1 | 720
756
792
828
864 | | 500
520
540
560
580 | 3.519
3.521
3.522
3.524
3.525 | 2
1
2
1
2 | 3.519
3.521
3.522
3.524
3.525 | 2
1
2
1
2 | 3.521
3.523
3.524
3.526
3.527 | 2
1
2
1
2 | 3.536
3.536
3.536
3.536
3.536 | | 900
936
972
1008
1044 | | 600 | 3.527 | | 3.527 | | 3.529 | | 3.536 | | 1080 | (H-E%)/RT0 | - | | | | | | | ' ' | -0//- | |------------|------------------|-------------------------------|------------------|-----------------------|------------------|--------------|------------|----------| | °K | .01 | atm | .1 | atm | ı | atm | | °R | | | | | | | | | • | | | 60 | 1.0175 | 927 | 1.0172 | 927 | 1.0142 | 934 | | 10 | | 70 | 1.1102 | 940 | 1.1099 | 941 | 1.1076 | 945 | | 12 | | 80 | 1.2042 | 958 | 1.2040 | 959 | 1.2021 | 963 | | 14 | | 90 | 1.3000 | 981 | 1.2999 | 981 | 1.2984 | 984 | | 16 | | 100 | 1.3981 | 1007 | 1.3980 | 1007 | 1.3968 | 1009 | | 18 | | 110 | 1,4988 | 1032 | 1.4987 | 1033 | 1.4977 | 1035 | | 19 | | 120 | 1.6020 | 1059 | 1.6020 | 1059 | 1.6012 | 1060 | | 21 | | 130 | 1.7079 | 1084 | 1.7079 | 1084 | 1.7072 | 1086 | | 23 | | 140 | 1.8163 | 1107 | 1.8163 | 1107 | 1.8158 | 1108 | | 25 | | 150 | 1.9270 | 1128 | 1.9270 | 1128 | 1.9266 | 1128 | | 27 | | 160 | 2.0398 | 1147 | 2.0398 | 1147 | 2.0394 | 1149 | | 28 | | 170 | 2.1545 | 1165 | 2.1545 | 1165 | 2.1543 | 1165 | | 30 | | 180 | 2.2710 | 1180 | 2.2710 | 1180 | 2.2708 | 1181 | | 32
34 | | 190 | 2.3890 | 1195 | 2.3890 | 1195 | 2.3889 | 1195 | | -ر | | 200 | 2.5085 | 1206 | 2.5085 | 1206 | 2.5084 | 1207 | | 36 | | 210 | 2.6291 | 1218 | 2.6291 | 1218 | 2.6291 | 1219 | | 37 | | 220 | 2.7509 | 1228 | 2.7509 | 1228 | 2.7510
2.8738 | 1228 | | 39
41 | | 230
240 | 2.8737
2.9973 | 1236 | 2.8737
2.9973 | 1236 | 2.9975 | 1237
1244 | | 43 | | 240 | 2.9913 | 1244 | 2.7713 | 1243 | 2,7773 | 1244 | | ٦. | | 250 | 3.1217 | 1250 | 3.1216 | 1251 | 3.1219 | 1251 | | 45 | | 260 | 3.2467 | 1256 | 3.2467 | 1255 | 3.2470 | 1256 | | 46
48 | | 270
280 | 3.3723
3.4983 | 1260
1265 | 3.3722
3.4984 | 1262
1265 | 3.3726
3.4986 | 1260
1266 | | 50 | | 290 | 3.6248 | 1269 | 3.6249 | 1268 | 3.6252 | 1269 | | 52 | | 300 | 3,7517 | 1070 | 3,7517 | 1272 | 3.7521 | 1272 | | 54 | | 310 | 3.8789 | 1272
1274 | 3.8789 | 1274 | 3.8793 | 1274 | | 5! | | 320 | 4.0063 | 1276 | 4.0063 | 1276 | 4.0067 | 1276 | | 5 | | 330 | 4.1339 | 1278 | 4.1339 | 1278 | 4.1343 | 1279 | | 59 | | 340 | 4.2617 | 1280 | 4.2617 | 1280 | 4.2622 | 1279 | | 63 | | 350 | 4.3897 | 1281 | 4.3897 | 1281 | 4.3901 | 1282 | | 6: | | 360 | 4.5178 | 1282 | 4.5178 | 1282 | 4.5183 | 1282 | | 6 | | 370 | 4.6460 | 1283 | 4.6460 | 1284 | 4.6465 | 1283 | | 6 | | 380 | 4.7743 | 1284 | 4.7744 | 1283 | 4.7748 | 1284 | | 6 | | 390 | 4.9027 | 1285 | 4.9027 | 1285 | 4.9032 | 1285 | | 70 | | 400 | 5.0312 | 1285 | 5.0312 | 1285 | 5.0317 | 1286 | | 72 | | 410 | 5.1597 | 1286 | 5.1597 | 1286 | 5.1603 | 1286 | | 7: | | 420 | 5.2883 | 1286 | 5.2883 | 1286 | 5.2889 | 1286 | | 7 | | 430 | 5.4169 | 1286 | 5.4169 | 1287 | 5.4175 | 1286 | | 7 | | 440 | 5.5455 | 1287 | 5.5456 | 1286 | 5.5461 | 1287 | | 79 | | 450 | 5.6742 | 1287 | 5.6742 | 1288 | 5,6748 | 1287 | | 8: | | 460 | 5.8029 | 1287 | 5.8030 | 1287 | 5.8035 | 1288 | | 83 | | 470 | 5.9316 | 1288 | 5.9317 | 1288 | 5.9323 | 1287 | | 84 | | 480
490 | 6.0604
6.1892 | 1288
1288 | 6.0605
6.1893 | 1288
12 8 8 | 6.0610
6.1898 | 1288
1289 | | 8 | | | | | | | | | | 9 | | 500
510 | 6.3180
6.4468 | 12 88
12 8 9 | 6.3181
6.4469 | 1288
1289 | 6.3187
6.4475 | 1288
1289 | | 9 | | 520 | 6.5757 | 1289 | 6.5758 | 1288 | 6.5764 | 1289 | | ģ. | | 530 | 6.7046 | 1289 | 6.7046 | 1290 | 6.7053 | 1289 | | ģ. | | 540 | 6.8335 | 1290 | 6.8336 | 1289 | 6.8342 | 1289 | | 9 | | 550 | 6.9625 | 1290 | 6.9625 | 1290 | 6,9631 | 1290 | | 9 | | 560 | 7.0915 | 1290 | 7.0915 | 1290 | 7.0921 | 1291 | | 10 | | 570 | 7.2205 | 1290 | 7.2205 | 1291 | 7.2212 | 1290 | | 10 | | 580 | 7.3495 | 1291 | 7.3496 | 1290 | 7.3502 | 1291 | | 10 | | 590 | 7.4786 | 1291 | 7.4786 | 1292 | 7.4793 | 1291 | | 10 | | 600 | 7.6077 | | 7.6078 | | 7.6084 | | | 10 | | | | | | | | | | | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). | °K | 1 | atm | 10 | atm | 100 | atm | °R | |------------|------------------|--------------|------------------|--------------|------------------|--------------|-------------| | | | | | | | | | | 60 | 1.0142 | 934 | .9833 | 1008 | .7818 | 1416 | 108 | | 70 | 1.1076 | 945 | 1.0841 | 996 | .9234 | 1343 | 126 | | 80 | 1.2021 | 963 | 1.1837 | 1001 | 1.0577 | 1263 | 144 | | 90 | 1.2984 | 984 | 1.2838 | 1014 | 1.1840 | 1219 | 162 | | 100 | 1.3968 | 1009 | 1.3852 | 1035 | 1.3059 | 1200 | 180 | | 110 | 1.4977 | 1035 | 1.4887 | 1049 | 1.4259 | 1190 | 198 | | 120 | 1.6012 | 1060 | 1.5936 | 1074 | 1.5449 | 1183 | 216 | | 130 | 1.7072 | 1086 | 1.7010 | 1098 | 1.6632 | 1193 | 234 | | 140 | 1.8158 | 1108 | 1.8108 | 1119 | 1.7825 | 1203 | 25 2 | | 150 | 1.9266 | 1128 | 1.9227 | 1138 | 1.9028 | 1206 | 270 | | 160 | 2.0394 | 1149 | 2.0365 | 1157 | 2.0234 | 1224 | 288 | | 170
180 | 2.1543 | 1165 | 2.1522 | 1173 | 2.1458 | 1232 | 306 | | 190 | 2.2708
2.3889 | 1181 | 2.2695
2.3882 | 1187 | 2.2690
2.3939 | 1249 | 324
342 | | 170 | 2.7007 | 1195 | 2,3002 | 1201 | 2.3737 | 1239 | 342 | | 200 | 2.5084 | 1207 | 2.5083 | 1212 | 2.5178 | 1251 | 360 | | 210
220 | 2.6291 | 1219 | 2.6295 | 1224 | 2.6429 | 1263 | 378 | | 230 | 2.7510
2.8738 | 1228 | 2.7519
2.8751 | 1232 | 2.7692 | 1270 | 396 | | 240 | 2.9975 | 1237
1244 | 2.9993 | 1242
1247 | 2.8962
3.0236 | 1274 | 414
432 | | | 2.7773 | 1244 | 2.7775 | 1247 | 7.0270 | 1277 | | | 250 | 3.1219 | 1251 | 3.1240 | 1255 | 3.1513 | 1279 | 450 | | 260 | 3.2470 | 1256 | 3.2495 | 1257 | 3.2792 | 1284 | 468 | | 270 | 3.3726 | 1260 | 3.3752 | 1265 | 3,4076 | 1287 | 486 | | 280
290 | 3.4986 | 1266 | 3.5017 | 1268 | 3.5363 | 1288 | 504 | | 290 | 3.6252 | 1269 | 3.6285 | 1271 | 3.6651 | 1290 | 522 | | 300 | 3.7521 | 1272 | 3.7556 | 1274 | 3.7941 | 1291 | 540 | | 310 | 3.8793 | 1274 | 3.8830 | 1276 | 3.9232 | 1293 | 558 | | 320 | 4.0067 | 1276 | 4.0106 | 1278 | 4.0525 | 1294 | 576 | | 330
340 | 4.1343
4.2622 | 1279 | 4.1384 | 1280 | 4.1819 | 1295 | 594 | | J40 | 4.2022 | 1279 | 4.2664 | 1282 | 4.3114 | 1295 | 612 | | 350 | 4.3901 | 1282 | 4.3946 | 1283 | 4.4409 | 1296 | 630 | | 360 | 4.5183 | 1282 | 4.5229 | 1284 | 4.5705 | 1296 | 648 | | 370 | 4.6465 | 1283 | 4.6513 | 1284 | 4.7001 | 1295 | 666 | | 380
390 | 4.7748
4.9032 | 1284 | 4.7797 | 1285 | 4.8296 | 1296 | 684 | | 270 | 4.7032 | 1285 | 4.9082 | 1286 | 4.9592 | 1295 | 702 | | 400 | 5.0317 | 1286 | 5.0368 | 1286 | 5.0887 | 1296 | 720 | | 410 | 5.1603 | 1286 | 5.1654 | 1287 | 5.2183 | 1295 | 738 | | 420
430 | 5.2889
5.4175 | 1286 | 5.2941 | 1287 | 5.3478 | 1295 | 756 | | 440 | 5,5461 | 1286 | 5.4228
5.5516 | 1288 | 5.4773
5.6067 | 1294 | 774
792 | | | | 1287 | 2,3510 | 1288 | 3.0007 | 1296 | 172 | | 450 | 5.6748 | 1287 | 5.6804 | 1287 | 5.7363 | 1296 | 810 | | 460 | 5.8035 | 1288 | 5.8091 | 1289 | 5.8659 | 1295 | 828 | | 470
480 | 5.9323
6.0610 | 1287 | 5.9380 | 1289 | 5.9954 | 1295 | 846 | | 490 | 6.1898 | 1288
1289 | 6.0669
6.1958 | 1289
1288 | 6.1249
6.2544 | 1295
1295 | 864
882 | | 500 | | | | _ | | | | | 500 | 6.3187 | 1288 | 6.3246 | 1289 | 6.3839 | 1294 | 900 | | 510
520 | 6.4475
6.5764 | 1289 | 6.4535
6.5824 | 1289 | 6.5133 | 1294 | 918 | | 530 | 6.7053 | 1289
1289 | 6.7114 | 1290
1290 | 6.6427
6.7721 | 1294
1294 | 936
954 | | 540 | 6.8342 | 1289 | 6.8404 | 1290 | 6.9015 | 1294 | 972 | | 550 | 6.9631 | 1290 | 6.9694 | 1200 | 7.0310 | 1204 | 990 | | 560 | 7.0921 | 1291 | 7.0984 | 1290
1290 | 7.1606 | 1296
1294 | 1008 | | 570 | 7.2212 | 1290 | 7.2274 | 1291 | 7.2900 | 1294 | 1026 | | 580 | 7.3502 | 1291 | 7.3565 | 1291 | 7.4194 | 1295 | 1044 | | 590 | 7.4793 | 1291 | 7.4856 | 1291 | 7.5489 | 1295 | 1062 | | 600 | 7.6084 | | 7.6147 | | 7.6784 | | 1080 | | | | | | | | | | ^{*}The enthalpy function is divided here by a constant RT_0 where $T_0 = 273.16^{\circ}K$ (491.688°R). | °ĸ | .01 | atm. | .1 | atm | 1 1 | atm | | °R | |------------|------------------|------------|------------------|------------------------|------------------|------------|---|------------| | <u> </u> | <u> </u> | | | | _L | | ! | | | 60 |
15.554 | 391 | 13.251 | 390 | 10,938 | 394 | | 108 | | 70 | 15.945 | 342 | 13.641 | 343 | 11.332 | 344 | | 126 | | 80 | 16.287 | 308 | 13.984 | 308 | 11.676 | 310 | | 144 | | 90 | 16.595 | 283 | 14.292 | 283 | 11.986 | 283 | | 162 | | 100 | 16.878 | 263 | 14,575 | 263 | 12,269 | 263 | | 180 | | 110 | 17.141 | 245 | 14.838 | 245 | 12.532 | 246 | | 198 | | 120 | 17.386 | 231 | 15.083 | 231 | 12.778 | 231 | | 216 | | 130
140 | 17.617
17.836 | 219
209 | 15.314
15.533 | 219
20 9 | 13.009
13.229 | 220
209 | | 234
252 | | | | | | | | | | 270 | | 150
160 | 18.045
18.244 | 199 | 15.742
15.941 | 199
190 | 13.438
13.637 | 199
190 | | 288 | | 170 | 18.434 | 190
182 | 16,131 | 190
182 | 13.827 | 182 | | 306 | | 180 | 18.616 | 174 | 16.313 | 174 | 14.009 | 175 | | 324 | | 190 | 18.790 | 168 | 16.487 | 168 | 14.184 | 168 | | 342 | | 200 | 18,958 | 160 | 16.655 | 160 | 14.352 | 160 | | 360 | | 210 | 19.118 | 155 | 16.815 | 155 | 14.512 | 155 | | 378 | | 220 | 19.273 | 148 | 16.970 | 149 | 14.667 | 149 | | 396 | | 230 | 19.421 | 145 | 17.119 | 144 | 14.816 | 144 | | 414 | | 240 | 19.566 | 138 | 17.263 | 138 | 14,960 | 138 | | 432 | | 250 | 19,704 | 134 | 17.401 | 134 | 15,098 | 134 | | 450 | | 260 | 19.838 | 129 | 17.535 | 130 | 15.232 | 130 | | 468 | | 270 | 19.967 | 126 | 17.665 | 125 | 15.362 | 125 | | 486
504 | | 280
290 | 20.093
20.214 | 121
117 | 17.790
17.911 | 121
118 | 15.487
15.608 | 121
118 | | 522 | | | 20 223 | | | | | *** | | 540 | | 300
310 | 20.331
20.445 | 114
111 | 18.029
18.143 | 114
111 | 15.726
15.840 | 114
111 | | 558 | | 320 | 20.556 | 108 | 18.254 | 107 | 15.951 | 107 | | 576 | | 330 | 20.664 | 104 | 18.361 | 104 | 16.058 | 104 | | 594 | | 340 | 20.768 | 101 | 18.465 | 101 | 16.162 | 101 | | 612 | | 350 | 20,869 | 98 | 18.566 | 99 | 16,263 | 99 | | 630 | | 360 | 20.967 | 96 | 18.665 | 96 | 16.362 | 96 | | 648 | | 370 | 21.063 | 94 | 18.761 | 93 | 16.458 | 94 | | 666 | | 380 | 21.157 | 91 | 18.854 | 91 | 16.552 | 91 | | 684 | | 390 | 21.248 | 89 | 18,945 | 89 | 16.643 | 88 | | 702 | | 400 | 21.337 | 87 | 19.034 | 87 | 16.731 | 87 | | 720 | | 410 | 21.424 | 84 | 19.121 | 85 | 16.818 | 85 | | 738
754 | | 420
430 | 21.508 | 83 | 19.206
19.289 | 83 | 16.903
16.986 | 83
80 | | 756
774 | | 440 | 21.591
21.671 | 80
79 | 19.369 | 80
79 | 17.066 | 79 | | 792 | | 450 | 21.750 | 78 | 19.448 | 77 | 17.145 | 78 | | 810 | | 460 | 21.828 | 76
76 | 19.525 | 77
76 | 17.223 | 76 | | 828 | | 470 | 21.904 | 73 | 19.601 | 74 | 17.299 | 73 | | 846 | | 480 | 21.977 | 73 | 19.675 | 72 | 17.372 | 72 | | 864 | | 490 | 22.050 | 71 | 19.747 | 71 | 17.444 | 71 | | 882 | | 500 | 22.121 | 70 | 19.818 | 70 | 17.515 | 70 | | 900 | | 510 | 22,191 | 69 | 19.888 | 69 | 17.585 | 70 | | 918 | | 520 | 22.260 | 67 | 19.957 | 67 | 17.655
17.722 | 67
45 | | 936
954 | | 530
540 | 22.327
22.392 | 65
65 | 20.024
20.090 | 66
65 | 17.722 | 65
65 | | 972 | | 550 | 22.457 | | 20.155 | 49 | 17,852 | 63 | | 990 | | 560 | 22.457 | 63
63 | 20.133 | 63
62 | 17.915 | 62 | | 1008 | | 570 | 22.583 | 61 | 20.280 | 61 | 17.977 | 61 | | 1026 | | 580 | 22.644 | 60 | 20.341 | 60 | 18.038 | 60 | | 1044 | | 590 | 22.704 | 60 | 20.401 | 60 | 18.098 | 60 | | 1062 | | 600 | 22.764 | | 20.461 | | 18.158 | | | 1080 | | | | | | | | | | | Table 6-5. ENTROPY OF HYDROGEN - Cont. | °K | 1 | atm | 10 | atm | 100 | atm | · | °R | |------------|------------------|-------------|------------------|---------------------|------------------|---------------|---|--------------------| | 60 | 10.938 | 394 | 8.535 | 425 | 5.557 | 601 | • | 108 | | 70
80 | 11.332
11.676 | 344
310 | 8.960
9.324 | 364
321 | 6.158
6.642 | 484
407 | | 126
144 | | 90 | 11.986 | 283 | 9.645 | 292 | 7.049 | 351 | | 162 | | 100 | 12,269 | 2 63 | 9.937 | 2 69 | 7.400 | 313 | | 180 | | 110 | 12.532 | 246 | 10.206 | 250 | 7.713 | 283 | | 198
216 | | 120
130 | 12.778
13.009 | 231
220 | 10.456
10.690 | 2 34
223 | 7.996
8.254 | 258
242 | | 234 | | 140 | 13.229 | 209 | 10.913 | 210 | 8.496 | 225 | | 252 | | 150 | 13.438 | 199 | 11.123 | 201 | 8.721 | 214 | | 270 | | 160 | 13.637 | 190 | 11.324 | 192 | 8.935 | 203 | | 288
306 | | 170
180 | 13.827
14.009 | 182
175 | 11.516
11.699 | 183
175 | 9.138
9.331 | 193
183 | | 324 | | 190 | 14.184 | 168 | 11.874 | 169 | 9.514 | 174 | | 342 | | 200 | 14.352 | 160 | 12,043 | 161 | 9.688 | 167 | | 360 | | 210 | 14.512 | 155 | 12.204 | 155 | 9.855 | 160 | | 378 | | 220 | 14.667 | 149 | 12.359 | 150 | 10.015 | 154 | | 396
414 | | 230
240 | 14.816
14.960 | 144
138 | 12.509
12.653 | 144
139 | 10.169
10.317 | 148
142 | | 432 | | | | | | ••• | 10.459 | 137 | | 450 | | 250
260 | 15.098
15.232 | 134
130 | 12.792
12.926 | 134
130 | 10.457 | 133 | | 468 | | 270 | 15.362 | 125 | 13.056 | 126 | 10.729 | 128 | | 486 | | 280 | 15.487 | 121 | 13.182 | 121 | 10.857 | 124 | | 504 | | 290 | 15.608 | 118 | 13.303 | 118 | 10.981 | 119 | | 522 | | 300 | 15.726 | 114 | 13.421 | 114 | 11.100 | 116 | | 540
558 | | 310
320 | 15.840
15.951 | 111
107 | 13.535
13.646 | 111
108 | 11.216
11.328 | 112
109 | | 576 | | 330 | 16.058 | 104 | 13.754 | 104 | 11.437 | 105 | | 594 | | 340 | 16.162 | 101 | 13.858 | 102 | 11.542 | 103 | | 612 | | 350 | 16,263 | 99 | 13.960 | 98 | 11.645 | 99 | | 630 | | 360 | 16.362 | 96 | 14.058 | 96 | 11.744 | 97 | | 648
666 | | 370
380 | 16.458
16.552 | 94
91 | 14.154
14.248 | 94
91 | 11.841
11.936 | 95
92 | | 684 | | 390 | 16.643 | 88 | 14.339 | 89 | 12.028 | 89 | | 702 | | 400 | 16,731 | 87 | 14,428 | 87 | 12.117 | 88 | | 720 | | 410 | 16.818 | 85 | 14.515 | 85 | 12,205 | 85 | | 738 | | 420 | 16.903 | 83 | 14.600 | 83 | 12.290
12.373 | 83 . | | 756
77 4 | | 430
440 | 16.986
17.066 | 80
79 | 14.683
14.763 | 80
79 | 12.454 | 81
80 | | 792 | | 450 | 17.145 | 78 | 14.842 | 77 | 12.534 | 78 | | 810 | | 460 | 17.223 | 76 | 14.919 | 76 | 12.612 | 76 | | 828 | | 470 | 17.299 | 73 | 14.995 | 74 | 12.688 | 74 | | 846
864 | | 480
490 | 17.372
17.444 | 72
71 | 15.069
15.142 | 73
71 | 12.762
12.835 | 73
71 | | 882 | | 500 | 17.515 | 70 | 15.213 | 70 | 12,906 | 71 | | 900 | | 510 | 17.585 | 70
70 | 15.283 | 70
69 | 12.977 | 69 | | 918 | | 520 | 17 . 655 | 67 | 15.352 | 67 | 13.046 | 67 | | 936 | | 530 | 17.722 | 65 | 15.419 | 65 | 13.113
13.179 | 66
45 | | 954
972 | | 540 | 17.787 | 65 | 15.484 | 65 | | 65 | | | | 550 | 17.852 | 63 | 15.549 | 63 | 13.244 | 64 | | 990
1008 | | 560
570 | 17.915
17.977 | 62
61 | 15.612
15.675 | 63
61 | 13.308
13.370 | 62
61 | | 1026 | | 580 | 18.038 | 60 | 15.736 | 61 | 13.431 | 61 | | 1044 | | 590 | 18.098 | 60 | 15.797 | 59 | 13.492 | 60 | | 1062 | | 600 | 18.158 | | 15.856 | | 13.552 | | | 1080 | | Table 6 | able 6-6. SPECIFIC-HEAT RATIO OF HYDROGEN | | | | | | | C _p /C _v | |---------------------------------|--|---|--------------------------------------|---|--------------------------------------|---|--------------------------------------|-----------------------------------| | °K | O atm | 1 | atm | 10 | atm | 100 | atm | °R | | 20
30
40 | 1.667
1.667 - 1
1.666 - 2 | 1.736
1.700 | - 36
- 16 | 2,205 | - 292 | | | 36
54
72 | | 50
60
70
80
90 | 1.664 - 6
1.658 - 12
1.646 - 18
1.628 - 21
1.607 - 24 | 1.684
1.672
1.655
1.634
1.611 | - 12
- 17
- 21
- 23
- 24 | 1.913
1.804
1.738
1.694
1.655 | 109
66
44
39
38 | 2.497
2.256
2.066
1.945 | - 241
- 190
- 121
- 101 | 90
108
126
144
162 | | 100
110
120
130
140 | 1.583 - 23
1.560 - 21
1.539 - 20
1.519 - 17
1.502 - 15 | 1.587
1.563
1.541
1.521
1.503 | - 24
- 22
- 20
- 18
- 15 | 1.617
1.586
1.558
1.536
1.517 | - 31
- 28
- 22
- 19
- 17 | 1.844
1.768
1.704
1.654
1.613 | - 76
- 64
- 50
- 41
- 34 | 180
198
216
234
252 | | 150
160
170
180
190 | 1.487 - 13
1.474 - 11
1.463 - 9
1.454 - 8
1.446 - 7 | 1.488
1.475
1.464
1.455
1.446 | ~ 13
- 11
- 9
- 9
- 7 | 1.500
1.484
1.472
1.461
1.452 | - 16
- 12
- 11
- 9
- 8 | 1.579
1.549
1.525
1.507
1.491 | - 30
- 24
- 18
- 16
- 12 | 270
288
306
324
342 | | 200
210
220
230
240 | 1.439 - 6
1.433 - 6
1.427 - 4
1.423 - 4
1.419 - 4 | 1.439
1.433
1.428
1.423
1.419 | - 6
- 5
- 5
- 4
- 3 | 1.444
1.437
1.431
1.426
1.422 | ~ 7
- 6
- 5
- 4
- 4 | 1.479
1.468
1.459
1.450
1.442 | - 11
- 9
- 9
- 8
- 6 | 360
378
396
414
432 | | 250
260
270
280
290 | 1.415 - 2 1.413 - 3 1.410 - 2 1.408 - 2 1.406 - 1 | 1.416
1.413
1.410
1.408
1.406 | - 3
- 3
- 2
- 2
- 1 | 1.418
1.416
1.413
1.410
1.408 | - 2
- 3
- 3
- 2
- 2 | 1.436
1.431
1.427
1.423
1.420 | - 5
- 4
- 4
- 3
- 3 | 450
468
486
504
522 | | 300
320
340
360
380 | 1.405 - 3
1.4021
1.401 - 1
1.400 - 1
1.399 - 1 | 1.405
1.402
1.401
1.400
1.399 | - 3
- 1
- 1
- 1 | 1.406
1.403
1.401
1.400
1.399 | - 3
- 2
- 1
- 1 | 1.417
1.413
1.409
1.407
1.404 | - 4
- 4
- 2
- 3
- 1 | 540
576
612
648
684 | | 400
420
440
460
480 | 1.398
1.398
1.398 - 1
1.397 |
1.398
1.398
1.397
1.397 | - 1 | 1.398
1.398
1.398
1.398
1.397 | - 1 | 1.403
1.402
1.401
1.400
1.399 | - 1
- 1
- 1
- 1 | 720
756
792
828
864 | | 500
520
540
560
580 | 1.397
1.397
1.397 - 1
1.396
1.396 | 1.397
1.397
1.397
1.396
1.396 | - 1 | 1.397
1.397
1.397
1.397
1.396 | - 1 | 1.398
1.398
1.397
1.397 | - 1
- 1 | 900
936
972
1008
1044 | | 600 | 1.396 | 1.396 | | 1.396 | | 1.396 | | 1080 | Table 6-7. SOUND VELOCITY AT LOW FREQUENCY IN HYDROGEN | 9 | / | a | n | |---|---|---|---| | | | | | | | , | | | | | | | | ,(| |-----|--------------|-------------|--------|----------|-------|-------------|--------------|----------|------------| | °K | 0 | atm | 1 | atm | 10 | atm | 100 | atm | °R | | | | | | | | | | | | | 20 | .2940 | 661 | | | | | | | 36 | | 30 | .3601 | 556 | .3549 | 585 | | | | | 54 | | 40 | .4157 | 489 | .4134 | 501 | .3942 | 6.32 | | | 72 | | 50 | .4646 | 43 3 | .4635 | 444 | .4574 | 505 | | | 90 | | 60 | .5079 | 388 | .5079 | 389 | .5079 | | .742 | | | | 70 | .5467 | 345 | .5468 | 347 | .5487 | 408 | | -19 | 108 | | 80 | .5812 | 312 | .5815 | 313 | .5852 | 365 | .723 | 2 | 126 | | 90 | .6124 | 284 | .6128 | 285 | .6175 | 323
296 | .725
.743 | 18
17 | 144
162 | | 100 | 4400 | | | | | 270 | | 1, | 102 | | 100 | .6408 | 263 | .6413 | 265 | .6471 | 272 | .760 | 19 | 180 | | 110 | .6671 | 248 | .6678 | 248 | .6743 | 252 | .779 | 19 | 198 | | 120 | .6919 | 2 37 | .6926 | 237 | .6995 | 2 37 | .798 | 19 | 216 | | 130 | .7156 | 228 | .7163 | 228 | .7232 | 226 | .817 | 19 | 234 | | 140 | .7384 | 222 | .7391 | 222 | .7458 | 222 | .836 | 19 | 252 | | 150 | .7606 | 215 | .7613 | 216 | .7680 | 217 | .855 | 10 | 270 | | 160 | .7821 | 211 | .7829 | 210 | .7897 | 210 | .873 | 18 | 288 | | 170 | .8032 | 205 | .8039 | 206 | .8107 | | .891 | 18 | | | 180 | .8237 | 202 | .8245 | | | 203 | | 19 | 306 | | 190 | .8439 | | | 202 | .8310 | 201 | .910 | 18 | 324 | | 1,0 | .0437 | 199 | .8447 | 198 | .8511 | 200 | .928 | 18 | 342 | | 200 | .8638 | 194 | .8645 | 195 | .8711 | 196 | .946 | 18 | 360 | | 210 | .8832 | 192 | .8840 | 192 | .8907 | 190 | .964 | 17 | 378 | | 220 | .9024 | 188 | .9032 | 187 | .9097 | 186 | .981 | 18 | 396 | | 230 | .9212 | 185 | .9219 | 186 | .9283 | 182 | .999 | 16 | 414 | | 240 | .9397 | 182 | .9405 | 181 | .9465 | 182 | 1.015 | 17 | 432 | | 250 | .9579 | 180 | .9586 | 180 | .9647 | 177 | 1.032 | | 450 | | 260 | .9759 | 178 | .9766 | 177 | .9824 | | | 17 | 450 | | 270 | .9937 | 175 | .9943 | 175 | 1.000 | 18 | 1.049 | 17 | 468 | | 280 | 1.0112 | 172 | 1.0118 | | 1.018 | 18 | 1.066 | 16 | 486 | | 290 | 1.0284 | 171 | 1.029 | 17 | | 17 | 1.082 | 16 | 504 | | 270 | 1.0204 | 1/1 | 1.027 | 17 | 1.035 | 16 | 1.098 | 16 | 522 | | 300 | 1 0455 | | | | | | | | | | | 1.0455 | 334 | 1.046 | 34 | 1.051 | 35 | 1.114 | 32 | 540 | | 320 | 1.0789 | 325 | 1.080 | 32 | 1.086 | 31 | 1.146 | 31 | 576 | | 340 | 1.1114 | 317 | 1.112 | 32 | 1.117 | 31 | 1.177 | 30 | 612 | | 360 | 1.1431 | 310 | 1.144 | 31 | 1.148 | 32 | 1.207 | 29 | 648 | | 380 | 1.1741 | 303 | 1.175 | 30 | 1.180 | 30 | 1.236 | 29 | 684 | | 400 | 1.2044 | 295 | 1,205 | 30 | 1.210 | 30 | 1.265 | 20 | 720 | | 420 | 1.2339 | 289 | 1.235 | 28 | 1.240 | | 1.293 | 28 | | | 440 | 1.2628 | 283 | 1.263 | 29
29 | 1.268 | 28 | | 28 | 756 | | 460 | 1.2911 | 276 | 1.292 | | | 28 | 1.321 | 27 | 792 | | 480 | 1.3187 | | | 27 | 1.296 | 28 | 1.348 | 26 | 828 | | | | 272 | 1.319 | 27 | 1.324 | 27 | 1.374 | 26 | 864 | | 500 | 1.3459 | 265 | 1.346 | 27 | 1.351 | 26 | 1.400 | 26 | 900 | | 520 | 1.3724 | 260 | 1.373 | 26 | 1.377 | 26 | 1.426 | 24 | 936 | | 540 | 1.3984 | 255 | 1.399 | 25 | 1,403 | 25 | 1.450 | 25 | 972 | | 560 | 1.4239 | 251 | 1.424 | 25 | 1.428 | 25 | 1.475 | 24 | 1008 | | 580 | 1.4490 | 246 | 1.449 | 25 | 1.453 | 25 | 1.499 | 24 | 1044 | | 600 | 1.4736 | | 1.474 | | 1.478 | | 1.523 | | 1080 | Table 6-8. VISCOSITY OF HYDROGEN AT ATMOSPHERIC PRESSURE | Table 6 | -6. VISC | ODITI | OF H1D1 | LOGEN 2 | | | | | | | | |----------|---------------|--------------|----------------|---------|-------------------------|----|-------|------|--------------------------|----|--------------| | οK | η/η_0 | | o _R | οK | n/n ₀ | | oR | °K | n /n ₀ | | OR | | <u>-</u> | | | | | | | 720 - | 800 | 2,061 | 17 | 1440 | | | | | 1 | 400 | 1.292 | 22 | 720 | | | | 1458 | | 10 | .0606 | 693 | 18 | 410 | 1.314 | 22 | 738 | 810 | 2.078 | 18 | 1476 | | 20 | .1299 | 611 | 36 | 420 | 1.336 | 22 | 756 | 820 | 2.096 | 17 | 1476 | | 30 | .1910 | 548 | 54 | 430 | 1.358 | 21 | 774 | 830 | 2.113 | 17 | | | 40 | .2458 | 501 | 72 | 440 | 1.379 | 21 | 792 | 840 | 2.130 | 17 | 1512 | | 50 | .2959 | 4/0 | 90 | 450 | 1,400 | 21 | 810 | 850 | 2.147 | 17 | 1530 | | | | 460 | 108 | 460 | 1.421 | 21 | 828 | 860 | 2.164 | 16 | 1548 | | 60 | .3419 | 430 | 126 | 470 | 1.442 | 20 | 846 | 870 | 2.180 | 17 | 1566 | | 70 | .3849 | 406 | | 480 | 1.462 | 20 | 864 | 880 | 2.197 | 17 | 1584 | | 80 | .4255 | 385 | 144 | | 1.482 | 20 | 882 | 890 | 2.214 | 16 | 1602 | | 90 | .4640 | 3 6 6 | 162 | 490 | 1.402 | 21 | | | | | | | 100 | .5006 | 353 | 180 | 500 | 1.503 | 20 | 900 | 900 | 2.230 | 16 | 1620
1638 | | 110 | .5359 | 339 | 198 | 510 | 1.523 | 20 | 918 | 910 | 2.246 | 17 | 1656 | | 120 | .5698 | 329 | 216 | 520 | 1.543 | 21 | 936 | 920 | 2.263 | 17 | | | 130 | ,6027 | 319 | 234 | 530 | 1.562 | 20 | 954 | 930 | 2.280 | 17 | 1674 | | 140 | .6346 | 309 | 252 | 540 | 1.582 | 20 | 972 | 940 | 2.297 | 17 | 1692 | | | | | 270 | 550 | 1,602 | 20 | 990 | 950 | 2.313 | 16 | 1710 | | 150 | .6655 | 302 | 288 | 560 | 1.622 | 20 | 1008 | 960 | 2.329 | 16 | 1728 | | 160 | .6957 | 295 | | 570 | 1.642 | 19 | 1026 | 970 | 2.345 | 16 | 1746 | | 170 | .7252 | 289 | 306 | | 1.661 | 19 | 1044 | 980 | 2.361 | 16 | 1764 | | 180 | .7541 | 282 | 324 | 580 | | | 1062 | 990 | 2,377 | 16 | 1782 | | 190 | .7823 | 277 | 342 | 590 | 1.680 | 19 | 1002 | 1 // | 2.777 | | | | 200 | .8100 | 273 | 360 | 600 | 1.699 | 19 | 1080 | 1000 | 2.393 | 16 | 1800 | | 210 | .8373 | 268 | 378 | 610 | 1.718 | 19 | 1098 | 1010 | 2.409 | 16 | 1818 | | 220 | .8641 | 263 | 396 | 620 | 1.737 | 19 | 1116 | 1020 | 2.425 | 15 | 1836 | | 230 | .8904 | 260 | 414 | 630 | 1.756 | 19 | 1134 | 1030 | 2,440 | 16 | 1854 | | 240 | .9164 | 256 | 432 | 640 | 1.775 | 19 | 1152 | 1040 | 2.456 | 16 | 1872 | | | | | 450 | 650 | 1.794 | 18 | 1170 | 1050 | 2,472 | 15 | 1890 | | 250 | .9420 | 252 | 450 | 660 | 1.812 | 18 | 1188 | 1060 | 2.487 | 15 | 1908 | | 260 | .9672 | 250 | 468 | 670 | 1.830 | 19 | 1206 | 1070 | 2.502 | 16 | 1926 | | 270 | .9922 | 246 | 486 | | | | 1224 | 1080 | 2.518 | 16 | 1944 | | 280 | 1.0168 | 243 | 504 | 680 | 1.849 | 17 | 1242 | 1090 | 2.534 | 15 | 1962 | | 290 | 1.0411 | 241 | 522 | 690 | 1.866 | 18 | 1272 | 10,0 | 2,33 | _ | | | 300 | 1.0652 | 237 | 540 | 700 | 1.884 | 18 | 1260 | 1100 | 2.549 | | 1980 | | | 1.0889 | 236 | 558 | 710 | 1.902 | 19 | 1278 | 1 | | | | | 310 | | | 576 | 720 | 1.921 | 18 | 1296 | i | | | | | 320 | 1.1125 | 233 | 594 | 730 | 1.939 | 18 | 1314 | 1 | | | | | 330 | 1.1358 | 230 | | 740 | 1.957 | 17 | 1332 | | | | | | 340 | 1.1588 | 229 | 612 | /*** | 1.737 | 1, | | 1 | | | | | 350 | 1.1817 | 22 | 630 | 750 | 1.974 | 17 | 1350 | | | | | | 360 | 1.204 | 23 | 648 | 760 | 1.991 | 18 | 1368 | 1 | | | | | 370 | 1.227 | 22 | 666 | 770 | 2.009 | 18 | 1386 | 1 | | | | | 380 | 1.249 | 22 | 684 | 780 | 2.027 | 17 | 1404 | 1 | . * | | | | 390 | 1.271 | 21 | 702 | 790 | 2.044 | 17 | 1422 | 1 | | | | | 400 | 1.292 | | 720 | 800 | 2.061 | | 1440 | I | | | | | 400 | 1.2/2 | | | | _ | | | | | | | Table 6-9. THERMAL CONDUCTIVITY OF HYDROGEN AT ATMOSPHERIC PRESSURE | οK | k/k ₀ | | o _R | |-----|------------------|----|----------------| | 10 | .044 | 48 | 18 | | 20 | .092 | 44 | 36 | | 30 | .136 | 41 | 54 | | 40 | .177 | 38 | 72 | | 50 | .215 | 36 | 90 | | 60 | .251 | 35 | 108 | | 70 | .286 | 36 | 126 | | 80 | .322 | 36 | 144 | | 90 | .358 | 37 | 162 | | 100 | .395 | 37 | 180 | | 110 | .432 | 38 | 198 | | 120 | .470 | 38 | 216 | | 130 | .508 | 38 | 234 | | 140 | .546 | 37 | 252 | | 150 | .583 | 37 | 270 | | 160 | .620 | 36 | 288 | | 170 | .656 | 37 | 306 | | 180 | .693 | 35 | 324 | | 190 | .728 | 34 | 342 | | 200 | .762 | 35 | 360 | | 210 | .797 | 34 | 378 | | 220 | .831 | 32 | 396 | | 230 | .863 | 33 | 414 | | 240 | .896 | 32 | 432 | | 250 | .928 | 31 | 450 | | 260 | .959 | 31 | 468 | | 270 | .990 | 31 | 486 | | 280 | 1.021 | 30 | 504 | | 290 | 1.051 | 29 | 522 | | 300 | 1.080 | 29 | 540 | | 310 | 1.109 | 29 | 558 | | 320 | 1.138 | 28 | 576 | | 330 | 1.166 | 28 | 594 | | 340 | 1.194 | 28 | 612 | | 350 | 1,222 | | 630 | | °K | k/k ₀ | | o _R | |---------------------------------|---|----------------------------------|---------------------------------| | 350
360
370
380
390 | 1.222
1.249
1.276
1.303
1.330 | 27
27
27
27
27
26 | 630
648
666
684
702 | | 400 | 1.356 | 27 | 720 | | 410 | 1.383 | 26 | 738 | | 420 | 1.409 | 27 | 756 | | 430 | 1.436 | 26 | 774 | | 440 | 1.462 | 26 | 792 | | 450 | 1.488 | 26 | 810 | | 460 | 1.514 | 26 | 828 | | 470 | 1.540 | 26 | 846 | | 480 | 1.566 | 25 | 864 | | 490 | 1.591 | 25 | 882 | | 500 | 1.616 | 26 | 900 | | 510 | 1.642 | 26 | 918 | | 520 | 1.668 | 25 | 936 | | 530 | 1.693 | 25 | 954 | | 540 | 1.718 | 25 | 972 | | 550 | 1.743 | 26 | 990 | | 560 | 1.769 | 26 | 1008 | | 570 | 1.795 | 25 | 1026 | | 580 | 1.820 | 25 | 1044 | | 590 | 1.845 | 26 | 1062 | | 600 | 1.871 | 26 | 1080 | | 610 | 1.897 | 26 | 1098 | | 620 | 1.923 | 26 | 1116 | | 630 | 1.949 | 26 | 1134 | | 640 | 1.975 | 26 | 1152 | | 650 | 2.001 | 26 | 1170 | | 660 | 2.027 | 26 | 1188 | | 670 | 2.053 | 25 | 1206 | | 680 | 2.078 | 25 | 1224 | | 690 | 2.103 | 25 | 1242 | | 700 | 2.128 | | 1260 | | Table 6 | Table 6-10. PRANDTL NUMBER OF HYDROGEN AT ATMOSPHERIC PRESSURE | | | | | | | |
 |---------------------------------|--|----------------------------|--------------------------------------|----------------------------|--------------------------------------|----------------------------|--------------------------------------|----------------------------|--------------------------------------| | о к | (N _{Pr}) | | (N _{Pr} |)2/3 | (N _{Pr}) | 1/2 | (N _{Pr}) ¹ | /3 | ° R | | 60
80 | .713
.711 | -2
1 | .798
.797 | -1 | .844
.843 | -1
1 | .893
.892 | -1
1 | 108
144 | | 100
120
140
160 | .712
.715
.718
.719 | 3
3
1 | .797
.800
.802 | 3
2
1 | .844
.846
.847
.848 | 2
1
1 | .893
.894
.895
.896 | 1
1
1 | 180
216
252
288
324 | | 180
200
220
240
260 | .720
.719
.717
.715
.712 | -1
-2
-2
-3
-3 | .803
.802
.801
.800 | -1
-1
-1
-3
-2 | .849
.848
.847
.846
.844 | -1
-1
-1
-2
-2 | .896
.895
.894
.893 | -1
-1
-1
-1 | 360
396
432
468 | | 280
300
320
340
360 | .709
.706
.703
.699
.696 | -3
-3
-4
-3
-3 | .795
.793
.791
.788
.786 | -2
-3
-2
-3 | .842
.840
.838
.836
.834 | -2
-2
-2
-2
-1 | .892
.890
.889
.887
.886 | -2
-1
-2
-1
-1 | 504
540
576
612
648 | | 380
400
420
440 | .693
.690
.687 | -3
-3
-3
-3 | .783
.781
.779
.776 | -2
-2
-3
-2 | .833
.831
.829
.827 | -2
-2
-2
-2
-2 | .885
.884
.882
.881 | -1
-2
-1
-1 | 684
720
756
792 | | 460
480
500 | .681
.678 | -3
-3
-4 | .774
.772
.770
.767 | -2
-2
-3
-2 | .825
.824 | -1
-2
-3
-1 | .880
.878
.877
.875 | -2
-1
-2 | 828
864
900
936 | | 520
540
560
580 | .671
.669
.667
.665 | -2
-2
-2
-1 | .765
.763
.762 | -2
-1
-1 | .819
.818
.817
.815 | -1
-2 | .875
.874
.873 | -1
-1
-1 | 972
1008
1044
1080 | | 600
620
640
660
680 | .664
.663
.663
.662
.661 | -1
-1
-1 | .761
.760
.760
.759
.759 | -1
-1 | .815
.814
.814
.813
.813 | -1
-1 | .872
.872
.872
.872
.871 | -1 | 1116
1152
1188
1224 | | 700
720
740
760
780 | .661
.661
.660
.660 | -1 | .759
.759
.758
.758
.758 | -1 | .813
.813
.812
.812
.812 | -1 | .871
.871
.871
.871
.871 | | 1260
1296
1332
1368
1404 | .812 .758 800 .660 1440 .871 Table 6-11. VAPOR PRESSURE OF e-H2 (.21% ortho and 99.79 % para at 20.4 K) | Remarks | т | P | P | P | т | |--|----------------------|--------|--------------------|--------------------|--------------------| | | o K | mm Hg | atm | psia | ° R | | Triple point Normal boiling point Critical point | - 13.81 ₃ | 52.8 | .0695 | 1.02 | 24.86 ₃ | | | - 20.27 ₈ | 760.0 | 1.000 | 14.696 | 36.50 ₀ | | | - 32.9 ₉₄ | 9705 | 12.7 ₇₀ | ¹⁸⁷ -67 | 59.3 ₈₉ | | Solid | 10 | 1.93 | .00254 | .0373 | 18.0 | | | 11 | 5.62 | .00739 | .109 | 19.8 | | | 12 | 13.9 | .0183 | .269 | 21.6 | | | 13 | 30.2 | .0397 | .584 | 23.4 | | Liquid | 14 | 58.8 | .0774 | 1.137 | 25.2 | | | 15 | 100.3 | .1320 | 1.939 | 27.0 | | | 16 | 161.1 | .2120 | 3.115 | 28.8 | | | 17 | 246.0 | .3237 | 4.757 | 30.6 | | | 18 | 360.3 | .4741 | 6.967 | 32.4 | | | 19 | 509.5 | .6704 | 9.852 | 34.2 | | | 20 | 699.2 | .9200 | 13.520 | 36.0 | | | 21 | 935.3 | 1.2307 | 18.086 | 37.8 | | | 22 | 1223.7 | 1.6101 | 23.663 | 39.6 | | | 23 | 1570.5 | 2.0664 | 30.369 | 41.4 | | | 24 | 1981.8 | 2.6076 | 38.322 | 43.2 | | | 25 | 2463.8 | 3.2418 | 47.642 | 45.0 | | | 26 | 3022.9 | 3.9775 | 58.45 | 46.8 | | | 27 | 3665.1 | 4.8225 | 70.87 | 48.6 | | | 28 | 4396.8 | 5.785 | 85.02 | 50.4 | | | 29 | 5227. | 6.877 | 101.07 | 52.2 | | | 30 | 6162. | 8.108 | 119.16 | 54.0 | | | 31 | 7210. | 9.486 | 139.41 | 55.8 | | | 32 | 8383. | 11.031 | 162.10 | 57.6 | Table 6-11/a. VAPOR PRESSURE OF LIQUID e-H $_2$ (.21% ortho and 99.79% para at 20.4°K) | 200/T | Т | Log ₁₀ P (atm)* | ** | P | т | 360/T | |------------------|------------------|----------------------------|---------------------|----------------|------------------|-------------------| | °K ⁻¹ | °K | | | atm | o _R | o _R -1 | | 14.5 | 13.793 | (8,8368-10) | 242 | (.0687) | 24.828 | 14,5 | | 14.4 | 13.889 | 8.8610-10 | 242 | .0726 | 25.000 | 14.4 | | 14.3 | 13.986 | 8.8852-10 | 242 | .0768 | 25.175 | 14.3 | | 14.2 | 14.085 | 8.9094-10 | 242 | .0812 | 25.352 | 14.2 | | 14.1 | 14.184 | 8.9336-10 | 243 | .0858 | 25.532 | 14.1 | | 1702 | 11,10 | 01.775 10 | | • | | | | 14.0 | 14.286 | 8.9579-10 | 243 | .0908 | 25.714 | 14.0 | | 13.9 | 14.388 | 8.9822-10 | 244 | .0960 | 25 . 899 | 13.9 | | 13.8 | 14.493 | 9.0066-10 | 244 | .1015 | 26.087 | 13.8 | | 13.7 | 14.599 | 9.0310-10 | 244 | .1074 | 26.277 | 13.7 | | 13.6 | 14.706 | 9.0554-10 | 244 | .1136 | 26.471 | 13.6 | | 12 5 | 14.015 | 9.0798-10 | 245 | .1202 | 26,667 | 13.5 | | 13.5 | 14.815 | 9.1043-10 | 245
2 4 5 | .1272 | 26.866 | 13.4 | | 13.4
13.3 | 14.925
15.038 | 9.1288-10 | 245 | .1345 | 27.068 | 13.3 | | 13.2 | 15.152 | 9.1533-10 | 246 | .1423 | 27,273 | 13.2 | | 13.1 | 15.267 | 9.1779-10 | 247 | .1506 | 27.481 | 13.1 | | 17.1 | 15,207 | 7.1777-10 | 241 | .1500 | 27.102 | | | 13.0 | 15,385 | 9.2026-10 | 246 | .1594 | 27.692 | 13.0 | | 12.9 | 15.504 | 9.2272-10 | 247 | .1687 | 27.907 | 12.9 | | 12.8 | 15.625 | 9.2519-10 | 247 | .1786 | 28,125 | 12.8 | | 12.7 | 15.748 | 9.2766-10 | 248 | .1891 | 28.346 | 12.7 | | 12.6 | 15.873 | 9.3014-10 | 248 | .2002 | 28. 571 | 12.6 | | | | | | | 00.000 | 10 r | | 12.5 | 16.000 | 9.3262-10 | 249 | .2119 | 28.800 | 12.5
12.4 | | 12.4 | 16.129 | 9.3511-10 | 249 | .2244
.2377 | 29.032
29.268 | 12.4 | | 12.3 | 16.260 | 9.3760-10 | 250
250 | .2518 | 29.507 | 12.2 | | 12.2
12.1 | 16.393
16.529 | 9.4010-10
9.4260-10 | 250
250 | .2667 | 29.572 | 12.1 | | 12.1 | 10,527 | 7.4200-10 | 250 | .2007 | 27,572 | **** | | 12.0 | 16.667 | 9.4510-10 | 251 | .2825 | 30.001 | 12.0 | | 11.9 | 16,807 | 9.4761-10 | 251 | .2993 | 30,253 | 11.9 | | 11.8 | 16,949 | 9.5012-10 | 252 | .3171 | 30.508 | 11.8 | | 11.7 | 17.094 | 9.5264-10 | 252 | .3361 | 30.769 | 11.7 | | 11.6 | 17.241 | 9.5516-10 | 253 | .3561 | 31.034 | 11.6 | | | 17.001 | 0.57/0 | | 277 | 21 204 | 11 6 | | 11.5 | 17.391 | 9.5769-10 | 254 | .3775 | 31.304 | 11.5 | | 11.4 | 17.544 | 9.6023-10 | 254 | .4002
.4243 | 31.579
31.867 | 11.4
11.3 | | 11.3 | 17.699 | 9.6277-10 | 255 | .4500 | 32.143 | 11.2 | | 11.2 | 17.857
18.018 | 9.6532-10
9.6787-10 | 255
256 | .4772 | 32.432 | 11.1 | | 11.1 | 10,010 | 7.0/0/-10 | 230 | *4117 | JE. 4JE | 11.1 | | 11.0 | 18.182 | 9.70425-10 | 2564 | .5061 | 32.728 | 11.0 | | 10.9 | 18.349 | 9.72989-10 | 2571 | .5369 | 33.028 | 10.9 | | 10.8 | 18.519 | 9.75560-10 | 2578 | .5696 | 33.334 | 10.8 | | 10.7 | 18.692 | 9.78138 -10 | 2585 | .6045 | 33.646 | 10.7 | | 10.6 | 18.868 | 9.80723-10 | 2591 | .6416 | 33.962 | 10.6 | | 10.5 | . 10.040 | 0.02214.42 | | 4010 | 34.286 | 10.5 | | 10.5
10.4 | 19.048
19.231 | 9.83314-10
9.85912-10 | 2598
2606 | .6810
.7230 | 34.286
34.616 | 10.5 | | 10.4 | 19.231
19.417 | 9.88518-10 | 2613 | .7230
.7677 | 34.951 | 10.3 | | 10.2 | 19.608 | 9.91131-10 | 2621 | .8153 | 35,294 | 10.2 | | 10.2 | 19.802 | 9.93752-10 | 2628 | .8660 | 35.644 | 10.1 | | 10,1 | _,,,,, | | | _ | | | | 10.0 | 20.000 | 9.96380-10 | 2637 | .9200 | 36.000 | 10.0 | | 9.9 | 20.202 | 9.99017-10 | 2646 | .9776 | 36.364 | 9.9 | | 9.8 | 20.408 | .01663 | 2654 | 1.0390 | 36.734 | 9.8 | | 9.7 | 20.619 | .04317 | 2663 | 1.1045 | 37.114
37.400 | 9.7 | | 9.6 | 20.833 | .06980 | 2672 | 1.1744 | 37.499 | 9.6 | ^{&#}x27;Figures in parentheses are extrapolated to permit interpolation to the critical point and triple point. ^{**} Tabulated values in this column are for interpolation with respect to reciprocal temperature. Table 6-11/a. VAPOR PRESSURE OF LIQUID e-H2 (.21% ortho and 99.79% para at 20.4°K) - Cont. | 200/T | Т | Log ₁₀ P(atm)* | ** | P | т | 360/T | |-------|--------|---------------------------|-------------------|----------|----------------|-------------------| | °K-1 | °к | | | atm | o _R | o _R -1 | | 9.5 | 21.053 | .09652 | 26 8 2 | 1.2489 | 37.895 | 9.5 | | 9.4 | 21.277 | .12334 | 2 69 2 | 1.3284 | 38.299 | 9.4 | | 9.3 | 21.505 | .15026 | 2702 | 1.4134 | 38.709 | 9.3 | | 9.2 | 21.739 | .17728 | 2712 | 1.5041 | 39.130 | 9.2 | | 9.1 | 21.978 | .20440 | 2723 | 1.6010 | 39.560 | 9.1 | | 9.0 | 22.222 | .23163 | 2735 | 1.7046 | 40.000 | 9.0 | | 8.9 | 22.472 | .25898 | 2746 | 1.8154 | 40.450 | 8.9 | | 8.8 | 22.727 | .28644 | 2758 | 1.9339 | 40.909 | 8.8 | | 8.7 | 22.989 | .31402 | 2770 | 2.0607 | 41.380 | 8.7 | | 8.6 | 23.256 | .34172 | 2 783 | 2.1964 | 41.861 | 8.6 | | 8.5 | 23.529 | .36955 | 2797 | 2.3418 | 42.352 | 8.5 | | 8.4 | 23.810 | .39752 | 2810 | 2.4976 | 42.858 | 8.4 | | 8.3 | 24.096 | .42562 | 2825 | 2.6645 | 43.373 | 8.3 | | 8.2 | 24.390 | .45387 | 2839 | 2.8436 | 43.902 | 8.2 | | 8.1 | 24.691 | .48226 | 2854 | 3.0357 | 44.444 | 8.1 | | 8.0 | 25.000 | .51080 | 2869 | 3.2419 | 45.000 | 8.0 | | 7.9 | 25.316 | .53949 | 2886 | 3.4633 | 45.569 | 7.9 | | 7.8 | 25.641 | .56835 | 2903 | 3.7013 | 46.154 | 7.8 | | 7.7 | 25.974 | .59738 | 2919 | 3.9571 | 46.753 | 7.7 | | 7.6 | 26.316 | .62657 | 2936 | 4.2322 | 47.369 | 7.6 | | 7.5 | 26.667 | .65593 | 2954 | 4.5282 | 48.001 | 7.5 | | 7.4 | 27.027 | .68547 | 2973 | 4.8470 | 48.649 | 7.4 | | 7.3 | 27.397 | .71520 | 2993 | 5.1904 | 49.315 | 7.3 | | 7.2 | 27.778 | .74513 | 3016 | 5.5607 | 50.000 | 7.2 | | 7.1 | 28.169 | .77529 | 3040 | 5.961 | 50.704 | 7.1 | | 7.0 | 28.571 | .80569 | 3066 | 6,393 |
51.428 | 7.0 | | 6.9 | 28.986 | .83635 | 3092 | 6,860 | 52.175 | 6.9 | | 6.8 | 29.412 | .86727 | 3119 | 7,367 | 52.942 | 6.8 | | 6.7 | 29.851 | .89846 | 3146 | 7,915 | 53.732 | 6.7 | | 6.6 | 30.303 | .92992 | 3173 | 8,510 | 54.545 | 6.6 | | 6.5 | 30.769 | .96165 | 3205 | 9.155 | 55.384 | 6.5 | | 6.4 | 31.250 | .99370 | 3247 | 9.856 | 56.250 | 6.4 | | 6.3 | 31.746 | 1.02617 | 3303 | 10.621 | 57.143 | 6.3 | | 6.2 | 32.258 | 1.05920 | 3381 | 11.460 | 58.064 | 6.2 | | 6.1 | 32.787 | 1.09301 | 3487 | 12.388 | 59.017 | 6.1 | | 6.0 | 33.333 | (1.12788)' | 3629 | (13.424) | 60.000 | 6.0 | | 5.9 | 33.898 | (1.16417) | | (14.594) | 61.016 | 5.9 | ^{&#}x27;Figures in parentheses are extrapolated to permit interpolation to the critical point and triple point. $\dot{}$ Table 6-ll/b. CONSTANTS FOR LOG $_{10}P$ (SOLID) = A - B/T + CT | Units of P | A | Units of T | В | С | |----------------------|-------------------------------|------------|--------------------|----------------------| | mm Hg
atm
psia | 4.62438
1.74357
2.91076 | o K | 47.0172
84.6310 | 0. 03635
0. 02019 | ^{**}Tabulated values in this column are for interpolation with respect to reciprocal temperature. Table 6-12. IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR MOLECULAR HYDROGEN** | | Table 0-12. IDEAD GAD THERMODINABLE FUNCTIONS FOR MODECULAR HIDROGEN | | | | | | | | | |------------|--|----------|------------------|-----------------------|------------------|------------|------------------|-----------------|------------| | *K | C _p | | (H° - E° | * | s° | | -(F° - E°) | | | | | R | | RT _o | • | R | | RT | • | °R | | | | | | | | | | | | | 10 | 2.500 | | .55943 | 9153 | 6.468 | 1732 | - 8.813 | 8122 | 18 | | 20
30 | 2.500
2.500 | 1 | .65096
.74248 | 9152 | 8.200 | 1014 | 691 | 3144 | 36 | | 40 | 2.501 | 4 | .83401 | 9153
9160 | 9.214
9.933 | 719
558 | 2.453
4.238 | 1785
1196 | 54
72 | | | | , | | ,100 | | 330 | 1,270 | 1170 | 12 | | 50
60 | 2.505
2.519 | 14 | .92561 | 919 | 10.491 | 458 | 5.434 | 883 | 90 | | 70 | 2.547 | 28
44 | 1.0175
1.1102 | 927
940 | 10.949
11.339 | 390 | 6.317
7.007 | 69 0 | 108 | | 80 | 2.591 | 57 | 1.2042 | 958 | 11.682 | 343
308 | 7.570 | 563
474 | 126
144 | | 90 | 2.648 | 66 | 1.3000 | 981 | 11.990 | 282 | 8.044 | 409 | 162 | | 100 | 2.714 | 71 | 1.3981 | 1007 | 12.272 | 263 | 8,453 | 360 | 180 | | 110 | 2.785 | 72 | 1.4988 | 1033 | 12.535 | 245 | 8.813 | 320 | 198 | | 120
130 | 2.857
2.927 | 70 | 1.6021 | 1058 | 12.780 | 231 | 9.133 | 289 | 216 | | 140 | 2.927 | 66
60 | 1.7079
1.8163 | 1084
1107 | 13.011
13.231 | 220
208 | 9.422
9.687 | 265 | 234 | | | | • | | 110/ | 17.271 | 208 | 7.007 | 243 | 252 | | 150
160 | 3.053 | 55 | 1.9270 | 1128 | 13.439 | 199 | 9.930 | 226 | 270 | | 170 | 3.108
3.158 | 50
46 | 2.0398
2.1545 | 1147 | 13.638 | 190 | 10.156 | 210 | 288 | | 180 | 3.204 | 40 | 2.2710 | 1165
1180 | 13.828
14.010 | 182
175 | 10.366
10.564 | 198
186 | 306
324 | | 190 | 3.244 | 36 | 2.3890 | 1195 | 14.185 | 167 | 10.750 | 176 | 342 | | 200 | 3,280 | 32 | 2.5085 | 1206 | 14,352 | 161 | 10,926 | 167 | 360 | | 210 | 3,312 | 28 | 2.6291 | 1218 | 14.513 | 154 | 11.093 | 158 | 378 | | 220 | 3.340 | 26 | 2.7509 | 1228 | 14.667 | 149 | 11.251 | 152 | 396 | | 230
240 | 3.366
3.387 | 21
20 | 2.8737
2.9973 | 1236 | 14.816 | 144 | 11.403 | 146 | 414 | | | | ZU | 2.7773 | 1244 | 14.960 | 139 | 11.549 | 139 | 432 | | 250
260 | 3.407
3.42 4 | 17 | 3.1217 | 1250 | 15.099 | 1 33 | 11.688 | 133 | 450 | | 270 | 3.438 | 14
12 | 3.2467
3.3723 | 1256
1260 | 15.232
15.362 | 130
126 | 11.821
11.950 | 129 | 468
486 | | 280 | 3.450 | 11 | 3.4983 | 1265 | 15.488 | 121 | 12.075 | 125
120 | 504 | | 290 | 3.461 | 8 | 3.6248 | 12 69 | 15.609 | 117 | 12.195 | 115 | 522 | | 300 | 3.469 | 8 | 3.7517 | 1271 | 15.726 | 114 | 12,310 | 112 | 540 | | 310 | 3.477 | 6 | 3.8788 | 1275 | 15.840 | 111 | 12,422 | 109 | 558 | | 320
330 | 3.483
3.489 | 6 | 4.0063
4.1339 | 1276 | 15.951 | 107 | 12.531 | 105 | 576 | | 340 | 3,494 | 5
4 | 4.1339 | 1278
12 8 0 | 16.058
16.162 | 104
102 | 12.636
12.738 | 102
100 | 594
612 | | 250 | | | | | | 102 | | 100 | 012 | | 350
360 | 3.498
3.501 | 3 | 4.3897
4.5178 | 1281 | 16.264 | 98 | 12.838 | 96 | 630 | | 370 | 3.504 | 3
3 | 4.6460 | 1282
1283 | 16.362
16.458 | 96
94 | 12.934
13.028 | 94
92 | 648
666 | | 380 | 3.507 | 2 | 4.7743 | 1284 | 16.552 | .91 | 13.120 | 92
89 | 684 | | 390 | 3.509 | 1 | 4 . 9027 | 1285 | 16.643 | 89 | 13.209 | 87 | 702 | | 400 | 3.510 | 2 | 5.0312 | 1285 | 16.732 | 87 | 13.296 | 85 | 720 | | 410 | 3.512 | 1 | 5.1597 | 1286 | 16.819 | 84 | 13.381 | 83 | 738 | | 420
430 | 3.513
3.514 | 1
1 | 5.2883
5.4169 | 1286 | 16.903
16.986 | 83 | 13.464 | 81 | 756 | | 440 | 3.515 | î | 5.5455 | 1286
1287 | 17.066 | 80
79 | 13.545
13.623 | 78
78 | 774
792 | | 450 | 3,516 | | E 4742 | 1000 | | | | | | | 460 | 3.516 | 1 | 5.6742
5.8029 | 1287
1287 | 17.145
17.223 | 78
75 | 13.701
13.777 | 76
74 | 810
828 | | 470 | 3.517 | 1 | 5.9316 | 1288 | 17.298 | 74 | 13.851 | 74
72 | 846 | | 480
490 | 3.518 | 1 | 6.0604 | 1288 | 17.372 | 73 | 13.923 | 72 | 864 | | | 3.519 | | 6.1892 | 1288 | 17.445 | 71 | 13,995 | 69 | 882 | | 500 | 3,519 | 1 | 6.3180 | 1288 | 17.516 | 70 | 14.064 | 69 | 900 | | 510
520 | 3.520
3.521 | 1
1 | 6.4468
6.5757 | 1289 | 17.586 | 69 | 14.133 | 68 | 918 | | 530 | 3.522 | 1 | 6.7046 | 1289
1289 | 17.655
17.721 | 66
66 | 14.201
14.265 | 64
45 | 936
954 | | 540 | 3.522 | 1 | 6.8335 | 1290 | 17.787 | 65 | 14.330 | 65
64 | 972 | | 550 | 3.523 | | 6.9625 | | 17.852 | | 14.394 | | 990 | | | | | | | | | - | | | ^{*}The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). $[\]ensuremath{^{**}}$ These tables are calculated for normal hydrogen (75% ortho - 25% para). Table 6-12. IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR MOLECULAR HYDROGEN.- Cont.** | °K | C _p | | (H° - E° |) * | s° | | -(F° - E°) | | °a | |--------------|----------------|----------|---------------------------------------|-----------------|------------------|---------------------|------------------|------------------------|--------------| | ^ | R | | RT _o | _ | R | | RT | | °R | | | <u> </u> | | · · · · · · · · · · · · · · · · · · · | | | | - | | · | | 550 | 3,523 | 1 | 6,9625 | 1290 | 17.852 | 63 | 14.394 | 62 | 990 | | 560
570 | 3.524 | 1 | 7.0915 | 1290 | 17.915 | 63 | 14.456 | 62 | 1008 | | 580 | 3.525
3.525 | 1 | 7.2205
7.3495 | 1290
1291 | 17.978
18.038 | 60
61 | 14.518
14.577 | 59
60 | 1026
1044 | | 590 | 3.526 | ī | 7.4786 | 1291 | 18.099 | 59 | 14.637 | 57 | 1062 | | 600
610 | 3.527 | 1 | 7.6077 | 1291 | 18.158 | 59 | 14.694 | 58 | 1080 | | 620 | 3.528
3.529 | 1
2 | 7.7368
7.8660 | 1292
1292 | 18.217
18.274 | 57
56 | 14.752
14.808 | 56
55 | 1098
1116 | | 630 | 3.531 | 1 | 7.9952 | 1292 | 18.330 | 56 | 14.863 | 55 | 1134 | | 640 | 3.532 | 1 | 8.1244 | 1293 | 18.386 | 55 | 14.918 | 54 | 1152 | | 650 | 3.533 | 2 | 8.2537 | 1294 | 18.441 | 53 | 14.972 | 52 | 1170 | | 660
670 | 3.535
3.536 | 1
2 | 8.3831
8.5125 | 1294
1295 | 18.494
18.548 | 54
52 | 15.024
15.077 | 53
51 | 1188
1206 | | 680 | 3.538 | ī | 8.6420 | 1296 | 18.600 | 52
52 | 15.128 | 51
51 | 1224 | | 690 | 3.539 | 2 | 8.7716 | 1296 | 18.652 | 51 | 15.179 | 51 | 1242 | | 700 | 3.541 | 2 | 8.9012 | 1297 | 18.703 | 50 | 15.230 | 49 | 1260 | | 710
720 | 3.543
3.545 | 2
2 | 9.0309
9.1606 | 1297
1298 | 18.753
18.802 | 49
49 | 15.279
15.327 | 48 | 1278
1296 | | 730 | 3.547 | 2 | 9.2904 | 1299 | 18.851 | 49 | 15.375 | 48
48 | 1314 | | 740 | 3.549 | 2 | 9.4203 | 1300 | 18.900 | 47 | 15.423 | 46 | 1332 | | 750 | 3.551 | 2 | 9.5503 | 1300 | 18.947 | 47 | 15.469 | 46 | 1350 | | 760
770 | 3.553
3.556 | 3
2 | 9.6803
9.8104 | 1301
1303 | 18.994
19.041 | 47
46 | 15.515
15.561 | 46 | 1368
1386 | | 780 | 3.558 | 3 | 9.9407 | 130 | 19.087 | 46
45 | 15.606 | 45
44 | 1404 | | 790 | 3.561 | 2 | 10.071 | 130 | 19.132 | 45 | 15.650 | 44 | 1422 | | 800 | 3.563 | 15 | 10,201 | 654 | 19,177 | 216 | 15.694 | 033 | 1440 | | 850 | 3.578 | 16 | 10.855 | 656 | 19.393 | 205 | 15.905 | 211
1 99 | 1530 | | 900 | 3.594 | 19 | 11.511 | 660 | 19.598 | 195 | 16.104 | 189 | 1620 | | 950
1000 | 3.613
3.633 | 20
21 | 12.171
12.834 | 663
667 | 19.793
19.978 | 1 8 5
178 | 16.293
16.472 | 179
172 | 1710
1800 | | 1050 | 3,654 | 24 | 13.501 | 671 | 20.156 | 171 | 16,644 | 164 | 1890 | | 1100 | 3.678 | 24 | 14.172 | 675 | 20.327 | 164 | 16.808 | 156 | 1980 | | 1150
1200 | 3.702
3.727 | 25
26 | 14.847
15.527 | 680 | 20.491
20.649 | 158 | 16.964 | 151 | 2070 | | 1250 | 3.753 | 27 | 16.211 | 684
690 | 20.801 | 152
148 | 17.115
17.258 | 143
140 | 2160
2250 | | 1300 | 3.780 | 26 | 16,901 | 694 | 20.949 | 144 | 17.398 | 135 | 2340 | | 1350
1400 | 3.806
3.833 | 27
26 | 17.595
18.294 | 69 9 | 21.093 | 139 | 17.533 | 130 | 2430 | | 1450 | 3.859 | 26 | 18.998 | 704
709 | 21.232
21.366 | 134
132 | 17.663
17.787 | 12 4
122 | 2520
2610 | | 1500 | 3.885 | 26 | 19.707 | 714 | 21.498 | 128 | 17.909 | 118 | 2700 | | 1550 | 3.911 | 25 | 20.421 | 718 | 21.626 | 124 | 18.027 | 114 | 2790 | | 1600
1650 | 3.936
3.960 | 24
25 | 21.139
21.862 | 723
727 | 21.750
21.871 | 121
119 | 18.141
18.252 | 111 | 2880
2970 | | 1700 | 3.985 | 24 | 22.589 | 731 | 21.990 | 116 | 18.360 | 108
106 | 3060 | | 1750 | 4.009 | 24 | 23.320 | 736 | 22.106 | 113 | 18.466 | 102 | 3150 | | 1800
1850 | 4.033 |
24 | 24.056 | 741 | 22.219 | 111 | 18.568 | 101 | 3240 | | 1900 | 4.057
4.080 | 23
22 | 24.797
25.541 | 744
749 | 22.330
22.438 | 108
107 | 18.669
18.766 | 97
96 | 3330
3420 | | 1950 | 4,102 | 22 | 26.290 | 753 | 22.545 | 104 | 18.862 | 93 | 3510 | | 2000 | 4.124 | 21 | 27.043 | 757 | 22.649 | 102 | 18.955 | 92 | 3600 | | 2050 | 4.145 | 20 | 27.800 | 760 | 22.751 | 100 | 19.047 | 89 | 3690 | | 2100
2150 | 4.165
4.185 | 20
19 | 28.560
29.325 | 765
767 | 22.851
22.949 | 98
97 | 19.136
19.223 | 87
87 | 3780
3870 | | 2200 | 4.204 | 19 | 30.092 | 772 | 23.046 | 94 | 19.310 | 83 | 3960 | | 2250 | 4.223 | 18 | 30.864 | 774 | 23.140 | 93 | 19.393 | 83 | 4050 | | 2300 | 4.241 | | 31.638 | | 23,233 | | 19.476 | | 4140 | ^{2300 4.241 31.638 23.233 19.476 4140 *} The enthalpy function is divided here by a constant RT_0 where $T_0 = 273.16$ °K (491.699°R). ^{**}These tables are calculated for normal hydrogen (75% ortho - 25% para). Table 6-12. IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR MOLECULAR HYDROGEN - Cont. ** | | | | | | | | | | , | |---------------------|----------------|------------------|------------------|----------------------------|------------------|----------|------------------|----------|--------------| | °K | C _p | | (H° - E° | * | s° | | -(F° - E°) | | °R | | | R | | RTo | | R | | RT | | П | | | | | | | | | | | | | 2300 | 4,241 | 17 | 31.638 | 778 | 23.233 | 92 | 19.476 | 81. | 4140 | | 2350 | 4.258 | 18 | 32,416 | 781 | 23.325 | 90 | 19.557 | 80 | 4230 | | 2400 | 4.276 | 17 | 33.197 | 785 | 23,415 | 88 | 19.637 | 77 | 4320
4410 | | 2450
2500 | 4.293
4.310 | 17
16 | 33.982
34.769 | 787
790 | 23,503
23,590 | 87
86 | 19.714
19.791 | 77
76 | 4500 | | 2550 | 4.326 | 16 | 35,559 | 794 | 23.676 | 84 | 19.867 | 74 | 4590 | | 2600 | 4.342 | 16 | 36.353 | 796 | 23.760 | 83 | 19.941 | 73 | 4680 | | 2650
2700 | 4.358
4.373 | 15 | 37.149
37.948 | 7 99
8 02 | 23.843
23.924 | 81
81 | 20.014
20.085 | 71
71 | 4770
4860 | | 2750 | 4.387 | 14
15 | 38.750 | 804 | 24.005 | 79 | 20.156 | 69 | 4950 | | 2800 | 4,402 | 14 | 39,554 | 807 | 24.084 | 78 | 20.225 | 69 | 5040 | | 2850 | 4.416 | 14 | 40.361 | 810 | 24.162 | 77 | 20.294 | 67 | 5130 | | 2900 | 4.430 | 15 | 41.171 | 812 | 24.239 | 76 | 20.361 | 67 | 5220 | | 2950 | 4.445 | 13 | 41.983 | 815 | 24.315 | 74 | 20.428 | 64 | 5310 | | 3000 | 4.458 | 14 | 42.798 | 817 | 24.389 | 74 | 20.492 | 65 | 5400 | | 3050 | 4.472 | 14 | 43.615 | 821 | 24.463 | 73 | 20.557 | 63 | 5490 | | 3100 | 4.486 | 13 | 44.436 | 821 | 24.536 | 72 | 20.620 | 63 | 5580 | | 3150
3200 | 4.499
4.513 | 14
14 | 45.257
46.083 | 826
827 | 24.608
24.679 | 71
70 | 20.683
20.745 | 62
61 | 5670
5760 | | 3250 | 4.527 | 13 | 46.910 | 829 | 24.749 | 69 | 20.806 | 60 | 5850 | | 3300 | 4.540 | 13 | 47.739 | 833 | 24.818 | 69 | 20.866 | 60 | 5940 | | 3350
3400 | 4.553 | 13 | 48.572 | 834 | 24.887 | 67 | 20.926 | 59 | 6030 | | 3450
3450 | 4.566
4.578 | 12
13 | 49.406
50.243 | 837
840 | 24.954
25.021 | 67
66 | 20.985
21.043 | 58
57 | 6120
6210 | | 3500 | 4.591 | 12 | 51.083 | 840 | 25.087 | 65 | 21.100 | 57 | 6300 | | 3550 | 4.603 | 11 | 51.923 | 843 | 25,152 | 64 | 21.157 | 55 | 6390 | | 3600 | 4.614 | 12 | 52.766 | 846 | 25.216 | 64 | 21.212 | 56 | 6480 | | 3650
3700 | 4.626
4.637 | 11
1 1 | 53.612
54.459 | 847 | 25.280
25.343 | 63 | 21.268
21.322 | 54 | 6570
6660 | | 3750 | 4.648 | 10 | 55,309 | 850
853 | 25.405 | 62
62 | 21.376 | 54
54 | 6750 | | 3800 | 4,658 | 11 | 56.162 | 855 | 25.467 | 61 | 21.430 | 53 | 6840 | | 3850 | 4.669 | 11 | 57.017 | 854 | 25.528 | 61 | 21.483 | 53 | 6930 | | 3900
3950 | 4.680 | 10 | 57.871 | 859 | 25.589 | 59 | 21.536 | 51 | 7020 | | 4000 | 4.690
4.701 | 11
11 | 58.730
59.588 | 858
861 | 25.648
25.707 | 59
59 | 21.587
21.638 | 51
51 | 7110
7200 | | 4050 | 4.712 | 11 | 60.449 | 864 | 25.766 | 58 | 21.689 | 50 | 7290 | | 4100 | 4.723 | 10 | 61.313 | 866 | 25.824 | 57 | 21.739 | 49 | 7380 | | 4150
4200 | 4.733 | 11 | 62.179 | 867 | 25.881 | 56 | 21.788 | 49 | 7470 | | 4250 | 4.744
4.755 | 11
11 | 63.046
63.916 | 870
871 | 25.937
25.994 | 57
55 | 21.837
21.886 | 49
47 | 7560
7650 | | 4300 | 4.766 | 10 | 64.787 | 874 | 26.049 | 56 | 21.933 | 49 | 7740 | | 4350 | 4.776 | 10 | 65.661 | 875 | 26.105 | 54 | 21.982 | 46 | 7830 | | 4400 | 4.786
4.797 | 11 | 66.536 | 877 | 26.159 | 55 | 22.028 | 48 | 7920 | | 4450
4500 | 4.807 | 10
10 | 67.413
68.291 | 878
881 | 26.214
26.267 | 53
53 | 22.076
22.122 | 46
45 | 8010
8100 | | 4550 | 4.817 | 11 | 69.172 | 882 | 26.320 | 53 | 22.167 | 46 | 8190 | | 4600 | 4.828 | 10 | 70.054 | 885 | 26.373 | 52 | 22.213 | 45 | 8280 | | 4650 | 4.838 | 10 | 70.939 | 886 | 26.425 | 52 | 22.258 | 45 | 8370 | | 4700
4750 | 4.848
4.858 | 10
9 | 71.825
72.713 | 888
891 | 26.477
26.528 | 51
51 | 22.303
22.346 | 43
44 | 8460
8550 | | 4800 | 4.867 | 10 | 73,604 | 892 | 26,579 | 50 | 22.390 | 43 | 8640 | | 4850 | 4.877 | 10 | 74.496 | 894 | 26.629 | 51 | 22.433 | 44 | 8730 | | 4900
4950 | 4.887
4.896 | 9
10 | 75.390
76.285 | 895
897 | 26.680
26.729 | 49
50 | 22.477
22.519 | 42 | 8820
8910 | | 5000 | 4.906 | 10 | 77.182 | 97/ | 26.779 | 50 | 22,562 | 43 | 9000 | | | | | | | | | | | | ^{*}The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). ^{**}These tables are calculated for normal hydrogen (75% ortho - 25% para). Table 6-12/a. IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR ATOMIC HYDROGEN** | | C° | (H° - E°) | * | s° | | -(F° - E°) | | <u> </u> | |------------|----------------|------------------|--------------------|--------------------|-------------------------|--------------------|----------------------------------|----------------| | °K | C _p | | | l — | | <u>_</u> | | ° _R | | | R | RT _o | | R | | RT | | <u> </u> | | 10 | 0.5000 | 0015 | | 5 0070 | | | | •• | | 10
20 | 2,5000 | .0915
.1830 | 915
916 | 5.2972
7.0300 | 17328
101 <i>3</i> 7 | 2.7972
4.5300 | 17 3 28
101 3 7 | 18
36 | | 30 | | .2746 | 915 | 8.0437 | 7192 | 5.5437 | 7192 | 54 | | 40 | | .3661 | 915 | 8.7629 | 5579 | 6.2629 | 5579 | 72 | | 50 | | .4576 | 915 | 9.3208 | 4558 | 6.8208 | 4558 | 90 | | 60
70 | | .5491 | 916 | 9.7766
10.1619 | 3853 | 7.2766 | 3853 | 108 | | 70
80 | | .6407
.7322 | 915
915 | 10.4958 | 3339
2944 | 7.6619
7.9958 | 3339
2944 | 126
144 | | 90 | | .8237 | 915 | 10.7902 | 2634 | 8.2902 | 2634 | 162 | | 100 | | .9152 | 915 | 11.0536 | 2383 | 8,5536 | 2383 | 180 | | 110 | | 1.0067 | 916 | 11.2919 | 2175 | 8.7919 | 2175 | 198 | | 120 | | 1.0983 | 915 | 11.5094 | 2001 | 9.0094 | 2001 | 216 | | 130
140 | | 1.1898
1.2813 | 915
915 | 11.7095
11.8948 | 1853
172 5 | 9.2095
9.3948 | 1853
1725 | 234
252 | | 150 | | 1,3728 | 915 | 12,0673 | 1613 | 9,5673 | 1613 | 270 | | 160 | | 1.4643 | 916 | 12.2286 | 1516 | 9.7286 | 1516 | 288 | | 170 | | 1.5559 | 915 | 12,3802 | 1429 | 9.8802 | 1429 | 306 | | 180 | | 1.6474 | 915 | 12.5231 | 1352 | 10.0231 | 1352 | 324 | | 190 | | 1.7389 | 915 | 12,6583 | 1282 | 10.1583 | 1282 | 342 | | 200 | | 1.8304 | 916 | 12.7865 | 1220 | 10.2865 | 1220 | 360 | | 210 | | 1.9220 | 915 | 12.9085 | 1163 | 10.4085 | 1163 | 378 | | 220 | | 2.0135 | 915 | 13.0248 | 1111 | 10.5248 | 1111 | 396 | | 230 | | 2.1050 | 915 | 13.1359 | 1064 | 10.6359 | 1064 | 414 | | 240 | | 2,1965 | 915 | 13,2423 | 1020 | 10.7423 | 1020 | 432 | | 250 | | 2.2880 | 916 | 13.3443 | 981 | 10.8443 | 981 | 450 | | 260
270 | | 2.3796 | 915 | 13,4424 | 944 | 10.9424 | 944 | 468 | | 280 | | 2.4711
2.5626 | 915
915 | 13.5368
13.6277 | 909 | 11.0368
11.1277 | 909 | 486
504 | | 290 | | 2,6541 | 915 | 13.7154 | 877
848 | 11.2154 | 877
848 | 522 | | 300 | | 2.7456 | 916 | 13,8002 | 819 | 11.3002 | 819 | 540 | | 310 | | 2.8372 | 915 | 13.8821 | 794 | 11.3821 | 794 | 558 | | 320 | | 2.9287 | 915 | 13,9615 | 7 69 | 11.4615 | 769 | 576 | | 330 | , | 3.0202 | 915 | 14.0384 | 747 | 11.5384 | 747 | 594 | | 340 | | 3.1117 | 916 | 14.1131 | 724 | 11.6131 | 724 | 612 | | 350 | | 3,2033 | 915 | 14.1855 | 705 | 11.6855 | 705 | 630 | | 360 | | 3.2948 | 915 | 14.2560 | 685 | 11.7560 | 685 | 648 | | 370 | | 3 .3 863 | 915 | 14.3245 | 666 | 11.8245 | 666 | 666 | | 380
390 | | 3.4778
3.5693 | 915
916 | 14.3911
14.4561 | 650
633 | 11.8911
11.9561 | 650
633 | 684
702 | | 400 | | 3,6609 | 915 | 14,5194 | 617 | 12.0194 | 617 | 720 | | 410 | | 3.7524 | 915 | 14,5811 | 602 | 12,0811 | 602 | 738 | | 420 | | 3.8439 | 915 | 14.6413 | 589 | 12.1413 | 589 | 756 | | 430 | | 3.9354 | 915 | 14.7002 | 574 | 12,2002 | 574 | 774 | | 440 | | 4.0269 | 916 | 14.7576 | 562 | 12.2576 | 562 | 792 | | 450
460 | | 4.1185 | 915 | 14.8138 | 550 | 12.3138 | 550 | 810 | | 450
470 | | 4.2100
4.3015 | 915
915 | 14.8688
14.9225 | 537
527 | 12.3688
12.4225 | 537
537 | 828
846 | | 480 | | 4.3930 | 916 | 14.9752 | 52 <i>1</i>
515 | 12.4752 | 527
515 | 864 | | 490 | | 4.4846 | 915 | 15.0267 | 505 | 12.5267 | 505 | 882 | | 500 | | 4.5761 | 915 | 15.0772 | 495 | 12.5772 | 495 | 900 | | 510 | | 4.6676 | 915 | 15.1267 | 486 | 12.6267 | 486 | 918 | | 520
530 | | 4.7591 | 915 | 15.1753 | 476 | 12.6753 | 476 | 936 | | 530
540 | | 4.8506
4.9422 | 916
9 15 | 15,2229
15,2696 | 467
459 | 12.7229
12.7696 | 467
459 | 954
972 | | | 3 5000 | | 713 | | 407 | | 4 37 | | | 550 | 2,5000 | 5.0337 | | 15.3155 | | 12.8155 | | 990 | ^{*}The enthalpy function is divided here by a constant RT $_0$ where T $_0$ = 273.16°K (491.688°R). ^{**}These tables are calculated for normal hydrogen (75% ortho - 25% para). Table 6-12/a. IDEAL-GAS THERMODYNAMIC
FUNCTIONS FOR ATOMIC HYDROGEN - Cont.** | °K | C°p | (H° - E°) | * | S° | | -(F° - E°) | | • 0 | |--------------|--------|------------------------------------|--------------|--------------------|------------------------|--------------------------------------|--------------|--------------| | " | R | RTo | | R | | RT | | °R | | | | | | | | | | J | | 550 | 2.5000 | 5.0337 | 915 | 15.3155 | 450 | 12,8155 | 450 | 990 | | 560
570 | | 5.1252
5.2167 | 915
915 | 15.3605
15.4048 | 443
435 | 12.8605
12.9048 | 443
435 | 1008
1026 | | 580 | | 5.3082 | 916 | 15.4483 | 427 | 12.9483 | 427 | 1044 | | 590 | | 5.3998 | 915 | 15.4910 | 420 | 12,9910 | 420 | 1062 | | 600 | | 5.4913 | 915 | 15.5330 | 413 | 13.0330 | 413 | 1080 | | 610
620 | | 5.5828
5.6743 | 915
916 | 15.5743
15.6150 | 407
400 | 13.0743
13.1150 | 407
400 | 1098
1116 | | 630 | | 5.7659 | 915 | 15.6550 | 394 | 13.1550 | 394 | 1134 | | 640 | | 5.8574 | 915 | 15.6944 | 387 | 13.1944 | 387 | 1152 | | 650
660 | | 5.9489
6.0404 | 915
915 | 15.7331
15.7713 | 382
376 | 13.2331
13.2713 | 382
376 | 1170
1188 | | 670 | | 6.1319 | 916 | 15.8089 | 370 | 13.3089 | 370 | 1206 | | 680
690 | | 6.2235
6.3150 | 915
915 | 15.8459
15.8824 | 365
360 | 13.3459
13.3824 | 365
360 | 1224
1242 | | 700 | | 6.4065 | 915 | 15.9184 | 355 | 13,4184 | 355 | 1260 | | 710 | | 6.4980 | 915 | 15.9539 | 349 | 13,4539 | 349 | 1278 | | 720
730 | | 6.5895
6.6811 | 916
915 | 15.9888
16.0233 | 345
340 | 13.4888
13.5233 | 345
340 | 1296
1314 | | 740 | | 6.7726 | 915 | 16.0573 | 336 | 13.5573 | 336 | 1332 | | 750 | | 6.8641 | 915 | 16.0909 | 331 | 13,5909 | 331 | 1350 | | 760
770 | | 6.9556
7.0472 | 916
915 | 16.1240
16.1567 | 327
322 | 13.6240
13.6567 | 327
322 | 1368
1386 | | 780 | | 7.1387 | 915 | 16.1889 | 319 | 13.6889 | 319 | 1404 | | 790 | | 7.2302 | 915 | 16.2208 | 314 | 13.7208 | 314 | 1422 | | 800 | | 7.3217 | 4576 | 16,2522 | 1516 | 13.7522 | 1516 | 1440 | | 850 | | 7.7793 | 4576 | 16.4038 | 1429 | 13,9038 | 1429 | 1530 | | 900
950 | | 8 .2 369
8 . 6945 | 4576
4576 | 16.5467
16.6819 | 1352
1282 | 14.0467
14.1819 | 1352
1282 | 1620
1710 | | 1000 | | 9.1521 | 4577 | 16.8101 | 1220 | 14.3101 | 1220 | 1800 | | 1050 | | 9.6098 | 4576 | 16,9321 | 1163 | 14.4321 | 1163 | 1890 | | 1100
1150 | | 10.0674
10.5250 | 4576
4576 | 17.0484
17.1595 | 1111
1064 | 14.5484
14.6595 | 1111
1064 | 1980
2070 | | 1200 | | 10.9826 | 4576 | 17.2659 | 1020 | 14.7659 | 1020 | 2160 | | 1250 | | 11.4402 | 4576 | 17.3679 | 981 | 14.8679 | 981 | 2250 | | 1300 | | 11.8978 | 4576 | 17.4660
17.5603 | 943
910 | 14.9660
15.0603 | 943
910 | 2340
2430 | | 1350
1400 | | 12.3554
12.8130 | 4576
4576 | 17.6513 | 877 | 15.1513 | 877 | 2520 | | 1450
1500 | | 13.2706
13.7282 | 4576
4576 | 17.7390
17.8237 | 847
820 | 15.2390
15.3237 | 847
820 | 2610
2700 | | | | 14.1858 | | 17.9057 | | 15.4057 | 794 | 2790 | | 1550
1600 | | 14.6434 | 4576
4576 | 17.9851 | 794
7 69 | 15.4851 | 769 | 2880 | | 1650 | | 15.1010
15.5586 | 4576 | 18.0620
18.1367 | 747
724 | 15 . 5620
15 . 6367 | 747
724 | 2970
3060 | | 1700
1750 | | 16.0163 | 4577
4576 | 18.2091 | 705 | 15.7091 | 705 | 3150 | | 1800 | | 16.4739 | 4576 | 18,2796 | 684 | 15.7796 | 684 | 3240 | | 1850 | | 16.9315
17.3891 | 4576 | 18.3480
18.4147 | 667
650 | 15.8480
15.9147 | 667
650 | 3330
3420 | | 1900
1950 | | 17.8467 | 4576
4576 | 18.4797 | 633 | 15.9797 | 633 | 3510 | | 2000 | | 18,3043 | 4576 | 18.5430 | 617 | 16.0430 | 617 | 3600 | | 2050 | | 18.7619 | 4576 | 18.6047 | 602 | 16.1047 | 602 | 3690
3790 | | 2100
2150 | | 19.2195
19.6771 | 4576
4576 | 18.6649
18.7238 | 589
574 | 16.1649
16.2238 | 589
574 | 3780
3870 | | 2200 | | 20.1347 | 4576 | 18.7812 | 562 | 16.2812
16.3374 | 562 | 3960
4050 | | 2250 | 2 5000 | 20,5923 | 4576 | 18.8374 | 550 | - | 550 | | | 2300 | 2,5000 | 21.0499 | | 18.8924 | | 16.3924 | | 4140 | ^{*}The enthalpy function is divided here by a constant RT_0 where $T_0 = 273.16$ °K (491.668°R). ^{**}These tables are calculated for normal hydrogen (75% ortho - 25% para). Table 6-12/a. IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR ATOMIC HYDROGEN - Cont.** | | | | | | | | | | |--------------|----------------|---|--------------|--------------------|---------------------|----------------------------------|------------------------------|---------------| | °K | C _p | $(H^{\circ}-E_{0}^{\circ})$ | * | s° | | $-(F^{\circ}-E_{\circ}^{\circ})$ | | °R | | " | R | RT _o | | R | | RT | | Л | | | | | | - 1 | | | | | | 2200 | 2 5000 | 27 0400 | | 10 0004 | | | | | | 2300
2350 | 2.5000 | 21.0499 | 4576 | 18.8924 | 537 | 16.3924 | 537 | 4140 | | | | 21.5075 | 4576 | 18.9461 | 5 27 | 16.4461 | 527 | 4230 | | 2400
2450 | | 21.9651 | 4577 | 18.9988 | 515 | 16.4988 | 515 | 4320 | | | | 22.4228 | 4576 | 19.0503 | 505 | 16.5503 | 5 05 | 4410 | | 2500 | | 22.8804 | 4576 | 19.1008 | 495 | 16.6008 | 495 | 4500 | | 2550 | | 23,3380 | 4576 | 19.1503 | 486 | 16,6503 | 486 | 4590 | | 2600 | | 23,7956 | 4576 | 19,1989 | 476 | 16.6989 | 476 | 4680 | | 2650 | | 24.2532 | 4576 | 19.2465 | 467 | 16.7465 | 467 | 4770 | | 2700 | | 24,7108 | 4576 | 19,2932 | 459 | 16.7932 | 459 | 4860 | | 2750 | | 25.1684 | 4576 | 19.3391 | 450 | 16.8391 | 450 | 4950 | | 2000 | | 05 (0/0 | | | | | | | | 2800 | | 25.6260 | 4576 | 19.3841 | 443 | 16.8841 | 443 | 5040 | | 2850 | | 26.0836 | 4576 | 19.4284 | 435 | 16.9284 | 435 | 5130 | | 2900 | | 26.5412 | 4576 | 19.4719 | 427 | 16,9719 | 427 | 5 2 20 | | 2950 | | 26.9988 | 4576 | 19.5146 | 420 | 17.0146 | 420 | 5310 | | 3000 | | 27.4564 | 4576 | 19.5566 | 413 | 17.0566 | 413 | 5400 | | 3050 | | 27,9140 | 4577 | 19.5979 | 407 | 17.0979 | 407 | 5490 | | 3100 | | 28.3717 | 4576 | 19.6386 | 400 | 17.1386 | 400 | 5580 | | 3150 | | 28.8293 | 4576 | 19.6786 | 394 | 17.1786 | 400
394 | 5670 | | 3200 | | 29,2869 | 4576 | 19.7180 | 387 | 17.2180 | | 5760 | | 3250 | | 29.7445 | 4576 | 19.7567 | 382 | 17.2567 | 387
382 | 5850 | | | | _,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1570 | 27.7507 | , Jul | 11,2301 | 202 | 2020 | | 3300 | | 30.2021 | 4576 | 19.7949 | 376 | 17.2949 | 376 | 5940 | | 3350 | | 30.6597 | 4576 | 19.8325 | 370 | 17.3325 | 370 | 6030 | | 3400 | | 31.1173 | 4576 | 19.8695 | 365 | 17.3695 | 365 | 6120 | | 3450 | | 31.5749 | 4576 | 19.9060 | 360 | 17.4060 | 360 | 6210 | | 3500 | | 32,0325 | 4576 | 19.9420 | 355 | 17.4420 | 355 | 6300 | | 3550 | | 32,4901 | 4576 | 19.9775 | *** | 17.4775 | ••• | /200 | | 3600 | | 32.9477 | 4576 | 20.0124 | 349 | 17,5124 | 349 | 6390 | | 3650 | | 33.4053 | 4576
4576 | 20.0124 | 345 | 17.5124 | 345 | 6480 | | 3700 | | 33.8629 | 4576 | 20.0809 | 340 | 17.5809 | 340 | 6570 | | 3750 | | 34.3205 | 4577 | 20.1145 | 336
331 | 17.6145 | 336
331 | 6660
6750 | | | | JJ_43 | 7571 | 20,1115 | 731 | 17.0145 | 231 | 0750 | | 380 0 | | 34.7782 | 4576 | 20.1476 | 327 | 17.6476 | 3 27 | 6840 | | 3850 | | 35,2358 | 4576 | 20.1803 | 322 | 17.6803 | 322 | 6930 | | 3900 | | 35.6934 | 4576 | 20.2125 | 319 | 17.7125 | 319 | 7020 | | 3 950 | | 36.1510 | 4576 | 20.2444 | 314 | 17.7444 | 314 | 7110 | | 4000 | | 36,6086 | 4576 | 20.2758 | 311 | 17.7758 | 311 | 7200 | | 4050 | | 27.0//2 | | 00.0070 | | 17.0040 | | | | 4100 | | 37.0662
37.5238 | 4576 | 20.3069 | 307 | 17.8069 | 307 | 7290 | | 4150 | | 37.9814 | 4576 | 20.3376 | 303 | 17.8376 | 303 | 7380 | | 4200 | | 38,4390 | 4576 | 20.3679 | 299 | 17.8679 | 299 | 7470 | | 4250 | | 38.8966 | 4576 | 20.3978
20.4274 | 296 | 17.8978 | 296 | 7560 | | 1230 | | 20,0700 | 4576 | 20.4274 | 292 | 17.9274 | 292 | 7650 | | 4300 | | 39.3542 | 4576 | 20.4566 | 289 | 17.9566 | 289 | 7740 | | 4350 | | 39.8118 | 4576 | 20,4855 | 286 | 17.9855 | 286 | 7830 | | 4400 | | 40.2694 | 4576 | 20.5141 | 282 | 18,0141 | 282 | 7920 | | 4450 | | 40.7270 | 4577 | 20.5423 | 280 | 18.0423 | 280 | 8010 | | 4500 | | 41.1847 | 4576 | 20,5703 | 276 | 18.0703 | 276 | 8100 | | AEE0 | | 41 / 402 | | 20 5070 | | 10 00-0 | | | | 4550 | | 41.6423 | 4576 | 20.5979 | 273 | 18.0979 | 273 | 8190 | | 4600 | | 42.0999 | 4576 | 20.6252 | 271 | 18.1252 | 271 | 8280 | | 4650 | | 42.5575 | 4576 | 20.6523 | 267 | 18.1523 | 267 | 8370 | | 4700 | | 43.0151 | 4576 | 20.6790 | 264 | 18.1790 | 264 | 8460 | | 4750 | | 43.4727 | 4576 | 20.7054 | 262 | 18.2054 | 262 | 8550 | | 4800 | | 43,9303 | 4576 | 20,7316 | 259 | 18,2316 | 250 | 8640 | | 4850 | | 44.3879 | 4576 | 20.7575 | 259
2 5 7 | 18.2575 | 2 5 9
2 5 7 | 8730 | | 4900 | | 44.8455 | 4576 | 20.7832 | 25 <i>1</i>
254 | 18,2832 | 257
254 | 8820 | | 4950 | | 45.3031 | 4576 | 20.8086 | 251 | 18.3086 | 251 | 8910 | | 5000 | | 45.7607 | | 20.8337 | 231 | 18.3337 | - 11 | 9000 | | | | - • | | | | | | , 500 | ^{*}The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). ^{**}These tables are calculated for normal hydrogen (75% ortho - 25% para). Table 6-13. COEFFICIENTS (AND TEMPERATURE DERIVATIVES) FOR THE EQUATION OF STATE FOR HYDROGEN* $$T^{3/2} \frac{V}{V_0} (1 - \frac{PV}{RT}) = A + C\rho$$ | Т | A | С | dA/dT | dC/dT | т | A | С | dA/dT | dC/dT | |----|-------------------|-------------------------|---------|--------------------|----|--------------------|-------------------------|-------|-----------------------| | •ĸ | *K ^{3/2} | • _K 3/2 | *K1/2 | •K ^{1/2} | °K | • _K 3/2 | •K ^{3/2} | *K1/2 | °K ^{1/2} | | 14 | 0.5754 | -5.621×10^{-7} | 0.00388 | -75×10^{-8} | 36 | .5805 | -5.943×10^{-7} | 00280 | -282×10^{-8} | | 16 | .5827 | -5.636 | .00330 | -82 | 38 | .5746 | -6,003 | 00317 | -320 | | 18 | .5887 | -5.653 | .00264 | -90 | 40 |
.5679 | -6,071 | 00356 | -358 | | 20 | .5933 | -5.672 | .00192 | -100 | 42 | .5604 | -6,146 | 00397 | -396 | | 22 | . 5965 | -5,693 | .00116 | -11 2 | 44 | .5521 | -6,229 | 00438 | -436 | | 24 | .5981 | -5.716 | .00040 | -127 | 46 | .5429 | -6,320 | 00476 | -478 | | 26 | .5981 | -5.743 | 00032 | -145 | 48 | .5330 | -6,420 | 00509 | -522 | | 28 | .5966 | -5,774 | 00097 | -165 | 50 | .5225 | -6,529 | 00540 | -565 | | 30 | .5940 | -5.809 | 00154 | -187 | 52 | .5114 | -6,646 | 00572 | -603 | | 32 | .5904 | -5,848 | 00202 | -213 | 54 | .4996 | -6,770 | 00608 | -636 | | 34 | .5858 | -5,892 | 00243 | -245 | 56 | .4871 | -6,900 | 00650 | -664 | ^{*}A discussion of this equation, which is applicable at Amagat densities, \(\rho \), less than 200, is in reference 1. ### CHAPTER 7 ## THE THERMODYNAMIC PROPERTIES OF NITROGEN ## The Correlation of the Experimental Data The data of state for nitrogen have been investigated extensively in the last 25 years. The early data have been reviewed and correlated graphically by Deming and Shupe in 1930 [1]. In 1949, Claitor and Crawford [2] recorrelated the low-temperature data using a virial equation in density involving second and third virial coefficients. A similar treatment extending to higher temperatures (5000°R) was carried out by Hall and Ibele [3] through the use of the Lennard-Jones 6-12 intermolecular potential. The most recent correlation of the data for nitrogen is that of Bloomer and Rao [4] extending to 500°F. The tables presented here have been obtained from a new correlation of the existing data via the equation $Z = PV/RT = 1 + B_1P + C_1P^2 + D_1P^3$. The virial coefficients, B_1 and C_1 , were obtained through the use of the Lennard-Jones 6-12 potential, by a method devised for fitting several properties jointly [5]. The coefficient, D_1 , was represented by an empirical equation fitted to the data of state. It was not possible to obtain an exact fit of the second virial coefficient to all the good data using an unmodified 6-12 Lennard-Jones function. Nevertheless, such a function was used even though the results departed considerably from the data at the lower temperatures [13, 14, 15], because the tables were intended primarily for moderate and elevated temperatures. The parameters used to obtain C_1 and the function for D_1 were so chosen as to compensate partially for the failure to fit B_1 for the actual PVT data at moderately low temperatures. Further discussion on the fitting of the nitrogen data is to be found in a report by H. W. Woolley [16]. The coefficients are given in table 7-13. Since the experimental data on heat capacity, entropy, enthalpy, sound velocity, etc., are not abundant enough to provide tables over large ranges of temperature and pressure, the tabulated values were computed from the virial coefficients and the ideal-gas thermodynamic properties based on previously published work [6, 7]. The experimental PVT data for nitrogen which extend to elevated pressure are indicated in figure 7a. Here the direct experimental values of Z are represented by V[(PV/RT)-1] plotted as a function of density, with values for temperatures in degrees Kelvin adjoining the plotted points. The deviations of the correlation adopted for the present tables are indicated by the comparison between the solid curves, which represent this correlation, and the plotted experimental points. In determining the parameters for the Lennard-Jones potential, the PVT data of Michels and coworkers [8, 9] have been weighted heavily. The isotherm data of Holborn and Otto [11] have been adjusted slightly for the effect of deformation of the container at elevated pressure and for individual pressures and temperatures occurring in their evaluation of the amount of substance present for individual measurements somewhat as suggested by Cragoe [12]. Also, the data of Michels, et al., [8, 9] at the highest temperatures have been adjusted slightly for the vapor pressure of the mercury confining the gas. Figure 7a. PVT data for gaseous nitrogen. (The hyperbola at the bottom of the figure shows the vertical displacement due to a 1 percent error in PV/RT) Experimental data of various kinds are compared in figures 7b, 7c, 7d, 7g, and 7h with the tabulated values. The experimental data in their direct form include measurements of specific heat by Henry [17] and by Workman [18]; the isentropic cooling in expansion in the Lummer-Pringsheim method by Brinkworth [19] and by Eucken and V. Lüde [20]; the ratio of specific heats or the isentropic expansion coefficient, in the resonance method, of Clark and Katz [21]; and the velocity of sound by Shilling and Partington [22], by Dixon, Campbell, and Parker [23], by Hubbard and Hodge [24, 75], and by Keesom and Van Lammeren [25]. Low-temperature measurements on the velocity of sound have also been made [25, 95, 96] but are below the temperature range of the present tables. Data on the Joule-Thomson effect by Roebuck and Osterberg [26] have also been omitted, though they agree well except below about 250°K, where the present representation of the PVT data becomes progressively less satisfactory. The dimensionless representation has been accomplished for certain properties by expressing them relative to the value at standard conditions (0°C and 1 atmosphere). Thus, for density, the property is expressed as ρ/ρ_0 , for sound velocity as a/a_0 , for thermal conductivity as k/k_0 , and for viscosity as $7/\eta_0$. The reference values, ρ_0 , a_0 , k_0 , and η_0 , result, in general, from the correlating equations which were fitted to represent the experimental data over as wide a range as possible. Values for these quantities are given in various units in table 7-b. The value of \mathcal{P}_0 for nitrogen as given, 1.2505 g ℓ^{-1} , is in agreement with the mean of direct experimental determinations at standard conditions, 1.2505 g ℓ^{-1} [76-82]. The value of η_0 for nitrogen, 1.6625×10^{-4} poise, is within the range of the experimental determinations at standard conditions [41, 43, 47, 83 - 85], though slightly below their mean of 1.6645 \times 10⁻⁴ poise and the latest value listed of 1.6649 x 10^{-4} poise [47]. The value of k_0 for nitrogen as given, 5.77 x 10^{-6} ${\rm cal\,cm}^{-1}\,{\rm sec}^{-1}{\rm \circ}{\rm K}^{-1}$, is within the range of the data [55 - 58, 74, 86 - 89] though slightly above the average value, 5.669×10^{-6} cal cm⁻¹ sec⁻¹ °K⁻¹, and the latest determination of 5.71×10^{-6} ${\rm cal\,cm^{-1}\,sec^{-1}}{\rm eK^{-1}}$ [89]. The value of a₀ for nitrogen as given, 336.96 m ${\rm sec^{-1}}$, is appreciably below 337.65 m sec⁻¹, the average of observational values [23, 90 - 94], and slightly below the latest measurement included 337.12 m sec⁻¹ [94]. ## The Reliability of the Tables In general, the uncertainties of the tabulated values are smallest in the region from about 0° to 150°C where the most accurate experimental determinations have been made. Since a semitheoretical representation was closely fitted to the data in this region, it appears that the uncertainty here does not exceed 0.1 percent in PV/RT and may be as low as 3 percent of the difference between the real and ideal values of the compressibility factor in this region, increasing considerably both at higher and lower temperatures. This increase is due to the limitations of the theory and of the fitting process, and also to limitations in the ranges and reliability of the experimental data. The derived pressure corrections to thermodynamic properties are, in general, less accurate, because errors are increased relatively in differentiation. The tabulated values of the compressibility factor (table 7-1) are reliable to approximately 1 unit in the next to last tabulated place at temperatures below 300°K and within 2 or 3 units in the last place at higher temperatures. Uncertainties in the density (table 7-2) are of corresponding magnitude. These tables are in essential agreement with the recent correlations of Hall and Ibele [3] and Michels, et al., [10]. The specific-heat values (table 7-3) were obtained by combining the ideal-gas specific-heat values from table 7-12 with differences between the values of the real and ideal gas. The effect of dissociation is not included in this table, but its magnitude may be estimated with the formulas discussed by Damköhler [34]. The accuracy of the tabulated values varies with temperature and pressure. The error in $(C_p - C_p^0)$ R may approach 5 percent in the range of moderate pressure and 10 percent for the high-pressure entries, and may be still greater at the lowest temperatures. At 40 atmospheres, this 5 percent means 0.03 at 200°K and 0.005 at 400°K, for example. The points in figure 7b, designated as "Dixon, Campbell, and Parker" and "Shilling and Partington," represent values derived from sound velocity measurements. These do not provide reliable values of specific heat at elevated temperatures, due to the effect of dispersion related to vibrational excitation. The departures shown in figure 7b are approximately as large as the entire contribution to the specific heat. Comparisons with the experimental data are shown in figures 7b and 7c. The estimated uncertainties in the ideal-gas functions are given in summary table 1-D. Figure 7b. Departure of experimental specific heats at atmospheric pressure from the tabulated values for nitrogen (table 7-3) The accuracy of the tabulated values of enthalpy (table 7-4) and entropy (table 7-5) varies with temperature and pressure. If one disregards the small effect of dissociation at the most elevated temperatures, the uncertainty in the difference between real and ideal properties is thought to be somewhat less than 5 percent in the range of moderate pressure but may be as great as 10 percent at the highest pressure. These estimates may need to be increased appreciably for the
lowest temperatures. The effect of dissociation on these properties is shown in figures 7e and 7f based on the dissociation energy of 9.756 e.v. At 40 atmospheres, the 5 percent error is about 0.01 at 200°K and 0.002 at 400°K. On the basis of the reliabilities estimated for specific heats (table 7-3) and compressibility factors (table 7-1), the values of γ (table 7-6) are considered to be reliable to within 5 percent of their departures from values for the ideal gas at pressures below 40 atmospheres and possibly only to within 10 percent of this difference at the highest pressure of 100 atmospheres , and more than 10 percent at the lowest temperatures. At 40 atmospheres, 5 percent is about 0.01 at 200°K and 0.002 at 400°K. Comparisons with direct and indirect experimental determinations of γ are shown in figures 7d and 7g. 1.44 N₁, 23°C N₂, 23°C N₃, 23°C Original Recomputed This Correlation O P, ATM 20 30 Figure 7c. Dependence of specific heat upon pressure Figure 7d. Ratio of specific heats by the resonance method The accuracy of the tabulated values of the sound velocity at low frequency (table 7-7) varies with temperature and pressure. Numerically, the reliability is roughly that indicated for the values of γ in terms of departures from ideal-gas values. At 200°K, the values are believed to be reliable to within about 0.002 at 10 atmospheres, 0.01 at 40 atmospheres, 0.03 at 70 atmospheres, and 0.07 at 100 atmospheres. At 400°K, these limits might be reduced by factors between 5 and 10. At higher temperatures, the values for 100 atmospheres are probably reliable to within 0.005. The effect of dissociation is probably quite small except for the low pressures at the highest temperatures covered. Below the very high temperatures at which dissociation is appreciable, the values become more precise with increasing temperature, because the gas becomes more ideal. Figure 7h shows the departures of experimental values for the velocity of Figure 7e. The effect of dissociation on the enthalpy of nitrogen Figure 7f. The effect of dissociation on the entropy of nitrogen sound from the values in this table. The large deviations of sound velocity data at elevated temperatures are due to dispersion effects. The experimental frequencies were not sufficiently low to allow the molecules to adjust their vibrational excitations appreciably for the change in temperature during the sound vibration. Figure 7g. Ratio of specific heats derived from the velocity of sound Figure 7h. Departures of experimental velocity of sound from the tabulated values for nitrogen (table 7-7) The tabulated viscosities (table 7-8) were computed from formulas given in summary table 1-B. The low-pressure values were calculated via the Lennard-Jones 6-12 intermolecular potential using the force constants $\epsilon/k = 91.46^{\circ}K$ and $r_0 = 3.681$ Å, chosen to fit the viscosity data in the low-temperature region. Above 600°K, the values thus computed were reduced by an amount $\Delta = 0.0055$ (T - 600) % to correct for the systematic departure of the Lennard-Jones fit from the experimental data at high temperatures. A graphical comparison of the tabulated values with the experimental values is shown in figure 7i and figure 7j. The recent data of Kestin and Pilarczyk [59] at room temperature are in agreement with this correlation to well within 0.7 percent over the pressure range of 1 to 70 atmospheres. Figure 7k shows the departures of the experimental thermal conductivity data from table 7-9 which was computed from the formulas given in summary table 1-C. These formulas are based on the work of Keyes below 300°K [53] and of Stops above 300°K [74]. The trend of the data away from the data of Keyes is also indicated by the unpublished data of Nuttall [97] which are shown in figure 7k. The tabulated thermal conductivity values appear to be reliable to about 2 percent. The uncertainty in the table of Prandtl numbers (table 7-10) is due essentially to that of the viscosity. Figure 7i. Departures of experimental viscosities at 1 atmosphere from the tabulated values for nitrogen (table 7-8) The tables of vapor pressure are based on an analysis of the data in references 60-72, which are arranged roughly in the order of the weight given to the data taken from them. Deviations of the experimental data from the adopted relations are shown in figure 7ℓ . A substantial improvement in consistency was effected by adjusting the temperatures of some of the reported data. A recent study [72] showed differences in reported vapor pressures of oxygen that were attributed to the difference in temperature scales. Many laboratories have published data on the vapor pressure of both oxygen and nitrogen. Where the data were precise enough [60, 62, 63, 68, and 69], the reported temperatures were adjusted so that the oxygen data were brought into Figure 7j. Departures of high-pressure viscosity measurements from the tabulated values for nitrogen (table 7-8) Figure 7k. Departures of experimental thermal conductivities from the tabulated values for nitrogen (table 7-9) Figure 7.f. Departures of experimental vapor pressures from the tabulated values for nitrogen (table 7-11) agreement with the values reported [72] on the NBS provisional temperature scale below 90°K and on the International Temperature Scale above that point. The temperature scale corrections so obtained were applied to the nitrogen vapor-pressure data, and a much better agreement among the various sets of measurements was obtained. In other cases, there was inadequate information to warrant an adjustment. Where an adjustment was made, figure 7 & shows the adjusted rather than the unadjusted values. The accuracy of the tables may be estimated from figure 7ℓ . The spread of the data is somewhat less than ± 0.10 degree below $90^{\circ}K$ and approximately ± 0.15 degree at higher temperatures. These temperature spreads correspond to pressure spreads of ± 0.2 mm Hg at $53^{\circ}K$, ± 1 mm Hg at $60^{\circ}K$, ± 7 mm Hg at $75^{\circ}K$, ± 60 mm Hg at $100^{\circ}K$, and ± 175 mm Hg near the critical point at $126.135^{\circ}K$. The probable error of the accepted values is perhaps half of the spreads just quoted. The equation for the solid (given in table 7-11/b) may be used for order-of-magnitude calculations below the range of the experimental data, but not below the transition at $35.6^{\circ}K$. The value of the critical point shown is due to Onnes, Dorsman, and Holst [65]. A more recent determination by White, Friedman, and Johnston [73] gives $126.26^{\circ}K$ as the critical point. The values of the thermodynamic properties of undissociated molecular nitrogen in the ideal-gas state from 60°K to 2800°K are based largely on the calculations of Goff and Gratch [6], but are for the normal isotopic mixture. These values have been extended to the greater temperature range of the present table at the National Bureau of Standards, using the same fundamental spectroscopic data. The estimated uncertainty of these tables is given in summary table 1-D. The thermodynamic functions for atomic nitrogen were obtained by conversion and subtabulation of values in reference 7. #### References - [1] W. E. Deming and L. E. Shupe, Phys. Rev. [2] 37, 638 (1931). - [2] L. C. Claitor and D. B. Crawford, Trans. Am. Soc. Mech. Engrs. 71, 885 (1949). - [3] N. A. Hall and W. E. Ibele, Univ. Minn. Inst. Technol. Eng. Expt. Sta. Tech. Paper No. 85 (1951). - [4] O. T. Bloomer and K. N. Rao, Illinois Inst. Technol. Research Bulletin 18 (1952). - [5] H. W. Woolley, J. Chem. Phys. 21, 236 (1953). - [6] J. A. Goff and S. Gratch, Trans. Am. Soc. Mech. Engrs. 72, 741 (1950). - [7] D. D. Wagman, et al., unpublished work contained in NBS Selected values of chemical thermodynamic properties, Series III, Table 18 (March 31, 1949). - [8] A. Michels, H. Wouters, and J. de Boer, Physica 1, 587 (1934). - [9] J. Otto, A. Michels, and H. Wouters, Physik. Z. 35, 97 (1934). - [10] A. Michels, P. J. Lunbeck, and G. J. Wolkers, Physica 17, 801 (1951). - [11] L. Holborn and J. Otto, Z. Physik 33, 1 (1925). - [12] C. S. Cragoe, J. Research Natl. Bur. Standards 26, 495 (1941) RP1393. - [13] R. Bartels and A. Eucken, Z. physik. Chem. 98, 70 (1921). - [14] A. Bestelmeyer and S. Valentiner, Ann. Physik [4] 15, 61 (1904). - [15] O. Sackur, Z. Elektrochem. 20, 563 (1914). - [16] H. W. Woolley, Natl. Advisory Comm. Aeronaut. Tech. Note 3271 (1955). - [17] P. S. H. Henry, Proc. Roy. Soc. (London) [A] 133, 492 (1931). - [18] E. J. Workman, Phys. Rev. [2] 37, 1345 (1931). - [19] J. H. Brinkworth, Proc. Roy. Soc. (London) [A] 111, 124 (1926). - [20] A. Eucken and K. Von Lüde, Z. physik. Chem. [B] 5, 413 (1929). - [21] A. L. Clark and L. Katz, Can. J. Research [A] 18, 39 (1940); [A] 21, 1 (1943). - [22] W. G. Shilling and J. R. Partington, Phil. Mag. [7] 6, 920 (1928). - [23] H. B. Dixon, C. Campbell, and A. Parker, Proc. Roy. Soc. (London) [A] 100, 1 (1921). - [24] J. C. Hubbard and A. H. Hodge, J. Chem. Phys. 5, 978 (1937). - [25] W. H. Keesom and J. A. Van Lammeren, Proc. Koninkl. Akad. Wetenschap. Amsterdam 35, 727 (1932). - [26] J. R. Roebuck and H. Osterberg, Phys. Rev. [2] 48, 450 (1935). - [27] E. P. Bartlett, J. Am. Chem. Soc. <u>49</u>, 687 (1927). [Correction in J. Am. Chem. Soc. <u>49</u>, 1955 (1927).] - [28] E. P. Bartlett, H. L. Cupples, and T. H. Tremearne, J. Am. Chem. Soc. 50, 1275 (1928). - [29] E. P. Bartlett, H. C. Hetherington, H. M. Kvalnes, and T. H. Tremearne, J. Am. Chem. Soc. 52, 1363 (1930). - [30] M. Benedict, J. Am. Chem. Soc. 59, 2224 (1937). - [31] M. Benedict, J. Am. Chem. Soc. 59, 2233 (1937). - [32] H. Kamerlingh Onnes and A. T. Van Urk, Communs. Phys. Lab. Univ. Leiden No. 169d (1924). - [33] T. T. H. Verschoyle, Proc. Roy. Soc. (London) [A] 111, 552 (1926). - [34] G. Damköhler, Z. Elektrochem. 48, 62 (1942). - [35] H. W. Woolley, Can. J. Physics 31, 604 (1953). - [36] M.
Trautz and P. B. Baumann, Ann. Physik [5] 2, 733 (1929). - [37] M. Trautz and R. Zink, Ann. Physik [5] 7, 427 (1930). - [38] M. Trautz and R. Heberling, Ann. Physik [5] 10, 155 (1931). - [39] M. Trautz and A. Melster, Ann. Physik [5] 7, 409 (1930). - [40] R. Wobser and F. Müller, Kolloid-Beih. 52, 165 (1941). - [41] H. Markowski, Ann. Physik [4] 14, 742 (1904). - [42] F. Kleint, Dissertation, Halle (1904). - [43] H. Vogel, Ann. Physik [4] 43, 1235 (1914). - [44] P. J. Rigden, Phil. Mag. [7] 25, 961 (1938). - [45] K. Yen, Phil. Mag. [6] 38, 582 (1919). - [46] V. Vasilesco, Ann. phys. [11] 20, 137 and 292 (1945). - [47] H. L. Johnston and K. E. McCloskey, J. Phys. Chem. 44, 1038 (1940). - [48] W. L. Sibbitt, C. A. Hawkins, and H. L. Solberg, Trans. Am. Soc. Mech. Engrs. 65, 401 (1943). - [49] C. F. Bonilla, R. D. Brooks, and P. L. Walker, Jr., Proceedings of the general discussion on heat transfer, Section II, p. 167 (The Institution of Mechanical Engineers (London) and the American Society of Mechanical Engineers, 1951). - [50] H. L. Johnston, R. W. Mattox, and R. W. Powers, Natl. Advisory Comm. Aeronaut. Tech. Note 2546 (1951). - [51] J. H. Boyd, Jr., Phys. Rev. [2] 35, 1284 (1930). - [52] A. Michels and R. O. Gibson, Proc. Roy. Soc. (London) [A] 134, 288 (1931). - [53] F. G. Keyes, Mass. Inst. Technol. Tech. Rept. 37 on Project Squid (April 1, 1952). - [54] N. Vargaftik, Tech. Phys. U.S.S.R. 4, 343 (1937). - [55] B. G. Dickins, Proc. Roy. Soc. (London) [A] 143, 517 (1934). - [56] H. S. Gregory and C. T. Marshall, Proc. Roy. Soc. (London) [A] 118, 594 (1928). - [57] S. Weber, Ann. Physik [4] 54, 437 (1917). - [58] A. Eucken, Physik. Z. 12, 1101 (1911). - [59] J. Kestin and K. Pilarczyk, Trans. Am. Soc. Mech. Engrs. 76, 987 (1954). - [60] B. F. Dodge and H. N. Davis, J. Am. Chem. Soc. 49, 610 (1927). - [61] W. H. Keesom and A. Bijl, Communs. Kamerlingh Onnes Lab. Univ. Leiden No. 245d (1937). - [62] F. Henning and J. Otto, Physik. Z. 37, 633 (1936). - [63] W. F. Giauque and J. O. Clayton, J. Am. Chem. Soc. 55, 4875 (1933). - [64] F. Henning, Z. Physik 40, 775 (1927). - [65] H. Kamerlingh Onnes, C. Dorsman, and G. Holst, Communs. Phys. Lab. Univ. Leiden No. 145b (1914). - [66] F. Porter and J. H. Perry, J. Am. Chem. Soc. 48, 2059 (1926). - [67] C. A. Crommelin, Communs. Phys. Lab. Univ. Leiden No. 145d (1914). - [68] P. G. Cath, Communs. Phys. Lab. Univ. Leiden No. 152d (1918). - [69] H. Von Siemens, Ann. Physik [4] 42, 871 (1913). - [70] F. Henning and W. Heuse, Z. Physik 23, 105 (1924). - [71] W. Heuse and J. Otto, Ann. Physik [5] 14, 185 (1932). - [72] H. J. Hoge, J. Research Natl. Bur. Standards 44, 321 (1950) RP2081. - [73] D. White, A. S. Friedman, and H. L. Johnston, J. Am. Chem. Soc. 73, 5713 (1951). - [74] D. W. Stops, Nature 164, 966 (1949). - [75] A. H. Hodge, J. Chem. Phys. 5, 974 (1937). - [76] Lord Rayleigh and W. Ramsey, Proc. Roy. Soc. (London) <u>57</u>, 265 (1895). - [77] Lord Rayleigh and W. Ramsey, Trans. Roy. Soc. (London) [A] 186, 187 (1895). - [78] A. Leduc, Ann. chim. et phys. [7] 15, 5 (1898). - [79] R. W. Gray, J. Chem. Soc. 87, 1601 (1905). - [80] E. Moles and J. M. Clavera, Z. anorg. Chem. 167, 49 (1927). - [81] G. P. Baxter and H. W. Starkweather, Proc. Nat. Acad. Sci. U.S. 12, 703 (1926). - [82] E. Moles and M. T. Salazar, Anales soc. españ. fis. y chim. 32, 954 (1934). - [83] T. Graham, Trans. Roy. Soc. (London) 136, 573, (1846). - [84] O. E. Meyer, Ann. Physik [2] 127, 253 (1865). - [85] C. J. Smith, Proc. Phys. Soc. (London) 34, 155 (1922). - [86] P. Gunther, Dissertation, Halle (1906). - [87] A. Eucken, Physik. Z. 14, 324 (1913). - [88] A. Winkelmann, Ann. Physik [3] 44, 177 and 429 (1891). [quoted by G. W. Todd, Proc. Roy. Soc. (London) [A] 83, 19 (1910).] - [89] E. U. Franck, Z. Elektrochem. 55, 636 (1951). - [90] O. Buckendahl, Dissertation, Heidelberg (1906). - [91] G. Schweikert, Ann. Physik [4] 48, 593 (1915). - [92] K. Scheel and W. Heuse, Ann. Physik [4] 37, 79 (1912); [4] 40, 473 (1913). - [93] F. A. Schulze and H. Rathjen, Ann. Physik [4] 49, 457 (1916). - [94] R. G. Colwell and L. H. Gibson, J. Acoust. Soc. Amer. 12, 436 (1941). - [95] A. Van Itterbeek and P. Mariens, Physica 4, 207 (1937). - [96] A. Van Itterbeek and W. Van Doninck, Proc. Phys. Soc. (London) [B] 62, 62 (1949). - [97] R. L. Nuttall, unpublished work. Table 7-a. VALUES OF THE GAS CONSTANT, R, FOR MOLECULAR NITROGEN Values of R for Molecular Nitrogen for Temperatures in Degrees Kelvin | Pressure
Density | atm | kg/cm ² | mm Hg | lb/in ² | |-------------------------|-----------|--------------------|-----------------|--------------------| | g/cm ³ | 2. 92892 | 3. 02624 | 2225. 98 | 43. 0434 | | mole/cm ³ | 82. 0567 | 84. 7832 | 62363. 1 | 1205.91 | | mole/liter | 0.0820544 | 0.0847809 | 62. 3613 | 1. 20587 | | lb/ft ³ | 0.0469164 | 0.0484753 | 35.6565 | 0.689484 | | lb mole/ft ³ | 1. 31441 | 1.35808 | 998.952 | 19.3166 | Values of R for Molecular Nitrogen for Temperatures in Degrees Rankine | Pressure
Density | atm | kg/cm ² | mm Hg | lb/in ² | |-------------------------|-----------|--------------------|-----------------|--------------------| | g/cm ³ | 1.62718 | 1.08124 | 1 236.68 | 23.9130 | | mole/cm ³ | 45. 5871 | 47. 1018 | 34646. 2 | 669.950 | | mole/liter | 0.0455858 | 0.0471005 | 34. 6452 | 0.669928 | | lb/ft ³ | 0.0260647 | 0.0269307 | 19.8092 | 0.383047 | | lb mole/ft ³ | 0.730228 | 0.754489 | 554.973 | 10.7314 | Conversion Factors for Table 7-2 | To Convert Tabulated Value of | То | Having the Dimensions Indicated Below | Multiply
by | |-------------------------------|----|---------------------------------------|--------------------------| | 2.42 | | g cm ⁻³ | 1.25046x10 ⁻³ | | ρ/ρ_0 | , | mole cm ⁻³ | 4.46338×10^{-5} | | | | g liter ⁻¹ | 1.25050 | | | | lb in ⁻³ | 4.51760×10^{-5} | | | | lb ft ⁻³ | 7.80641×10^{-2} | Conversion Factors for Tables 7-4, and 7-12 | To Convert Tabulated Value of | То | Having the Dimensions
Indicated Below | Multiply
by | |-------------------------------|----|--|--| | (H°-E°)/RT°,
(H-E°)/RT° | | cal mole ⁻¹ cal g ⁻¹ joules g ⁻¹ Btu (lb mole) ⁻¹ Btu lb ⁻¹ | 542. 821
19. 3754
81. 0669
976. 437
34. 8528 | Conversion Factors for Tables 7-3, 7-5, and 7-12 | To Convert
Tabulated
Value of | То | Having the Dimensions Indicated Below | Multiply
by | |--|-----------------------------------|--|----------------| | C _p ^o /R, S ^o /R, | C _p , s ^o , | cal mole ⁻¹ o _K ⁻¹ (or o _C ⁻¹) | 1.98719 | | C _p /R, S/R, | C _p , S, | cal $g^{-1} {}^{o}K^{-1}$ (or ${}^{o}C^{-1}$) | 0.0709305 | | -(F ^O - E ₀ O)/RT | * | joules $g^{-1} \circ K^{-1}$ (or $\circ C^{-1}$) | 0.296774 | | | | Btu (lb mole) $^{-1}$ 0 R $^{-1}$ (or 0 F $^{-1}$) | 1.98588 | | | | Btu lb ⁻¹ OR ⁻¹ (or OF ⁻¹) | 0.0708838 | The molecular weight of nitrogen is 28.016 g mole⁻¹. Unless otherwise specified, the mole is the gram-mole; the calorie is the thermochemical calorie; and the joule is the absolute joule. # Conversion Factors for Table 7-7 | To Convert Tabulated Value of | То | Having the Dimensions
Indicated Below | Multiply
by | |-------------------------------|----|---|------------------| | a ₀ | a | m sec ⁻¹
ft sec ⁻¹ | 336.96
1105.5 | | | | | | ## Conversion Factors for Table 7-8 | To Convert Tabulated Value of | То | Having the Dimensions
Indicated Below | Multiply
by | |-------------------------------|----|---|---| | n / n ₀ | η | poise or g sec ⁻¹ cm ⁻¹ kg hr ⁻¹ m ⁻¹ slug hr ⁻¹ ft ⁻¹ lb sec ⁻¹ ft ⁻¹ lb hr ⁻¹ ft ⁻¹ | 1. 6625×10 ⁻⁴ 5. 985 × 10 ⁻² 1. 2500 × 10 ⁻³ 1. 1172 × 10 ⁻⁵ 4. 0218 × 10 ⁻² | ## Conversion Factors for Table 7-9 | To Convert Tabulated Value of | То | Having the Dimensions Indicated Below | Multiply
by | |-------------------------------|----|---|---| | k/k ₀ | k | cal cm ⁻¹ sec ^{-1 o} K ⁻¹ Btu ft ⁻¹ hr ^{-1 o} R ⁻¹ watts cm ^{-1 o} K ⁻¹ | 5.77×10^{-5} 1.40×10^{-2} 2.41×10^{-4} | Table 7-c. CONVERSION FACTORS FOR THE ATOMIC NITROGEN TABLES Conversion Factors for Table 7-12/a | COULACT BYON | 401012 | | | |-------------------------------------|---|---------------------------------------|----------------| | To Convert
Tabulated
Value of | То | Having the Dimensions Indicated Below | Multiply
by | | $(H^{O} - E_{0}^{O})/RT_{0}$ | (H ^o - E ₀ ^o) | cal mole ⁻¹ | 542.821 | | | | $cal g^{-1}$ | 38.7508 | | | | joules g ⁻¹ | 162.134 | | | | Btu (lb mole) ⁻¹ | 976.437 | | | | Btu lb ⁻¹ | 69.7056 | Conversion Factors for Table 7-12/a | Conversion Factors for Table 7-12/4 | | | | | | | | |---|--|--|----------------|--|--|--|--| | To Convert
Tabulated
Value of | То | Having the Dimensions Indicated Below | Multiply
by | | | | | | C _p ^o /R, S ^o /R | C _p , s ^o | cal mole ⁻¹ oK ⁻¹ (or oC ⁻¹) | 1.98719 | | | | | | -(F ^O - E ^O ₀)/RT | -(F ^O - E ^O ₀
)/T | cal g ^{-1 o} K ⁻¹ (or ^o C ⁻¹) | 0.141861 | | | | | | | | joules $g^{-1} {}^{0}K^{-1}$ (or ${}^{0}C^{-1}$) | 0.593548 | | | | | | | | Btu (lb mole) $^{-1}$ 0 R $^{-1}$ (or 0 F $^{-1}$) | 1.98588 | | | | | | | | Btu lb ⁻¹ OR ⁻¹ (or OF ⁻¹) | 0.141768 | | | | | | | | | | · | | | | | | |---------------------------------|---|-----------------------|---|----------------------------|---|----------------------------|---|----------------------------|--------------------------------------| | °K | .01 | atm | .1 | atm | .4 | atm | .7 | atm | °R | | 100
110
120
130
140 | .99982
.99986
.99989
.99991
.99993 | 4
3
2
2
1 | .99820
.99862
.99892
.99914
.99931 | 42
30
22
17
13 | .9927
.9944
.9957
.9966
.9972 | 17
13
9
6
6 | .987
.990
.992
.994 | 3
2
2
1
1 | 180
198
216
234
252 | | 150
160
170
180
190 | .99994
.99995
.99996
.99997
.99997 | 1
1
1 | .99944
.99954
.99962
.99969 | 10
8
7
5
5 | .99776
.99817
.99850
.99876
.99897 | 41
33
26
21
18 | .9961
.9968
.9974
.9978
.9982 | 7
6
4
4
3 | 270
288
306
324
342 | | 200
210
220
230
240 | .99998
.99998
.99999
.99999 | 1 | .99979
.99982
.99985
.99988
.99990 | 3
3
3
2
2 | .99915
.99930
.99942
.99952
.99961 | 15
12
10
9
7 | .99851
.99877
.99898
.99916
.99932 | 26
21
18
16
13 | 360
378
396
414
432 | | 250
260
270
280
290 | .99999
.99999
1.00000
1.00000 | 1 | .99992
.99994
.99995
.99996
.99997 | 2
1
1
1 | .99968
.99975
.99980
.99985
.99989 | 7
5
5
4
4 | .99945
.99956
.99966
.99974
.99981 | 11
10
8
7
6 | 450
468
486
504
522 | | 300
310
320
330
340 | 1.00000
1.00000
1.00000
1.00000
1.00000 | | .99998
.99999
1.00000
1.00000 | 1
1 | .99993
.99996
.99999
1.00001
1.00003 | 3
3
2
2
2 | .99987
.99993
.99997
1.00002
1.00005 | 6
4
5
3
3 | 540
558
576
594
612 | | 350
360
370
380
390 | 1.00000
1.00000
1.00000
1.00000
1.00000 | | 1.00001
1.00002
1.00002
1.00002
1.00003 | 1 | 1.00005
1.00006
1.00008
1.00009
1.00010 | 1
2
1
1 | 1.00008
1.00011
1.00014
1.00016
1.00018 | 3
3
2
2
2 | 630
648
666
684
702 | | 400
410
420
430
440 | 1.00000
1.00000
1.00000
1.00000
1.00000 | | 1.00003
1.00003
1.00003
1.00003
1.00004 | 1 | 1.00011
1.00012
1.00013
1.00013 | 1
1
1 | 1.00020
1.00021
1.00022
1.00024
1.00025 | 1
1
2
1 | 720
738
756
774
792 | | 450
460
470
480
490 | 1.00000
1.00000
1.00000
1.00000
1.00000 | | 1.00004
1.00004
1.00004
1.00004
1.00004 | | 1.00015
1.00015
1.00015
1.00016
1.00016 | 1 | 1.00025
1.00026
1.00027
1.00028
1.00028 | 1
1
1 | 810
828
846
864
882 | | 500
510
520
530
540 | 1.00000
1.00000
1.00000
1.00000
1.00000 | | 1.00004
1.00004
1.00004
1.00004
1.00004 | | 1.00016
1.00017
1.00017
1.00017
1.00017 | 1 | 1.00029
1.00029
1.00029
1.00030
1.00030 | 1 | 900
918
936
954
972 | | 550
560
570
580
590 | 1.00000
1.00000
1.00000
1.00000 | | 1.00004
1.00004
1.00004
1.00004
1.00004 | | 1.00017
1.00017
1.00017
1.00017
1.00017 | | 1.00030
1.00030
1.00030
1.00030
1.00030 | | 990
1008
1026
1044
1062 | | 600
610
620
630
640 | 1.00000
1.00000
1.00000
1.00000 | | 1.00004
1.00004
1.00004
1.00004 | - | 1.00017
1.00017
1.00017
1.00017
1.00017 | | 1.00030
1.00031
1.00031
1.00030
1.00030 | 1 - 1 | 1080
1098
1116
1134
1152 | | 650
660
670
680
690 | 1.00000
1.00000
1.00000
1.00000
1.00000 | | 1.00004
1.00004
1.00004
1.00004
1.00004 | | 1.00017
1.00017
1.00017
1.00017
1.00017 | | 1.00030
1.00030
1.00030
1.00030
1.00030 | | 1170
1188
1206
1224
1242 | | 700 | 1.00000 | | 1.00004 | | 1.00017 | | 1.00030 | | 1260 | Table 7-1. COMPRESSIBILITY FACTOR FOR NITROGEN - Cont. | °K | .OI atm | .i atm | .4 atm | .7 atm | °R | |--------------------------------------|---|---|---|---|--------------------------------------| | 700
710
720
730
740 | 1.00000
1.00000
1.00000
1.00000 | 1.00004
1.00004
1.00004
1.00004
1.00004 | 1.00017
1.00017
1.00017
1.00017
1.00017 | 1.00030
1.00030
1.00030
1.00030 - 1 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | 1.00000
1.00000
1.00000
1.00000
1.00000 | 1.00004
1.00004
1.00004
1.00004
1.00004 | 1.00017
1.00017
1.00017 - 1
1.00016
1.00016 | 1.00029
1.00029
1.00029
1.00029
1.00029 | 1350
1368
1386
1404
1422 | | 800
850
900
950
1000 | 1.00000
1.00000
1.00000
1.00000
1.00000 | 1.00004
1.00004
1.00004
1.00004
1.00004 - 1 | 1.00016
1.00016 - 1
1.00015
1.00015 - 1 | 1.00029 - 1
1.00028 - 1
1.00027 - 1
1.00026 - 1
1.00025 - 1 | 1440
1530
1620
1710
1800 | | 1050
1100
1150
1200
1250 | 1.00000
1.00000
1.00000
1.00000
1.00000 | 1.00003
1.00003
1.00003
1.00003
1.00003 | 1.00014 - 1
1.00013
1.00013
1.00013 - 1
1.00012 | 1.00024
1.00024 - 1
1.00023 - 1
1.00022 - 1
1.00021 | 1890
1980
2070
2160
2250 | | 1300
1350
1400
1450
1500 | 1.00000
1.00000
1.00000
1.00000
1.00000 | 1.00003
1.00003
1.00003
1.00003
1.00003 | 1.00012
1.00012 - 1
1.00011
1.00011 - 1 | 1.00021 - 1
1.00020
1.00020 - 1
1.00019 - 1
1.00018 | 2340
2430
2520
2610
2700 | | 1550
1600
1650
1700
1750 | 1.00000
1.00000
1.00000
1.00000
1.00000 | 1.00003 - 1
1.00002
1.00002
1.00002
1.00002 | 1.00010
1.00010
1.00010 - 1
1.00009
1.00009 | 1.00018 - 1
1.00017
1.00017 - 1
1.00016
1.00016 | 2790
2880
2970
3060
3150 | | 1800
1850
1900
1950
2000 | 1.00000
1.00000
1.00000
1.00000
1.00000 | 1.00002
1.00002
1.00002
1.00002
1.00002 | 1.00009
1.00009 - 1
1.00008
1.00008
1.00008 | 1.00016 - 1
1.00015
1.00015 - 1
1.00014
1.00014 | 3240
3330
3420
3510
3600 | | 2050
2100
2150
2200
2250 | 1.00000
1.00000
1.00000
1.00000
1.00000 | 1.00002
1.00002
1.00002
1.00002
1.00002 | 1.00008
1.00008
1.00008 - 1
1.00007
1.00007 | 1.00014
1.00014 - 1
1.00013
1.00013 - 1 | 3690
3780
3870
3960
4050 | | 2300
2350
2400
2450
2500 | 1.00000
1.00000
1.00000
1.00000
1.00000 | 1.00002
1.00002
1.00002
1.00002
1.00002 | 1.00007
1.00007
1.00007
1.00007 - 1 | 1.00012
1.00012
1.00012
1.00012 - 1 | 4140
4230
4320
4410
4500 | | 2550
2600
2650
2700
2750 | 1.00000
1.00000
1.00000
1.00000
1.00000 | 1.00002
1.00002
1.00002
1.00002 - 1 | 1.00006
1.00006
1.00006
1.00006
1.00006 | 1.00011
1.00011
1.00011
1.00011 - 1
1.00010 | 4590
4680
4770
4860
4950 | | 2800
2850
2900
2950
3000 | 1.00000
1.00000
1.00000
1.00000
1.00000 | 1.00001
1.00001
1.00001
1.00001
1.00001 | 1.00006
1.00006
1.00006 - 1
1.00005
1.00005 | 1.00010
1.00010
1.00010
1.00010 - 1
1.00009 | 5040
5130
5220
5310
5400 | | °K | 1 | atm | 4 | atm | 7 (| atm | 10 | atm | •̂R | |---------------------------------|---|----------------------------|---|-------------------------------|---|---------------------------------|---|---------------------------------|--------------------------------------| | 100
110
120
130
140 | .981
.986
.989
.991
.993 | 5
3
2
2
1 | .909
.939
.954
.964
.972 | 30
15
10
8
5 | .783
.881
.916
.936 | 98
35
20
14 | .805
.873
.906 | 68
33
21
15 | 180
198
216
234
252 | | 150
160
170
180
190 | .9944
.9954
.9962
.9969
.9974 | 10
8
7
5
5 | .9773
.9815
.9848
.9875
.9897 | 42
33
27
22
18 | .9597
.9673
.9733
.9781
.9820 | 76
60
48
39
31 | .9416
.9529
.9617
.9685
.9742 | 113
88
68
57
46 | 270
288
306
324
342 | | 200
210
220
230
240 | .99788
.99824
.99855
.99881
.99902 | 36
31
26
21
19 | .99150
.99298
.99422
.99525
.99613 | 148
124
103
88
75 | .98514
.98775
.98992
.99174
.99328 | 261
217
182
154
131 | .9788
.9825
.9857
.9883
.9905 | 37
32
26
22
19 | 360
378
396
414
432 | | 250
260
270
280
290 | .99921
.99937
.99951
.99963
.99973 | 16
14
12
10 |
.99688
.99751
.99807
.99854
.99895 | 63
56
47
41
35 | .99459
.99570
.99666
.99749
.99820 | 111
96
83
71
62 | .99235
.99394
.99531
.99648
.99750 | 159
137
117
102
88 | 450
468
486
504
522 | | 300
310
320
330
340 | .99982
.99990
.99996
1.00002
1.00007 | 8
6
6
5
5 | .99930
.99961
.99988
1.00012
1.00032 | 31
27
24
20
18 | .99882
.99936
.99983
1.00024
1.00060 | 54
47
41
36
32 | .99838
.99915
.99981
1.00040
1.00091 | 77
66
59
51
45 | 540
558
576
594
612 | | 350
360
370
380
390 | 1.00012
1.00016
1.00020
1.00023
1.00026 | 4
4
3
3
2 | 1.00050
1.00066
1.00081
1.00093
1.00104 | 16
15
12
11
9 | 1.00092
1.00119
1.00144
1.00165
1.00184 | 27
25
21
19
17 | 1.00136
1.00175
1.00210
1.00240
1.00267 | 39
35
30
27
23 | 630
648
666
684
702 | | 400
410
420
430
440 | 1.00028
1.00030
1.00032
1.00034
1.00035 | 2
2
2
1
1 | 1.00113
1.00122
1.00130
1.00136
1.00142 | 9
8
6
6
5 | 1.00201
1.00216
1.00229
1.00240
1.00251 | 15
13
11
11
8 | 1.00290
1.00312
1.00330
1.00345
1.00360 | 22
18
15
15 | 720
738
756
774
792 | | 450
460
470
480
490 | 1.00036
1.00038
1.00039
1.00039
1.00040 | 2
1
1 | 1.00147
1.00151
1.00155
1.00159
1.00161 | 4
4
4
2
3 | 1.00259
1.00266
1.00273
1.00279
1.00284 | 7
7
6
5
5 | 1.00372
1.00383
1.00392
1.00401
1.00408 | 11
9
9
7
6 | 810
828
846
864
882 | | 500
510
520
530
540 | 1.00041
1.00041
1.00042
1.00042 | 1 | 1.00164
1.00167
1.00168
1.00170
1.00171 | 3
1
2
1
1 | 1.00289
1.00293
1.00295
1.00298
1.00301 | 4
2
3
3
2 | 1.00414
1.00420
1.00424
1.00427
1.00431 | 6
4
3
4
3 | 900
918
936
954
972 | | 550
560
570
580
590 | 1.00043
1.00043
1.00043
1.00043 | 1 | 1.00172
1.00173
1.00174
1.00174
1.00174 | 1 | 1.00303
1.00304
1.00305
1.00306
1.00306 | 1
1
1 | 1.00434
1.00435
1.00437
1.00438
1.00439 | 1
2
1
1 | 990
1008
1026
1044
1062 | | 600
610
620
630
640 | 1.00044
1.00044
1.00044
1.00044
1.00044 | - 1 | 1.00174
1.00174
1.00174
1.00174
1.00174 | | 1.00306
1.00306
1.00307
1.00307
1.00306 | 1
- 1
- 1 | 1.00439
1.00439
1.00439
1.00438
1.00438 | - 1
- 1 | 1080
1098
1116
1134
1152 | | 650
660
670
680
690 | 1.00043
1.00043
1.00043
1.00043 | | 1.00174
1.00173
1.00173
1.00172
1.00172 | - 1
- 1
- 1 | 1.00305
1.00304
1.00304
1.00303
1.00301 | - 1
- 1
- 2 | 1.00437
1.00436
1.00435
1.00433
1.00431 | - 1
- 1
- 2
- 2
- 1 | 1170
1188
1206
1224
1242 | | 700 | 1.00043 | | 1.00171 | | 1.00301 | | 1.00430 | | 1260 | | °K | 1 atm | 4 atm | 7 atm | IO atm | *R | |--------------------------------------|---|---|---|---|--------------------------------------| | 700 | 1.00043 | 1.00171 - 1 | 1.00301 - 2 | 1.00430 - 2 | 1260 | | 710 | 1.00043 - 1 | 1.00170 | 1.00299 - 1 | 1.00428 - 2 | 1278 | | 720 | 1.00042 | 1.00170 - 1 | 1.00298 - 1 | 1.00426 - 1 | 1296 | | 730 | 1.00042 | 1.00169 - 1 | 1.00297 - 1 | 1.00425 - 2 | 1314 | | 740 | 1.00042 | 1.00168 | 1.00296 - 2 | 1.00423 - 2 | 1332 | | 750
760
770
780
790 | 1.00042
1.00042 - 1
1.00041
1.00041 | 1.00168 - 1
1.00167 - 1
1.00166 - 1
1.00165 - 1
1.00164 - 1 | 1.00294 - 1
1.00293 - 2
1.00291 - 2
1.00289 - 1
1.00288 - 2 | 1.00421 - 2
1.00419 - 3
1.00416 - 2
1.00414 - 3
1.00411 - 2 | 1350
1368
1386
1404
1422 | | 800 | 1.00041 - 1 | 1.00163 - 5 | 1.00286 - 9 | 1.00409 - 13 | 1440 | | 850 | 1.00040 - 2 | 1.00158 - 4 | 1.00277 - 8 | 1.00396 - 12 | 1530 | | 900 | 1.00038 - 1 | 1.00154 - 5 | 1.00269 - 9 | 1.00384 - 12 | 1620 | | 950 | 1.00037 - 1 | 1.00149 - 5 | 1.00260 - 8 | 1.00372 - 12 | 1710 | | 1000 | 1.00036 - 1 | 1.00144 - 5 | 1.00252 - 8 | 1.00360 - 12 | 1800 | | 1050 | 1.00035 - 1 | 1,00139 - 4 | 1.00244 - 8 | 1.00348 - 11 | 1890 | | 1100 | 1.00034 - 1 | 1,00135 - 5 | 1.00236 - 8 | 1.00337 - 11 | 1980 | | 1150 | 1.00033 - 1 | 1,00130 - 4 | 1.00228 - 7 | 1.00326 - 10 | 2070 | | 1200 | 1.00032 - 1 | 1,00126 - 4 | 1.00221 - 7 | 1.00316 - 10 | 2160 | | 1250 | 1.00031 - 1 | 1,00122 - 3 | 1.00214 - 6 | 1.00306 - 9 | 2250 | | 1300 | 1.00030 - 1 | 1.00119 - 4 | 1.00208 - 6 | 1.00297 - 9 | 2340 | | 1350 | 1.00029 - 1 | 1.00115 - 3 | 1.00202 - 7 | 1.00288 - 9 | 2430 | | 1400 | 1.00028 - 1 | 1.00112 - 4 | 1.00195 - 5 | 1.00279 - 8 | 2520 | | 1450 | 1.00027 - 1 | 1.00108 - 3 | 1.00190 - 6 | 1.00271 - 8 | 2610 | | 1500 | 1.00026 | 1.00105 - 3 | 1.00184 - 5 | 1.00263 - 7 | 2700 | | 1550 | 1.00026 - 1 | 1.00102 - 2 | 1.00179 - 5 | 1.00256 - 7 | 2790 | | 1600 | 1.00025 - 1 | 1.00100 - 3 | 1.00174 - 5 | 1.00249 - 7 | 2880 | | 1650 | 1.00024 | 1.00097 - 3 | 1.00169 - 4 | 1.00242 - 7 | 2970 | | 1700 | 1.00024 - 1 | 1.00094 - 2 | 1.00165 - 5 | 1.00235 - 6 | 3060 | | 1750 | 1.00023 - 1 | 1.00092 - 3 | 1.00160 - 4 | 1.00229 - 6 | 3150 | | 1800 | 1.00022 | 1.00089 - 2 | 1.00156 - 3 | 1.00223 - 5 | 3240 | | 1850 | 1.00022 - 1 | 1.00087 - 2 | 1.00153 - 5 | 1.00218 - 6 | 3330 | | 1900 | 1.00021 | 1.00085 - 2 | 1.00148 - 3 | 1.00212 - 5 | 3420 | | 1950 | 1.00021 - 1 | 1.00083 - 2 | 1.00145 - 4 | 1.00207 - 5 | 3510 | | 2000 | 1.00020 | 1.00081 - 2 | 1.00141 - 3 | 1.00202 - 5 | 3600 | | 2050 | 1.00020 - 1 | 1.00079 - 2 | 1.00138 - 3 | 1.00197 - 4 | 3690 | | 2100 | 1.00019 | 1.00077 - 2 | 1.00135 - 3 | 1.00193 - 5 | 3780 | | 2150 | 1.00019 - 1 | 1.00075 - 1 | 1.00132 - 3 | 1.00188 - 4 | 3870 | | 2200 | 1.00018 | 1.00074 - 2 | 1.00129 - 3 | 1.00184 - 4 | 3960 | | 2250 | 1.00018 | 1.00072 - 2 | 1.00126 - 3 | 1.00180 - 4 | 4050 | | 2300 | 1.00018 - 1 | 1.00070 - 1 | 1.00123 - 2 | 1.00176 - 3 | 4140 | | 2350 | 1.00017 | 1.00069 - 1 | 1.00121 - 3 | 1.00173 - 4 | 4230 | | 2400 | 1.00017 | 1.00068 - 2 | 1.00118 - 2 | 1.00169 - 3 | 4320 | | 2450 | 1.00017 - 1 | 1.00066 - 1 | 1.00116 - 3 | 1.00166 - 4 | 4410 | | 2500 | 1.00016 | 1.00065 - 1 | 1.00113 - 2 | 1.00162 - 3 | 4500 | | 2550 | 1.00016 | 1.00064 - 2 | 1.00111 - 2 | 1.00159 - 3 | 4590 | | 2600 | 1.00016 - 1 | 1.00062 - 1 | 1.00109 - 2 | 1.00156 - 3 | 4680 | | 2650 | 1.00015 | 1.00061 - 1 | 1.00107 - 2 | 1.00153 - 3 | 4770 | | 2700 | 1.00015 | 1.00060 - 1 | 1.00105 - 2 | 1.00150 - 3 | 4860 | | 2750 | 1.00015 | 1.00059 - 1 | 1.00103 - 1 | 1.00147 - 2 | 4950 | | 2800
2850
2900
2950
3000 | 1.00015 - 1
1.00014
1.00014
1.00014
1.00014 | 1.00058 - 1
1.00057 - 1
1.00056 - 1
1.00055 - 1 | 1.00102 - 3
1.00099 - 2
1.00097 - 1
1.00096 - 1
1.00095 | 1.00145 - 9
1.00142 - 3
1.00139 - 2
1.00137 - 2
1.00135 | 5040
5130
5220
5310
5400 | | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | °R | |---------------------------------|---|-----------------------------|---|-------------------------------|--|--------------------------|--|---------------------------------|--------------------------------------| | 110
120
130
140 | .805
.873
.906
.927 | 68
33
21
15 | | | | | | | 198
216
234
252 | | 150
160
170
180
190 | .9416
.9529
.9617
.9685
.9742 | 113
88
68
57
46 | .736
.799
.843
.873
.899 | 63
44
30
26
20 | .787
.837 | 50
34, | | | 270
288
306
324
342 | | 200 | .9788 | 37 | .9185 | 156 | .8705 | 264 | .844 | 34 | 360 | | 210 | .9825 | 32 | .9341 | 126 | .8969 | 211 | .878 | 27 | 378 | | 220 | .9857 | 26 | .9467 | 104 | .9180 | 172 | .905 | 22 | 396 | | 230 | .9883 | 22 | .9571 | 87 | .9352 | 142 | .9268 | 177 | 414 | | 240 | .9905 | 19 | .9658 | 73 | .9494 | 119 | .9445 | 148 | 432 | | 250 | .99235 | 159 | .97311 | 614 | .9613 | 99 | .9593 | 123 | 450 | | 260 | .99394 | 137 | .97925 | 528 | .9712 | 85 | .9716 | 106 | 468 | | 270 | .99531 | 117 | .98453 | 447 | .9797 | 71 | .9822 | 89 | 486 | | 280 | .99648 | 102 | .98900 | 384 | .9868 | 61 | .9911 | 75 | 504 | | 290 | .99750 | 88 | .99284 | 336 | .9929 | 55 | .9986 | 68 | 522 | | 300 | .99838 | 77 | .99620 | 288 | .9984 | 45 | 1.0054 | 57 | 540 | | 310 | .99915 | 66 | .99908 | 249 | 1.0029 | 41 | 1.0111 | 50 | 558 | | 320 | .99981 | 59 | 1.00157 | 216 | 1.0070 | 34 | 1.0161 | 43 | 576 | | 330 | 1.00040 | 51 | 1.00373 | 190 | 1.0104 | 30 | 1.0204 | 38 | 594 | | 340 | 1.00091 | 45 | 1.00563 | 165 | 1.0134 | 26 | 1.0242 | 32 | 612 | | 350
360
370
380
390 | 1.00136
1.00175
1.00210
1.00240
1.00267 | 39
35
30
27
23 | 1.00728
1.00872
1.01000
1.01111
1.01209 | 144
128
111
98
83 | 1.0160
1.0182
1.0202
1.0220
1.0235 | 22
20
18
15 | 1.0274
1.0302
1.0327
1.0349
1.0368 | 28
25
22
19
15 | 630
648
666
684
702 | | 400 | 1.00290 | 22 | 1.01292 | 77 | 1.0248 | 12 | 1.0383 | 15 | 720 | | 410 | 1.00312 | 18 | 1.01369 | 66 | 1.0260 | 10 | 1.0398 | 13 | 738 | | 420 | 1.00330 | 15 | 1.01435 | 54 | 1.0270 | 8 | 1.0411 | 10 | 756 | | 430 | 1.00345 | 15 | 1.01489 | 51 | 1.0278 | 8
| 1.0421 | 9 | 774 | | 440 | 1.00360 | 12 | 1.01540 | 44 | 1.0286 | 6 | 1.0430 | 8 | 792 | | 450 | 1.00372 | 11 | 1.01584 | 36 | 1.0292 | 6 | 1.0438 | 6 | 810 | | 460 | 1.00383 | 9 | 1.01620 | 32 | 1.0298 | 4 | 1.0444 | 5 | 828 | | 470 | 1.00392 | 9 | 1.01652 | 30 | 1.0302 | 5 | 1.0449 | 5 | 846 | | 480 | 1.00401 | 7 | 1.01682 | 22 | 1.0307 | 3 | 1.0454 | 4 | 864 | | 490 | 1.00408 | 6 | 1.01704 | 22 | 1.0310 | 3 | 1.0458 | 3 | 882 | | 500 | 1.00414 | 6 | 1.01726 | 18 | 1.0313 | 3 | 1.0461 | 3 | 900 | | 510 | 1.00420 | 4 | 1.01744 | 12 | 1.0316 | 1 | 1.0464 | 2 | 918 | | 520 | 1.00424 | 3 | 1.01756 | 11 | 1.0317 | 1 | 1.0466 | 1 | 936 | | 530 | 1.00427 | 4 | 1.01767 | 11 | 1.0318 | 2 | 1.0467 | 1 | 954 | | 540 | 1.00431 | 3 | 1.01778 | 9 | 1.0320 | 1 | 1.0468 | 1 | 972 | | 550
560
570
580
590 | 1.00434
1.00435
1.00437
1.00438
1.00439 | 1
2
1
1 | 1.01787
1.01791
1.01795
1.01796
1.01797 | 4
4
1
1 | 1.0321
1.0321
1.0321
1.0321
1.0321 | - 1 | 1.0469
1.0469
1.0468
1.0468
1.0467 | - 1
- 1
- 2 | 990
1008
1026
1044
1062 | | 600
610
620
630
640 | 1.00439
1.00439
1.00439
1.00438
1.00438 | - 1
- 1 | 1.01795
1.01795
1.01792
1.01787
1.01784 | - 3
- 5
- 3
- 6 | 1.0320
1.0320
1.0319
1.0318
1.0317 | - 1
- 1
- 1
- 1 | 1.0465
1.0464
1.0463
1.0461
1.0459 | - 1
- 1
- 2
- 2
- 2 | 1080
1098
1116
1134
1152 | | 650 | 1.00437 | - 1 | 1.01778 | - 6 | 1.0316 | - 1 | 1.0457 | - 1 | 1170 | | 660 | 1.00436 | - 1 | 1.01772 | - 6 | 1.0315 | - 2 | 1.0456 | - 3 | 1188 | | 670 | 1.00435 | - 2 | 1.01766 | - 6 | 1.0313 | - 1 | 1.0453 | - 2 | 1206 | | 680 | 1.00433 | - 2 | 1.01760 | - 10 | 1.0312 | - 2 | 1.0451 | - 3 | 1224 | | 690 | 1.00431 | - 1 | 1.01750 | - 6 | 1.0310 | - 1 | 1.0448 | - 2 | 1242 | | 70 0 | 1.00430 | | 1.01744 | ٠ | 1.0309 | | 1.0446 | | 1260 | | °K | 10 0 | atm | 40 atm | 70 atm | 100 atm | °R | |--------------------------------------|---|---------------------------------|---|---|---|--------------------------------------| | 700
710
720
730
740 | 1.00430
1.00428
1.00426
1.00425
1.00423 | - 2
- 2
- 1
- 2
- 2 | 1.01744 - 9
1.01735 - 9
1.01726 - 6
1.01720 - 9
1.01711 - 9 | 1.0309 - 2
1.0307 - 1
1.0306 - 2
1.0304 - 1
1.0303 - 2 | 1.0446 - 2
1.0444 - 3
1.0441 - 2
1.0439 - 3
1.0436 - 3 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | 1.00421
1.00419
1.00416
1.00414
1.00411 | - 2
- 3
- 2
- 3 | 1.01702 - 9
1.01693 - 13
1.01680 - 10
1.01670 - 8
1.01662 - 1 | 1.0301 - 2
1.0299 - 2
1.0297 - 2
1.0295 - 2
1.0293 - 1 | 1.0433 - 2
1.0431 - 4
1.0427 - 3
1.0424 - 1
1.0423 - 3 | 1350
1368
1386
1404
1422 | | 800
850
900
950
1000 | 1.0041
1.0040
1.0038
1.0037
1.0036 | - 1
- 2
- 1
- 1 | 1.0165 - 5
1.0160 - 5
1.0155 - 5
1.0150 - 5
1.0145 - 5 | 1.0292 - 10
1.0282 - 9
1.0273 - 9
1.0264 - 9
1.0255 - 8 | 1.0420 - 15
1.0405 - 14
1.0391 - 13
1.0378 - 13
1.0365 - 13 | 1440
1530
1620
1710
1800 | | 1050
1100
1150
1200
1250 | 1.0035
1.0034
1.0033
1.0032
1.0031 | - 1
- 1
- 1
- 1 | 1.0140 - 5
1.0135 - 4
1.0131 - 4
1.0127 - 4
1.0123 - 4 | 1.0247 - 9
1.0238 - 8
1.0230 - 7
1.0223 - 7
1.0216 - 7 | 1.0352 - 11
1.0341 - 11
1.0330 - 11
1.0319 - 10
1.0309 - 10 | 1890
1980
2070
2160
2250 | | 1300
1350
1400
1450
1500 | 1.0030
1.0029
1.0028
1.0027
1.0026 | - 1
- 1
- 1
- 1 | 1.0119 - 3
1.0116 - 4
1.0112 - 3
1.0109 - 4
1.0105 - 3 | 1.0209 - 6
1.0203 - 7
1.0196 - 6
1.0190 - 5
1.0185 - 5 | 1.0299 - 9
1.0290 - 10
1.0280 - 9
1.0271 - 7
1.0264 - 7 | 2340
2430
2520
2610
2700 | | 1550
1600
1650
1700
1750 | 1.0026
1.0025
1.0024
1.0024
1.0023 | - 1
- 1
- 1 | 1.0102 - 2
1.0100 - 3
1.0097 - 3
1.0094 - 2
1.0092 - 3 | 1.0180 - 5
1.0175 - 5
1.0170 - 5
1.0165 - 5
1.0160 - 4 | 1.0257 - 7
1.0250 - 7
1.0243 - 7
1.0236 - 7
1.0229 - 6 | 2790
2880
2970
3060
3150 | | 1800
1850
1900
1950
2000 | 1.0022
1.0022
1.0021
1.0021
1.0020 | - 1
- 1 | 1.0089 - 2
1.0087 - 2
1.0085 - 2
1.0083 - 2
1.0081 - 2 | 1.0156 - 3
1.0153 - 5
1.0148 - 3
1.0145 - 4
1.0141 - 3 | 1.0223 - 5
1.0218 - 6
1.0212 - 5
1.0207 - 5
1.0202 - 5 | 3240
3330
3420
3510
3600 | | 2050
2100
2150
2200
2250 | 1.0020
1.0019
1.0019
1.0018
1.0018 | - 1
- 1 | 1.0079 - 2
1.0077 - 2
1.0075 - 1
1.0074 - 2
1.0072 - 2 | 1.0138 - 3
1.0135 - 3
1.0132 - 3
1.0129 - 3
1.0126 - 3 | 1.0197 - 4
1.0193 - 5
1.0188 - 4
1.0184 - 4
1.0180 - 4 | 3690
3780
3870
3960
4050 | | 2300
2350
2400
2450
2500 | 1.0018
1.0017
1.0017
1.0017
1.0016 | - 1
- 1 | 1.0070 - 1
1.0069 - 1
1.0068 - 2
1.0066 - 1
1.0065 - 1 | 1.0123 - 2
1.0121 - 3
1.0118 - 2
1.0116 - 3
1.0113 - 2 | 1.0176 - 3
1.0173 - 4
1.0169 - 3
1.0166 - 4
1.0162 - 3 | 4140
4230
4320
4410
4500 | | 2550
2600
2650
2700
2750 | 1.0016
1.0016
1.0015
1.0015
1.0015 | - 1 | 1.0064 - 2
1.0062 - 1
1.0061 - 1
1.0060 - 1
1.0059 - 1 | 1.0111 - 2
1.0109 - 2
1.0107 - 2
1.0105 - 2
1.0103 - 1 | 1.0159 - 3
1.0156 - 3
1.0153 - 3
1.0150 - 3
1.0147 - 2 | 4590
4680
4770
4860
4950 | | 2800
2850
2900
2950
3000 | 1.0015
1.0014
1.0014
1.0014
1.0014 | - 1 | 1.0058 - 1
1.0057 - 1
1.0056 - 1
1.0055 - 1 | 1.0102 - 3
1.0099 - 2
1.0097 - 1
1.0096 - 1 | 1.0145 - 3
1.0142 - 3
1.0139 - 2
1.0137 - 2
1.0135 | 5040
5130
5220
5310
5400 | | Table 7- | 2. DENSITY OF | NITROGEN | | | P/P0 | |----------|---------------|--------------|---------------|---------------|------| | °K | .OI atm | .i atm | .4 atm | .7 atm | °R | | 100 | .02731 -249 | .27353 -2497 | 1.1000 -1015 | 1.936 -181 | 180 | | 110 | .02482 -206 | .24856 -2078 | .9985 - 844 | 1.755 -149 | 198 | | 120 | .02276 -176 | .22778 -1757 | .9141 - 711 | 1.606 -127 | 216 | | 130 | .02100 -150 | .21021 -1505 | .8430 - 607 | 1.479 -107 | 234 | | 140 | .01950 -130 | .19516 -1303 | .7823 - 526 | 1.372 -93 | 252 | | 150 | .01820 -113 | .18213 -1140 | .72973 - 4589 | 1.2792 - 808 | 270 | | 160 | .01707 -101 | .17073 -1006 | .68384 - 4043 | 1.1984 - 712 | 288 | | 170 | .01606 - 89 | .16067 - 894 | .64341 - 3591 | 1.1272 - 630 | 306 | | 180 | .01517 - 80 | .15173 - 799 | .60750 - 3209 | 1.0642 - 565 | 324 | | 190 | .01437 - 72 | .14374 - 719 | .57541 - 2887 | 1.0077 - 506 | 342 | | 200 | .01365 - 65 | .13655 - 651 | .54654 - 2611 | .95706 - 4582 | 360 | | 210 | .01300 - 59 | .13004 - 591 | .52043 - 2371 | .91124 - 4160 | 378 | | 220 | .01241 - 54 | .12413 - 540 | .49672 - 2165 | .86964 - 3796 | 396 | | 230 | .01187 - 49 | .11873 - 495 | .47507 - 1983 | .83168 - 3478 | 414 | | 240 | .01138 - 46 | .11378 - 456 | .45524 - 1824 | .79690 - 3198 | 432 | | 250 | .01092 - 42 | .10922 - 420 | .43700 - 1684 | .76492 - 2950 | 450 | | 260 | .01050 - 39 | .10502 - 389 | .42016 - 1558 | .73542 - 2731 | 468 | | 270 | .01011 - 36 | .10113 - 361 | .40458 - 1447 | .70811 - 2534 | 486 | | 280 | .00975 - 34 | .09752 - 337 | .39011 - 1347 | .68277 - 2359 | 504 | | 290 | .00941 - 31 | .09415 - 314 | .37664 - 1257 | .65918 - 2201 | 522 | | 300 | .00910 - 29 | .09101 - 293 | .36407 - 1175 | .63717 - 2059 | 540 | | 310 | .00881 - 28 | .08808 - 276 | .35232 - 1102 | .61658 - 1929 | 558 | | 320 | .00853 - 26 | .08532 - 258 | .34130 - 1035 | .59729 - 1813 | 576 | | 330 | .00827 - 24 | .08274 - 244 | .33095 - 974 | .57916 - 1705 | 594 | | 340 | .00803 - 23 | .08030 - 229 | .32121 - 918 | .56211 - 1608 | 612 | | 350 | .00780 - 22 | .07801 - 217 | .31203 - 867 | .54603 - 1518 | 630 | | 360 | .00758 - 20 | .07584 - 205 | .30336 - 821 | .53085 - 1437 | 648 | | 370 | .00738 - 20 | .07379 - 194 | .29515 - 777 | .51648 - 1360 | 666 | | 380 | .00718 - 18 | .07185 - 184 | .28738 - 737 | .50288 - 1290 | 684 | | 390 | .00700 - 17 | .07001 - 175 | .28001 - 700 | .48998 - 1226 | 702 | | 400 | .00683 - 17 | .06826 - 167 | .27301 - 666 | .47772 - 1166 | 720 | | 410 | .00666 - 16 | .06659 - 158 | .26635 - 635 | .46606 - 1110 | 738 | | 420 | .00650 - 15 | .06501 - 151 | .26000 - 605 | .45496 - 1059 | 756 | | 430 | .00635 - 14 | .06350 - 145 | .25395 - 577 | .44437 - 1010 | 774 | | 440 | .00621 - 14 | .06205 - 138 | .24818 - 552 | .43427 - 965 | 792 | | 450 | .00607 - 13 | .06067 - 132 | .24266 - 527 | .42462 - 924 | 810 | | 460 | .00594 - 13 | .05935 - 126 | .23739 - 505 | .41538 - 884 | 828 | | 470 | .00581 - 12 | .05809 - 121 | .23234 - 485 | .40654 - 847 | 846 | | 480 | .00569 - 12 | .05688 - 116 | .22749 - 464 | .39807 - 813 | 864 | | 490 | .00557 - 11 | .05572 - 111 | .22285 - 446 | .38994 - 780 | 882 | | 500 | .00546 - 11 | .05461 - 108 | .21839 - 428 | .38214 - 749 | 900 | | 510 | .00535 - 10 | .05353 - 103 | .21411 - 412 | .37465 - 721 | 918 | | 520 | .00525 - 10 | .05250 - 99 | .20999 - 396 | .36744 - 693 | 936 | | 530 | .00515 - 9 | .05151 - 95 | .20603 - 381 | .36051 - 668 | 954 | | 540 | .00506 - 10 | .05056 - 92 | .20222 - 368 | .35383 - 643 | 972 | | 550 | .00496 - 8 | .04964 - 89 | .19854 - 355 | .34740 - 621 | 990 | | 560 | .00488 - 9 | .04875 - 85 | .19499 - 342 | .34119 - 598 | 1008 | | 570 | .00479 - 8 | .04790 - 83 | .19157 - 330 | .33521 - 578
 1026 | | 580 | .00471 - 8 | .04707 - 79 | .18827 - 319 | .32943 - 559 | 1044 | | 590 | .00463 - 8 | .04628 - 78 | .18508 - 309 | .32384 - 539 | 1062 | | 600 | .00455 - 7 | .04550 - 74 | .18199 - 298 | .31845 - 523 | 1080 | | 610 | .00448 - 8 | .04476 - 72 | .17901 - 289 | .31322 - 505 | 1098 | | 620 | .00440 - 7 | .04404 - 70 | .17612 - 279 | .30817 - 489 | 1116 | | 630 | .00433 - 6 | .04334 - 68 | .17333 - 271 | .30328 - 474 | 1134 | | 640 | .00427 - 7 | .04266 - 66 | .17062 - 263 | .29854 - 459 | 1152 | | 650 | .00420 - 6 | .04200 - 63 | .16799 - 254 | .29395 - 445 | 1170 | | 660 | .00414 - 6 | .04137 - 62 | .16545 - 247 | .28950 - 432 | 1188 | | 670 | .00408 - 6 | .04075 - 60 | .16298 - 240 | .28518 - 420 | 1206 | | 680 | .00402 - 6 | .04015 - 58 | .16058 - 232 | .28098 - 407 | 1224 | | 690 | .00396 - 6 | .03957 - 57 | .15826 - 227 | .27691 - 395 | 1242 | | 700 | .00390 | .03900 | .15599 | .27296 | 1260 | | °K | .O1 atm | .I atm | .4 atm | .7 atm | °R | |--------------------------------------|--|--|--|--|--------------------------------------| | 700 | .00390 - 5 | .03900 - 55 | .15599 - 219 | .27296 - 385 | 1260 | | 710 | .00385 - 6 | .03845 - 53 | .15380 - 214 | .26911 - 374 | 1278 | | 720 | .00379 - 5 | .03792 - 52 | .15166 - 208 | .26537 - 363 | 1296 | | 730 | .00374 - 5 | .03740 - 50 | .14958 - 202 | .26174 - 354 | 1314 | | 740 | .00369 - 5 | .03690 - 50 | .14756 - 197 | .25820 - 344 | 1332 | | 750 | .00364 - 5 | .03640 - 48 | .14559 - 191 | .25476 - 335 | 1350 | | 760 | .00359 - 4 | .03592 - 46 | .14368 - 187 | .25141 - 327 | 1368 | | 770 | .00355 - 5 | .03546 - 46 | .14181 - 181 | .24814 - 318 | 1386 | | 780 | .00350 - 4 | .03500 - 44 | .14000 - 178 | .24496 - 310 | 1404 | | 790 | .00346 - 5 | .03456 - 43 | .13822 - 172 | .24186 - 302 | 1422 | | 800 | .00341 - 20 | .03413 - 201 | .13650 - 803 | .23884 - 1405 | 1440 | | 850 | .00321 - 18 | .03212 - 178 | .12847 - 714 | .22479 - 1249 | 1530 | | 900 | .00303 - 16 | .03034 - 160 | .12133 - 638 | .21230 - 1117 | 1620 | | 950 | .00287 - 14 | .02874 - 144 | .11495 - 575 | .20113 - 1005 | 1710 | | 1000 | .00273 - 13 | .02730 - 130 | .10920 - 520 | .19108 - 910 | 1800 | | 1050 | .00260 - 12 | .02600 - 118 | .10400 - 473 | .18198 - 827 | 1890 | | 1100 | .00248 - 11 | .02482 - 108 | .09927 - 431 | .17371 - 755 | 1980 | | 1150 | .00237 - 9 | .02374 - 99 | .09496 - 396 | .16616 - 692 | 2070 | | 1200 | .00228 - 10 | .02275 - 91 | .09100 - 364 | .15924 - 637 | 2160 | | 1250 | .00218 - 8 | .02184 - 84 | .08736 - 336 | .15287 - 588 | 2250 | | 1300 | .00210 - 8 | .02100 - 78 | .08400 - 311 | .14699 - 544 | 2340 | | 1350 | .00202 - 7 | .02022 - 72 | .08089 - 289 | .14155 - 506 | 2430 | | 1400 | .00195 - 7 | .01950 - 67 | .07800 - 269 | .13649 - 470 | 2520 | | 1450 | .00188 - 6 | .01883 - 63 | .07531 - 251 | .13179 - 440 | 2610 | | 1500 | .00182 - 6 | .01820 - 59 | .07280 - 235 | .12739 - 411 | 2700 | | 1550 | .00176 - 5 | .01761 - 55 | .07045 - 220 | .12328 - 385 | 2790 | | 1600 | .00171 - 6 | .01706 - 51 | .06825 - 207 | .11943 - 362 | 2880 | | 1650 | .00165 - 4 | .01655 - 49 | .06618 - 194 | .11581 - 340 | 2970 | | 1700 | .00161 - 5 | .01606 - 46 | .06424 - 184 | .11241 - 321 | 3060 | | 1750 | .00156 - 4 | .01560 - 43 | .06240 - 173 | .10920 - 304 | 3150 | | 1800 | .00152 - 4 | .01517 - 41 | .06067 - 164 | .10616 - 286 | 3240 | | 1850 | .00148 - 4 | .01476 - 39 | .05903 - 155 | .10330 - 272 | 3330 | | 1900 | .00144 - 4 | .01437 - 37 | .05748 - 148 | .10058 - 258 | 3420 | | 1950 | .00140 - 3 | .01400 - 35 | .05600 - 140 | .09800 - 245 | 3510 | | 2000 | .00137 - 4 | .01365 - 33 | .05460 - 133 | .09555 - 233 | 3600 | | 2050 | .00133 - 3 | .01332 - 32, | .05327 - 127 | .09322 - 222 | 3690 | | 2100 | .00130 - 3 | .01300 - 30 | .05200 - 121 | .09100 - 212 | 3780 | | 2150 | .00127 - 3 | .01270 - 29 | .05079 - 115 | .08888 - 202 | 3870 | | 2200 | .00124 - 3 | .01241 - 28 | .04964 - 110 | .08686 - 193 | 3960 | | 2250 | .00121 - 2 | .01213 - 26 | .04854 - 106 | .08493 - 184 | 4050 | | 2300 | .00119 - 3 | .01187 - 25 | .04748 - 101 | .08309 - 177 | 4140 | | 2350 | .00116 - 2 | .01162 - 24 | .04647 - 97 | .08132 - 169 | 4230 | | 2400 | .00114 - 3 | .01138 - 24 | .04550 - 93 | .07963 - 163 | 4320 | | 2450 | .00111 - 2 | .01114 - 22 | .04457 - 89 | .07800 - 156 | 4410 | | 2500 | .00109 - 2 | .01092 - 21 | .04368 - 85 | .07644 - 150 | 4500 | | 2550 | .00107 - 2 | .01071 - 21 | .04283 - 83 | .07494 - 144 | 4590 | | 2600 | .00105 - 2 | .01050 - 20 | .04200 - 79 | .07350 - 139 | 4680 | | 2650 | .00103 - 2 | .01030 - 19 | .04121 - 76 | .07211 - 133 | 4770 | | 2700 | .00101 - 2 | .01011 - 18 | .04045 - 74 | .07078 - 129 | 4860 | | 2750 | .00099 - 1 | .00993 - 18 | .03971 - 71 | .06949 - 124 | 4950 | | 2800
2850
2900
2950
3000 | .00098 - 2
.00096 - 2
.00094 - 1
.00093 - 2 | .00975 - 17
.00958 - 17
.00941 - 15
.00926 - 16 | .03900 - 68
.03832 - 66
.03766 - 64
.03702 - 62
.03640 | .06825 - 119
.06706 - 116
.06590 - 112
.06478 - 108
.06370 | 5040
5130
5220
5310
5400 | | °K | 1 atm | 4 atm | 7 atm | io atm | *R | |------------|----------------|---------------------------------|------------------------------|------------------------------|--------------| | 100 | 0.702 | 12.010 | 24.40 | | 190 | | 100 | 2.783 -266 | 12.010 -1440 | 24.40 -468 | 20.02 | 180
198 | | 110 | 2.517 -216 | 10.570 -1030 | 19.72 -234 | 30.83 -477 | | | 120 | 2.301 -182 | 9.540 - 825 | 17.38 -168 | 26.06 –288 | 216 | | 130 | 2.119 -155 | 8.715 - 689 | 15.70 -133 | 23.18 -215 | 234 | | 140 | 1.964 –134 | 8.026 – 576 | 14.37 –109 | 21.03 –170 | 252 | | 150 | 1.8305 -1161 | 7.4501 - 4955 | 13.276 - 927 | 19.331 -1423 | 270 | | 160 | 1.7144 -1022 | 6.9546 - 4310 | 12.349 - 798 | 17.908 -1208 | 288 | | 170 | 1.6122 - 906 | 6.5236 - 3793 | 11.551 - 696 | 16.700 -1038
15.662 - 912 | 306
324 | | 180 | 1.5216 - 808 | 6.1443 - 3363 | 10.855 - 612
10.243 - 543 | | 342 | | 190 | 1.4408 - 727 | 5.8080 - 3004 | 10.243 - 543 | 14.750 - 803 | 742 | | 200 | 1.36809 - 6562 | 5.50755 - 27008 | 9.7004 - 4863 | 13.947 - 714 | 360 | | 210 | 1.30247 - 5959 | 5.23747 - 24430 | 9.2141 - 4381 | 13.233 - 643 | 378 | | 220 | 1.24288 - 5435 | 4.99317 - 22204 | 8.7760 - 3970 | 12.590 - 579 | 396
414 | | 230 | 1.18853 - 4976 | 4.77113 - 20283 | 8.3790 - 3616 | 12.011 - 526 | 432 | | 240 | 1.13877 – 4576 | 4.56830 - 18604 | 8.0174 - 3308 | 11,485 - 480 | 7,72 | | 250 | 1.09301 - 4221 | 4.38226 - 17121 | 7.6866 - 3039 | 11.005 - 440 | 450 | | 260 | 1.05080 - 3906 | 4.21105 - 15824 | 7.3827 - 2803 | 10.565 – 405 | 468 | | 270 | 1.01174 - 3625 | 4.05281 - 14658 | 7.1024 - 2593 | 10.160 – 375 | 486 | | 280 | .97549 – 3373 | 3.90623 - 13624 | 6.8431 - 2407 | 9.785 - 347 | 504 | | 290 | .94176 - 3147 | 3.76999 <i>-</i> 12 <i>6</i> 95 | 6,6024 - 2241 | 9.438 – 322 | 522 | | 300 | .91029 - 2944 | 3,64304 - 11861 | 6.3783 - 2090 | 9.1160 - 3009 | 540 | | 310 | .88085 - 2758 | 3.52443 - 11106 | 6.1693 - 1956 | 8.8151 - 2811 | 558 | | 320 | .85327 - 2590 | 3.41337 - 10423 | 5.9737 - 1834 | 8.5340 - 2635 | 576 | | 330 | .82737 - 2438 | 3.30914 - 9797 | 5.7903 - 1724 | 8.2705 - 2473 | 594 | | 340 | .80299 – 2298 | 3.21117 - 9231 | 5.6179 - 1622 | 8.0232 - 2328 | 612 | | 350 | .78001 - 2170 | 3.11886 - 8712 | 5.45572 - 15298 | 7.7904 - 2193 | 630 | | 360 | .75831 - 2052 | 3.03174 - 8238 | 5.30274 - 14460 | 7.5711 – 2072 | 648 | | 370 | .73779 - 1944 | 2 . 94936 <i>- 17</i> 96 | 5.15814 - 13680 | 7.3639 – 1960 | 666 | | 380 | .71835 - 1844 | 2.87140 <i>- 73</i> 93 | 5.02134 - 12968 | 7.1679 - 1856 | 684 | | 390 | .69991 – 1751 | 2.79747 - 7018 | 4.89166 - 12310 | 6.9823 - 1762 | 702 | | 400 | .68240 - 1666 | 2,72729 - 6676 | 4.76856 - 11700 | 6,8061 - 1674 | 720 | | 410 | .66574 - 1586 | 2.66053 - 6355 | 4.65156 - 11134 | 6.6387 - 1592 | 738 | | 420 | .64988 - 1513 | 2.59698 - 6055 | 4.54022 - 10607 | 6.4795 - 1517 | 756 | | 430 | .63475 - 1443 | 2,53643 - 5780 | 4.43415 - 10126 | 6.3278 - 1447 | 774 | | 440 | .62032 - 1379 | 2.47863 - 5520 | 4.33289 - 9662 | 6,1831 - 1381 | 792 | | 450 | .60653 - 1320 | 2,42343 - 5277 | 4.23627 - 9238 | 6.0450 - 1321 | 810 | | 460 | .59333 - 1263 | 2.37066 - 5054 | 4.14389 - 8845 | 5.9129 - 1263 | 828 | | 470 | .58070 - 1209 | 2.32012 - 4842 | 4.05544 - 8473 | 5 . 7866 - 1211 | 846 | | 480 | .56861 - 11a | 2.27170 - 4641 | 3.97071 - 8123 | 5.6655 - 1160 | 864 | | 490 | .55700 – 1115 | 2.22529 - 4457 | 3.88948 - 7798 | 5.5495 - 1113 | 882 | | 500 | .54585 - 1070 | 2.18072 - 4282 | 3.81150 - 7488 | 5.4382 - 1070 | 900 | | 510 | .53515 - 1030 | 2.13790 - 4114 | 3.73662 - 7193 | 5.3312 - 1027 | 918 | | 520 | .52485 - 990 | 2.09676 - 3960 | 3.66469 - <i>6</i> 926 | 5.2285 <i>-</i> 988 | 936 | | 530 | .51495 - 954 | 2.05716 - 3812 | 3.59543 - 6668 | 5.1297 - 952 | 954 | | 540 | .50541 - 919 | 2.01904 - 3673 | 3.52875 - 6423 | 5.0345 - 917 | 972 | | 550 | .49622 - 886 | 1.98231 - 3541 | 3.46452 - 6190 | 4.9428 - 883 | 990 | | 560 | .48736 - 855 | 1.94690 - 3418 | 3.40262 - 5973 | 4.8545 - 853 | 1008 | | 570 | .47881 - 826 | 1.91272 - 3298 | 3,34289 - 5767 | 4.7692 – 822 | 1026 | | 580 | .47055 - 798 | 1.87974 - 3186 | 3.28522 - 5568 | 4.6870 – 79 5 | 1044 | | 590 | .46257 - 771 | 1.84788 - 3080 | 3.22954 - 5383 | 4.6075 – 768 | 1062 | | 600 | .45486 - 746 | 1.81708 - 2978 | 3.17571 - 5206 | 4.5307 - 743 | 1080 | | 610 | .44740 - 721 | 1.78730 - 2883 | 3.12365 - 5041 | 4.4564 - 719 | 1098 | | 620 | .44019 - 699 | 1.75847 - 2791 | 3.07324 - 4878 | 4.3845 - 695 | 1116 | | 630 | .43320 - 677 | 1.73056 - 2704 | 3.02446 - 4723 | 4.3150 - 674 | 1134 | | 640 | .42643 - 655 | 1.70352 - 2621 | 2,97723 - 4577 | 4.2476 - 654 | 1152 | | 650 | .41988 - 637 | 1.67731 - 2540 | 2.93146 - 4439 | 4.1822 - 633 |
1170 | | 660 | .41351 - 617 | 1.65191 - 2465 | 2.88707 - 4309 | 4.1189 - 614 | 1188 | | 670 | .40734 - 599 | 1.62726 - 2392 | 2,84398 - 4180 | 4.0575 - 596 | 1206 | | 680
490 | .40135 - 581 | 1.60334 - 2323 | 2.80218 - 4055 | 3.9979 - 579
3.9400 - 562 | 1224
1242 | | 690 | .39554 - 565 | 1.58011 - 2256 | 2.76163 - 3945 | | | | 700 | .38989 | 1.55755 | 2.72218 | 3.8838 | 1260 | | °K | i atm | 4 atm | 7 atm | IO atm | •̂R | |------|---------------|----------------|-----------------|---------------|------| | 700 | .38989 - 550 | 1.55755 - 2192 | 2.72218 - 3829 | 3.8838 - 546 | 1260 | | 710 | .38439 - 533 | 1.53563 - 2133 | 2.68389 - 3725 | 3.8292 - 532 | 1278 | | 720 | .37906 - 519 | 1.51430 - 2073 | 2.64664 - 3623 | 3.7760 - 516 | 1296 | | 730 | .37387 - 506 | 1.49357 - 2017 | 2.61041 - 3525 | 3.7244 - 503 | 1314 | | 740 | .36881 - 491 | 1.47340 - 1965 | 2.57516 - 3428 | 3.6741 - 489 | 1332 | | 750 | .36390 - 479 | 1.45375 - 1911 | 2.54088 - 3341 | 3.6252 - 476 | 1350 | | 760 | .35911 - 466 | 1.43464 - 1862 | 2.50747 - 3252 | 3.5776 - 464 | 1368 | | 770 | .35445 - 455 | 1.41602 - 1814 | 2.47495 - 3168 | 3.5312 - 452 | 1386 | | 780 | .34990 - 443 | 1.39788 - 1768 | 2.44327 - 3090 | 3.4860 - 440 | 1404 | | 790 | .34547 - 431 | 1.38020 - 1724 | 2.41237 - 3011 | 3.4420 - 430 | 1422 | | 800 | .34116 - 2007 | 1.36296 - 8011 | 2.38226 - 13993 | 3.3990 - 1996 | 1440 | | 850 | .32109 - 1783 | 1.28285 - 7122 | 2.24233 - 12441 | 3.1994 - 1771 | 1530 | | 900 | .30326 - 1596 | 1.21163 - 6371 | 2.11792 - 11129 | 3.0223 - 1588 | 1620 | | 950 | .28730 - 1436 | 1.14792 - 5734 | 2.00663 - 10018 | 2.8635 - 1429 | 1710 | | 1000 | .27294 - 1300 | 1.09058 - 5188 | 1.90645 - 9063 | 2.7206 - 1293 | 1800 | | 1050 | .25994 - 1181 | 1.03870 - 4718 | 1.81582 - 8240 | 2.5913 - 1176 | 1890 | | 1100 | .24813 - 1078 | .99152 - 4306 | 1.73342 - 7524 | 2.4737 - 1073 | 1980 | | 1150 | .23735 - 989 | .94846 - 3948 | 1.65818 - 6898 | 2.3664 - 983 | 2070 | | 1200 | .22746 - 910 | .90898 - 3633 | 1.58920 - 6346 | 2.2681 - 906 | 2160 | | 1250 | .21836 - 839 | .87265 - 3353 | 1.52574 - 5859 | 2.1775 - 835 | 2250 | | 1300 | .20997 - 778 | .83912 - 3105 | 1.46715 - 5426 | 2.0940 - 774 | 2340 | | 1350 | .20219 - 722 | .80807 - 2884 | 1.41289 - 5036 | 2.0166 - 718 | 2430 | | 1400 | .19497 - 672 | .77923 - 2684 | 1.36253 - 4692 | 1.9448 - 669 | 2520 | | 1450 | .18825 - 627 | .75239 - 2506 | 1.31561 - 4378 | 1.8779 - 624 | 2610 | | 1500 | .18198 - 587 | .72733 - 2344 | 1.27183 - 4096 | 1.8155 - 585 | 2700 | | 1550 | .17611 - 550 | .70389 - 2198 | 1.23087 - 3841 | 1.7570 - 548 | 2790 | | 1600 | .17061 - 517 | .68191 - 2064 | 1.19246 - 3608 | 1.7022 - 514 | 2880 | | 1650 | .16544 - 487 | .66127 - 1943 | 1.15638 - 3396 | 1.6508 - 485 | 2970 | | 1700 | .16057 - 458 | .64184 - 1833 | 1.12242 - 3202 | 1.6023 - 457 | 3060 | | 1750 | .15599 - 434 | .62351 - 1730 | 1.09040 - 3024 | 1.5566 - 431 | 3150 | | 1800 | .15165 - 410 | .60621 - 1637 | 1.06016 - 2863 | 1.5135 - 409 | 3240 | | 1850 | .14755 - 388 | .58984 - 1551 | 1.03153 - 2709 | 1.4726 - 386 | 3330 | | 1900 | .14367 - 368 | .57433 - 1472 | 1.00444 - 2573 | 1.4340 - 367 | 3420 | | 1950 | .13999 - 350 | .55961 - 1398 | .97871 - 2443 | 1.3973 - 348 | 3510 | | 2000 | .13649 - 333 | .54563 - 1330 | .95428 - 2324 | 1.3625 - 333 | 3600 | | 2050 | .13316 - 317 | .53233 - 1266 | .93104 - 2214 | 1.3292 - 315 | 3690 | | 2100 | .12999 - 302 | .51967 - 1207 | .90890 - 2111 | 1.2977 - 302 | 3780 | | 2150 | .12697 - 288 | .50760 - 1154 | .88779 - 2016 | 1.2675 - 287 | 3870 | | 2200 | .12409 - 276 | .49606 - 1101 | .86763 - 1925 | 1.2388 - 275 | 3960 | | 2250 | .12133 - 264 | .48505 - 1054 | .84838 - 1842 | 1.2113 - 263 | 4050 | | 2300 | .11869 - 252 | .47451 - 1009 | .82996 - 1764 | 1.1850 - 251 | 4140 | | 2350 | .11617 - 242 | .46442 - 967 | .81232 - 1690 | 1.1599 - 242 | 4230 | | 2400 | .11375 - 233 | .45475 - 927 | .79542 - 1622 | 1.1357 - 232 | 4320 | | 2450 | .11142 - 222 | .44548 - 890 | .77920 - 1556 | 1.1125 - 221 | 4410 | | 2500 | .10920 - 214 | .43658 - 856 | .76364 - 1496 | 1.0904 - 214 | 4500 | | 2550 | .10706 - 206 | .42802 - 822 | .74868 - 1438 | 1.0690 - 205 | 4590 | | 2600 | .10500 - 198 | .41980 - 792 | .73430 - 1384 | 1.0485 - 197 | 4680 | | 2650 | .10302 - 191 | .41188 - 762 | .72046 - 1333 | 1.0288 - 191 | 4770 | | 2700 | .10111 - 184 | .40426 - 735 | .70713 - 1284 | 1.0097 - 183 | 4860 | | 2750 | .09927 - 177 | .39691 - 708 | .69429 - 1239 | .9914 - 177 | 4950 | | 2800 | .09750 - 171 | .38983 - 684 | .68190 - 1195 | .9737 - 170 | 5040 | | 2850 | .09579 - 165 | .38299 - 660 | .66995 - 1153 | .9567 - 165 | 5130 | | 2900 | .09414 - 160 | .37639 - 637 | .65842 - 1116 | .9402 - 159 | 5220 | | 2950 | .09254 - 154 | .37002 - 617 | .64726 - 1078 | .9243 - 154 | 5310 | | 3000 | .09100 | .36385 | .63648 | .9089 | 5400 | | °K | 10 atm | 40 atm | 70 atm | 100 atm | °R | |---------------------------------|--|--|---|---|---------------------------------| | 110
120
130
140 | 30.83 -477
26.06 -288
23.18 -215
21.03 -170 | | | | 198
216
234
252 | | 150
160
170
180
190 | 19.331 -1423
17.908 -1208
16.700 -1038
15.662 - 912
14.750 - 803 | 98.9 -135
85.4 - 92
76.2 - 67
69.5 - 56
63.9 - 45 | 134.9 -148
120.1 -103 | | 270
288
306
324
342 | | 200 | 13.947 - 714 13.233 - 643 12.590 - 579 12.011 - 526 11.485 - 480 | 59.45 - 378 | 109.77 - 830 | 161.7 -137 | 360 | | 210 | | 55.67 - 324 | 101.47 - 683 | 148.0 -109 | 378 | | 220 | | 52.43 - 282 | 94.635 - 5779 | 137.1 - 90 | 396 | | 230 | | 49.61 - 250 | 88.856 - 4976 | 128.08 - 763 | 414 | | 240 | | 47.11 - 222 | 83.880 - 4352 | 120.45 - 661 | 432 | | 250 | 11.005 - 440 | 44.893 - 1998 | 79.528 - 3839 75.689 - 3435 72.254 - 3082 69.172 - 2796 66.376 - 2566 | 113.84 - 576 | 450 | | 260 | 10.565 - 405 | 42.895 - 1810 | | 108.08 - 513 | 468 | | 270 | 10.160 - 375 | 41.085 - 1646 | | 102.95 - 457 | 486 | | 280 | 9.785 - 347 | 39.439 - 1508 | | 98.38 - 410 | 504 | | 290 | 9.438 - 322 | 37.931 - 1388 | | 94.28 - 376 | 522 | | 300 | 9.1160 - 3009 | 36,543 - 1280 | 63.810 - 2335 | 90.523 - 3414 | 540 | | 310 | 8.8151 - 2811 | 35,263 - 1187 | 61.475 - 2164 | 87.109 - 3137 | 558 | | 320 | 8.5340 - 2635 | 34,076 - 1104 | 59.311 - 1991 | 83.972 - 2888 | 576 | | 330 | 8.2705 - 2473 | 32,972 - 1030 | 57.320 - 1850 | 81.084 - 2677 | 594 | | 340 | 8.0232 - 2328 | 31,942 - 964 | 55.470 - 1723 | 78.407 - 2477 | 612 | | 350 | 7.7904 - 2193 | 30.978 - 903 | 53.747 - 1606 | 75.930 - 2310 73.620 - 2163 71.457 - 2029 69.428 - 1904 67.524 - 1783 | 630 | | 360 | 7.5711 - 2072 | 30.075 - 850 | 52.141 - 1509 | | 648 | | 370 | 7.3639 - 1960 | 29.225 - 801 | 50.632 - 1419 | | 666 | | 380 | 7.1679 - 1856 | 28.424 - 755 | 49.213 - 1332 | | 684 | | 390 | 6.9823 - 1762 | 27.669 - 714 | 47.881 - 1256 | | 702 | | 400 | 6.8061 - 1674 | 26.955 - 677 26.278 - 643 25.635 - 609 25.026 - 581 24.445 - 554 | 46.625 - 1191 | 65.741 - 1696 | 720 | | 410 | 6.6387 - 1592 | | 45.434 - 1125 | 64.045 - 1603 | 738 | | 420 | 6.4795 - 1517 | | 44.309 - 1064 | 62.442 - 1511 | 756 | | 430 | 6.3278 - 1447 | | 43.245 - 1016 | 60.931 - 1436 | 774 | | 440 | 6.1831 - 1381 | | 42.229 - 962 | 59.495 - 1367 | 792 | | 450 | 6.0450 - 1321 | 23.891 - 528 | 41,267 - 921 | 58.128 - 1296 | 810 | | 460 | 5.9129 - 1263 | 23.363 - 504 | 40,346 - 873 | 56.832 - 1236 | 828 | | 470 | 5.7866 - 1211 | 22.859 - 483 | 39,473 - 842 | 55.596 - 1184 | 846 | | 480 | 5.6655 - 1160 | 22.376 - 461 | 38,631 - 799 | 54.412 - 1131 | 864 | | 490 | 5.5495 - 1113 | 21.915 - 443 | 37,832 - 767 | 53.281 - 1081 | 882 | | 500 | 5.4382 - 1070 | 21.472 - 425 | 37.065 - 738 | 52.200 - 1038 | 900 | | 510 | 5.3312 - 1027 | 21.047 - 407 | 36.327 - 702 | 51.162 - 993 | 918 | | 520 | 5.2285 - 988 | 20.640 - 392 | 35.625 - 675 | 50.169 - 952 | 936 | | 530 | 5.1297 - 952 | 20.248 - 377 | 34.950 - 664 | 49.217 - 916 | 954 | | 540 | 5.0345 - 917 | 19.871 - 363 | 34.296 - 627 | 48.301 - 882 | 972 | | 550 | 4.9428 - 883 | 19.508 - 349 | 33.669 - 601 | 47.419 - 847 | 990 | | 560 | 4.8545 - 853 | 19.159 - 337 | 33.068 - 580 | 46.572 - 813 | 1008 | | 570 | 4.7692 - 822 | 18.822 - 325 | 32.488 - 561 | 45.759 - 789 | 1026 | | 580 | 4.6870 - 795 | 18.497 - 313 | 31.927 - 541 | 44.970 - 758 | 1044 | | 590 | 4.6075 - 768 | 18.184 - 303 | 31.386 - 520 | 44.212 - 728 | 1062 | | 600 | 4.5307 - 743 | 17.881 - 293 | 30.866 - 506 | 43.484 - 709 | 1080 | | 610 | 4.4564 - 719 | 17.588 - 283 | 30.360 - 487 | 42.775 - 686 | 1098 | | 620 | 4.3845 - 695 | 17.305 - 274 | 29.873 - 471 | 42.089 - 660 | 1116 | | 630 | 4.3150 - 674 | 17.031 - 266 | 29.402 - 457 | 41.429 - 640 | 1134 | | 640 | 4.2476 - 654 | 16.765 - 257 | 28.945 - 442 | 40.789 - 620 | 1152 | | 650 | 4.1822 - 633 | 16.508 - 249 | 28.503 - 429 | 40.169 - 604 | 1170 | | 660 | 4.1189 - 614 | 16.259 - 242 | 28.074 - 414 | 39.565 - 580 | 1188 | | 670 | 4.0575 - 596 | 16.017 - 234 | 27.660 - 404 | 38.985 - 566 | 1206 | | 680 | 3.9979 - 579 | 15.783 - 227 | 27.256 - 390 | 38.419 - 546 | 1224 | | 690 | 3.9400 - 562 | 15.556 - 222 | 26.866 - 381 | 37.873 - 534 | 1242 | | 700 | 3.8838 | 15.334 | 26.485 | 37.339 | 1260 | | Table 7 | 7-2. DENSITY OF N | ITROGEN - Cont. | | | P/P0 | |---------|-------------------|-----------------|---|---------------|------------| | °K | IO atm | 40 atm | 70 atm | 100 atm | ° R | | 700 | 3.8838 - 546 | 15.334 - 214 | 26.485 - 368 | 37.339 - 518 | 1260 | | 710 | 3.8292 - 532 | 15.120 - 209 | 26.117 - 360 | 36.821 - 501 | 1278 | | 720 | 3.7760 - 516 | 14.911 - 204 | 25.757 - 348 | 36.320 - 491 | 1296 | | 730 | 3.7244 - 503 | 14.707 - 197 | 25.409 - 341 | 35.829 - 474 | 1314 | | 740 | 3.6741 - 489 | 14.510 -
192 | 25.068 - 330 | 35.355 - 461 | 1332 | | 750 | 3.6252 - 476 | 14,318 - 187 | 24.738 - 320 | 34.894 - 453 | 1350 | | 760 | 3.5776 - 464 | 14,131 - 182 | 24.418 - 313 | 34.441 - 434 | 1368 | | 770 | 3.5312 - 452 | 13,949 - 178 | 24.105 - 304 | 34.007 - 427 | 1386 | | 780 | 3.4860 - 440 | 13,771 - 173 | 23.801 - 297 | 33.580 - 421 | 1404 | | 790 | 3.4420 - 430 | 13,598 - 169 | 23.504 - 292 | 33.159 - 405 | 1422 | | 800 | 3.3990 - 1996 | 13.429 - 783 | 23.212 - 1346 | 32.754 - 1883 | 1440 | | 850 | 3.1994 - 1771 | 12.646 - 697 | 21.866 - 1193 | 30.871 - 1676 | 1530 | | 900 | 3.0223 - 1588 | 11.949 - 623 | 20.673 - 1070 | 29.195 - 1502 | 1620 | | 950 | 2.8635 - 1429 | 11.326 - 561 | 19.603 - 972 | 27.693 - 1351 | 1710 | | 1000 | 2.7206 - 1293 | 10.765 - 508 | 18.631 - 868 | 26.342 - 1223 | 1800 | | 1050 | 2.5913 - 1176 | 10.257 - 461 | 17.763 - 792 | 25.119 - 1116 | 1890 | | 1100 | 2.4737 - 1073 | 9.796 - 422 | 16.971 - 725 | 24.003 - 1020 | 1980 | | 1150 | 2.3664 - 983 | 9.374 - 387 | 16.246 - 667 | 22.983 - 934 | 2070 | | 1200 | 2.2681 - 906 | 8.987 - 356 | 15.579 - 613 | 22.049 - 861 | 2160 | | 1250 | 2.1775 - 835 | 8.631 - 329 | 14.966 - 565 | 21.188 - 795 | 2250 | | 1300 | 2.0940 - 774 | 8.302 - 305 | 14.401 - 526 | 20.393 - 738 | 2340 | | 1350 | 2.0166 - 718 | 7.997 - 283 | 13.875 - 486 | 19.655 - 684 | 2430 | | 1400 | 1.9448 - 669 | 7.714 - 264 | 13.389 - 454 | 18.971 - 638 | 2520 | | 1450 | 1.8779 - 624 | 7.450 - 245 | 12.935 - 425 | 18.333 - 599 | 2610 | | 1500 | 1.8155 - 585 | 7.205 - 230 | 12.510 - 398 | 17.734 - 561 | 2700 | | 1550 | 1.7570 - 548 | 6.975 - 217 | 12.112 - 373 | 17.173 - 525 | 2790 | | 1600 | 1.7022 - 514 | 6.758 - 203 | 11.739 - 350 | 16.648 - 493 | 2880 | | 1650 | 1.6508 - 485 | 6.555 - 191 | 11.389 - 329 | 16.155 - 465 | 2970 | | 1700 | 1.6023 - 457 | 6.364 - 180 | 11.060 - 311 | 15.690 - 438 | 3060 | | 1750 | 1.5566 - 431 | 6.184 - 170 | 10.749 - 294 | 15.252 - 415 | 3150 | | 1800 | 1.5135 - 409 | 6.014 - 162 | 10.455 - 280 | 14.837 - 394 | 3240 | | 1850 | 1.4726 - 386 | 5.852 - 153 | 10.175 - 263 | 14.443 - 371 | 3330 | | 1900 | 1.4340 - 367 | 5.699 - 145 | 9.912 - 251 | 14.072 - 355 | 3420 | | 1950 | 1.3973 - 348 | 5.554 - 138 | 9.661 - 238 | 13.717 - 336 | 3510 | | 2000 | 1.3625 - 333 | 5.416 - 131 | 9.423 - 227 | 13.381 - 320 | 3600 | | 2050 | 1.3292 - 315 | 5.285 - 124 | 9.196 - 216 | 13.061 - 306 | 3690 | | 2100 | 1.2977 - 302 | 5.161 - 120 | 8.980 - 207 | 12.755 - 290 | 3780 | | 2150 | 1.2675 - 287 | 5.041 - 114 | 8.773 - 197 | 12.465 - 279 | 3870 | | 2200 | 1.2388 - 275 | 4.927 - 108 | 8.576 - 188 | 12.186 - 266 | 3960 | | 2250 | 1.2113 - 263 | 4.819 - 104 | 8.388 - 180 | 11.920 - 255 | 4050 | | 2300 | 1.1850 - 251 | 4.715 - 100 | 8.208 - 173 | 11.665 - 244 | 4140 | | 2350 | 1.1599 - 242 | 4.615 - 96 | 8.035 - 165 | 11.421 - 234 | 4230 | | 2400 | 1.1357 - 232 | 4.519 - 91 | 7.870 - 159 | 11.187 - 225 | 4320 | | 2450 | 1.1125 - 221 | 4.428 - 88 | 7.711 - 152 | 10.962 - 215 | 4410 | | 2500 | 1.0904 - 214 | 4.340 - 85 | 7.559 - 147 | 10.747 - 208 | 4500 | | 2550 | 1.0690 - 205 | 4.255 - 81 | 7.412 - 141 7.271 - 136 7.135 - 130 7.005 - 126 6.879 - 122 | 10.539 - 199 | 4590 | | 2600 | 1.0485 - 197 | 4.174 - 78 | | 10.340 - 192 | 4680 | | 2650 | 1.0288 - 191 | 4.096 - 76 | | 10.148 - 185 | 4770 | | 2700 | 1.0097 - 183 | 4.020 - 72 | | 9.963 - 179 | 4860 | | 2750 | .9914 - 177 | 3.948 - 70 | | 9.784 - 173 | 4950 | | 2800 | .9737 - 170 | 3.878 68 | 6.757 - 117 | 9.611 - 165 | 5040 | | 2850 | .9567 - 165 | 3.810 65 | 6.640 - 113 | 9.446 - 160 | 5130 | | 2900 | .9402 - 159 | 3.745 64 | 6.527 - 110 | 9.286 - 156 | 5220 | | 2950 | .9243 - 154 | 3.681 61 | 6.417 - 107 | 9.130 - 150 | 5310 | | 3000 | .9089 | 3.620 | 6.310 | 8.980 | 5400 | | °K | .01 | atm | .1 | atm | .4 | atm | .7 | atm | °R | |---------------------------------|--|-----------------------|--|-----------------------------------|--|--------------------------------------|--|--------------------------------------|---------------------------------| | 100
110
120
130
140 | 3.5012
3.5011
3.5010
3.5009
3.5009 | - 1
- 1
- 1 | 3.5086
3.5067
3.5054
3.5045
3.5039 | - 19
- 13
- 9
- 6
- 5 | 3.5353
3.5262
3.5205
3.5167
3.5139 | - 91
- 57
- 38
- 28
- 21 | 3.5687
3.5469
3.5362
3.5293
3.5241 | -218
-107
- 69
- 52
- 39 | 180
198
216
234
252 | | 150 | 3.5009 | 1 | 3.5034 | - 3 | 3.5118 | - 16 | 3.5202 | - 28 | 270 | | 160 | 3.5009 | | 3.5031 | - 4 | 3.5102 | - 14 | 3.5174 | - 24 | 288 | | 170 | 3.5009 | | 3.5027 | - 2 | 3.5088 | - 11 | 3.5150 | - 19 | 306 | | 180 | 3.5009 | | 3.5025 | - 2 | 3.5077 | - 7 | 3.5131 | - 14 | 324 | | 190 | 3.5010 | | 3.5023 | - 1 | 3.5070 | - 7 | 3.5117 | - 13 | 342 | | 200
210
220
230
240 | 3.5010
3.5010
3.5011
3.5011
3.5013 | 1
2
1 | 3.5022
3.5021
3.5021
3.5020
3.5021 | - 1
- 1
1 | 3.5063
3.5058
3.5054
3.5049
3.5047 | 5
4
5
2
2 | 3.5104
3.5094
3.5086
3.5079
3.5074 | - 10
- 8
- 7
- 5
- 5 | 360
378
396
414
432 | | 250
260
270
280
290 | 3.5014
3.5016
3.5018
3.5022
3.5026 | 2
2
4
4
5 | 3.5021
3.5022
3.5024
3.5027
3.5031 | 1
2
3
4
4 | 3.5045
3.5044
3.5044
3.5046
3.5048 | - 1
2
2
3 | 3.5069
3.5067
3.5064
3.5064
3.5065 | - 2
- 3
1
2 | 450
468
486
504
522 | | 300
310
320
330
340 | 3.5031
3.5036
3.5044
3.5054
3.5065 | 5
8
10
11 | 3.5035
3.5041
3.5049
3.5058
3.5069 | 6
8
9
11
13 | 3.5051
3.5056
3.5062
3.5071
3.5081 | 5
6
9
10
12 | 3.5067
3.5070
3.5076
3.5084
3.5093 | 3
6
8
9
11 | 540
558
576
594
612 | | 350 | 3.5078 | 16 | 3.5082 | 15 | 3.5093 | 15 | 3.5104 | 14 | 630 | | 360 | 3.5094 | 17 | 3.5097 | 17 | 3.5108 | 16 | 3.5118 | 16 | 648 | | 370 | 3.5111 | 20 | 3.5114 | 20 | 3.5124 | 19 | 3.5134 | 19 | 666 | | 380 | 3.5131 | 23 | 3.5134 | 23 | 3.5143 | 23 | 3.5153 | 21 | 684 | | 390 | 3.5154 | 25 | 3.5157 | 25 | 3.5166 | 24 | 3.5174 | 24 | 702 | | 400 | 3.5179 | 27 | 3.5182 | 27 | 3.5190 | 26 | 3.5198 | 26 | 720 | | 410 | 3.5206 | 31 | 3.5209 | 30 | 3.5216 | 31 | 3.5224 | 30 | 738 | | 420 | 3.5237 | 33 | 3.5239 | 33 | 3.5247 | 32 | 3.5254 | 32 | 756 | | 430 | 3.5270 | 36 | 3.5272 | 36 | 3.5279 | 36 | 3.5286 | 36 | 774 | | 440 | 3.5306 | 38 | 3.5308 | 38 | 3.5315 | 37 | 3.5322 | 37 | 792 | | 450 | 3.5344 | 42 | 3.5346 | 42 | 3.5352 | 42 | 3.5359 | 41 | 810 | | 460 | 3.5386 | 44 | 3.5388 | 44 | 3.5394 | 44 | 3.5400 | 43 | 828 | | 470 | 3.5430 | 46 | 3.5432 | 46 | 3.5438 | 45 | 3.5443 | 46 | 846 | | 480 | 3.5476 | 50 | 3.5478 | 50 | 3.5483 | 50 | 3.5489 | 49 | 864 | | 490 | 3.5526 | 52 | 3.5528 | 52 | 3.5533 | 52 | 3.5538 | 52 | 882 | | 500 | 3.5578 | 54 | 3.5580 | 54 | 3.5585 | 53 | 3.5590 | 53 | 900 | | 510 | 3.5632 | 56 | 3.5634 | 56 | 3.5638 | 56 | 3.5643 | 56 | 918 | | 520 | 3.5688 | 59 | 3.5690 | 58 | 3.5694 | 59 | 3.5699 | 58 | 936 | | 530 | 3.5747 | 61 | 3.5748 | 61 | 3.5753 | 61 | 3.5757 | 61 | 954 | | 540 | 3.5808 | 63 | 3.5809 | 63 | 3.5814 | 62 | 3.5818 | 62 | 972 | | 550 | 3.5871 | 65 | 3.5872 | 65 | 3.5876 | 65 | 3.5880 | 65 | 990 | | 560 | 3.5936 | 67 | 3.5937 | 67 | 3.5941 | 67 | 3.5945 | 67 | 1008 | | 570 | 3.6003 | 69 | 3.6004 | 69 | 3.6008 | 69 | 3.6012 | 68 | 1026 | | 580 | 3.6072 | 70 | 3.6073 | 70 | 3.6077 | 70 | 3.6080 | 70 | 1044 | | 590 | 3.6142 | 72 | 3.6143 | 72 | 3.6147 | 71 | 3.6150 | 72 | 1062 | | 600 | 3.6214 | 73 | 3.6215 | 73 | 3.6218 | 73 | 3.6222 | 72 | 1080 | | 610 | 3.6287 | 75 | 3.6288 | 75 | 3.6291 | 75 | 3.6294 | 75 | 1098 | | 620 | 3.6362 | 75 | 3.6363 | 75 | 3.6366 | 75 | 3.6369 | 75 | 1116 | | 630 | 3.6437 | 77 | 3.6438 | 77 | 3.6441 | 77 | 3.6444 | 77 | 1134 | | 640 | 3.6514 | 77 | 3.6515 | 77 | 3.6518 | 77 | 3.6521 | 76 | 1152 | | 650 | 3.6591 | 79 | 3.6592 | 79 | 3.6595 | 79 | 3.6597 | 79 | 1170 | | 660 | 3.6670 | 79 | 3.6671 | 79 | 3.6674 | 79 | 3.6676 | 79 | 1188 | | 670 | 3.6749 | 80 | 3.6750 | 80 | 3.6753 | 79 | 3.6755 | 80 | 1206 | | 680 | 3.6829 | 80 | 3.6830 | 80 | 3.6832 | 80 | 3.6835 | 80 | 1224 | | 690 | 3.6909 | 81 | 3.6910 | 81 | 3.6912 | 81 | 3.6915 | 80 | 1242 | | 700 | 3.6990 | | 3.6991 | | 3.6993 | | 3.6995 | | 1260 | | | · | | -, | | | | | | | | |------|--------|---|--------|-----------------|--------|------------|--------|-----------|------|--| | °K | .01 | atm | .1 | atm | .4 | atm | .7 | atm | °R | | | | | | | | | | | | | | | 700 | 3.6990 | 81 | 3,6991 | 81 | 3,6993 | 81 | 3,6995 | 81 | 1260 | | | 710 | 3.7071 | 81 | 3,7072 | 81 | 3.7074 | 81 | 3.7076 | 81 | 1278 | | | 720 | 3.7152 | 82 | 3.7153 | 82 | 3.7155 | 82 | 3.7157 | 82 | 1296 | | | 730 | 3.7234 | 82 | 3.7235 | 82 | 3.7237 | 82 | 3,7239 | 82 | 1314 | | | 740 | 3.7316 | 82 | 3.7317 | 82 | 3.7319 | 82 | 3.7321 | 82 | 1332 | | | 750 | 3,7398 | 82 | 3.7399 | 82 | 3,7401 | 82 | 3,7403 | 82 | 1350 | | | 760 | 3.7480 | 82 | 3.7481 | 82 | 3.7483 | 82 | 3.7485 | 82
81 | 1368 | | | 770 | 3.7562 | 81 | 3.7563 | 81. | 3.7565 | 80 | 3.7566 | | 1386 | | | 780 | 3.7643 | 82 | 3.7644 | 82
82 | 3.7645 | 82 | 3.7647 | 81
82 | 1404 | | | 790 | 3.7725 | 81 | 3.7726 | 81 | 3.7727 | 81 | 3.7729 | 82
81 | 1422 | | | 170 | 3.7723 | 01 | 5.7720 | 97 | 3.1121 | 91 | J.1127 | 91 | 1422 | | | 800 | 3.7806 | 790 | 3.7807 | 78 9 | 3,7808 | 700 | 3.7810 | 700 | 1440 | | | 900 | 3.8596 | 730 | 3.8596 | 730 | 3.8598 | 790
729 | 3.8599 | 789 | 1620 | | | 1000 | 3.9326 | 656 | 3.9326 | 750
656 | 3.9327 | 129
656 | 3.9328 | 729 | 1800 | | | 1100 | 3.9982 | 580 | 3.9982 | | 3.9983 | | 3.9984 | 656 | 1980 | | | 1200 | 4.0562 | - |
4.0562 | 580 | 4.0563 | 580 | | 580 | | | | 1200 | 4.0562 | 510 | 4.0562 | 510 | 4.0563 | 510 | 4.0564 | 509 | 2160 | | | 1300 | 4.1072 | 446 | 4.1072 | 446 | 4,1073 | 446 | 4.1073 | 446 | 2340 | | | 1400 | 4.1518 | 391 | 4.1518 | 391 | 4.1519 | 391 | 4.1519 | 391 | 2520 | | | 1500 | 4.1909 | 343 | 4,1909 | 343 | 4.1910 | 342 | 4.1910 | 343 | 2700 | | | 1600 | 4,2252 | 302 | 4.2252 | 302 | 4.2252 | 302 | 4.2253 | 302 | 2880 | | | 1700 | 4.2554 | 267 | 4.2554 | 267 | 4.2554 | 267 | 4.2555 | 267 | 3060 | | | | | 201 | | 207 | (.2331 | 207 | 1.2333 | 201 | 2000 | | | 1800 | 4.2821 | 236 | 4.2821 | 236 | 4.2821 | 236 | 4.2822 | 235 | 3240 | | | 1900 | 4.3057 | 211 | 4.3057 | 211 | 4.3057 | 211 | 4.3057 | 211 | 3420 | | | 2000 | 4.3268 | 189 | 4.3268 | 189 | 4.3268 | 189 | 4.3268 | 189 | 3600 | | | 2100 | 4.3457 | 170 | 4.3457 | 170 | 4.3457 | 170 | 4.3457 | 170 | 3780 | | | 2200 | 4.3627 | 153 | 4.3627 | 153 | 4.3627 | 153 | 4.3627 | 153 | 3960 | | | 2300 | 4.3780 | 140 | 4.3780 | 140 | 4.3780 | 140 | 4.3780 | 140 | 4140 | | | 2400 | 4.3920 | 127 | 4.3920 | 127 | 4.3920 | 127 | 4.3920 | 127 | 4320 | | | 2500 | 4.4047 | 116 | 4.4047 | 116 | 4.4047 | 116 | 4.4047 | 116 | 4500 | | | 2600 | 4.4163 | 107 | 4.4163 | 107 | 4.4163 | 107 | 4.4163 | 107 | 4680 | | | 2700 | 4.4270 | 99 | 4.4270 | 99 | 4.4270 | 99 | 4.4270 | 107
99 | 4860 | | | | | • | | " | 7.7610 | 77 | 7.7210 | 77 | 1000 | | | 2800 | 4.4369 | 91 | 4.4369 | 91 | 4.4369 | 91 | 4.4369 | 91 | 5040 | | | 2900 | 4.4460 | 85 | 4.4460 | 85 | 4.4460 | 8 5 | 4.4460 | 85 | 5220 | | | 3000 | 4.4545 | | 4.4545 | | 4.4545 | | 4.4545 | | 5400 | | | | | | | | | | | | | | Table 7-3. SPECIFIC HEAT OF NITROGEN - Cont. | °K | 1 | atm | 4 | atm | 7 | atm | 10 | atm | *R | |---------------------------------|--|-------------------------------------|--|--------------------------------------|--|------------------------------------|--|--------------------------------------|---------------------------------| | 100
110
120
130
140 | 3.613
3.5697
3.5525
3.5421
3.5344 | -43
-172
-104
- 77
- 56 | 3.775
3.695
3.6477 | -80
-47
-274 | 3.917
3.786 | -131
- 62 | 3.958 | -114 | 180
198
216
234
252 | | 150 | 3.5288 | - 43 | 3.6203 | -195 | 3.7245 | - 402 | 3.844 | - 68 | 270 | | 160 | 3.5245 | - 33 | 3.6008 | -150 | 3.6843 | - 293 | 3.7764 | - 469 | 288 | | 170 | 3.5212 | - 27 | 3.5858 | -118 | 3.6550 | - 223 | 3.7295 | - 342 | 306 | | 180 | 3.5185 | - 21 | 3.5740 | - 94 | 3.6327 | - 175 | 3.6953 | - 273 | 324 | | 190 | 3.5164 | - 18 | 3.5646 | - 77 | 3.6152 | - 143 | 3.6680 | - 214 | 342 | | 200 | 3.5146 | - 14 | 3.5569 | - 63 | 3.6009 | - 116 | 3.6466 | - 173 | 360 | | 210 | 3.5132 | 12 | 3.5506 | - 53 | 3.5893 | 96 | 3.6293 | - 143 | 378 | | 220 | 3.5120 | 12 | 3.5453 | - 45 | 3.5797 | 83 | 3.6150 | - 122 | 396 | | 230 | 3.5108 | 7 | 3.5408 | - 36 | 3.5714 | 67 | 3.6028 | - 101 | 414 | | 240 | 3.5101 | 7 | 3.5372 | - 32 | 3.5647 | 59 | 3.5927 | - 86 | 432 | | 250
260
270
280
290 | 3.5094
3.5089
3.5084
3.5083
3.5082 | - 5
- 5
- 1
- 1 | 3.5340
3.5313
3.5289
3.5271
3.5255 | - 27
- 24
- 18
- 16
- 12 | 3.5588
3.5539
3.5496
3.5460
3.5430 | 49
43
36
30
26 | 3.5841
3.5767
3.5704
3.5651
3.5605 | - 74
- 63
- 53
- 46
- 40 | 450
468
486
504
522 | | 300
310
320
330
340 | 3.5083
3.5085
3.5090
3.5097
3.5105 | 2
5
7
8
10 | 3.5243
3.5234
3.5227
3.5224
3.5224 | - 9
- 7
- 3 | 3.5404
3.5382
3.5365
3.5353
3.5345 | - 22
- 17
- 12
- 8
- 6 | 3.5565
3.5531
3.5504
3.5482
3.5464 | - 34
- 27
- 22
- 18
- 12 | 540
558
576
594
612 | | 350
360
370
380
390 | 3.5115
3.5129
3.5144
3.5162
3.5183 | 14
15
18
21
24 | 3.5227
3.5234
3.5243
3.5255
3.5271 | 7
9
12
16
18 | 3.5339
3.5339
3.5341
3.5348
3.5358 | 2
7
10
14 | 3.5452
3.5444
3.5440
3.5440
3.5445 | - 8
- 4
5
9 | 630
648
666
684
702 | | 400 | 3.5207 | 25 | 3,5289 | 21 | 3.5372 | 16 | 3.5454 | 12 | 720 | | 410 | 3.5232 | 30 | 3,5310 | 26 | 3.5388 | 21 | 3.5466 | 17 | 738 | | 420 | 3.5262 | 31 | 3,5336 | 28 | 3.5409 | 24 | 3.5483 | 21 | 756 | | 430 | 3.5293 | 35 | 3,5364 | 31 | 3.5433 | 28 | 3.5504 | 24 | 774 | | 440 | 3.5328 | 37 | 3,5395 | 34 | 3.5461 | 30 | 3.5528 | 27 | 792 | | 450 | 3.5365 | 41 | 3.5429 | 38 | 3.5491 | 35 | 3.5555 | 32 | 810 | | 460 | 3.5406 | 43 | 3.5467 | 40 | 3.5526 | 37 | 3.5587 | 34 | 828 | | 470 | 3.5449 | 45 | 3.5507 | 42 | 3.5563 | 40 | 3.5621 | 37 | 846 | | 480 | 3.5494 | 49 | 3.5549 | 47 | 3.5603 | 44 | 3.5658 | 42 | 864 | | 490 | 3.5543 | 52 | 3.5596 | 49 | 3.5647 | 47 | 3.5700 | 44 | 882 | | 500 | 3.5595 | 53 | 3.5645 | 51 | 3.5694 | 49 | 3.5744 | 47 | 900 | | 510 | 3.5648 | 55 | 3.5696 | 53 | 3.5743 | 51 | 3.5791 | 49 | 918 | | 520 | 3.5703 | 59 | 3.5749 | 57 | 3.5794 | 55 | 3.5840 | 53 | 936 | | 530 | 3.5762 | 60 | 3.5806 | 58 | 3.5849 | 56 | 3.5893 | 55 | 954 | | 540 | 3.5822 | 62 | 3.5864 | 61 | 3.5905 | 59 | 3.5948 | 57 | 972 | | 550 | 3.5884 | 65 | 3.5925 | 63 | 3.5964 | 62 | 3.6005 | 60 | 990 | | 560 | 3.5949 | 66 | 3.5988 | 65 | 3.6026 | 63 | 3.6065 | 62 | 1008 | | 570 | 3.6015 | 69 | 3.6053 | 67 | 3.6089 | 66 | 3.6127 | 64 | 1026 | | 580 | 3.6084 | 70 | 3.6120 | 68 | 3.6155 | 68 | 3.6191 | 65 | 1044 | | 590 | 3.6154 | 71 | 3.6188 | 70 | 3.6223 | 69 | 3.6256 | 68 | 1062 | | 600 | 3.6225 | 73 | 3.6258 | 72 | 3.6292 | 70 | 3.6324 | 69 | 1080 | | 610 | 3.6298 | 74 | 3.6330 | 73 | 3.6362 | 72 | 3.6393 | 71 | 1098 | | 620 | 3.6372 | 75 | 3.6403 | 74 | 3.6434 | 73 | 3.6464 | 72 | 1116 | | 630 | 3.6447 | 77 | 3.6477 | 75 | 3.6507 | 74 | 3.6536 | 73 | 1134 | | 640 | 3.6524 | 76 | 3.6552 | 76 | 3.6581 | 75 | 3.6609 | 74 | 1152 | | 650 | 3.6600 | 79 | 3.6628 | 78 | 3.6656 | 77 | 3.6683 | 76 | 1170 | | 660 | 3.6679 | 79 | 3.6706 | 78 | 3.6733 | 77 | 3.6759 | 76 | 1188 | | 670 | 3.6758 | 79 | 3.6784 | 78 | 3.6810 | 78 | 3.6835 | 77 | 1206 | | 680 | 3.6837 | 80 | 3.6862 | 79 | 3.6888 | 78 | 3.6912 | 77 | 1224 | | 690 | 3.6917 | 81 | 3.6941 | 80 | 3.6966 | 79 | 3.6989 | 78 | 1242 | | 700 | 3.6998 | | 3.7021 | | 3.7045 | | 3.7067 | | 1260 | Table 7-3. SPECIFIC HEAT OF NITROGEN - Cont. | °K | Ι | atm | 4 | atm | 7 | atm | 10 | atm | *R | |-------------|------------------|-------------|--------|------------|--------|------------|--------|-----|------| | | | | | | 0.7045 | | 2 70/7 | | 30/0 | | 700 | 3.6998 | 81 | 3.7021 | 80 | 3.7045 | 79 | 3.7067 | 79 | 1260 | | 710 | 3.7079 | 80 | 3.7101 | 80 | 3.7124 | 79 | 3.7146 | 79 | 1278 | | 720 | 3.7159 | 82 | 3.7181 | 81 | 3.7203 | 81 | 3.7225 | 79 | 1296 | | 730 | 3.7241 | 82 | 3.7262 | 82 | 3.7284 | 80 | 3.7304 | 80 | 1314 | | 740 | 3.7323 | 82 | 3.7344 | 81 | 3.7364 | 81 | 3.7384 | 80 | 1332 | | 750 | 3.7405 | 82 | 3.7425 | 81 | 3.7445 | 81 | 3.7464 | 80 | 1350 | | 760 | 3.7487 | 81 | 3.7506 | 81. | 3.7526 | 80 | 3.7544 | 80 | 1368 | | 770 | 3.7568 | 81 | 3.7587 | 81 | 3.7606 | 80 | 3.7624 | 79 | 1386 | | 780 | 3.7649 | 82 | 3.7668 | 81 | 3.7686 | 81 | 3.7703 | 80. | 1404 | | 790 | 3.7731 | 81 | 3.7749 | 80 | 3.7767 | 79 | 3.7784 | 79 | 1422 | | 800 | 3.7812 | | 3.7829 | | 3,7846 | | 3,7863 | | 1440 | | | | 788 | 3.8614 | 785 | 3.8627 | 781 | 3.8640 | 777 | 1620 | | 900
1000 | 3.8600
3.9329 | 729 | 3.9340 | 726
653 | 3.9350 | 723
651 | 3.9361 | 721 | 1800 | | 1100 | 3.9985 | 656 | 3.9993 | | 4.0001 | | 4.0010 | 649 | 1980 | | | | 579 | 4.0571 | 578 | 4.0001 | 577 | 4.0584 | 574 | 2160 | | 1200 | 4.0564 | 510 | 4.05/1 | 508 | 4.05/6 | 507 | 4.0564 | 507 | 2100 | | 1300 | 4.1074 | 446 | 4.1079 | 445 | 4.1085 | 444 | 4.1091 | 442 | 2340 | | 1400 | 4.1520 | 39 0 | 4.1524 | 390 | 4.1529 | 389 | 4.1533 | 389 | 2520 | | 1500 | 4.1910 | 343 | 4.1914 | 342 | 4.1918 | 342 | 4,1922 | 341 | 2700 | | 1600 | 4.2253 | 302 | 4.2256 | 302 | 4.2260 | 301 | 4.2263 | 300 | 2880 | | 1700 | 4.2555 | 267 | 4.2558 | 266 | 4.2561 | 266 | 4.2563 | 266 | 3060 | | 1800 | 4,2822 | 236 | 4,2824 | 236 | 4.2827 | 235 | 4.2829 | 235 | 3240 | | 1900 | 4.3058 | 211 | 4.3060 | 210 | 4.3062 | 210 | 4.3064 | 210 | 3420 | | 2000 | 4.3269 | 189 | 4.3270 | 189 | 4.3272 | 189 | 4.3274 | 188 | 3600 | | 2100 | 4.3458 | 169 | 4.3459 | 170 | 4.3461 | 169 | 4.3462 | 170 | 3780 | | 2200 | 4.3627 | 153 | 4.3629 | 153 | 4.3630 | 153 | 4.3632 | 152 | 3960 | | 2300 | 4.3780 | 140 | 4.3782 | 139 | 4.3783 | 139 | 4.3784 | 140 | 4140 | | 2400 | 4.3920 | 127 | 4.3921 | 127 | 4.3922 | 127 | 4.3924 | 126 | 4320 | | 2500 | 4.4047 | 116 | 4.4048 | 116 | 4.4049 | 116 | 4.4050 | 116 | 4500 | | 2600 | 4.4163 | 107 | 4.4164 | 107 | 4.4165 | 107 | 4.4166 | 106 | 4680 | | 2700 | 4.4270 | 99 | 4.4271 | 99 | 4.4272 | 98 | 4.4272 | 99 | 4860 | | 2800 | 4,4369 | 91 | 4,4370 | 91 | 4.4370 | 91 | 4.4371 | 91 | 5040 | | 2900 | 4.4460 | 85 | 4.4461 | 85 | 4.4461 | 85 | 4.4462 | 85 | 5220 | | 3000 | 4.4545 | _ | 4.4546 | _ | 4.4546 | | 4.4547 | _ | 5400 | | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | °R | |---------------------------------|--|--|--|--------------------------------------|--|--|--|--------------------------------------|---------------------------------| | 140 | 3.958 | -114 | | | | | | | 252 | | 150
160
170
180
190 | 3.844
3.7764
3.7295
3.6953
3.6680 | - 68
469
- 342
- 273
- 214 | 4.522
4.3244 | -198
-1379 |
5.219 | ~ 359 | | | 270
288
306
324
342 | | 200 | 3.6466 | - 173 | 4.1865 | -1021 | 4.860 | -243 | 5.64 | - 45 | 360 | | 210 | 3.6293 | - 143 | 4.0844 | - 786 | 4.617 | -175 | 5.19 | - 30 | 378 | | 220 | 3.6150 | - 122 | 4.0058 | - 627 | 4.442 | -132 | 4.89 | - 22 | 396 | | 230 | 3.6028 | - 101 | 3.9431 | - 505 | 4.310 | -103 | 4.67 | - 16 | 414 | | 240 | 3.5927 | - 86 | 3.8926 | - 421 | 4.207 | - 83 | 4.51 | - 13 | 432 | | 250 | 3.5841 | 74 | 3.8505 | - 350 | 4.124 | - 68 | 4.38 | 10 | 450 | | 260 | 3.5767 | 63 | 3.8155 | - 299 | 4.056 | 56 | 4.28 | 8 | 468 | | 270 | 3.5704 | 53 | 3.7856 | - 253 | 4.000 | 47 | 4.20 | 7 | 486 | | 280 | 3.5651 | 46 | 3.7603 | - 219 | 3.953 | 40 | 4.128 | 58 | 504 | | 290 | 3.5605 | 40 | 3.7384 | - 189 | 3.913 | 35 | 4.070 | 49 | 522 | | 300 | 3.5565 | - 34 | 3.7195 | - 164 | 3.878 | - 30 | 4.021 | 42 | 540 | | 310 | 3.5531 | - 27 | 3.7031 | - 142 | 3.848 | - 26 | 3.979 | 36 | 558 | | 320 | 3.5504 | - 22 | 3.6889 | - 125 | 3.822 | - 23 | 3.943 | 32 | 576 | | 330 | 3.5482 | - 18 | 3.6764 | - 108 | 3.799 | - 20 | 3.911 | 28 | 594 | | 340 | 3.5464 | - 12 | 3.6656 | - 95 | 3.779 | - 17 | 3.883 | 25 | 612 | | 350
360
370
380
390 | 3.5452
3.5444
3.5440
3.5440
3.5445 | - 8
- 4
5
9 | 3.6561
3.6480
3.6410
3.6351
3.6301 | - 81
- 70
- 59
- 50
- 41 | 3.7619
3.7466
3.7331
3.7215
3.7113 | - 153
- 135
- 116
- 102
- 90 | 3.858
3.837
3.817
3.801
3.786 | - 21
- 20
- 16
- 15
- 13 | 630
648
666
684
702 | | 400 | 3.5454 | 12 | 3.6260 | - 33 | 3.7023 | 75 | 3.773 | - 12 | 720 | | 410 | 3.5466 | 17 | 3.6227 | - 24 | 3.6948 | 66 | 3.761 | - 10 | 738 | | 420 | 3.5483 | 21 | 3.6203 | - 19 | 3.6882 | 53 | 3.7511 | - 88 | 756 | | 430 | 3.5504 | 24 | 3.6184 | - 11 | 3.6829 | 45 | 3.7423 | - 74 | 774 | | 440 | 3.5528 | 27 | 3.6173 | - 5 | 3.6784 | 38 | 3.7349 | - 65 | 792 | | 450
460
470
480
490 | 3.5555
3.5587
3.5621
3.5658
3.5700 | 32
34
37
42
44 | 3.6168
3.6168
3.6175
3.6185
3.6205 | 7
10
20
20 | 3.6746
3.6720
3.6698
3.6685
3.6679 | - 26
- 22
- 13
- 6
1 | 3.7284
3.7231
3.7186
3.7150
3.7125 | - 53
- 45
- 36
- 25
- 21 | 810
828
846
864
882 | | 500
510
520
530
540 | 3.5744
3.5791
3.5840
3.5893
3.5948 | 47
49
53
55
57 | 3.6225
3.6250
3.6279
3.6313
3.6351 | 25
29
34
38
42 | 3.6680
3.6685
3.6695
3.6712
3.6733 | 5
10
17
21
26 | 3.7104
3.7091
3.7085
3.7086
3.7092 | - 13
- 6
1
6 | 900
918
936
954
972 | | 550 | 3.6005 | 60 | 3.6393 | 43 | 3.6759 | 29 | 3.7103 | 17 | 990 | | 560 | 3.6065 | 62 | 3.6436 | 48 | 3.6788 | 35 | 3.7120 | 20 | 1008 | | 570 | 3.6127 | 64 | 3.6484 | 50 | 3.6823 | 36 | 3.7140 | 25 | 1026 | | 580 | 3.6191 | 65 | 3.6534 | 53 | 3.6859 | 41 | 3.7165 | 30 | 1044 | | 590 | 3.6256 | 68 | 3.6587 | 55 | 3.6900 | 44 | 3.7195 | 34 | 1062 | | 600 | 3.6324 | 69 | 3.6642 | 58 | 3.6944 | 45 | 3.7229 | 35 | 1080 | | 610 | 3.6393 | 71 | 3.6700 | 59 | 3.6989 | 51 | 3.7264 | 41 | 1098 | | 620 | 3.6464 | 72 | 3.6759 | 62 | 3.7040 | 50 | 3.7305 | 41 | 1116 | | 630 | 3.6536 | 73 | 3.6821 | 63 | 3.7090 | 55 | 3.7346 | 46 | 1134 | | 640 | 3.6609 | 74 | 3.6884 | 64 | 3.7145 | 55 | 3.7392 | 47 | 1152 | | 650 | 3.6683 | 76 | 3.6948 | 67 | 3.7200 | 65 | 3.7439 | 50 | 1170 | | 660 | 3.6759 | 76 | 3.7015 | 68 | 3.7259 | 61 | 3.7489 | 53 | 1188 | | 670 | 3.6835 | 77 | 3.7083 | 69 | 3.7319 | 61 | 3.7542 | 55 | 1206 | | 680 | 3.6912 | 77 | 3.7152 | 69 | 3.7380 | 65 | 3.7597 | 54 | 1224 | | 690 | 3.6989 | 78 | 3.7221 | 72 | 3.7441 | 65 | 3.7651 | 58 | 1242 | | 700 | 3.7067 | | 3,7293 | | 3.7506 | | 3.7709 | | 1260 | | °K | 10 | atm | 40 | atm | 70 at | tm | 100 | atm | ° R | |------|--------|-------------|--------|----------------|--------|-------------|--------|-----|------------| | | | | | | | | | | | | 700 | 3.7067 | 79 | 3,7293 | 71 | 3,7506 | 65 | 3.7709 | 59 | 1260 | | 710 | 3.7146 | 79 | 3.7364 | 71 | 3.7571 | 65 | 3.7768 | 58 | 1278 | | 720 | 3.7225 | 79 | 3.7435 | 74 | 3.7636 | 67 | 3.7826 | 62 | 1296 | | 730 | 3.7304 | 80 | 3.7509 | 73 | 3,7703 | 69 | 3.7888 | 63 | 1314 | | 740 | 3.7384 | 80 | 3.7582 | 74 | 3.7772 | 68 | 3.7951 | .63 | 1332 | | | | | | • | | - | | .05 | | | 750 | 3.7464 | 80 | 3.7656 | 75 | 3.7840 | 69 | 3.8014 | 64 | 1350 | | 760 | 3.7544 | 80 | 3.7731 | 74 | 3.7909 | 70 | 3.8078 | 65 | 1368 | | 770 | 3,7624 | 79 | 3.7805 | 74 | 3.7979 | 69 | 3.8143 | 64 | 1386 | | 780 | 3.7703 | 8Ł | 3.7879 | 76 | 3.8048 | 71 | 3.8207 | 66 | 1404 | | 790 | 3.7784 | 79 | 3.7955 | 74 | 3.8119 | 69 | 3.8273 | 65 | 1422 | | | | | | | | | | | | | 800 | 3.7863 | 777 | 3,8029 | 737 | 3.8188 | 700 | 3.8338 | ,,, | 1440 | | 900 | 3.8640 | 721 | 3.8766 | 694 | 3.8888 | 668 | 3.9004 | 666 | 1620 | | 1000 | 3.9361 | 649 | 3.9460 | 629 | 3.9556 | 610 | 3.9647 | 643 | 1800 | | 1100 | 4.0010 | 57 4 | 4.0089 | 560 | 4.0166 | | 4.0239 | 592 | 1980 | | 1200 | 4.0584 | 507 | 4.0649 | | 4.0712 | 546 | 4.0239 | 533 | 2160 | | 1200 | 4.004 | 307 | 4.0047 | 495 | 4.0/12 | 48 5 | 4.0772 | 475 | 2160 | | 1300 | 4.1091 | 442 | 4.1144 | 434 | 4.1197 | 424 | 4.1247 | 416 | 2340 | | 1400 | 4.1533 | 389 | 4.1578 | 382 | 4.1621 | 374 | 4.1663 | 368 | 2520 | | 1500 | 4.1922 | 341 | 4.1960 | 335 | 4.1995 | 331 | 4.2031 | 325 | 2700 | | 1600 | 4.2263 | 300 | 4.2295 | 296 | 4.2326 | 292 | 4.2356 | 288 | 2880 | | 1700 | 4.2563 | 266 | 4.2591 | 261 | 4.2618 | 257 | 4.2644 | 252 | 3060 | | | | | | | ., | 237 | 0 , , | 232 | 2000 | | 1800 | 4.2829 | 235 | 4.2852 | 232 | 4.2875 | 228 | 4.2896 | 226 | 3240 | | 1900 | 4.3064 | 210 | 4.3084 | 208 | 4.3103 | 206 | 4.3122 | 203 | 3420 | | 2000 | 4.3274 | 188 | 4.3292 | 186 | 4.3309 | 183 | 4.3325 | 182 | 3600 | | 2100 | 4.3462 | 170 | 4.3478 | 167 | 4.3492 | 166 | 4.3507 | 164 | 3780 | | 2200 | 4.3632 | 152 | 4.3645 | 151 | 4.3658 | 149 | 4.3671 | 147 | 3960 | | 2300 | 4,3784 | 140 | 4.3796 | 138 | 4,3807 | 1 27 | 4.3818 | 100 | 4140 | | 2400 | 4.3924 | 126 | 4.3934 | | 4.3944 | 137 | 4.3953 | 135 | 4140 | | 2500 | 4.4050 | 116 | 4.4059 | 125 | 4.4068 | 124 | | 123 | | | 2600 | 4.4166 | | 4.4174 | 115 | 4.4182 | 114 | 4.4076 | 113 | 4500 | | 2700 | 4.4100 | 106 | | 106 | | 105 | 4.4189 | 104 | 4680 | | 2/00 | 4.42/2 | 99 | 4,4280 | 97 | 4.4287 | 97 | 4.4293 | 96 | 4860 | | 2800 | 4.4371 | 91 | 4,4377 | 90 | 4.4384 | 89 | 4.4389 | 89 | 5040 | | 2900 | 4.4462 | 85 | 4.4467 | 84 | 4.4473 | 83 | 4.4478 | 83 | 5220 | | 3000 | 4.4547 | | 4.4551 | - - | 4.4556 | | 4.4561 | ~ | 5400 | | | | | | | | | | | | | °K | .01 | atm | .1 | atm | .4 | atm | .7 | atm | °R | |------------|---------------------------|--------------|------------------|----------------------|------------------|-----------------------|------------------|--------------|--------------| | | | | | | | | 3.0/50 | | 100 | | 100 | 1.2777 | 1281 | 1.2761 | 1283 | 1.2706 | 1292 | 1.2650 | 1300 | 180 | | 110 | 1.4058 | 1283 | 1.4044 | 1284 | 1.3998 | 1290 | 1.3950 | 1297 | 198
216 | | 120 | 1.5341 | 1281 | 1.5328 | 1283 | 1.5288
1.6576 | 1288 | 1.5247
1.6539 | 1292 | 234 | | 130
140 | 1.6622
1.7904 | 1282
1281 | 1.6611
1.7894 | 1283
1283 | 1.7863 | 1287
12 8 5 | 1.7831 | 1292
1289 | 252 | | | 247701 | | | | | , | | | | | 150 | 1.9185 | 1282 | 1.9177 | 1283 | 1.9148 | 1286 | 1.9120 | 1289 | 270 | | 160
170 | 2.0467
2.1748 | 1281 | 2.0460
2.1741 | 1281 | 2.0434
2.1718 | 1284
1285 | 2.0409
2.1695 | 1286
1287 | 288
306 | | 180 | 2.3030 | 1282
1281 | 2.3024 | 1283
1282 | 2.3003 | 1283 | 2.2982 | 1285 | 324 | | 190 | 2.4311 | 1282 | 2.4306 | 1282 | 2.4286 | 1285 | 2.4267 | 1286 | 342 | | 200 | 2.5593 | 1282 | 2.5588 | 1283 | 2.5571 | 1283 | 2,5553 | 1285 | 360 | | 210 | 2.6875 | 1281 | 2.6871 | 1281 | 2.6854 | 1283 | 2.6838 | 1284 | 378 | | 220 | 2.8156 | 1283 | 2.8152 | 1282 | 2.8137 | 1284 | 2.8122 | 1285 | 396 | | 230 | 2.9439 | 1282 | 2.9434 | 1283 | 2.9421 | 1283 | 2.9407 | 1284 | 414 | | 240 | 3.0721 | 1281 | 3.0717 | 1281 | 3.0704 | 1282 | 3.0691 | 1283 | 432 | | 250 | 3.2002 | 1282 | 3,1998 | 1282 | 3.1986 | 1283 | 3.1974 | 1284 | 450 | | 260 | 3.3284 | 1282 | 3.3280 | 1283 | 3.3269 | 1283 | 3.3258 | 1284 | 468 | | 270 | 3.4566 | 1282 | 3.4563 | 1282 | 3.4552 | 1283 | 3.4542 | 1284 | 486 | | 280 | 3.5848 | 1282 | 3.5845 | 1282 | 3.5835 | 1283 | 3.5826 | 1283 | 504 | | 290 | 3.7130 | 1282 | 3.7127 | 1282 | 3.7118 | 1283 | 3.7109 | 1284 | 522 | | 300 | 3.8412 | 1283 | 3.8409 | 1283 | 3,8401 | 1284 | 3.8393 | 1284 | 540 | | 310 | 3.9695 | 1283 | 3.9692 | 1284 | 3.9685 | 1283 | 3.9677 | 1284 | 558 | | 320 | 4.0978 | 1283 | 4.0976 | 1283 | 4.0968 | 1284 | 4.0961 | 1284 | 576 | | 330 | 4.2261 | 1283 | 4.2259 | 1283 | 4.2252 | 1284 | 4.2245 | 1285 | 594 | | 340 | 4.3544 | 1284 | 4.3542 | 1284 | 4.3536 | 1284 | 4.3530 | 1285 | 612 | | 350 | 4.4828 | 1285 | 4.4826 | 1285 | 4.4820 | 1286 | 4.4815 | 1285 | 630 | | 360 | 4.6113 | 1285 | 4.6111 | 1285 | 4.6106 | 1285 | 4.6100 | 1286 | 648 | | 370 | 4.7398 | 1285 | 4.7396 | 1285 | 4.7391 | 1286 | 4.7386 | 1286 | 666 | | 380
390 | 4.8683
4.9970 | 1287
1287 | 4.8681
4.9969 | 1288
1287 | 4.8677
4.9964 | 1287
1288 | 4.8672
4.9960 | 1288
1288 | 684
702 | | | | | • | | | | | | 700 | | 400 | 5.1257 | 1289 | 5.1256 | 1289 | 5.1252 | 1289 | 5.1248 | 1289 | 720 | | 410 | 5.2546
5.3835 | 1289 | 5.2545
5.3834 | 1289 | 5.2541
5.3830 | 1289 | 5.2537
5.3827 | 1290
1292 | 738
756 | | 420
430 | 5.5126 | 1291
1291 | 5.5125 | 1291
1291 | 5.5122 | 1292
1291 | 5.5119 | 1292 | 774 | | 440 | 5.6417 | 1294 | 5.6416 | 1294 | 5.6413 | 1294 | 5.6410 | 1295 | 792 | | 450 | 5.7711 | 1004 | 5.7710 | 1294 | 5.7707 | 1295 | 5.7705 | 1294 | 810 | | 460 | 5.9005 | 1294
1296 | 5.9004 | 1296 | 5.9002 | 1296 | 5.8999 | 1297 | 828 | | 470 |
6.0301 | 1298 | 6.0300 | 1298 | 6.0298 | 1298 | 6.0296 | 1298 | 846 | | 480 | 6.1599 | 1300 | 6.1598 | 1300 | 6.1596 | 1301 | 6.1594 | 1301 | 864 | | 490 | 6.2899 | 1301 | 6.2898 | 1301 | 6.2897 | 1301 | 6.2895 | 1301 | 882 | | 500 | 6.4200 | 1304 | 6.4199 | 1304 | 6.4198 | 1304 | 6.4196 | 1305 | 900 | | 510 | 6.5504 | 1305 | 6.5503 | 1306 | 6.5502 | 1305 | 6.5501 | 1305 | 918 | | 520 | 6.6809 | 1308 | 6.6809 | 1308 | 6.6807 | 1308 | 6.6806 | 1308 | 936 | | 530 | 6.8117 | 1310 | 6.8117 | 1310 | 6.8115 | 1311 | 6.8114
6.9425 | 1311 | 954
972 | | 540 | 6.9427 | 1312 | 6.9427 | 1312 | 6.9426 | 1312 | 0.7423 | 1312 | 712 | | 550 | 7.0739 | 1314 | 7.0739 | 1314 | 7.0738 | 1314 | 7.0737 | 1314 | 990 | | 560 | 7.2053 | 1317 | 7.2053 | 1317 | 7.2052 | 1317 | 7.2051 | 1318 | 1008 | | 570 | 7.3370 | 1319 | 7.3370 | 1319 | 7.3369 | 1319 | 7.3369 | 1319 | 1026 | | 580 | 7.4689 | 1322 | 7.4689 | 1322 | 7.4688 | 1323 | 7.4688 | 1322 | 1044
1062 | | 590 | 7.6011 | 1324 | 7.6011 | 1324 | 7.6011 | 1324 | 7.6010 | 1325 | 1062 | | 600 | 7.7335 | 1327 | 7.7335 | 1327 | 7.7335 | 1327 | 7.7335 | 1327 | 1080 | | 610 | 7.8662 | 1330 | 7.8662 | 1330 | 7.8662 | 1330 | 7.8662 | 1330 | 1098
1116 | | 620
630 | 7.9992
8 . 1325 | 1333 | 7.9992
8.1325 | 1333
1335 | 7.9992
8.1325 | 1333
1335 | 7.9992
8.1325 | 1333
1336 | 1116 | | 640 | 8.2660 | 1335
1338 | 8.2660 | 1335
13 38 | 8.2660 | 1339 | 8.2661 | 1338 | 1152 | | | _ | | | | 8.3999 | | | | 1170 | | 650
660 | 8.3998
8.5339 | 1341
1344 | 8.3998
8.5339 | 1341
1344 | 8.5340 | 1341
1344 | 8.3999
8.5340 | 1341
1344 | 1188 | | 670 | 8.6683 | 1344
1347 | 8.6683 | 1347 | 8.6684 | 1347 | 8.6684 | 1348 | 1206 | | 680 | 8.8030 | 1349 | 8.8030 | 1349 | 8.8031 | 1349 | 8.8032 | 1349 | 1224 | | 690 | 8.9379 | 1353 | 8.9379 | 1353 | 8.9380 | 1353 | 8.9381 | 1353 | 1242 | | 700 | 9.0732 | | 9.0732 | | 9.0733 | | 9.0734 | | 1260 | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). Table 7-4. ENTHALPY OF NITROGEN - Cont.* | °K | .01 | atm | .1 | atm | .4 | atm | .7 | atm | °R | |------|---------|----------------|---------|-------|---------|-------|---------|--------|------| | | | | | | | | | | | | 700 | 9.0732 | 1356 | 9,0732 | 1356 | 9.0733 | 1356 | 9.0734 | 1356 | 1260 | | 710 | 9.2088 | 1358 | 9,2088 | 1358 | 9.2089 | 1358 | 9.2090 | 1358 | 1278 | | 720 | 9.3446 | 1362 | 9.3446 | 1362 | 9.3447 | 1362 | 9.3448 | 1363 | 1296 | | 730 | 9.4808 | 1364 | 9.4808 | 1364 | 9.4809 | 1365 | 9.4811 | 1364 | 1314 | | 740 | 9.6172 | 1368 | 9.6172 | 1368 | 9.6174 | 1368 | 9.6175 | 1368 | 1332 | | 750 | 9.7540 | 1370 | 9.7540 | 1370 | 9.7542 | 1370 | 9.7543 | 1370 | 1350 | | 760 | 9.8910 | 1374 | 9.8910 | 1374 | 9.8912 | 1374 | 9.8913 | 1374 | 1368 | | 770 | 10,0284 | 1376 | 10.0284 | 1376 | 10.0286 | 1376 | 10.0287 | 1376 | 1386 | | 780 | 10.1660 | 1380 | 10.1660 | 1380 | 10.1662 | 1380 | 10,1663 | 1381 | 1404 | | 790 | 10.3040 | 1383 | 10.3040 | 1383 | 10,3042 | 1383 | 10.3044 | 1383 | 1422 | | | | | | | | | | | | | 800 | 10.4423 | 13986 | 10.4423 | 13986 | 10,4425 | 13987 | 10.4427 | 13987 | 1440 | | 900 | 11.8409 | 14265 | 11.8409 | 14265 | 11.8412 | 14265 | 11.8414 | 14266 | 1620 | | 1000 | 13.2674 | 14519 | 13.2674 | 14519 | 13.2677 | 14520 | 13.2680 | 14520 | 1800 | | 1100 | 14.7193 | 14746 | 14.7193 | 14746 | 14.7197 | 14746 | 14.7200 | 14746 | 1980 | | 1200 | 16.1939 | 14944 | 16.1939 | 14944 | 16.1943 | 14945 | 16.1946 | 14945 | 2160 | | 1300 | 17.6883 | 15119 | 17.6883 | 15119 | 17.6888 | 15119 | 17.6891 | 15119 | 2340 | | 1400 | 19.2002 | 15273 | 19.2002 | 15273 | 19,2007 | 15273 | 19.2010 | 15274 | 2520 | | 1500 | 20.7275 | 15407 | 20.7275 | 15407 | 20,7280 | 15407 | 20.7284 | 15407 | 2700 | | 1600 | 22.2682 | 15524 | 22.2682 | 15524 | 22,2687 | 15524 | 22,2691 | 15524 | 2880 | | 1700 | 23.8206 | 15628 | 23.8206 | 15628 | 23.8211 | 15628 | 23.8215 | 15629 | 3060 | | 1800 | 25,3834 | 15720 | 25.3834 | 15720 | 25,3839 | 15721 | 25,3844 | 15720 | 3240 | | 1900 | 26,9554 | 15802 | 26.9554 | 15802 | 26.9560 | 15802 | 26.9564 | 1.5802 | 3420 | | 2000 | 28.5356 | 15876 | 28.5356 | 15876 | 28.5362 | 15876 | 28.5366 | 15876 | 3600 | | 2100 | 30.1232 | 15940 | 30.1232 | 15940 | 30.1238 | 15940 | 30,1242 | 15940 | 3780 | | 2200 | 31.7172 | 16000 | 31.7172 | 16000 | 31.7178 | 16000 | 31.7182 | 16000 | 3960 | | 2300 | 33.3172 | 16053 | 33.3172 | 16053 | 33.3178 | 16053 | 33.3182 | 16053 | 4140 | | 2400 | 34.9225 | 16102 | 34.9225 | 16102 | 34.9231 | 16102 | 34.9235 | 16102 | 4320 | | 2500 | 36,5327 | 16146 | 36.5327 | 16146 | 36.5333 | 16146 | 36.5337 | 16147 | 4500 | | 2600 | 38,1473 | 16188 | 38.1473 | 16188 | 38,1479 | 16188 | 38.1484 | 16188 | 4680 | | 2700 | 39.7661 | 16225 | 39.7661 | 16225 | 39.7667 | 16225 | 39.7672 | 16225 | 4860 | | 2800 | 41.3886 | 16259 | 41,3886 | 16259 | 41,3892 | 16259 | 41,3897 | 16259 | 5040 | | 2900 | 43.0145 | 16292 | 43.0145 | 16292 | 43.0151 | 16292 | 43,0156 | 16292 | 5220 | | 3000 | 44.6437 | - - | 44.6437 | | 44.6443 | • | 44.6448 | | 5400 | | | | | | | | | | | | ^{*} The enthalpy function is divided here by a constant BT_0 where T_0 = 273.16°K (491.688°R). Table 7-4. ENTHALPY OF NITROGEN - Cont.* | °K | [| I atm | 4 | atm | 7 | atm | 10 | atm | •R | |--------------------------|--------------------------------------|------------------------------|----------------------------|----------------------|------------------|--------------|------------------|----------------------|--------------------------| | 100
110
120
130 | 1.2589
1.3902
1.5205
1.6503 | 1313
1303
1298
1296 | 1.3343
1.4765
1.6128 | 1422
1363
1343 | 1,5721 | 1405 | | | 180
198
216
234 | | 140 | 1.7799 | 1292 | 1.7471 | 1330 | 1.7126 | 1372 | 1.6761 | 1426 | 252 | | 150
160 | 1.9091
2.0383 | 1292
1289 | 1.8801
2.0123 | 1322
1314 | 1.8498
1.9856 | 1358
1342 | 1.8187
1.9581 | 1 394
1372 | 270
288 | | 170
180 | 2.1672
2.2961 | 128 9
1287 | 2.1437
2.2748 | 1311
1306 | 2.1198
2.2532 | 1334
1326 | 2.0953
2.2313 | 1360
1347 | 306
324 | | 190 | 2.4248 | 1287 | 2.4054 | 1304 | 2.3858 | 1321 | 2.3660 | 1339 | 342 | | 200
210 | 2.5535
2.6822 | 1287
1285 | 2.5358
2.6659 | 1301
1298 | 2.5179
2.6496 | 1317
1311 | 2.4999
2.6331 | 1332
1325 | 360
378 | | 220 | 2.8107 | 1286 | 2.7957 | 1298 | 2.7807 | 1310 | 2.7656 | 1321 | 396 | | 230 | 2.9393 | 1286 | 2.9255 | 1296 | 2.9117 | 1306 | 2.8977 | 1317 | 414 | | 240 | 3.0679 | 1284 | 3.0551 | 1293 | 3.0423 | 1303 | 3.0294 | 1313 | 432 | | 250 | 3.1963 | 1284 | 3.1844 | 1294 | 3.1726 | 1302 | 3.1607 | 1311 | 450 | | 260 | 3.3247 | 1285 | 3.3138 | 1292 | 3.3028 | 1300 | 3.2918 | 1309 | 468 | | 270 | 3.4532 | 1284 | 3.4430 | 1292 | 3.4328 | 1300 | 3.4227 | 1306 | 486 | | 280 | 3.5816 | 1285 | 3,5722 | 1290 | 3.5628 | 1297 | 3.5533 | 1304 | 504 | | 290 | 3.7101 | 1284 | 3.7012 | 1290 | 3.6925 | · 1296 | 3.6837 | 1303 | 522 | | 300 | 3.8385 | 1284 | 3.8302 | 1291 | 3.8221 | 1296 | 3.8140 | 1302 | 540 | | 310 | 3.9669 | 1285 | 3.9593 | 1290 | 3.9517 | 1295 | 3.9442 | 1300 | 558 | | 320 | 4.0954 | 1285 | 4.0883 | 1289 | 4.0812 | 1295 | 4.0742
4.2041 | 1299 | 576
594 | | 330
340 | 4.2239
4.3523 | 1284
1286 | 4.2172
4.3461 | 1289
1290 | 4.2107
4.3400 | 1293
1294 | 4.3339 | 1298
1298 | 612 | | 35Ò | 4.4809 | 1286 | 4,4751 | 1290 | 4,4694 | 1294 | 4.4637 | 1298 | 630 | | 360 | 4.6095 | 1286 | 4.6041 | 1290 | 4.5988 | 1294 | 4.5935 | 1298 | 648 | | 370 | 4.7381 | 1286 | 4.7331 | 1290 | 4.7282 | 1293 | 4.7233 | 1297 | 666 | | 380 | 4.8667 | 1289 | 4.8621 | 1291 | 4.8575 | 1295 | 4.8530 | 1298 | 684 | | 390 | 4.9956 | 1288 | 4.9912 | 1291 | 4.9870 | 1294 | 4.9828 | 1297 | 702 | | 400 | 5.1244 | 1290 | 5.1203 | 1293 | 5.1164 | 1296 | 5,1125 | 1299 | 720 | | 410 | 5.2534 | 1290 | 5.2496 | 1293 | 5.2460 | 1296 | 5.2424 | 1298 | 738 | | 420 | 5.3824 | 1291 | 5.3789 | 1295 | 5.3756 | 1297 | 5.3722 | 1300 | 756 | | 430 | 5.5115 | 1292 | 5.5084 | 1294 | 5.5053 | 1297 | 5,5022 | 1299 | 774 | | 440 | 5.6407 | 1295 | 5.6378 | 1297 | 5.6350 | 1299 | 5.6321 | 1302 | 792 | | 450 | 5.7702 | 1295 | 5.7675 | 1297 | 5.7649 | 1299 | 5.7623 | 1302 | 810 | | 460 | 5.8997 | 1296 | 5.8972 | 12 99 | 5.8948 | 1301 | 5.8925 | 1303 | 828 | | 470 | 6.0293 | 1299 | 6.0271 | 1301 | 6.0249 | 1303 | 6.0228 | 1305 | 846 | | 480 | 6.1592 | 1301 | 6.1572
6.2874 | 1302 | 6.1552
6.2857 | 1305 | 6.1533
6.2839 | 1306
1308 | 864
882 | | 490 | 6.2893 | 1301 | | 1304 | | 1305 | | | | | 500 | 6.4194 | 1305 | 6.4178 | 1306 | 6.4162 | 1308 | 6.4147 | 1310 | 900 | | 510 | 6.5499 | 1306 | 6.5484 | 1308 | 6.5470 | 1309 | 6.5457
6.6767 | 1310 | 918
936 | | 520 | 6.6805 | 1308 | 6.6792
6.8102 | 1310 | 6.6779
6.8091 | 1312 | 6.8081 | 1314
1314 | 954 | | 530
540 | 6.8113
6.9424 | 1311
1312 | 6.9414 | 1312
1314 | 6.9405 | 1314
1316 | 6.9395 | 1317 | 972 | | 550 | 7.0736 | 1315 | 7.0728 | 1316 | 7.0721 | 1317 | 7.0712 | 1319 | 990 | | 560 | 7.2051 | 1317 | 7.2044 | 1319 | 7.2038 | 1320 | 7.2031 | 1322 | 1008 | | 570 | 7.3368 | 1320 | 7.3363 | 1320 | 7.3358 | 1322 | 7.3353 | 1323 | 1026 | | 580 | 7.4688 | 1322 | 7.4683 | 1324 | 7.4680 | 1326 | 7.4676 | 1326 | 1044 | | 590 | 7.6010 | 1324 | 7.6007 | 1326 | 7.6006 | 1326 | 7.6002 | 1329 | 1062 | | 600 | 7.7334 | 1328 | 7.7333 | 1328 | 7.7332 | 1330 | 7.7331 | 1331 | 1080 | | 610 | 7.8662 | 1330 | 7.8661 | 1332 | 7.8662
7.9995 | 1333 | 7.8662
7.9995 | 1333 | 1098
1116 | | 620
630 | 7.9992
8.1325 | 1333 | 7.9993
8.1327 | 1334 | 8.1330 | 1335
1338 | 8.1332 | 1337
1339 | 1134 | | 630
640 | 8.2661 | 1336
1338 | 8.2664 | 1337
1339 | 8.2668 | 1338 | 8.2671 | 1341 | 1152 | | 650 | 8.3999 | 1341 | 8.4003 | 1343 | 8.4008 | 1344 | 8.4012 | 1345 | 1170 | | 660 | 8.5340 | 1345 | 8.5346 | 1345 | 8.5352 |
1346 | 8.5357 | 1347 | 1188 | | 670 | 8.6685 | 1347 | 8.6691 | 1348 | 8.6698 | 1348 | 8.6704 | 1349 | 1206 | | 680 | 8.8032 | 1349 | 8.8039 | 1350 | 8.8046 | 1351 | 8.8053 | 1353 | 1224 | | 690 | 8,9381 | 1354 | 8.9389 | 1355 | 8.9397 | 1355 | 8.9406 | 1356 | 1242 | | 700 | 9.0735 | | 9.0744 | | 9.0752 | | 9.0762 | | 1260 | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). | | | | 1 | | | | <u> </u> | | 7 | |--------------|--------------------|-------|---------|----------------|--------------------|------------------|--------------------|---------------|------| | °K | | l atm | 4 | atm | 7 | atm | 10 | atm | *R | | | | | | | | | | | | | 700 | 9.0735 | 1356 | 9.0744 | 1 3 57 | 9.0752 | 1358 | 9.0762 | 1359 | 1260 | | 710 | 9.2091 | 1358 | 9.2101 | 1359 | 9.2110 | 1360 | 9.2121 | 1360 | 1278 | | 720 | 9.3449 | 1363 | 9.3460 | 1363 | 9.3470 | 1364 | 9.3481 | 1365 | 1296 | | 730
740 | 9.4812 | 1364 | 9.4823 | 1365 | 9.4834 | 1366 | 9.4846 | 1367 | 1314 | | 740 | 9.6176 | 1368 | 9,6188 | 1369 | 9.6200 | 13 69 | 9.6213 | 1370 | 1332 | | 750 | 9.7544 | 1370 | 9.7557 | 1371 | 9.7569 | 1372 | 9.7583 | 1 3 72 | 1350 | | 760 | 9.8914 | 1375 | 9.8928 | 1375 | 9.8941 | 1376 | 9.8955 | 1377 | 1368 | | 770
780 | 10.0289 | 1376 | 10.0303 | 1377 | 10.0317 | 1377 | 10.0332 | 1378 | 1386 | | 780
790 | 10.1665
10.3045 | 1380 | 10.1680 | 1381 | 10.1694 | 1381 | 10.1710 | 1382 | 1404 | | 790 | 10.3045 | 1383 | 10.3061 | 1383 | 10.3075 | 1385 | 10.3092 | 1385 | 1422 | | 800 | 10.4428 | 13988 | 10,4444 | 1000 | 10 44/0 | | 10 44== | | | | 900 | 11.8416 | 14267 | 11.8438 | 13994
14270 | 10.4460
11.8459 | 13999 | 10.4477 | 14005 | 1440 | | 1000 | 13.2683 | 14520 | 13.2708 | 14270 | 13.2734 | 14275 | 11.8482 | 14278 | 1620 | | 1100 | 14.7203 | 14747 | 14.7232 | 14524 | 14.7261 | 14527 | 13.2760
14.7290 | 14530 | 1800 | | 1200 | 16.1950 | 14944 | 16.1982 | 14750 | 16.2014 | 14753
14949 | 16.2046 | 14756 | 1980 | | | | 21741 | | 14241 | 10.2014 | 14949 | 10.2046 | 14951 | 2160 | | 1300 | 17.6894 | 15120 | 17.6929 | 15121 | 17.6963 | 15123 | 17.6997 | 15125 | 2340 | | 1400 | 19.2014 | 15274 | 19.2050 | 15275 | 19.2086 | 15277 | 19.2122 | 15278 | 2520 | | 1500 | 20.7288 | 15407 | 20.7325 | 15409 | 20.7363 | 15410 | 20.7400 | 15412 | 2700 | | 1600 | 22.2695 | 15524 | 22,2734 | 15525 | 22.2773 | 15526 | 22,2812 | 15528 | 2880 | | 1700 | 23.8219 | 15629 | 23,8259 | 15630 | 23.8299 | 15631 | 23.8340 | 15631 | 3060 | | 1800 | 25.3848 | 15720 | 25.3889 | 15721 | 25.3930 | 15722 | 25,3971 | 15722 | 3240 | | 1900 | 26.9568 | 15802 | 26.9610 | 15803 | 26.9652 | 15803 | 26.9693 | 15805 | 3420 | | 2000
2100 | 28.5370 | 15876 | 28.5413 | 15877 | 28.5455 | 15878 | 28.5498 | 15878 | 3600 | | 2200 | 30.1246 | 15941 | 30.1290 | 15940 | 30.1333 | 15941 | 30.1376 | 15942 | 3780 | | 2200 | 31.7187 | 16000 | 31.7230 | 16001 | 31.7274 | 16001 | 31.7318 | 16001 | 3960 | | 2300 | 33.3187 | 16053 | 33.3231 | 16053 | 33.3275 | 16054 | 33.3319 | 16055 | 4140 | | 2400 | 34.9240 | 16102 | 34.9284 | 16103 | 34.9329 | 16103 | 34.9374 | 16103 | 4320 | | 2500
2600 | 36.5342 | 16146 | 36.5387 | 16146 | 36.5432 | 16147 | 36.5477 | 16147 | 4500 | | 2600
2700 | 38.1488
39.7676 | 16188 | 38.1533 | 16189 | 38.1579 | 16188 | 38.1624 | 16189 | 4680 | | | J7.1010 | 16225 | 39.7722 | 16225 | 39.7767 | 16226 | 39.7813 | 16226 | 4860 | | 2800 | 41.3901 | 16259 | 41.3947 | 16259 | 41.3993 | 16259 | 41.4039 | 16259 | 5040 | | 2900 | 43.0160 | 16292 | 43.0206 | 16293 | 43.0252 | 16293 | 43.0298 | 16293 | 5220 | | 3000 | 44.6452 | | 44.6499 | | 44.6545 | | 44.6591 | | 5400 | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). Table 7-4. ENTHALPY OF NITROGEN - Cont.* | °K | 10 | atm | 40 | atm | 70 | atm | 100. | atm | °R | |--------------------------|--------------------------------------|------------------------------|--------|---------------|--------|------|--------|-------------|--------------------------| | 140 | 1.6761 | 1426 | · · · | | | | | | 252 | | 150
160
170
180 | 1.8187
1.9581
2.0953
2.2313 | 1394
1372
1360
1347 | 1.9967 | 1615 | | | | | 270
288
306
324 | | 190 | 2.3660 | 1339 | 2.1582 | 1558 | 1.941 | 184 | | | 342 | | 200 | 2.4999 | 1332 | 2.3140 | 1513 | 2.125 | 173 | 1.94 | 20 | 360 | | 210 | 2.6331 | 1325 | 2.4653 | 1479 | 2.298 | 166 | 2.14 | 18 | 378 | | 220 | 2.7656 | 1321 | 2.6132 | 1455 | 2.464 | 160 | 2.32 | 18 | 396 | | 230 | 2.8977 | 1317 | 2.7587 | 1435 | 2.624 | 156 | 2.50 | 17 | 414 | | 240 | 3.0294 | 1313 | 2.9022 | 1417 | 2.780 | 152 | 2.67 | 16 | 432 | | 250 | 3.1607 | 1311 | 3.0439 | 1398 | 2.932 | 149 | 2.83 | 15 | 450 | | 260 | 3.2918 | 1309 | 3.1837 | 1395 | 3.081 | 148 | 2.98 | 16 | 468 | | 270 | 3.4227 | 1306 | 3.3232 | 1382 | 3.229 | 146 | 3.14 | 16 | 486 | | 280 | 3.5533 | 1304 | 3.4614 | 1372 | 3.375 | 144 | 3.298 | 150 | 504 | | 290 | 3.6837 | 1303 | 3.5986 | 1 36 5 | 3.519 | 143 | 3.448 | 1 48 | 5 22 | | 300 | 3:8140 | 1302 | 3.7351 | 1359 | 3.662 | 141 | 3.596 | 147 | 540 | | 310 | 3.9442 | 1300 | 3.8710 | 1353 | 3.803 | 140 | 3.743 | 145 | 558 | | 320 | 4.0742 | 1299 | 4.0063 | 1347 | 3.943 | 140 | 3.888 | 144 | 576 | | 330 | 4.2041 | 1298 | 4.1410 | 1345 | 4.083 | 139 | 4.032 | 142 | 594 | | 340 | 4.3339 | 1298 | 4.2755 | 1340 | 4.222 | 138 | 4.174 | 142 | 612 | | 350 | 4.4637 | 1298 | 4.4095 | 1337 | 4.3600 | 1374 | 4.316 | 141 | 630 | | 360 | 4.5935 | 1298 | 4.5432 | 1335 | 4.4974 | 1369 | 4.457 | 140 | 648 | | 370 | 4.7233 | 1297 | 4.6767 | 1329 | 4.6343 | 1364 | 4.597 | 139 | 666 | | 380 | 4.8530 | 1298 | 4.8096 | 1331 | 4.7707 | 1361 | 4.736 | 139 | 684 | | 390 | 4.9828 | 1297 | 4.9427 | 1329 | 4.9068 | 1358 | 4.875 | 138 | 702 | | 400 | 5.1125 | 1299 | 5.0756 | 1327 | 5.0426 | 1354 | 5.013 | 138 | 720 | | 410 | 5.2424 | 1298 | 5.2083 | 1325 | 5.1780 | 1351 | 5.151 | 138 | 738 | | 420 | 5.3722 | 1300 | 5.3408 | 1326 | 5.3131 | 1351 | 5.2892 | 1374 | 756 | | 430 | 5.5022 | 1299 | 5.4734 | 1323 | 5.4482 | 1345 | 5.4266 | 1365 | 774 | | 440 | 5.6321 | 1302 | 5.6057 | 1325 | 5.5827 | 1348 | 5.5631 | 1368 | 792 | | 450 | 5.7623 | 1302 | 5.7382 | 1323 | 5.7175 | 1343 | 5.6999 | 1362 | 810 | | 460 | 5.8925 | 1303 | 5.8705 | 1325 | 5.8518 | 1344 | 5.8361 | 1362 | 828 | | 470 | 6.0228 | 1305 | 6.0030 | 1325 | 5.9862 | 1342 | 5.9723 | 1361 | 846 | | 480 | 6.1533 | 1306 | 6.1355 | 1325 | 6.1204 | 1344 | 6.1084 | 1360 | 864 | | 490 | 6.2839 | 1308 | 6.2680 | 1325 | 6.2548 | 1343 | 6.2444 | 1358 | 882 | | 500 | 6.4147 | 1310 | 6,4005 | 1327 | 6.3891 | 1343 | 6.3802 | 1359 | 900 | | 510 | 6.5457 | 1310 | 6.5332 | 1327 | 6.5234 | 1342 | 6.5161 | 1357 | 918 | | 520 | 6.6767 | 1314 | 6.6659 | 1329 | 6.6576 | 1344 | 6.6518 | 1359 | 936 | | 530 | 6.8081 | 1314 | 6.7988 | 1330 | 6.7920 | 1345 | 6.7877 | 1356 | 954 | | 540 | 6.9395 | 1317 | 6.9318 | 1332 | 6.9265 | 1345 | 6.9233 | 1359 | 972 | | 550 | 7.0712 | 1319 | 7.0650 | 1332 | 7.0610 | 1346 | 7.0592 | 1358 | 990 | | 560 | 7.2031 | 1322 | 7.1982 | 1335 | 7.1956 | 1348 | 7.1950 | 1360 | 1008 | | 570 | 7.3353 | 1323 | 7.3317 | 1336 | 7.3304 | 1348 | 7.3310 | 1359 | 1026 | | 580 | 7.4676 | 1326 | 7.4653 | 1339 | 7.4652 | 1351 | 7.4669 | 1363 | 1044 | | 590 | 7.6002 | 1329 | 7.5992 | 1340 | 7.6003 | 1351 | 7.6032 | 1361 | 1062 | | 600 | 7.7331 | 1331 | 7.7332 | 1342 | 7.7354 | 1353 | 7.7393 | 1363 | 1080 | | 610 | 7.8662 | 1333 | 7.8674 | 1346 | 7.8707 | 1355 | 7.8756 | 1365 | 1098 | | 620 | 7.9995 | 1337 | 8.0020 | 1347 | 8.0062 | 1358 | 8.0121 | 1368 | 1116 | | 630 | 8.1332 | 1339 | 8.1367 | 1349 | 8.1420 | 1357 | 8.1489 | 1368 | 1134 | | 640 | 8.2671 | 1341 | 8.2716 | 1351 | 8.2777 | 1361 | 8.2857 | 1369 | 1152 | | 650 | 8.4012 | 1345 | 8.4067 | 1354 | 8.4138 | 1364 | 8.4226 | 1371 | 1170 | | 660 | 8.5357 | 1347 | 8.5421 | 1356 | 8.5502 | 1365 | 8.5597 | 1374 | 1188 | | 670 | 8.6704 | 1349 | 8.6777 | 1359 | 8.6867 | 1368 | 8.6971 | 1375 | 1206 | | 680 | 8.8053 | 1353 | 8.8136 | 1361 | 8.8235 | 1368 | 8.8346 | 1378 | 1224 | | 690 | 8.9406 | 1356 | 8.9497 | 1364 | 8.9603 | 1374 | 8.9724 | 1379 | 1242 | | 700 | 9.0762 | | 9.0861 | | 9.0977 | | 9.1103 | | 1260 | ^{*}The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). Table 7-4. ENTHALPY OF NITROGEN - Cont.* | Γable | | IALPY O | F NITROGE | N - Cont. | k . | | | (H-E ^o ₀)/R' | | |------------------|---------|---------|-----------|-----------|---------|--------------|---------|-------------------------------------|------| | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | °R | | 700 | 9.0762 | 1359 | 9.0861 | 1366 | 9.0977 | 1070 | 9.1103 | | 1260 | | 710 | 9.2121 | 1360 | 9.2227 | 1369 | 9.2350 | 1373
1377 | 9.2484 | 1381 | 1278 | | 720 | 9.3481 | 1365 | 9.3596 | 1373 | 9.3727 | | 9.3868 | 1384 | 1276 | | 730 | 9.4846 | 1367 | 9.4969 | 1373 | 9.5106 | 1379 | 9.5254 | 1386 | | | 740 | 9.6213 | 1370 | 9.6342 | | 9.6487 | 1381 | | 1388 | 1314 | | 740 | 7.0213 | 13/0 | 7.0342 | 1378 | 9.5487 | 1384 | 9.6642 | 1391 | 1332 | | 750 | 9.7583 | 1372 | 9.7720 | 1380 | 9.7871 | 1386 | 9.8033 | 1392 | 1350 | | 760 | 9.8955 | 1377 | 9.9100 | 1382 | 9.9257 | 1390 | 9.9425 | 1395 | 1368 | | 770 | 10.0332 | 1378 | 10.0482 | 1385 | 10,0647 | 1391 | 10.0820 | 1398 | 1386 | | 780 | 10.1710 | 1382 | 10.1867 | 1389 | 10.2038 | 1394 | 10.2218 | 1400 | 1404 | | 7 9 0 | 10.3092 | 1385 | 10.3256 | 1391 | 10.3432 | 1397 | 10.3618 | 1402 | 1422 | | 800 | 10.4477 | 14005 | 10,4647 | 14058 | 10.4829 | 14108 | 10.5020 | 14157 | 1440 | | 900 | 11.8482 | 14278 | 11.8705 | 14320 | 11.8937 | 14359 | 11.9177 | | 1620 | | LÓOO | 13.2760 | 14530 | 13.3025 | 14563 | 13.3296 | 14595 | 13.3573 | 14396 | 1800 | | 1100 | 14.7290 | 14756 | 14.7588 | 14781 | 14.7891 | | 14.8197 | 14624 | 1980 | | 1200 | 16.2046 | | 16.2369 | | 16.2697 | 14806 | | 14832 | | | 1200 | 10.2040 | 14951 | 10.2369 | 14974 | 10.2097 | 14994
 16.3029 | 15014 | 2160 | | 1300 | 17.6997 | 15125 | 17.7343 | 15143 | 17,7691 | 15160 | 17.8043 | 15178 | 2340 | | L400 | 19.2122 | 15278 | 19.2486 | 15293 | 19.2851 | 15308 | 19.3221 | 15321 | 2520 | | 1500 | 20.7400 | 15412 | 20.7779 | 15424 | 20.8159 | 15438 | 20.8542 | 15450 | 2700 | | 1600 | 22.2812 | 15528 | 22,3203 | 15539 | 22.3597 | 15549 | 22,3992 | 15558 | 2880 | | L700 | 23.8340 | 15631 | 23.8742 | 15640 | 23.9146 | 15649 | 23.9550 | 15659 | 3060 | | 1800 | 25.3971 | 15722 | 25,4382 | 15731 | 25,4795 | 15738 | 25,5209 | 15745 | 3240 | | 1900 | 26.9693 | 15805 | 27.0113 | 15811 | 27.0533 | 15819 | 27.0954 | 15825 | 3420 | | 2000 | 28.5498 | 15878 | 28.5924 | 15884 | 28,6352 | 15889 | 28,6779 | 15895 | 3600 | | 2100 | 30,1376 | 15942 | 30.1808 | 15947 | 30.2241 | 15952 | 30.2674 | 15958 | 3780 | | 2200 | 31.7318 | 16001 | 31.7755 | 16006 | 31.8193 | 16010 | 31.8632 | 16015 | 3960 | | 300 | 33.3319 | 16055 | 33.3761 | 16058 | 33.4203 | 16063 | 33.4647 | 16065 | 4140 | | 2400 | 34.9374 | 16103 | 34.9819 | 16107 | 35.0266 | 16111 | 35.0712 | 16115 | 4320 | | 2500 | 36,5477 | 16147 | 36.5926 | 16150 | 36.6377 | 16153 | 36,6827 | 16156 | 4500 | | 2600 | 38.1624 | 16189 | 38.2076 | 16192 | 38.2530 | 16193 | 38,2983 | 16196 | 4680 | | 2700 | 39.7813 | 16226 | 39.8268 | 16228 | 39.8723 | 16231 | 39.9179 | 16234 | 4860 | | 800 | 41.4039 | 16259 | 41.4496 | 16262 | 41.4954 | 16264 | 41.5413 | 16265 | 5040 | | 900 | 43.0298 | 16293 | 43.0758 | 16295 | 43,1218 | 16296 | 43.1678 | 16298 | 5220 | | 3000 | 44.6591 | | 44.7053 | | 44,7514 | | 44,7976 | | 5400 | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). | °K | .01 | atm | 1 | atm | .4 | atm . | .7 | atm | °R | |------------|--------------------|------------------------|--------------------|--------------|--------------------|--------------|--------------------|--------------|--------------------| | | | | <u> </u> | | <u> </u> | | <u>'''</u> | uiiii | | | | | | | | | | | | | | 100 | 23.8092 | 3338 | 21.5037 | 3344 | 20.1079 | 3364 | 19.5381 | 3390 | 180 | | 110 | 24.1430 | 3046 | 21.8381 | 3051 | 20.4443 | 3066 | 19.8771 | 3082 | 198 | | 120 | 24.4476 | 2801 | 22.1432 | 2805 | 20.7509 | 2816 | 20.1853 | 2826 | 216 | | 130
140 | 24.7277 | 2596 | 22.4237 | 2597 | 21.0325 | 2605 | 20.4679 | 2613 | 234 | | 140 | 24.9873 | 2415 | 22,6834 | 2417 | 21.2930 | 2424 | 20.7292 | 2431 | 252 | | 150 | 25,2288 | 2259 | 22,9251 | 2261 | 21,5354 | 2265 | 20.9723 | 2270 | 270 | | 160 | 25.4547 | 2123 | 23,1512 | 2124 | 21.7619 | 21.97 | 21.1993 | 2133 | 288 | | 170 | 25,6670 | 2000 | 23.3636 | 2001 | 21.9816 | 1936 | 21.4126 | 2007 | 306 | | 180 | 25.8670 | 1893 | 23.5637 | 1894 | 22.1752 | 1897 | 21.6133 | 1900 | 324 | | 190 | 26.0563 | 1796 | 23.7531 | 1797 | 22.3649 | 1798 | 21,8033 | 1801 | 342 | | 200 | 26.2359 | 1708 | 23,9328 | 1709 | 22,5447 | 1711 | 21.9834 | 1712 | 360 | | 210 | 26,4067 | 1630 | 24.1037 | 1629 | 22.7158 | 1631 | 22.1546 | 1633 | 378 | | 220 | 26.5697 | 1556 | 24.2666 | 1557 | 22.8789 | 1558 | 22.3179 | 1559 | 396 | | 230 | 26.7253 | 1490 | 24.4223 | 1490 | 23.0347 | 1492 | 22,4738 | 1493 | 414 | | 240 | 26.8743 | 1429 | 24.5713 | 1429 | 23.1839 | 1430 | 22.6231 | 1431 | 432 | | 250 | 27.0172 | | 24 77 42 | | 32 22/0 | | 22.7//2 | | 450 | | 260 | 27.0172 | 1373
1 32 2 | 24.7142
24.8516 | 1374
1322 | 23.3269
23.4643 | 1374 | 22.7662
22.9037 | 1375 | 450
468 | | 270 | 27.2867 | 1322 | 24.9838 | 1273 | 23.5966 | 1323
1274 | 23.0361 | 1324
1275 | 486 | | 280 | 27.4140 | 1229 | 25.1111 | 1229 | 23.7240 | 1230 | 23.1636 | 1231 | 504 | | 290 | 27,5369 | 1188 | 25.2340 | 1189 | 23.8470 | 1189 | 23.2867 | 11.89 | 522 | | | | • | | | | | | | | | 300 | 27.6557 | 1149 | 25.3529 | 1149 | 23,9659 | 1149 | 23.4056 | 1150 | 540 | | 310 | 27.7706 | 1112 | 25.4678 | 1112 | 24.0808 | 1113 | 23.5206 | 1113 | 558 | | 320
330 | 27.8818
27.9897 | 1079 | 25.5790 | 1079 | 24.1921 | 1080 | 23.6319 | 1080 | 576 | | 340 | 28.0943 | 1046
1017 | 25.6869
25.7915 | 1046
1017 | 24.3001
24.4047 | 1046
1018 | 23.7399
23.8446 | 1047
1018 | 59 4
612 | | 240 | 20.0745 | 1017 | 23.1713 | 1017 | 24.4047 | 1010 | 27.0440 | 1018 | 012 | | 350 | 28.1960 | 988 | 25.8932 | 988 | 24.5065 | 988 | 23.9464 | 988 | 630 | | 360 | 28.2948 | 962 | 25.9920 | 963 | 24.6053 | 962 | 24.0452 | 963 | 648 | | 370 | 28.3910 | 937 | 26.0883 | 937 | 24.7015 | 938 | 24.1415 | 938 | 666 | | 380
390 | 28.4847
28.5759 | 912 | 26.1820 | 912 | 24.7953 | 912 | 24.2353 | 912 | 684 | | 370 | 20,5757 | 891 | 26.2732 | 891 | 24.8865 | 891 | 24.3265 | 892 | 702 | | 400 | 28.6650 | 869 | 26,3623 | 869 | 24.9756 | 869 | 24,4157 | 869 | 720 | | 410 | 28.7519 | 849 | 26.4492 | 849 | 25.0625 | 850 | 24.5026 | 850 | 738 | | 420 | 28.8368 | 829 | 26.5341 | 829 | 25.1475 | 829 | 24.5876 | 829 | 756 | | 430 | 28.9197 | 81 1 | 26.6170 | 812 | 25.2304 | 811 | 24.6705 | 811 | 774 | | 440 | 29.0008 | 794 | 26.6982 | 793 | 25,3115 | 794 | 24.7516 | 79 5 | 792 | | 450 | 29.0802 | 777 | 26.7775 | 777 | 25.3909 | 770 | 24 0211 | *** | 010 | | 460 | 29.1579 | 777
762 | 26.8552 | 777
762 | 25.4687 | 778
762 | 24.8311
24.9088 | 177
762 | 810
828 | | 470 | 29.2341 | 746 | 26.9314 | 746 | 25.5449 | 746 | 24.9850 | 762
747 | 846 | | 480 | 29.3087 | 732 | 27.0060 | 732 | 25.6195 | 732 | 25.0597 | 732 | 864 | | 490 | 29.3819 | 719 | 27.0792 | 719 | 25.6927 | 719 | 25.1329 | 719 | 882 | | 500 | 20 4520 | | 07.1611 | | 7/4/ | | 05 00 10 | | | | 500
510 | 29.4538
29.5243 | 705
69 2 | 27.1511
27.2216 | 705 | 25.7646
25.8351 | 705 | 25.2048 | 705 | 900
918 | | 520 | 29.5935 | 680 | 27.2908 | 692
680 | 25.9043 | 692
681 | 25.2753
25.3445 | 692
681 | 936 | | 530 | 29.6615 | 669 | 27.3588 | 669 | 25,9724 | 669 | 25.4126 | 669 | 954 | | 540 | 29.7284 | 658 | 27.4257 | 658 | 26.0393 | 658 | 25.4795 | 658 | 972 | | | 00 70 | | | | | | | | | | 550 | 29.7942 | 647 | 27.4915 | 647 | 26.1051 | 647 | 25.5453 | 647 | 990 | | 560
570 | 29.8589 | 636 | 27.5562 | 636 | 26.1698 | 636 | 25.6100 | 636 | 1008 | | 570
580 | 29.9225
29.9852 | 627
617 | 27.6198
27.6826 | 628
617 | 26.2334
26.2961 | 627
417 | 25.6736
25.7364 | 628 | 1026
1044 | | 590 | 30.0469 | 608 | 27.7443 | 608 | 26.3578 | 617
608 | 25.7981 | 617
608 | 1062 | | | ··· · | | | | -0.7570 | 400 | -2., /01 | 000 | 1002 | | 600 | 30.1077 | 600 | 27.8051 | 600 | 26.4186 | 600 | 25.8589 | 600 | 1080 | | 610 | 30.1677 | 590 | 27.8651 | 590 | 26.4786 | 590 | 25.9189 | 59 0 | 1098 | | 620 | 30.2267 | 583 | 27.9241 | 583 | 26.5376 | 583 | 25.9779 | 583 | 1116 | | 630
640 | 30.2850
30.3424 | 574
567 | 27.9824
28.0398 | 574
567 | 26.5959
26.6533 | 57 4 | 26.0362
26.0936 | 57 4 | 1134
1152 | | 540 | JU, J 12 1 | <i>3</i> 01 | -0.0770 | 201 | 20,0000 | 567 | 20,0730 | 567 | 1136 | | 650 | 30.3991 | 559 | 28.0965 | 559 | 26.7100 | 560 | 26.1503 | 559 | 1170 | | 660 | 30.4550 | 552 | 28.1524 | 552 | 26.7660 | 552 | 26.2062 | 553 | 1188 | | 670 | 30.5102 | 545 | 28.2076 | 545 | 26.8212 | 545 | 26,2615 | 545 | 1206 | | 680
690 | 30.5647
30.6185 | 538 | 28.2621 | 538 | 26,8757 | 538 | 26.3160 | 538 | 1224 | | 070 | 30.6185 | 532 | 28.3159 | 532 | 26.9295 | 532 | 26.3698 | 532 | 1242 | | 700 | 30.6717 | | 28.3691 | | 26,9827 | | 26,4230 | | 1260 | | | | | | | - " | | | | | | | | | | | | | | | • | |------|---------|--------------|--------------------|------|--------------------|------------------|--------------------|------------------|------| | °K | .01 | atm | .1 | atm | .4 | atm | .7 | atm | °R | | | | | | | | | • | | | | 700 | 30.6717 | 525 | 28,3691 | 525 | 26.9827 | 525 | 26,4230 | 525 | 1260 | | 710 | 30.7242 | 519 | 28.4216 | 519 | 27.0352 | 519 | 26,4755 | 519 | 1278 | | 720 | 30.7761 | 513 | 28.4735 | 513 | 27.0871 | 513 | 26.5274 | 513 | 1296 | | 730 | 30.8274 | 507 | 28.5248 | 507 | 27.1384 | 507 | 26.5787 | 507 | 1314 | | 740 | 30.8781 | 502 | 28.5755 | 502 | 27.1891 | 502 | 26.6294 | 502 | 1332 | | 750 | 30.9283 | 496 | 28.6257 | 496 | 27,2393 | 496 | 26.6796 | 496 | 1350 | | 760 | 30.9779 | 490 | 28.6753 | 490 | 27.2889 | 490 | 26.7292 | 490 | 1368 | | 770 | 31.0269 | 486 | 28.7243 | 485 | 27.3379 | 485 | 26,7782 | 485 | 1386 | | 780 | 31.0754 | 481 | 28.7728 | 481 | 27.3864 | 481 | 26.8267 | 481 | 1404 | | 790 | 31.1235 | 475 | 28.8209 | 475 | 27.4345 | 475 | 26.8748 | 475 | 1422 | | 800 | 31.1710 | | 20.0/04 | | 27 4000 | | | | | | 900 | 31.6208 | 4498 | 28.8684 | 4498 | 27.4820 | 4498 | 26.9223 | 4499 | 1440 | | 1000 | 32.0313 | 4105
3779 | 29.3182
29.7287 | 4105 | 27.9318 | 4106 | 27.3722 | 4105 | 1620 | | 1100 | 32.4092 | 3779
3504 | 30.1066 | 3779 | 28.3424
28.7203 | 3779 | 27.7827 | 3779 | 1800 | | 1200 | 32.7596 | 3268 | 30.4570 | 3504 | 29.0707 | 3504 | 28.1606
28.5110 | 3504 | 1980 | | 1200 | J2.1370 | 3200 | 30.4570 | 3268 | 27.0707 | 3268 | 28.5110 | 32 69 | 2160 | | 1300 | 33.0864 | 3060 | 30,7838 | 3060 | 29,3975 | 3060 | 28.8379 | 3060 | 2340 | | 1400 | 33.3924 | 2879 | 31.0898 | 2879 | 29.7035 | 2879 | 29.1439 | 2879 | 2520 | | 1500 | 33.6803 | 2716 | 31.3777 | 2716 | 29,9914 | 2716 | 29,4318 | 2716 | 2700 | | 1600 | 33.9519 | 2570 | 31.6493 | 2570 | 30.2630 | 2570 | 29.7034 | 2570 | 2880 | | 1700 | 34.2089 | 2440 | 31.9063 | 2440 | 30.5200 | 2440 | 29.9604 | 2440 | 3060 | | 1800 | 34,4529 | 2322 | 32.1503 | 2322 | 30,7640 | 2322 | 30,2044 | 2322 | 3240 | | 1900 | 34.6851 | 2214 | 32.3825 | 2214 | 30,9962 | 2214 | 30,4366 | 2214 | 3420 | | 2000 | 34.9065 | 2116 | 32.6039 | 2116 | 31.2176 | 2116 | 30.6580 | 2116 | 3600 | | 2100 | 35.1181 | 2025 | 32.8155 | 2025 | 31.4292 | 2025 | 30.8696 | 2025 | 3780 | | 2200 | 35.3206 | 1943 | 33.0180 | 1943 | 31.6317 | 1943 | 31.0721 | 1943 | 3960 | | 2300 | 35.5149 | 1866 | 33,2123 | 1866 | 31.8260 | 1866 | 31,2664 | 1866 | 4140 | | 2400 |
35.7015 | 1796 | 33.3989 | 1796 | 32.0126 | 1796 | 31.4530 | 1796 | 4320 | | 2500 | 35.8811 | 1729 | 33.5785 | 1729 | 32.1922 | 1729 | 31.6326 | 1729 | 4500 | | 2600 | 36.0540 | 1669 | 33.7514 | 1669 | 32.3651 | 16 69 | 31.8055 | 1669 | 4680 | | 2700 | 36.2209 | 1612 | 33,9183 | 1612 | 32.5320 | 1612 | 31.9724 | 1612 | 4860 | | 2800 | 36.3821 | 1558 | 34.0795 | 1558 | 32.6932 | 1558 | 32.1336 | 1558 | 5040 | | 2900 | 36.5379 | 1509 | 34.2353 | 1509 | 32.8490 | 1509 | 32.2894 | 1509 | 5220 | | 3000 | 36.6888 | | 34.3862 | | 32.9999 | | 32.4403 | | 5400 | | | | | | | | | | | | | °K | ı | atm | 4 | atm | 7 | atm | 10 | atm | •R | |------------|-----------------------------|----------------------|--------------------|--------------|--------------------|----------------------|--------------------|-----------------|----------------------| | Щ | | · | <u> </u> | | | | | | | | | | • | | | | | | | | | 100 | 19.1705 | 3420 | 17.607 | 424 | 16.55 | 77 | | | 180 | | 110
120 | 19.5125
19.8224 | 3099 | 18.031 | 338 | 17.321 | 406 | 16.72 | 55 | 198 | | 130 | 20.1061 | 2837 | 18.3689
18.6672 | 2983 | 17.727
18.0491 | 322 | 17.266 | 360 | 216 | | 140 | 20.3684 | 262 3
2436 | 18.9391 | 2719
2506 | 18.3335 | 2 844
2590 | 17.626
17.9274 | 301 | 234
252 | | | 20.5001 | 2450 | 10.7571 | 2,500 | 10,000 | 2370 | 11.7214 | 2688 | 232 | | 150 | 20.6120 | 2276 | 19.1897 | 2330 | 18.5925 | 2389 | 18,1962 | 2458 | 270 | | 160 | 20.8396 | 21.37 | 19.4227 | 2179 | 18.8314 | 2225 | 18.4420 | 2273 | 288 | | 170 | 21.0533 | 2011 | 19.6406 | 2045 | 19.0539 | 2082 | 18.6693 | 2122 | 306 | | 180 | 21.2544 | 1902 | 19.8451 | 1931 | 19.2621 | 1959 | 18.8815 | 1991 | 324 | | 190 | 21,4446 | 1803 | 20.0382 | 1826 | 19.4580 | 1851 | 19.0806 | 1876 | 342 | | 200 | 21.6249 | 1714 | 20,2208 | 1734 | 19.6431 | 1753 | 19.2682 | 1775 | 360 | | 210 | 21.7963 | 1635 | 20.3942 | 1650 | 19.8184 | 1669 | 19.4457 | 1686 | 378 | | 220 | 21.9598 | 1560 | 20,5592 | 1575 | 19,9853 | 1589 | 19.6143 | 1602 | 396 | | 230 | 22.1158 | 1494 | 20.7167 | 1507 | 20.1442 | 1519 | 19.7745 | 1531 | 414 | | 240 | 22.2652 | 1433 | 20.8674 | 1443 | 20.2961 | 1453 | 19.9276 | 1465 | 432 | | 250 | 00 4005 | | 01 011- | | | | | | | | 250 | 22.4085 | 1376 | 21.0117 | 1385 | 20.4414 | 1394 | 20.0741 | 1404 | 450 | | 260
270 | 22.5461
22.6786 | 1325 | 21.1502
21.2834 | 1332 | 20.5808
20.7150 | 1342 | 20.2145 | 1350 | 468 | | 280 | 22.8061 | 1275
1231 | 21.4117 | 1283
1237 | 20.7130 | 1289
1244 | 20.3495
20.4791 | 1296 | 486
504 | | 290 | 22.9292 | 1190 | 21.5354 | 1195 | 20.9683 | 1201 | 20.6041 | 1250
1207 | 522 | | | | | | 22/3 | 201,005 | 2202 | 20.0012 | 1207 | 722 | | 300 | 23.0482 | 1151 | 21.6549 | 1156 | 21.0884 | 1161 | 20.7248 | 1166 | 540 | | 310 | 23.1633 | 1113 | 21.7705 | 1118 | 21.2045 | 1122 | 20.8414 | 1128 | 558 | | 320 | 23.2746 | 1080 | 21.8823 | 1085 | 21.3167 | 1089 | 20.9542 | 1092 | 576 | | 330 | 23.3826 | 1048 | 21,9908 | 1051 | 21.4256 | 1054 | 21.0634 | 1058 | 594 | | 340 | 23.4874 | 1018 | 22.0959 | 1021 | 21.5310 | 1025 | 21.1692 | 1029 | 612 | | 350 | 23.5892 | 989 | 22,1980 | 992 | 21.6335 | 995 | 21,2721 | 998 | 630 | | 360 | 23,6881 | 963 | 22,2972 | 966 | 21.7330 | 969 | 21.3719 | 978
971 | 648 | | 370 | 23,7844 | 938 | 22,3938 | 940 | 21.8299 | 943 | 21.4690 | 946 | 666 | | 380 | 23.8782 | 912 | 22.4878 | 915 | 21.9242 | 917 | 21.5636 | 919 | 684 | | 390 | 23.9694 | 89 2 | 22.5793 | 894 | 22.0159 | 896 | 21.6555 | 899 | 702 | | 400 | 04.050/ | | | | | | | | | | 400 | 24.0586 | 870 | 22.6687 | 872 | 22.1055 | 874 | 21.7454 | 875 | 720 | | 410
420 | 24.1456
24.2305 | 849
8 3 0 | 22.7559
22.8410 | 851 | 22.1929
22.2782 | 853 | 21.8329 | 855 | 738 | | 430 | 24.3135 | 811 | 22.9242 | 832
813 | 22.3615 | 833
815 | 21.9184
22.0019 | 835
816 | 756
77 4 | | 440 | 24.3946 | 795 | 23,0055 | 796 | 22.4430 | 797 | 22.0835 | 799 | 792 | | | | | 25(0000 | 770 | | ,,, | 22.00 | 177 | ,,_ | | 450 | 24.4741 | 777 | 23.0851 | 778 | 22.5227 | 781 | 22.1634 | 762 | 810 | | 460 | 24.5518 | 763 | 23.1629 | 764 | 22,6008 | 765 | 22.2416 | 766 | 828 | | 470 | 24.6281 | 746 | 23.2393 | 748 | 22.6773 | 748 | 22.3182 | 750 | 846 | | 480
490 | 24.7027
2 4. 7760 | 733 | 23.3141 | 733 | 22.7521 | 735 | 22.3932 | 736 | 864 | | 470 | 24.7700 | 719 | 23,3874 | 721 | 22.8256 | 721 | 22.4668 | 722 | 882 | | 500 | 24.8479 | 705 | 23.4595 | 706 | 22.8977 | 708 | 22,5390 | 708 | 900 | | 510 | 24.9184 | 693 | 23.5301 | 693 | 22.9685 | 694 | 22,6098 | 695 | 918 | | 520 | 24.9877 | 680 | 23.5994 | 681 | 23.0379 | 682 | 22.6793 | 683 | 936 | | 530 | 25.0557 | 669 | 23.6675 | 670 | 23.1061 | 671 | 22.7476 | 672 | 954 | | 540 | 25.1226 | 658 | 23.7345 | 659 | 23.1732 | 659 | 22.8148 | 659 | 972 | | 550 | 25.1884 | 648 | 23.8004 | /40 | 23,2391 | | 22.8807 | | 000 | | 560 | 25.2532 | 636 | 23.8652 | 648
637 | 23.3040 | 649
638 | 22.9457 | 650 | 990
1008 | | 570 | 25.3168 | 627 | 23.9289 | 628 | 23.3678 | 628 | 23.0095 | 638 | 1026 | | 580 | 25.3795 | 617 | 23,9917 | 618 | 23,4306 | 618 | 23.0724 | 619 | 1044 | | 590 | 25.4412 | 608 | 24.0535 | 609 | 23,4924 | 610 | 23,1343 | 610 | 1062 | | | | | | | | | | | | | 600 | 25.5020 | 601 | 24.1144 | 600 | 23.5534 | 601 | 23,1953 | 602 | 1080 | | 610 | 25.5621
25.6211 | 5 9 0 | 24.1744 | 591 | 23.6135 | 591 | 23.2555 | 59 2 | 1098 | | 620
630 | 25.6794 | 583
574 | 24.2335
24.2919 | 584 | 23.6726
23.7310 | 584 | 23.3147 | 584 | 1116 | | 640 | 25.7368 | 574
567 | 24.2717 | 574
568 | 23.7885 | 575
568 | 23.3731
23.4307 | 576
568 | 113 4
1152 | | 5.0 | | 50, | | .00 | | 500 | | 208 | -1JE | | 650 | 25.7935 | 559 | 24.4061 | 559 | 23.8453 | 560 | 23.4875 | 560 | 1170 | | 660 | 25.8494 | 552 | 24,4620 | 553 | 23.9013 | 553 | 23,5435 | 554 | 1188 | | 670 | 25.9046 | 546 | 24.5173 | 545 | 23.9566 | 546 | 23.5989 | 546 | 1206 | | 680
690 | 25.9592
26.0130 | 538
533 | 24.5718
24.6257 | 539 | 24.0112 | 539 | 23.6535 | 539 | 1224 | | 370 | 20.0170 | 532 | -7.023 <i>1</i> | 533 | 24.0651 | 533 | 23.7074 | 533 | 1242 | | 700 | 26.0662 | | 24.6790 | | 24.1184 | | 23.7607 | | 1260 | | | | | | | | | | | | Table 7-5. ENTROPY OF NITROGEN - Cont. | °K | 1 | atm | 4 | atm | 7 | atm | 10 | atm | •R | |------|---------|------|---------|------------------|---------|-----------------------|---------|--------------|-------------------| | | | | | | | | | | | | 700 | 26.0662 | 525 | 24.6790 | 525 | 24.1184 | 526 | 23.7607 | 526 | 1260 | | 710 | 26,1187 | 519 | 24,7315 | 519 | 24.1710 | 519 | 23,8133 | 521 | 1278 | | 720 | 26.1706 | 513 | 24.7834 | 514 | 24,2229 | 514 | 23.8654 | 514 | 1296 | | 730 | 26,2219 | 507 | 24.8348 | 507 | 24.2743 | 508 | 23.9168 | 507 | 1314 | | 740 | 26.2726 | 502 | 24.8855 | 502 | 24.3251 | 502 | 23.9675 | 503 | 1332 | | 750 | 26,3228 | 496 | 24.9357 | 497 | 24.3753 | 497 | 24.0178 | 497 | 1350 | | 760 | 26.3724 | 491 | 24.9854 | 490 | 24.4250 | 491 | 24.0675 | 492 | 1368 | | 770 | 26.4215 | 485 | 25.0344 | 485 | 24.4741 | 485 | 24.1167 | 485 | 1386 | | 780 | 26,4700 | 481 | 25.0829 | 482 | 24.5226 | 482 | 24.1652 | 482 | 1404 | | 790 | 26.5181 | 475 | 25.1311 | 475 | 24.5708 | 475 | 24.2134 | 475 | 1422 | | | | | | | 04 (300 | | 24.2609 | 4504 | 1440 | | 800 | 26.5656 | 4498 | 25.1786 | 4500 | 24.6183 | 4502 | 24.7113 | 4504
4110 | 1620 | | 900 | 27.0154 | 4106 | 25.6286 | 4107 | 25.0685 | 4108
3781 | 25.1223 | 3781 | 1800 | | 1000 | 27.4260 | 3779 | 26.0393 | 3780 | 25.4793 | | 25.5004 | 3507 | 1980 | | 1100 | 27.8039 | 3504 | 26.4173 | 3505 | 25.8574 | 3506
32 <i>6</i> 9 | 25.8511 | 3269 | 2160 | | 1200 | 28.1543 | 3268 | 26.7678 | 32 69 | 26.2080 | 3269 | 23.0311 | 3207 | 2100 | | 1300 | 28,4811 | 3061 | 27,0947 | 3060 | 26.5349 | 3061 | 26.1780 | 3062 | 2340 | | 1400 | 28.7872 | 2879 | 27,4007 | 2880 | 26.8410 | 2880 | 26.4842 | 2879 | 2520 | | 1500 | 29,0751 | 2716 | 27,6887 | 2716 | 27.1290 | 2716 | 26.7721 | 2717 | 2700 | | 1600 | 29.3467 | 2570 | 27,9603 | 2570 | 27.4006 | 2571 | 27.0438 | 2571 | 2880 | | 1700 | 29.6037 | 2440 | 28.2173 | 2440 | 27.6577 | 2440 | 27.3009 | 2440 | 3060 | | 1800 | 29.8477 | 2322 | 28,4613 | 2323 | 27.9017 | 2322 | 27.5449 | 2323 | 3240 | | 1900 | 30.0799 | 2214 | 28,6936 | 2214 | 28.1339 | 2214 | 27.7772 | 2214 | 3420 | | 2000 | 30,3013 | 2116 | 28,9150 | 2116 | 28.3553 | 2117 | 27.9986 | 2116 | 3600 | | 2100 | 30.5129 | 2025 | 29.1266 | 2025 | 28.5670 | 2025 | 28.2102 | 2026 | 3780 | | 2200 | 30.7154 | 1943 | 29.3291 | 1943 | 28.7695 | 1943 | 28.4128 | 1943 | 3 9 60 | | 2300 | 30,9097 | 1866 | 29.5234 | 1866 | 28,9638 | 1866 | 28.6071 | 1866 | 4140 | | 2400 | 31.0963 | 1796 | 29.7100 | 1796 | 29.1504 | 1796 | 28.7937 | 1796 | 4320 | | 2500 | 31.2759 | 1729 | 29.8896 | 1729 | 29.3300 | 1729 | 28.9733 | 1729 | 4500 | | 2600 | 31.4488 | 1669 | 30.0625 | 1669 | 29.5029 | 16 69 | 29.1462 | 1869 | 4680 | | 2700 | 31.6157 | 1612 | 30.2294 | 1612 | 29.6698 | 1612 | 29.3131 | 1612 | 4860 | | 2800 | 31,7769 | 1558 | 30,3906 | 1558 | 29.8310 | 1558 | 29.4743 | 1558 | 5040 | | 2900 | 31.9327 | 1509 | 30,5464 | 1509 | 29.9868 | 1509 | 29.6301 | 1509 | 5220 | | 3000 | 32.0836 | | 30,6973 | | 30.1377 | | 29.7810 | | 5400 | | 2000 | 20,000 | | | | | | | | | | *K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | *R | |---------------------------------|---|--------------------------------------|---|------------------------------------|---|--------------------------------|---------|-------------|---------------------------------| | L | | | <u> </u> | | | | | | | | 110
120
130
140 | 16.72
17.266
17.626
17.9274 | 55
360
301
2688 | 12.0
14.76
15.74 | 28
98
54 | 13.5 | 13 | | |
198
216
234
252 | | 150
160
170
180
190 | 18.1962
18.4420
18.6693
18.8815
19.0806 | 2458
2273
2122
1991
1876 | 16.279
16.659
16.9669
17.2334
17.4723 | 380
308
2665
2389
2182 | 14.84
15.551
16.020
16.378
16.674 | 71
469
358
296
258 | | | 270
288
306
324
342 | | 200 | 19.2682 | 1775 | 17.6905 | 2016 | 16.932 | 231 | 16.382 | 263 | 360 | | 210 | 19.4457 | 1686 | 17.8921 | 1882 | 17.163 | 211 | 16.645 | 2 34 | 378 | | 220 | 19.6143 | 1602 | 18.0803 | 1766 | 17.374 | 194 | 16.879 | 212 | 396 | | 230 | 19.7745 | 1531 | 18.2569 | 1668 | 17.568 | 181 | 17.091 | 195 | 414 | | 240 | 19.9276 | 1465 | 18.4237 | 1579 | 17.749 | 170 | 17.286 | 182 | 432 | | 250 | 20.0741 | 1404 | 18.5816 | 1504 | 17.919 | 161 | 17.468 | 169 | 450 | | 260 | 20.2145 | 1350 | 18.7320 | 1434 | 18.0795 | 1519 | 17.637 | 160 | 468 | | 270 | 20.3495 | 1296 | 18.8754 | 1371 | 18.2314 | 1447 | 17.797 | 152 | 486 | | 280 | 20.4791 | 1250 | 19.0125 | 1315 | 18.3761 | 1381 | 17.949 | 144 | 504 | | 290 | 20.6041 | 1207 | 19.1440 | 1266 | 18.5142 | 1319 | 18.093 | 137 | 522 | | 300 | 20.7248 | 1166 | 19.2706 | 1216 | 18.6461 | 1267 | 18.230 | 131 | 540 | | 310 | 20.8414 | 1128 | 19.3922 | 1173 | 18.7728 | 1217 | 18.3607 | 1257 | 558 | | 320 | 20.9542 | 1092 | 19.5095 | 1134 | 18.8945 | 1174 | 18.4864 | 1209 | 576 | | 330 | 21.0634 | 1058 | 19.6229 | 1096 | 19.0119 | 1130 | 18.6073 | 1163 | 594 | | 340 | 21.1692 | 1029 | 19.7325 | 1060 | 19.1249 | 1093 | 18.7236 | 1122 | 612 | | 350 | 21.2721 | 998 | 19.8385 | 1030 | 19.2342 | 1059 | 18.8358 | 1084 | 630 | | 360 | 21.3719 | 971 | 19.9415 | 998 | 19.3401 | 1025 | 18.9442 | 1049 | 648 | | 370 | 21.4690 | 946 | 20.0413 | 970 | 19.4426 | 993 | 19.0491 | 1016 | 666 | | 380 | 21.5636 | 919 | 20.1383 | 944 | 19.5419 | 965 | 19.1507 | 984 | 684 | | 390 | 21.6555 | 899 | 20.2327 | 919 | 19.6384 | 938 | 19.2491 | 957 | 702 | | 400 | 21.7454 | 875 | 20.3246 | 895 | 19.7322 | 91.4 | 19.3448 | 931 | 720 | | 410 | 21.8329 | 855 | 20.4141 | 872 | 19.8236 | 890 | 19.4379 | 904 | 738 | | 420 | 21.9184 | 835 | 20.5013 | 851 | 19.9126 | 866 | 19.5283 | 882 | 756 | | 430 | 22.0019 | 816 | 20.5864 | 832 | 19.9992 | 847 | 19.6165 | 860 | 774 | | 440 | 22.0835 | 799 | 20.6696 | 813 | 20.0839 | 826 | 19.7025 | 838 | 792 | | 450 | 22.1634 | 782 | 20.7509 | 795 | 20.1665 | 807 | 19.7863 | 819 | 810 | | 460 | 22.2416 | 766 | 20.8304 | 779 | 20.2472 | 790 | 19.8682 | 798 | 828 | | 470 | 22.3182 | 750 | 20.9083 | 760 | 20.3262 | 771 | 19.9480 | 783 | 846 | | 480 | 22.3932 | 736 | 20.9843 | 747 | 20.4033 | 756 | 20.0263 | 767 | 864 | | 490 | 22.4668 | 722 | 21.0590 | 732 | 20.4789 | 743 | 20.1030 | 751 | 882 | | 500 | 22.5390 | 708 | 21.1322 | 718 | 20.5532 | 726 | 20.1781 | 734 | 900 | | 510 | 22.6098 | 695 | 21.2040 | 704 | 20.6258 | 712 | 20.2515 | 720 | 918 | | 520 | 22.6793 | 683 | 21.2744 | 690 | 20.6970 | <i>69</i> 9 | 20.3235 | 706 | 936 | | 530 | 22.7476 | 672 | 21.3434 | 680 | 20.7669 | 688 | 20.3941 | 694 | 954 | | 540 | 22.8148 | 659 | 21.4114 | 668 | 20.8357 | 674 | 20.4635 | 681 | 972 | | 550 | 22.8807 | 650 | 21.4782 | 656 | 20.9031 | 663 | 20.5316 | 669 | 990 | | 560 | 22.9457 | 6 38 | 21.5438 | 645 | 20.9694 | 651 | 20.5985 | 657 | 1008 | | 570 | 23.0095 | 629 | 21.6083 | 635 | 21.0345 | 641 | 20.6642 | 646 | 1026 | | 580 | 23.0724 | 619 | 21.6718 | 624 | 21.0986 | 630 | 20.7288 | 635 | 1044 | | 590 | 23.1343 | 610 | 21.7342 | 616 | 21.1616 | 620 | 20.7923 | 625 | 1062 | | 600 | 23.1953 | 602 | 21.7958 | 607 | 21.2236 | 612 | 20.8548 | 617 | 1080 | | 610 | 23.2555 | 592 | 21.8565 | 597 | 21.2848 | 600 | 20.9165 | 605 | 1098 | | 620 | 23.3147 | 584 | 21.9162 | 588 | 21.3448 | 595 | 20.9770 | 598 | 1116 | | 630 | 23.3731 | 576 | 21.9750 | 581 | 21.4043 | 584 | 21.0368 | 588 | 1134 | | 640 | 23.4307 | 568 | 22.0331 | 572 | 21.4627 | 576 | 21.0956 | 580 | 1152 | | 650 | 23,4875 | 560 | 22,0903 | 565 | 21.5203 | 568 | 21.1536 | 572 | 1170 | | 660 | 23,5435 | 554 | 22,1468 | 557 | 21.5771 | 561 | 21.2108 | 564 | 1188 | | 670 | 23,5989 | 546 | 22,2025 | 549 | 21.6332 | 554 | 21.2672 | 557 | 1206 | | 680 | 23,6535 | 539 | 22,2574 | 543 | 21.6886 | 545 | 21.3229 | 548 | 1224 | | 690 | 23,7074 | 533 | 22,3117 | 537 | 21.7431 | 539 | 21.3777 | 542 | 1242 | | 700 | 23.7607 | | 22.3654 | | 21.7970 | | 21.4319 | | 1260 | | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | ° R | |------|---------|---------------|---------|------|----------|------|---------|--------------|------------| | | | | | | <u> </u> | | | | | | 700 | 23,7607 | 526 | 22.3654 | 529 | 21.7970 | 532 | 21.4319 | 536 | 1260 | | 710 | 23.8133 | 521 | 22,4183 | 523 | 21.8502 | 527 | 21.4855 | 529 | 1278 | | 720 | 23.8654 | 514 | 22,4706 | 517 | 21,9029 | 519 | 21.5384 | 523 | 1296 | | 730 | 23.9168 | 507 | 22.5223 | 511 | 21.9548 | 513 | 21.5907 | 515 | 1314 | | 740 | 23.9675 | 503 | 22.5734 | 505 | 22,0061 | 508 | 21.6422 | 510 | 1332 | | 750 | 24,0178 | 497 | 22,6239 | 499 | 22.0569 | 502 | 21.6932 | 504 | 1350 | | 760 | 24.0675 | 492 | 22.6738 | 494 | 22.1071 | 495 | 21.7436 | 498 | 1368 | | 770 | 24.1167 | 485 | 22.7232 | 488 | 22.1566 | 491 | 21.7934 | 493 | 1386 | | 780 | 24.1652 | 482 | 22,7720 | 484 | 22.2057 | 486 | 21.8427 | 487 | 1404 | | 790 | 24.2134 | 475 | 22.8204 | 478 | 22.2543 | 479 | 21.8914 | 482 | 1422 | | | | | | | | | 03.000/ | | 1440 | | 800 | 24.2609 | 4504 | 22.8682 | 4521 | 22,3022 | 4539 | 21.9396 | 4553 | 1440 | | 900 | 24.7113 | 4110 | 23.3203 | 4120 | 22.7561 | 4132 | 22.3949 | 4145 | 1620 | | 1000 | 25.1223 | 3781 | 23.7323 | 3791 | 23.1693 | 3798 | 22.8094 | 3805 | 1800 | | 1100 | 25.5004 | 3507 | 24.1114 | 3513 | 23.5491 | 3519 | 23.1899 | 3525 | 1980 | | 1200 | 25.8511 | 32 <i>6</i> 9 | 24.4627 | 3274 | 23,9010 | 3279 | 23.5424 | 3283 | 2160 | | 1300 | 26.1780 | 3062 | 24.7901 | 3064 | 24.2289 | 3068 | 23.8707 | 3072 | 2340 | | 1400 | 26.4842 | 2879 | 25.0965 | 2883 | 24.5357 | 2885 | 24.1779 | 2887 | 2520 | | 1500 | 26.7721 | 2717 | 25.3848 | 2719 | 24.8242 | 2722 | 24.4666 | 2724 | 2700 | | 1600 | 27.0438 | 2571 | 25,6567 | 2573 | 25.0964 | 2573 | 24.7390 | 2575 | 2880 | | 1700 | 27.3009 | 2440 | 25.9140 | 2442 | 25.3537 | 2444 | 24.9965 | 2 445 | 3060 | | 1800 | 27,5449 | 2323 | 26,1582 | 2323 | 25,5981 | 2325 | 25.2410 | 2326 | 3240 | | 1900 | 27.7772 | 2214 | 26.3905 | 2215 | 25.8306 | 2216 | 25.4736 | 2217 | 3420 | | 2000 | 27.9986 | 2116 | 26.6120 | 2118 | 26.0522 | 2118 | 25.6953 | 2119 | 3600 | | 2100 | 28.2102 | 2026 | 26.8238 | 2026 | 26.2640 | 2027 | 25.9072 | 2028 | 3780 | | 2200 | 28,4128 | 1943 | 27.0264 | 1943 | 26.4667 | 1944 | 26.1100 | 1943 | 3960 | | 2300 | 28,6071 | 1866 | 27.2207 | 1867 | 26.6611 | 1867 | 26.3043 | 1868 | 4140 | | 2400 | 28.7937 | 1796 | 27.4074 | 1796 | 26.8478 | 1797 | 26.4911 | 1797 | 4320 | | 2500 | 28,9733 | 1729 | 27.5870 | 1730 | 27.0275 | 1729 | 26.6708 | 1730 | 4500 | | 2600 | 29.1462 | 1669 | 27.7600 | 1669 | 27.2004 | 1670 | 26.8438 | 1670 | 4680 | | 2700 | 29.3131 | 1612 | 27.9269 | 1613 | 27.3674 | 1613 | 27.0108 | 1613 | 4860 | | 2800 | 29,4743 | 1558 | 28.0882 | 1558 | 27.5287 | 1559 | 27.1721 | 1559 | 5040 | | 2900 | 29.6301 | 1509 | 28.2440 | 1509 | 27.6846 | 1509 | 27.3280 | 1510 | 5220 | | 3000 | 29.7810 | -507 | 28,3949 | | 27,8355 | | 27.4790 | | 5400 | | 2000 | 27.1020 | | | | | | | | | | | T | | 1 | | | ··· - | · · · · · · · · · · · · · · · · · · · | | - P V | |--------------------------------------|---|---------------------------------|---|---------------------------------|---|--------------------------------------|---|---------------------------------|--------------------------------------| | °K | .01 | atm | .1 | atm | .4 | atm | .7 | atm | °R | | 100
110
120
130
140 | 1.400
1.400
1.400
1.400
1.400 | | 1.402
1.402
1.401
1.401
1.401 | - 1 | 1.409
1.407
1.406
1.405
1.404 | - 2
- 1
- 1
- 1
- 1 | 1.416
1.413
1.410
1.408
1.407 | - 3
- 3
- 2
- 1
- 1 | 180
198
216
234
252 | | 150
160
170
180
190 | 1.400
1.400
1.400
1.400
1.400 | | 1.401
1.401
1.401
1.400
1.400 | - 1 | 1.403
1.403
1.402
1.402
1.402 | - 1 | 1.406
1.405
1.405
1.404
1.403 | - 1
- 1
- 1 | 270
288
306
324
342 | | 200
210
220
230
240 | 1.400
1.400
1.400
1.400
1.400 | | 1.400
1.400
1.400
1.400
1.400 | | 1.402
1.401
1.401
1.401
1.401 | - 1 | 1.403
1.403
1.402
1.402
1.402 | - 1 | 360
378
396
414
432 | | 250
260
270
280
290 | 1.400
1.400
1.400
1.400 | | 1.400
1.400
1.400
1.400
1.400 | | 1.401
1.401
1.401
1.400
1.400 | - 1 | 1.402
1.401
1.401
1.401
1.401 | - 1 | 450
468
486
504
522 | | 300
320
340
360
380 | 1.400
1.399
1.399
1.399
1.398 | - 1
- 1
- 1 | 1.400
1.399
1.399
1.399
1.398 | - 1
- 1
- 1 | 1.400
1.399
1.399
1.399
1.398 | - 1
- 1
- 1 | 1.401
1.401
1.400
1.400
1.399 | - 1
- 1
- 1 | 540
576
612
648
684 | | 400
420
440
460
480 | 1.397
1.396
1.395
1.394
1.393 | - 1
- 1
- 1
- 1
- 2 | 1.397
1.396
1.395
1.394
1.393 | - 1
- 1
- 1
- 1
- 2 | 1.397
1.396
1.395
1.394
1.393 | - 1
- 1
- 1
- 1
- 2 | 1.398
1.397
1.396
1.395
1.393 | - 1
- 1
- 1
- 2
- 2 | 720
756
792
828
864 | | 500
520
540
560
580 | 1.391
1.389
1.387
1.386
1.384 | - 2
- 2
- 1
- 2
- 3 | 1.391
1.389
1.388
1.386
1.384 | - 2
- 1
- 2
- 2
- 2 | 1.391
1.389
1.388
1.386
1.384 | -
2
- 1
- 2
- 2
- 2 | 1.391
1.390
1.388
1.386
1.384 | - 1
- 2
- 2
- 2
- 2 | 900
936
972
1008
1044 | | 600
620
640
660
680 | 1.381
1.379
1.377
1.375
1.373 | - 2
- 2
- 2
- 2
- 2 | 1.382
1.379
1.377
1.375
1.373 | - 3
- 2
- 2
- 2
- 2 | 1.382
1.379
1.377
1.375
1.373 | - 3
- 2
- 2
- 2
- 2 | 1.382
1.380
1.377
1.374
1.372 | - 2
- 3
- 3
- 2
- 2 | 1080
1116
1152
1188
1224 | | 700
720
740
760
780 | 1.371
1.368
1.366
1.364
1.362 | - 3
- 2
- 2
- 2
- 2 | 1.371
1.368
1.366
1.364
1.362 | - 3
- 2
- 2
- 2
- 2 | 1.371
1.368
1.366
1.364
1.362 | - 3
- 2
- 2
- 2
- 2 | 1.370
1.368
1.366
1.364
1.362 | - 2
- 2
- 2
- 2
- 2 | 1260
1296
1332
1368
1404 | | °K | γ = C _I | o/C _v | °R | | | °K | γ = 0 | C _p /C _v | °R | | * 800
900
1000
1100
1200 | 1.360
1.350
1.341
1.334
1.327 | -10
- 9
- 7
- 7
- 5 | 1440
1620
1800
1980
2160 | | | 2300
2400
2500
2600
2700 | 1.296
1.295
1.294
1.293
1.292 | - 1
- 1
- 1
- 1
- 1 | 4140
4320
4500
4680
4860 | | 1300
1400
1500
1600
1700 | 1.322
1.317
1.313
1.310
1.307 | - 5
- 4
- 3
- 3
- 2 | 2340
2520
2700
2880
3060 | | | 2800
2900
3000
* At higher | 1.291
1.290
1.289
temperatu | - 1
- 1
res in th | 5040
5220
5400 | | 1800
1900
2000
2100
2200 | 1.305
1.303
1.301
1.299
1.297 | - 2
- 2
- 2
- 2
- 1 | 3240
3420
3600
3780
3960 | | | | s a functio | | temperatu | ure | °K | | 1 atm | 4 | atm | 7 | atm | 10 | atm | •̂R | |--------------------------------------|---|---------------------------------|---|---------------------------------|---|--------------------------------------|---|---------------------------------|--------------------------------------| | 100
110
120
130
140 | 1.424
1.419
1.415
1.412
1.410 | - 5
- 4
- 3
- 2
- 1 | 1.467
1.452
1.444 | -15
- 8
- 7 | 1.500
1.482 | -18
-14 | 1.526 | -24 | 180
198
216
234
252 | | 150
160
170
180
190 | 1.409
1.407
1.406
1.406
1.405 | - 2
- 1
- 1
- 1 | 1.437
1.431
1.427
1.423
1.420 | - 6
- 4
- 4
- 3
- 2 | 1.468
1.457
1.451
1.442
1.436 | -11
- 6
- 9
- 6
- 4 | 1.502
1.485
1.472
1.462
1.453 | -17
-13
-10
- 9
- 6 | 270
288
306
324
342 | | 200
210
220
230
240 | 1.404
1.404
1.403
1.403
1.403 | - 1
- 1 | 1.418
1.416
1.414
1.413
1.412 | - 2
- 2
- 1
- 1
- 2 | 1.432
1.429
1.425
1.423
1.421 | - 3
- 4
- 2
- 2
- 2 | 1.447
1.441
1.437
1.433
1.430 | - 6
- 4
- 4
- 3
- 3 | 360
378
396
414
432 | | 250
260
270
280
290 | 1.402
1.402
1.402
1.402
1.401 | - 1 | 1.410
1.409
1.409
1.408
1.407 | - 1
- 1
- 1 | 1.419
1.417
1.415
1.414
1.413 | - 2
- 2
- 1
- 1
- 1 | 1.427
1.424
1.422
1.420
1.419 | - 3
- 2
- 2
- 1
- 2 | 450
468
486
504
522 | | 300
320
340
360
380 | 1.401
1.401
1.400
1.400
1.399 | - 1
- 1
- 1 | 1.407
1.405
1.404
1.403
1.402 | - 2
- 1
- 1
- 1 | 1.412
1.410
1.408
1.406
1.405 | - 2
- 2
- 2
- 1
- 2 | 1.417
1.414
1.412
1.410
1.408 | - 3
- 2
- 2
- 2
- 2 | 540
576
612
648
684 | | 400
420
440
460
480 | 1.398
1.397
1.396
1.395
1.393 | - 1
- 1
- 1
- 2
- 2 | 1.401
1.399
1.398
1.396
1.395 | - 2
- 1
- 2
- 1
- 2 | 1.403
1.402
1.400
1.398
1.397 | - 1
- 2
- 2
- 1
- 2 | 1.406
1.404
1.402
1.400
1.398 | - 2
- 2
- 2
- 2
- 2 | 720
756
792
828
864 | | 500
520
540
560
580 | 1.391
1.390
1.388
1.386
1.384 | - 1
- 2
- 2
- 2
- 2 | 1.393
1.391
1.389
1.387
1.385 | - 2
- 2
- 2
- 2
- 2 | 1.395
1.393
1.390
1.388
1.386 | - 2
- 3
- 2
- 2
- 2 | 1.396
1.394
1.392
1.389
1.387 | - 2
- 2
- 3
- 2
- 2 | 900
936
972
1008
1044 | | 600
620
640
660
680 | 1.382
1.380
1.377
1.374
1.372 | - 2
- 3
- 3
- 2
- 2 | 1.383
1.381
1.378
1.376
1.374 | - 2
- 3
- 2
- 2
- 3 | 1.384
1.381
1.379
1.377
1.374 | - 3
- 2
- 2
- 3
- 2 | 1.385
1.382
1.380
1.377
1.375 | - 3
- 2
- 3
- 2
- 2 | 1080
1116
1152
1188
1224 | | 700
720
740
760
780 | 1.370
1.368
1.366
1.364
1.362 | - 2
- 2
- 2
- 2
- 2 | 1.371
1.369
1.367
1.365
1.362 | - 2
- 2
- 2
- 3
- 2 | 1.372
1.370
1.367
1.365
1.363 | - 2
- 3
- 2
- 2
- 2 | 1.373
1.370
1.368
1.366
1.363 | - 3
- 2
- 2
- 3
- 2 | 1260
1296
1332
1368
1404 | | °K | γ = | c_p/c_v | °R | | | °K | γ = C | _p /C _v | °R | | 800
900
1000
1100
1200 | 1.360
1.350
1.341
1.334
1.327 | -10
- 9
- 7
- 7
- 5 | 1440
1620
1800
1980
2160 | | | 2300
2400
2500
2600
2700 | 1.296
1.295
1.294
1.293
1.292 | - 1
- 1
- 1
- 1 | 4140
4320
4500
4680
4860 | | 1300
1400
1500
1600
1700 | 1.322
1.317
1.313
1.310
1.307 | - 5
- 4
- 3
- 3
- 2 | 2340
2520
2700
2880
3060 | | | 2800
2900
3000
*At higher | | | | | 1800
1900
2000
2100
2200 | 1.305
1.303
1.301
1.299
1.297 | - 2
- 2
- 2
- 2
- 1 | 3240
3420
3600
3780
3960 | | | range, γ :
as given h | is a functio
ere. | n only of | tempera | re ure | Table 7 | -6. SPEC | IFIC-HEAT | RATIO O | F NITROGI | EN - Cont. | | | | $\gamma = C_p/C_v$ | |--------------------------------------|---|---------------------------------|---|---------------------------------|---|--------------------------------------|---|-------------------------------------|--------------------------------------| | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | °R | | 140 | 1.526 | -24 | | | | | | | 252 | | 150
160
170
180
190 | 1.502
1.485
1.472
1.462
1.453 | -17
-13
-10
- 9
- 6 | 1.723
1.658 | -65
- 3 6 | 1.960 | -116 | | | 270
288
306
324
342 | | 200
210
220
230
240 | 1.447
1.441
1.437
1.433
1.430 | - 6
- 4
- 4
- 3
- 3 | 1.622
1.590
1.565
1.545
1.528 | -32
-25
-20
-17
-14 | 1.844
1.766
1.708
1.665
1.631 | - 78
- 58
- 43
- 34
- 28 | 2.11
1.95
1.85
1.78
1.73 | -16
-10
- 7
- 5
- 5 | 360
378
396
414
432 | | 250
260
270
280
290 | 1.427
1.424
1.422
1.420
1.419 | - 3
- 2
- 2
- 1
- 2 | 1.514
1.503
1.493
1.484
1.477 | -11
-10
- 9
- 7
- 6 | 1.603
1.581
1.563
1.547
1.533 | - 22
- 18
- 16
- 14
- 11 | 1.68
1.65
1.62
1.602
1.582 | - 3
- 3
- 2
- 20
- 16 | 450
468
486
504
522 | | 300
320
340
360
380 | 1.417
1.414
1.412
1.410
1.408 | - 3
- 2
- 2
- 2
- 2 | 1.471
1.460
1.451
1.443
1.437 | -11
- 9
- 8
- 6
- 5 | 1.522
1.503
1.487
1.475
1.465 | - 19
- 16
- 12
- 10
- 9 | 1.566
1.540
1.520
1.503
1.489 | - 26
- 20
- 17
- 14
- 9 | 540
576
612
648
684 | | 400
420
440
460
480 | 1.406
1.404
1.402
1.400
1.398 | - 2
- 2
- 2
- 2
- 2 | 1.432
1.427
1.422
1.418
1.415 | - 5
- 5
- 4
- 3
- 4 | 1.456
1.448
1.441
1.435
1.430 | - 8
- 7
- 6
- 5
- 6 | 1.480
1.467
1.459
1.451
1.444 | - 13
- 8
- 8
- 7
- 7 | 720
756
792
828
864 | | 500
520
540
560
580 | 1.396
1.394
1.392
1.389
1.387 | - 2
- 2
- 3
- 2
- 2 | 1.411
1.407
1.404
1.400
1.397 | - 4
- 3
- 4
- 3
- 3 | 1.424
1.420
1.415
1.410
1.406 | - 4
- 5
- 5
- 4
- 4 | 1.437
1.431
1.425
1.420
1.415 | - 6
- 6
- 5
- 5
- 5 | 900
936
972
1008
1044 | | 600
620
640
660
680 | 1.385
1.382
1.380
1.377
1.375 | - 3
- 2
- 3
- 2
- 2 | 1.394
1.391
1.388
1.385
1.382 | - 3
- 3
- 3
- 3 | 1.402
1.398
1.395
1.391
1.388 | - 4
- 3
- 4
- 3
- 4 | 1.410
1.406
1.401
1.397
1.393 | - 4
- 5
- 4
- 4
- 3 | 1080
1116
1152
1188
1224 | | 700
720
740
760
780 | 1.373
1.370
1.368
1.366
1.363 | - 3
- 2
- 2
- 3
- 2 | 1.379
1.376
1.373
1.370
1.368 | - 3
- 3
- 3
- 2
- 3 | 1.384
1.381
1.378
1.375
1.372 | - 3
- 3
- 3
- 3 | 1.390
1.386
1.382
1.379
1.375 | - 4
- 4
- 3
- 4
- 3 | 1260
1296
1332
1368
1404 | | 800
900
1000
1100
1200 | 1.361
1.351
1.342
1.334
1.328 | - 6 | 1.365
1.354
1.344
1.336
1.329 | -11
-10
- 8
- 7
- 6 | 1.369
1.356
1.346
1.337
1.330 | - 13
- 10
- 9
-
7
- 6 | 1.372
1.359
1.347
1.338
1.331 | - 13
- 12
- 9
- 7
- 7 | 1440
1620
1800
1980
2160 | | 1300
1400
1500
1600
1700 | 1.322
1.317
1.314
1.310
1.307 | - 3
- 4
- 3 | 1.323
1.318
1.314
1.310
1.307 | - 5
- 4
- 4
- 3
- 2 | 1.324
1.319
1.314
1.311
1.308 | - 5
- 5
- 3
- 3 | 1.324
1.319
1.315
1.311
1.308 | - 5
- 4
- 4
- 3
- 3 | 2340
2520
2700
2880
3060 | | 1800
1900
2000
2100
2200 | 1.305
1.303
1.301
1.299
1.297 | - 2
- 2
- 2 | 1.305
1.303
1.301
1.299
1.297 | - 2
- 2
- 2
- 2
- 1 | 1.305
1.303
1.301
1.299
1.297 | - 2
- 2
- 2
- 2
- 1 | 1.305
1.303
1.301
1.299
1.297 | - 2
- 2
- 2
- 2
- 1 | 3240
3420
3600
3780
3960 | | 2300 | 1.296 | | 1.296 | | 1.296 | | 1.296 | | 4140 | Table 7-6. SPECIFIC-HEAT RATIO OF NITROGEN - Cont. | °K | 10 atm | | 40 atm | | 70 atm | | 100 atm | | ° R | | |------|--------|-----|--------|-----|--------|-----|---------|-----|------------|--| | 2300 | 1.296 | - 1 | 1,296 | - 1 | 1,296 | - 1 | 1.296 | - 1 | 4140 | | | 2400 | 1.295 | - î | 1.295 | - i | 1.295 | - 2 | 1.295 | - 2 | 4320 | | | 2500 | 1.294 | - ī | 1.294 | - ī | 1.293 | - 1 | 1.293 | - 1 | 4500 | | | 2600 | 1.293 | - 1 | 1.293 | - 1 | 1.292 | | 1.292 | - 1 | 4680 | | | 2700 | 1.292 | - ī | 1.292 | - 1 | 1.292 | - 1 | 1.291 | - 1 | 4860 | | | °K | .01 | atm | .1 | atm | | atm | • | |--------------|----------------|------------------|----------------|------------------|----------------|---------------------|----------| | 100 | .605 | 29 | .604 | 30 | .598 | 32 | 1 | | 110 | .634 | 29 | .634 | 28 | .630 | 29 | 1 | | 120
130 | .663
.690 | 27 | .662
.689 | 27 | .659 | 27 | 2 | | 140 | .716 | 26
25 | .715 | 26
26 | .686
.713 | 27
26 | 2 | | 150 | .741 | 24 | .741 | 24 | .739 | 24 | 2 | | 160
170 | .765
.789 | 24
23 | .765
.789 | 2 4
22 | .763
.787 | 24
24 | 2 | | 180 | .812 | 22 | .811 | 23 | .811 | 22 | 3 | | 190 | .834 | 21 | .834 | 21 | .833 | 22 | 3 | | 200
210 | .855
.877 | 22
20 | .855
.876 | 21
21 | .855
.876 | 21
21 | 3 | | 220 | .897 | 20 | .897 | 20 | .897 | 20 | 3 | | 230
240 | .917
.937 | 20 | .917
.937 | 20 | .917 | 20 | 4 | | | | 19 | | 19 | .937 | 19 | | | 250
260 | .956
.975 | 19
19 | .956
.975 | 19
19 | .956
.975 | 19
19 | 4 | | 270 | .994 | 18 | .994 | 18 | .994 | 19 | 4 | | 280 | 1.012 | 18 | 1.012 | 18 | 1.013 | 17 | 5 | | 290 | 1.030 | 18 | 1.030 | 18 | 1.030 | 18 | 5 | | 300 | 1.048 | 34 | 1.048 | 34 | 1.048 | 34 | 5 | | 320 | 1.082 | 33 | 1.082 | 33 | 1.082 | 33 | 5 | | 340
360 | 1.115
1.147 | 32
31 | 1,115
1,147 | 32
32 | 1.115
1.148 | 33
31 | 6 | | 380 | 1.178 | 30 | 1,179 | 30 | 1.179 | 30 | 6 | | 400 | 1.208 | 30 | 1.209 | 29 | 1.209 | 30 | 7 | | 420
440 | 1.238
1.267 | 29
28 | 1.238
1.267 | 29
28 | 1.239
1.267 | 28
29 | 7
7 | | 460 | 1.295 | 27 | 1.295 | 27 | 1.296 | 26 | ė | | 480 | 1.322 | 26 | 1.322 | 26 | 1.322 | 27 | 8 | | 500 | 1.348 | 26 | 1.348 | 26 | 1.349 | 26 | 9 | | 520
540 | 1.374
1.399 | 25
25 | 1.374
1.400 | 26
24 | 1.375
1.400 | 25
25 | 9 | | 560 | 1.424 | 24 | 1.424 | 24 | 1.425 | 24 | 10 | | 580 | 1.448 | 24 | 1.448 | 24 | 1.449 | 24 | 10 | | 600
620 | 1.472
1.495 | 23
23 | 1.472
1.495 | 23
23 | 1.473
1.496 | 23
22 | 10
11 | | 640 | 1.518 | 23
22 | 1.518 | 23
22 | 1.518 | 22
22 | 11 | | 660 | 1.540 | 22 | 1.540 | 22 | 1.540 | 22 | 11 | | 680 | 1.562 | 22 | 1.562 | 22 | 1.562 | 22 | 12 | | 700 | 1.584 | 20 | 1.584 | 20 | 1.584 | 21 | 12 | | 720
740 | 1.604
1.625 | 21
21 | 1.604
1.625 | 21
21 | 1.605
1.626 | 21
21 | 12
13 | | 760 | 1.646 | 20 | 1.646 | 20 | 1.647 | 20 | 13 | | 780 | 1.666 | 20 | 1.666 | 20 | 1.667 | 20 | 14 | | 800 | 1.686 | 96 | 1,686 | 96 | 1.687 | 96 | 14 | | 900 | 1.782 | 90 | 1.782 | 90 | 1.783 | 90 | 16 | | 1000 | 1.872 | 86 | 1.872 | 86 | 1.873 | 86 | 18 | | 1100
1200 | 1.958
2.040 | 82
79 | 1.958
2.040 | 82
79 | 1.959
2.041 | 82
79 | 19
21 | | 1300 | 2,119 | 76 | 2,119 | 76 | 2.120 | 76 | 23 | | 1400 | 2.195 | 74 | 2.195 | 74 | 2.196 | 73 | 25 | | 1500 | 2.269 | 72 | 2.269 | 72 | 2.269 | 72 | 27 | | 1600
1700 | 2.341
2.410 | <i>6</i> 9
68 | 2.341
2.410 | 69
68 | 2.341
2.410 | 69
68 | 28
30 | | 1800 | 2.478 | 66 | 2.478 | 66 | 2.478 | 65 | 32 | | 1900 | 2.544 | 64 | 2.544 | 64 | 2.543 | 65 | 34 | | 2000
2100 | 2.608
2.670 | 62
61 | 2.608
2.670 | 62
61 | 2.608
2.671 | 63
60 | 36
37 | | 2200 | 2.731 | 90
pr | 2.731 | 60 | 2.731 | 61 | 39 | | 2300 | 2.791 | | 2.791 | | 2.792 | | 41 | | | | | | | ·- | | | Table 7-7. SOUND VELOCITY AT LOW FREQUENCY IN NITROGEN - Cont. a/a₀ | °K | .01 | atm | .1 | atm | 10 | ıtm | °R | |--------------------------------------|---|----------------------------|---|----------------------|---|----------------------------|--------------------------------------| | 2300
2400
2500
2600
2700 | 2.791
2.850
2.908
2.964
3.019 | 59
58
56
55
55 | 2.791
2.850
2.908
2.964
3.019 | 59
58
56
55 | 2.792
2.851
2.908
2.965
3.020 | 59
57
57
55
54 | 4140
4320
4500
4680
4860 | | 2800
2900
3000 | 3.074
3.127
3.179 | 53
52 | 3.074
3.127
3.179 | 53
52 | 3.074
3.127
3.180 | 53
53 | 5040
5220
5400 | Table 7-7. SOUND VELOCITY AT LOW FREQUENCY IN NITROGEN - Cont. | °K | 1 | atm | 4 | atm | 7 | atm. | 10 | atm | ° R | |--------------------------------------|---|----------------------------------|---|----------------------------|---|----------------------------------|---|----------------------------------|--------------------------------------| | 100
110
120
130
140 | .598
.630
.659
.686 | 32
29
27
27
27
26 | .646
.677
.706 | 31
29
27 | .667
.699 | 32
26 | | | 180
198
216
234
252 | | 150 | .739 | 24 | .733 | 26 | .725 | 30 | .722 | 28 | 270 | | 160 | .763 | 24 | .759 | 25 | .755 | 26 | .750 | 27 | 288 | | 170 | .787 | 24 | .784 | 24 | .781 | 25 | .777 | 26 | 306 | | 180 | .811 | 22 | .808 | 23 | .806 | 23 | .803 | 24 | 324 | | 190 | .833 | 22 | .831 | 23 | .829 | 23 | .827 | 24 | 342 | | 200 | .855 | 21 | .854 | 21 | .852 | 23 | .851 | 23 | 360 | | 210 | .876 | 21 | .875 | 21 | .875 | 21 | .874 | 22 | 378 | | 220 | .897 | 20 | .896 | 21 | .896 | 21 | .896 | 21 | 396 | | 230 | .917 | 20 | .917 | 20 | .917 | 21 | .917 | 21 | 414 | | 240 | .937 | 19 | .937 | 20 | .938 | 20 | .938 | 20 | 432 | | 250 | .956 | 19 | .957 | 19 | .958 | 19 | .958 | 20 | 450 | | 260 | .975 | 19 | .976 | 19 | .977 | 19 | .978 | 19 | 468 | | 270 | .994 | 19 | .995 | 19 | .996 | 19 | .997 | 19 | 486 | | 280 | 1.013 | 17 | 1.014 | 18 | 1.015 | 18 | 1.016 | 19 | 504 | | 290 | 1.030 | 18 | 1.032 | 18 | 1.033 | 18 | 1.035 | 17 | 522 | | 300 | 1.048 | 34 | 1.050 | 34 | 1.051 | 35 | 1.052 | 35 | 540 | | 320 | 1.082 | 33 | 1.084 | 33 | 1.086 | 33 | 1.087 | 34 | 576 | | 340 | 1.115 | 33 | 1.117 | 33 | 1.119 | 33 | 1.121 | 33 | 612 | | 360 | 1.148 | 31 | 1.150 | 31 | 1.152 | 31 | 1.154 | 31 | 648 | | 380 | 1.179 | 30 | 1.181 | 31 | 1.183 | 31 | 1.185 | 31 | 684 | | 400
420
440
460
480 | 1.209
1.239
1.267
1.296
1.322 | 30
28
29
26
27 | 1.212
1.241
1.270
1.297
1.325 | 29
29
27
28
26 | 1.214
1.243
1.272
1.300
1.328 | 29
29
28
28
26 | 1.216
1.246
1.274
1.302
1.330 | 30
28
28
28
28
26 | 720
756
792
828
864 | | 500
520
540
560
580 | 1.349
1.375
1.400
1.425
1.449 | 26
25
25
24
24 | 1.351
1.377
1.403
1.427
1.451 | 26
26
24
24
24 | 1.354
1.380
1.405
1.430
1.454 | 26
25
25
25
24
24 | 1.356
1.382
1.408
1.432
1.456 | 26
26
24
24
24 | 900
936
972
1008
1044 | | 600
620
640
660
680 | 1.473
1.496
1.518
1.540
1.562 | 23
22
22
22
22
22 | 1.475
1.499
1.521
1.543
1.565 | 24
22
22
22
21 | 1.478
1.501
1.523
1.546
1.567 | 23
22
23
21
22 | 1.480
1.503
1.526
1.548
1.570 | 23
23
22
22
22
22 | 1080
1116
1152
1188
1224 | | 700 | 1.584 | 21 | 1.586 | 22 | 1.589 | 21 | 1.592 | 20 | 1260 | | 720 | 1.605 | 21 | 1.608 | 21 | 1.610 | 21 | 1.612 | 21 | 1296 | | 740 | 1.626 | 21 | 1.629 | 20 | 1.631 | 20 | 1.633 | 21 | 1332 | | 760 | 1.647 | 20 | 1.649 | 20 | 1.651 | 21 | 1.654 | 20 | 1368 | | 780 | 1.667 | 20 | 1.669 | 20 | 1.672 | 20 | 1.674 | 20 | 1404 | | 800 | 1.687 | 96 | 1.689 | 96 | 1.692 | 95 | 1.694 | 95 | 1440 | | 900 | 1.783 | 90 | 1.785 | 90 | 1.787 | 90 | 1.789 | 91 | 1620 | | 1000 | 1.873 | 86 | 1.875 | 86 | 1.877 | 86 | 1.880 | 85 | 1800 | | 1100 | 1.959 | 82 | 1.961 | 82 | 1.963 | 83 | 1.965 | 82 | 1980 | | 1200 | 2.041 | 79 | 2.043 | 79 | 2.046 | 78 | 2.047 | 79 | 2160 | | 1300 | 2.120 | 76 | 2.122 | 76 | 2.124 | 75 | 2.126 | 75 | 2340 | | 1400 | 2.196 | 73 | 2.198 | 73 | 2.199 | 75 | 2.201 | 75 | 2520 | | 1500 | 2.269 | 72 | 2.271 | 72 | 2.274 | 71 | 2.276 | 70 | 2700 | | 1600 | 2.341 | 69 | 2.343 | 69 | 2.345 | 69 | 2.346 | 69 | 2880 | | 1700 | 2.410 | 68 | 2.412 | 68 | 2.414 | 68 | 2.415 | 68 | 3060 | | 1800
1900
2000
2100
2200 | 2.478
2.543
2.608
2.671
2.731 |
65
63
63
60 | 2.480
2.546
2.610
2.672
2.733 | 66
64
62
61
60 | 2.482
2.547
2.611
2.674
2.734 | 65
64
63
60
61 | 2.483
2.549
2.613
2.675
2.736 | 66
64
62
61
60 | 3240
3420
3600
3780
3960 | | 2300 | 2.792 | | 2.793 | | 2.795 | | 2.796 | | 4140 | Table 7-7. SOUND VELOCITY AT LOW FREQUENCY IN NITROGEN - Cont. | °K | ì | atm | 4 | atm | 7 0 | ıtm | 10 | atm | •R | |--|---|----------------------------|--|----------------------------|---|----------------------------|---|----------------------------|--| | 2300
2400
2500
2600
2700
2800 | 2.792
2.851
2.908
2.965
3.020 | 59
57
57
55
54 | 2,793
2,852
2,910
2,966
3,021
3,075 | 59
58
56
55
54 | 2.795
2.853
2.911
2.967
3.023 | 58
58
56
56
54 | 2.796
2.855
2.912
2.969
3.024 | 59
57
57
55
54 | 4140
4320
4500
4680
4860
5040 | | 2800
2900
3000 | 3.074
3.127
3.180 | 53
53 | 3.075
3.129
3.182 | 54
53 | 3.130
3.182 | 53
52 | 3.131
3.183 | 52 | 5220
5400 | Table 7-7. SOUND VELOCITY AT LOW FREQUENCY IN NITROGEN - Cont. | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | *R | |---------------------------------|---|----------------------------|---|----------------------------|---|----------------------|---|----------------------------|--------------------------------------| | 150
160
170
180
190 | .722
.750
.777
.803
.827 | 28
27
26
24
24 | .787
.818 | 31
31 | .843 | 29 | | | 270
288
306
324
342 | | 200 | .851 | 23 | .849 | 27 | .872 | 27 | .94 | 2 | 360 | | 210 | .874 | 22 | .876 | 25 | .899 | 25 | .96 | 2 | 378 | | 220 | .896 | 21 | .901 | 24 | .924 | 25 | .98 | 2 | 396 | | 230 | .917 | 21 | .925 | 23 | .949 | 23 | 1.00 | 2 | 414 | | 240 | .938 | 20 | .948 | 22 | .972 | 23 | 1.02 | 1 | 432 | | 250 | .958 | 20 | .970 | 22 | .995 | 21 | 1.03 | 2 | 450 | | 260 | .978 | 19 | .992 | 21 | 1.016 | 22 | 1.05 | 2 | 468 | | 270 | .997 | 19 | 1.013 | 20 | 1.038 | 20 | 1.07 | 2 | 486 | | 280 | 1.016 | 19 | 1.033 | 20 | 1.058 | 20 | 1.092 | 18 | 504 | | 290 | 1.035 | 17 | 1.053 | 19 | 1.078 | 19 | 1.110 | 19 | 522 | | 300 | 1.052 | 35 | 1.072 | 36 | 1.097 | 38 | 1.129 | 37 | 540 | | 320 | 1.087 | 34 | 1.108 | 35 | 1.135 | 35 | 1.166 | 34 | 576 | | 340 | 1.121 | 33 | 1.143 | 34 | 1.170 | 34 | 1.200 | 34 | 612 | | 360 | 1.154 | 31 | 1.177 | 32 | 1.204 | 32 | 1.234 | 32 | 648 | | 380 | 1.185 | 31 | 1.209 | 31 | 1.236 | 31 | 1.266 | 32 | 684 | | 400 | 1.216 | 30 | 1.240 | 30 | 1.267 | 31 | 1,298 | 29 | 720 | | 420 | 1.246 | 28 | 1.270 | 29 | 1.298 | 29 | 1,327 | 29 | 756 | | 440 | 1.274 | 28 | 1.299 | 29 | 1.327 | 28 | 1,356 | 28 | 792 | | 460 | 1.302 | 28 | 1.328 | 27 | 1.355 | 27 | 1,384 | 27 | 828 | | 480 | 1.330 | 26 | 1.355 | 27 | 1.382 | 27 | 1,411 | 26 | 864 | | 500 | 1.356 | 26 | 1.382 | 26 | 1.409 | 26 | 1.437 | 25 | 900 | | 520 | 1.382 | 26 | 1.408 | 25 | 1.435 | 25 | 1.462 | 25 | 936 | | 540 | 1.408 | 24 | 1.433 | 25 | 1.460 | 24 | 1.487 | 25 | 972 | | 560 | 1.432 | 24 | 1.458 | 24 | 1.484 | 24 | 1.512 | 23 | 1008 | | 580 | 1.456 | 24 | 1.482 | 23 | 1.508 | 23 | 1.535 | 23 | 1044 | | 600 | 1.480 | 23 | 1.505 | 24 | 1.531 | 23 | 1.558 | 23 | 1080 | | 620 | 1.503 | 23 | 1.529 | 22 | 1.554 | 23 | 1.581 | 22 | 1116 | | 640 | 1.526 | 22 | 1.551 | 22 | 1.577 | 22 | 1.603 | 22 | 1152 | | 660 | 1.548 | 22 | 1.573 | 22 | 1.599 | 21 | 1.625 | 21 | 1188 | | 680 | 1.570 | 22 | 1.595 | 21 | 1.620 | 21 | 1.646 | 21 | 1224 | | 700
720
740
760
780 | 1.592
1.612
1.633
1.654
1.674 | 20
21
21
20
20 | 1.616
1.637
1.658
1.678
1.698 | 21
21
20
20
19 | 1.641
1.662
1.683
1.703
1.722 | 21
21
20
19 | 1.667
1.687
1.707
1.727
1.746 | 20
20
20
19
19 | 1260
1296
1332
1368
1404 | | 800 | 1.694 | 95 | 1.717 | 95 | 1.741 | 94 | 1.765 | 93 | 1440 | | 900 | 1.789 | 91 | 1.812 | 89 | 1.835 | 89 | 1.858 | 87 | 1620 | | 1000 | 1.880 | 85 | 1.901 | 85 | 1.924 | 83 | 1.945 | 84 | 1800 | | 1100 | 1.965 | 82 | 1.986 | 82 | 2.007 | 81 | 2.029 | 80 | 1980 | | 1200 | 2.047 | 79 | 2.068 | 77 | 2.088 | 77 | 2.109 | 76 | 2160 | | 1300 | 2.126 | 75 | 2.145 | 76 | 2.165 | 75 | 2.185 | 73 | 2340 | | 1400 | 2.201 | 75 | 2.221 | 72 | 2.240 | 72 | 2.258 | 73 | 2520 | | 1500 | 2.276 | 70 | 2.293 | 71 | 2.312 | 70 | 2.331 | 69 | 2700 | | 1600 | 2.346 | 69 | 2.364 | 68 | 2.382 | 69 | 2.400 | 68 | 2880 | | 1700 | 2.415 | 68 | 2.432 | 68 | 2.451 | 65 | 2.468 | 65 | 3060 | | 1800 | 2.483 | 66 | 2.500 | 65 | 2.516 | ଧେ | 2.533 | 65 | 3240 | | 1900 | 2.549 | 64 | 2.565 | 64 | 2.581 | ସେ | 2.598 | 62 | 3420 | | 2000 | 2.613 | 62 | 2.629 | 62 | 2.645 | ସେ | 2.660 | 62 | 3600 | | 2100 | 2.675 | 61 | 2.691 | 60 | 2.706 | ସେ | 2.722 | 59 | 3780 | | 2200 | 2.736 | 60 | 2.751 | 60 | 2.766 | ୨୨ | 2.781 | 59 | 3960 | | 2300 | 2.796 | 59 | 2.811 | 58 | 2.825 | 59 | 2.840 | 58 | 4140 | | 2400 | 2.855 | 57 | 2.869 | 58 | 2.884 | 55 | 2.898 | 56 | 4320 | | 2500 | 2.912 | 57 | 2.927 | 56 | 2.939 | 56 | 2.954 | 55 | 4500 | | 2600 | 2.969 | 55 | 2.983 | 55 | 2.995 | 56 | 3.009 | 55 | 4680 | | 2700 | 3.024 | 54 | 3.038 | 53 | 3.051 | 54 | 3.064 | 53 | 4860 | | 2800 | 3.078 | | 3.091 | | 3.105 | | 3.117 | | 5040 | Table 7-7. SOUND VELOCITY AT LOW FREQUENCY IN NITROGEN - Cont. \mathbf{a}/\mathbf{a}_0 | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | °R | |----------------------|-------------------------|----------|-------------------------|----------|-------------------------|----------|-------------------------|----------|----------------------| | 2800
2900
3000 | 3.078
3.131
3.183 | 53
52 | 3.091
3.144
3.196 | 53
52 | 3.105
3.157
3.209 | 52
52 | 3.117
3.170
3.222 | 53
52 | 5040
5220
5400 | | Table | Table 7-8. VISCOSITY OF NITROGEN | | | | | | | | | | |--------------------------------------|---|---------------------------------|---|------------------------------|---|------------------------------|---|------------------------------|--------------------------------------|--| | °K | 1 (| ıtm | 10 a | tm | 20 | atm | 80 | atm | η/η _ο | | | 100
150
200 | .413
.607
.779 | 194
172
155 | | | | | · | | 180
270
360 | | | 250
300
350
400
450 | .934
1.074
1.203
1.323
1.437 | 140
129
120
114
109 | 1.079
1.208
1.329
1.443 | 129
121
114
109 | 1.086
1.214
1.334
1.448 | 128
120
114
109 | 1.093
1.221
1.340
1.453 | 128
119
113
108 | 450
540
630
720
810 | | | 500
550
600
650
700 | 1.546
1.651
1.752
1.844
1.932 | 105
101
92
88
85 | 1.552
1.657
1.757
1.849
1.936 | 105
100
92
87
85 | 1.557
1.662
1.762
1.853
1.940 | 105
100
91
87
84 | 1.561
1.665
1.765
1.856
1.943 | 104
100
91
87
84 | 900
990
1080
1170
1260 | | | 750
800
850
900
950 | 2.017
2.099
2.179
2.257
2.333 | 82
80
78
76
73 | 2.021
2.102
2.182
2.260
2.335 | 81
80
78
75
73 | 2.024
2.105
2.185
2.263
2.338 | 81
80
78
75
73 | 2.027
2.108
2.188
2.266
2.341 | 81
80
78
75
73 | 1350
1440
1530
1620
1710 | | | 1000
1050
1100
1150
1200 | 2.406
2.477
2.546
2.614
2.679 | 71
69
68
65
63 | 2.408
2.480
2.549
2.616
2.682 | 72
69
67
66
63 | 2.411
2.483
2.552
2.619
2.684 | 72
69
67
65
63 | 2.414
2.485
2.554
2.621
2.686 | 71
69
67
65
63 | 1800
1890
1980
2070
2160 | | | 1250
1300
1350
1400
1450 | 2.742
2.805
2.866
2.925
2.983 | 63
61
59
58
57 | 2.745
2.807
2.868
2.927
2.985 | 62
61
59
58
57 | 2.747
2.809
2.869
2.929
2.987 | 62
60
60
58
57 | 2.749
2.811
2.871
2.931
2.989 | 62
60
60
58
57 | 2250
2340
2430
2520
2610 | | | 1500 | 3.040 | | 3.042 | | 3.044 | | 3.046 | | 2700 | | | | | | | | | | | מאח | | |----------|-------|------------|-------|-----|-------|-----|-------|-----|------| | % | 40 | atm | 60 | atm | 80 | atm | 100 0 | ıtm | °R | | 300 | 1.104 | 125 | 1.127 | 121 | 1.154 | 115 | 1.187 | 107 | 540 | | 350 | 1.229 | 118 | 1.248 | 114 | 1.269 | 111 | 1.294 | 105 | 630 | | 400 | 1.347 | 112 | 1.362 | 110 | 1.380 | 107 | 1.399 | 104 | 720 | | 450 | 1.459 | 107 | 1,472 | 106 | 1.487 | 104 | 1.503 | 102 | 810 | | 500 | 1.566 | 104 | 1.578 | 102 | 1.591 | 101 | 1,605 | 99 | 900 | | 550 | 1.670 | 99 | 1.680 | 98 | 1.692 | 97 | 1.704 | 96 | 990 | | 600 | 1.769 | 91 | 1.778 | 90 | 1.789 | 90 | 1.800 | 89 | 1080 | | 650 | 1.860 | 87 | 1.868 | 87 | 1.879 | 86 | 1.889 | 85 | 1170 | | 700 | 1.947 | 84 | 1.955 | 84 | 1.965 | 83 | 1.974 | 82 | 1260 | | 750 | 2.031 | 81 | 2.039 | 80 | 2.048 | 79 | 2,056 | 79 | 1350 | | 800 | 2.112 | 79 | 2,119 | 78 | 2.127 | 78 | 2.135 | 78 | 1440 | | 850 | 2.191 | 78 | 2.197 | 77 | 2.205 | 76 | 2,213 | 76 | 1530 | | 900 | 2.269 | 75 | 2.274 | 75 | 2.281 | 74 | 2,289 | 74 | 1620 | | 950 | 2.344 | 73 | 2.349 | 73 | 2.355 | 74 | 2.363 | 73 | 1710 | | 1000 | 2.417 | 71 |
2,422 | 72 | 2,429 | 71 | 2.436 | 71 | 1800 | | 1050 | 2.488 | 69 | 2.494 | 69 | 2,500 | 69 | 2,507 | 68 | 1890 | | 1100 | 2.557 | 66 | 2,563 | 66 | 2,569 | 66 | 2.575 | 65 | 1980 | | 1150 | 2,623 | 6 5 | 2.629 | 64 | 2.635 | 64 | 2.640 | 64 | 2070 | | 1200 | 2.688 | 63 | 2.693 | 63 | 2.699 | 63 | 2.704 | 62 | 2160 | | 1250 | 2.751 | 62 | 2,756 | 62 | 2.762 | 60 | 2.766 | 63 | 2250 | | 1300 | 2.813 | 60 | 2.818 | 60 | 2.822 | 60 | 2.829 | 60 | 2340 | | 1350 | 2.873 | 60 | 2.878 | 60 | 2.882 | 59 | 2.889 | 58 | 2430 | | 1400 | 2.933 | 58 | 2.938 | 58 | 2,941 | 58 | 2.947 | 57 | 2520 | | L450 | 2.991 | 57 | 2.996 | 56 | 2.999 | 57 | 3.004 | 57 | 2610 | | L500 | 3,048 | | 3,052 | | 3.056 | | 3.061 | | 2700 | Table 7-9. THERMAL CONDUCTIVITY OF NITROGEN AT ATMOSPHERIC PRESSURE | °K | k/k ₀ | ··· | o _R | |-----|------------------|-----|----------------| | 100 | .390 | 37 | 180 | | 110 | .427 | 38 | 198 | | 120 | .465 | 37 | 216 | | 130 | .502 | 36 | 234 | | 140 | .538 | 38 | 252 | | 150 | .576 | 36 | 270 | | 160 | .612 | 36 | 288 | | 170 | .648 | 36 | 306 | | 180 | .684 | 35 | 324 | | 190 | .719 | 34 | 342 | | 200 | .753 | 36 | 360 | | 210 | .789 | 34 | 378 | | 220 | .823 | 34 | 396 | | 230 | .857 | 35 | 414 | | 240 | .892 | 32 | 432 | | 250 | .924 | 33 | 450 | | 260 | .957 | 33 | 468 | | 270 | .990 | 31 | 486 | | 280 | 1.021 | 30 | 504 | | 290 | 1.051 | 30 | 522 | | 300 | 1.081 | 30 | 540 | | 310 | 1.111 | 30 | 558 | | 320 | 1.141 | 31 | 576 | | 330 | 1.172 | 30 | 594 | | 340 | 1.202 | 30 | 612 | | 350 | 1.232 | 30 | 630 | | 360 | 1.262 | 30 | 648 | | 370 | 1.292 | 29 | 666 | | 380 | 1.321 | 28 | 684 | | 390 | 1.349 | 28 | 702 | | 400 | 1.377 | 28 | 720 | | 410 | 1.405 | 28 | 738 | | 420 | 1.433 | 27 | 756 | | 430 | 1.460 | 27 | 774 | | 440 | 1.487 | 26 | 792 | | 450 | 1.513 | 27 | 810 | | 460 | 1.540 | 26 | 828 | | 470 | 1.566 | 26 | 846 | | 480 | 1.592 | 27 | 864 | | 490 | 1.619 | 26 | 882 | | 500 | 1.645 | | 900 | | 1 | | | | | | | • | | |------------------------------------|---|--------------------------|--------------------------------------| | °к | k/k ₀ | | °R | | 500 | 1.645 | 26 | 900 | | 510 | 1.671 | 26 | 918 | | 520 | 1.697 | 25 | 936 | | 530 | 1.722 | 25 | 954 | | 540 | 1.747 | 25 | 972 | | 550 | 1.771 | 24 | 990 | | 560 | 1.795 | 24 | 1008 | | 570 | 1.819 | 24 | 1026 | | 580 | 1.843 | 24 | 1044 | | 590 | 1.867 | 23 | 1062 | | 600 | 1.890 | 23 | 1080 | | 610 | 1.913 | 23 | 1098 | | 620 | 1.936 | 23 | 1116 | | 630 | 1.959 | 23 | 1134 | | 640 | 1.982 | 23 | 1152 | | 650 | 2.005 | 22 | 1170 | | 660 | 2.027 | 21 | 1188 | | 670 | 2.048 | 22 | 1206 | | 680 | 2.070 | 22 | 1224 | | 690 | 2.092 | 22 | 1242 | | 700 | 2.114 | 22 | 1260 | | 710 | 2.136 | 21 | 1278 | | 720 | 2.157 | 21 | 1296 | | 730 | 2.178 | 21 | 1314 | | 740 | 2.199 | 21 | 1332 | | 750 | 2.220 | 20 | 1350 | | 760 | 2.240 | 19 | 1368 | | 770 | 2.259 | 20 | 1386 | | 780 | 2.279 | 20 | 1404 | | 790 | 2.299 | 19 | 1422 | | 800
900
1000
1100
1200 | 2,318
2,504
2,673
2,828
2,968 | 186
169
155
140 | 1440
1620
1800
1980
2160 | | | | | | | Table | 7-10. PR | ANDTL N | JMBER OF | NITROGE | N AT ATMO | SPHERIC | PRESSURE | | ን C _p /k | |---------------------------------|--------------------------------------|--------------------------|--------------------------------------|--------------------------|--------------------------------------|--------------------------|--------------------------------------|--------------------------|--------------------------------------| | o K | (N _P | r) | (N _{Pr} | .)2/3 | (N _{Pr} | 1/3 | (N _P | r) ^{1/2} | o R | | 100
120
140 | .786
.778
.770 | - 8
- 8
- 8 | .851
.846
.840 | - 5
- 6
- 6 | .922
.920
.917 | - 2
- 3
- 4 | .887
.882 | - 5
- 4 | 180
216 | | 160
180
200 | .762
.754 | - 8
- 7 | .834
.828 | - 6
- 5 | .913
.910 | - 3
- 3 | .878
.873
.868 | - 5
- 5
- 3 | 252
288
324 | | 220
240
260 | .747
.740
.733
.725 | - 7
- 7
- 8
- 6 | .823
.818
.813
.807 | - 5
- 5
- 6
- 4 | .907
.905
.902
.898 | - 2
- 3
- 4
- 2 | .865
.860
.856
.851 | - 5
- 4
- 5 | 360
396
432 | | 280
300
320 | .719
.713
.707 | - 6
- 6
- 4 | .803
.798
.794 | - 5
- 4
- 3 | .896
.893
.891 | - 3
- 2 | .848
.844 | - 3
- 4
- 3 | 468
504
540 | | 340
360
380 | .703
.699
.695 | - 4
- 4
- 4 | .791
.787
.784 | - 4
- 3
- 2 | .889
.887
.886 | - 2
- 2
- 1
- 2 | .841
.838
.836
.834 | - 3
- 2
- 2
- 3 | 576
612
648
684 | | 400
420
440
460 | .691
.689
.688 | - 2
- 1
- 1 | .782
.780
.780 | - 2
- 1 | .884
.883
.883 | - 1 | .831
.830
.830 | - 1
- 1 | 720
756
792 | | 480
500 | .687
.685
.684 | - 2
- 1
- 1 | .779
.777
.776 | - 2
- 1 | .883
.882
.881 | - 1
- 1 | .829
.828 | - 1
- 1 | 828
864 | | 520
540
560
580 | .683
.683
.684
.685 | 1
1
1 | .775
.775
.776
.777 | 1
1
1 | .881
.881
.881
,882 | 1 | .826
.826
.827
.828 | - 1
1
1 | 900
936
972
1008
1044 | | 600
650
700
750
800 | .686
.688
.691
.695
.700 | 2
3
4
5 | .778
.779
.782
.785
.788 | 1
3
3
3
9 | .882
.883
.884
.886
.888 | 1
1
2
2
4 | .828
.829
.831
.834
.837 | 1
2
3
3 | 1080
1170
1260
1350
1440 | | 900
1000
1100
1200 | .711
.724
.736
.748 | 13
12
12 | .797
.806
.815
.824 | 9
9
9 | .892
.898
.903
.908 | 6
5
5 | .843
.851
.858
.865 | 8
7
7 | 1620
1800
1980
2160 | | Table 7-11 | VAPOR | PRESSURE | OF | NITROGET | |------------|-----------|---------------|----|----------| | TADIC LATE | 1 111 011 | I ISTINOCTION | ~- | | | Table 7-11 VAPOR | PRESSURE C | F NITROGEN | | | | |--|------------|------------------------------------|-------------------------|--------------------------|---| | Remarks | Т | P | P | P | т | | | ° K | mm Hg | atm | psia | ° R | | Triple point Normal boiling point-
Critical point | 77.395 | 94.0
760.0
254 ₅₂ | .1237
1.000
33.49 | 1.818
14.696
492.2 | 113.681
139.311
227.0 ₄₃ | | Solid | - 52 | 5.7 | .0075 | .110 | 93.6 | | | 54 | 10.2 | .0134 | .197 | 97.2 | | | 56 | 17.6 | .0232 | .341 | 100.8 | | | 58 | 29.4 | .0386 | .568 | 104.4 | | | 60 | 47.2 | .0621 | .913 | 108.0 | | | 62 | 73.6 | .0969 | 1.424 | 111.6 | | Liquid | - 64 | 109.4 | .1439 | 2.115 | 115.2 | | | 66 | 154.1 | .2028 | 2.980 | 118.8 | | | 68 | 212.6 | .2797 | 4.110 | 122.4 | | | 70 | 287.6 | .3785 | 5.56 | 126.0 | | | 72 | 382.5 | .503 | 7.40 | 129.6 | | | 7 4 | 500.0 | .658 | 9.67 | 133.2 | | | 76 | 643.0 | .847 | 12.44 | 136.8 | | | 78 | 815.0 | 1.073 | 15.76 | 140.4 | | · | 80 | 1019.0 | 1.341 | 19.71 | 144.0 | | | 82 | 1259.0 | 1.657 | 24.35 | 147.6 | | | 84 | 1539.0 | 2.026 | 29.77 | 151.2 | | | 86 | 1869.0 | 2.460 | 36.15 | 154.8 | | | 88 | 2255.0 | 2.967 | 43.60 | 158.4 | | | 90 | 2697.0 | 3.548 | 52.1 | 162.0 | | | 92 | 3194.0 | 4.203 | 61.8 | 165.6 | | | 94 | 3752.0 | 4.937 | 72.5 | 169.2 | | | 96 | 4377.0 | 5.76 | 84.6 | 172.8 | | | 98 | 5076.0 | 6.68 | 98.1 | 176.4 | | | 100 | 5851.0 | 7.70 | 113.1 | 180.0 | | | 102 | 6708.0 | 8.83 | 129.7 | 183.6 | | | 104 | 7650.0 | 10.07 | 147.9 | 187.2 | | | 106 | 8682.0 | 11.42 | 167.9 | 190.8 | | | 108 | 9808.0 | 12.91 | 189.7 | 194.4 | | | 110 | 11033.0 | 14.52 | 213.3 | 198.0 | | | 112 | 12360.0 | 16.26 | 239.0 | 201.6 | | | 114 | 13797.0 | 18.15 | 266.8 | 205.2 | | | 116 | 15351.0 | 20,20 | 296.8 | 208.8 | | | 118 | 17033.0 | 22.41 | 329.4 | 212.4 | | | 120 | 18854.0 | 24.81 | 364.6 | 216.0 | | | 122 | 20823.0 | 27.40 | 402.7 | 219.6 | | | 124 | 22960.0 | 30.21 | 444.0 | 223.2 | | | 126 | 25287.0 | 33.27 | 489.0 | 226.8 | Table 7-11/a. VAPOR PRESSURE OF LIQUID NITROGEN | 40/T | T | Log ₁₀ P(atn | 1)* | Р | Т | 72/T | |------------|------------------|-------------------------|------------|---------|------------------|------------------------| | oK-1 | °К | | | atm | °R | o _R -1 | | .64 | 62.50 | (9.0398-10) | 790 | (.1096) | 112.50 | | | .63 | 63.49 | 9.1188-10 | 788 | .1315 | 114.29 | .64 | | .62 | 64.52 | 9.1976-10 | 786 | .1576 | 116.13 | .63 | | .61 | 65.57 | 9.2762-10 | 784 | .1889 | 118.03 | .62
.61 | | .60 | 66.67 | 9.3546-10 | 783 | .2263 | 120.00 | ۲٥. | | .59 | 67.80 | 9.4329-10 | 782 | .2710 | 122.03 | .60 | | .58 | 68.97 | 9.5111-10 | 781 | .3244 | 124.14 | .59 | | .57 | 70.18 | 9.5892-10 | 780 | .3883 | 126.32 | .58 | | .56 | 71.43 | 9.6672-10 | 778 | .465 | 128.57 | .57
.56 | | •55 | 72.73 | 9.7450-10 | 775 | .556 | 130.91 | | | .54 | 74.07 | 9.8225-10 | 770 | .665 | | .55 | | .53 | 75.47 | 9.8995-10 | 764 | .793 | 133.33 | .54 | | .52 | 76.92 | 9.9759-10 | 760 | .946 | 135.85 | .53 | | .51 | 78.43 | .0519 | 756 | 1.127 | 138.46
141.18 | .52
.51 | | .50 | 80.00 | .1275 | 753 | 1.341 | 144.00 | | | .49 | 81.63 | .2028 | 750 | 1.595 | 144.00 | .50 | | .48 | 83.33 | .2778 | 757 | 1.896 | 146.94 | .49 | | .47 | 85.11 | .3535 | 767 | 2.257 | 150.00 | .48 | | .46 | 86.96 | .4302 | 772 | 2.693 | 153.19
156.52 | .47
.46 | | .45 | 88.89 | .5074 | 766 | 3.217 | 140.00 | | | .44 | 90.91 | .5840 | 757 | 3.837 | 160.00 | .45 | | .43 | 93.02 | .6597 | 755 | 4.568 | 163.64 | .44 | | .42 | 95.24 | .7352 | 756 | 5.44 | 167.44 | .43 | | .41 | 97.56 | .8108 | 756 | 6.47 | 171.43
175.61 | .42
.41 | | .40 | 100.00 | .8864 | 757 | 7.70 | 180.00 | | | .39 | 102.56 | .9621 | 757 | 9.16 | 184.62 | .40 | | .38 | 105.26 | 1.0378 | 758 | 10.91 | 189.47 | .39 | | .37 | 108.11 | 1.1136 | 759 | 12.99 | 194.59
| .38 | | .36 | 111.11 | 1.1895 | ,,, | 15.47 | 200.00 | .37
.36 | | 00/T | | | | | | 1 8 0/ T | | .90 | 111,11 | 1 1005 | | | | 200, 2 | | .89 | 112.36 | 1.1895 | 304 | 15.47 | 200.00 | .90 | | .88 | | 1.2199 | 305 | 16.59 | 202.25 | .89 | | .87 | 113.64 | 1.2504 | 306 | 17.80 | 204.55 | .88 | | .86 | 114.94
116.28 | 1.2810 | 307 | 19.10 | 206.90 | .87 | | | | 1.3117 | 309 | 20.50 | 209.30 | .86 | | .85
.84 | 117.65 | 1.3426 | 311 | 22.01 | 211.76 | .85 | | .83 | 119.05 | 1.3737 | 314 | 23.64 | 214.29 | .84 | | .82 | 120.48 | 1.4051 | 316 | 25.42 | 216.87 | .83 | | .81 | 121.95
123.46 | 1.4367
1.4687 | 320
325 | 27.33 | 219.51 | .82 | | | | | 243 | 29.42 | 222.22 | .81 | | .80 | 125.00 | 1.5012 | 331 | 31.71 | 225.00 | .80 | | .79
.78 | 126.58 | (1.5343) | 344 | (34.22) | 227.85 | .79 | | 10 | 128,21 | (1.5687) | | (37.04) | 230.77 | .78 | $^{^*}$ Tabulated values in this column are for interpolation with respect to reciprocal temperature. Table 7-11/b. CONSTANTS FOR LOG $_{10}P$ (SOLID) = A - B/T | | | 10 1 0 1 2 0 1 10 1 (SOLID) = A - B/T | | | | | | | | | | |------------|-------------|---------------------------------------|----------|--|--|--|--|--|--|--|--| | Units of P | A | Units of T | В | | | | | | | | | | | | 1 | " | | | | | | | | | | | | | _ | | | | | | | | | | mm Hg | 7 65004 | 0 | | | | | | | | | | | g | 7.65894 | °к | 359.093 | | | | | | | | | | atm | 4.77813 | °R. | | | | | | | | | | | | 2.11013 | , n | 646. 367 | | | | | | | | | | psia | 5.94532 | | | | | | | | | | | | _ | 0.04002 | | 1 | | | | | | | | | | | | L | ı | | | | | | | | | Figures in parentheses are extrapolated to permit interpolation to the critical point and triple point. Table 7-12. IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR MOLECULAR NITROGEN | | C _p | | (H° - E° |) * | s° | | -(F° - E°) | | °R | |---------------------------------|--|--------------------|--|--------------------------------------|---|--------------------------------------|--|---------------------------------|---------------------------------| | °K | R | | RTo | • | R | | RT | • | <i>H</i> | | 10
20
30
40 | 3.5019
3.5006
3.5004
3.5003 | - 13
- 2
- 1 | .1246
.2527
.3809
.5090 | 1281
1282
1281
1282 | 11.1440
13.5707
14.9903
15.9970 | 24267
14196
10067
7811 | 7.740
10.119
11.522
12.521 | 2379
1403
999
776 | 18
36
54
72 | | 50 | 3.5003 | 1 | .6372 | 1281 | 16.7781 | 6382 | 13.297 | 635 | 90 | | 60 | 3.5003 | | .7653 | 1281 | 17.4163 | 5396 | 13.932 | 538 | 108 | | 70 | 3.5003 | | .8934 | 1282 | 17.9559 | 4674 | 14.470 | 465 | 126 | | 80 | 3.5004 | | 1.0216 | 1281 | 18.4233 | 4122 | 14.935 | 411 | 144 | | 90 | 3.5004 | | 1.1497 | 1282 | 18.8355 | 3688 | 15.346 | 368 | 162 | | 100 | 3.5004 | 1 | 1.2779 | 1281 | 19.2043 | 3337 | 15.714 | 333 | 180 | | 110 | 3.5005 | | 1.4060 | 1282 | 19.5380 | 3046 | 16.047 | 303 | 198 | | 120 | 3.5005 | | 1.5342 | 1281 | 19.8426 | 2801 | 16.350 | 280 | 216 | | 130 | 3.5005 | | 1.6623 | 1282 | 20.1227 | 2595 | 16.630 | 259 | 234 | | 140 | 3.5006 | | 1.7905 | 1281 | 20.3822 | 2415 | 16.889 | 241 | 252 | | 150 | 3.5006 | 1 | 1.9186 | 1282 | 20.6237 | 2259 | 17.130 | 225 | 270 | | 160 | 3.5007 | | 2.0468 | 1281 | 20.8496 | 2123 | 17.355 | 212 | 288 | | 170 | 3.5007 | | 2.1749 | 1282 | 21.0619 | 2000 | 17.567 | 200 | 306 | | 180 | 3.5007 | | 2.3031 | 1281 | 21.2619 | 1893 | 17.767 | 189 | 324 | | 190 | 3.5008 | | 2.4312 | 1282 | 21.4512 | 1796 | 17.956 | 179 | 342 | | 200
210
220
230
240 | 3.5008
3.5009
3.5010
3.5010
3.5012 | 1
1
2
1 | 2.5594
2.6876
2.8157
2.9439
3.0721 | 1282
1281
1282
1282
1281 | 21.6308
21.8016
21.9645
22.1201
22.2691 | 1708
1629
1556
1490
1429 | 18.135
18.306
18.468
18.624
18.773 | 171
162
156
149
142 | 360
378
396
414
432 | | 250 | 3.5013 | 2 | 3.2002 | 1282 | 22.4120 | 1373 | 18.915 | 137 | 450 | | 260 | 3.5015 | 2 | 3.3284 | 1282 | 22.5493 | 1322 | 19.052 | 132 | 468 | | 270 | 3.5017 | 4 | 3.4566 | 1282 | 22.6815 | 1273 | 19.184 | 128 | 486 | | 280 | 3.5021 | 4 | 3.5848 | 1282 | 22.8088 | 1229 | 19.312 | 122 | 504 | | 290 | 3.5025 | 5 | 3.7130 | 1282 | 22.9317 | 1188 | 19.434 | 119 | 522 | | 300 | 3.5030 | 6 | 3.8412 | 1283 | 23.0505 | 1149 | 19.553 | 115 | 540 | | 310 | 3.5036 | 8 | 3.9695 | 1283 | 23.1654 | 1112 | 19.668 | 111 | 558 | | 320 | 3.5044 | 10 | 4.0978 | 1283 | 23.2766 | 1079 | 19.779 | 107 | 576 | | 330 | 3.5054 | 11 | 4.2261 | 1283 | 23.3845 | 1046 | 19.886 | 105 | 594 | | 340 | 3.5065 | 13 | 4.3544 | 1284 | 23.4891 | 1017 | 19.991 | 101 | 612 | | 350 | 3.5078 | 16 | 4.4828 | 1285 | 23.5908 | 988 | 20.092 | 99 | 630 | | 360 | 3.5094 | 17 | 4.6113 | 1285 | 23.6896 | 962 | 20.191 | 96 | 648 | | 370 | 3.5111 | 20 | 4.7398 | 1285 | 23.7858 | 937 | 20.287 | 93 | 666 | | 380 | 3.5131 | 23 | 4.8683 | 1287 | 23.8795 | 912 | 20.380 | 91 | 684 | | 390 | 3.5154 | 25 | 4.9970 | 1287 | 23.9707 | 891 | 20.471 | 89 | 702 | | 400 | 3.5179 | 27 | 5.1257 | 1289 | 24.0598 | 8 69 | 20.560 | 86 | 720 | | 410 | 3.5206 | 31 | 5.2546 | 1289 | 24.1467 | 849 | 20.646 | 84 | 738 | | 420 | 3.5237 | 33 | 5.3835 | 1291 | 24.2316 | 829 | 20.730 | 83 | 756 | | 430 | 3.5270 | 36 | 5.5126 | 1291 | 24.3145 | 811 | 20.813 | 80 | 774 | | 440 | 3.5306 | 38 | 5.6417 | 1294 | 24.3956 | 794 | 20.893 | 79 | 792 | | 450 | 3.5344 | 42 | 5.7711 | 1294 | 24.4750 | 777 | 20.972 | 77 | 810 | | 460 | 3.5386 | 44 | 5.9005 | 1296 | 24.5527 | 762 | 21.049 | 75 | 828 | | 470 | 3.5430 | 46 | 6.0301 | 1298 | 24.6289 | 746 | 21.124 | 74 | 846 | | 480 | 3.5476 | 50 | 6.1599 | 1300 | 24.7035 | 732 | 21.198 | 72 | 864 | | 490 | 3.5526 | 52 | 6.2899 | 1301 | 24.7767 | 719 | 21.270 | 71 | 882 | | 500 | 3.5578 | 54 | 6.4200 | 1304 | 24.8486 | 705 | 21.341 | 70 | 900 | | 510 | 3.5632 | 56 | 6.5504 | 1305 | 24.9191 | 692 | 21.411 | 68 | 918 | | 520 | 3.5688 | 59 | 6.6809 | 1308 | 24.9883 | 680 | 21.479 | 67 | 936 | | 530 | 3.5747 | 61 | 6.8117 | 1310 | 25.0563 | 669 | 21.546 | 65 | 954 | | 540 | 3.5808 | 63 | 6.9427 | 1312 | 25.1232 | 658 | 21.611 | 65 | 972 | | 550 | 3.5871 | 65 | 7.0739 | 1314 | 25.1890 | 647 | 21.676 | 63 | 990 | | 560 | 3.5936 | 67 | 7.2053 | 1317 | 25.2537 | 636 | 21.739 | 62 | 1008 | | 570 | 3.6003 | 69 | 7.3370 | 1319 | 25.3173 | 627 | 21.801 | 61 | 1026 | | 580 | 3.6072 | 70 | 7.4689 | 1322 | 25.3800 | 617 | 21.862 | 61 | 1044 | | 590 | 3.6142 | 72 | 7.6011 | 1324 | 25.4417 | 608 | 21.923 | 59 | 1062 | | 600 | 3.6214 | | 7.7335 | | 25.5025 | | 21.982 | | 1080 | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16 K (491.688 R). Table 7-12. IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR MOLECULAR NITROGEN - Cont. | °K | C _p | | (H° - E | 3)* | s° | - | -(F° - E°) | | • 5 | |---------------------|------------------|------------------------|--------------------|--------------------------|--------------------|-------------------|------------------------------------|------------------|--------------| | | R | | RT _o | - | R | | RT | | °R | | 600 | 3.6214 | 73 | 7.7335 | 1327 | 25.5025 | 600 | 21.982 | 58 | 1080 | | 610
620 | 3.6287
3.6362 | 75 | 7.8662
7.9992 | 1330 | 25.5625 | 590 | 22.040 | 57 | 1098 | | 630 | 3.6437 | 75
77 | 8.1325 | 1333
1335 | 25.6215
25.6798 | 583
574 | 22.097
22.154 | 57
55 | 1116
1134 | | 640 | 3.6514 | 77 | 8.2660 | 1338 | 25.7372 | 567 | 22,209 | 55 | 1152 | | 650
660 | 3.6591
3.6670 | 79
79 | 8.3998
8.5339 | 1341
1344 | 25.7939
25.8498 | 559
552 | 22.264
22.318 | 54
53 | 1170
1188 | | 670
680 | 3.6749 | 80 | 8.6683 | 1347 | 25.9050 | 54 5 | 22.371 | 52 | 1206 | | 690 | 3.6829
3.6909 | 80
81 | 8.8030
8.9379 | 1349
1353 | 25.9595
26.0133 | 538
532 | 22.423
22.475 | 52
51 | 1224
1242 | | 700
710 | 3.6990
3.7071 | 81. | 9.0732 | 1356 | 26.0665 | 525 | 22.526 | 50 | 1260 | | 710
720 | 3.7152 | 81.
82 | 9.2088
9.3446 | 1358
1362 | 26.1190
26.1709 | 519
513 | 22.576
22.626 | 50
4 9 | 1278
1296 | | 730 | 3.7234 | 82 | 9.4808 | 1364 | 26.2222 | 507 | 22.675 | 48 | 1314 | | 740 | 3.7316 | 82 | 9.6172 | 1368 | 26.2729 | 502 | 22.723 | 48 | 1332 | | 750
760 | 3.7398
3.7480 | 82
82 | 9.7540
9.8910 | 1370 | 26.3231 | 496 | 22.771 | 47 | 1350 | | 770 | 3.7562 | 82
81 | 10.0284 | 1374
1376 | 26.3727
26.4217 | 490
485 | 22.818
22.864 | 46
46 | 1368
1386 | | 780 | 3.7643 | 82 | 10.1660 | 1380 | 26.4702 | 481 | 22.910 | 46 | 1404 | | 790 | 3.7725 | 81. | 10.3040 | 1383 | 26.5183 | 475 | 22.956 | 44 | 1422 | | 800 | 3.7806 | 401 | 10.4423 | 69 57 | 26.5658 | 2304 | 23,000 | 217 | 1440 | | 850
9 0 0 | 3.8207
3.8596 | 389
374 | 11.1380
11.8409 | 7029
7099 | 26.7962
27.0156 | 2194 | 23.217
23.422 | 205 | 1530
1620 | | 950 | 3.8970 | 356 | 12.5508 | 70 99
7166 | 27.2253 | 2097
2008 | 23.617 | 195
185 | 1710 | | 1000 | 3.9326 | 338 | 13.2674 | 7230 | 27.4261 | 1927 | 23.802 | 177 | 1800 | | 1050 | 3.9664 | 318 | 13.9904 | 7289 | 27.6188 | 1852 | 23.979 | 170 | 1890 | | 1100
1150 | 3.9982
4.0281 | 2 99
281 | 14.7193
15.4539 | 7346
7400 | 27.8040
27.9824 | 1784
1720 | 24.149
24.312 | 163 | 1980
2070 | | 1200 | 4.0562 | 263 | 16.1939 | 7449 | 28.1544 | 1662 | 24.468 | 156
151 | 2160 | | 1250 | 4.0825 | 247 | 16.9388 | 7495 | 28.3206 | 1606 | 24.619 | 146 | 2250 | | 1300 | 4.1072 | 231 | 17.6883 | | 28.4812 | 1554 | 24.765 | 140 | 2340 | | 1350
1400 | 4.1303
4.1518 | 215
202 | 18.4422
19.2002 | 7580
7619 | 28.6366
28.7872 | 1506 | 24.905
25.041 | 136 | 2430
2520 | | 1450 | 4.1720 |
189 | 19.9621 | | 28.9333 | 1461
1418 | 25,173 | 132
128 | 2610 | | 1500 | 4.1909 | 177 | 20,7275 | | 29.0751 | 1377 | 25.301 | 124 | 2700 | | 1550 | 4.2086 | 166 | 21.4963 | | 29.2128 | 1339 | 25.425 | 120 | 2790 | | 1600
1650 | 4.2252
4.2408 | 156
146 | 22.2682
23.0430 | | 29.3467
29.4769 | 1302
1268 | 25.545
25.662 | 117 | 2880
2970 | | 1700 | 4.2554 | 138 | 23.8206 | | 29.6037 | 1236 | 25.776 | 114
111 | 3060 | | 1750 | 4.2692 | 129 | 24.6008 | | 29.7273 | 1204 | 25.887 | 109 | 3150 | | 1800 | 4.2821 | 122 | 25.3834 | | 29.8477 | 1175 | 25.996 | 105 | 3240 | | 1850
1900 | 4.2943
4.3057 | 114
109 | 26.1684
26.9554 | 7870
7892 | 29.9652
30.0799 | 1147
1120 | 26.101
26.205 | 104
100 | 3330
3420 | | 1950 | 4.3166 | 102 | 27.7446 | 7910 | 30.1919 | 1094 | 26.305 | 99 | 3510 | | 2000 | 4.3268 | 97 | 28.5356 | 7929 | 30.3013 | 1070 | 26.404 | 96 | 3600 | | 2050 | 4.3365 | 92 | 29.3285 | | 30.4083 | 1046 | 26.500 | 95 | 3690 | | 2100
2150 | 4.3457
4.3544 | 87 | 30.1232 | | 30.5129 | 1023 | 26.595 | 92 | 3780 | | 2200 | 4.3627 | 83
78 | 30.9194
31.7172 | | 30.6152
30.7154 | 1002
981 | 26.687
26.777 | 90
89 | 3870
3960 | | 2250 | 4.3705 | 75 | 32.5165 | | 30.8135 | 962 | 26.866 | 87 | 4050 | | 2300
2350 | 4.3780
4.3852 | 72
68 | 33.3172
34.1192 | | 30.9097
31.0039 | 942
924 | 26.953
27.038 | 85
84 | 4140
4230 | | 2400 | 4.3920 | 65
65 | 34.9225 | | 31.0963 | 906 | 27.122 | 84
82 | 4320 | | 2450
2500 | 4.3985
4.4047 | 62
59 | 35.7270
36.5327 | 8057 | 31.1869
31.2759 | 890
872 | 27.204
27.284 | 80
79 | 4410
4500 | | 2550 | 4.4106 | 57 | 37,3395 | | 31,3631 | 857 | 27,363 | 78 | 4590 | | 2600 | 4.4163 | 5 5 | 38.1473 | 8089 | 31.4488 | 842 | 27.441 | 76 | 4680 | | 2650
2700 | 4.4218
4.4270 | 52
*0 | 38.9562
39.7661 | | 31.5330 | 827 | 27.517 | 76 | 4770 | | 2750 | 4.4270 | 50
49 | 39.7661
40.5769 | | 31.6157
31.6970 | 813
799 | 27 . 593
27 . 667 | 74
72 | 4860
4950 | | 2800 | 4.4369 | | 41.3886 | | 31,7769 | | 27.739 | | 5040 | | | | | | | | | | | | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). Table 7-12. IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR MOLECULAR NITROGEN - Cont. | | | | | | | | | * | | |------|----------------|----|-----------|-------------|---|------|------------------------------|----------|----------------------| | | C _p | | (H° - E°) | * | s° | | $-(F^{\circ}-E_{o}^{\circ})$ | | | | *K | R | | RTo | • | R | | RT | | °R | | | | | 10 | | | | | | | | | | | | | | | | | | | 2800 | 4,4369 | 46 | 41.3886 | 8125 | 31.7769 | 785 | 27,739 | 72 | 5040 | | 2850 | 4.4415 | 45 | 42.2011 | 8134 | 31.8554 | 773 | 27.811 | 70 | 5130 | | 2900 | 4.4460 | 43 | 43.0145 | 8142 | 31.9327 | 761 | 27.881 | 69 | 5220 | | 2950 | 4.4503 | 42 | 43.8287 | 8150 | 32,0088 | 748 | 27.950 | 69 | 5310 | | 3000 | 4.4545 | 40 | 44.6437 | 8158 | 32.0836 | 737 | 28.019 | 67 | 5400 | | | | •• | | | | | | | | | 3050 | 4.4585 | 39 | 45.4595 | 81.64 | 32.1573 | 725 | 28.086 | 66 | 5490 | | 3100 | 4,4624 | 39 | 46.2759 | 81.72 | 32,2298 | 715 | 28.152 | 66 | 5580 | | 3150 | 4.4663 | 36 | 47,0931 | 81.78 | 32.3013 | 703 | 28.218 | 64 | 5670 | | 3200 | 4.4699 | 36 | 47.9109 | 8186 | 32.3716 | 693 | 28.282 | 63 | 5760 | | 3250 | 4.4735 | 35 | 48.7295 | 8191 | 32.4409 | 684 | 28,345 | 63 | 5850 | | | | | | | | | | | | | 3300 | 4.4770 | 34 | 49.5486 | 8198 | 32.5093 | 673 | 28.408 | 62 | 5940 | | 3350 | 4.4804 | 32 | 50.3684 | 8204 | 32.5766 | 664 | 28.470 | 60 | 6030 | | 3400 | 4.4836 | 32 | 51.1888 | 8210 | 32.6430 | 655 | 28,530 | 61 | 6120 | | 3450 | 4.4868 | 32 | 52,0098 | 8216 | 32.7085 | 646 | 28,591 | 59 | 6210 | | 3500 | 4.4900 | 30 | 52.8314 | 8221 | 32,7731 | 637 | 28.650 | 58 | 6300 | | | | | | | | | | | | | 3550 | 4.4930 | 30 | 53.6535 | 8227 | 32.8368 | 628 | 28,708 | 58 | 6390 | | 3600 | 4,4960 | 28 | 54.4762 | 8232 | 32.8996 | 621 | 28.766 | 57 | 6480 | | 3650 | 4.4988 | 28 | 55.2994 | 8238 | 32.9617 | 612 | 28.823 | 57 | 6570 | | 3700 | 4.5016 | 28 | 56.1232 | 8242 | 33,0229 | 605 | 28.880 | 55
55 | 6660 | | 3750 | 4.5044 | 27 | 56.9474 | 8248 | 33,0834 | 597 | 28,935 | 55 | 6750 | | | | | 30,711 | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 3., | 20,775 | | 0.50 | | 3800 | 4.5071 | 26 | 57.7722 | 8252 | 33.1431 | 589 | 28,990 | 55 | 6840 | | 3850 | 4.5097 | 26 | 58,5974 | 8257 | 33,2020 | 582 | 29,045 | 53 | 6930 | | 3900 | 4,5123 | 25 | 59,4231 | 8262 | 33.2602 | 575 | 29.098 | 53 | 7020 | | 3950 | 4.5148 | 25 | 60,2493 | 8266 | 33.3177 | 568 | 29.151 | 53 | 7110 | | 4000 | 4.5173 | 24 | 61.0759 | 8271 | 33,3745 | 561 | 29,204 | 52 | 7200 | | | | | | | | | | | | | 4050 | 4.5197 | 24 | 61.9030 | 8276 | 33,4306 | 555 | 29.256 | 51 | 7290 | | 4100 | 4.5221 | 24 | 62,7306 | 8279 | 33,4861 | 548 | 29,307 | 50 | 7380 | | 4150 | 4.5245 | 23 | 63.5585 | 8283 | 33.5409 | 542 | 29.357 | 51 | 7470 | | 4200 | 4.5268 | 22 | 64.3868 | 8288 | 33,5951 | 536 | 29.408 | 49 | 7560 | | 4250 | 4.5290 | 22 | 65.2156 | 8292 | 33.6487 | 530 | 29.457 | 49 | 7650 | | | 143270 | - | 0312230 | | 2210.07 | 330 | 27.151 | 7. | | | 4300 | 4.5312 | 22 | 66.0448 | 8297 | 33.7017 | 524 | 29,506 | 49 | 7740 | | 4350 | 4.5334 | 22 | 66,8745 | 8300 | 33.7541 | 518 | 29.555 | 48 | 7830 | | 4400 | 4.5356 | 21 | 67.7045 | 8304 | 33.8059 | 513 | 29.603 | 47 | 7920 | | 4450 | 4.5377 | 21 | 68.5349 | 8308 | 33.8572 | 507 | 29,650 | 47 | 8010 | | 4500 | 4.5398 | 21 | 69.3657 | 8311 | 33,9079 | 502 | 29.697 | 47 | 8100 | | .500 | 1.55770 | | 07,500 | 0 11 | ,,,,,, | ,,,, | _,,,,, | •• | | | 4550 | 4,5419 | 21 | 70.1968 | 8316 | 33.9581 | 496 | 29,744 | 46 | 8190 | | 4600 | 4.5440 | 20 | 71.0284 | 8319 | 34.0077 | 492 | 29.790 | 46 | 8280 | | 4650 | 4.5460 | 20 | 71.8603 | 8324 | 34.0569 | 486 | 29.836 | 45 | 8370 | | 4700 | 4.5480 | 20 | 72.6927 | 8326 | 34,1055 | 481 | 29.881 | 44 | 8460 | | 4750 | 4.5500 | 20 | 73.5253 | 8330 | 34.1536 | 477 | 29.925 | 45 | 8550 | | | | | | | | | | - | | | 4800 | 4,5520 | 20 | 74.3583 | 8334 | 34.2013 | 471 | 29.970 | 44 | 8640 | | 4850 | 4,5540 | 19 | 75,1917 | 8338 | 34.2484 | 468 | 30.014 | 43 | 8730 | | 4900 | 4.5559 | 20 | 76.0255 | 8342 | 34,2952 | 463 | 30.057 | 43 | 8820 | | 4950 | 4.5579 | 19 | 76,8597 | 8344 | 34.3415 | 458 | 30.100 | 43 | 8910 | | 5000 | 4.5598 | | 77.6941 | | 34.3873 | | 30.143 | | 9000 | | | | | | | | | | | - · · - - | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). Table 7-12/a. IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR ATOMIC NITROGEN | • | C _p | (H° - E°)* | | s° | | -(F° - E°) | | °R | |---------------------|----------------|------------------|------------|--------------------|-----------------|--------------------|--------------------------|--------------| | °K | R | RTo | | R | | RT | | . Л | | | | 0015 | | 9.9377 | 17328 | 7.4377 | 17328 | 18 | | 10
20 | 2.5000 | .0915
.1830 | 915
916 | 11.6705 | 10137 | 9.1705 | 10137 | 36 | | 20
30 | | .2746 | 915 | 12.6842 | 7192 | 10.1842 | 7192 | 54 | | 40 | | .3661 | 919 | 13.4034 | 5579 | 10.9034 | 5579 | 72 | | 50. | | .4576 | 915 | 13.9613 | 4558 | 11.4613
11.9171 | 4558
3853 | 90
108 | | 60 | | .5491
4407 | 916 | 14.4171
14.8024 | 3853
3339 | 12.3024 | 3339 | 126 | | 70
80 | | .6407
.7322 | 915
915 | 15.1363 | 2944 | 12.6363 | 2944 | 144 | | 90 | | .8237 | 915 | 15.4307 | 2634 | 12.9307 | 2634 | 162 | | 100 | | .9152 | 915 | 15.6941 | 2383 | 13.1941 | 2383 | 180
198 | | 110 | | 1.0067 | 916 | 15.9324
16.1499 | 2175
2001 | 13.4324
13.6499 | 2175
2001 | 216 | | 120 | | 1.0983
1.1898 | 915
915 | 16.3500 | 1853 | 13.8500 | 1853 | 234 | | 130
140 | | 1.2813 | 915 | 16.5353 | 1725 | 14.0353 | 1725 | 252 | | 150 | | 1.3728 | 915 | 16.7078 | 1613 | 14.2078 | 1613 | 270 | | 160 | | 1.4643 | 916 | 16.8691 | 1516 | 14.3691 | 1516 | 288
306 | | 170 | | 1.5559 | 915 | 17.0207
17.1636 | 1429
1352 | 14.5207
14.6636 | 1429
1352 | 324 | | 180
190 | | 1.6474
1.7389 | 915
915 | 17.2988 | 1282 | 14.7988 | 1282 | 342 | | 200 | | 1.8304 | 916 | 17.4270 | 1220 | 14.9270 | 1220 | 360 | | 210 | | 1.9220 | 915 | 17.5490 | 1163 | 15.0490 | 1163 | 378 | | 220 | | 2.0135 | 915 | 17.6653 | 1111 | 15.1653 | 1111 | 396
414 | | 230
240 | | 2.1050
2.1965 | 915
915 | 17.7764
17.8828 | 1064
1020 | 15.2764
15.3828 | 1064
1020 | 432 | | 250 | | 2,2880 | 916 | 17.9848 | 981 | 15.4848 | 981 | 450 | | 260 | | 2.3796 | 915 | 18.0829 | 944 | 15.5829 | 944 | 468 | | 270 | | 2.4711 | 915 | 18.1773 | 909 | 15.6773 | 909 | 486
504 | | 280
290 | | 2.5626
2.6541 | 915
915 | 18.2682
18.3559 | 877
848 | 15.7682
15.8559 | 877
848 | 522 | | 300 | | 2.7456 | 916 | 18,4407 | 819 | 15.9407 | 819 | 540 | | 310 | | 2.8372 | 915 | 18.5226 | 794 | 16.0226 | 794 | 558 | | 320 | | 2.9287 | 915 | 18.6020 | 7 69 | 16.1020 | 7 69 | 576 | | 330
340 | | 3.0202
3.1117 | 915
916 | 18.6789
18.7536 | 747
724 | 16.1789
16.2536 | 747
724 | 594
612 | | | | | | 18.8260 | 705 | 16,3260 | 705 | 630 | | 350
360 | | 3.2033
3.2948 | 915
915 | 18.8965 | 685 | 16.3965 | 685 | 648 | | 370 | | 3.3863 | 915 | 18,9650 | 666 | 16.4650 | 666 | 666 | | 380 | | 3.4778 | 915 | 19.0316 | 650 | 16.5316 | 650 | 684 | | 390 | | 3,5693 | 916 | 19.0966 | 633 | 16.5966 | 633 | 702 | | 400 | | 3.6609 | 915 | 19.1599
19.2216 | 617
602 | 16.6599
16.7216 | 61.7
602 | 720
738 | | 410
420 | | 3.7524
3.8439 | 915
915 | 19.2818 | 589 | 16.7818 | 589 | 756 | | 430 | | 3.9354 | 915 | 19.3407 | 574 | 16.8407 | 574 | 774 | | 440 | | 4.0269 | 916 | 19.3981 | 562 | 16.8981 | 562 | 792 | | 450 | | 4.1185 | 915 | 19.4543 | 550 | 16.9543 | 550 | 810
828 | | 460 | | 4.2100 | 915 | 19.5093 |
537 | 17.0093
17.0630 | 537
527 | 846 | | 470 | | 4.3015
4.3930 | 915
916 | 19.5630
19.6157 | 527
515 | | 515 | 864 | | 480
490 | | 4.4846 | 915 | 19.6672 | 505 | | 505 | 882 | | 500 | | 4.5761 | 915 | 19.7177 | 495 | | 495 | 900 | | 510 | | 4.6676 | 915 | 19.7672 | 486 | | 486 | 918 | | 520 | | 4.7591 | 915 | 19.8158 | 476 | | 476
447 | 936
954 | | 530
540 | | 4.8506
4.9422 | 916
915 | 19.8634
19.9101 | 467
459 | | 467
459 | 972 | | 550 | | 5.0337 | 915 | 19.9560 | 450 | | 450 | 990 | | 560 | | 5.1252 | 915 | 20.0010 | 443 | | 443 | 1008 | | 570 | | 5.2167 | 915 | 20.0453 | 435 | | 435 | 1026
1044 | | 580
5 9 0 | | 5.3082
5.3998 | 916
915 | 20.0888
20.1315 | 427
420 | | 427
420 | 1062 | | 600 | 2.5000 | 5.4913 | | 20.1735 | | 17.6735 | | 1080 | ^{*}The enthalpy function is divided here by a constant RT_0 where $T_0 = 273.16$ (491.688°R). Table 7-12/a. IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR ATOMIC NITROGEN - Cont. | °K | C _p | | (H° – E | | s° | | -(F° - E°) | | | |--------------|------------------|---|--------------------|--------------|--------------------------------------|-------------------|--------------------|-------------------|--------------| | | R | | RT _o | | R | | RT | | °R | | 600 | 2,5000 | | 5.4913 | 915 | 20,1735 | 413 | 17.6735 | | 1080 | | 610 | | | 5.5828 | 915 | 20.2148 | 407 | 17.7148 | 413
407 | 1098 | | 620 | | | 5.6743 | 916 | 20.2555 | 400 | 17.7555 | 400 | 1116 | | 630
640 | | | 5.7659
5.8574 | 915
915 | 20.2955
20.3349 | 394
387 | 17.7955
17.8349 | 394
387 | 1134
1152 | | 650 | | | 5,9489 | 915 | 20.3736 | | 17.8736 | | | | 660 | | | 6.0404 | 915 | 20.4118 | 382
376 | 17.9118 | 382
376 | 1170
1188 | | 670 | | | 6.1319 | 916 | 20.4494 | 370 | 17.9494 | 370 | 1206 | | 680
690 | | | 6.2235 | 915 | 20.4864 | 365 | 17.9864 | 365 | 1224 | | | | | 6.3150 | 915 | 20.5229 | 360 | 18.0229 | 360 | 1242 | | 700
710 | | | 6.4065
6.4980 | 915 | 20.5589 | 355 | 18.0589 | 355 | 1260 | | 720 | | | 6.5895 | 915
916 | 20,5944
20,6293 | 349 | 18.0944
18.1293 | 349 | 1278 | | 730 | | | 6.6811 | 915 | 20.6638 | 345
340 | 18.1638 | 345
340 | 1296
1314 | | 740 | | | 6.7726 | 915 | 20.6978 | 336 | 18.1978 | 336 | 1332 | | 750 | | | 6.8641 | 915 | 20.7314 | 331 | 18.2314 | 331 | 1350 | | 760
770 | | | 6.9556 | 916 | 20.7645 | 3 27 | 18.2645 | 327 | 1368 | | 780 | | | 7.0472
7.1387 | 915 | 20.7972 | 322 | 18.2972 | 322 | 1386 | | 790 | | | 7.2302 | 915
915 | 20.8294
20.8613 | 319 | 18.3294 | 319 | 1404 | | | | | 7.2502 | 715 | 20.0019 | 314 | 18,3613 | 314 | 1422 | | 800 | | | 7.3217 | 4576 | 20.8927 | 1516 | 18.3927 | 1516 | 1440 | | 850 | | | 7.7793 | 4576 | 21.0443 | 1429 | 18.5443 | 1429 | 1530 | | 900
950 | | | 8.2369 | 4576 | 21.1872 | 1352 | 18.6872 | 1352 | 1620 | | 1000 | | | 8.6945
9.1521 | 4576
4577 | 21,3224
21,4506 | 1282
1220 | 18.8224
18.9506 | 1282
1220 | 1710
1800 | | 1050 | | | 9.6098 | 4576 | 21.5726 | 1163 | 19.0726 | | 1890 | | 1100 | | | 10.0674 | 4576 | 21.6889 | 1111 | 19.1889 | 1163
1111 | 1980 | | 1150 | | | 10.5250 | 4576 | 21.8000 | 1064 | 19.3000 | 1064 | 2070 | | 1200
1250 | | | 10.9826
11.4402 | 4576
4576 | 21.9064
22.0084 | 1020
981 | 19.4064
19.5084 | 1020
981 | 2160
2250 | | 1300 | | | 11.8978 | | | | | | | | 1350 | | | 12.3554 | 4576
4576 | 22.1065
22.2008 | 943
910 | 19.6065
19.7008 | 943 | 2340 | | 1400 | | | 12.8130 | 4576 | 22.2918 | 877 | 19.7918 | 910
877 | 2430
2520 | | 1450 | | | 13.2706 | 4575 | 22.3795 | 847 | 19.8795 | 847 | 2610 | | 1500 | | | 13.7281 | 4577 | 22.4642 | 820 | 19.9642 | 820 | 2700 | | 1550 | 2.5000 | | 14.1858 | 4577 | 22,5462 | 795 | 20.0462 | 795 | 2790 | | 1600
1650 | 2.5000
2.5000 | _ | 14.6435 | 4576 | 22.6257 | 7 69 | 20.1257 | 769 | 2880 | | 1700 | 2.5000 | 1 | 15.1011
15.5587 | 4576 | 22.7026 | 746 | 20.2026 | 746 | 2970 | | 1750 | 2,5001 | 1 | 16.0163 | 4576
4576 | 22.7772
22.8497 | 725
705 | 20.2772
20.3497 | 725 | 3060 | | 1800 | 2,5002 | | | | | | | 704 | 3150 | | 1850 | 2.5002 | | 16.4739
16.9315 | 4576
4577 | 22.9202
22.9887 | 685 | 20.4201 | 685 | 3240 | | 1900 | 2.5003 | | 17.3892 | 4577 | 23.0553 | 666
650 | 20.4886
20.5553 | 667
649 | 3330
3420 | | 1950 | 2.5004 | 1 | 17.8469 | | 23.1203 | 633 | 20,6202 | 633 | 3510 | | 2000 | 2.5005 | 2 | 18.3047 | | 23.1836 | 618 | 20.6835 | 617 | 3600 | | 2050 | 2.5007 | | 18.7624 | 4576 | 23.2454 | 602 | 20,7452 | 603 | 3690 | | 2100 | 2.5009 | | 19.2200 | | 23.3056 | 588 | 20.8055 | 588 | 3780 | | 2150
2200 | 2.5011
2.5014 | | 19.6777 | | 23.3644 | 575 | 20.8643 | 575 | 3870 | | 2250 | 2.5018 | | 20.1356
20.5936 | | 23.4219 | 563 | 20.9218 | 562 | 3960 | | | | | | | 23.4782 | 550 | 20.9780 | 550 | 4050 | | 2300
2350 | 2.5022
2.5027 | | 21.0517
21.5097 | | 23.5332
23.5870 | 538
537 | 21.0330
21.0867 | 537 | 4140 | | 2400 | 2.5033 | 7 | 21.9678 | | 23.6397 | 527
516 | 21.1393 | 526
516 | 4230
4320 | | 2450
2500 | 2.5040 | | 22.4261 | 4586 | 23.6913 | 506 | 21.1909 | 507 | 4410 | | | 2.5049 | 9 | 22,8847 | 4586 | 23.7419 | 496 | 21.2416 | 495 | 4500 | | 2550
2600 | 2.5058
2.5069 | | 23.3433 | | 23.7915 | 487 | 21.2911 | 486 | 4590 | | 2650 | 2.5082 | | 23.8021
24.2611 | | 23.8402 | 477 | 21.3397 | 476 | 4680 | | 2700 | 2.5095 | | 24.2611
24.7203 | | 23 . 8879
23 . 9348 | 469 | 21.3873 | 467 | 4770 | | 2750 | 2.5111 | | 25.1798 | | 23.9809 | 461
453 | 21.4340
21.4799 | 459
450 | 4860
4950 | | 2800 | 2,5128 | 2 | 25.6395 | : | 24.0262 | | 21.5249 | | 5040 | | | | • | | • | | | 4 ± • JL 7 | | JU4U | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). Table 7-12/a. IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR ATOMIC NITROGEN - Cont. | | C°. | | (H° - E°) | * | s° | $\neg \neg$ | -(F° - E°) | | | |--------------|------------------|-------------|--------------------|------------------|--------------------|-------------|--------------------|------------|--------------| | °K | C _p | | — | | | | <u>_</u> | | °R | | | R | | RT _o | | R | | RT | | | | | | | | | | | | | | | 2800
2850 | 2.5128 | 19 | 25.6395 | 4601 | 24.0262 | 445 | 21.5249 | 443 | 5040 | | 2900 | 2.5147
2.5168 | 21
23 | 26.0996
26.5600 | 4604
4608 | 24.0707
24.1144 | 437
430 | 21.5692
21.6127 | 435
428 | 5130
5220 | | 2950 | 2.5191 | 25
25 | 27.0208 | 4612 | 24.1574 | 430
424 | 21.6555 | 428
420 | 5310 | | 3000 | 2.5216 | 27 | 27.4820 | 4618 | 24.1998 | 417 | 21.6975 | 413 | 5400 | | 3050 | 2.5243 | 29 | 27.9438 | 4623 | 24.2415 | 411 | 21.7388 | 407 | 5490 | | 3100 | 2.5272 | 32 | 28.4061 | 4629 | 24.2826 | 404 | 21.7795 | 400 | 5580 | | 3150 | 2.5304 | 35 | 28.8690 | 4635 | 24.3230 | 399 | 21.8195 | 395 | 5670 | | 3200 | 2.5339 | 37 | 29.3325 | 4642 | 24.3629 | 393 | 21.8590 | 388 | 5760 | | 3250 | 2.5376 | 39 | 29.7967 | 4649 | 24.4022 | 388 | 21.8978 | 383 | 5850 | | 3300 | 2.5415 | 41 | 30.2616 | 4656 | 24.4410 | 382 | 21.9361 | 378 | 5940 | | 3350 | 2.5456 | 45 | 30.7272 | 4663 | 24.4792 | 378 | 21.9739 | 372 | 6030 | | 3400 | 2.5501 | 47 | 31.1935 | 4672 | 24.5170 | 372 | 22.0111 | 367 | 6120 | | 3450
3500 | 2.5548
2.5597 | 49 | 31.6607 | 4681 | 24.5542 | 368 | 22.0478 | 362 | 6210 | | 2500 | 2.5571 | 52 | 32.1288 | 4689 | 24.5910 | 363 | 22.0840 | 356 | 6300 | | 3550 | 2.5649 | 55 | 32.5977 | 4700 | 24.6273 | 359 | 22.1196 | 芝0 | 6390 | | 3600 | 2.5704 | 57 | 33.0677 | 470 9 | 24.6632 | 355 | 22.1546 | 346 | 6480 | | 3650 | 2.5761 | 60 | 33.5386 | 4720 | 24.6987 | 351 | 22.1892 | 340 | 6570 | | 3700 | 2.5821 | 63 | 34.0106 | 4731 | 24.7338 | . 347 | 22.2232 | 336 | 6660 | | 3750 | 2.5884 | 66 | 34.4837 | 4744 | 24.7685 | 343 | 22.2568 | 332 | 6750 | | 3800 | 2.5950 | 68 | 34.9581 | 4757 | 24.8028 | 340 | 22.2900 | 328 | 6840 | | 3850 | 2.6018 | 71 | 35.4338 | 4770 | 24.8368 | 336 | 22.3228 | 324 | 6930 | | 3900 | 2.6089 | 74 | 35.9108 | 4784 | 24.8704 | 333 | 22.3552 | 320 | 7020 | | 3950
4000 | 2.6163
2.6240 | 77
79 | 36.3892
36.8689 | 4797 | 24.9037
24.9367 | 330 | 22.3872 | 317 | 7110 | | | | /9 | | 4811 | | 326 | 22.4189 | 313 | 7200 | | 4050 | 2.6319 | 81 | 37.3500 | 4824 | 24.9693 | 324 | 22.4502 | 309 | 7290 | | 4100 | 2.6400 | 84 | 37.8324 | 4840 | 25.0017 | 320 | 22.4811 | 305 | 7380 | | 4150 | 2.6484 | 86 | 38.3164 | 4855 | 25.0337 | 318 | 22.5116 | 302 | 7470 | | 4200
4250 | 2.6570
2.6659 | 89 | 38.8019 | 4871 | 25.0655 | 315 | 22.5418 | 299 | 7560 | | 4230 | 2.0037 | 91 | 39.2890 | 4868 | 25.0970 | 31.2 | 22.5717 | 296 | 7650 | | 4300 | 2.6750 | 94 | 39.7778 | 4904 | 25.1282 | 310 | 22.6013 | 292 | 7740 | | 4350 | 2.6844 | 96 | 40.2682 | 4922 | 25.1592 | 307 | 22.6305 | 289 | 7830 | | 4400 | 2.6940 | 97 | 40.7604 | 4940 | 25.1899 | 305 | 22.6594 | 287 | 7920 | | 4450 | 2.7037 | 100 | 41.2544 | 4958 | 25.2204 | 303 | 22.6881 | 283 | 8010 | | 4500 | 2.7137 | 102 | 41.7502 | 4977 | 25.2507 | 300 | 22.7164 | 280 | 8100 | | 4550 | 2.7239 | 104 | 42.2479 | 4996 | 25.2807 | 299 | 22.7444 | 278 | 81 90 | | 4600 | 2.7343 | 106 | 42.7475 | 5015 | 25.3106 | 296 | 22.7722 | 274 | 8280 | | 4650 | 2.7449 | 107 | 43.2490 | 5034 | 25.3402 | 294 | 22.7996 | 272 | 8370 | | 4700
4750 | 2.7556 | 110 | 43.7524 | 5055 | 25.3696 | 292 | 22.8268 | 269 | 8460 | | | 2.7666 | 111 | 44.2579 | 5075 | 25.3988 | 290 | 22.8537 | 267 | 8550 | | 4800 | 2.7777 | 112 | 44.7654 | 5094 | 25.4278 | 289 | 22.8804 | 264 | 8640 | | 4850 | 2.7889 | 114 | 45.2748 | 5116 | 25.4567 | 287 | 22.9068 | 261 | 8730 | | 4900 | 2.8003 | 116 | 45.7864 | 5136 | 25.4854 | 285 | 22.9329 | 260 | 8820 | | 4950 | 2.8119 | 116 | 46.3000 | 5156 | 25.5139 | 283 | 22.9589 | 257 | 8910 | | 5000 | 2,8235 | | 46.8156 | | 25.5422 | | 22.9846 | | 9000 |
^{*}The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). Table 7-13. COEFFICIENTS FOR THE EQUATION OF STATE FOR NITROGEN $Z \ = \ 1 + B_1 P + C_1 P^2 + D_1 P^3$ | T | В ₁ | c ₁ | $\mathbf{D_1}$ | т | В ₁ | $\mathbf{c_{i}}$ | \mathbf{D}_1 | |-----|-------------------|-------------------|----------------|------|-------------------|-------------------|-------------------| | °K | atm ⁻¹ | atm ⁻² | atm-3 | °K | atm ⁻¹ | atm ⁻² | atm ⁻³ | | 100 | (1)17951 | (3)3487 | (3)21663 | 600 | +. (3)435 | +. (6)360 | | | 110 | (1)13778 | (1)1964 | (4)37186 | 610 | | | (9)58
(0)55 | | 120 | • | | • | | . (3)436 | . (6)342 | (9)55 | | 130 | (1)10780 | (3)1145 | (5)79827 | 620 | . (3)436 | . (6)324 | (9)53 | | | (2)8562 | (4)6822 | (5)19016 | 630 | . (3)435 | (6)308 | (9)50 | | 140 | (2)6883 | (4)4125 | (6)40744 | 640 | . (3)435 | . (6)293 | (9)48 | | 150 | (2)5586 | (4)2490 | (7)10394 | 650 | . (3)434 | . (6)279 | (9)46 | | 160 | (2)4567 | (4)1479 | +. (7)88448 | 660 | . (3)433 | . (6)265 | (9)44 | | 170 | (2)3755 | (5)8412 | +. (6)10092 | 670 | . (3)432 | . (6)253 | (9)42 | | 180 | (2)3100 | - (5)4355 | +. (7)8925 | 680 | . (3)431 | . (6)241 | (9)40 | | 190 | (2)2565 | (5)1748 | +. (7)7274 | 690 | . (3)429 | . (6)229 | (9)38 | | 200 | (2)2125 | (7)801 | +. (7)5727 | 700 | . (3)428 | . (6)219 | (9)36 | | 210 | (2)1759 | +. (6)984 | +. (7)4434 | 710 | . (3)426 | . (6)208 | (9)34 | | 220 | (2)1453 | . (5)164 | +. (7)3402 | 720 | . (3)424 | . (6)199 | (9)33 | | 230 | (2)1195 | . (5)204 | +. (7)2594 | 730 | . (3)424 | .(6)190 | (9)31 | | 240 | (3)977 | . (5)225 | +. (7)1968 | 740 | . (3)421 | • | • | | 250 | (3)790 | • | | | • | . (6)181 | (9)30 | | 260 | | . (5)235 | +. (7)1484 | 750 | . (3)419 | . (6)174 | (9)29 | | | (3)631 | . (5)236 | +. (7)1111 | 760 | . (3)417 | . (6)166 | (9)27 | | 270 | (3)493 | . (5)233 | +. (8)823 | 770 | . (3)414 | . (6)158 | (9)26 | | 280 | (3)375 | . (5)226 | +. (8)602 | 780 | . (3)412 | . (6)151 | (9)25 | | 290 | (3)272 | . (5)215 | +. (8)430 | 790 | . (3)410 | . (6)145 | (9)24 | | 300 | (3)183 | . (5)208 | +. (8)298 | 800 | . (3)408 | . (6)139 | (9)23 | | 310 | (3)105 | . (5)197 | +. (8)197 | 850 | . (3)396 | .(6)112 | (9)18 | | 320 | (4)374 | . (5)187 | +. (8)118 | 900 | . (3)384 | . (7)91 | (9)15 | | 330 | +. (4)220 | . (5)176 | +. (9)58 | 950 | . (3)372 | . (7)74 | (9)12 | | 340 | +. (4)742 | .(5)166 | +. (9)12 | 1000 | . (3)360 | . (7)61 | (9)10 | | 350 | . (3)120 | . (5)156 | (9)21 | 1050 | . (3)348 | .(7)51 | . (0)10 | | 360 | .(3)160 | . (5)147 | (9)47 | 1100 | . (3)337 | . (7)42 | | | 370 | .(3)196 | . (5)138 | (9)67 | 1150 | | · · | | | 380 | . (3)227 | . (5)130 | (9)81 | | . (3)326 | . (7)35 | | | | • | | • | 1200 | . (3)316 | . (7)27 | | | 390 | . (3)255 | . (5)122 | (9)91 | 1250 | . (3)306 | . (7)25 | | | 400 | . (3)279 | . (5)114 | (9)97 | 1300 | , (3)297 | . (7)20 | | | 410 | . (3)301 | . (5)107 | (8)101 | 1350 | . (3)288 | . (7)17 | | | 420 | . (3)320 | . (5)101 | (8)104 | 1400 | . (3)279 | . (7)14 | | | 430 | . (3)336 | . (6)948 | (8)104 | 1450 | . (3)271 | . (7)12 | | | 440 | . (3)351 | . (6)891 | (8)104 | 1500 | . (3) 263 | . (7)10 | | | 450 | . (3)364 | . (6)838 | (8)103 | 1550 | . (3)256 | . (8)8 | | | 460 | . (3)375 | . (6)789 | (8)101 | 1600 | . (3)249 | . (8)9 | | | 470 | . (3)385 | . (6)743 | (9)98 | 1650 | . (3)242 | . (8)5 | | | 480 | . (3)394 | . (6)700 | (9)95 | 1700 | . (3)235 | . (8)5 | | | 490 | . (3)401 | . (6)661 | (9)92 | 1750 | . (3)229 | . (8)4 | | | 500 | . (3)408 | . (6)623 | (9)89 | 1800 | . (3)223 | | | | 510 | . (3)414 | . (6)589 | (9)86 | 1850 | . (3)218 | | | | 520 | . (3)418 | (6)556 | (9)82 | 1900 | . (3)212 | | | | 530 | . (3)422 | . (6)525 | (9)79 | 1950 | . (3)207 | | | | 540 | . (3)426 | . (6)497 | (9)76 | 2000 | . (3)202 | | | | 550 | . (3)429 | . (6)471 | (9)73 | 2050 | . (3)197 | | | | 560 | .(3)431 | . (6)445 | (9)69 | 2100 | . (3)193 | | | | 570 | . (3)433 | . (6)422 | (9)66 | 2150 | . (3)188 | | | | 580 | . (3)434 | . (6)400 | (9)63 | | . (3)186 | | | | | • | | | 2200 | • | | | | 590 | . (3)435 | . (6)379 | (9)61 | 2250 | . (3)180 | | | | | | | | 2500 | . (3)162 | | | | | | | | 2750 | . (3)147 | | | | | | | | 3000 | . (3)135 | | | | | | | | - | • | | | ^{*}Numbers in parentheses indicate the number of zeros immediately to the right of the decimal point. ## CHAPTER 8 #### THE THERMODYNAMIC PROPERTIES OF OXYGEN ## The Correlation of the Experimental Data The tabulated thermodynamic properties of oxygen have been obtained from a new correlation of the existing data via the equation $Z = PV/RT = 1 + B_1P + C_1P^2 + D_1P^3$. The virial coefficients, B_1 and C_1 were obtained through the Lennard-Jones 6-12 potential by a method devised for fitting several properties jointly [1]. The fourth virial coefficient, D_1 was fitted empirically. The coefficients are given in table 8-13. The tables of the compressibility factor and density were computed directly from the above equations of state, whereas the tables of specific heat, entropy, and enthalpy were obtained by combining the ideal-gas values of Woolley [2] with the gas imperfection corrections obtained from the derivatives of the virial coefficients. A fuller account of the method of fitting the experimental data is to be found in the report by Woolley [3]. The experimental PVT data for oxygen extending to elevated pressure are indicated in figure 8a. The direct experimental values of Z are represented in the form of V[(PV/RT)-1] plotted as a function of density, with temperatures in degrees Kelvin indicated adjacent to the plotted points. The data at the ice point and at room temperature seem quite dependable; they include measurements by Amagat [4], Holborn and Otto [5], Kuypers and Kammerlingh Onnes [6], Van Urk and Nijhoff [7], and Baxter and Starkweather [19]. The data of Amagat are mainly useful as an indication of the trend of the data toward higher pressures. The data of Holborn and Otto have been adjusted slightly for the effect of deformation of the container at elevated pressure and for individual pressures and temperatures occurring in their evaluation of the amount of substance present for individual measurements somewhat as suggested by Cragoe [8]. The points as plotted in figure 8a are thus corrected and differ slightly from the reported numbers of Holborn and Otto. The correlation of the PVT data was aided in the case of the second virial by the use of other data, including that of Workman [9] at 26°C and 60°C for the effect of pressure on the specific heat and the data of Rossini and Frandsen [10] at 28°C on the dependence of internal energy on the pressure. Data on the effect of pressure on velocity of sound were available [11, 12] but differed too much from the indications of the other data to justify giving them any weight in the correlation. Experimental data on various thermodynamic properties have been compared with the calculated quantities and represented in the figures below as deviations from the tabulated values. The experimental data include: specific-heat data by Henry [13], Workman [9], and Wacker, Cheney, and Scott [14]; data on isentropic cooling by expansion (Lummer and Pringsheim method) by Eucken and Von Lüde [15]; and sound velocity data by Shilling and Partington [16], Keesom, Van Itterbeek, and Van Lammeren [11], Van Lammeren [12], and King and Partington [17]. The dimensionless representation has been accomplished for certain properties by expressing them relative to the value at standard conditions (0°C and 1 atmosphere). Thus, for density, Figure 8a. Experimental PVT data for oxygen the property is expressed as P/P_0 , for sound velocity as a/a₀, for thermal conductivity as k/k₀, and for viscosity as η/η_0 . The reference values, ρ_0 , a₀, k₀, and η_0 , result, in general, from the correlating equations which were fitted to represent the experimental data over as wide a range as possible. Values for these quantities are given in various units in table 8-b. The value of ρ_0 for oxygen as given, 1.42904 g ℓ^{-1} , may be compared with 1.42898 g ℓ^{-1} , the mean of the experimental determinations [19, 47-58], and 1.42895 g ℓ^{-1} , the most recent determination included [58]. The value of η_0 for oxygen as given, 1.9192 x 10⁻⁴ poise, is well within the range of the experimental determinations [24, 28, 59-61], the mean of which is 1.9226 x 10⁻⁴ poise, and close to the latest of these, 1.9184 x 10⁻⁴ poise [24]. The value of k₀ for oxygen as given, 5.867 x 10⁻⁵ cal cm⁻¹ sec⁻¹ K⁻¹, is within the range of the experimental values [30-36, 62-66], whose mean is 5.788 x 10⁻⁵ cal cm⁻¹ sec⁻¹ K⁻¹, and fairly close to the latest determination included, 5.83 x 10⁻⁵ cal cm⁻¹ sec⁻¹ K⁻¹. The value of a₀ for oxygen as given, 314.82 m sec⁻¹, is appreciably below 315.8 m sec⁻¹, the mean of reported observations [11, 67-70]. A small part of this difference may be attributed to vibrational relaxation. The tables of viscosity and thermal conductivity were computed from semi-empirical equations (see summary tables 1-B and 1-C), which were fitted to the existing experimental data of references 24 to 29. The values for the vapor pressure of liquid oxygen are based on the experimental work of H. J. Hoge [18], as are also the critical constants. Comparisons with earlier experimental data are given in reference 18. # The Reliability of the Tables Oxygen are thought to be fairly reliable in the region 0° to 100°C. Low-pressure data are not available for higher temperatures. Experimental difficulties are greater at lower temperatures, and values there are presumed to be somewhat less reliable for this reason. The available experimental data - below 70 atmospheres - seem to be fitted rather closely down to -80°C and less closely at lower temperatures as may be seen in figures 8a and 8b. With the spread of a 1 percent error shown at the bottom of the figure 8a, it appears that compressibility
values have been represented within a part in a thousand and considerably better in some regions. At low density, the errors result largely from imperfect fitting of the second virial coefficient and may amount to 3 percent of the deviation from ideality. The derived corrections to the thermodynamic properties are considerably more uncertain than the compressibility in the same region because of the natural increase in uncertainty in differentiation. The tabulated values of the compressibility factors (table 8-1) are compared with the experimental data in figure 8b, where the departures are within 0.2 percent. In the experimental temperature range (see figure 8a) at 10 atmospheres and below, the tabulated values are probably reliable within 3 percent of the deviation from ideality. For these temperatures, the values of Z at 70 atmospheres are probably good to within 0.001. The extrapolated values, whether for higher temperature or pressure, are less reliable. The table of densities (table 8-2) has corresponding reliability. The uncertainty in the values of $(Cp - C_p^0)/R$, the contribution due to nonideality, may approach 10 percent at the low pressures where the compressibility factor is uncertain by almost Figure 8b. Departures of experimental compressibility factors from the tabulated values for oxygen (table 8-1) 3 percent of its deviation. At higher pressures, where the compressibility factor is uncertain by an amount approaching 0.001, the error in $(C_p - C_p^0)/R$ may approach 0.01. The effect of dissociation is not included in this table (table 8-3), but its magnitude may be estimated by the procedure given by Damköhler [22]. Comparisons with experimental data at low and at elevated pressures are shown in figures 8c and 8d. The points designated as "Shilling and Partington" in figure 8c represent values derived from sound velocity measurements. These do not provide reliable values of specific heat at elevated temperatures, due to the effect of dispersion related to vibrational excitation. The departures shown in figure 8c are approximately as large as the entire vibrational contribution to the specific heat. Figure 8c. Departures of experimental specific heats from the tabulated values for oxygen (table 8-3) Figure 8d. Dependence of specific heat upon pressure The values of the enthalpy (table 8-4) and entropy (table 8-5) of molecular oxygen tabulated here do not include the effect of dissociation. Its magnitude may be estimated and found to be negligible at moderate temperatures and pressure. Above about 2000°K, allowance needs to be made in many cases for dissociation effects [23]. These can be estimated from figures 8e and 8f. If one neglects dissociation, the tables of entropy and enthalpy should be uncertain by less than about 7 percent of the difference between the real and the ideal values of the properties at low pressures where the values of the compressibility factor are good to within 3 percent of the departure from ideality. At higher pressures, where the values of the compressibility factor are good to 0.001, the derived corrections at best might be uncertain by about 0.003 at the higher temperatures and by about two or three times this amount at the lower temperatures. At the lowest temperatures of the table, the values are very uncertain and are accordingly given to fewer digits. On the basis of the reliabilities estimated for specific heats and compressibility factors, the uncertainties in the values of γ (table 8-6) may approach 10 percent of the real-gas correction, except for the least accurate values at the lowest temperatures. The tabulated values of sound velocity at low frequency (table 8-7) are thought to be quite reliable except at the lowest temperatures and at elevated pressures. Except for the very lowest temperatures, the values seem likely to be reliable to within 0.001, i.e., for all digits given to a pressure of 10 atmospheres and up to 40 atmospheres above 400°K. For 100 atmospheres, the uncertainty may be less than 0.015 from 200°K to 300°K, running from 0.010 down to 0.005 at higher temperatures. Figure 8g shows the departure of the experimental data from the tabular values. The large deviations of sound velocity data at elevated temperatures are due to dispersion effects. The experimental sound frequencies were not sufficiently low to allow the molecules to adjust their vibrational excitations appreciably for the temperature change during the sound vibration. The values of viscosity (table 8-8) and thermal conductivity (table 8-9) of oxygen at atmospheric pressure were computed from the formulas given in summary tables 1-B and 1-C. The values of viscosity are considered to be reliable to within 1 percent below 1000°K and to within 2 percent as extrapolated to 2000°K. Figure 8h compares the experimental results of six authors [24-29] with the values of the table. The table of thermal conductivity (table 8-9) is considered reliable to about 2 percent in the experimental range, which is from 86°K to 376°K. In the region of extrapolation to higher temperature, the values are more uncertain. Figure 8i shows the departure of the results of seven experimental determinations [30-36] from the tabular values. The Prandtl numbers (table 8-10) are correspondingly reliable to within 2 percent. The vapor pressures (table 8-11) are based on an experimental investigation by Hoge [18] of the vapor pressure of liquid oxygen. Figure 8j shows the experimental data plotted as deviations from the tabular values. A comparison of these results with the results of other observers [37-44] is given in figure 8k. Figure 8e. The effect of dissociation on the enthalpy of oxygen 375 Figure 8f. The effect of dissociation on the entropy of oxygen Figure 8g. Departures of experimental sound velocities from the tabulated values for oxygen (table 8-7) Figure 8h. Departures of experimental viscosities from the tabulated values for oxygen (table 8-8) Below a pressure of about 1.4 m Hg, the tables are based on mercury manometry and are accurate to about ±0.22 mm Hg. Above about 1.4 m Hg, the uncertainty increases to ±1 or 2 mm Hg and then gradually increases further at higher pressures, reaching a value of perhaps ±10 mm Hg at the critical point. In these estimates, no allowance has been made for possible disagreement between the temperature scales used and the thermodynamic scale. The International Temperature Scale was used down to 90.19°K and the NBS provisional scale was used at lower temperatures. Figure 8i. Departures of experimental thermal conductivities from the tabulated values for oxygen (table 8-9) Figure 8j. Departures of experimental vapor pressures from the tabulated values for oxygen (table 8-11) Figure 8k. Comparison of the vapor-pressure data of various observers | A, W, M | Aston, Willihnganz, and Messerby | (1935) | |---------|----------------------------------|--------| | H, H | Henning and Heuse | (1924) | | G, J, K | Giauque, Johnston, and Kelley | (1927) | | Cath | | (1918) | | H,O | Henning and Otto | (1936) | | Siemens | | (1913) | | D, D | Dodge and Davis | (1927) | | Dunbar | (See reference 43) | (1927) | | O, D, H | Onnes, Dorsman, and Holst | (1914) | The only available data [45] for the vapor pressure of solid oxygen do not appear to be very reliable, and hence the tabulation has not been extended below the triple point. At 43.8°K which is the temperature of the higher of the two solid-solid transitions of oxygen, Aoyama and Kanda [45] reported the vapor pressure to be 0.0111 mm Hg. The ideal-gas thermodynamic functions for molecular oxygen are for the normal isotopic mixture and are based on the tables by Woolley [2]. The calculations for oxygen are based in general on rather precise spectroscopic data, except for some of the high-energy states, so that the tabulated values should be quite reliable in summary table 1-D. The tabulation for the atomic species is based on the values reported by Rossini and co-workers [46]. #### References - [1] H. W. Woolley, J. Chem. Phys. 21, 236 (1953). - [2] H. W. Woolley, J. Research Natl. Bur. Standards 40, 163 (1948) RP1864. - [3] H. W. Woolley, Natl. Advisory Comm. Aeronaut. Tech. Note 3275. - [4] E. H. Amagat, Ann. chim. et phys. [6] 29, 68 (1893). - [5] L. Holborn and J. Otto, Z. Physik 33, 1 (1925). - [6] H. A. Kuypers and H. Kamerlingh Onnes, Communs. Phys. Lab. Univ. Leiden No. 165a (1923); also see [21]. - [7] A. T. Van Urk and G. P. Nijhoff, Communs. Phys. Lab. Univ. Leiden No. 169c (1925). - [8] C. S. Cragoe, J. Research Natl. Bur. Standards 26, 495 (1941) RP1393. - [9] E. J. Workman, Phys. Rev. [2] 37, 1345 (1931). - [10] F. D. Rossini and M. Frandsen, Bur. Standards J. Research 9, 733 (1932) RP503. - [11] W. H. Keesom, A. Van Itterbeek, and J. A. Van Lammeren, Proc. Koninkl. Akad. Wetenschap. Amsterdam 34, 996 (1931); Communs. Phys. Lab. Univ. Leiden No. 216d (1931). - [12] J. A. Van Lammeren, Physica 2, 833 (1935). - [13] P. S. H. Henry, Proc. Roy. Soc. (London) [A] 133, 492 (1931). - [14] P. F. Wacker, R. K. Cheney, and R. B. Scott, J. Research Natl. Bur. Standards 38, 651 (1947) RP1804. - [15] A. Eucken and K. Von Lude, Z. physik. Chem. [B] 5, 413 (1929). - [16] W. G. Shilling and J. R. Partington, Phil. Mag. [7] 6, 920 (1928). - [17] F. E. King and J. R. Partington, Phil. Mag. [7] 9, 1020 (1930). - [18] H. J. Hoge, J. Research Natl.Bur. Standards 44, 321 (1950) RP2081. - [19] G. P. Baxter and H. W. Starkweather, Proc. Nat. Acad. Sci. U.S. 12, 699 (1926). - [20] G. P. Nijhoff and W. H. Keesom, Communs. Phys. Lab. Univ. Leiden 179b (1925). - [21] H. K. Onnes and H. A. Kuypers, Commun. Phys. Lab. Univ. Leiden 169a (1924). - [22] G. Damkohler, Z. Elektrochem. 48, 62 (1942). - [23] H. W. Woolley, Natl. Advisory Comm. Aeronaut. Tech. Note 3270 (1955). - [24] H. L. Johnston and K. E. McCloskey, J. Phys. Chem. 44, 1038 (1940). - [25] M. Trautz and R. Zink, Ann. Physik [5] 7, 427 (1930). - [26] P. J. Rigden, Phil. Mag.
[7] 25, 961 (1938). - [27] M. Trautz and A. Melster, Ann. Physik [5] 7, 409 (1930). - [28] H. Vogel, Ann. Physik [4] 43, 1235 (1914). - [29] R. Wobser and F. Müller, Kolloid-Beih. 52, 165 (1941). - [30] A.Eucken, Physik. Z. 12, 1101 (1911). - [31] S. Weber, Ann. Physik [4] 54, 437 (1917). - [32] H. Gregory and S. Marshall, Proc. Roy. Soc. (London) [A] 118, 594 (1928). - [33] B. G. Dickins, Proc. Roy. Soc. (London) [A] 143, 517 (1934). - [34] W. G. Kannuluik and L. H. Martin, Proc. Roy. Soc. (London) [A] 144, 496 (1934). - [35] W. Nothdurft, Ann. Physik [5] 28, 137 (1937). - [36] H. L. Johnston and E. R. Grilly, J. Chem. Phys. 14, 233 (1946). - [37] J. G. Aston, E. Willihnganz, and G. H. Messerly, J. Am. Chem. Soc. <u>57</u>, 1642 (1935). - [38] F. Henning and W. Heuse, Z. Physik 23, 105 (1924). - [39] W. F. Giauque, H. L. Johnston, and K. K. Kelley, J. Am. Chem. Soc. 49, 2367 (1927). - [40] P. G. Cath, Communs. Phys. Lab. Univ. Leiden No. 152d (1918). - [41] F. Henning and J. Otto, Physik. Z. 37, 633 (1936). - [42] H. Von Siemens, Ann. Physik. [4] 42, 871 (1913). - [43] B. F. Dodge and H. N. Davis, J. Am. Chem. Soc. 49, 610 (1927). - [44] H. Kamerlingh Onnes, C. Dorsman, and G. Holst, Communs. Phys. Lab. Univ. Leiden No. 145b (1914). - [45] S. Aoyama and E. Kanda, Science Repts. Tôhoku Imp. Univ. [1] 24, 107 (1935). - [46] F. D. Rossini, K. S. Pitzer, W. J. Taylor, J. P. Ebert, J. E. Kilpatrick, C. W. Beckett, M. G. Williams, and H. G. Werner, Natl. Bur. Standards (U.S) Circ. 461, Selected values of properties of hydrocarbons, (Supt. of Documents, Govt. Printing Office, Washington 25, D. C., 1947). - [47] Lord Rayleigh, Proc. Roy. Soc. (London) 53, 134 (1893). - [4 ξ] J. Thomsen, Z. anorg. Chem. <u>12</u>, 1 (1895). - [49] E. W. Morley, Z. physik. Chem. 20, 68 (1896). - [50] A. Leduc, Recherches sur les gaz (Gauthier-Villars et Fils, Paris, 1898). - [51] R. W. Gray, J. Chem. Soc. 87, 1601 (1905). - [52] A. Jaquerod and A. Pintza, Mem. Soc. Phys. Nat. (Geneva) 35, 589 (1908); Compt. rend. 139, 129 (1904). - [53] A. Jaquerod and M. Tourpaian, Arch. sci. (Geneva) 31, 20 (1911). - [54] F. O. Germann, Compt. rend. <u>157</u>, 926 (1913). - [55] O. Scheuer, Sitzber. Akad. Wiss. Wien Math. naturw. Kl. [IIa] 123, 931 (1914). - [56] E. Moles and M. T. Salazar, Anales soc. españ. fís. y quím. 32, 954 (1934). - [57] A. Stock and G. Ritter, Z. physik. Chem. 124, 204 (1926). - [58] E. Moles and C. Roquero, Anales soc. españ. fís. y quím. 35, 263 (1937). - [59] T. Graham, Trans. Roy. Soc. (London) 136, 573 (1846). - [60] H. Markowski, Ann. Physik. [4] 14, 742 (1904). - [61] E. Volker, Dissertation, Halle (1910). - [62] A. Winkelmann, Ann. Physik [3] 44, 177 and 429 (1891). - [63] G. W. Todd, Proc. Roy. Soc. (London) [A] 83, 19 (1910). - [64] P. Gunther, Dissertation, Halle (1906). - [65] T. L. Ibbs and A. A. Hirst, Proc. Roy. Soc. (London) [A] 123, 134 (1929). - [66] E. U. Franck, Z. Elektrochem. 55, 636 (1951). - [67] P. L. Dulong, Ann. chim.et phys. [2] 41, 113 (1829). - [68] K. Scheel and W. Heuse, Ann. Physik [4] 37, 79 (1912); [4] 40, 473 (1913). - [69] G. Schweikert, Ann. Physik [4] 48, 593 (1915). - [70] A. Pitt and W. J. Jackson, Can. J. Research 12, 686 (1935). Table 8-a. VALUES OF THE GAS CONSTANT, R, FOR MOLECULAR OXYGEN Values of R for Molecular Oxygen for Temperatures in Degrees Kelvin | Pressure
Density | atm | kg/cm ² | mm Hg | lb/in ² | |-------------------------|-----------|---------------------|----------|--------------------| | g/cm ³ | 2. 56427 | 2. 64947 | 1948.84 | 37. 6845 | | mole/cm ³ | 82. 0567 | 84.7832 | 62363. 1 | 1205.91 | | mole/liter | 0.0820544 | ò. 08 4 7809 | 62. 3613 | 1. 20587 | | lb/ft ³ | 0.0410753 | 0.0424401 | 31.2172 | 0.603643 | | lb mole/ft ³ | 1. 31441 | 1. 35808 | 998.952 | 19. 3166 | Values of R for Molecular Oxygen for Temperatures in Degrees Rankine | Pressure
Density | atm . | kg/cm ² | mm Hg | lb/in ² | |-------------------------|-----------|--------------------|----------|--------------------| | g/cm ³ | 1.42459 | 1.47193 | 1082.69 | 20.9358 | | mole/cm ³ | 45. 5871 | 47.1018 | 34646, 2 | 669.950 | | mole/liter | 0.0455858 | 0.0471005 | 34. 6452 | 0.669928 | | lb/ft ³ | 0.0228196 | 0.0235778 | 17. 3429 | 0. 335357 | | lb mole/ft ³ | 0.730228 | 0.754489 | 554.973 | 10.7314 | Table 8-b. CONVERSION FACTORS FOR THE MOLECULAR OXYGEN TABLES Conversion Factors for Table 8-2 | To Convert
Tabulated
Value of | То | Having the Dimensions Indicated Below | Multiply
by | |-------------------------------------|----|--|--| | P / P0 | ρ | g cm ⁻³ mole cm ⁻³ g liter ⁻¹ lb in ⁻³ | 1. 42900x10 ⁻³ 4. 46562 x 10 ⁻⁵ 1. 42904 5. 16262 x 10 ⁻⁵ 8. 92101 x 10 ⁻² | Conversion Factors for Tables 8-4 and 8-12 | To Convert
Tabulated
Value of | То | Having the Dimensions
Indicated Below | Multiply
by | |-------------------------------------|----|--|---| | (H°-E°)/RT0, (H-E°)/RT0 | _ | cal mole ⁻¹ cal g ⁻¹ joules g ⁻¹ Btu (lb mole) ⁻¹ Btu lb ⁻¹ | 542.821
16.9632
70.9742
976.437
30.5137 | Conversion Factors for Tables 8-3, 8-5, and 8-12 | To Convert
Tabulated
Value of | То | Having the Dimensions
Indicated Below | Multiply
by | |---|---------------------|--|--| | C_p^o/R , S^o/R , C_p/R , S/R , $-(F^o-E_0^o)/RT$ | C _p , s, | cal mole ⁻¹ oK ⁻¹ (or oC ⁻¹) cal g ⁻¹ oK ⁻¹ (or oC ⁻¹) joules g ⁻¹ oK ⁻¹ (or oC ⁻¹) Btu (lb mole) ⁻¹ oR ⁻¹ (or oF ⁻¹) Btu lb ⁻¹ oR ⁻¹ (or oF ⁻¹) | 1.98719 0.0620997 0.259826 1.98588 0.0620588 | The molecular weight of oxygen is 32 g mole⁻¹. Unless otherwise specified, the mole is the gram-mole; the calorie is the thermochemical calorie; and the joule is the absolute joule. Conversion Factors for Table 8-7 | To Convert Tabulated Value of | То | Having the Dimensions Indicated Below | Multiply
by | |-------------------------------|----|--|------------------| | a ₀ | a | m sec ⁻¹ ft sec ⁻¹ | 314.82
1032.9 | | | | | | Conversion Factors for Table 8-8 | CONT. C. D. C. | | | | |--|----|---|----------------------------| | To Convert Tabulated Value of | То | Having the Dimensions Indicated Below | Multiply
by | | n/n | ** | poise or g sec ⁻¹ cm ⁻¹ | 1.9192x10 ⁻⁴ | | η/η_0 | η | kg hr ⁻¹ m ⁻¹ | 6.9091×10^{-2} | | | | slug hr ⁻¹ ft ⁻¹ | 1.4430×10^{-3} | | | | lb sec ⁻¹ ft ⁻¹ | 1. 2896 x 10 ⁻⁵ | | | | lb hr ⁻¹ ft ⁻¹ | 4.6427×10^{-2} | | 1 | | | | Conversion Factors for Table 8-9 | To Convert Tabulated Value of | То | Having the Dimensions Indicated Below | Multiply
by | |-------------------------------|----|---|---| | k/k ₀ | k | cal cm ⁻¹ sec ^{-1 o} K ⁻¹ Btu ft ⁻¹ hr ^{-1 o} R ⁻¹ watts cm ^{-1 o} K ⁻¹ | 5.867 x 10^{-5} 1.419 x 10^{-2} 2.455 x 10^{-4} | Conversion Factors for Table 8-12/a | To Convert
Tabulated
Value of | То | Having the Dimensions
Indicated Below | Multiply
by | |---|---|--|---| | (H ^O - E ₀ O)/RT _O | (H ^o - E ^o ₀) | cal mole ⁻¹ cal g ⁻¹ joules g ⁻¹ Btu (lb mole) ⁻¹ Btu lb ⁻¹ | 542.821
33.9264
141.948
976.437
61.0274 | Conversion Factors for Table 8-12/a | To Convert
Tabulated
Value of | То | Having the Dimensions Indicated Below | Multiply
by | |---|--|---|----------------| | C_p^0/R , S^0/R , | C _p , s ^o , | cal mole ⁻¹ oK ⁻¹ (or oC ⁻¹) | 1.98719 | | -(F ^O - E ^O ₀)/RT | -(F ^O - E ^O ₀)/T | cal $g^{-1} {}^{O}K^{-1}$ (or ${}^{O}C^{-1}$) | 0.124199 | | | | joules $g^{-1} \circ K^{-1}$ (or $\circ C^{-1}$) | 0.519652 | | | | Btu (lb mole) ⁻¹ OR ⁻¹ (or OF ⁻¹) | 1.98588 | | | | Btu lb ⁻¹ OR ⁻¹ (or OF ⁻¹) | 0.124118 | | °K | .01 | atm | .ι | atm | .4 | atm | .7 | atm | °R | |--------------------|--------------------|--------|--------------------|----------|--------------------|----------|---|------------|------------| | 100 | .99978 | _ | .99781 | | .99114 | | 00421 | | 100 | | 110 | .99983 | 5
4 | .99831 | 50 | .99320 | 206 | .98431 | 371 | 180 | | 120 | .99987 | | | 36 | | 146 | .98802 | 259 | 198 | | 130 | .99989 | 2 | .99867
.99893 | 26 | .99466 | 107 | .99061 | 188 | 216 | | 140 | .99991 | 2
2 | .99913 | 20
16 | .99573
.99653 | 80
62 | .99249
.99391 | 142
109 | 234
252 | | | | _ | | | • | • | • | 107 | -3- | | 150 | .99993 | 1 | .99929 | 12 | .99715 | 49 | .99500 | 86 | 270 | | 160 | .99994 | 1 | .99941 | 10 | .99764 | 39 | .99586 | 68 | 288 | | 170
180 | .99995 | 1 |
.99951 | 8 | .99803 | 31 | .99654 | 55 | 306 | | 190 | .99996
.99996 | 1 | .99959
.99965 | 6
5 | .99834
.99859 | 25
21 | .99709
.99754 | 45
37 | 324
342 | | • | | - | | , | .,,,,,, | 21 | .,,,,, | ,,, | 742 | | 200 | .99997 | | .99970 | 5 | .99880 | 18 | .99791 | 31 | 360 | | 210 | .99997 | 1 | .99975 | 3 | .99898 | 15 | .99822 | 26 | 378 | | 220 | .99998 | | .99978 | 3 | .99913 | 13 | .99848 | 22 | 396 | | 230
2 40 | .99998
.99998 | _ | .99981 | 3 | .99926 | 10 | .99870 | 18 | 414 | | 240 | ,77770 | 1 | .99984 | 2 | .99936 | 9 | .99888 | 16 | 432 | | 250 | .99999 | | .99986 | 2 | .99945 | 8 | .99904 | 14 | 450 | | 260 | .99999 | | .99988 | 2 | .99953 | 7 | .99918 | 12 | 468 | | 270 | .99999 | | .99990 | 2 | .99960 | 6 | .99930 | 11 | 486 | | 280 | .99999 | | .99992 | 1 | .99966 | 5 | .99941 | 9 | 504 | | 290 | .99999 | | .99993 | 1 | .99971 | 5 | .99950 | 8 | 522 | | 300 | .99999 | | .99994 | 1 | .99976 | 4 | .99958 | 7 | 540 | | 310 | 99999 | 1 | 99995 | î | .99980 | 3 | .99965 | 6 | 558 | | 320 | 1.00000 | • | .99996 | î | .99983 | 3 | .99971 | 5 | 576 | | 330 | 1.00000 | | .99997 | _ | .99986 | 3 | .99976 | 5 | 594 | | 340 | 1.00000 | | .99997 | 1 | .99989 | 3 | .99981 | 4 | 612 | | 350 | 1.00000 | | 00000 | | 00000 | _ | 00005 | | | | 360 | 1.00000 | | .99998
.99998 | | .99992
.99994 | 2 | .99985 | 4 | 630 | | 370 | 1.00000 | | .99999 | 1 | .99996 | 2
2 | .99989
.99993 | 4 | 648
666 | | 380 | 1.00000 | | 99999 | 1 | .99998 | 1 | .99996 | 2 | 684 | | 390 | 1.00000 | | 1.00000 | - | .99999 | i | .99998 | 3. | 702 | | 400 | | | | | | | | | | | 400 | 1.00000 | | 1.00000 | | 1.00000 | 2 | 1.00001 | 2 | 720 | | 410 | 1.00000 | | 1.00000 | 1 | 1.00002 | 1 | 1.00003 | 2 | 738 | | 420
430 | 1.00000
1.00000 | | 1.00001 | | 1.00003 | 1 | 1.00005 | 2 | 756 | | 440 | 1.00000 | | 1.00001
1.00001 | 1 | 1.00004
1.00005 | 1
1 | 1.00007
1.00008 | 1
2 | 774
792 | | | | | 2.00002 | • | 1,00003 | • | 1.00000 | - | 1 / 2 | | 450 | 1.00000 | | 1.00002 | | 1,00006 | | 1.00010 | 1 | 810 | | 460 | 1.00000 | | 1.00002 | | 1.00006 | 1 | 1.00011 | 1 | 828 | | 470 | 1.00000 | | 1.00002 | | 1.00007 | 1 | 1.00012 | 1 | 846 | | 480
490 | 1.00000
1.00000 | | 1.00002
1.00002 | | 1.00008 | | 1.00013 | 1 | 864 | | 470 | 1.00000 | | 1.00002 | | 1.00008 | 1 | 1.00014 | 1 | 882 | | 500 | 1.00000 | | 1.00002 | | 1.00009 | | 1.00015 | 1 | 900 | | 510 | 1.00000 | | 1.00002 | | 1.00009 | 1 | 1.00016 | 1 | 918 | | 520 | 1.00000 | | 1.00002 | | 1.00010 | | 1.00017 | | 936 | | 530 | 1.00000 | | 1.00002 | 1 | 1.00010 | | 1.00017 | 1 | 954 | | 540 | 1.00000 | | 1.00003 | | 1.00010 | | 1.00018 | | 972 | | 550 | 1.00000 | | 1.00003 | | 1.00010 | | 1.00018 | 1 | 990 | | 560 | 1.00000 | | 1.00003 | | 1.00010 | 1 | 1.00019 | - | 1008 | | 570 | 1.00000 | | 1.00003 | | 1.00011 | | 1.00019 | 1 | 1026 | | 580 | 1.00000 | | 1.00003 | | 1.00011 | | 1.00020 | | 1044 | | 590 | 1.00000 | | 1.00003 | | 1.00011 | 1 | 1.00020 | | 1062 | | 600 | 1,00000 | | 1.00003 | | 1.00012 | | 1.00020 | | 1080 | | 610 | 1.00000 | | 1.00003 | | 1.00012 | | 1.00020 | 1 | 1098 | | 620 | 1.00000 | | 1.00003 | | 1.00012 | | 1.00021 | • | 1116 | | 630 | 1.00000 | | 1.00003 | | 1.00012 | | 1.00021 | | 1134 | | 640 | 1,00000 | | 1.00003 | | 1.00012 | | 1.00021 | | 1152 | | 650 | 1.00000 | | 1.00003 | | 1,00012 | | 1.00021 | | 1170 | | 660 | 1.00000 | | 1.00003 | | 1.00012 | | 1.00021 | | 1170 | | 670 | 1.00000 | | 1.00003 | | 1.00012 | | 1.00021 | | 1206 | | 680 | 1.00000 | | 1.00003 | | 1.00012 | | 1.00021 | 1 | 1224 | | 690 | 1.00000 | | 1.00003 | | 1.00012 | | 1.00022 | • | 1242 | | 700 | 1 00000 | | 1 00002 | | 1 00012 | | 1 00000 | | 10/0 | | 700 | 1.00000 | | 1.00003 | | 1.00012 | | 1.00022 | | 1260 | | | | | | | | | | | | Table 8-1. COMPRESSIBILITY FACTOR FOR OXYGEN - Cont. | °K | .01 atm | .l atm | .4 atm | .7 atm | °R | |--|---|---|---|--|--| | 700
710
720
730
740 | 1.00000
1.00000
1.00000
1.00000
1.00000 | 1.00003
1.00003
1.00003
1.00003
1.00003 | 1.00012
1.00012
1.00012
1.00012
1.00012 | 1.00022
1.00022
1.00022
1.00022
1.00022 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | 1.00000
1.00000
1.00000
1.00000
1.00000 | 1.00003
1.00003
1.00003
1.00003
1.00003 | 1.00012
1.00012
1.00012
1.00012
1.00012 | 1.00022
1.00022
1.00022
1.00022
1.00022 | 1350
1368
1386
1404
1422 | | 800
850
900
950
1000 | 1,00000
1,00000
1,00000
1,00000 | 1.00003
1.00003
1.00003
1.00003 | 1.00012
1.00012
1.00012
1.00012
1.00012 - 1 | 1.00022 - 1
1.00021
1.00021
1.00021 - 1
1.00020 | 1440
1530
1620
1710
1800 | | 1050
1100
1150
1200
1250 | 1,00000
1,00000
1,00000
1,00000
1,00000 | 1.00003
1.00003
1.00003
1.00003
1.00003 - 1 | 1.00011
1.00011
1.00011 - 1
1.00010
1.00010 | 1.00020 - 1
1.00019 - 1
1.00019 - 1
1.00018 - 1 | 1890
1980
2070
2160
2250 | | 1300
1350
1400
1450
1500 | 1.00000
1.00000
1.00000
1.00000 | 1,00002
1,00002
1,00002
1,00002
1,00002 | 1.00010
1.00010 - 1
1.00009
1.00009
1.00009 - 1 | 1.00017
1.00017 - 1
1.00016
1.00016 - 1
1.00015 | 2340
2430
2520
2610
2700 | | 1600
1650
1700
1750 | 1.00000
1.00000
1.00000
1.00000 | 1,00002
1,00002
1,00002
1,00002 | 1.00008
1.00008
1.00008
1.00008 | 1.00015 - 1
1.00014
1.00014
1.00014 - 1 | 2880
2970
3060
3150 | | 1850
1900
1950
2000 | 1.00000
1.00000
1.00000
1.00000 | 1.00002
1.00002
1.00002
1.00002 | 1.00007
1.00007
1.00007
1.00007 | 1.00013
1.00013 - 1
1.00012
1.00012 | 3330
3420
3510
3600 | | 2100
2150
2200
2250
2300
2350 | 1.00000
1.00000
1.00000
1.00000 | 1.00002
1.00002
1.00002
1.00002
1.00002 - 1 | 1.00007 - 1
1.00006
1.00006
1.00006 | 1.00012 - 1
1.00011
1.00011
1.00011
1.00011 - 1
1.00010 | 3780
3870
3960
4050
4140
4230 | | 2400
2450
2500
2500
2600 | 1.00000
1.00000
1.00000
1.00000 | 1.00001
1.00001
1.00001
1.00001
1.00001 | 1.00006
1.00006
1.00006 - 1
1.00005
1.00005 | 1.00010
1.00010
1.00010
1.00010 - 1 | 4320
4410
4500
4590
4680 | | 2650
2700
2750
2800
2850 | 1.00000
1.00000
1.00000
1.00000 | 1.00001
1.00001
1.00001
1.00001
1.00001 | 1.00005
1.00005
1.00005
1.00005 | 1.00009
1.00009
1.00009
1.00009 | 4770
4860
4950
5040
5130 | | 2900
2950
3000 | 1.00000
1.00000
1.00000 | 1.00001
1.00001
1.00001 | 1.00005
1.00005
1.00005 | 1.00009 - 1
1.00008
1.00008 | 5220
5310
5400 | | °K | ı | atm | 4 | atm | 7 | atm | 10 | atm | •R | |---------------------------------|---|---------------------------------|---|--------------------------------|---|---------------------------------|---|--|--------------------------------------| | 100
110
120
130
140 | .97724
.98277
.98652
.98924
.99128 | 553
375
272
204
156 | .9227
.9427
.9553
.9642 | 200
126
89
66 | .891
.9179
.9353 | 27
174
124 | | | 180
198
216
234
252 | | 150
160
170
180
190 | .99284
.99407
.99505
.99583
.99648 | 123
98
78
65
53 | .9708
.9759
.9799
.9832
.9858 | 51
40
33
26
22 | .9477
.9571
.9644
.9702
.9749 | 94
73
58
47
39 | .9236
.9377
.9486
.9571
.9640 | 141
109
85
69
56 | 270
288
306
324
342 | | 200
210
220
230
240 | .99701
.99745
.99782
.99814
.99841 | 44
37
32
27
23 | .98796
.98976
.99126
.99253
.99361 | 180
150
127
108
92 | .97880
.98199
.98465
.98690
.98880 | 319
266
225
190
163 | .96956
.97417
.97801
.98125
.98399 | 461
384
324
274
234 | 360
378
396
414
432 | | 250
260
270
280
290 | .99864
.99883
.99900
.99915
.99928 | 19
17
15
13
11 | .99453
.99533
.99602
.99661
.99713 | 80
69
59
52
46 | .99043
.99183
.99304
.99408
.99500 | 140
121
104
92
80 | .98633
.98833
.99006
.99157
.99288 | 200
173
151
131
114 | 450
468
486
504
522 | | 300
310
320
330
340 | .99939
.99949
.99958
.99966
.99973 | 10
9
8
7
6 | .99759
.99799
.99834
.99865
.99893 | 40
35
31
28
25 | .99580
.99650
.99712
.99766
.99815 | 70
62
54
49
43 | .99402
.99502
.99590
.99668
.99738 | 100
88
78
70
61 | 540
558
576
594
612 | | 350
360
370
380
390 | .99979
.99984
.99989
.99994
.99998 | 5
5
5
4
3 | .99918
.99940
.99959
.99976
.99992 | 22
19
17
16
14 | .99858
.99896
.99930
.99960
.99987 | 38
34
30
27
25 | .99799
.99853
.99902
.99945
.99984 | 54
49
43
39
35 | 630
648
666
684
702 | | 400
410
420
430
440 | 1.00001
1.00004
1.00007
1.00010
1.00012
| 3
3.
3
2
2 | 1.00006
1.00018
1.00030
1.00040
1.00049 | 12
12
10
9
8 | 1.00012
1.00034
1.00053
1.00071
1.00087 | 22.
19
18
16
14 | 1.00019
1.00050
1.00078
1.00103
1.00126 | 33
28
25
23
20 | 720
738
756
774
792 | | 450
460
470
480
490 | 1.00014
1.00016
1.00018
1.00019
1.00020 | 2
2
1
1
2 | 1.00057
1.00065
1.00071
1.00077
1.00083 | 8
6
6
5 | 1.00101
1.00114
1.00126
1.00136
1.00146 | 13
12
10
10 | 1.00146
1.00165
1.00181
1.00196
1.00210 | 19
16
15
14 | 810
828
846
864
882 | | 500
510
520
530
540 | 1.00022
1.00023
1.00024
1.00025
1.00025 | 1
1
1 | 1.00088
1.00092
1.00096
1.00099
1.00103 | 4
4
3
4
3 | 1.00154
1.00162
1.00169
1.00175
1.00181 | 8
7
6
6
5 | 1.00222
1.00233
1.00242
1.00251
1.00259 | 11
9
9
8
7 | 900
918
936
954
972 | | 550
560
570
580
590 | 1.00026
1.00027
1.00027
1.00028
1.00028 | 1
1
1 | 1.00106
1.00108
1.00110
1.00112
1,00114 | 2
2
2
2
2 | 1.00186
1.00190
1.00194
1.00198
1.00201 | 4
4
4
3
3 | 1.00266
1.00273
1.00279
1.00284
1.00288 | 7
6
5
4 | 990
1008
1026
1044
1062 | | 600
610
620
630
640 | 1.00029
1.00029
1.00030
1.00030 | 1 | 1.00116
1.00117
1.00119
1.00120
1.00121 | 1
2
- 1
1
1 | 1.00204
1.00206
1.00208
1.00210
1.00212 | 2
2
2
2
2 | 1.00292
1.00296
1.00299
1.00302
1.00304 | 4
3
3
2
2 | 1080
1098
1116
1134
1152 | | 650
660
670
680
690 | 1.00030
1.00030
1.00031
1.00031 | 1 | 1.00122
1.00122
1.00123
1.00123
1.00124 | 1 | 1.00214
1.00215
1.00216
1.00217
1.00217 | 1
1
1 | 1.00306
1.00308
1.00309
1.00310
1.00311 | 2
1
1
1 | 1170
1188
1206
1224
1242 | | 700 | 1.00031 | | 1.00124 | | 1.00218 | | 1.00312 | | 1260 | | °K | 1 atm | 4 atm | 7 atm | 10 atm | •̂R | |--------------------------------------|---|---|---|---|--------------------------------------| | 700
710
720
730
740 | 1.00031
1.00031
1.00031
1.00031
1.00031 | 1.00124
1.00124 1
1.00125
1.00125
1.00125 | 1.00218
1.00218 1
1.00219
1.00219
1.00219 | 1.00312 1
1.00313
1.00313
1.00313
1.00313 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | 1.00031
1.00031
1.00031
1.00031
1.00031 | 1.00125
1.00125
1.00125
1.00125
1.00125 - 1 | 1.00219
1.00219
1.00219 - 1
1.00218
1.00218 | 1.00313
1.00313
1.00313
1.00313 - 1
1.00312 - 1 | 1350
1368
1386
1404
1422 | | 800
850
900
950
1000 | 1.00031
1.00031 - 1
1.00030 - 1
1.00029
1.00029 - 1 | 1.00124 - 1
1.00123 - 2
1.00121 - 3
1.00118 - 3
1.00115 - 3 | 1.00218 - 3
1.00215 - 4
1.00211 - 4
1.00207 - 5
1.00202 - 5 | 1.00311 - 4
1.00307 - 5
1.00302 - 7
1.00295 - 7
1.00288 - 7 | 1440
1530
1620
1710
1800 | | 1050
1100
1150
1200
1260 | 1.00028 - 1
1.00027
1.00027 - 1
1.00026 - 1 | 1.00112 - 3
1.00109 - 2
1.00107 - 3
1.00104 - 3
1.00101 - 3 | 1.00197 - 5
1.00192 - 5
1.00187 - 5
1.00182 - 5
1.00177 - 5 | 1.00281 - 7
1.00274 - 7
1.00267 - 7
1.00260 - 7
1.00253 - 7 | 1890
1980
2070
2160
2250 | | 1300
1350
1400
1450
1500 | 1.00025 - 1
1.00024 - 1
1.00023
1.00023 - 1 | 1.00098 - 2
1.00096 - 3
1.00093 - 2
1.00091 - 3
1.00088 - 2 | 1.00172 - 5
1.00167 - 4
1.00163 - 4
1.00159 - 4
1.00155 - 4 | 1.00246 - 7
1.00239 - 6
1.00233 - 6
1.00227 - 6
1.00221 - 5 | 2340
2430
2520
2610
2700 | | 1550
1600
1650
1700
1750 | 1.00022 - 1
1.00021 - 1
1.00020
1.00020 - 1 | 1.00086 - 2
1.00084 - 2
1.00082 - 2
1.00080 - 2
1.00076 - 2 | 1.00151 - 4
1.00147 - 4
1.00143 - 3
1.00140 - 4
1.00136 - 3 | 1.00216 - 6
1.00210 - 5
1.00205 - 5
1.00200 - 5
1.00195 - 5 | 2790
2880
2970
3060
3150 | | 1850
1900
1950
2000 | 1.00019
1.00019 - 1
1.00018
1.00018 - 1
1.00017 | 1.00076 - 2
1.00074 - 2
1.00072 - 1
1.00071 - 2
1.00069 - 1 | 1.00133 - 3
1.00130 - 3
1.00127 - 3
1.00124 - 3
1.00121 - 2 | 1.00190 - 4
1.00186 - 5
1.00181 - 4
1.00177 - 4
1.00173 - 3 | 3240
3330
3420
3510
3600 | | 2100
2150
2200
2250
2300 | 1.00017 - 1
1.00016
1.00016
1.00016 - 1 | 1.00066 - 1
1.00065 - 2
1.00063 - 1
1.00062 - 1 | 1.00119 - 3
1.00116 - 2
1.00114 - 3
1.00111 - 2
1.00109 - 2 | 1.00170 - 4
1.00166 - 4
1.00162 - 3
1.00159 - 3
1.00156 - 4 | 3690
3780
3870
3960
4050 | | 2350
2400
2450
2500 | 1,00015
1,00015 - 1
1,00014
1,00014 | 1.00060 - 2
1.00058 - 1
1.00057 - 1
1.00056 - 1 | 1.00104 - 2
1.00102 - 2
1.00100 - 2
1.00098 - 1 | 1.00152 - 3
1.00149 - 3
1.00146 - 3
1.00143 - 2
1.00141 - 3 | 4140
4230
4320
4410
4500 | | 2600
2650
2700
2750 | 1.00014 - 1
1.00013
1.00013
1.00013 | 1.00055 - 1
1.00054 - 1
1.00053 - 1
1.00052 - 1
1.00051 - 1 | 1.00097 - 2
1.00095 - 2
1.00093 - 2
1.00091 - 1
1.00090 - 2 | 1.00138 - 3
1.00135 - 2
1.00133 - 3
1.00130 - 2
1.00128 - 2 | 4590
4680
4770
4860
4950 | | 2800
2850
2900
2950
3000 | 1.00013 - 1
1.00012
1.00012
1.00012
1.00012 | 1.00050 - 1
1.00049 - 1
1.00048 - 1
1.00047 | 1.00088 - 1
1.00087 - 2
1.00085 - 1
1.00084 - 2
1.00082 | 1.00126 - 2
1.00124 - 2
1.00122 - 3
1.00119 - 2
1.00117 | 5040
5130
5220
5310
5400 | | ° K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | *R | |---------------------------------|---|---------------------------------|---|---------------------------------|--|---------------------------------|--|---------------------------------|--------------------------------------| | 150
160
170
180
190 | .9236
.9377
.9486
.9571
.9640 | 141
109
85
69
56 | .696
.765
.812
.847 | 69
47
35
26 | .525
.643
.721 | 118
78
55 | | | 270
288
306
324
342 | | 200
210
220
230
240 | .96956
.97417
.97801
.98125
.98399 | 461
384
324
274
234 | .8734
.8943
.9112
.9250
.9365 | 209
169
138
115
97 | .7764
.8172
.8487
.8737
.8940 | 408
315
250
203
168 | .6871
.7512
.7980
.8337
.8617 | 641
468
357
280
228 | 360
378
396
414
432 | | 250
260
270
280
290 | .98633
.98833
.99006
.99157
.99288 | 200
173
151
131
114 | .9462
.95442
.96145
.96751
.97275 | 82
703
606
524
456 | .9108
.9249
.9368
.9471
.9559 | 141
119
103
88
77 | .8845
.9033
.9191
.9326
.9441 | 186
158
135
115
100 | 450
468
486
504
522 | | 300
310
320
330
340 | .99402
.99502
.99590
.99668
.99738 | 100
88
78
70
61 | .97731
.98129
.98479
.98787
.99059 | 398
350
308
272
241 | .9636
.9702
.9761
.9812
.9858 | 66
59
51
46
40 | .9541
.9628
.9705
.9773
.9834 | 87
77
68
61
53 | 540
558
576
594
612 | | 350
360
370
380
390 | .99799
.99853
.99902
.99945
.99984 | . 54
49
43
39
36 | .99300
.99513
.99702
.99873
1.00026 | 213
189
171
153
135 | .9898
.9934
.9965
.9994
1.0019 | 36
31
29
25
23 | .9887
.9934
.9976
1.0014
1.0049 | 47
42
38
35
30 | 630
648
666
684
702 | | 400
410
420
430
440 | 1.00019
1.00050
1.00078
1.00103
1.00126 | 31
28
25
23
20 | 1.00161
1.00280
1.00389
1.00487
1.00574 | 119
109
98
87
78 | 1.0042
1.0062
1.0080
1.0097
1.0111 | 20
18
17
14
13 | 1.0079
1.0106
1.0130
1.0153
1.0172 | 27
24
23
19
18 | 720
738
756
774
792 | | 450
460
470
480
490 | 1.00146
1.00165
1.00181
1.00196
1.00210 | 19
16
15
14 | 1.00652
1.00723
1.00786
1.00843
1.00894 | 71
63
57
51
48 | 1.0124
1.0136
1.0147
1.0156
1.0165 | 12
11
9
9 | 1.0190
1.0205
1.0221
1.0233
1.0244 | 15
16
12
11
12 | 810
828
846
864
882 | | 500
510
520
530
540 | 1.00222
1.00233
1.00242
1.00251
1.00259 | 11
9
9
8
7 | 1.00942
1.00983
1.01019
1.01052
1.01083 | 41
36
33
31
27 | 1.0173
1.0179
1.0186
1.0191
1.0196 | 6
7
5
5 | 1.0256
1.0265
1.0273
1.0280
1.0288 | 9
8
7
8
5 | 900
918
936
954
972 | | 550
560
570
580
590 | 1.00266
1.00273
1.00279
1.00284
1.00288 | 7
6
5
4 | 1.01110
1.01134
1.01155
1.01174
1.01190 | 24
21
19
16
15 | 1.0200
1.0205
1.0208
1.0211
1.0213 | 5
3
3
2
3 |
1.0293
1.0299
1.0303
1.0308
1.0311 | 6
4
5
3
3 | 990
1008
1026
1044
1062 | | 600
610
620
630
640 | 1.00292
1.00296
1.00299
1.00302
1.00304 | 4
3
3
2
2 | 1.01205
1.01218
1.01230
1.01240
1.01248 | 13
12
10
8
6 | 1.0216
1.0218
1.0220
1.0222
1.0224 | 2
2
2
2 | 1.0314
1.0318
1.0322
1.0324
1.0324 | 4 4 2 | 1080
1098
1116
1134
1152 | | 650
660
670
680
690 | 1.00306
1.00308
1.00309
1.00310
1.00311 | 2
1
1
1 | 1.01254
1.01260
1.01266
1.01270
1.01273 | 6
6
4
3
2 | 1.0224
1.0225
1.0226
1.0226
1.0227 | 1
1 | 1.0324
1.0325
1.0327
1.0328
1.0328 | 1
2
1 | 1170
1188
1206
1224
1242 | | 700
710
720
730
740 | 1.00312
1.00313
1.00313
1.00313
1.00313 | 1 | 1.01275
1.01276
1.01277
1.01278
1.01278 | 1
1
1 | 1.0227
1.0227
1.0227
1.0227
1.0227 | - 1 | 1.0328
1.0328
1.0328
1.0328
1.0328 | - 1 | 1260
1278
1296
1314
1332 | | 750 | 1.00313 | | 1.01277 | _ | 1.0226 | | 1.0327 | | 1350 | | | | | | <u>, </u> | | |--------------------------------------|---|--|--|--|--------------------------------------| | °K | 10 atm | 40 atm | 70 atm | 100 atm | *R | | 750 | 1.00313 | 1.01277 - 1 | 1.0226 | 1.0327 | 1350 | | 760 | 1.00313 | 1.01276 - 3 | 1.0226 - 1 | 1.0327 - 2 | 1368 | | 770 | 1.00313 | 1.01273 - 3 | 1.0225 | 1.0325 | 1386 | | 780 | 1.00313 - 1 | 1.01270 - 1 | 1.0225 | 1.0325 | 1404 | | 790 | 1.00312 - 1 | 1.01269 - 4 | 1.0225 - 1 | 1.0325 - 2 | 1422 | | 800 | 1.00311 - 4 | 1.01265 - 18 | 1.0224 - 3 | 1.0323 - 5 | 1440 | | 850 | 1.00307 - 5 | 1.01247 - 24 | 1.0221 - 5 | 1.0318 - 6 | 1530 | | 900 | 1.00302 - 7 | 1.01223 - 27 | 1.0216 - 5 | 1.0312 - 8 | 1620 | | 950 | 1.00295 - 7 | 1.01196 - 29 | 1.0211 - 5 | 1.0304 - 8 | 1710 | | 1000 | 1.00288 - 7 | 1.01167 - 30 | 1.0206 - 6 | 1.0296 - 8 | 1800 | | 1050 | 1.00281 - 7 | 1.01137 - 30 | 1.0200 - 5 | 1.0288 - 7 | 1890 | | 1100 | 1.00274 - 7 | 1.01107 - 31 | 1.0195 - 5 | 1.0281 - 8 | 1980 | | 1150 | 1.00267 - 7 | 1.01076 - 29 | 1.0190 - 6 | 1.0273 - 8 | 2070 | | 1200 | 1.00260 - 7 | 1.01047 - 29 | 1.0184 - 4 | 1.0265 - 7 | 2160 | | 1250 | 1.00253 - 7 | 1.01018 - 27 | 1.0180 - 6 | 1.0258 - 8 | 2250 | | 1300 | 1.00246 - 7 | 1.00991 - 27 | 1.0174 - 5 | 1.0250 - 7 | 2340 | | 1350 | 1.00239 - 6 | 1.00964 - 26 | 1.0169 - 4 | 1.0243 - 6 | 2430 | | 1400 | 1.00233 - 6 | 1.00938 - 24 | 1.0165 - 4 | 1.0237 - 6 | 2520 | | 1450 | 1.00227 - 6 | 1.00914 - 24 | 1.0161 - 5 | 1.0231 - 7 | 2610 | | 1500 | 1.00221 - 5 | 1.00890 - 23 | 1.0156 - 4 | 1.0224 - 5 | 2700 | | 1550 | 1.00216 - 6 | 1.00867 - 22 | 1.0152 - 3 | 1.0219 - 6 | 2790 | | 1600 | 1.00210 - 5 | 1.00845 - 22 | 1.0149 - 4 | 1.0213 - 6 | 2880 | | 1650 | 1.00205 - 5 | 1.00823 - 20 | 1.0145 - 4 | 1.0207 - 5 | 2970 | | 1700 | 1.00200 - 5 | 1.00803 - 20 | 1.0141 - 3 | 1.0202 - 5 | 3060 | | 1750 | 1.00195 - 5 | 1.00783 - 18 | 1.0138 - 4 | 1.0197 - 4 | 3150 | | 1800 | 1.00190 - 4 | 1.00765 - 18 | 1.0134 - 3 | 1.0193 - 5 | 3240 | | 1850 | 1.00186 - 5 | 1.00747 - 19 | 1.0131 - 3 | 1.0188 - 5 | 3330 | | 1900 | 1.00181 - 4 | 1.00728 - 17 | 1.0128 - 3 | 1.0183 - 4 | 3420 | | 1950 | 1.00177 - 4 | 1.00711 - 15 | 1.0125 - 3 | 1.0179 - 4 | 3510 | | 2000 | 1.00173 - 3 | 1.00696 - 15 | 1.0122 - 3 | 1.0175 - 4 | 3600 | | 2050 | 1.00170 - 4 | 1.00681 - 15 | 1.0119 - 2 | 1.0171 - 4 | 3690 | | 2100 | 1.00166 - 4 | 1.00666 - 14 | 1.0117 - 3 | 1.0167 - 3 | 3780 | | 2150 | 1.00162 - 3 | 1.00652 - 14 | 1.0114 - 2 | 1.0164 - 3 | 3870 | | 2200 | 1.00159 - 3 | 1.00638 - 14 | 1.0112 - 2 | 1.0161 - 4 | 3960 | | 2250 | 1.00156 - 4 | 1.00624 - 14 | 1.0110 - 3 | 1.0157 - 4 | 4050 | | 2300
2350
2400
2450
2500 | 1.00152 - 3
1.00149 - 3
1.00146 - 3
1.00143 - 2
1.00141 - 3 | 1.00610 - 12
1.00598 - 12
1.00586 - 11
1.00575 - 11
1.00564 - 11 | 1.0107 - 2
1.0105 - 2
1.0103 - 2
1.0101 - 2
1.0099 - 2 | 1.0150 - 3
1.0147 - 3
1.0144 - 2 | 4140
4230
4320
4410
4500 | | 2550
2600
2650
2700
2750 | 1.00138 - 3
1.00135 - 2
1.00133 - 3
1.00130 - 2
1.00128 - 2 | 1,00553 - 10
1,00543 - 10
1,00533 - 10
1,00523 - 9
1,00514 - 9 | 1.0097 - 2
1.0095 - 2
1.0093 - 1
1.0092 - 2
1.0090 - 1 | 1.0136 - 2
1.0134 - 3
1.0131 - 2 | 4590
4680
4770
4860
4950 | | 2800
2850
2900
2950
3000 | 1.00126 - 2
1.00124 - 2
1.00122 - 3
1.00119 - 2
1.00117 | 1.00505 - 9
1.00496 - 8
1.00488 - 9
1.00479 - 8 | 1.0089 - 2
1.0087 - 1
1.0086 - 2
1.0084 - 1
1.0083 | 1.0125 - 3
1.0122 - 2
1.0120 - 2 | 5040
5130
5220
5310
5400 | | Table 8- | 2. DENSITY OF C | OXYGE N | | | ρ/ρ_0 | |----------|-----------------|--------------|----------------|----------------|---------------| | °K | .OI atm | .l qtm | .4 atm | .7 atm | °R | | 100 | .02730 -249 | .27350 -2499 | 1.10136 -10220 | 1.94076 -18306 | 180 | | 110 | .02481 -207 | .24851 -2079 | .99916 - 8461 | 1.75770 -15069 | 198 | | 120 | .02274 -175 | .22772 -1757 | .91455 - 7125 | 1.60701 -12642 | 216 | | 130 | .02099 -150 | .21015 -1505 | .84330 - 6087 | 1.48059 -10772 | 234 | | 140 | .01949 -130 | .19510 -1304 | .78243 - 5261 | 1.37287 - 9293 | 252 | | 150 | .01819 -113 | .18206 -1140 | .72982 - 4595 | 1.27994 - 8103 | 270 | | 160 | .01706 -101 | .17066 -1005 | .68387 - 4048 | 1.19891 - 7130 | 288 | | 170 | .01605 - 89 | .16061 - 894 | .64339 - 3594 | 1.12761 - 6323 | 306 | | 180 | .01516 - 80 | .15167 - 799 | .60745 - 3211 | 1.06438 - 5648 | 324 | | 190 | .01436 - 71 | .14368 - 719 | .57534 - 2888 | 1.00790 - 5075 | 342 | | 200 | .01365 - 65 | .13649 - 650 | .54646 - 2612 | .95715 - 4586 | 360 | | 210 | .01300 - 60 | .12999 - 592 | .52034 - 2372 | .91129 - 4165 | 378 | | 220 | .01240 - 53 | .12407 - 540 | .49662 - 2166 | .86964 - 3799 | 396 | | 230 | .01187 - 50 | .11867 - 494 | .47496 - 1983 | .83165 - 3480 | 414 | | 240 | .01137 - 45 | .11373 - 455 | .45513 - 1825 | .79685 - 3199 | 432 | | 250 | .01092 42 | .10918 - 421 | .43688 - 1684 | .76486 - 2952 | 450 | | 260 | .01050 39 | .10497 - 389 | .42004 - 1558 | .73534 - 2732 | 468 | | 270 | .01011 36 | .10108 - 361 | .40446 - 1447 | .70802 - 2536 | 486 | | 280 | .00975 34 | .09747 - 336 | .38999 - 1347 | .68266 - 2360 | 504 | | 290 | .00941 31 | .09411 - 314 | .37652 - 1256 | .65906 - 2202 | 522 | | 300 | .00910 - 30 | .09097 - 293 | .36396 - 1176 | .63704 - 2060 | 540 | | 310 | .00880 - 27 | .08804 - 276 | .35220 - 1102 | .61644 - 1930 | 558 | | 320 | .00853 - 26 | .08528 - 258 | .34118 - 1034 | .59714 - 1812 | 576 | | 330 | .00827 - 24 | .08270 - 243 | .33084 - 974 | .57902 - 1706 | 594 | | 340 | .00803 - 23 | .08027 - 230 | .32110 - 919 | .56196 - 1608 | 612 | | 350 | .00780 - 22 | .07797 - 216 | .31191 - 867 | .54588 - 1518 | 630 | | 360 | .00758 - 20 | .07581 - 205 | .30324 - 820 | .53070 - 1436 | 648 | | 370 | .00738 - 20 | .07376 - 194 | .29504 - 777 | .51634 - 1361 | 666 | | 380 | .00718 - 18 | .07182 - 185 | .28727 - 737 | .50273 - 1290 | 684 | | 390 | .00700 - 18 | .06997 - 174 | .27990 - 700 | .48983 - 1226 | 702 | | 400 | .00682 - 16 | .06823 - 167 | .27290 - 666 | .47757 - 1166 | 720 | | 410 | .00666 - 16 | .06656 - 158 | .26624 - 634 | .46591 - 1110 | 738 | | 420 | .00650 - 15 | .06498 - 152 | .25990 - 605 | .45481 - 1058 | 756 | | 430 | .00635 - 15 | .06346 - 144 | .25385 - 577 | .44423 - 1010 | 774 | | 440 | .00620 - 14 | .06202 - 138 | .24808 - 552 | .43413 - 966 | 792 | | 450 | .00606 - 13 | .06064 - 131 | .24256 - 527 | .42447 - 923 | 810 | | 460 | .00593 - 12 | .05933 - 127 | .23729 - 505 | .41524 - 884 | 828 | | 470 | .00581 - 12 | .05806 - 121 | .23224 - 484 | .40640 - 847 | 846 | | 480 | .00569 - 12 | .05685 - 116 | .22740 - 464 | .39793 - 813 | 864 | | 490 | .00557 - 11 | .05569 - 111 | .22276 - 446 | .38980 - 780 | 882 | | 500 | .00546 - 11 | .05458 - 107 | .21830 - 428 | .38200 - 749 | 900 | | 510 | .00535 - 10 | .05351 - 103 | .21402 - 412 | .37451 - 721 | 918 | | 520 | .00525 - 10 | .05248 - 99 | .20990 - 396 | .36730 - 693 | 936 | | 530 | .00515 - 10 | .05149 - 95 | .20594 - 381 | .36037 - 667 | 954 | | 540 | .00505 - 9 | .05054 - 92 | .20213 - 368 | .35370 - 643 | 972 | | 550 | .00496 - 9 | .04962 - 89 | .19845 - 354 | .34727 - 621 | 990 | | 560 | .00487 - 8 | .04873 - 85 | .19491 - 342 | .34106 - 598 | 1008 | | 570 | .00479 - 8 | .04788 - 83 | .19149 - 330 | .33508 - 578 | 1026 | | 580 | .00471 - 8 | .04705 - 80 | .18819 - 319 | .32930 - 558 | 1044 | | 590 | .00463 - 8 | .04625 - 77 | .18500 - 309 | .32372 - 540 | 1062 | | 600 | .00455 - 8 | .04548 - 74 | .18191 - 298 | .31832 - 522 | 1080 | | 610 | .00447 - 7 | .04474 - 73 | .17893 - 289 | .31310 - 505 | 1098 | | 620 | .00440 - 7 | .04401 - 69 | .17604 - 279 | .30805 - 489 | 1116 | | 630 | .00433 - 7 | .04332 - 68 | .17325 - 271 | .30316 - 474 | 1134 | | 640 | .00426 - 6 | .04264 - 66 | .17054 - 262 | .29842 - 459 | 1152 | | 650 | .00420 - 7 | .04198 - 63 | .16792 - 255 | .29383 - 445 | 1170 | | 660 | .00413 - 6 | .04135 - 62 | .16537 - 246 | .28938 - 432 | 1188 | | 670 | .00407 - 6 | .04073 - 60 | .16291 - 240 | .28506 - 419 | 1206 | | 680 | .00401 - 6 | .04013 - 58 | .16051 - 233 | .28087 - 408 | 1224 | | 690 | .00395 - 5 | .03955 - 57 | .15818 - 226 | .27679 - 395 | 1242 | | 700 | .00390 | .03898 | .15592 | .27284 | 1260 | | °K | .OI atm | .l atm | .4 atm | .7 atm | °R | |--------------------------------------|--|---
--|--|--------------------------------------| | 700
710
720
730
740 | .00390 - 6
.00384 - 5
.00379 - 5
.00374 - 5 | .03898 - 94
.03844 - 54
.03790 - 52
.03738 - 50
.03688 - 49 | .15592 - 219
.15373 - 214
.15159 - 207
.14952 - 202
.14750 - 197 | .27284 - 384
.26900 - 374
.26526 - 363
.26163 - 354
.25809 - 344 | 1260
1278
1296
1314
1332 | | 750 | .00364 - 5 | .03639 - 48 | .14553 - 192 | .25465 - 335 | 1350 | | 760 | .00359 - 5 | .03591 - 47 | .14361 - 186 | .25130 - 326 | 1368 | | 770 | .00354 - 4 | .03544 - 45 | .14175 - 182 | .24804 - 318 | 1386 | | 780 | .00350 - 5 | .03499 - 45 | .13993 - 177 | .24486 - 310 | 1404 | | 790 | .00345 - 4 | .03454 - 43 | .13816 - 173 | .24176 - 302 | 1422 | | 800 | .00341 - 20 | .03411 - 200 | .13643 - 802 | .23874 - 1405 | 1440 | | 850 | .00321 - 18 | .03211 - 179 | .12841 - 714 | .22469 - 1248 | 1530 | | 900 | .00303 - 16 | .03032 - 159 | .12127 - 638 | .21221 - 1117 | 1620 | | 950 | .00287 - 14 | .02873 - 144 | .11489 - 574 | .20104 - 1005 | 1710 | | 1000 | .00273 - 13 | .02729 - 130 | .10915 - 520 | .19099 - 909 | 1800 | | 1050 | .00260 12 | .02599 - 118 | .10395 - 472 | .18190 - 827 | 1890 | | 1100 | .00248 11 | .02481 - 108 | .09923 - 432 | .17363 - 755 | 1980 | | 1150 | .00237 10 | .02373 - 99 | .09491 - 395 | .16608 - 692 | 2070 | | 1200 | .00227 9 | .02274 - 91 | .09096 - 364 | .15916 - 636 | 2160 | | 1250 | .00218 8 | .02183 - 84 | .08732 - 336 | .15280 - 588 | 2250 | | 1300 | .00210 - 8 | .02099 - 78 | .08396 - 311 | .14692 - 544 | 2340 | | 1350 | .00202 - 7 | .02021 - 72 | .08085 - 289 | .14148 - 505 | 2430 | | 1400 | .00195 - 7 | .01949 - 67 | .07796 - 268 | .13643 - 471 | 2520 | | 1450 | .00188 - 6 | .01882 - 63 | .07528 - 251 | .13172 - 439 | 2610 | | 1500 | .00182 - 6 | .01819 - 58 | .07277 - 235 | .12733 - 410 | 2700 | | 1550 | .00176 - 5 | .01761 - 55 | .07042 - 220 | .12323 - 385 | 2790 | | 1600 | .00171 - 6 | .01706 - 52 | .06822 - 207 | .11938 - 362 | 2880 | | 1650 | .00165 - 4 | .01654 - 49 | .06615 - 194 | .11576 - 340 | 2970 | | 1700 | .00161 - 5 | .01605 - 46 | .06421 - 184 | .11236 - 321 | 3060 | | 1750 | .00156 - 4 | .01559 - 43 | .06237 - 173 | .10915 - 304 | 3150 | | 1800 | .00152 - 4 | .01516 - 41 | .06064 - 164 | .10611 - 286 | 3240 | | 1850 | .00148 - 4 | .01475 - 39 | .05900 - 155 | .10325 - 272 | 3330 | | 1900 | .00144 - 4 | .01436 - 37 | .05745 - 147 | .10053 - 258 | 3420 | | 1950 | .00140 - 4 | .01399 - 35 | .05598 - 140 | .09795 - 245 | 3510 | | 2000 | .00136 - 3 | .01364 - 33 | .05458 - 134 | .09550 - 233 | 3600 | | 2050 | .00133 - 3 | .01331 - 31 | .05324 - 126 | .09317 - 221 | 3690 | | 2100 | .00130 - 3 | .01300 - 31 | .05198 - 121 | .09096 - 212 | 3780 | | 2150 | .00127 - 3 | .01269 - 29 | .05077 - 115 | .08884 - 202 | 3870 | | 2200 | .00124 - 3 | .01240 - 27 | .04962 - 111 | .08682 - 193 | 3960 | | 2250 | .00121 - 2 | .01213 - 27 | .04851 - 105 | .08489 - 184 | 4050 | | 2300 | .00119 - 3 | .01186 - 25 | .04746 - 101 | .08305 - 177 | 4140 | | 2350 | .00116 - 2 | .01161 - 24 | .04645 - 97 | .08128 - 169 | 4230 | | 2400 | .00114 - 3 | .01137 - 23 | .04548 - 93 | .07959 - 163 | 4320 | | 2450 | .00111 - 2 | .01114 - 22 | .04455 - 89 | .07796 - 156 | 4410 | | 2500 | .00109 - 2 | .01092 - 22 | .04366 - 85 | .07640 - 149 | 4500 | | 2550 | .00107 - 2 | .01070 - 20 | .04281 - 83 | .07491 - 144 | 4590 | | 2600 | .00105 - 2 | .01050 - 20 | .04198 - 79 | .07347 - 139 | 4680 | | 2650 | .00103 - 2 | .01030 - 19 | .04119 - 76 | .07208 - 133 | 4770 | | 2700 | .00101 - 2 | .01011 - 19 | .04043 - 74 | .07075 - 129 | 4860 | | 2750 | .00099 - 2 | .00992 - 17 | .03969 - 71 | .06946 - 124 | 4950 | | 2800
2850
2900
2950
3000 | .00097 - 1
.00096 - 2
.00094 - 2
.00092 - 1 | .00975 - 17
.00958 - 17
.00941 - 16
.00925 - 15 | .03898 - 68
.03830 - 66
.03764 - 64
.03700 - 62
.03638 | .06822 - 120
.06702 - 115
.06587 - 112
.06475 - 108
.06367 | 5040
5130
5220
5310
5400 | | | , | | | | ν/νο | |---------------------------------|--|---|---|---|---------------------------------| | *K | l atm | 4 atm | 7 atm | 10 atm | *R | | 100
110
120
130
140 | 2.79257 -26816
2.52441 -21916
2.30525 -18918
2.12207 -15563
1.96644 -13998 | 10.755 -1106
9.649 - 860
8.789 - 702
8.087 - 591 | 17.86 -1851
16.009 -1421
14.588 -1150 | | 180
198
216
234
252 | | 150 | 1.83246 -11665 | 7.496 - 506 | 13.438 - 964 | 19.69 -151 | 270 | | 160 | 1.71581 -10252 | 6.990 - 438 | 12.474 - 823 | 18.18 -126 | 288 | | 170 | 1.61329 - 9082 | 6.552 - 384 | 11.651 - 713 | 16.92 -108 | 306 | | 180 | 1.52247 - 8108 | 6.168 - 340 | 10.938 - 626 | 15.84 - 94 | 324 | | 190 | 1.44139 - 7279 | 5.828 - 304 | 10.312 - 554 | 14.90 - 83 | 342 | | 200 | 1.36860 - 6575 | 5.5245 - 2727 5.2518 - 2463 5.0055 - 2237 4.7818 - 2042 4.5776 - 1872 | 9,7584 - 4949 | 14.073 - 734 | 360 | | 210 | 1.30285 - 5968 | | 9,2635 - 4450 | 13.339 - 656 | 378 | | 220 | 1.24317 - 5443 | | 8,8185 - 4026 | 12.683 - 592 | 396 | | 230 | 1.18874 - 4984 | | 8,4159 - 3662 | 12.091 - 536 | 414 | | 240 | 1.13890 - 4581 | | 8,0497 - 3347 | 11.555 - 488 | 432 | | 250 | 1.09309 - 4224 | 4.3904 - 1723 | 7,7150 - 3072 | 11,067 - 447 | 450 | | 260 | 1.05085 - 3909 | 4.2181 - 1590 | 7,4078 - 2830 | 10,620 - 412 | 468 | | 270 | 1.01176 - 3628 | 4.0591 - 1473 | 7,1248 - 2617 | 10,208 - 379 | 486 | | 280 | .97548 - 3376 | 3.9118 - 1369 | 6,8631 - 2428 | 9,829 - 352 | 504 | | 290 | .94172 - 3149 | 3.7749 - 1275 | 6,6203 - 2258 | 9,477 - 326 | 522 | | 300 | .91023 - 2946 | 3.6474 - 1190 | 6.39455 - 21063 | 9,151 - 304 | 540 | | 310 | .88077 - 2760 | 3.5284 - 1115 | 6.18392 - 19697 | 8,847 - 284 | 558 | | 320 | .85317 - 2592 | 3.4169 - 1046 | 5.98695 - 18456 | 8,563 - 266 | 576 | | 330 | .82725 - 2438 | 3.3123 - 983 | 5.80239 - 17343 | 8,297 - 250 | 594 | | 340 | .80287 - 2299 | 3.21404 - 9261 | 5.62896 - 16318 | 8,047 - 235 | 612 | | 350 | .77988 - 2170 | 3.12143 - 8738 | 5.46578 - 15385 | 7.812 - 221 7.591 - 209 7.382 - 197 7.185 - 187 6.998 - 177 | 630 | | 360 | .75818 - 2053 | 3.03405 - 8256 | 5.31193 - 14532 | | 648 | | 370 | .73765 - 1945 | 2.95149 - 7816 | 5.16661 - 13747 | | 666 | | 380 | .71820 - 1844 | 2.87333 - 7412 | 5.02914 - 13028 | | 684 | | 390 | .69976 - 1751 | 2.79921 - 7036 | 4.89886 - 12367 | | 702 | | 400 | .68225 - 1666 | 2.72885 - 6688 | 4,77519 - 11749 | 6.8212 - 1684 | 720 | | 410 | .66559 - 1587 | 2.66197 - 6369 | 4,65770 - 11176 | 6.6528 - 1603 | 738 | | 420 | .64972 - 1513 | 2.59828 - 6068 | 4,54594 - 10652 | 6.4925 - 1525 | 756 | | 430 | .63459 - 1443 | 2.53760 - 5790 | 4,43942 - 10159 | 6.3400 - 1456 | 774 | | 440 | .62016 - 1380 | 2.47970 - 5530 | 4,33783 - 9699 | 6.1944 - 1388 | 792 | | 450 | .60636 - 1319 | 2.42440 - 5289 | 4.24084 - 9273 | 6.0556 - 1328 | 810 | | 460 | .59317 - 1263 | 2.37151 - 5060 | 4.14811 - 8874 | 5.9228 - 1269 | 828 | | 470 | .58054 - 1210 | 2.32091 - 4848 | 4.05937 - 8497 | 5.7959 - 1216 | 846 | | 480 | .56844 - 1161 | 2.27243 - 4651 | 3.97440 - 8150 | 5.6743 - 1166 | 864 | | 490 | .55683 - 1115 | 2.22592 - 4463 | 3.89290 - 7816 | 5.5577 - 1118 | 882 | | 500 | .54568 - 1070 | 2.18129 - 4286 | 3.81474 - 7510 | 5.4459 - 1074 | 900 | | 510 | .53498 - 1039 | 2.13843 - 4121 | 3.73964 - 7217 | 5.3385 - 1031 | 918 | | 520 | .52468 - 990 | 2.09722 - 3963 | 3.66747 - 6941 | 5.2354 - 993 | 936 | | 530 | .51478 - 953 | 2.05759 - 3818 | 3.59806 - 6685 | 5.1361 - 955 | 954 | | 540 | .50525 - 920 | 2.01941 - 3678 | 3.53121 - 6437 | 5.0406 - 920 | 972 | | 550 | .49605 - 886 | 1.98263 - 3544 | 3.46684 - 6205 | 4.9486 - 887 | 990 | | 560 | .48719 - 855 | 1.94719 - 3420 | 3.40479 - 5986 | 4.8599 - 855 | 1008 | | 570 | .47864 - 825 | 1.91299 - 3302 | 3.34493 - 5781 | 4.7744 - 826 | 1026 | | 580 | .47039 - 798 | 1.87997 - 3190 | 3.28712 - 5581 | 4.6918 - 797 | 1044 | | 590 | .46241 - 771 | 1.84807 - 3084 | 3.23131 - 5395 | 4.6121 - 770 | 1062 | | 600 | .45470 - 745 | 1.81723 - 2981 | 3.17736 - 5215 | 4.5351 - 746 | 1080 | | 610 | .44725 - 722 | 1.78742 - 2886 | 3.12521 - 5047 | 4.4605 - 720 | 1098 | | 620 | .44003 - 698 | 1.75856 - 2793 | 3.07474 - 4886 | 4.3885 - 698 | 1116 | | 630 | .43305 - 677 | 1.73063 - 2706 | 3.02588 - 4734 | 4.3187 - 676 | 1134 | | 640 | .42628 - 656 | 1.70357 - 2623 | 2.97854 - 4588 | 4.2511 - 655 | 1152 | | 650 | .41972 - 636 | 1.67734 - 2541 | 2.93266 - 4447 | 4.1856 - 635 | 1170 | | 660 | .41336 - 617 | 1.65193 - 2467 | 2.88819 - 4313 | 4.1221 - 615 | 1188 | | 670 | .40719 - 599 | 1.62726 - 2393 | 2.84506 - 4187 | 4.0606 - 598 | 1206 | | 680 | .40120 - 581 | 1.60333 - 2325 | 2.80319 - 4062 | 4.0008 - 580 | 1224 | | 690 | .39539 - 565 | 1.58008 - 2258 | 2.76257 - 3950 | 3.9428 - 564 | 1242 | | 700 | .38974 | 1.55750 | 2.72307 | 3.8864 | 1260 | | *K | 1 at | tm | 4 (| ıtm | 7 a | tm | 10 | atm | •̂R | |--------------|----------------------|---------------------------|--------------------|---------------------|--------------------|---------------------|------------------|----------------|--------------| | لللا | | | 1 | | | | <u> </u> | | l | | | | | | | | | | | | | 700 | .38974 - | - 549 | 1.55750 | - 2193 | 2,72307 | - 3835 | 3.8864 | - 548 | 1260 | | 710 | .38425 - | - 534 | 1.53557 | - 2135 | 2.68472 | - 3731 | 3.8316 | - 532 | 1278 | | 720 | | - 519 | 1.51422 | - 2074 | 2.64741 | - 3627 | 3.7784 | - 517 | 1296 | | 730 | .37372 - | | 1.49348 | - 2018 | 2.61114 | - 3529 | 3.7267 | - 504 | 1314 | | 740 | .36867 - | - 491 | 1.47330 | - 1 96 5 | 2.57585 | - 3434 | 3.6763 | - 490 | 1332 | | 750 | | -
479 | 1.45365 | - 1912 | 2.54151 | - 3344 | 3.6273 | - 477 | 1350 | | 760 | .35897 - | , | 1.43453 | - 1863 | 2.50807 | - 3257 | 3.5796 | - 465 | 1368 | | 770 | | - 455 | 1.41590 | - 1815 | 2.47550 | - 3172 | 3.5331 | - 453 | 1386
1404 | | 780
790 | | - 442
- 432 | 1.39775
1.38005 | - 1770
- 1723 | 2.44378
2.41285 | - 3093
- 3016 | 3.4878
3.4437 | - 441
- 431 | 1422 | | 790 | .34534 - | - 432 | 1.70007 | - 1725 | 2,41203 | - 5010 | 2,4421 | | 1455 | | 800 | .34102 - | 2007 | 1.36282 | - 8016 | 2,38269 | - 14009 | 3.4006 | - 1999 | 1440 | | 850 | | - 2006
- 17 8 3 | 1.28266 | - 7123 | 2.24260 | - 14007
- 12451 | 3.2007 | - 1776 | 1530 | | 900 | | - 1595 | 1.21143 | - 6373 | 2.11809 | - 11139 | 3,0231 | - 1590 | 1620 | | 950 | | - 1436 | 1.14770 | - 5735 | 2,00670 | - 10024 | 2.8641 | - 1430 | 1710 | | 1000 | | - 1299 | 1.09035 | - 5189 | 1.90646 | - 9070 | 2.7211 | - 1294 | 1800 | | 1050 | .25983 - | - 1181 | 1.03846 | - 4717 | 1.81576 | - 8245 | 2,5917 | - 1176 | 1890 | | 1100 | | - 1078 | .99129 | - 4308 | 1.73331 | - 7527 | 2.4741 | - 1074 | 1980 | | 1150 | .23724 - | | .94821 | - 3949 | 1.65804 | - 6901 | 2,3667 | 984 | 2070 | | 1200 | .22736 - | - 909 | .90872 | - 3632 | 1.58903 | - 6348 | 2.2683 | - 906 | 2160 | | 1250 | .21827 - | - 840 | .87240 | - 3353 | 1.52555 | - 5861 | 2.1777 | - 836 | 2250 | | 1300 | .20987 - | - 777 | .83887 | - 3105 | 1.46694 | 5426 | 2.0941 | - 774 | 2340 | | 1350 | .20210 - | - 722 | .80782 | - 2883 | 1.41268 | 5040 | 2.0167 | - 719 | 2430 | | 1400 | .19488 - | | .77899 | - 2684 | 1.36228 | - 4 69 2 | 1.9448 | - 670 | 2520 | | 1450 | .18816 - | | .75215 | - 2505 | 1.31536
1.27157 | - 4379 | 1.8778
1.8153 | - 625
584 | 2610
2700 | | 1500 | .18189 - | - 586 | .72710 | - 2344 | 1.27157 | - 4097 | 1.0155 | 584 | | | 1550 | .17603 - | - 550 | .70366 | - 2198 | 1.23060 | - 3841 | 1.7569 | - 548 | 2790 | | 1600 | .17053 - | | .68168 | - 2064 | 1.19219 | - 3608 | 1.7021 | - 515 | 2880 | | 1650 | .16536 - | | .66104 | - 1943 | 1.15611 | - 3397 | 1.6506 | - 485 | 2970 | | 1700 | .16050 - | - 459 | .64161
.62329 | - 1832 | 1.12214
1.09012 | - 3202
- 3025 | 1.6021
1.5564 | - 457
- 432 | 3060
3150 | | 1750 | .15591 - | - 43 3 | .02327 | - 1730 | 1.07012 | - 5025 | 1.5504 | - 402 | 7170 | | 1800 | .15158 - | - 409 | .60599 | - 1637 | 1.05987 | - 2861 | 1.5132 | - 408 | 3240 | | 1850 | .14749 - | - 388 | .58962 | - 1550 | 1.03126 | - 2711 | 1.4724 | - 387 | 3330 | | 1900 | .14361 - | - 369 | .57412 | - 1472 | 1.00415 | - 2572 | 1.4337 | - 367 | 3420 | | 1950 | .13992 - | | .55940 | - 1397 | .97843 | - 2443 | 1.3970 | - 348
- 332 | 3510
3600 | | 2000 | .13643 - | - 333 | .54543 | - 1330 | .95400 | - 2325 | 1.3622 | - 332 | 2000 | | 2050 | .13310 - | - 317 | .53213 | - 1266 | .93075 | - 2213 | 1.3290 | - 316 | 3690 | | 2100 | .12993 - | - 302 | .51947 | - 1208 | .90862 | - 2112 | 1.2974 | - 301 | 3780 | | 2150 | .12691 - | - 288 | .50739 | - 1152 | .88750 | - 2014 | 1.2673 | - 288 | 3870
3960 | | 2200 | .12403 - | | .49587 | - 1101 | .86736
.84810 | - 1926
- 1842 | 1.2385
1.2110 | - 275
- 263 | 4050 | | 2250 | .12127 - | - 264 | .48486 | - 1054 | .04010 | - 1842 | 1.2110 | - 200 | 40J0 | | 2300 | .11863 - | - 252 | .47432 | - 1009 | .82968 | - 1763 | 1.1847 | - 251 | 4140 | | 2350 | .11611 - | | .46423 | - 966 | .81205 | - 1690 | 1.1596 | ~ 242 | 4230 | | 2400 | | - 232 | .45457 | - 927 | .79515 | - 1621 | 1.1354 | - 231 | 4320 | | 2450 | • | - 222 | .44530 | - 890 | .77894
76337 | - 1557 | 1.1123
1.0901 | - 222
- 214 | 4410
4500 | | 2500 | .10915 - | - 215 | .43640 | - 856 | .76337 | - 1496 | 1.0701 | - 214 | 4500 | | 2550 | | - 205 | .42784 | - 822 | .74841 | - 1437 | 1.0687 | - 205 | 4590 | | 2600 | .10495 - | | .41962 | - 791 | .73404 | - 1384 | 1.0482
1.0285 | - 197 | 4680
4770 | | 2650 | .10297 - | | .41171 | - 762
- 735 | .72020
.70688 | - 1332
- 1395 | 1.0285 | 191
183 | 4770 | | 2700
2750 | .10106 -
.09922 - | | .40409
.39674 | - 735
- 708 | .69403 | - 1285
- 1238 | .9911 | - 185
- 177 | 4950 | | | | | | | 4014F | 1100 | .9734 | - 170 | 5040 | | 2800
2850 | .09745 -
.09574 - | - 171
- 165 | .38966
.38283 | - 683
- 660 | .68165
.66970 | - 1195
- 1153 | .9564 | - 1/0
- 165 | 5130 | | 2900 | .09409 | | .37623 | - 637 | .65817 | - 1115 | .9399 | - 159 | 5220 | | 2950 | | - 154 | .36986 | - 616 | .64702 | - 1077 | .9240 | - 154 | 5310 | | 3000 | .09096 | • | .36370 | | .63625 | | .9086 | | 5400 | P/Po | |---------------------------------|--|--|---|--------------------------------------|--|--|--|--|--------------------------------------| | °K | 10 atr | ח ח | 40 atm | | 70 | atm | 100 | atm | °R | | 150
160
170
180
190 | 19.69
18.18
16.92
15.84
14.90 | -151
-126
-108
- 94
- 83 | 98.0 –
80.9 –
74.6 – | 262
171
63
68
54 | 164.9
139.3 | -256
-163 | | | 270
288
306
324
342 | | 200
210
220
230
240 | 14.073
13.339
12.683
12.091
11.555 | - 734
- 656
- 592
- 536
- 488 | 58.1 -
54.4 -
51.30 - | 43
37
31
274
242 | 123.0
111.3
102.3
95.0
89.0 | -117
90
73
60
51 | 198.5
172.9
155.4
142.3
131.9 | 256
175
131
104
85 | 360
378
396
414
432 | | 250
260
270
280
290 | 11.067
10.620
10.208
9.829
9.477 | - 447
- 412
- 379
- 352
- 326 | 43.98 -
42.05 -
40.29 - | 216
193
176
160
146 | 83.89
79.43
75.525
72.035
68.911 | 446
391
3490
3124
2829 | 123.41
116.19
109.97
104.50
99.67 | - 722
- 622
- 547
- 483
- 433 | 450
468
486
504
522 | | 300
310
320
330
340 | 9.151
8.847
8.563
8.297
8.047 | - 304
- 284
- 266
- 250
- 235 | 35.884 -
34.639 -
33.485 - | 1347
1245
1154
1075
1002 | 66.082
63.515
61.158
58.997
56.994 | 2567
2357
2161
2003
1852 | 95.34
91.43
87.87
84.618
81.619 | - 391
- 356
- 325
- 2999
- 2757 | 540
558
576
594
612 | | 350
360
370
380
390 | 7.812
7.591
7.382
7.185
6.998 | - 221
- 209
- 197
- 187
- 177 | 31.408 -
30.470 -
29.590 -
28.762 -
27.982 - | 880
828
780 | 55.142
53.416
51.811
50.301
48.889 | - 1726
- 1605
- 1510
- 1412
- 1332 | 78.862
76.309
73.934
71.715
69.633 | - 2553
- 2375
- 2219
- 2082
- 1943 | 630
648
666
684
702 | | 400
410
420
430
440 | 6.8212
6.6528
6.4925
6.3400
6.1944 | - 1684
- 1603
- 1525
- 1456
- 1388 | 27.246 –
26.550 –
25.889 –
25.263 –
24.667 – | 661
626
596 | 47.557
46.305
45.122
43.998
42.939 | - 1252
- 1183
- 1124
- 1059
- 1008 | 67.690
65.863
64.142
62.508
60.974 | - 1827
- 1721
- 1634
- 1534
- 1461 | 720
738
756
774
792 | | 450
460
470
480
490 | 6.0556
5.9228
5.7959
5.6743
5.5577 | - 1328
- 1269
- 1216
- 1166
- 1118 | 24.100 -
23.560 -
23.044 -
22.551 -
22.080 - | 516
493
471 | 41.931
40.971
40.056
39.186
38.353 | - 960
- 915
- 870
- 833
- 797 | 59.513
58.134
56.808
55.559
54.367 | - 1379
- 1326
- 1249
- 1192
- 1150 | 810
828
846
864
882 | | 500
510
520
530
540 | 5.4459
5.3385
5.2354
5.1361
5.0406 | - 1074
- 1031
- 993
- 955
- 920 | 21.628 -
21.195 -
20.780 -
20.381 -
19.998 - | 415
399
383 | 37.556
36.798
36.065
35.368
34.696 | - 758
- 733
- 697
- 672
- 645 | 53.217
52.128
51.086
50.088
49.122 | 1089
1042
998
966
917 | 900
918
936
954
972 | | 550
560
570
580
590 | 4.9486
4.8599
4.7744
4.6918
4.6121 | - 887
- 855
- 826
- 797
- 770 | 19.6294 -
19.2743 -
18.9322 -
18.6023 -
18.2841 - | 3421
3299
3182 | 34.051
33.427
32.831
32.255
31.702 | - 624
- 596
- 576
- 553
- 537 | 48.205
47.317
46.469
45.646
44.859 | - 888
- 848
- 823
- 787
- 761 | 990
1008
1026
1044
1062 | | 600
610
620
630
640 | 4.5351
4.4605
4.3885
4.3187
4.2511 | - 746
- 720
- 698
- 676
- 655 | 17.9767 -
17.6798 -
17.3925 -
17.1148 -
16.8460 - | 2873
2777
2688 | 31.165
30.648
30.148
29.663
29.194 | - 517
- 500
- 485
- 469
- 449 | 44.098
43.359
42.643
41.958
41.302 | - 739
- 716
- 685
- 656
- 635 | 1080
1098
1116
1134
1152 | | 650
660
670
680
690 | 4.1856
4.1221
4.0606
4.0008
3.9428 | - 635
- 615
- 598
- 580
- 564 | 16.5859 -
16.3336 -
16.0889 -
15.8516 -
15.6214 - | 2447
2373
2302 | 28.745
28.307
27.881
27.471
27.071 | - 438
- 426
- 410
- 400
- 387 | 40.667
40.047
39.441
38.857
38.294 | 620
606
584
563
547 | 1170
1188
1206
1224
1242 | | 700
710
720
730
740 | 3.8864
3.8316
3.7784
3.7267
3.6763 | 548
532
517
504
490 | 15.3980 -
15.1809 -
14.9700 -
14.7647 -
14.5652 - | 2109
2053
1995 | 26.684
26.308
25.943
25.587
25.241 | - 376
- 365
- 356
- 346
- 334 | 37.747
37.216
36.699
36.196
35.707 | -
531
- 517
- 503
- 489
- 473 | 1260
1278
1296
1314
1332 | | 750 | 3.6273 | | 14.3712 | | 24.907 | | 35.234 | | 1350 | | °K | . 10 | atm | 40 | atm | 70 | atm | 100 | atm | °R | |--------------|------------------|-------------------|--------------------|------------------|------------------|----------------|------------------|----------------|--------------| | | | | | <u> </u> | | | | | | | 750 | 3,6273 | - A77 | 14.3712 | 1000 | 24,907 | -07 | 25 224 | | 1250 | | 760 | 3.5796 | *** | | - 1890 | | - 327 | 35.234 | - 463 | 1350 | | 770 | 3.5331 | ~ 465 | 14.1822
13.9984 | - 1838 | 24.580 | - 317 | 34.771 | - 445 | 1368 | | 780 | 3.4878 | - 453
- 441 | 13.8194 | - 1790
- 1748 | 24.263
23.952 | - 311
- 303 | 34.326
33.886 | - 440 | 1386
1404 | | 790 | 3.4437 | - 431 | 13.6446 | - 1748
- 1700 | 23.649 | - 303
- 294 | 33.457 | - 429
- 412 | 1422 | | .,, | 3.1137 | | 13.0440 | - 1700 | 25.047 | - 274 | 22.421 | - 412 | 1466 | | 800 | 3,4006 | - 1999 | 13,4746 | - 7904 | 23.355 | - 1367 | 33.045 | - 1929 | 1440 | | 850 | 3,2007 | - 1776 | 12.6842 | - 7019 | 21.988 | - 1212 | 31.116 | - 1712 | 1530 | | 900 | 3.0231 | - 1590 | 11.9823 | - 6276 | 20.776 | - 1084 | 29.404 | - 1526 | 1620 | | 9 50 | 2.8641 | - 1430 | 11.3547 | - 5646 | 19.692 | - 975 | 27.878 | - 1373 | 1710 | | 1000 | 2.7211 | - 1294 | 10.7901 | - 5108 | 18.717 | - 881 | 26.505 | - 1242 | 1800 | | 1050 | 2.5917 | - 1176 | 10.2793 | - 4643 | 17.836 | - 802 | 25,263 | - 1132 | 1890 | | 1100 | 2.4741 | - 1074 | 9.8150 | - 4239 | 17.034 | - 733 | 24.131 | - 1032 | 1980 | | 1150 | 2.3667 | - 984 | 9.3911 | - 3887 | 16,301 | - 670 | 23.099 | - 945 | 2070 | | 1200 | 2.2683 | – 906 . | 9.0024 | - 3576 | 15.631 | - 619 | 22.154 | - 872 | 2160 | | 1250 | 2,1777 | - 836 | 8.6448 | - 3303 | 15.012 | - 569 | 21.282 | - 802 | 2250 | | 1300 | 2.0941 | - 774 | 8.3145 | - 3058 | 14.443 | - 528 | 20.480 | - 745 | 2340 | | 1350 | 2.0167 | - 71 9 | 8.0087 | - 2840 | 13.915 | - 492 | 19.735 | - 694 | 2430 | | 1400 | 1.9448 | - 670 | 7.7247 | - 26 4 6 | 13.423 | - 458 | 19.041 | - 646 | 2520 | | 1450 | 1.8778 | - 625 | 7.4601 | - 2470 | 12.965 | - 426 | 18.395 | - 601 | 2610 | | 1500 | 1.8153 | 584 | 7.2131 | - 2311 | 12.539 | - 399 | 17.794 | - 56 5 | 2700 | | 1550 | 1.7569 | - 548 | 6.9820 | - 2167 | 12,140 | - 376 | 17.229 | - 529 | 2790 | | 1600 | 1.7021 | - 515 | 6.7653 | - 2036 | 11.764 | - 352 | 16.700 | - 496 | 2880 | | 1650 | 1.6506 | - 485 | 6.5617 | - 1917 | 11.412 | - 332 | 16.204 | - 469 | 2970 | | 1700 | 1.6021 | - 457 | 6.3700 | - 1808 | 11.080 | - 313 | 15.735 | - 442 | 3060 | | 1750 | 1.5564 | - 432 | 6.1892 | - 1708 | 10.767 | - 295 | 15.293 | - 419 | 3150 | | 1800 | 1.5132 | - 408 | 6.0184 | - 1616 | 10.472 | - 280 | 14.874 | - 395 | 3240 | | 1850 | 1.4724 | - 387 | 5.8568 | - 1531 | 10,192 | - 265 | 14.479 | - 374 | 3330 | | 1900 | 1.4337 | - 367 | 5.7037 | - 1453 | 9.927 | - 252 | 14.105 | - 357 | 3420 | | 1950 | 1.3970 | - 348 | 5.5584 | - 1382 | 9.675 | - 239 | 13.748 | - 338 | 3510 | | 2000 | 1.3622 | - 332 | 5.4202 | - 1314 | 9.436 | - 228 | 13.410 | - 322 | 3600 | | 2050 | 1.3290 | - 316 | 5.2888 | - 1251 | 9.208 | - 217 | 13.088 | - 307 | 3690 | | 2100 | 1.2974 | - 301 | 5.1637 | - 1194 | 8.991 | - 206 | 12.781 | - 293 | 3780 | | 2150 | 1.2673 | 288 | 5.0443 | - 1140 | 8.785 | - 198 | 12.488 | - 280 | 3870 | | 2200 | 1.2385 | - 275 | 4.9303 | - 1089 | 8.587 | - 190 | 12,208 | - 267 | 3960 | | 2250 | 1.2110 | - 263 | 4.8214 | - 1041 | 8,397 | - 180 | 11.941 | - 255 | 4050 | | 2300 | 1.1847 | - 251 | 4.7173 | - 998 | 8.217 | - 173 | 11.686 | - 245 | 4140 | | 2350 | 1.1596 | - 242 | 4.6175 | - 957 | 8.044 | - 166 | 11.441 | - 235 | 4230 | | 2400 | 1.1354 | - 231 | 4.5218 | - 918 | 7.878 | - 159 | 11.206 | - 226 | 4320 | | 2450 | 1.1123 | - 222 | 4.4300 | 881 | 7.719 | - 153 | 10.980 | - 217 | 4410 | | 2500 | 1.0901 | - 214 | 4.3419 | – 847 | 7.566 | - 147 | 10.763 | - 208 | 4500 | | 2550 | 1.0687 | 205 | 4.2572 | - 814 | 7.419 | - 141 | 10.555 | - 200 | 4590 | | 2600 | 1.0482 | - 197 | 4.1758 | - 784 | 7.278 | - 136 | 10.355 | - 194 | 4680 | | 2650
2700 | 1.0285
1.0094 | - 191
100 | 4.0974 | - 755 | 7.142 | - 132 | 10.161 | - 185 | 4770 | | 2750
2750 | .9911 | - 183
- 177 | 4.0219
3.9491 | - 728
- 701 | 7.010
6.884 | - 126
- 122 | 9.976
9.797 | - 179
- 173 | 4860
4950 | | 2800 | ,9734 | - 170 | 3.8790 | - 678 | 6.762 | _ 117 | 9.624 | _ 1/7 | 5040 | | 2850 | .9564 | | 3.8112 | | 6.645 | - 117
- 114 | 9.024
9.457 | - 167
- 161 | 5130 | | 2900 | .9399 | - 165
- 159 | 3.7458 | - 654
- 631 | 6.531 | - 114
- 110 | 9.457 | - 161
- 155 | 5220 | | 2950 | .9240 | - 154 | 3.6827 | - 611 | 6.421 | - 110
- 106 | 9.141 | - 151 | 5310 | | 3000 | .9086 | 2,74 | 3.6216 | OII | 6.315 | 100 | 8.990 | 151 | 5400 | | | | | ,,,,,, | | | | 5.775 | | 2400 | | | | | - <u>,</u> | | | | | | | |---------------------------------|--|-------------------|--|------------------------------------|--|---------------------------------------|--------------------------------------|-------------------------------|---------------------------------| | °K | .01 | atm | .1 | atm | .4 | atm | .7 | atm | °R | | 100
110
120
130
140 | 3.5024
3.5021
3.5019
3.5017
3.5017 | - 3
- 2
- 2 | 3.5117
3.5090
3.5073
3.5060
3.5052 | - 27
- 17
- 13
- 8
- 6 | 3.5459
3.5333
3.5259
3.5207
3.5173 | - 126
- 74
- 52
- 34
- 28 | 3.5597
3.5452
3.5358
3.5295 | - 145
- 94
- 63
- 50 | 180
198
216
234
252 | | 150 | 3.5016 | 2 | 3.5046 | - 3 | 3.5145 | - 19 | 3.5245 | - 34 | 270 | | 160 | 3.5018 | 1 | 3.5043 | - 2 | 3.5126 | - 14 | 3.5211 | - 27 | 288 | | 170 | 3.5019 | 3 | 3.5041 | - 1 | 3.5112 | - 10 | 3.5184 | - 20 | 306 | | 180 | 3.5022 | 5 | 3.5040 | 3 | 3.5102 | - 6 | 3.5164 | - 13 | 324 | | 190 | 3.5027 | 7 | 3.5043 | 5 | 3.5096 | - 1 | 3.5151 | - 8 | 342 | | 200 | 3.5034 | 9 | 3.5048 | 8 | 3.5095 | 3 | 3.5143 | - 4 | 360 | | 210 | 3.5043 | 14 | 3.5056 | 12 | 3.5098 | 8 | 3.5139 | 4 | 378 | | 220 | 3.5057 | 17 | 3.5068 | 16 | 3.5106 | 11 | 3.5143 | 8 | 396 | | 230 | 3.5074 | 22 | 3.5084 | 21 | 3.5117 | 18 | 3.5151 | 15 | 414 | | 240 | 3.5096 | 27 | 3.5105 | 26 | 3.5135 | 24 | 3.5166 | 20 | 432 | | 250 | 3.5123 | 33 | 3.5131 | 32 | 3.5159 | 29 | 3.5186 | 27 | 450 | | 260 | 3.5156 | 38 | 3.5163 | 38 | 3.5188 | 36 | 3.5213 | 33 | 468 | | 270 | 3.5194 | 45 | 3.5201 | 44 | 3.5224 | 42 | 3.5246 | 40 | 486 | | 280 | 3.5239 | 50 | 3.5245 | 49 | 3.5266 | 47 | 3.5286 | 47 | 504 | | 290 | 3.5289 | 56 | 3.5294 | 56 | 3.5313 | 55 | 3.5333 | 52 | 522 | | 300 | 3.5345 | 63 | 3.5350 | 63 | 3.5368 | 61 | 3.5385 | 61 | 540 | | 310 | 3.5408 | 69 | 3.5413 | 68 | 3.5429 | 67 | 3.5446 | 66 | 558 | | 320 | 3.5477 | 75 | 3.5481 | 75 | 3.5496 | 74 | 3.5512 | 73 | 576 | | 330 | 3.5552 | 79 | 3.5556 | 79 | 3.5570 | 78 | 3.5585 | 77 | 594 | | 340 | 3.5631 | 86 | 3.5635 | 86 | 3.5648 | 86 | 3.5662 | 84 | 612 | | 350 | 3.5717 | 90 | 3.5721 | 90 | 3.5734 | 89 | 3.5746 | 88 | 630 | | 360 | 3.5807 | 95 | 3.5811 | 95 | 3.5823 | 94 | 3.5834 | 94 | 648 | | 370 | 3.5902 | 100 | 3.5906 | 99 | 3.5917 | 98 | 3.5928 | 98 | 666 | | 380 | 3.6002 | 103 | 3.6005 | 103 | 3.6015 | 103 | 3.6026 | 101 | 684 | | 390 | 3.6105 | 107 | 3.6108 | 107 | 3.6118 | 106 | 3.6127 | 107 | 702 | | 400 | 3.6212 | 110 | 3.6215 | 110 | 3.6224 | 110 | 3.6234 | 108 | 720 | | 410 | 3.6322 | 113 | 3.6325 | 113 | 3.6334 | 112 | 3.6342 | 112 | 738 | | 420 | 3.6435 | 115 | 3.6438 | 115 | 3.6446 | 115 | 3.6454 | 114 | 756 | | 430 | 3.6550 | 118 | 3.6553 | 117 | 3.6561 | 117 | 3.6568 | 117 | 774 | | 440 | 3.6668 | 119 | 3.6670 | 119 | 3.6678 | 118 | 3.6685 | 119 | 792 | | 450 | 3.6787 | 120 | 3.6789 | 120 | 3.6796 | 120 | 3.6804 | 118 | 810 | | 460 | 3.6907 | 122 | 3.6909 | 122 | 3.6916 | 121 | 3.6922 | 122 | 828 | | 470 | 3.7029 | 122 | 3.7031 | 122 | 3.7037 | 122 | 3.7044 | 121 | 846 | | 480 | 3.7151 | 123 | 3.7153 | 123 | 3.7159 | 123 | 3.7165 | 122 | 864 | | 490 | 3.7274 | 122 | 3.7276 | 122 | 3.7282 | 122 | 3.7287 | 122 | 882 | | 500 | 3.7396 | 124 | 3.7398 | 124 | 3.7404 | 123 | 3.7409 | 124 | 900 | | 510 | 3.7520 | 123 | 3.7522 | 123 | 3.7527 | 123 | 3.7533 | 122 | 918 | | 520 | 3.7643 | 122 | 3.7645 | 122 | 3.7650 | 122 | 3.7655 | 121 | 936 | | 530 | 3.7765 | 122 | 3.7767 | 122 | 3.7772 | 122 | 3.7776 | 122 | 954 | | 540 | 3.7887 | 121 | 3.7889 | 121 | 3.7894 | 120 | 3.7898 | 121 | 972 | | 550 | 3.8008 | 121 | 3.8010 | 120 | 3.8014 | 120 | 3.8019 | 120 | 990 | | 560 | 3.8129 | 119 | 3.8130 | 119 | 3.8134 | 119 | 3.8139 | 119 | 1008 | | 570 | 3.8248 | 118 | 3.8249 | 118 | 3.8253 | 118 | 3.8258 | 117 | 1026 | | 580 | 3.8366 | 117 | 3.8367 | 117 | 3.8371 | 117 | 3.8375 | 117 | 1044 | | 590 | 3.8483 | 116 | 3.8484 | 116 | 3.8488 | 116 | 3.8492 | 115 | 1062 | | 600 | 3.8599 | 114 | 3.8600 | 114 | 3.8604 | 114 | 3.8607 | 114 | 1080 | | 610 | 3.8713 | 113 | 3.8714 | 113 | 3.8718 | 112 | 3.8721 | 113 | 1098 | | 620 | 3.8826 | 111 | 3.8827 | 111 | 3.8830 | 111 | 3.8834 | 111 | 1116 | | 630 | 3.8937 | 110 | 3.8938 | 110 | 3.8941 | 110 | 3.8945 | 110 | 1134 | | 640 | 3.9047 | 108 | 3.9048 | 108 | 3.9051 | 108 | 3.9055 | 107 | 1152 | | 650 | 3.9155 | 107 | 3.9156 | 107 | 3.9159 | 107 | 3.9162 | 107 | 1170 | | 660 | 3.9262 | 105 | 3.9263 | 105 | 3.9266 | 105 | 3.9269 | 105 | 1188 | | 670 | 3.9367 | 103 | 3.9368 | 103 | 3,9371 | 103 | 3.9374 | 102 | 1206 | | 680 | 3.9470 | 101 | 3.9471 | 101 | 3.9474 | 101 | 3.9476 | 101 | 1224 | | 690 | 3.9571 | 101 | 3.9572 | 101 | 3.9575 | 101 | 3.9577 | 101 | 1242 | | 700 | 3,9672 | | 3.9673 | | 3.9676 | | 3.9678 | | 1260 | Table 8-3. SPECIFIC HEAT OF OXYGEN - Cont. | °K | .01 | atm | .1 | atm | .4 | atm | .7 | atm | °R | |--------------------------------------
--|---------------------------------|--|---------------------------------|--|---------------------------------|--|---------------------------------|--------------------------------------| | 700
710
720
730
740 | 3.9672
3.9770
3.9866
3.9961
4.0054 | 98
96
95
93
91 | 3.9673
3.9771
3.9866
3.9962
4.0055 | 98
95
96
93
91 | 3.9676
3.9773
3.9869
3.9964
4.0057 | 97
96
95
93
91 | 3.9678
3.9776
3.9871
3.9967
4.0060 | 98
95
96
93
90 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | 4 0145
4.0235
4.0323
4.0409
4.0494 | 90
88
86
85
83 | 4.0146
4.0236
4.0323
4.0410
4.0495 | 90
87
87
85
83 | 4.0148
4.0238
4.0325
4.0412
4.0497 | 90
87
87
85
82 | 4.0150
4.0240
4.0328
4.0414
4.0499 | 90
88
86
85
82 | 1350
1368
1386
1404
1422 | | 800
850
900
950
1000 | 4.0577
4.0970
4.1327
4.1652
4.1948 | 393
357
325
296
271 | 4.0578
4.0971
4.1327
4.1652
4.1948 | 393
356
25
296
271 | 4.0580
4.0972
4.1329
4.1653
4.1949 | 392
357
324
296
271 | 4.0581
4.0974
4.1330
4.1655
4.1951 | 393
356
325
296
270 | 1440
1530
1620
1710
1800 | | 1050
1100
1150
1200
1250 | 4.2219
4.2469
4.2698
4.2912
4.3112 | 250
229
214
200
188 | 4.2219
4.2469
4.2698
4.2912
4.3112 | 250
229
214
200
188 | 4,2220
4,2470
4,2699
4,2913
4,3113 | 250
229
214
200
188 | 4.2221
4.2471
4.2700
4.2914
4.3113 | 250
229
214
199
188 | 1890
1980
2070
2160
2250 | | 1300
1350
1400
1450
1500 | 4,3300
4,3479
4,3651
4,3815
4,3975 | 179
172
164
160
155 | 4.3300
4.3479
4.3651
4.3815
4.3975 | 179
172
164
160
155 | 4.3301
4.3480
4.3652
4.3816
4.3975 | 179
172
164
159
155 | 4.3301
4.3480
4.3652
4.3816
4.3976 | 179
172
164
160
155 | 2340
2430
2520
2610
2700 | | 1600
1650
1700
1750 | 4.4130
4.4282
4.4431
4.4578
4.4724 | 152
149
147
146
144 | 4.4130
4.4282
4.4431
4.4578
4.4724 | 152
149
147
146
144 | 4.4130
4.4282
4.4431
4.4578
4.4724 | 152
149
147
146
144 | 4.4131
4.4283
4.4432
4.4579
4.4725 | 152
149
147
146
144 | 2790
2880
2970
3060
3150 | | 1850
1900
1950
2000 | 4.5011
4.5153
4.5295
4.5436 | 143
142
142
141
140 | 4.5011
4.5153
4.5295
4.5436 | 143
142
142
141
140 | 4.5011
4.5153
4.5295
4.5436 | 143
142
142
141
140 | 4.5012
4.5154
4.5296
4.5437 | 143
142
142
141
140 | 3330
3420
3510
3600 | | 2100
2150
2200
2250
2300 | 4.5715
4.5854
4.5993
4.6130 | 139
139
137
137 | 4.5715
4.5854
4.5993
4.6130 | 139
139
137
137 | 4.5715
4.5854
4.5993
4.6130 | 139
139
137
137 | 4.5716
4.5855
4.5993
4.6130 | 139
138
137
138 | 3780
3870
3960
4050 | | 2350
2400
2450
2500 | 4.6404
4.6540
4.6674
4.6808
4.6940 | 136
134
134
132 | 4.6404
4.6540
4.6674
4.6808 | 136
134
134
132 | 4.6404
4.6540
4.6674
4.6808 | 136
134
134
132 | 4.6404
4.6540
4.6674
4.6808 | 136
134
134
132 | 4230
4320
4410
4500 | | 2600
2650
2700
2750
2800 | 4.7071
4.7200
4.7328
4.7454
4.7579 | 129
128
126
125 | 4.7071
4.7200
4.7328
4.7454
4.7579 | 129
128
126
125 | 4.7071
4.7200
4.7328
4.7454
4.7579 | 129
128
126
125 | 4.7071
4.7200
4.7328
4.7454 | 129
128
126
125 | 4680
4770
4860
4950 | | 2850
2900
2950
3000 | 4.7703
4.7824
4.7944
4.8062 | 121
120
118 | 4.7703
4.7824
4.7944
4.8062 | 121
120
118 | 4.7703
4.7824
4.7944
4.8062 | 121
120
118 | 4.7703
4.7824
4.7944
4.8062 | 124
121
120
118 | 5130
5220
5310
5400 | | °K | ı | atm | 4 | atm | 7 | atm | 10 | atm | *R | |---------------------------------|--|---------------------------------|--|---------------------------------|--|-------------------------|--|-------------------------------|--------------------------------------| | 120
130
140 | 3.566
3.5513
3.5419 | -15
- 94
- 72 | 3.684 | - 38 | | | | | 216
234
252 | | 150 | 3.5347 | - 52 | 3.6461 | -255 | 3.781 | -56 | 3.951 | -104 | 270 | | 160 | 3.5295 | - 39 | 3.6206 | -188 | 3.7252 | -389 | 3.847 | - 67 | 288 | | 170 | 3.5256 | - 30 | 3.6018 | -143 | 3.6863 | -284 | 3.780 | - 46 | 306 | | 180 | 3.5226 | - 21 | 3.5875 | -109 | 3.6579 | -216 | 3.7343 | - 342 | 324 | | 190 | 3.5205 | - 15 | 3.5766 | - 85 | 3.6363 | -167 | 3.7001 | - 262 | 342 | | 200 | 3.5190 | - 8 | 3.5681 | - 68 | 3.6196 | -132 | 3.6739 | 205 | 360 | | 210 | 3.6182 | - 1 | 3.5613 | - 48 | 3.6064 | -102 | 3.6534 | 160 | 378 | | 220 | 3.5181 | 4 | 3.5565 | - 39 | 3.5962 | - 80 | 3.6374 | 128 | 396 | | 230 | 3.5185 | 11 | 3.5526 | - 22 | 3.5882 | - 61 | 3.6246 | 100 | 414 | | 240 | 3.5196 | 18 | 3.5504 | - 16 | 3.5821 | - 43 | 3.6146 | 75 | 432 | | 250 | 3.5214 | 24 | 3.5488 | 3 | 3.5778 | - 27 | 3.6071 | 55 | 450 | | 260 | 3.5238 | 31 | 3.5491 | 10 | 3.5751 | - 15 | 3.6016 | 39 | 468 | | 270 | 3.5269 | 38 | 3.5501 | 19 | 3.5736 | - 1 | 3.5977 | 22 | 486 | | 280 | 3.5307 | 45 | 3.5520 | 27 | 3.5735 | 10 | 3.5955 | 8 | 504 | | 290 | 3.5352 | 51 | 3.5547 | 37 | 3.5745 | 21 | 3.5947 | 4 | 522 | | 300 | 3.5403 | 59 | 3.5584 | 45 | 3.5766 | 31 | 3.5951 | 17 | 540 | | 310 | 3.5462 | 65 | 3.5629 | 52 | 3.5797 | 41 | 3.5968 | 28 | 558 | | 320 | 3.5527 | 72 | 3.5681 | 61 | 3.5838 | 49 | 3.5996 | 39 | 576 | | 330 | 3.5599 | 76 | 3.5742 | 68 | 3.5887 | 58 | 3.6035 | 47 | 594 | | 340 | 3.5675 | 84 | 3.5810 | 74 | 3.5945 | 65 | 3.6082 | 56 | 612 | | 350 | 3.5759 | 87 | 3.5884 | 80 | 3.6010 | 72 | 3.6138 | 63 | 630 | | 360 | 3.5846 | 93 | 3.5964 | 85 | 3.6082 | 78 | 3.6201 | 70 | 648 | | 370 | 3.5939 | 97 | 3.6049 | 91 | 3.6160 | 84 | 3.6271 | 78 | 666 | | 380 | 3.6036 | 101 | 3.6140 | 95 | 3.6244 | 89 | 3.6349 | 83 | 684 | | 390 | 3.6137 | 106 | 3.6235 | 100 | 3.6333 | 94 | 3.6432 | 88 | 702 | | 400 | 3.6243 | 108 | 3.6335 | 103 | 3.6427 | 99 | 3.6520 | 94 | 720 | | 410 | 3.6351 | 111 | 3.6438 | 107 | 3.6526 | 102 | 3.6614 | 96 | 738 | | 420 | 3.6462 | 114 | 3.6545 | 109 | 3.6628 | 104 | 3.6710 | 101 | 756 | | 430 | 3.6576 | 117 | 3.6654 | 113 | 3.6732 | 109 | 3.6811 | 105 | 774 | | 440 | 3.6693 | 118 | 3.6767 | 114 | 3.6841 | 110 | 3.6916 | 106 | 792 | | 450 | 3.6811 | 118 | 3.6881 | 115 | 3.6951 | 112 | 3.7022 | 108 | 810 | | 460 | 3.6929 | 121 | 3.6996 | 118 | 3.7063 | 115 | 3.7130 | 112 | 828 | | 470 | 3.7050 | 121 | 3.7114 | 118 | 3.7178 | 115 | 3.7242 | 112 | 846 | | 480 | 3.7171 | 122 | 3.7232 | 120 | 3.7293 | 117 | 3.7354 | 114 | 864 | | 490 | 3.7293 | 122 | 3.7352 | 118 | 3.7410 | 116 | 3.7468 | 114 | 882 | | 500 | 3.7415 | 123 | 3.7470 | 121 | 3.7526 | 118 | 3.7582 | 115 | 900 | | 510 | 3.7538 | 122 | 3.7591 | 120 | 3.7644 | 118 | 3.7697 | 115 | 918 | | 520 | 3.7660 | 121 | 3.7711 | 119 | 3.7762 | 117 | 3.7812 | 115 | 936 | | 530 | 3.7781 | 122 | 3.7830 | 119 | 3.7879 | 117 | 3.7927 | 116 | 954 | | 540 | 3.7903 | 120 | 3.7949 | 119 | 3.7996 | 117 | 3.8043 | 114 | 972 | | 550 | 3.8023 | 120 | 3.8068 | 118 | 3.8113 | 116 | 3.8157 | 115 | 990 | | 560 | 3.8143 | 119 | 3.8186 | 117 | 3.8229 | 115 | 3.8272 | 114 | 1008 | | 570 | 3.8262 | 117 | 3.8303 | 116 | 3.8344 | 115 | 3.8386 | 113 | 1026 | | 580 | 3.8379 | 117 | 3.8419 | 115 | 3.8459 | 113 | 3.8499 | 112 | 1044 | | 590 | 3.8496 | 115 | 3.8534 | 114 | 3.8572 | 113 | 3.8611 | 111 | 1062 | | 600 | 3.8611 | 114 | 3.8648 | 112 | 3.8685 | 111 | 3.8722 | 109 | 1080 | | 610 | 3.8725 | 112 | 3.8760 | 112 | 3.8796 | 110 | 3.8831 | 109 | 1098 | | 620 | 3.8837 | 111 | 3.8872 | 109 | 3.8906 | 108 | 3.8940 | 107 | 1116 | | 630 | 3.8948 | 110 | 3.8981 | 108 | 3.9014 | 107 | 3.9047 | 106 | 1134 | | 640 | 3.9058 | 107 | 3.9089 | 107 | 3.9121 | 106 | 3.9153 | 104 | 1152 | | 650
660
670
680
690 | 3.9165
3.9272
3.9377
3.9479
3.9580 | 107
105
102
101
101 | 3.9196
3.9302
3.9405
3.9507
3.9607 | 106
103
102
100
100 | 3.9227
3.9331
3.9434
3.9535
3.9634 | 104
103
101
99 | 3.9257
3.9361
3.9463
3.9563
3.9661 | 104
102
100
98
98 | 1170
1188
1206
1224
1242 | | 70 0 | 3.9681 | | 3.9707 | | 3.9733 | • | 3.9759 | ,, | 1260 | | °K | 1 | atm | 4 | atm | 7 at | łm | 10 | atm | *R | |--|--|----------------------------------|--|----------------------------|--|----------------------------|--|----------------------------|--------------------------------------| | 700
710
720
730 | 3.9681
3.9778
3.9874
3.9969 | 97
96
95
93 | 3.9707
3.9804
3.9899
3.9993 | 97
95
94
92
90 | 3.9733
3.9829
3.9923
4.0016
4.0108 | 96
94
93
92
89 | 3.9759
3.9854
3.9948
4.0040
4.0131 | 95
94
92
91
88 |
1260
1278
1296
1314
1332 | | 740
750
760
770
780
790 | 4.0062
4.0152
4.0242
4.0330
4.0416
4.0501 | 90
90
88
86
85
82 | 4.0085
4.0175
4.0264
4.0351
4.0436
4.0520 | 89
87
85
84
83 | 4.0197
4.0286
4.0372
4.0457
4.0540 | 89
86
85
83
82 | 4.0219
4.0307
4.0393
4.0477
4.0560 | 88
86
84
83
81 | 1350
1368
1386
1404
1422 | | 800 | 4.0583 | 393 | 4.0603 | 389 | 4.0622 | 387 | 4.0641 | 385 | 1440 | | 850 | 4.0976 | 356 | 4.0992 | 355 | 4.1009 | 352 | 4.1026 | 350 | 1530 | | 900 | 4.1332 | 324 | 4.1347 | 322 | 4.1361 | 321 | 4.1376 | 320 | 1620 | | 950 | 4.1656 | 296 | 4.1669 | 295 | 4.1682 | 293 | 4.1696 | 291 | 1710 | | 1000 | 4.1952 | 270 | 4.1964 | 269 | 4.1975 | 268 | 4.1987 | 267 | 1800 | | 1050 | 4.2222 | 250 | 4.2233 | 248 | 4.2243 | 248 | 4.2254 | 246 | 1890 | | 1100 | 4.2472 | 229 | 4.2481 | 228 | 4.2491 | 227 | 4.2500 | 226 | 1980 | | 1150 | 4.2701 | 214 | 4.2709 | 213 | 4.2718 | 212 | 4.2726 | 211 | 2070 | | 1200 | 4.2915 | 199 | 4.2922 | 199 | 4.2930 | 198 | 4.2937 | 198 | 2160 | | 1250 | 4.3114 | 188 | 4.3121 | 187 | 4.3128 | 187 | 4.3135 | 186 | 2250 | | 1300 | 4.3302 | 179 | 4.3308 | 179 | 4.3315 | 177 | 4.3321 | 177 | 2340 | | 1350 | 4.3481 | 172 | 4.3487 | 171 | 4.3492 | 171 | 4.3498 | 171 | 2430 | | 1400 | 4.3653 | 164 | 4.3658 | 163 | 4.3663 | 163 | 4.3669 | 162 | 2520 | | 1450 | 4.3817 | 159 | 4.3821 | 160 | 4.3826 | 159 | 4.3831 | 159 | 2610 | | 1500 | 4.3976 | 155 | 4.3981 | 155 | 4.3985 | 155 | 4.3990 | 154 | 2700 | | 1550 | 4.4131 | 152 | 4.4136 | 151 | 4.4140 | 151 | 4.4144 | 151 | 2790 | | 1600 | 4.4283 | 149 | 4.4287 | 149 | 4.4291 | 148 | 4.4295 | 148 | 2880 | | 1650 | 4.4432 | 147 | 4.4436 | 146 | 4.4439 | 147 | 4.4443 | 146 | 2970 | | 1700 | 4.4579 | 146 | 4.4582 | 146 | 4.4586 | 145 | 4.4589 | 145 | 3060 | | 1750 | 4.4725 | 144 | 4.4728 | 144 | 4.4731 | 144 | 4.4734 | 144 | 3150 | | 1800 | 4.4869 | 143 | 4.4872 | 143 | 4.4875 | 142 | 4.4878 | 142 | 3240 | | 1850 | 4.5012 | 142 | 4.5015 | 141 | 4.5017 | 142 | 4.5020 | 141 | 3330 | | 1900 | 4.5154 | 142 | 4.5156 | 142 | 4.5159 | 141 | 4.5161 | 142 | 3420 | | 1950 | 4.5296 | 141 | 4.5298 | 141 | 4.5300 | 141 | 4.5303 | 140 | 3510 | | 2000 | 4.5437 | 140 | 4.5439 | 140 | 4.5441 | 140 | 4.5443 | 140 | 3600 | | 2050 | 4.5577 | 139 | 4.5579 | 138 | 4.5581 | 138 | 4.5583 | 138 | 3690 | | 2100 | 4.5716 | 139 | 4.5717 | 139 | 4.5719 | 139 | 4.5721 | 139 | 3780 | | 2150 | 4.5855 | 138 | 4.5856 | 139 | 4.5858 | 139 | 4.5860 | 139 | 3870 | | 2200 | 4.5993 | 137 | 4.5995 | 137 | 4.5997 | 137 | 4.5999 | 136 | 3960 | | 2250 | 4.6130 | 138 | 4.6132 | 137 | 4.6134 | 137 | 4.6135 | 137 | 4050 | | 2300 | 4.6268 | 136 | 4.6269 | 137 | 4.6271 | 136 | 4.6272 | 137 | 4140 | | 2350 | 4.6404 | 136 | 4.6406 | 136 | 4.6407 | 136 | 4.6409 | 135 | 4230 | | 2400 | 4.6540 | 134 | 4.6542 | 134 | 4.6543 | 134 | 4.6544 | 134 | 4320 | | 2450 | 4.6674 | 134 | 4.6676 | 134 | 4.6677 | 134 | 4.6678 | 134 | 4410 | | 2500 | 4.6808 | 132 | 4.6810 | 132 | 4.6811 | 132 | 4.6812 | 132 | 4500 | | 2550 | 4.6940 | 131 | 4.6942 | 130 | 4.6943 | 130 | 4.6944 | 130 | 4590 | | 2600 | 4.7071 | 129 | 4.7072 | 129 | 4.7073 | 129 | 4.7074 | 129 | 4680 | | 2650 | 4.7200 | 128 | 4.7201 | 128 | 4.7202 | 128 | 4.7203 | 128 | 4770 | | 2700 | 4.7328 | 126 | 4.7329 | 126 | 4.7330 | 126 | 4.7331 | 126 | 4860 | | 2750 | 4.7454 | 125 | 4.7455 | 125 | 4.7456 | 125 | 4.7457 | 125 | 4950 | | 2800
2850
2900
2950
3000 | 4.7579
4.7703
4.7824
4.7944
4.8062 | 124
121
120
118 | 4.7580
4.7704
4.7825
4.7945
4.8063 | 124
121
120
118 | 4.7581
4.7705
4.7826
4.7946
4.8064 | 124
121
120
118 | 4.7582
4.7706
4.7826
4.7946
4.8064 | 124
120
120
118 | 5040
5130
5220
5310
5400 | | | | | | | | | | | Op/ I | |---------------------------------|--|--|--|----------------------------|---|---------------------------|---|--------------------------|---------------------------------| | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | °R | | 150
160
170
180
190 | 3.951
3.847
3.780
3.7343
3.7001 | -104
- 67
- 46
- 342
- 262 | 5.7
5.03
4.65 | -7
-38
-23 | 6.5 | -8 | | | 270
288
306
324
342 | | 200 | 3.6739 | - 205 | 4.415 | -162 | 5.66 | -50 | 7.6 | -11 | 360 | | 210 | 3.6534 | - 160 | 4.253 | -116 | 5.16 | -33 | 6.48 | - 72 | 378 | | 220 | 3.6374 | - 128 | 4.137 | - 88 | 4.831 | -237 | 5.76 | - 49 | 396 | | 230 | 3.6246 | - 100 | 4.049 | - 67 | 4.594 | -168 | 5.27 | - 32 | 414 | | 240 | 3.6146 | - 75 | 3.982 | - 52 | 4.426 | -125 | 4.95 | - 24 | 432 | | 250 | 3.6071 | - 55 | 3.9296 | - 422 | 4.301 | - 97 | 4.710 | - 173 | 450 | | 260 | 3.6016 | - 39 | 3.8874 | - 339 | 4.204 | - 75 | 4.537 | - 130 | 468 | | 270 | 3.5977 | - 22 | 3.8535 | - 272 | 4.129 | - 60 | 4.407 | - 100 | 486 | | 280 | 3.5955 | - 8 | 3.8263 | - 222 | 4.069 | - 49 | 4.307 | - 78 | 504 | | 290 | 3.5947 | 4 | 3.8041 | - 179 | 4.020 | - 39 | 4.229 | - 64 | 522 | | 300 | 3.5951 | 17 | 3.7862 | - 141 | 3.981 | - 32 | 4.165 | - 52 | 540 | | 310 | 3.5968 | 28 | 3.7721 | - 111 | 3.949 | - 26 | 4.113 | - 41 | 558 | | 320 | 3.5996 | 39 | 3.7610 | - 84 | 3.923 | - 22 | 4.072 | - 34 | 576 | | 330 | 3.6035 | 47 | 3.7526 | - 60 | 3.901 | - 17 | 4.038 | - 29 | 594 | | 340 | 3.6082 | 56 | 3.7466 | - 41 | 3.884 | - 15 | 4.009 | - 23 | 612 | | 350 | 3.6138 | 63 | 3.7425 | - 22 | 3.869 | - 11 | 3.986 | - 19 | 630 | | 360 | 3.6201 | 70 | 3.7403 | - 7 | 3.858 | 8 | 3.967 | - 15 | 648 | | 370 | 3.6271 | 78 | 3.7396 | 8 | 3.850 | 6 | 3.952 | - 13 | 666 | | 380 | 3.6349 | 83 | 3.7404 | 18 | 3.844 | 5 | 3.939 | - 10 | 684 | | 390 | 3.6432 | 88 | 3.7422 | 31 | 3.839 | 3 | 3.929 | - 8 | 702 | | 400
410
420
430
440 | 3.6520
3.6614
3.6710
3.6811
3.6916 | 94
96
101
105
106 | 3.7453
3.7493
3.7540
3.7596
3.7660 | 40
47
56
64
69 | 3.836
3.835
3.835
3.837
3.839 | - 1
2
2
3 | 3.921
3.916
3.911
3.909
3.908 | - 5
- 5
- 2
- 1 | 720
738
756
774
792 | | 450
460
470
480
490 | 3.7022
3.7130
3.7242
3.7354
3.7468 | 108
112
112
114
114 | 3.7729
3.7802
3.7881
3.7962
3.8048 | 73
79
81
86
86 | 3.842
3.8458
3.8505
3.8558
3.8615 | 4
47
53
57
62 | 3.908
3.908
3.910
3.913
3.916 | 2
3
3
4 | 810
828
846
864
882 | | 500 | 3.7582 | 115 | 3.8134 | 91 | 3.8677 | 67 | 3.920 | 4 | 900 | | 510 | 3.7697 | 115 | 3.8225 | 93 | 3.8744 | 70 | 3.924 | 5 | 918 | | 520 | 3.7812 | 115 | 3.8318 | 93 | 3.8814 | 72 | 3.929 | 5 | 936 | | 530 | 3.7927 | 116 | 3.8411 | 96 | 3.8886 | 76 | 3.934 | 6 | 954 | | 540 | 3.8043 | 114 | 3.8507 | 95 | 3.8962 | 76 | 3.940 | 6 | 972 | | 550 | 3.8157 | 115 | 3.8602 | 97 | 3.9038 | 80 | 3.946 | 6 | 990 | | 560 | 3.8272 | 114 | 3.8699 | 97 | 3.9118 | 80 | 3.952 | 8 | 1008 | | 570 | 3.8386 | 113 | 3.8796 | 96 | 3.9198 | 82 | 3.960 | 7 | 1026 | | 580 | 3.8499 | 112 | 3.8892 | 97 | 3.9280 | 82 | 3.967 | 6 | 1044 | | 590 | 3.8611 | 111 | 3.8989 | 98 | 3.9362 | 83 | 3.973 | 7 | 1062 | | 600 | 3.8722 | 109 | 3.9087 | 96 | 3.9445 | 83 | 3.980 | 6 | 1080 | | 610 | 3.8831 | 109 | 3.9183 | 95 | 3.9528 | 83 | 3.986 | 8 | 1098 | | 620 | 3.8940 | 107 | 3.9278 | 96 | 3.9611 | 83 | 3.994 | 7 | 1116 | | 630 | 3.9047 | 106 | 3.9374 | 94 | 3.9694 | 84 | 4.001 | 8 | 1134 | | 640 | 3.9153 | 104 | 3.9468 | 94 | 3.9778 | 83 | 4.009 | 7 | 1152 | | 650 | 3.9257 | 104 | 3.9562 | 93 | 3.9861 | 83 | 4.016 | 8 | 1170 | | 660 | 3.9361 | 102 | 3.9655 | 92 | 3.9944 | 82 | 4.024 | 7 | 1188 | | 670 | 3.9463 | 100 | 3.9747 | 90 | 4.0026 | 81 | 4.031 | 7 | 1206 | | 680 | 3.9563 | 98 | 3.9837 | 89 | 4.0107 | 80 | 4.038 | 7 | 1224 | | 690 | 3.9661 | 98 | 3.9926 | 90 | 4.0187 | 79 | 4.045 | 7 | 1242 | | 700 | 3.9759 | 95 | 4.0016 | 87 | 4.0266 | 78 | 4.052 | 7 | 1260 | | 710 | 3.9854 | 94 | 4.0103 | 85 | 4.0344 | 78 | 4.059 | 7 | 1278 | | 720 | 3.9948 | 92 | 4.0188 | 85 | 4.0422 | 78 | 4.066 | 7 | 1296 | | 730 | 4.0040 | 91 | 4.0273 | 84 | 4.0500 | 76 | 4.073 | 7 | 1314 | | 740 | 4.0131 | 88 | 4.0357 | 82 | 4.0576 | 75 | 4.080 | 6 | 1332 | | 750 | 4.0219 | | 4.0439 | | 4.0651 | | 4.086 | | 1350 | | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | *R | |--------------|------------------|------------|------------------|------------|------------------|------------|----------------|----------|--------------| | | | | | | | | | | | | 750 | 4.0219 | 88 | 4.0439 | 81 | 4.0651 | 75 | 4.086 | 8 | 1350 | | 760 | 4.0307 | 86 | 4.0520 | 80 | 4.0726 | 74 | 4.094 | 7 | 1368 | | 770 | 4.0393 | 84 | 4.0600 | 77 | 4.0800 | 72 | 4,101 | . 6 | 1386 | | 780 | 4.0477 | 83 | 4.0677 | 78 | 4.0872 | 71 | 4.107 | 7 | 1404 | | 790 | 4.0560 | 81 | 4.0755 | 75 | 4.0943 | 74 | 4.114 | 6 | 1422 | | 800 | 4.0641 | 385 | 4.0830 | 360 | 4.1017 | 337 | 4.120 | . 31 | 1440 | | 850 | 4.1026 | 350 | 4.1190 | 331 | 4.1354 | 310 | 4.151 | 29 | 1530 | | 900 | 4.1376 | 320 | 4.1521 | 302 | 4.1664 | 286 | 4.180 | 27 | 1620 | | 950 | 4.1696 | 291 | 4.1823 | 278 | 4.1950 | 263 | 4.207 | 25 | 1710 | | 1000 | 4.1987 | 267 | 4.2101 | 254 | 4.2213 | 242 | 4.232 | 23 | 1800 | | 1050 | 4,2254 | 246 | 4.2355 | 236 | 4.2455 | 226 | 4.255 | 22 | 1890 | | 1100 | 4.2500 | 226 | 4.2591 | 217 | 4.2681 | 208 | 4.277 | 20 | 1980 | | 1150 | 4.2726 | 211 | 4.2808 | 204 | 4.2889 | 196 | 4.297 | 19 | 2070 | | 1200 | 4.2937 | 198 | 4.3012 | 190 | 4.3085 | 185 | 4.316 | 18 | 2160 | | 1250 | 4.3135 | 186 | 4.3202 | 180 | 4.3270 | 172 | 4.334 | 16 | 2250 | | 1300 | 4,3321 | 177 | 4,3382 | 173 | 4.3442 | 166 | 4.350 | 16 | 2340 | | 1350 | 4.3498 | 171 | 4.3555 | 166 |
4.3608 | 163 | 4.366 | 16 | 2430 | | 1400 | 4.3669 | 162 | 4.3721 | 158 | 4.3771 | 154 | 4.382 | 15 | 2520 | | 1450 | 4.3831 | 159 | 4.3879 | 155 | 4.3925 | 151 | 4.397 | 15 | 2610 | | 1500 | 4.3990 | 154 | 4.4034 | 150 | 4.4076 | 148 | 4.412 | 14 | 2700 | | | | 154 | - | | | | | | | | 1550 | 4.4144 | 151 | 4.4184 | 148 | 4.4224 | 145 | 4.426 | 14 | 2790
2880 | | 1600 | 4.4295 | 148 | 4.4332 | 145 | 4.4369 | 142 | 4.440 | 14 | | | 1650 | 4.4443 | 146 | 4.4477 | 144 | 4.4511 | 141 | 4.454 | 14 | 2970
3060 | | 1700 | 4.4589 | 145 | 4.4621 | 143 | 4.4652 | 142 | 4.468 | 14 | | | 1750 | 4.4734 | 144 | 4.4764 | 141 | 4.4794 | 139 | 4.482 | 14 | 3150 | | 1800 | 4.4878 | 142 | 4.4905 | 142 | 4.4933 | 138 | 4.496 | 14 | 3240 | | 1850 | 4.5020 | 141 | 4.5047 | 138 | 4.5071 | 138 | 4.510 | 13 | 3330 | | 1900 | 4.5161 | 142 | 4.5185 | 140 | 4.5209 | 138 | 4.523 | 14 | 3420 | | 1950 | 4.5303 | 140 | 4.5325 | 1.39 | 4.5347 | 138 | 4.537 | 14 | 3510 | | 2000 | 4.5443 | 140 | 4.5464 | 138 | 4.5485 | 137 | 4.551 | 13 | 3600 | | 2050 | 4,5583 | 138 | 4.5602 | 137 | 4.5622 | 136 | 4.564 | 14 | 3690 | | 2100 | 4.5721 | 139 | 4.5739 | 139 | 4.5758 | 138 | 4.578 | 13 | 3780 | | 2150 | 4.5860 | 139 | 4.5878 | 138 | 4.5896 | 136 | 4,591 | 14 | 3870 | | 2200 | 4.5999 | 136 | 4.6016 | 135 | 4.6032 | 134 | 4.605 | 13 | 3960 | | 2250 | 4.6135 | 137 | 4.6151 | 136 | 4.6166 | 135 | 4.618 | 13 | 4050 | | 2300 | 4.6272 | 137 | 4.6287 | 136 | 4.6301 | 135 | 4.631 | 14 | 4140 | | 2350 | 4.6409 | 135 | 4.6423 | 135 | 4.6436 | 134 | 4.645 | 13 | 4230 | | 2400 | 4.6544 | 134 | 4.6558 | 133 | 4.6570 | 132 | 4.658 | 13 | 4320 | | 2450 | 4.6678 | 134 | 4.6691 | 133 | 4.6702 | 133 | 4.671 | 14 | 4410 | | 2500 | 4.6812 | 132 | 4.6824 | 131 | 4.6835 | 130 | 4.685 | 13 | 4500 | | 2550 | 4.6944 | 130 | 4.6955 | 130 | 4.6965 | 130 | 4.698 | 12 | 4590 | | 2600 | 4.7074 | 129 | 4.7085 | 128 | 4.7095 | 127 | 4.710 | 15 | 4680
4770 | | 2650 | 4.7203 | 128 | 4.7213 | 128 | 4.7222 | 127 | 4.723 | 13 | 4770 | | 2700
2750 | 4.7331
4.7457 | 126
125 | 4.7341
4.7466 | 125
124 | 4.7349
4.7474 | 125
124 | 4.736
4.748 | 12
13 | 4950 | | | | | 4,7590 | 124 | 4.7598 | 123 | 4.761 | 12 | 5040 | | 2800 | 4.7582 | 124 | 4.7714 | | 4.7721 | 120 | 4.773 | 12 | 5130 | | 2850 | 4.7706 | 120 | | 120
120 | 4.77841 | 119 | 4.785 | 12 | 5220 | | 2900 | 4.7826 | 120 | 4.7834
4.7954 | | 4.7960 | 117 | 4.797 | 11 | 5310 | | 2950 | 4.7946 | 118 | | 118 | 4.7960 | 111 | 4.808 | 11 | 5400 | | 3000 | 4.8064 | | 4.8072 | | 4.00// | | 7.000 | | 3400 | | | | | | | | | | . (| 20//201 | |------------|------------------|------|-----------------|---------------|----------------|------|-----------------|-------|---------| | °K | .01 | atm | .1 | atm | .4 | atm | .7 | atm | °R | | | | | | | | | | - | | | 100 | 1.2772 | 1282 | 1.2752 | 1285 | 1.2687 | 1294 | 1.2625 | 1300 | 180 | | 110 | 1.4054 | 1281 | 1.4037 | 1284 | 1.3981 | 1292 | 1.3925 | 1298 | 198 | | 120 | 1,5335 | 1283 | 1,5321 | 1284 | 1,5273 | 1290 | 1.5223 | 1296 | 216 | | 130 | 1.6618 | 1282 | 1.6605 | 1283 | 1.6563 | 1288 | 1.6519 | 1293 | 234 | | 140 | 1.7900 | 1282 | 1.7888 | 1284 | 1.7851 | 1287 | 1.7812 | 1293 | 252 | | 150 | 1.9182 | 1281 | 1.9172 | 1282 | 1,9138 | 1286 | 1.9105 | 1288 | 270 | | 160 | 2.0463 | 1282 | 2.0454 | 1283 | 2.0424 | 1285 | 2.0393 | 1289 | 288 | | 170 | 2.1745 | 1282 | 2.1737 | 1283 | 2.1709 | 1286 | 2.1682 | 1288 | 306 | | 180 | 2.3027 | 1282 | 2.3020 | 1282 | 2,2995 | 1284 | 2.2970 | 1286 | 324 | | 190 | 2.4309 | 1283 | 2.4302 | 1284 | 2.4279 | 1286 | 2 .42 56 | 1288 | 342 | | 200 | 2,5592 | 1282 | 2.5586 | 1282 | 2,5565 | 1284 | 2.5544 | 1285 | 360 | | 210 | 2.6874 | 1283 | 2.6868 | 1284 | 2.6849 | 1285 | 2.6829 | 1287 | 378 | | 220 | 2.8157 | 1284 | 2.8152 | 1284 | 2.8134 | 1286 | 2.8116 | 1287 | 396 | | 230 | 2.9441 | 1284 | 2.9436 | 1285 | 2.9420 | 1285 | 2.9403 | 1287 | 414 | | 240 | 3.0725 | 1287 | 3.0721 | 1286 | 3.0705 | 1288 | 3.0690 | 1288 | 432 | | 250 | 3.2012 | 1286 | 3.2007 | 1286 | 3.1993 | 1287 | 3.1978 | 1288 | 450 | | 260 | 3.3298 | 1288 | 3.3293 | 1289 | 3.3280 | 1289 | 3.3266 | 1290 | 468 | | 270 | 3,4586 | 1289 | 3.4582 | 1289 | 3.4569 | 1290 | 3.4556 | 1291 | 486 | | 280 | 3.5875 | 1291 | 3.5871 | 1291 | 3. 5859 | 1292 | 3.5847 | 1293 | 504 | | 290 | 3.7166 | 1293 | 3.7162 | 1293 | 3.7151 | 1294 | 3.7140 | 1294 | 522 | | 300 | 3.8459 | 1295 | 3.8455 | 1296 | 3.8445 | 1296 | 3,8434 | 1297 | 540 | | 310 | 3.9754 | 1297 | 3.9751 | 1297 | 3,9741 | 1298 | 3.9731 | 1298 | 558 | | 320 | 4.1051 | 1300 | 4.1048 | 1300 | 4.1039 | 1300 | 4.1029 | 1302 | 576 | | 330 | 4.2351 | 1303 | 4.2348 | 1303 | 4.2339 | 1304 | 4.2331 | 1304 | 594 | | 340 | 4.3654 | 1306 | 4.3651 | 1306 | 4.3643 | 1307 | 4.3635 | 1307 | 612 | | 350 | 4.4960 | 1309 | 4.4957 | 1310 | 4.4950 | 1309 | 4.4942 | 1310 | 630 | | 360 | 4.6269 | 1313 | 4.6267 | 1313 | 4.6259 | 1314 | 4.6252 | 1314 | 648 | | 370 | 4.7582 | 1316 | 4.7580 | 1316 | 4.7573 | 1316 | 4.7566 | 1317 | 666 | | 380 | 4.8898 | 1320 | 4.8896 | 1320 | 4.8889 | 1321 | 4.8883 | 1321 | 684 | | 390 | 5.0218 | 1324 | 5.0216 | 1324 | 5.0210 | 1324 | 5.0204 | 1324 | 702 | | 400 | 5.1542 | 1327 | 5.1540 | 1327 | 5.1534 | 1328 | 5.1528 | 1328 | 720 | | 410 | 5.2869 | 1332 | 5.2867 | 1332 | 5.2862 | 1332 | 5.2856 | 1333 | 738 | | 420 | 5.4201 | 1336 | 5.4199 | 1336 | 5.4194 | 1336 | 5.4189 | 1337 | 756 | | 430 | 5.5537 | 1340 | 5.5535 | 1340 | 5.5530 | 1341 | 5.5526 | 1340 | 774 | | 440 | 5.6877 | 1345 | 5.6875 | 1346 | 5.6871 | 1345 | 5.6866 | 1346 | 792 | | 450 | 5.8222 | 1349 | 5.8221 | 1349 | 5.8216 | 1350 | 5,8212 | 1349 | 810 | | 460 | 5.9571 | 1353 | 5.9570 | 1353 | 5.9566 | 1353 | 5.9561 | 1354 | 828 | | 470 | 6.0924 | 1358 | 6.0923 | 1358 | 6.0919 | 1358 | 6.0915 | 1359 | 846 | | 480 | 6.2282 | 1362 | 6.2281 | 1362 | 6.2277 | 1362 | 6.2274 | 1362 | 864 | | 490 | 6.3644 | 1367 | 6.3643 | 1367 | 6.3639 | 1368 | 6.3636 | 1368 | 882 | | 500 | 6.5011 | 1371 | 6.5010 | 1371 | 6.5007 | 1371 | 6.5004 | 1371 | 900 | | 510 | 6.6382 | 1376 | 6.6381 | 1376 | 6.6378 | 1376 | 6.6375 | 1376 | 918 | | 520 | 6.7758 | 1380 | 6.7757 | 1380 | 6.7754 | 1380 | 6.7751 | 1381 | 936 | | 530 | 6.9138 | 1385 | 6.9137 | 1385 | 6.9134 | 1386 | 6.9132 | 1385 | 954 | | 540 | 7.0523 | 1389 | 7.0522 | 1 38 9 | 7.0520 | 1389 | 7.0517 | 1390 | 972 | | 550 | 7.1912 | 1394 | 7.1911 | 1394 | 7.1909 | 1394 | 7,1907 | 1.394 | 990 | | 560 | 7.3306 | 1398 | 7,3305 | 1398 | 7.3303 | 1398 | 7.3301 | 1398 | 1008 | | 570 | 7.4704 | 1402 | 7.4703 | 1402 | 7.4701 | 1403 | 7.4699 | 1403 | 1026 | | 580 | 7.6106 | 1407 | 7.6105 | 1407 | 7.6104 | 1407 | 7.6102 | 1407 | 1044 | | 590 | 7.7513 | 1411 | 7.7512 | 1411 | 7.7511 | 1411 | 7.7509 | 1411 | 1062 | | 600 | 7.8924 | 1415 | 7.8923 | 1416 | 7.8922 | 1415 | 7.8920 | 1416 | 1080 | | 610 | 8.0339 | 1419 | 8.0339 | 1419 | 8.0337 | 1419 | 8.0336 | 1419 | 1098 | | 620 | 8.1758 | 1423 | 8.1758 | 1423 | 8.1756 | 1423 | 8.1755 | 1423 | 1116 | | 630
640 | 8.3181 | 1428 | 8.3181 | 1428 | 8.3179 | 1429 | 8.3178 | 1429 | 1134 | | 040 | 8.4609 | 1431 | 8.4609 | 1431 | 8.4608 | 1431 | 8.4607 | 1431 | 1152 | | 650 | 8.6040 | 1436 | 8.6040 | 1436 | 8.6039 | 1436 | 8.6038 | 1436 | 1170 | | 660 | 8.7476 | 1439 | 8.7476 | 1439 | 8.7475 | 1439 | 8.7474 | 1439 | 1188 | | 670 | 8.8915 | 1443 | 8.8915 | 1443 | 8.8914 | 1443 | 8.8913 | 1444 | 1206 | | 680
690 | 9.0358
9.1805 | 1447 | 9.0358 | 1447 | 9.0357 | 1447 | 9.0357 | 1447 | 1224 | | | 7.1003 | 1450 | 9.1805 | 1450 | 9.1804 | 1450 | 9.1804 | 1450 | 1242 | | 700 | 9.3255 | | 9 .32 55 | | 9.3254 | | 9.3254 | | 1260 | | | | | | | | | | | | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.160K(491.688°R). | | 1 | | · | | | _ | | | τ. | |--------------|--------------------|---------------|--------------------|--------------|--------------------|---------------|----------------------------|---------------------------|--------------| | °K | .01 | atm | 1 | atm | .4 | atm | .7 | atm | °R | | 700 | 0.2255 | | | | | | | | | | 710 | 9.3255
9.4709 | 1454 | 9.3255 | 1454 | 9.3254 | 1455 | 9.3254 | 1454 | 1260 | | 720 | 9.6167 | 1458 | 9.4709
9.6167 | 1458 | 9.4709 | 1458 | 9.4708 | 1458 | 1278 | | 730 | 9.7628 | 1461
1465 | 9.7628 | 1461 | 9.6167 | 1461 | 9.6166 | 1462 | 1296 | | 740 | 9.9093 | 1468 | 9.9093 | 1465
1468 | 9.7628
9.9093 | 1465
1468 | 9.7628
9.9093 | 1465
1468 | 1314
1332 | | 750 | 10.0561 | 1471 | 10.0561 | 1471 | 10.0561 | 1471 | 10.0561 | 1471 | 1350 | | 760 | 10.2032 | 1475 | 10,2032 | 1475 | 10,2032 | 1475 | 10.2032 | 1475 | 1368 | | 770 | 10.3507 | 1478 | 10.3507 | 1478 | 10.3507 | 1478 | 10.3507 | 1479 | 1386 | | 780 | 10.4985 | 1481 | 10.4985 | 1481 | 10.4985 | 1481 | 10,4986 | 1481 | 1404 | | 790 | 10.6466 | 1484 | 10.6466 | 1484 | 10.6466 | 1485 | 10.6467 | 1484 | 1422 | | 800 | 10,7950 | 7464 | 10.7950 | 74/4 | 10 7051 | | 10 7051 | | 2440 | | 850 | 11.5414 | 75 3 2 | 11.5414 | 7464
7532 | 10.7951
11.5415 | 7464 | 10.7951
11.5416 | 7465 | 1440 | | 900 | 12.2946 | 7595 | 12.2946 | 7595 | 12.2946 | 7531
7597 | 12.2947 | 7531
7537 | 1530
1620 | | 950 | 13.0541 | 7652 | 13.0541 | 7653 | 13.0543 | 7652 | 13.0544 | 7597
7653 | 1710 | | 1000 | 13.8193 | 7703 | 13.8194 | 7703 | 13.8195 | 7703 | 13.8197 | 7703 | 1800 | | 1050 | 14.5896 | 7751 | 14.5897 | 7751 | 14.5898 | 775 2 | 14.5900 | 7751 | 1890 | | 1100 | 15.3647 | 7795 | 15.3648 | 7795 | 15.3650 | 7 79 5 | 15.3651 | 7796 | 1980 | | 1150
1200 | 16.1442 | 7836 | 16.1443 | 7836 | 16,1445 | 7836 | 16.1447 | 7836 | 2070 | | 1250 | 16.9278
17.7151 | 7873 | 16.9279 | 7873 | 16.9281 | 7873 | 16.9283 | 7873 | 2160 | | | | 7908 | 17.7152 | 7908 | 17.7154 | 7908 | 17.7156 | 7909 | 2250 | | 1300 | 18.5059 | 7943 | 18.5060 | 7943 | 18.5062 | 7943 | 18,5065 | 7943 | 2340 | | 1350 | 19.3002 | 7974 | 19.3003 | 7974 | 19.3005 | 7975 | 19.3008 | 7974 | 2430 | | 1400
1450 |
20.0976
20.8981 | 8005 | 20.0977 | 8005 | 20.0980 | 8005 | 20.0982 | 8005 | 2520 | | 1500 | 21.7016 | 8035
8064 | 20.8982
21.7017 | 8035 | 20.8985 | 8035 | 20.8987 | 8036 | 2610 | | | | | | 8064 | 21.7020 | 8064 | 21.7023 | 8064 | 2700 | | 1550
1600 | 22.5080 | 8091 | 22,5081 | 8091 | 22.5084 | 8091 | 22.5087 | 8091 | 2790 | | 1650 | 23.3171
24.1290 | 8119 | 23.3172
24.1291 | 8119 | 23.3175 | 8119 | 23.3178 | 8119 | 2880 | | 1700 | 24.9437 | 8147
8172 | 24.9438 | 8147
8172 | 24.1294
24.9441 | 81.47 | 24.1297 | 8147 | 2970 | | 1750 | 25.7609 | 8200 | 25.7610 | 8200 | 25.7613 | 8172
8200 | 24.9444
25.7616 | 8172
8201 | 3060
3150 | | 1800 | 26,5809 | 8227 | 26.5810 | 8227 | 26,5813 | 8227 | 26,5817 | 8227 | 3240 | | 1850 | 27.4036 | 8252 | 27.4037 | 8252 | 27.4040 | 8252 | 27.4044 | 8252 | 3330 | | 1900 | 28.2288 | 8277 | 28,2289 | 8277 | 28.2292 | 8278 | 28.2296 | 8277 | 3420 | | 1950 | 29.0565 | 8304 | 29.0566 | 8304 | 29.0570 | 8304 | 29.0573 | 8304 | 3510 | | 2000 | 29.8869 | 8329 | 29.8870 | 8329 | 29.8874 | 8329 | 29.8877 | 8329 | 3600 | | 2050
2100 | 30.7198 | 8356 | 30.7199 | 8356 | 30.7203 | 8356 | 30.7206 | 8356 | 3690 | | 2150 | 31.5554
32.3935 | 8381
8406 | 31.5555
32.3936 | 8381 | 31.5559 | 8381 | 31.5562 | 8381 | 3780 | | 2200 | 33.2341 | 8430 | 33.2342 | 8406
8430 | 32.3940
33.2346 | 8406 | 32.3943
33.2349 | 8406 | 3870 | | 2250 | 34.0771 | | 34.0772 | 8456 | 34.0776 | 8430
8456 | 34.0779 | 8430
8456 | 3960
4050 | | 2300 | 34.9227 | | 34.9228 | 8482 | 34.9232 | 8482 | 34.9235 | 8483 | 4140 | | 2350 | 35.7709 | | 35.7710 | 8508 | 35.7714 | 8508 | 35.7718 | 8508 | 4230 | | 2400 | 36.6217 | | 36.6218 | 8530 | 36.6222 | 8530 | 36.6226 | 8530 | 4320 | | 2450 | 37.4747 | | 37.4748 | 8555 | 37.4752 | 8555 | 37.4756 | 8555 | 4410 | | 2500 | 38,3302 | 8580 | 38.3303 | 8580 | 38.3307 | 8580 | 38.3311 | 8580 | 4500 | | 2550
2600 | 39.1882
40.0487 | | 39.1883
40.0488 | 8605 | 39.1887 | | 39.1891 | 8605 | 4590 | | 2650 | 40.9114 | | 40.9115 | 8627
8651 | 40.0492
40.9119 | | 40.0496 | 8627 | 4680 | | 2700 | 41.7765 | | 41.7766 | 8675 | 41.7770 | | 40.9123
4 1.7774 | 8651 | 4770 | | 2750 | 42.6440 | | 42.6441 | 8698 | 42.6445 | | 42.6449 | 8675
8 69 8 | 4860
4950 | | 2800 | 43.5138 | | 43.5139 | 8720 | 43.5143 | 8720 | 43.5147 | 8720 | 5040 | | 2850 | 44.3858 | | 44.3859 | 8743 | 44.3863 | 8743 | 44.3867 | 8743 | 5130 | | 2900
2950 | 45.2601 | | 45.2602 | 8765 | 45.2606 | | 45.2610 | 8765 | 5220 | | 3000 | 46.1366
47.0152 | | 46.1367
47.0153 | 8786 | 46.1371 | | 46.1375 | 8786 | 5310 | | 2000 | . / • • • • • | • | 114ULJJ | | 47.0157 | | 47.0161 | | 5400 | ^{*}The enthalpy function is divided here by a constant RT_0 where $T_0 \approx 273.160K$ (491.688°R). | °K | ı | atm | 4 | atm | 7 | atm | 10 | atm | •̂R | |---------------------------------|--|--------------------------------------|--|--------------------------------------|--|------------------------------|--|--------------------------------------|---------------------------------| | 100
110
120
130
140 | 1.254
1.3865
1.5175
1.6477
1.7775 | 132
1310
1302
1298
1295 | 1.315
1.4628
1.6021
1.7381 | 148
1393
1360
1340 | 1.394
1.5505
1.6954 | 156
1449
1400 | | | 180
198
216
234
252 | | 150
160
170
180
190 | 1.9070
2.0362
2.1654
2.2944
2.4233 | 1292
1292
1290
1289
1290 | 1.8721
2.0050
2.1374
2.2689
2.4000 | 1329
1324
1315
1311
1308 | 1.8354
1.9727
2.1083
2.2427
2.3762 | 1373
1356
1344
1335 | 1.7963
1.9390
2.0785
2.2160
2.3520 | 1427
1395
1375
1360
1351 | 270
288
306
324
342 | | 200 | 2.5523 | 1287 | 2.5308 | 1305 | 2.5091 | 1322 | 2.4871 | 1340 | 360 | | 210 | 2.6810 | 1288 | 2.6613 | 1302 | 2.6413 | 1319 | 2.6211 | 1334 | 378 | | 220 | 2.8098 | 1288 | 2.7915 | 1302 | 2.7732 | 1315 | 2.7545 | 1329 | 396 | | 230 | 2.9386 | 1288 | 2.9217 | 1300 | 2.9047 | 1312 | 2.8874 | 1325 | 414 | | 240 | 3.0674 | 1289 | 3.0517 | 1300 | 3.0359 | 1310 | 3.0199 | 1323 | 432 | | 250 | 3.1963 | 1290 | 3.1817 | 1299 | 3.1669 | 1310 | 3.1522 | 1319 | 450 | | 260 | 3.3253 | 1291 | 3.3116 | 1299 | 3.2979 | 1308 | 3.2841 | 1318 | 468 | | 270 | 3.4544 | 1291 | 3.4415 | 1301 | 3.4287 | 1309 | 3.4159 | 1315 | 486 | | 280 | 3.5835 | 1294 | 3.5716 | 1301 | 3.5596 | 1308 | 3.5474 | 1317 | 504 | | 290 | 3.7129 | 1295 | 3.7017 | 1302 | 3.6904 | 1309 | 3.6791 | 1317 | 522 | | 300 | 3.8424 | 1297 | 3.8319 | 1303 | 3.8213 | 1309 | 3.8108 | 1316 | 540 | | 310 | 3.9721 | 1299 | 3.9622 | 1305 | 3.9522 | 1312 | 3.9424 | 1316 | 558 | | 320 | 4.1020 | 1302 | 4.0927 | 1307 | 4.0834 | 1313 | 4.0740 | 1319 | 576 | | 330 | 4.2322 | 1304 | 4.2234 | 1310 | 4.2147 | 1314 | 4.2059 | 1320 | 594 | | 340 | 4.3626 | 1308 | 4.3544 | 1312 | 4.3461 | 1317 | 4.3379 | 1322 | 612 | | 350 | 4.4934 | 1311 | 4.4856 | 1315 | 4.4778 | 1320 | 4.4701 | 1323 | 630 | | 360 | 4.6245 | 1314 | 4.6171 | 1319 | 4.6098 | 1322 | 4.6024 | 1327 | 648 | | 370 | 4.7559 | 1317 | 4.7490 | 1321 | 4.7420 | 1326 | 4.7351 | 1329 | 666 | | 380 | 4.8876 | 1321 | 4.8811 | 1325 | 4.8746 | 1328 | 4.8680 | 1332 | 684 | | 390 | 5.0197 | 1326 | 5.0136 | 1328 | 5.0074 | 1332 | 5.0012 | 1337 | 702 | | 400 | 5.1523 | 1328 | 5.1464 | 1332 | 5.1406 | 1335 | 5.1349 | 1338 | 720 | | 410 | 5.2851 | 1333 | 5.2796 | 1336 | 5.2741 | 1339 | 5.2687 | 1342 | 738 | | 420 | 5.4184 | 1337 | 5.4132 | 1340 | 5.4080 | 1343 | 5.4029 | 1346 | 756 | | 430 | 5.5521 | 1341 | 5.5472 | 1344 | 5.5423 | 1346 | 5.5375 | 1349 | 774 | | 440 | 5.6862 | 1346 | 5.6816 | 1348 | 5.6769 | 1352 | 5.6724 | 1354 | 792 | | 450 | 5.8208 | 1349 | 5.8164 | 1352 | 5.8121 | 1354 | 5.8078 | 1357 | 810 | | 460 | 5.9557 | 1354 | 5.9516 | 1357 | 5.9475 | 1359 | 5.9435 | 1361 | 828 | | 470 | 6.0911 | 1359 | 6.0873 | 1361 | 6.0834 | 1363 | 6.0796 | 1366 | 846 | | 480 | 6.2270 | 1363 | 6.2234 | 1365 | 6.2197 | 1367 | 6.2162 | 1369 | 864 | | 490 | 6.3633 | 1367 | 6.3599 | 1369 | 6.3564 | 1372 | 6.3531 | 1374 | 882 | | 500 | 6.5000 | 1372 | 6.4968 | 1374 | 6.4936 | 1376 | 6.4905 | 1378 | 900 | | 510 | 6.6372 | 1377 | 6.6342 | 1378 | 6.6312 | 1380 | 6.6283 | 1382 | 918 | | 520 | 6.7749 | 1380 | 6.7720 | 1383 | 6.7692 | 1385 | 6.7665 | 1386 | 936 | | 530 | 6.9129 | 1386 | 6.9103 | 1387 | 6.9077 | 1389 | 6.9051 | 1391 | 954 | | 540 | 7.0515 | 1389 | 7.0490 | 1391 | 7.0466 | 1393 | 7.0442 | 1395 | 972 | | 550 | 7.1904 | 1395 | 7.1881 | 1397 | 7.1859 | 1397 | 7.1837 | 1399 | 990 | | 560 | 7.3299 | 1398 | 7.3278 | 1400 | 7.3256 | 1402 | 7.3236 | 1403 | 1008 | | 570 | 7.4697 | 1403 | 7.4678 | 1404 | 7.4658 | 1405 | 7.4639 | 1407 | 1026 | | 580 | 7.6100 | 1407 | 7.6082 | 1409 | 7.6063 | 1411 | 7.6046 | 1412 | 1044 | | 590 | 7.7507 | 1412 | 7.7491 | 1412 | 7.7474 | 1414 | 7.7458 | 1415 | 1062 | | 600 | 7.8919 | 1415 | 7.8903 | 1417 | 7.8888 | 1418 | 7.8873 | 1420 | 1080 | | 610 | 8.0334 | 1420 | 8.0320 | 1421 | 8.0306 | 1422 | 8.0293 | 1423 | 1098 | | 620 | 8.1754 | 1423 | 8.1741 | 1425 | 8.1728 | 1426 | 8.1716 | 1427 | 1116 | | 630 | 8.3177 | 1429 | 8.3166 | 1429 | 8.3154 | 1431 | 8.3143 | 1432 | 1134 | | 640 | 8.4606 | 1431 | 8.4595 | 1433 | 8.4585 | 1433 | 8.4575 | 1435 | 1152 | | 650 | 8.6037 | 1436 | 8.6028 | 1437 | 8.6018 | 1439 | 8.6010 | 1440 | 1170 | | 660 | 8.7473 | 1440 | 8.7465 | 1441 | 8.7457 | 1441 | 8.7450 | 1442 | 1188 | | 670 | 8.8913 | 1443 | 8.8906 | 1444 | 8.8898 | 1446 | 8.8892 | 1447 | 1206 | | 680 | 9.0356 | 1447 | 9.0350 | 1448 | 9.0344 | 1449 | 9.0339 | 1450 | 1224 | | 690 | 9.1803 | 1451 | 9.1798 | 1452 | 9.1793 | 1452 | 9.1789 | 1453 | 1242 | | 700 | 9.3254 | | 9.3250 | | 9.3245 | | 9.3242 | | 1260 | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). Table 8-4. ENTHALPY OF OXYGEN - Cont.* | | | | | | | | | | U | |---------------------|--------------------|---------------------------|--------------------|---------------------------|--------------------|---------------|--------------------|--------------|--------------| | °K | | l atm | 4 | atm | 7 | atm | 10 | atm | *R | | 700 | 0.2054 | | 0.0050 | | | | | | | | 700
710 | 9.3254 | 1454 | 9.3250 | 1455 | 9.3245 | 1457 | 9.3242 | 1457 | 1260 | | 710
7 2 0 | 9.4708
9.6166 | 1458 | 9.4705 | 1459 | 9.4702
9.6162 | 1460 | 9.4699 | 1461 | 1278 | | 730 | 9.7628 | 1462
1465 | 9.6164
9.7626 | 1462 | 9,7625 | 1463 | 9.6160 | 1464 | 1296 | | 740 | 9.9093 | 1468 | 9.9092 | 1466
14 69 | 9.9092 | 1467
1470 | 9.7624
9.9092 | 1468
1471 | 1314
1332 | | 750 | 10.0561 | 1471 | 10.0561 | 1473 | 10.0562 | 1473 | 10.0563 | 1474 | 1350 | | 760 | 10.2032 | 1476 | 10.2034 | 1476 | 10.2035 | 1477 | 10.2037 | 1477 | 1368 | | 770 | 10.3508 | 1478 | 10.3510 | 1479 | 10.3512 | 1479 | 10.3514 | 1481 | 1386 | | 780
790 | 10.4986
10.6467 | 1481
1484 | 10.4989
10.6471 | 1482
1485 | 10.4991
10.6474 | 1483
1486 | 10.4995
10.6478 | 1483
1487 | 1404
1422 | | | | | | | | | | | | | 800 | 10.7951 | 7465 | 10.7956 | 7468 | 10.7960 | 7471 | 10.7965 | 7475 | 1440 | | 850 | 11.5416 | 7533 | 11.5424 | 7536 | 11.5431 | 75 3 9 | 11.5440 | 7541 | 1530 | | 900 | 12.2949 | 7596 | 12.2960 | 7598 | 12.2970 | 7601 | 12.2981 | 7603 | 1620 | | 950
1000 | 13.0545 | 7653 | 13.0558 | 7655 | 13.0571 | 7657 | 13.0584 | 7659 | 1710 | | | 13.8198 | 7704 | 13.8213 | 7706 | 13.8228 | 7708 | 13.8243 | 7710 | 1800 | | 1050 | 14.5902 | 7751 | 14.5919 | 7753 | 14.5936 | 7755 | 14.5953 | 7757 | 1890 | | 1100 | 15.3653 | 7796 | 15.3672 | 7 7 97 | 15.3691 | 7799 | 15.3710 | 7801 | 1980 | | 1150
1200 | 16.1449
16.9285 | 7836 | 16.1469 | 7838 | 16.1490 | 7 83 9 |
16.1511 | 7840 | 2070 | | 1250 | 17.7159 | 7874
7908 | 16.9307
17.7182 | 7875 | 16.9329
17.7205 | 7876 | 16.9351 | 7878 | 2160 | | | | | | 7910 | | 7911 | 17.7229 | 7912 | 2250 | | 1300
1350 | 18.5067 | 7944 | 18.5092 | 7944 | 18.5116 | 7946 | 18.5141 | 7947 | 2340 | | 1400 | 19.3011
20.0985 | 7974 | 19.3036
20.1012 | 7976 | 19.3062 | 7976 | 19.3088 | 7 977 | 2430 | | 1450 | 20.8990 | 8005
8035 | 20,1012 | 8006
8036 | 20.1038
20.9045 | 8007 | 20.1065 | 8008 | 2520 | | 1500 | 21.7025 | 8065 | 21.7054 | 8065 | 21.7082 | 8037
8066 | 20.9073
21.7111 | 8038
8067 | 2610
2700 | | 1550 | 22,5090 | 8091 | 22,5119 | 8092 | 22.5148 | 8093 | 22,5178 | 8093 | 2790 | | 1600 | 23.3181 | 8119 | 23.3211 | 8120 | 23,3241 | 8121 | 23.3271 | 8121 | 2880 | | 1650 | 24.1300 | 8147 | 24.1331 | 81.48 | 24.1362 | 81.48 | 24.1392 | 8149 | 2970 | | 1700 | 24.9447 | 8173 | 24.9479 | 8173 | 24.9510 | 8173 | 24.9541 | 8174 | 3060 | | 1750 | 25.7620 | 8200 | 25.7652 | 8200 | 25.7683 | 8202 | 25.7715 | 8202 | 3150 | | 1800 | 26.5820 | 8227 | 26.5852 | 8228 | 26.5885 | 8228 | 26.5917 | 8229 | 3240 | | 1850 | 27.4047 | 8252 | 27.4080 | 8253 | 27.4113 | 8253 | 27.4146 | 8253 | 3330 | | 1900 | 28.2299 | 8277 | 28.2333 | 8277 | 28.2366 | 8278 | 28.2399 | 8279 | 3420 | | 1950
2000 | 29.0576
29.8880 | 8304 | 29.0610 | 8305 | 29.0644 | 8305 | 29.0678 | 8305 | 3510 | | | | 83 30 | 29.8915 | 8329 | 29.8949 | 8330 | 29.8983 | 8331 | 3600 | | 2050 | 30.7210 | 8356 | 30.7244 | 8357 | 30.7279 | 8357 | 30.7314 | 8357 | 3690 | | 2100
2150 | 31.5566 | 8381 | 31.5601 | 8381 | 31.5636 | 8381 | 31.5671 | 8382 | 3780 | | 2200 | 32.3947
33.2353 | 8406
8430 | 32.3982
33.2389 | 8407 | 32.4017
33.2424 | 8407 | 32.4053 | 8407 | 3870 | | 2250 | 34.0783 | 8456 | 34.0819 | 8430
8456 | 34.0855 | 8431
8457 | 33.2460
34.0891 | 8431
8457 | 3960
4050 | | 2300 | 34.9239 | 8482 | 34.9275 | 8483 | 34.9312 | 8482 | 34,9348 | 8483 | 4140 | | 2350 | 35.7721 | 8508 | 35,7758 | 8508 | 35.7794 | 8509 | 35.7831 | 8509 | 4230 | | 2400 | 36.6229 | 8530 | 36.6266 | 8530 | 36,6303 | 8530 | 36.6340 | 8530 | 4320 | | 2450 | 37.4759 | 8555 | 37.4796 | 8556 | 37.4833 | 8556 | 37.4870 | 8556 | 4410 | | 2500 | 38.3314 | 8580 | 38.3352 | 8580 | 38.3389 | 8580 | 38.3426 | 8581 | 4500 | | 2550 | 39.1894 | 8606 | 39.1932 | 8605 | 39,1969 | 8606 | 39.2007 | 8606 | 4590 | | 2600 | 40.0500 | 8627 | 40.0537 | 8627 | 40.0575 | 8627 | 40.0613 | 8627 | 4680 | | 2650 | 40.9127 | 8651 | 40.9164 | 8652 | 40.9202 | 8652 | 40.9240 | 8652 | 4770 | | 2700
2750 | 41.7778
42.6453 | 8675
86 9 8 | 41.7816
42.6491 | 8675
8 6 98 | 41.7854
42.6529 | 8675
8698 | 41.7892
42.6567 | 8675
8699 | 4860
4950 | | 2800 | 43,5151 | 87 20 | 43,5189 | 8720 | 43,5227 | | 43.5266 | | | | 2850 | 44.3871 | 8743 | 44.3909 | 8744 | 44.3948 | 8721
8743 | 44.3986 | 8720
8744 | 5040
5130 | | 2900 | 45.2614 | 8765 | 45.2653 | 8765 | 45.2691 | 8766 | 45,2730 | 8765 | 5220 | | 2950 | 46.1379 | 8786 | 46.1418 | 8786 | 46.1457 | 8786 | 46.1495 | 8787 | 5310 | | 3000 | 47.016 5 | | 47.0204 | | 47.0243 | | 47.0282 | | 5400 | ^{*}The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | °R | |---------------------------------|--|--------------------------------------|---|---------------------------------|---|---------------------------------|---|---------------------------------|---------------------------------| | | | | | | | | | | | | 150
160
170
180
190 | 1.7963
1.9390
2.0785
2.2160
2.3520 | 1427
1395
1375
1360
1351 | 1.48
1.711
1.905
2.082 | 23
194
177
166 | 1.16
1.490
1.751 | 33
261
221 | | | 270
288
306
324
342 | | 200 | 2.4871 | 1340 | 2.248 | 158 | 1.972 | 198 | 1.659 | 257 | 360 | | 210 | 2.6211 | 1334 | 2.406 | 153 | 2.170 | 182 | 1.916 | 222 | 378 | | 220 | 2.7545 | 1329 | 2.559 | 150 | 2.352 | 172 | 2.138 | 202 | 396 | | 230 | 2.3874 | 1325 | 2.709 | 142 | 2.524 | 165 | 2.340 | 186 | 414 | | 240 | 3.0199 | 1323 | 2.851 | 150 | 2.689 | 160 | 2.526 | 177 | 432 | | 250
260
270
280
290 | 3.1522
3.2841
3.4159
3.5474
3.6791 | 1319
1318
1315
1317 | 3.001
3.144
3.286
3.426
3.566 | 143
142
140
140
139 | 2.849
3.005
3.157
3.307
3.455 | 156
152
150
148
147 | 2.703
2.872
3.035
3.195
3.351 | 169
163
160
156
154 | 450
468
486
504
522 | | 300 | 3.8108 | 1316 | 3.705 | 138 | 3.602 | 145 | 3.505 | 151 | 540 | | 310 | 3.9424 | 1316 | 3.843 | 138 | 3.747 | 144 | 3.656 | 150 | 558 | | 320 | 4.0740 | 1319 | 3.981 | 138 | 3.891 | 143 | 3.806 | 148 | 576 | | 330 | 4.2059 | 1320 | 4.119 | 137 | 4.034 | 142 | 3.954 | 147 | 594 | | 340 | 4.3379 | 1322 | 4.256 | 137 | 4.176 | 142 | 4.101 | 147 | 612 | | 350 | 4.4701 | 1323 | 4.393 | 137 | 4.318 | 142 | 4.248 | 146 | 630 | | 360 | 4.6024 | 1327 | 4.530 | 137 | 4.460 | 141 | 4.394 | 145 | 648 | | 370 | 4.7351 | 1329 | 4.667 | 137 | 4.601 | 141 | 4.539 | 144 | 666 | | 380 | 4.8680 | 1332 | 4.804 | 137 | 4.742 | 140 | 4.683 | 144 | 684 | | 390 | 5.0012 | 1337 | 4.941 | 137 | 4.882 | 141 | 4.827 | 144 | 702 | | 400 | 5.1349 | 1338 | 5.078 | 137 | 5.023 | 140 | 4.971 | 143 | 720 | | 410 | 5.2687 | 1342 | 5.215 | 137 | 5.163 | 141 | 5.114 | 143 | 738 | | 420 | 5.4029 | 1346 | 5.352 | 138 | 5.304 | 140 | 5.257 | 143 | 756 | | 430 | 5.5375 | 1349 | 5.490 | 138 | 5.444 | 141 | 5.400 | 143 | 774 | | 440 | 5.6724 | 1354 | 5.628 | 138 | 5.585 | 140 | 5.543 | 144 | 792 | | 450 | 5.8078 | 1357 | 5.766 | 138 | 5.725 | 141 | 5.687 | 143 | 810 | | 460 | 5.9435 | 1361 | 5.904 | 138 | 5.866 | 141 | 5.830 | 143 | 828 | | 470 | 6.0796 | 1366 | 6.042 | 139 | 6.007 | 141 | 5.973 | 143 | 846 | | 480 | 6.2162 | 1369 | 6.181 | 139 | 6.148 | 141 | 6.116 | 143 | 864 | | 490 | 6.3531 | 1374 | 6.320 | 140 | 6.289 | 142 | 6.259 | 144 | 882 | | 500 | 6.4905 | 1378 | 6.460 | 140 | 6.431 | 141 | 6.403 | 143 | 900 | | 510 | 6.6283 | 1382 | 6.600 | 140 | 6.572 | 142 | 6.546 | 144 | 918 | | 520 | 6.7665 | 1386 | 6.740 | 140 | 6.714 | 142 | 6.690 | 144 | 936 | | 530 | 6.9051 | 1391 | 6.880 | 141 | 6.856 | 143 | 6.834 | 144 | 954 | | 540 | 7.0442 | 1395 | 7.021 | 141 | 6.999 | 143 | 6.978 | 144 | 972 | | 550 | 7.1837 | 1399 | 7.162 | 141 | 7.142 | 143 | 7.122 | 145 | 990 | | 560 | 7.3236 | 1403 | 7.303 | 142 | 7.285 | 143 | 7.267 | 145 | 1008 | | 570 | 7.4639 | 1407 | 7.445 | 143 | 7.428 | 144 | 7.412 | 145 | 1026 | | 580 | 7.6046 | 1412 | 7.588 | 142 | 7.572 | 144 | 7.557 | 145 | 1044 | | 590 | 7.7458 | 1415 | 7.730 | 143 | 7:716 | 144 | 7.702 | 146 | 1062 | | 600 | 7.8873 | 1420 | 7.873 | 143 | 7.860 | 144 | 7.848 | 146 | 1080 | | 610 | 8.0293 | 1423 | 8.016 | 144 | 8.004 | 145 | 7.994 | 146 | 1098 | | 620 | 8.1716 | 1427 | 8.160 | 144 | 8.149 | 145 | 8.140 | 146 | 1116 | | 630 | 8.3143 | 1432 | 8.304 | 144 | 8.294 | 146 | 8.286 | 147 | 1134 | | 640 | 8.4575 | 1435 | 8.448 | 145 | 8.440 | 146 | 8.433 | 146 | 1152 | | 650 | 8.6010 | 1440 | 8.593 | 145 | 8.586 | 146 | 8.579 | 148 | 1170 | | 660 | 8.7450 | 1442 | 8.738 | 145 | 8.732 | 146 | 8.727 | 147 | 1188 | | 670 | 8.8892 | 1447 | 8.883 | 146 | 8.878 | 147 | 8.874 | 148 | 1206 | | 680 | 9.0339 | 1450 | 9.029 | 146 | 9.025 | 147 | 9.022 | 147 | 1224 | | 690 | 9.1789 | 1453 | 9.175 | 146 | 9.172 | 147 | 9.169 | 149 | 1242 | | 700 | 9.3242 | | 9.321 | | 9.319 | | 9.318 | | 1260 | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). Table 8-4. ENTHALPY OF OXYGEN - Cont. * $(\mathbf{H}\mathbf{-E}_0^0)/\mathbf{RT}_0$ | | T | | | | | | | | | |--------------|---------|-------|--------|--------------|--------|--------------|------------------|--------------|--------------| | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | ° R | | | | | | | | | | | | | 700 | 9.3242 | 1457 | 9.321 | 147 | 9,319 | 148 | 9,318 | 7.40 | 1260 | | 710 | 9.4699 | 1461 | 9.468 | 147 | 9.467 | 148 | 9.466 | 148
149 | 1278 | | 720 | 9.6160 | 1464 | 9.615 | 147 | 9.615 | 148 | 9.615 | 149 | 1296 | | 730 | 9.7624 | 1468 | 9.762 | 148 | 9.763 | 148 | 9.764 | 149 | 1314 | | 740 | 9.9092 | 1471 | 9.910 | 148 | 9.911 | 149 | 9.913 | 150 | 1332 | | 750 | 10.0563 | 1474 | 10.058 | 148 | 10.060 | 149 | 10.063 | 149 | 1350 | | 760 | 10.2037 | 1477 | 10.206 | 148 | 10.209 | 149 | 10.212 | 150 | 1368 | | 770 | 10.3514 | 1481 | 10.354 | 149 | 10.358 | 149 | 10.362 | 151 | 1386 | | 780 | 10.4995 | 1483 | 10.503 | 149 | 10.507 | 150 | 10.513 | 150 | 1404 | | 790 | 10.6478 | 1487 | 10.652 | 150 | 10.657 | 150 | 10.663 | 151 | 1422 | | | | | | | | | | | | | 800 | 10.7965 | 15016 | 10,802 | 1507 | 10.807 | 1514 | 10.814 | 1519 | 1440 | | 900 | 12.2981 | 15262 | 12.309 | 1531 | 12.321 | 1536 | 12.333 | 1541 | 1620 | | 1000 | 13.8243 | 15467 | 13.840 | 1551 | 13.857 | 1554 | 13.874 | 1557 | 1800 | | 1100 | 15.3710 | 15641 | 15.391 | 1567 | 15.411 | 1570 | 15.431 | 1573 | 1980 | | 1200 | 16.9351 | 15790 | 16,958 | 1581 | 16.981 | 1584 | 17.004 | 1587 | 2160 | | 1300 | 18,5141 | 15924 | 18,539 | 1595 | 18.565 | 1596 | 18.591 | | 2240 | | 1400 | 20.1065 | 16046 | 20.134 | 1606 | 20.161 | 1608 | 20.189 | 1598 | 2340
2520 | | 1500 | 21.7111 | 16160 | 21.740 | 1618 | 21.769 | 1619 | 21.799 | 1610
1620 | 2700 | | 1600 | 23.3271 | 16270 | 23.358 | 1628 | 23.388 | 1630 | 23.419 | 1631 | 2880 | | 1700 | 24.9541 | 16376 | 24.986 | 1639 | 25.018 | 1640 | 25.050 | 1641 | 3060 | | 1800 | 26.5917 | 16482 | 26.625 | 1/40 | 26.658 | | 24 402 | | | | 1900 | 28.2399 | 16584 | 28.274 | 1649
1659 | 28.308 | 1650 | 26.691
28.342 | 1651 | 3240 | | 2000 | 29.8983 | 16688 | 29.933 | 1669 | 29.968 |
1660
1670 | 30.003 | 1661 | 3420 | | 2100 | 31.5671 | 16789 | 31.602 | 1680 | 31.638 | 1680 | 31.674 | 1671 | 3600 | | 2200 | 33.2460 | 16888 | 33.282 | 1689 | 33.318 | 1690 | 33.355 | 1681
1690 | 3780
3960 | | | | | | 2007 | | 1070 | 77.755 | 1070 | 2700 | | 2300 | 34.9348 | 16992 | 34.971 | 1700 | 35.008 | 1700 | 35.045 | 1700 | 4140 | | 2400 | 36.6340 | 17086 | 36.671 | 1709 | 36.708 | 1710 | 36.745 | 1710 | 4320 | | 2500 | 38.3426 | 17187 | 38.380 | 1719 | 38.418 | 1719 | 38.455 | 1720 | 4500 | | 2600
2700 | 40.0613 | 17279 | 40.099 | 1728 | 40.137 | 1729 | 40.175 | 1729 | 4680 | | 2700 | 41.7892 | 17374 | 41.827 | 1738 | 41.866 | 1738 | 41.904 | 1739 | 4860 | | 2800 | 43.5266 | 17464 | 43.565 | 1747 | 43,604 | 1747 | 43,643 | 1747 | 5040 | | 2900 | 45.2730 | 17552 | 45.312 | 1755 | 45.351 | 1756 | 45.390 | 1756 | 5220 | | 3000 | 47.0282 | | 47.067 | | 47.107 | | 47.146 | 1,50 | 5400 | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). | | | | | | | | | | T | |------------|--------------------|-----------------|--------------------|--------------|--------------------|--------------|--------------------------------------|------------------------|--------------| | °K | .01 | atm | .1 | atm | .4 | atm | .7 | atm | °R | | | | | | | | | | | | | 100 | 25,4396 | 3337 | 23.1336 | 3345 | 21.7357 | 337 2 | 21.1638 | 3404 | 180 | | 110 | 25.7733 | | 23.4681 | 3054 | 22.0729 | 3072 | 21.5042 | 3092 | 198 | | 120 | 26.0782 | 2802 | 23.7735 | 2806 | 22.3801 | 2821 | 21.8134 | 2833 | 216 | | 130 | 26.3584 | 2595 | 24.0541 | 2598 | 22.6622 | 2 607 | 22.0967 | 2618 | 234 | | 140 | 26.6179 | 2417 | 24.3139 | 2419 | 22.9229 | 2426 | 22,3585 | 2433 | 252 | | 150 | 26.8596 | 2259 | 24,5558 | 22 61 | 23.1655 | 2267 | 22.6018 | 2274 | 270 | | 160 | 27.0855 | 2123 | 24.7819 | 2124 | 23.3922 | 2129 | 22.8292 | 2134 | 288 | | 170 | 27.297 8 | 2002 | 24.9943 | 2003 | 23.6051 | 2007 | 23.0426 | 2010 | 306
324 | | 180
190 | 27.4980
27.6874 | 1894
1796 | 25.1946
25.3842 | 1896
1796 | 23.8058
23.9956 | 1898
1799 | 23.2436
23.4338 | 1902
1802 | 342 | | | | | | | | | 23.6140 | 3735 | 360 | | 200 | 27.8670 | 1710 | 25.5638 | 1711 | 24.1755
24.3468 | 1713
1633 | 23.7855 | 1715
1634 | 378 | | 210 | 28.0380 | 1631 | 25.7349
25.8980 | 1631
1559 | 24.5101 | 1561 | 23.9489 | 1563 | 396 | | 220 | 28.2011 | 1559 | 26.0539 | 1494 | 24.6662 | 1495 | 24.1052 | 1496 | 414 | | 230
240 | 28.3570
28.5063 | 1493
1433 | 26.2033 | 1433 | 24.8157 | 1434 | 24.2548 | 1435 | 432 | | 250 | 28,6496 | 1270 | 26.3466 | 1378 | 24,9591 | 1380 | 24.3983 | 1381 | 450 | | 260 | 28.7874 | 1378
1328 | 26.4844 | 1329 | 25.0971 | 1329 | 24.5364 | 1330 | 468 | | 270 | 28,9202 | 1280 | 26.6173 | 1280 | 25.2300 | 1281 | 24.6694 | 1282 | 486 | | 280 | 29.0482 | 1280 | 26.7453 | 1238 | 25.3581 | 1239 | 24.7976 | 1239 | 504 | | 290 | 29.1720 | 1197 | 26.8691 | 1198 | 25.4820 | 1198 | 24.9215 | 1199 | 522 | | 300 | 29.2917 | 1160 | 26.9889 | 1160 | 25,6018 | 1160 | 25.0414 | 1161 | 540 | | 310 | 29.4077 | 1125 | 27.1049 | 1125 | 25.7178 | 1126 | 25.1575 | 1126 | 558 | | 320 | 29.5202 | 1093 | 27.2174 | 1093 | 25.8304 | 1094 | 25.2701 | 1094 | 576 | | 330 | 29,6295 | 1062 | 27.3267 | 1062 | 25.9398 | 1062 | 25.3795 | 1063 | 594 | | 340 | 29.7357 | 1035 | 27.4329 | 1035 | 26.0460 | 1036 | 25.4858 | 1036 | 612 | | 350 | 29.8392 | 1007 | 27.5364 | 1007 | 26.1496 | 1007 | 25.5894 | 1008 | 630 | | 360 | 29,9399 | 982 | 27.6371 | 982 | 26.2503 | 983 | 25.6902 | 983 | 648 | | 370 | 30.0381 | 959 | 27.7353 | 959 | 26.3486 | 959 | 25.7885 | 959 | 666 | | 380 | 30.1340 | 936 | 27.8312 | 937 | 26.4445 | 936 | 25.8844 | 937 | 684 | | 390 | 30.2276 | 916 | 27.9249 | 916 | 26.5381 | 917 | 25.9781 | 917 | 702 | | 400 | 30.3192 | 896 | 28.0165 | 896 | 26.6298 | 896 | 26.0698 | 896 | 720 | | 410 | 30.4088 | 876 | 28.1061 | 876 | 26.7194 | 876 | 26.1594 | 877 | 738 | | 420 | 30.4964 | 859 | 28.1937 | 859 | 26.8070 | 859 | 26.2471 | 859 | 756 | | 430 | 30.5823 | 841 | 28.2796 | 841 | 26.8929 | 842 | 26.3330 | 841 | 774 | | 440 | 30.6664 | 826 | 28.3637 | 826 | 26.9771 | 826 | 26.4171 | 827 | 792 | | 450 | 30.7490 | 810 | 28.4463 | 810 | 27.0597 | 810 | 26,4998 | 810 | 810 | | 460 | 30.8300 | 795 | 28,5273 | 795 | 27.1407 | 795 | 26.5808 | 796 | 828 | | 470 | 30.9095 | 780 | 28.6068 | 780 | 27.2202 | 780 | 26.6604 | 780 | 846 | | 480 | 30.9875 | 768 | 28.6848 | 769 | 27.2982 | 769 | 26.7384 | 768 | 864 | | 490 | 31.0643 | 754 | 28.7617 | 754 | 27.3751 | 754 | 26.8152 | 754 | 8 82 | | 500 | 31,1397 | 742 | 28.8371 | 742 | 27.4505 | 742 | 26.8906 | 743 | 900 | | 510 | 31.2139 | 730 | 28,9113 | 730 | 27.5247 | 730 | 26.9649 | 730 | 918 | | 520 | 31.2869 | 718 | 28.9843 | 718 | 27.5977 | 718 | 27.0379 | 718 | 936
954 | | 530 | 31.3587 | 707 | 29.0561 | 707 | 27.6695 | 707 | 27 . 1097
27 . 1804 | 707
69 7 | 972 | | 540 | 31.4294 | 69 6 | 29.1268 | 696 | 27.7402 | 696 | | 07/ | | | 550 | 31,4990 | 686 | 29.1964 | 686 | 27.8098 | 687 | 27.2501 | 686 | 990 | | 560 | 31.5676 | 676 | 29,2650 | 676 | 27.8785 | 676 | 27.3187 | 676 | 1008 | | 570 | 31.6352 | 666 | 29.3326 | 666 | 27.9461 | 666 | 27.3863 | 666 | 1026 | | 580 | 31.7018 | 657 | 29.3992 | 657 | 28.0127 | 657 | 27.4529 | 657 | 1044 | | 590 | 31.7675 | 648 | 29.4649 | 648 | 28.0784 | 648 | 27. 5186 | 648 | 1062 | | 600 | 31.8323 | 639 | 29.5297 | 639 | 28.1432 | 639 | 27.5834 | 639 | 1080
1098 | | 610 | 31.8962 | 630 | 29.5936 | 630 | 28.2071 | 630 | 27.6473
27.7104 | 631
622 | 1116 | | 620 | 31.9592 | 622 | 29.6566 | 622 | 28.2701 | 622 | 27.7726 | 622
614 | 1134 | | 630
640 | 32.0214
32.0828 | 614
607 | 29.7188
29.7802 | 61.4
607 | 28.3323
28.3937 | 614
607 | 27.7720 | 607 | 1152 | | | | | | | 28.4544 | | 27,8947 | 598 | 1170 | | 650 | 32.1435 | 598 | 29.8409 | 598 | 28.4544 | 598
591 | 27.9545 | 591 | 1188 | | 660 | 32.2033 | 591 | 29.9007 | 591
584 | 28.5733 | 584 | 28,0136 | 584 | 1206 | | 670 | 32.2624 | 584 | 29.9598
30.0182 | 584
577 | 28.6317 | 577 | 28.0720 | 577 | 1224 | | 680 | 32.3208
32.3785 | 577
570 | 30.0162 | 570 | 28.6894 | 571 | 28.1297 | 570 | 1242 | | 690 | 32.378 5 | 210 | | 2.0 | | _ | | | 1260 | | 700 | 32,4355 | | 30.1329 | | 28.7465 | | 28.1867 | | 1500 | | °K | .01 | atm | .1 | atm | .4 | atm | .7 | atm | °R | |---------------|--------------------|------|--------------------|-------------------|--------------------|------|--------------------|-------------------|--------------| | | | | | * | | | | | | | 700 | 32.4 355 | 564 | 30.1329 | 564 | 28.7465 | 564 | 28.1867 | 565 | 1260 | | 710 | 32.4919 | 557 | 30.1893 | 557 | 28.8029 | 557 | 28.2432 | 557 | 1278 | | 720 | 32.5476 | 550 | 30.2450 | 550 | 28.8586 | 550 | 28.2989 | 550 | 1296 | | 730 | 32.6026 | 545 | 30.3000 | 545 | 28.9136 | | 28.3539 | 545 | 1314 | | 740 | 32,6571 | 538 | 30.3545 | 538 | 28.9681 | | 28.4084 | 538 | 1332 | | 750 | 32.7109 | 532 | 30.4083 | 532 | 29.0219 | 532 | 28.4622 | 532 | 1350 | | 760 | 32.7641 | 527 | 30,4615 | 527 | 29.0751 | | 28.5154 | 527 | 1368 | | 770 | 32.8168 | 521 | 30,5142 | 521 | 29.1278 | | 28.5681 | 521 | 1386 | | 780
790 | 32.8689 | 515 | 30.5663 | 515 | 29.1799 | | 28.6202 | 51.5 | 1404 | | 790 | 32.9204 | 510 | 30.6178 | 510 | 29.2314 | 510 | 28.6717 | 510 | 1422 | | 800 | 32.9714 | 2472 | 30.6688 | 2472 | 29.2824 | 2472 | 28.7227 | 2472 | 1440 | | 850 | 33.2186 | 2352 | 30,9160 | 2352 | 29.5296 | | 28.9699 | 2353 | 1530 | | 900 | 33,4538 | 2243 | 31.1512 | 2243 | 29.7648 | | 29.2052 | 2243 | 1620 | | 950 | 33.6781 | 2145 | 31,3755 | 2145 | 29.9891 | | 29.4295 | 2145 | 1710 | | 1000 | 33.8926 | 2053 | 31.5900 | 2053 | 30.2036 | | 29.6440 | 2053 | 1800 | | 1050 | 34.0979 | 1970 | 31,7953 | 1970 | 30.4089 | 1971 | 29.8493 | 1970 | 1890 | | 1100 | 34.2949 | 1893 | 31.9923 | 1893 | 30,6060 | 1893 | 30.0463 | 1893 | 1980 | | 1150 | 34.4842 | 1821 | 32.1816 | 1821 | 30.7953 | 1821 | 30.2356 | 1821 | 2070 | | 1200 | 34.6663 | 1756 | 32.3637 | 1756 | 30 .9 774 | | 30.4177 | 1756 | 2160 | | 1250 | 34.8419 | 1695 | 32.5393 | 1 69 5 | 31.1530 | 1695 | 30.5933 | 1 69 5 | 2250 | | 1300 | 35,0114 | 1638 | 32.7088 | 1638 | 31,3225 | 1638 | 30.7628 | 1639 | 2340 | | 1350 | 35.1752 | 1584 | 32.8726 | 1584 | 31.4863 | | 30.9267 | 1584 | 2430 | | 1400 | 35.3336 | 1535 | 33.0310 | 1535 | 31.6447 | | 31.0851 | 1535 | 2520 | | 1450 | 35.4871 | 1488 | 33.1845 | 1488 | 31.7982 | | 31.2386 | 1488 | 2610 | | 1500 | 35.6359 | 1444 | 33.3333 | 1444 | 31.9470 | 1444 | 31.3874 | 1444 | 2700 | | 1550 | 35.7803 | 1404 | 33.4777 | 1404 | 32.0914 | 1404 | 31.5318 | 1404 | 2790 | | 1600 | 35.9207 | 1364 | 33.6181 | 1364 | 32.2318 | 1364 | 31.6722 | 1364 | 2880 | | 1650 | 36.0571 | 1329 | 33.7545 | 1329 | 32.3682 | 1329 | 31.8086 | 1329 | 2970 | | 1700 | 36.1900 | 1294 | 33.8874 | 1294 | 32.5011 | | 31.9415 | 1294 | 3060 | | 1750 | 36.3194 | 1262 | 34.0168 | 1262 | 32.6305 | 1262 | 32.0709 | 1262 | 3150 | | 1800 | 36.4456 | 1232 | 34.1430 | 1232 | 32.7567 | 1232 | 32.1971 | 1232 | 3240 | | 1850 | 36.5688 | 1202 | 34.2662 | 1202 | 32.8799 | | 32.3203 | 1202 | 3330 | | 1900 | 36.6890 | 1175 | 34.3864 | 1175 | 33,0001 | | 32,4405 | 1175 | 3420 | | 1950 | 36.8065 | 1148 | 34,5039 | 1148 | 33.1176 | | 32.5580 | 1148 | 3510 | | 2000 | 36,9213 | 1124 | 34.6187 | 1124 | 33.2324 | | 32.6728 | 1124 | 3600 | | 2050 | 37.0337 | 1100 | 34.7311 | 1100 | 33.3448 | 1100 | 32.7852 | 1100 | 3690 | | 2100 | 37.1437 | 1077 | 34.8411 | 1077 | 33.4548 | 1077 | 32.8952 | 1077 | 3780 | | 2150 | 37.2514 | | 34.9488 | 1056 | 33.562 5 | 1056 | 33.0029 | 1056 | 3870 | | 2200 | 37.3570 | | 35.0544 | 1035 | 33.6681 | | 33.1085 | 1035 | 3960 | | 2 2 50 | 37.4605 | 1015 | 35.1579 | 1015 | 33.7716 | 1015 | 33.2120 | 1015 | 4050 | | 2300 | 37.5620 | 997 |
35,2594 | 997 | 33.8731 | 997 | 33.3135 | 997 | 4140 | | 2350 | 37.6617 | 978 | 35.3591 | 978 | 33,9728 | | 33.4132 | 978 | 4230 | | 2400 | 37 .7 595 | 961 | 35.4569 | 961 | 34.0706 | | 33.5110 | 961 | 4320 | | 2450 | 37.8556 | | 35.5530 | 945 | 34.1667 | 945 | 6.071 | 945 | 4410 | | 2500 | 37.9501 | 928 | 35.6475 | 928 | 34.2612 | 928 | 33.7016 | 928 | 4500 | | 2550 | 38.0429 | | 35.7403 | 912 | 34.3540 | | 33.7944 | 912 | 4590 | | 2600 | 38.1341 | | 35.8315 | 898 | 34.4452 | | 33.8856 | 898 | 4680 | | 2650 | 38.2239
38.3123 | | 35.9213 | | 34.5350 | | 33.9754 | 884 | 4770 | | 2700
2750 | 38.3992 | | 36.0097
36.0966 | | 34.6234
34.7103 | | 34.0638
34.1507 | 869
856 | 4860
4950 | | 2800 | 38.4848 | 844 | 36.1822 | | 34.7959 | | | | | | 2850 | 38.5692 | | 36.2666 | | 34.7959
34.8803 | | 34.2363
34.3207 | | 5040 | | 2900 | 38.6522 | | 36.3496 | | 34.8803
34.9633 | | 34.3207
34.4037 | 830 | 5130 | | 2950 | 38.7341 | | 36.4315 | | 35.0452 | | 34.4057
34.4856 | 819 | 5220
5310 | | 3000 | 38.8148 | | 36.5122 | | 35.1259 | | 34.5663 | 807 | 5400 | | - | · · · - | , | | | | _ | | | J400 | | °K | ı | atm | 4 | atm | 7 | atm | 10 | atm | *R | |---------------------------------|---|---------------------------------|---|---|---|--|---|---|--------------------------------------| | 100
110
120
130
140 | 20.794
21.1381
21.4494
21.7342
21.9969 | 2627 | 19.981
20.2851
20.5602 | 304
2751
2529 | 19.651
19.9448 | 294
26 3 9 | | | 180
198
216
234
252 | | 150
160
170
180
190 | 22.2411
22.4690
22.6828
22.8844
23.0748 | 2138
2016
1904 | 20.8131
21.0476
21.2664
21.4719
21.6656 | 2345
2188
2055
1937
1832 | 20.2087
20.4508
20.6754
20.8853
21.0826 | 2421
2246
20 99
1973
1860 | 19.8036
20.0550
20.2860
20.5008
20.7018 | 2514
2310
2148
2010
1890 | 270
288
306
324
342 | | 200
210
220
230
240 | 23.2553
23.4270
23.5906
23.7470
23.8968 | 1636
1564
1498 | 21.8488
22.0227
22.1882
22.3462
22.4974 | 1739
1655
1580
1512
1449 | 21.2686
21.4449
21.6123
21.7720
21.9245 | 1763
1674
1597
1525
1461 | 20.8908
21.0696
21.2391
21.4005
21.5545 | 1788
1 <i>6</i> 95
1614
1540
1473 | 360
378
396
414
432 | | 250
260
270
280
290 | 24.0405
24.1786
24.3117
24.4400
24.5640 | 1331
1283
1240 | 22.6423
22.7814
22.9154
23.0446
23.1693 | 1 <i>3</i> 91
1340
1292
1247
1206 | 22.0706
22.2109
22.3458
22.4758
22.6012 | 1403
1349
1300
1254
1212 | 21.7018
21.8433
21.9792
22.1098
22.2361 | 1415
1359
1306
1263
1218 | 450
468
486
504
522 | | 300
310
320
330
340 | 24.6839
24.8001
24.9128
25.0222
25.1286 | 1127
1094
1064 | 23.2899
23.4066
23.5198
23.6297
23.7364 | 1167
1132
1099
1067
1040 | 22.7224
22.8397
22.9535
23.0639
23.1710 | 1173
1138
1104
1071
1044 | 22.3579
22.4758
22.5900
22.7008
22.8084 | 1179
1142
1108
1076
1048 | 540
558
576
594
612 | | 350
360
370
380
390 | 25.2322
25.3330
25.4313
25.5273
25.6210 | 983
960
937 | 23.8404
23.9416
24.0402
24.1365
24.2304 | 1012
986
963
939
920 | 23.2754
23.3769
23.4758
23.5724
23.6666 | 1015
989
966
942
921 | 22.9132
23.0151
23.1143
23.2112
23.3056 | 1019
992
969
944
924 | 630
648
666
684
702 | | 400
410
420
430
440 | 25.7127
25.8023
25.8900
25.9760
26.0601 | 877
860
841 | 24.3224
24.4122
24.5001
24.5863
24.6706 | 898
879
862
843
828 | 23.7587
23.8489
23.9369
24.0233
24.1078 | 902
880
864
845
830 | 23.3980
23.4884
23.5766
23.6632
23.7479 | 904
882
866
847
831 | 720
738
756
774
792 | | 450
460
470
480
490 | 26.1428
26.2238
26.3034
26.3814
26.4583 | .796
780
7 69 | 24.7534
24.8346
24.9143
24.9925
25.0694 | 812
797
782
769
756 | 24.1908
24.2721
24.3519
24.4302
24.5073 | 81 3
798
783
771
757 | 23.8310
23.9125
23.9925
24.0709
24.1481 | 815
800
784
772
758 | 810
828
846
864
882 | | 500
510
520
530
540 | 26.5337
26.6079
26.6810
26.7528
26.8235 | 731 | 25.1450
25.2193
25.2925
25.3644
25.4352 | 743
732
719
708
697 | 24.5830
24.6574
24.7307
24.8027
24.8736 | 744
733
720
709
69 8 | 24.2239
24.2985
24.3718
24.4439
24.5149 | 746
733
721
710
699 | 900
918
936
954
972 | | 550
560
570
580
590 | 26.8932
26.9618
27.0294
27.0960
27.1618 | 686
676
666
658
648 | 25.5049
25.5736
25.6413
25.7080
25.7738 | 687
677
667
658
649 | 24.9434
25.0122
25.0800
25.1467
25.2126 | 688
678
667
659
649 | 24.5848
24.6537
24.7215
24.7883
24.8543 | 689
678
668
660
650 | 990
1008
1026
1044
1062 | | 600
610
620
630
640 | 27.2266
27.2905
27.3535
27.4157
27.4772 | 639
630
622
615
607 | 25.8387
25.9027
25.9658
26.0280
26.0895 | 640
631
622
615
608 | 25.2775
25.3416
25.4047
25.4670
25.5286 | 641
631
623
616
608 | 24.9193
24.9834
25.0466
25.1089
25.1705 | 641
632
623
616
609 | 1080
1098
1116
1134
1152 | | 650
660
670
680
690 | 27.5379
27.5977
27.6568
27.7152
27.7729 | 598
591
584
577
570 | 26.1503
26.2101
26.2693
26.3277
26.3855 | 598
592
584
578
570 | 25.5894
25.6493
25.7085
25.7670
25.8248 | 599
592
585
578
571 | 25.2314
25.2913
25.3506
25.4091
26.4669 | 599
593
585
578
572 | 1170
1188
1206
1224
1242 | | 700 | 27.8299 | | 26.4425 | | 25.8819 | | 25.5241 | | 1260 | | °K | 1 | atm | 4 | atm | 7 | atm | 10 | atm | •̂R | |--------------|--------------------|---------------|--------------------|--------------------|--------------------|----------------------------|--------------------|---------------|--------------| | 700 | 07.0000 | | 0/ 440= | | | | | | | | 700 | 27.8299 | 564 | 26,4425 | 56 5 | 25.8819 | 564 | 25.5241 | 565 | 1260 | | 710 | 27.8863 | 558 | 26.4990 | 557 | 25.9383 | 558 | 25.5806 | 558 | 1278 | | 720
730 | 27.9421
27.9971 | 550 | 26.5547 | 551 | 25.9941 | 551 | 25.6364 | 551 | 1296 | | 740 | 28.0516 | 545
538 | 26.6098
26.6643 | 545
539 | 26.0492
26.1038 | 546
538 | 25.6915
25.7461 | 546
539 | 1314
1332 | | | | | | | | | | | | | 750
760 | 28.1054
28.1586 | 532
527 | 26.7182
26.7714 | 532
5 27 | 26.1576
26.2109 | 53 3
52 8 | 25.8000
25.8533 | 533
528 | 1350
1368 | | 770 | 28.2113 | 521 | 26.8241 | 527
522 | 26.2637 | 52 6
521 | 25.9061 | 522 | 1386 | | 780 | 28.2634 | 515 | 26.8763 | 515 | 26.3158 | 516 | 25.9583 | 516 | 1404 | | 790 | 28.3149 | 510 | 26.927 8 | 510 | 26.3674 | 511 | 26.0099 | 511 | 1422 | | | | | | | | | | | | | 800 | 28.3659 | 2473 | 26.9788 | 2474 | 26.4185 | 2474 | 26.0610 | 2475 | 1440 | | 850 | 28.6132 | 2352 | 27,2262 | 2353 | 26.6659 | 2354 | 26.3085 | 2 3 55 | 1530 | | 900 | 28.8484 | 2243 | 27.4615 | 2244 | 26.9013 | 2245 | 26.5440 | 2246 | 1620 | | 950
1000 | 29.0727
29.2872 | 21.45
2054 | 27.6859
27.9005 | 2146
2054 | 27.1258
27.3404 | 21 46
2055 | 26.7686
26.9833 | 2147
2055 | 1710
1800 | | | 27.2072 | 2034 | 21.7005 | 2054 | 21,5404 | 2055 | 20.70)) | 2055 | 1000 | | 1050 | 29.4926 | 1970 | 28.1059 | 1970 | 27.5459 | 1971 | 27.1888 | 1971 | 1890 | | 1100 | 29.6896 | 1893 | 28.3029 | 1894 | 27.7430 | 1894 | 27.3859 | 1895 | 1980 | | 1150 | 29.8789 | 1821 | 28.4923 | 1821 | 27.9324 | 1822 | 27.5754 | 1822 | 2070 | | 1200
1250 | 30.0610 | 1756 | 28.6744 | 1757 | 28.1146 | 1756 | 27.7576 | 1757 | 2160 | | 1250 | 30.2366 | 1695 | 28.8501 | 1 <i>6</i> 95 | 28.2902 | 1 69 6 | 27.9333 | 1696 | 2250 | | 1300 | 30.4061 | 1638 | 29.0196 | 1638 | 28.4598 | 1638 | 28.1029 | 1638 | 2340 | | 1350 | 30.5699 | 1584 | 29.1834 | 1585 | 28.6236 | 1585 | 28.2667 | 1585 | 2430 | | 1400 | 30.7283 | 1535 | 29.3419 | 1535 | 28.7821 | 15 3 5 | 28.4252 | 1536 | 2520 | | 1450 | 30.8818 | 1489 | 29.4954 | 1488 | 28.9356 | 1489 | 28.5788 | 1488 | 2610 | | 1500 | 31.0307 | 1444 | 29.6442 | 1444 | 29.0845 | 1444 | 28 .72 76 | 1445 | 2700 | | 1550 | 31,1751 | 1404 | 29.7886 | 1404 | 29.2289 | 1404 | 28.8721 | 1404 | 2790 | | 1600 | 31.3155 | 1364 | 29.9290 | 1365 | 29.3693 | 1365 | 29.0125 | 1364 | 2880 | | 1650 | 31,4519 | 1329 | 30.0655 | 1329 | 29.5058 | 1329 | 29.1489 | 1330 | 2970 | | 1700
1750 | 31.5848
31.7142 | 1294 | 30.1984 | 1295 | 29.6387 | 1294 | 29.2819 | 1294 | 3060 | | 1750 | 31.7142 | 1262 | 30.3279 | 1261 | 29.7681 | 1262 | 29.4113 | 1262 | 3150 | | 1800 | 31.8404 | 1232 | 30.4540 | 1232 | 29.8943 | 1232 | 29.5375 | 1233 | 3240 | | 1850 | 31.9636 | 1202 | 30.5772 | 1202 | 30.0175 | 1202 | 29.6608 | 1202 | 3330 | | 1900 | 32.0838 | 1175 | 30.6974 | 1175 | 30.1377 | 1176 | 29.7810 | 1175 | 3420 | | 1950 | 32,2013 | 1148 | 30.8149 | 1148 | 30.2553 | 1148 |
29.8985 | 1148 | 3510 | | 2000 | 32.3161 | 1124 | 30.9297 | 1124 | 30.3701 | 1124 | 30.0133 | 1124 | 3600 | | 2050 | 32,4285 | 1100 | 31.0421 | 1100 | 30.4825 | 1100 | 30.1257 | 1101 | 3690 | | 2100 | 32.5385 | 1077 | 31.1521 | 1077 | 30.5925 | 1077 | 30.2358 | 1077 | 3780 | | 2150 | 32.6462 | 1056 | 31.2598 | 1057 | 30.7002 | 1056 | 30.3435 | 1056 | 3870 | | 2200 | 32.7518 | 1035 | 31.3655 | 1035 | 30.8058 | 1035 | 30.4491 | 1035 | 3960 | | 2250 | 32.8553 | 1015 | 31.4690 | 1015 | 30.9093 | 1015 | 30.5526 | 1015 | 4050 | | 2300 | 32.9568 | 997 | 31.5705 | 997 | 31.0108 | 997 | 30.6541 | 997 | 4140 | | 2350 | 33.0565 | 978 | 31.6702 | 978 | 31.1105 | 978 | 30.7538 | 978 | 4230 | | 2400 | 33,1543 | 961 | 31.7680 | 961 | 31.2083 | 962 | 30.8516 | 961 | 4320 | | 2450 | 33.2504 | 945 | 31.8641 | 945 | 31.3045 | 945 | 30.9477 | 945 | 4410 | | 2500 | 33.3449 | 928 | 31.9586 | 928 | 31.3990 | 928 | 31.0422 | 929 | 4500 | | 2550 | 33.4377 | 912 | 32.0514 | 912 | 31.4918 | 912 | 31.1351 | 912 | 4590 | | 2600 | 33.5289 | 898 | 32.1426 | 898 | 31.5830 | 898 | 31.2263 | 898 | 4680 | | 2650 | 33.6187 | 884 | 32.2324 | 884 | 31.6728 | 884 | 31.3161 | 884 | 4770 | | 2700
2750 | 33.7071
33.7940 | 869
856 | 32.3208
32.4077 | 869
856 | 31.7612
31.8481 | 869
856 | 31.4045
31.4914 | 869
856 | 4860
4950 | | 2800 | 33.8796 | | 32,4933 | | | | | | 5040 | | 2850 | 33.9640 | 844
830 | 32.5777 | 844
830 | 31.9337
32.0181 | 844
830 | 31.5770
31.6614 | 844
830 | 51 30 | | 2900 | 34.0470 | 830
819 | 32.6607 | 819 | 32.1011 | 819 | 31.7444 | 819 | 5220 | | 2950 | 34.1289 | 807 | 32.7426 | 807 | 32.1830 | 807 | 31.8263 | 807 | 5310 | | 3000 | 34.2096 | | 32.8233 | | 32.2637 | | 31.9070 | | 5400 | | | | | | | | | | | | | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | °R | |---------------------------------|---|--------------------------------------|--------------------------------------|--------------------------|-------------------------|----------------|---------|-------------|---------------------------------| | | | | • | | | | | | | | 150
160
170
180
190 | 19.8036
20.0550
20.2860
20.5008
20.7018 | 2514
2310
2148
2010
1890 | 18.10
18.474
18.778
19.0389 | 37
304
261
2320 | 17.2
17.74
18.121 | 5
38
310 | | | 270
288
306
324
342 | | 200 | 20.8908 | 1788 | 19.2709 | 2113 | 18.431 | 263 | 17.74 | 34 | 360 | | 210 | 21.0696 | 1695 | 19.4822 | 1949 | 18.694 | 232 | 18.084 | 282 | 378 | | 220 | 21.2391 | 1614 | 19.6771 | 1820 | 18.926 | 209 | 18.366 | 245 | 396 | | 230 | 21.4005 | 1540 | 19.8591 | 1707 | 19.135 | 192 | 18.611 | 217 | 414 | | 240 | 21.5545 | 1473 | 20.0298 | 1616 | 19.327 | 178 | 18.828 | 196 | 432 | | 250 | 21.7018 | 1415 | 20.1914 | 1531 | 19.505 | 167 | 19.024 | 182 | 450 | | 260 | 21.8433 | 1359 | 20.3445 | 1461 | 19.672 | 157 | 19.206 | 1 <i>69</i> | 468 | | 270 | 21.9792 | 1306 | 20.4906 | 1396 | 19.829 | 149 | 19.375 | 158 | 486 | | 280 | 22.1098 | 1263 | 20.6302 | 1339 | 19.978 | 142 | 19.533 | 150 | 504 | | 290 | 22.2361 | 1218 | 20.7641 | 1287 | 20.120 | 136 | 19.683 | 142 | 522 | | 300 | 22.3579 | 1179 | 20.8928 | 1239 | 20.2555 | 1300 | 19.825 | 136 | 540 | | 310 | 22.4758 | 1142 | 21.0167 | 1195 | 20.3855 | 1248 | 19.961 | 130 | 558 | | 320 | 22.5900 | 1108 | 21.1362 | 1156 | 20.5103 | 1204 | 20.091 | 125 | 576 | | 330 | 22.7008 | 1076 | 21.2518 | 1119 | 20.6307 | 1161 | 20.216 | 119 | 594 | | 340 | 22.8084 | 1048 | 21.3637 | 1087 | 20.7468 | 1126 | 20.335 | 117 | 612 | | 350 | 22,9132 | 1019 | 21.4724 | 1053 | 20.8594 | 1087 | 20.4516 | 1120 | 630 | | 360 | 23,0151 | 992 | 21.5777 | 1025 | 20.9681 | 1055 | 20.5636 | 1085 | 648 | | 370 | 23,1143 | 9 69 | 21.6802 | 997 | 21.0736 | 1027 | 20.6721 | 1052 | 666 | | 380 | 23,2112 | 944 | 21.7799 | 972 | 21.1763 | 997 | 20.7773 | 1021 | 684 | | 390 | 23,3056 | 924 | 21.8771 | 948 | 21.2760 | 973 | 20.8794 | 995 | 702 | | 400 | 23.3980 | 904 | 21.9719 | 926 | 21.3733 | 947 | 20.9789 | 967 | 720 | | 410 | 23.4884 | 882 | 22.0645 | 904 | 21.4680 | 924 | 21.0756 | 943 | 738 | | 420 | 23.5766 | 866 | 22.1549 | 883 | 21.5604 | 903 | 21.1699 | 920 | 756 | | 430 | 23.6632 | 847 | 22.2432 | 864 | 21.6507 | 880 | 21.2619 | 898 | 774 | | 440 | 23.7479 | 831 | 22.3296 | 849 | 21.7387 | 864 | 21.3517 | 878 | 792 | | 450 | 23.8310 | 815 | 22.4145 | 830 | 21.8251 | 846 | 21.4395 | 860 | 810 | | 460 | 23.9125 | 800 | 22.4975 | 81.3 | 21.9097 | 827 | 21.5255 | 840 | 828 | | 470 | 23.9925 | 784 | 22.5788 | 797 | 21.9924 | 811 | 21.6095 | 823 | 846 | | 480 | 24.0709 | 772 | 22.6585 | 785 | 22.0735 | 794 | 21.6918 | 807 | 864 | | 490 | 24.1481 | 758 | 22.7370 | 7 <i>6</i> 9 | 22.1529 | 782 | 21.7725 | 792 | 882 | | 500 | 24.2239 | 746 | 22.8139 | 756 | 22,2311 | 767 | 21.8517 | 777 | 900 | | 510 | 24.2985 | 733 | 22.8895 | 744 | 22,3078 | 753 | 21.9294 | 763 | 918 | | 520 | 24.3718 | 721 | 22.9639 | 730 | 22,3831 | 740 | 22.0057 | 748 | 936 | | 530 | 24.4439 | 710 | 23.0369 | 719 | 22,4571 | 728 | 22.0805 | 736 | 954 | | 540 | 24.5149 | 699 | 23.1088 | 708 | 22,5299 | 715 | 22.1541 | 724 | 972 | | 550 | 24.5848 | 689 | 23.1796 | 696 | 22.6014 | 704 | 22.2265 | 71.2 | 990 | | 560 | 24.6537 | 678 | 23.2492 | 686 | 22.6718 | 693 | 22.2977 | 699 | 1008 | | 570 | 24.7215 | 668 | 23.3178 | 676 | 22.7411 | 683 | 22.3676 | 689 | 1026 | | 580 | 24.7883 | 660 | 23.3854 | 665 | 22.8094 | 672 | 22.4365 | 679 | 1044 | | 590 | 24.8543 | 650 | 23.4519 | 657 | 22.8766 | 663 | 22.5044 | 668 | 1062 | | 600 | 24.9193 | 641 | 23.5176 | 647 | 22.9429 | 652 | 22.5712 | 659 | 1080 | | 610 | 24.9834 | 632 | 23.5823 | 637 | 23.0081 | 643 | 22.6371 | 648 | 1098 | | 620 | 25.0466 | 623 | 23.6460 | 630 | 23.0724 | 635 | 22.7019 | 639 | 1116 | | 630 | 25.1089 | 616 | 23.7090 | 620 | 23.1359 | 626 | 22.7658 | 631 | 1134 | | 640 | 25.1705 | 609 | 23.7710 | 614 | 23.1985 | 618 | 22.8289 | 623 | 1152 | | 650 | 25.2314 | 599 | 23.8324 | 604 | 23.2603 | 608 | 22.8912 | 613 | 1170 | | 660 | 25.2913 | 593 | 23.8928 | 597 | 23.3211 | 601 | 22.9525 | 605 | 1188 | | 670 | 25.3506 | 585 | 23.9525 | 589 | 23.3812 | 594 | 23.0130 | 597 | 1206 | | 680 | 25.4091 | 578 | 24.0114 | 583 | 23.4406 | 587 | 23.0727 | 591 | 1224 | | 690 | 26.4669 | 572 | 24.0697 | 575 | 23.4993 | 578 | 23.1318 | 582 | 1242 | | 700 | 25.5241 | | 24.1272 | | 23.5571 | | 23.1900 | | 1260 | | | 1 | | | | | | | | 5/N | |---------------|--------------------|---------------|--------------------|-----------------|-----------------|------|-----------------|-----------------------|--------------| | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | °R | | 700 | 25 5243 | | | | | | | | | | 700 | 25.5241 | 565 | 24.1272 | 568 | 23.5571 | 573 | 23,1900 | 576 | 1260 | | 710 | 25.5806 | 558 | 24.1840 | 561 | 23.6144 | 564 | 23,2476 | 568 | 1278 | | 720 | 25.6364 | 551 | 24.2401 | 555 | 23.6708 | 557 | 23,3044 | 561 | 1296 | | 730 | 25.6915 | 546 | 24.2956 | 549 | 23.7265 | 553 | 23.3605 | 555 | 1314 | | 740 | 25.7461 | 539 | 24.3505 | 54 2 | 23.7818 | 545 | 23.4160 | 548 | 1332 | | 750
760 | 25.8000
25.8533 | 533 | 24.4047 | 536 | 23.8363 | 539 | 23.4708 | 542 | 1350 | | 770 | 25.9061 | 528 | 24.4583 | 531 | 23.8902 | 532 | 23.5250 | 536 | 1368 | | 780 | 25.9583 | 522
516 | 24.5114 | 524 | 23.9434 | 528 | 23.5786 | 530 | 1386 | | 790 | 26.0099 | 516
511 | 24.5638
24.6157 | 519 | 23.9962 | 520 | 23.6316 | 523 | 1404 | | | 20,0077 | 311 | 24.0157 | 513 | 24.0482 | 517 | 23.6839 | 518 | 1422 | | 800 | 26.0610 | 2475 | 24.6670 | 2487 | 24.0999 | 2496 | 23.7357 | | 1440 | | 850 | 26.3085 | 2 3 55 | 24.9157 | 2364 | 24.3495 | 2374 | 23.7357 | 2507 | 1440 | | 900 | 26.5440 | 2246 | 25,1521 | 2252 | 24.5869 | 2258 | 24.2246 | 2382 | 1530 | | 950 | 26.7686 | 2147 | 25.3773 | 2153 | 24.8127 | 2160 | 24.4513 | 2267 | 1620 | | 1000 | 26.9833 | 2055 | 25.5926 | 2060 | 25.0287 | 2065 | 24.6678 | 21 6 5
2070 | 1710
1800 | | 1050 | 27.1888 | 1971 | 25.7986 | 1977 | 25.2352 | 1982 | 24.8748 | 1985 | 1890 | | 1100 | 27.3859 | 1895 | 25.9963 | 1898 | 25.4334 | 1902 | 25.0733 | 1907 | 1980 | | 1150 | 27.5754 | 1822 | 26.1861 | 1824 | 25.6236 | 1828 | 25.2640 | 1831 | 2070 | | 1200 | 27.7576 | 1757 | 26.3685 | 1761 | 25.8064 | 1763 | 25.4471 | 1766 | 2160 | | 1 2 50 | 27.9333 | 1696 | 26.5446 | 1698 | 25.9827 | 1700 | 25.6237 | 1702 | 2250 | | 1300 | 28.1029 | 1638 | 26.7144 | 1641 | 26.1527 | 1644 | 25.7939 | 1646 | 2340 | | 1350 | 28.2667 | 1585 | 26.878 5 | 1587 | 26.3171 | 1589 | 25.9585 | 1591 | 2430 | | 1400 | 28.4252 | 1536 | 27.0372 | 1538 | 26.4760 | 1539 | 26.1176 | 1540 | 2520 | | 1450 | 28.5788 | 1488 | 27.1910 | 1489 | 26.6299 | 1491 | 26.2716 | 1493 | 2610 | | 1500 | 28.7276 | 1445 | 27.3399 | 1446 | 26.7790 | 1447 | 26.4209 | 1450 | 2700 | | 1550
1600 | 28.8721
29.0125 | 1404 | 27.4845 | 1405 | 26.9237 | 1407 | 26.5659 | 1408 | 2790 | | 1650 | 29.1489 | 1364 | 27.6250 | 1366 | 27.0644 | 1367 | 26,7067 | 1367 | 2880 | | 1700 | 29.2819 | 1330 | 27.7616 | 1330 | 27.2011 | 1331 | 26.8434 | 1332 | 2970 | | 1750 | 29.4113 | 1294 | 27.8946 | 1295 | 27.3342 | 1296 | 26.9766 | 1297 | 3060 | | | | 1262 | 28.0241 | 1264 | 27.4638 | 1264 | 27.1063 | 1265 | 3150 | | 1800 | 29.5375 | 1233 | 28,1505 | 1233 | 27.5902 | 1234 | 27,2328 | 1235 | 3240 | | 1850 | 29.6608 | 1202 | 28.2738 | 1203 | 27.7136 | 1203 | 27.3563 | 1204 | 3330 | | 1900 | 29.7810 | 1175 | 28.3941 | 1175 | 27.8339 | 1176 | 27.4767 | 1177 | 3420 | | 1950 | 29.8985 | 1148 | 28.5116 | 1149 | 27.9 515 | 1149 | 27.5944 | 1150 | 3510 | | 2000 | 30.0133 | 1124 | 28.6265 | 1125 | 28.0664 | 1125 | 27.7094 | 1125 | 3600 | | 2050
2100 | 30.1257
30.2358 | 1101 | 28.7390 | 1100 | 28.1789 | 1101 | 27.8219 | 1101 | 3690 | | 2150 | 30.3435 | 1077 | 28.8490 | 1078 | 28.2890 | 1079 | 27.9320 | 1079 | 3780 | | 2200 | 30.4491 | 1056 | 28.9568 | 1057 | 28.3969 | 1056 |
28.0399 | 1057 | 3870 | | 2250 | 30.5526 | 1035 | 29,0625 | 1035 | 28.5025 | 1036 | 28.1456 | 1036 | 3960 | | | | 1015 | 29.1660 | 1015 | 28.6061 | 1016 | 28.2492 | 1016 | 4050 | | 2300 | 30.6541 | 997 | 29.2675 | 998 | 28.7077 | 997 | 28,3508 | 998 | 4140 | | 2350 | 30.7538 | 978 | 29.3673 | 978 | 28.8074 | 979 | 28.4506 | 979 | 4230 | | 2400 | 30.8516 | 961 | 29.4651 | 962 | 28.9053 | 962 | 28.5485 | 962 | 4320 | | 2450
2500 | 30.9477 | 945 | 29.5613 | 945 | 29.0 015 | 945 | 28.6447 | 946 | 4410 | | | 31.0422 | 929 | 29.6558 | 928 | 29.0960 | 929 | 28.7393 | 929 | 4500 | | 550
600 | 31.1351
31.2263 | 912 | 29.7486 | 913 | 29.1889 | 913 | 28.8322 | 913 | 4590 | | 2650 | 31.3161 | 898 | 29.8399 | 898 | 29.2802 | 898 | 28.9235 | 898 | 4680 | | 700 | 31.4045 | 884 | 29.9297 | 884 | 29,3700 | | 29.0133 | 885 | 4770 | | 750 | 31.4914 | 869 | 30.0181 | 86 9 | 29.4585 | | 29.1018 | 869 | 4860 | | | | 856 | 30.1050 | 857 | 29.5454 | | 29.1887 | 857 | 4950 | | 800
850 | 31.5770
31.6614 | 844 | 30.1907 | 844 | 29.6310 | 844 | 29.2744 | 844 | 5040 | | 900 | 31.7444 | 830 | 30.2751 | 830 | 29.7154 | 831 | 29.3 588 | 831 | 5130 | | 950 | 31.8263 | 819 | 30.3581 | 819 | 29.7985 | | 29.4419 | 820 | 5220 | | 000 | 31.9070 | 807 | 30.4400
30.5207 | 807 | 29.8805 | | 29.5239 | 808 | 5310 | | | | | 20,3207 | | 29.9612 | | 29.6047 | | 5400 | | | | | | | | | | | | | °K | .01 | atm | .1 | atm | | atm | °R | |--------------------------------------|---|----------------------------|---|----------------------------|---|----------------------------|--------------------------------------| | 100
120
140
160
180 | 1.400
1.400
1.400
1.400
1.400 | | 1.402
1.401
1.401
1.401
1.400 | -1
-1 | 1.417
1.411
1.408
1.406 | -6
-3
-2
-2 | 180
216
252
288
324 | | 200
220
240
260
280 | 1.400
1.399
1.399
1.398
1.396 | -1
-1
-2
-1 | 1.400
1.400
1.399
1.398
1.396 | -1
-1
-2
-1 | 1.404
1.403
1.402
1.400
1.398 | -1
-1
-2
-2
-2 | 360
396
432
468
504 | | 300
320
340
360
380 | 1.395
1.393
1.390
1.388
1.385 | -2
-3
-2
-3
-3 | 1.395
1.393
1.390
1.388
1.385 | -2
-3
-2
-3
-3 | 1.396
1.394
1.392
1.389
1.386 | -2
-2
-3
-3
-4 | 540
576
612
648
684 | | 400
420
440
460
480 | 1.382
1.378
1.375
1.372
1.368 | -4
-3
-3
-4
-3 | 1.382
1.378
1.375
1.372
1.368 | -4
-3
-3
-4
-3 | 1.382
1.379
1.376
1.372
1.369 | -3
-3
-4
-3 | 720
756
792
828
864 | | 500
520
540
560
580 | 1.365
1.362
1.359
1.356
1.353 | -3
-3
-3
-3 | 1.365
1.362
1.359
1.355
1.353 | -3
-3
-4
-2
-3 | 1.366
1.362
1.359
1.356
1.353 | -4
-3
-3
-3 | 900
936
972
1008
1044 | | 600
620
640
660
680 | 1.350
1.347
1.344
1.342
1.339 | -3
-3
-2
-3
-2 | 1.350
1.347
1.344
1.342
1.339 | -3
-3
-2
-3
-2 | 1.350
1.347
1.344
1.342
1.340 | -3
-3
-2
-2
-2 | 1080
1116
1152
1188
1224 | | 700
720
740
760
780 | 1.337
1.335
1.333
1.331
1.329 | -2
-2
-2
-2
-2 | 1.337
1.335
1.333
1.331
1.329 | -2
-2
-2
-2
-2 | 1.337
1.335
1.333
1.331
1.329 | -2
-2
-2
-2
-2 | 1260
1296
1332
1368
1404 | | 800
900
1000
1100
1200 | 1.327
1.319
1.313
1.308
1.304 | -8
-6
-5
-4 | 1.327
1.319
1.313
1.308
1.304 | -8
-6
-5
-4 | 1.327
1.319
1.313
1.308
1.304 | -8
-6
-5
-4
-4 | 1440
1620
1800
1980
2160 | | 1300
1400
1500
1600
1700 | 1.300
1.297
1.294
1.292
1.289 | -3
-3
-2
-3
-2 | 1.300
1.297
1.294
1.292
1.289 | -3
-3
-2
-3
-2 | 1.300
1.297
1.294
1.292
1.289 | -3
-3
-2
-3
-2 | 2340
2520
2700
2880
3060 | | 1800
1900
2000
2100
2200 | 1.287
1.285
1.282
1.280
1.278 | -2
-3
-2
-2
-2 | 1.287
1.285
1.282
1.280
1.278 | -2
-3
-2
-2
-2 | 1.287
1.284
1.282
1.280
1.278 | -3
-2
-2
-2
-2 | 3240
3420
3600
3780
3960 | | 2300
2400
2500
2600
2700 | 1.276
1.274
1.272
1.270
1.268 | -2
-2
-2
-2
-2 | 1.276
1.274
1.272
1.270
1.268 | -2
-2
-2
-2
-2 | 1.276
1.274
1.272
1.270
1.268 | -2
-2
-2
-2
-2 | 4140
4320
4500
4680
4860 | | 2800
2900
3000 | 1.266
1.264
1.263 | -2
-1 | 1.266
1.264
1.263 | -2
-1 | 1.266
1.264
1.263 | -2
-1 | 5040
5220
5400 | | °K | ı | atm | 4 | atm | 7 | atm | 10 | atm | °R | |--------------------------------------|---|----------------------------|---|---------------------------------|---|---------------------------------|---|---------------------------------|--------------------------------------| | 120
140
160
180 | 1.417
1.411
1.408
1.406 | -6
-3
-2
-2 | 1.450
1.435
1.426 | -15
- 9
- 6 | 1.466
1.448 | -18
-12 | 1.500
1.471 | -29
-18 | 216
252
288
324 | | 200
220
240
260
280 | 1.404
1.403
1.402
1.400
1.398 | -1
-1
-2
-2
-2 | 1.420
1.415
1.412
1.408
1.405 | - 5
- 3
- 4
- 3
- 3 | 1.436
1.428
1.422
1.417
1.412 | - 8
6
5
4 | 1.453
1.441
1.432
1.425
1.420 | -12
- 9
- 7
- 5
- 6 | 360
396
432
468
504 | | 300
320
340
360
380 | 1.396
1.394
1.392
1.389
1.386 | -2
-2
-3
-3 | 1.402
1.399
1.396
1.392
1.389 | - 3
- 3
- 4
- 3 | 1.408
1.404
1.400
1.396
1.392 | - 4
- 4
- 4
- 4 | 1.414
1.409
1.405
1.400
1.396 | - 5
- 4
- 5
- 4
- 5 | 540
576
612
648
684 | | 400
420
440
460
480 | 1.382
1.379
1.376
1.372
1.369 | -3
-3
-4
-3 | 1.385
1.382
1.378
1.374
1.371 | - 3
- 4
- 4
- 3
- 4 | 1.388
1.384
1.380
1.376
1.373 | - 4
- 4
- 4
- 3
- 4 | 1.391
1.387
1.383
1.378
1.374 | - 4
- 4
- 5
- 4
- 3 | 720
756
792
828
864 | | 500
520
540
560
580 | 1.366
1.362
1.359
1.356
1.353 | -4
-3
-3
-3 | 1.367
1.364
1.360
1.357
1.354 | - 3
- 4
- 3
- 3
- 3 | 1.369
1.365
1.362
1.358
1.355 | - 4
- 3
- 4
- 3
- 3 | 1.371
1.367
1.363
1.360
1.356 | - 4
- 4
- 3
- 4
- 3 | 900
936
972
1008
1044 | | 600
620
640
660
680 | 1.350
1.347
1.344
1.342
1.340 | -3
-3
-2
-2
-2 | 1.351
1.348
1.345
1.343
1.340 | - 3
- 3
- 2
- 3
- 2 | 1.352
1.349
1.346
1.344
1.341 | - 3
- 3
- 2
- 3
- 2 | 1.353
1.350
1.347
1.344
1.342 | - 3
- 3
- 3
- 2
- 3 | 1080
1116
1152
1188
1224 | | 700
720
740
760
780 | 1,337
1,335
1,333
1,331
1,329 | -2
-2
-2
-2
-2 | 1.338
1.336
1.334
1.332
1.330 | - 2
- 2
- 2
- 2
- 2 | 1.339
1.336
1.334
1.332
1.330 | - 3
- 2
- 2
- 2
- 2 | 1.339
1.337
1.335
1.333
1.331 | - 2
- 2
- 2
- 2
- 2 | 1260
1296
1332
1368
1404 | | 800
900
1000
1100
1200 | 1.327
1.319
1.313
1.308
1.304 | -8
-6
-5
-4 | 1.328
1.320
1.313
1.308
1.304 | - 8
- 7
- 5
- 4
- 4 | 1.328
1.320
1.314
1.308
1.304 | - 8
- 6
- 6
- 4
- 3 | 1.329
1.320
1.314
1.309
1.304 | - 9
- 6
- 5
- 5
- 3 | 1440
1620
1800
1980
2160 | | 1300
1400
1500
1600
1700 | 1.300
1.297
1.294
1.292
1.289 | -3
-3
-2
-3
-2 | 1.300
1.297
1.294
1.292
1.289 | - 3
- 3
- 2
- 3
- 2 | 1.301
1.297
1.294
1.292
1.289 | - 4
- 3
- 2
- 3
- 2 | 1.301
1.297
1.295
1.292
1.289 | - 4
- 2
- 3
- 3
- 2 | 2340
2520
2700
2880
3060 | | 1800
1900
2000
2100
2200 | 1.287
1.284
1.282
1.280
1.278 | -3
-2
-2
-2
-2 | 1.287
1.284
1.282
1.280
1.278 | - 3
- 2
- 2
- 2
- 2 | 1.287
1.284
1.282
1.280
1.278 | - 3
- 2
- 2
- 2
- 2 | 1.287
1.285
1.282
1.280
1.278 | - 2
- 3
- 2
- 2
- 2 | 3240
3420
3600
3780
3960 | | 2300
2400
2500
2600
2700 | 1.276
1.274
1.272
1.270
1.268 | -2
-2
-2
-2
-2 | 1.276
1.274
1.272
1.270
1.268 | - 2
- 2
- 2
- 2
- 2 | 1.276
1.274
1.272
1.270
1.268 | - 2
- 2
- 2
- 2
- 2 | 1.276
1.274
1.272
1.270
1.268 | - 2
- 2
- 2
- 2
- 2 | 4140
4320
4500
4680
4860 | | 2800
2900
3000 | 1.266
1.264
1.263 | -2
-1 | 1.266
1.264
1.263 | - 2
- 1 | 1.266
1.264
1.263 | - 2
- 1 | 1.266
1.264
1.263 | - 2
- 1 | 5040
5220
5400 | | γ | = | C _n / | C | |---|---|------------------|---| | | | | | | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | ° R | |---------------------------------|---|---------------------------------|---|------------------------------
---|--------------------------------------|----------------------------------|------------------------------|---------------------------------| | 160
180 | 1.500
1.471 | -29
-18 | 1.840 | -157 | | | | | 288
324 | | 200
220
240
260
280 | 1.453
1.441
1.432
1.425
1.420 | -12
- 9
- 7
- 5
- 6 | 1.683
1.602
1.553
1.520
1.496 | - 81
49
33
24
18 | 2.080
1.818
1.694
1.623
1.577 | -262
-124
- 71
- 46
- 35 | 2.120
1.850
1.721
1.648 | -270
-129
- 73
- 49 | 360
396
432
468
504 | | 300 | 1.414 | - 5 | 1.478 | - 15 | 1.542 | - 24 | 1.599 | - 35 | 540 | | 320 | 1.409 | - 4 | 1.463 | - 13 | 1.518 | - 23 | 1.564 | - 27 | 576 | | 340 | 1.405 | - 5 | 1.450 | - 11 | 1.495 | - 17 | 1.537 | - 23 | 612 | | 360 | 1.400 | - 4 | 1.439 | - 10 | 1.478 | - 15 | 1.514 | - 19 | 648 | | 380 | 1.396 | - 5 | 1.429 | - 8 | 1.463 | - 13 | 1.495 | - 17 | 684 | | 400 | 1.391 | 4 | 1.421 | - 8 | 1.450 | - 11 | 1.478 | - 14 | 720 | | 420 | 1.387 | 4 | 1.413 | - 7 | 1.439 | - 10 | 1.464 | - 13 | 756 | | 440 | 1.383 | 5 | 1.406 | - 7 | 1.429 | - 10 | 1.451 | - 12 | 792 | | 460 | 1.378 | 4 | 1.399 | - 6 | 1.419 | - 8 | 1.439 | - 10 | 828 | | 480 | 1.374 | 3 | 1.393 | - 6 | 1.411 | - 7 | 1.429 | - 9 | 864 | | 500 | 1.371 | - 4 | 1.387 | - 5 | 1.404 | - 7 | 1.420 | - 9 | 900 | | 520 | 1.367 | - 4 | 1.382 | - 5 | 1.397 | - 7 | 1.411 | - 8 | 936 | | 540 | 1.363 | - 3 | 1.377 | - 5 | 1.390 | - 6 | 1.403 | - 7 | 972 | | 560 | 1.360 | - 4 | 1.372 | - 4 | 1.384 | - 6 | 1.396 | - 7 | 1008 | | 580 | 1.356 | - 3 | 1.368 | - 5 | 1.378 | - 5 | 1.389 | - 6 | 1044 | | 600 | 1.353 | - 3 | 1.363 | 3 | 1.373 | - 4 | 1.383 | - 5 | 1080 | | 620 | 1.350 | - 3 | 1.360 | 4 | 1.369 | - 5 | 1.378 | - 5 | 1116 | | 640 | 1.347 | - 3 | 1.356 | 4 | 1.364 | - 4 | 1.373 | - 5 | 1152 | | 660 | 1.344 | - 2 | 1.352 | 3 | 1.360 | - 4 | 1.368 | - 5 | 1188 | | 680 | 1.342 | - 3 | 1.349 | 3 | 1.356 | - 3 | 1.363 | - 4 | 1224 | | 700 | 1.339 | - 2 | 1.346 | - 3 | 1.353 | - 4 | 1.359 | - 4 | 1260 | | 720 | 1.337 | - 2 | 1.343 | - 2 | 1.349 | - 3 | 1.355 | - 3 | 1296 | | 740 | 1.335 | - 2 | 1.341 | - 3 | 1.346 | - 3 | 1.352 | - 3 | 1332 | | 760 | 1.333 | - 2 | 1.338 | - 2 | 1.343 | - 3 | 1.349 | - 4 | 1368 | | 780 | 1.331 | - 2 | 1.336 | - 3 | 1.340 | - 2 | 1.345 | - 3 | 1404 | | 800 | 1.329 | - 9 | 1.333 | - 9 | 1.338 | - 11 | 1.342 | - 12 | 1440 | | 900 | 1.320 | - 6 | 1.324 | - 8 | 1.327 | - 8 | 1.330 | - 9 | 1620 | | 1000 | 1.314 | - 5 | 1.316 | - 6 | 1.319 | - 7 | 1.321 | - 7 | 1800 | | 1100 | 1.309 | - 5 | 1.310 | - 4 | 1.312 | - 5 | 1.314 | - 6 | 1980 | | 1200 | 1.304 | - 3 | 1.306 | - 4 | 1.307 | - 4 | 1.308 | - 4 | 2160 | | 1300 | 1.301 | - 4 | 1.302 | - 4 | 1.303 | - 4 | 1.304 | - 4 | 2340 | | 1400 | 1.297 | - 2 | 1.298 | - 3 | 1.299 | - 3 | 1.300 | - 3 | 2520 | | 1500 | 1.295 | - 3 | 1.295 | - 3 | 1.296 | - 3 | 1.297 | - 4 | 2700 | | 1600 | 1.292 | - 3 | 1.292 | - 2 | 1.293 | - 3 | 1.293 | - 3 | 2880 | | 1700 | 1.289 | - 2 | 1.290 | - 3 | 1.290 | - 3 | 1.290 | - 2 | 3060 | | 1800 | 1.287 | - 2 | 1.287 | - 2 | 1.287 | - 2 | 1.288 | - 3 | 3240 | | 1900 | 1.285 | - 3 | 1.285 | - 3 | 1.285 | - 2 | 1.285 | - 2 | 3420 | | 2000 | 1.282 | - 2 | 1.282 | - 2 | 1.283 | - 3 | 1.283 | - 3 | 3600 | | 2100 | 1.280 | - 2 | 1.280 | - 2 | 1.280 | - 2 | 1.280 | - 2 | 3780 | | 2200 | 1.278 | - 2 | 1.278 | - 2 | 1.278 | - 2 | 1.278 | - 2 | 3960 | | 2300 | 1.276 | - 2 | 1.276 | - 2 | 1.276 | - 2 | 1.276 | - 2 | 4140 | | 2400 | 1.274 | - 2 | 1.274 | - 2 | 1.274 | - 2 | 1.274 | - 2 | 4320 | | 2500 | 1.272 | - 2 | 1.272 | - 2 | 1.272 | - 2 | 1.272 | - 2 | 4500 | | 2600 | 1.270 | - 2 | 1.270 | - 2 | 1.270 | - 2 | 1.270 | - 2 | 4680 | | 2700 | 1.268 | - 2 | 1.268 | - 2 | 1.268 | - 2 | 1.268 | - 2 | 4860 | | 2800
2900
3000 | 1.266
1.264
1.263 | - 2
- 1 | 1.266
1.264
1.263 | - 2
- 1 | 1.266
1.264
1.263 | - 2
- 1 | 1.266
1.264
1.263 | - 2
- 1 | 5040
5220
5400 | Table 8-7. SOUND VELOCITY AT LOW FREQUENCY IN OXYGEN | °K | .01 | atm | .1 | atm | ı | atm | °R | |---------------------------------|--------------------------------------|----------------------------|------------------------------|----------------------------|------------------------------|----------------------|---------------------------------| | 100
120
140
160
180 | .606
.664
.717
.766
.813 | 58
53
49
47
44 | .605
.663
.717
.766 | 58
54
49
47
44 | .659
.713
.764
.811 | 54
51
47
45 | 180
216
252
288
324 | | 200 | .857 | 41 | .857 | 41 | .856 | 42 | 360 | | 220 | .898 | 40 | .898 | 40 | .898 | 40 | 396 | | 240 | .938 | 38 | .938 | 38 | .938 | 38 | 432 | | 260 | .976 | 36 | .976 | 36 | .976 | 36 | 468 | | 280 | 1.012 | 36 | 1.012 | 36 | 1.012 | 35 | 504 | | 300 | 1.048 | 33 | 1.048 | 33 | 1.047 | 34 | 540 | | 320 | 1.081 | 32 | 1.081 | 32 | 1.081 | 33 | 576 | | 340 | 1.113 | 32 | 1.113 | 32 | 1.114 | 31 | 612 | | 360 | 1.145 | 30 | 1.145 | 30 | 1.145 | 30 | 648 | | 380 | 1.175 | 29 | 1.175 | 29 | 1.175 | 29 | 684 | | 400 | 1.204 | 28 | 1.204 | 28 | 1.204 | 28 | 720 | | 420 | 1.232 | 28 | 1.232 | 28 | 1.232 | 28 | 756 | | 440 | 1.260 | 26 | 1.260 | 26 | 1.260 | 27 | 792 | | 460 | 1.286 | 26 | 1.286 | 26 | 1.287 | 26 | 828 | | 480 | 1.312 | 26 | 1.312 | 26 | 1.313 | 26 | 864 | | 500 | 1.338 | 25 | 1.338 | 25 | 1.339 | 24 | 900 | | 520 | 1.363 | 24 | 1.363 | 24 | 1.363 | 25 | 936 | | 540 | 1.387 | 24 | 1.387 | 24 | 1.388 | 23 | 972 | | 560 | 1.411 | 24 | 1.411 | 24 | 1.411 | 24 | 1008 | | 580 | 1.435 | 22 | 1.435 | 22 | 1.435 | 23 | 1044 | | 600 | 1.457 | 23 | 1.457 | 23 | 1.458 | 22 | 1080 | | 620 | 1.480 | 22 | 1.480 | 22 | 1.480 | 22 | 1116 | | 640 | 1.502 | 22 | 1.502 | 22 | 1.502 | 22 | 1152 | | 660 | 1.524 | 21 | 1.524 | 21 | 1.524 | 22 | 1188 | | 680 | 1.545 | 22 | 1.545 | 22 | 1.546 | 21 | 1224 | | 700 | 1.567 | 21 | 1.567 | 21 | 1.567 | 21 | 1260 | | 720 | 1.588 | 20 | 1.588 | 20 | 1.588 | 21 | 1296 | | 740 | 1.608 | 21 | 1.608 | 21 | 1.609 | 20 | 1332 | | 760 | 1.629 | 20 | 1.629 | 20 | 1.629 | 20 | 1368 | | 780 | 1.649 | 19 | 1.649 | 20 | 1.649 | 20 | 1404 | | 800 | 1.668 | 96 | 1.669 | 9 5 | 1.669 | 96 | 1440 | | 900 | 1.764 | 92 | 1.764 | 92 | 1.765 | 91 | 1620 | | 1000 | 1.856 | 86 | 1.856 | 86 | 1.856 | 87 | 1800 | | 1100 | 1.942 | 84 | 1.942 | 84 | 1.943 | 83 | 1980 | | 1200 | 2.026 | 79 | 2.026 | 79 | 2.026 | 80 | 2160 | | 1300 | 2.105 | 77 | 2.105 | 77 | 2.106 | 77 | 2340 | | 1400 | 2.182 | 74 | 2.182 | 74 | 2.183 | 74 | 2520 | | 1500 | 2.256 | 72 | 2.256 | 72 | 2.257 | 72 | 2700 | | 1600 | 2.328 | 69 | 2.328 | 69 | 2.329 | 69 | 2880 | | 1700 | 2.397 | 68 | 2.397 | 68 | 2.398 | 67 | 3060 | | 1800 | 2.465 | 65 | 2.465 | 65 | 2.465 | 65 | 3240 | | 1900 | 2.530 | 63 | 2.530 | 63 | 2.530 | 63 | 3420 | | 2000 | 2.593 | 62 | 2.593 | 62 | 2.593 | 62 | 3600 | | 2100 | 2.655 | 60 | 2.655 | 60 | 2.655 | 61 | 3780 | | 2200 | 2.715 | 59 | 2.715 | 59 | 2.716 | 59 | 3960 | | 2300 | 2.774 | 58 | 2.774 | 58 | 2.775 | 57 | 4140 | | 2400 | 2.832 | 56 | 2.832 | 56 | 2.832 | 56 | 4320 | | 2500 | 2.888 | 55 | 2.888 | 55 | 2.888 | 55 | 4500 | | 2600 | 2.943 | 53 | 2.943 | 53 | 2.943 | 54 | 4680 | | 2700 | 2.996 | 53 | 2.996 | 53 | 2.997 | 52 | 4860 | | 2800
2900
3000 | 3.049
3.100
3.152 | 51
52 | 3.049
3.100
3.152 | 51
52 | 3.049
3.101
3.152 | 52
51 | 5040
5220
5400 | Table 8-7. SOUND VELOCITY AT LOW FREQUENCY IN OXYGEN - Cont. | a./ | a, | |-----|----| |-----|----| | | • | | | | | | | -, -0 | | |--------------------------------------|---|----------------------|---|----------------------------|---|----------------------------|---|----------------------------|--------------------------------------| | °K | | l atm | 4 | atm | 7 | atm | 10 | atm | *R | | 120
140
160
180 | .659
.713
.764
.811 | 54
51
47
45 | .703
.757
.807 | 54
50
46 | .750
.802 | 52
47 | .743
.797 | 5 4
49 | 216
252
288
324 | | 200 | .856 | 42 | .853 | 43 | .849 | 45 | .846 | 46 | 360 | | 220 | .898 | 40 | .896 | 41 | .894 | 41 | .892 | 42 | 396 | | 240 | .938 | 38 | .937 | 38 | .935 | 40 | .934 | 40 | 432 | | 260 | .976 | 36 | .975 | 37 | .975 | 37 | .974 | 39 | 468 | | 280 | 1.012 | 35 | 1.012 | 36 | 1.012 | 36 | 1.013 | 35 | 504 | | 300 | 1.047 | 34 | 1.048 | 34 | 1.048 | 34 | 1.048 | 35 | 540 | | 320 | 1.081 | 33 | 1.082 | 32 | 1.082 | 33 | 1.083 | 33 | 576 | | 340 | 1.114 | 31 | 1.114 | 32 | 1.115 | 32 | 1.116 | 32 | 612 | | 360 | 1.145 | 30 | 1.146 | 30 | 1.147 | 30 | 1.148 | 31 | 648 | | 380 | 1.175 | 29 | 1.176 | 29 | 1.177 | 30 | 1.179 | 29 | 684 | | 400 | 1.204 | 28 | 1.205 | 29 | 1.207 | 28 | 1.208 | 29 | 720 | | 420 | 1.232 | 28 | 1.234 | 28 | 1.235 | 28 | 1.237 | 28 | 756 | | 440 | 1.260 | 27 | 1.262 | 26 | 1.263 | 27 | 1.265 | 26 | 792 | | 460 | 1.287 | 26 | 1.288 | 27 | 1.290 | 26 | 1.291 | 27 | 828 | | 480 | 1.313 | 26 | 1.315 | 25 | 1.316 | 26 | 1.318 | 26 | 864 | | 500 | 1.339 | 24 | 1.340 | 25 | 1.342 | 25 | 1.344 | 25 | 900 | | 520 | 1.363 | 25 | 1.365 | 24 | 1.367 | 24 | 1.369 | 24 | 936 | | 540 | 1.388 | 23 | 1.389 | 24 | 1.391 | 24 | 1.393 | 24 | 972 | | 560 | 1.411 | 24 | 1.413 | 24 | 1.415 | 23 | 1.417 | 23 | 1008 | | 580 | 1.435 | 23 | 1.437 | 23 | 1.438 | 23 | 1.440 | 23 | 1044 | | 600 | 1.458 | 22 | 1.460 | 22 | 1.461 | 23 | 1.463 | 23 | 1080 | | 620 | 1.480 | 22 | 1.482 | 22 | 1.484 | 22 | 1.486 | 22 | 1116 | | 640 | 1.502 | 22 | 1.504 | 22 | 1.506 | 22 | 1.508 | 22 | 1152 | | 660 | 1.524 | 22 | 1.526 | 22 | 1.528 | 22 | 1.530 | 22 | 1188 | | 680 | 1.546 | 21 | 1.548 | 21 | 1.550 | 21 | 1.552 | 22 | 1224 | | 700 | 1.567 | 21 | 1.569 | 21 | 1.571 | 21 | 1.573 | 21 | 1260 | | 720 | 1.588 | 21 |
1.590 | 21 | 1.592 | 20 | 1.594 | 21 | 1296 | | 740 | 1.609 | 20 | 1.611 | 20 | 1.612 | 21 | 1.615 | 20 | 1332 | | 760 | 1.629 | 20 | 1.631 | 20 | 1.633 | 20 | 1.635 | 20 | 1368 | | 780 | 1.649 | 20 | 1.651 | 20 | 1.653 | 20 | 1.655 | 20 | 1404 | | 800 | 1.669 | 96 | 1.671 | 96 | 1.673 | 96 | 1.675 | 95 | 1440 | | 900 | 1.765 | 91 | 1.767 | 91 | 1.769 | 91 | 1.770 | 92 | 1620 | | 1000 | 1.856 | 87 | 1.858 | 87 | 1.860 | 86 | 1.862 | 86 | 1800 | | 1100 | 1.943 | 83 | 1.945 | 83 | 1.946 | 83 | 1.948 | 83 | 1980 | | 1200 | 2.026 | 80 | 2.028 | 79 | 2.029 | 80 | 2.031 | 79 | 2160 | | 1300 | 2.106 | 77 | 2.107 | 77 | 2.109 | 77 | 2.110 | 77 | 2340 | | 1400 | 2.183 | 74 | 2.184 | 74 | 2.186 | 74 | 2.187 | 75 | 2520 | | 1500 | 2.257 | 72 | 2.258 | 72 | 2.260 | 72 | 2.262 | 71 | 2700 | | 1600 | 2.329 | 69 | 2.330 | 69 | 2.332 | 68 | 2.333 | 69 | 2880 | | 1700 | 2.398 | 67 | 2.399 | 68 | 2.400 | 68 | 2.402 | 67 | 3060 | | 1800
1900
2000
2100
2200 | 2.465
2.530
2.593
2.655
2.716 | 62
61 | 2.467
2.531
2.595
2.657
2.717 | 64
64
62
60
59 | 2.468
2.533
2.596
2.658
2.718 | 65
63
62
60
59 | 2.469
2.535
2.597
2.659
2.720 | 66
62
62
61
58 | 3240
3420
3600
3780
3960 | | 2300
2400
2500
2600
2700 | 2.775
2.832
2.888
2.943
2.997 | 56
55
54 | 2.776
2.833
2.889
2.944
2.998 | 57
56
55
54
52 | 2.777
2.834
2.891
2.945
2.999 | 57
57
54
54
53 | 2.778
2.836
2.892
2.947
3.000 | 58
56
55
53
53 | 4140
4320
4500
4680
4860 | | 2800
2900
3000 | 3.049
3.101
3.152 | 51 | 3.050
3.102
3.154 | 52
52 | 3.052
3.103
3.155 | 51
52 | 3.053
3.104
3.156 | 51
52 | 5040
5220
5400 | Table 8-7. SOUND VELOCITY AT LOW FREQUENCY IN OXYGEN - Cont. | a | / 8 | ı | |---|-----|---| | | | | | °K | 10 | atm | 40 | atm | 70 | atm | 100 | atm | °R | |---------------------|----------------|------------------|----------------|--------------------------|----------------|----------|----------------|----------------|-------------------| | 160
180 | .743
.797 | 54
49 | .749 | 70 | | | | | 288 | | 200
220 | .846
.892 | 46
42 | .819
.876 | 57
51 | .812
.876 | 64
55 | .911 | 45 | 324
360
396 | | 240
260 | .934
.974 | 40
39 | .927
.973 | 46
42 | .931
.980 | 49
45 | .956
1.000 | 45
44
42 | 432
468 | | 280
3 0 0 | 1.013
1.048 | 35
35 | 1.015 | 4 0
3 7 | 1.025 | 41
39 | 1.042 | 41 | 504
540 | | 320 | 1.083 | 33 | 1.092 | 35 | 1.105 | 36 | 1.122 | 39
37 | 576 | | 340
360 | 1.116 | 32 | 1.127 | 34 | 1.141 | 35 | 1.159 | 35 | 612 | | 380 | 1.148
1.179 | 31
29 | 1.161
1.193 | 32
30 | 1.176
1.209 | 33
31 | 1.194
1.227 | 33
32 | 648
684 | | 400
420 | 1.208
1.237 | 29
28 | 1.223
1.253 | 30
29 | 1.240
1.271 | 31
29 | 1.259
1.290 | 31
29 | 720
756 | | 440 | 1.265 | 26 | 1.282 | 27 | 1.300 | 27 | 1.319 | 28 | 792 | | 460 | 1.291 | 27 | 1.309 | 27 | 1.327 | 28 | 1.347 | 27 | 8 28 | | 480
500 | 1.318 | 26 | 1.336 | 26 | 1.355 | 26 | 1.374 | 27 | 864 | | 520 | 1.344
1.369 | 25
2 4 | 1.362
1.387 | 25
25 | 1.381
1.407 | 26 | 1.401 | 26 | 900 | | 540 | 1.393 | 24 | 1.412 | 24 | 1.431 | 24
25 | 1.427
1.452 | 25
24 | 936
972 | | 560 | 1.417 | 23 | 1.436 | 24 | 1.456 | 23 | 1.476 | 24 | 1008 | | 580 | 1.440 | 23 | 1.460 | 23 | 1.479 | 23 | 1.500 | 23 | 1044 | | 600
620 | 1.463
1.486 | 23 | 1.483 | 23 | 1.502 | 23 | 1.523 | 23 | 1080 | | 640 | 1.508 | | 1.506
1.528 | 22
21 | 1.525
1.548 | 23
21 | 1.546
1.568 | 22
22 | 1116
1152 | | 660 | 1.530 | | 1.549 | 22 | 1.569 | 22 | 1.590 | 21 | 1188 | | 680 | 1.552 | 21 | 1.571 | 21 | 1.591 | 21 | 1.611 | 21 | 1224 | | 700 | 1.573 | | 1.592 | 21 | 1.612 | 21 | 1.632 | 21 | 1260 | | 720
740 | 1.594
1.615 | | 1.613
1.634 | 21
20 | 1.633
1.653 | 20 | 1.653 | 21 | 1296 | | 760 | 1.635 | | 1.654 | 20 | 1.674 | 21
19 | 1.674
1.694 | 20
19 | 1332
1368 | | 780 | 1.655 | | 1.674 | 20 | 1.693 | 20 | 1.713 | 20 | 1404 | | 800 | 1.675 | | 1.694 | 95 | 1.713 | 95 | 1,733 | 95 | 1440 | | 900 | 1.770 | | 1.789 | 91 | 1.808 | 90 | 1.828 | 89 | 1620 | | 1000
1100 | 1.862
1.948 | | 1.880
1.966 | 86
83 | 1.898
1.984 | 86 | 1.917 | 85 | 1800 | | 1200 | 2.031 | | 2,049 | 79 | 2.066 | 82
78 | 2.002
2.083 | 81
79 | 1980
2160 | | 1300
1400 | 2.110
2.187 | | 2.128
2.204 | 76
73 | 2.144
2.220 | 76 | 2.162 | | 2340 | | 1500 | 2.262 | | 2.277 | 73
71 | 2.293 | 73
71 | 2.237
2.310 | | 2520
2700 | | 1600 | 2.333 | 69 | 2.348 | -69 | 2.364 | 68 | 2.379 | | 2880 | | 1700 | 2.402 | | 2.417 | 67 | 2.432 | 66 | 2.447 | 67 | 3060 | | 1800
1900 | 2.469
2.535 | | 2.484 | 65 | 2.498 | 65 | 2.514 | | 3240 | | 2000 | 2.597 | | 2.549
2.611 | 62
62 | 2.563
2.626 | 63
60 | 2.577
2.640 | | 3420
3600 | | 2100 | 2.659 | | 2.673 | 60 | 2.686 | 60 | 2.700 | | 3780 | | 2200 | 2.720 | 58 | 2.733 | 58 | 2.746 | 58 | 2.759 | | 3960 | | 2300
2400 | 2.778 | | 2.791 | 57 | 2.804 | 57 | 2.817 | | 4140 | | 2400
2500 | 2.836
2.892 | | 2.848
2.904 | 56
55 | 2.861
2.916 | | 2.874 | | 4320 | | 2600 | 2.947 | | 2.959 | 55
53 | 2.910 | | 2.929
2.983 | | 4500
4680 | | 2700 | 3.000 | | 3.012 | 52 | 3.024 | 52 | 3.036 | | 4860 | | 2800 | 3.053 | | 3.064 | 52 | 3.076 | 51 | 3.088 | 50 | 5040 | | 2900
3000 | 3.104
3.156 | | 3.116
3.167 | 51 | 3.127 | 51 | 3.138 | | 5220 | | 2000 | 7.170 | | 3.167 | | 3.178 | | 3.189 | | 5400 | Table 8-8. VISCOSITY OF OXYGEN AT ATMOSPHERIC PRESSURE | °K | 7/70 | | o _R | °K | 7/70 | | °R | °к | 7/70 | | °R | |---------------------------------|--|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------|--------------------------------------|--------------------------------------|--|---------------------------------|--------------------------------------| | 100
110
120
130
140 | .4050
.4453
.4849
.5239 | 403
396
390
381
373 | 180
198
216
234
252 | 500
510
520
530
540 | 1.5595
1.5811
1.6025
1.6237
1.6447 | 216
214
212
210
209 | 900
918
936
954
972 | 900
910
920
930
940 | 2.3181
2.3351
2.3520
2.3689
2.3857 | 170
169
169
168
167 | 1620
1638
1656
1674
1692 | | 150
160
170
180
190 | .5993
.6359
.6718
.7069 | 366
359
351
341
333 | 270
288
306
324
342 | 550
560
570
580
590 | 1.6656
1.6864
1.7071
1.7276
1.7479 | 208
207
205
203
201 | 990
1008
1026
1044
1062 | 950
960
970
980
990 | 2.4024
2.4190
2.4355
2.4520
2.4684 | 166
165
165
164
17 | 1710
1728
1746
1764
1782 | | 200
210
220
230
240 | .7743
.8071
.8392
.8707
.9016 | 328
321
315
309
304 | 360
378
396
414
432 | 600
610
620
630
640 | 1.7680
1.7880
1.8078
1.8275
1.8470 | 200
198
197
195
194 | 1080
1098
1116
1134
1152 | 1000
1010
1020
1030
1040 | 2.485
2.502
2.518
2.534
2.550 | 17
16
16
16
16 | 1800
1818
1836
1854
1872 | | 250
260
270
280
290 | .9320
.9617
.9909
1.0194
1.0475 | 297
292
285
281
276 | 450
468
486
504
522 | 650
660
670
680
690 | 1.8664
1.8857
1.9049
1.9241
1.9432 | 193
192
192
191
190 | 1170
1188
1206
1224
1242 | 1050
1060
1070
1080
1090 | 2.566
2.582
2.598
2.614
2.631 | 16
16
16
17
17 | 1890
1908
1926
1944
1962 | | 300
310
320
330
340 | 1.0751
1.1025
1.1294
1.1558
1.1818 | 274
269
264
260
258 | 540
558
576
594
612 | 700
710
720
730
740 | 1.9622
1.9810
1.9996
2.0181
2.0365 | 188
186
185
184
182 | 1260
1278
1296
1314
1332 | 1100
1200
1300
1400
1500 | 2.648
2.803
2.951
3.096
3.237 | 155
148
145
141
137 | 1980
2160
2340
2520
2700 | | 350
360
370
380
390 | 1.2076
1.2331
1.2582
1.2830
1.3075 | 255
251
248
245
241 | 630
648
666
684
702 | 750
760
770
780
790 | 2.0547
2.0728
2.0909
2.1089
2.1268 | 181
181
180
179
179 | 1350
1368
1386
1404
1422 | 1600
1700
1800
1900
2000 | 3.374
3.509
3.640
3.770
3.897 | 135
131
130
127 | 2880
3060
3240
3420
3600 | | 400
410
420
430
440 | 1.3316
1.3555
1.3791
1.4024
1.4255 | 239
236
233
231
229 | 720
738
756
774
792 | 800
810
820
830
840 | 2.1447
2.1624
2.1799
2.1974
2.2148 | 177
175
175
174
173 | 1440
1458
1476
1494
1512 | | | | | | 450
460
470
480
490 | 1.4484
1.4710
1.4935
1.5157
1.5377 | 226
225
222
220
218 | 810
828
846
864
882 | 850
860
870
880
890 | 2.2321
2.2494
2.2666
2.2838
2.3010 | 173
172
172
172
171 | 1530
1548
1566
1584
1602 | | | | | | 500 | 1.5595 | | 900 | 900 | 2.3181 | | 1620 | 1 | | | | Table 8-9. THERMAL CONDUCTIVITY OF OXYGEN AT ATMOSPHERIC PRESSURE | °K | k/k ₀ | | o _R | |-----|------------------|----|----------------| | 80 | .293 | 38 | 144 | | 90 | .331 | 37 | 162 | | 100 | .368 | 38 | 180 | |
110 | .406 | 38 | 198 | | 120 | .444 | 38 | 216 | | 130 | .482 | 38 | 234 | | 140 | .520 | 38 | 252 | | 150 | .557 | 38 | 270 | | 160 | .595 | 37 | 288 | | 170 | .632 | 37 | 306 | | 180 | .669 | 37 | 324 | | 190 | .706 | 37 | 342 | | 200 | .743 | 36 | 360 | | 210 | .779 | 36 | 378 | | 220 | .815 | 35 | 396 | | 230 | .850 | 35 | 414 | | 240 | .885 | 35 | 432 | | 250 | .920 | 34 | 450 | | 260 | .954 | 35 | 468 | | 270 | .989 | 3 | 486 | | 280 | 1.02 | 4 | 504 | | 290 | 1.06 | 3 | 522 | | 300 | 1.09 | 3 | 540 | | 310 | 1.12 | 4 | 558 | | 320 | 1.16 | 3 | 576 | | 330 | 1.19 | 3 | 594 | | 340 | 1.22 | 3 | 612 | | 350 | 1.25 | | 630 | | °K | k/k ₀ | | OR | |-----|------------------|---|------| | | | | | | 350 | 1.25 | 3 | 630 | | 360 | 1.28 | 4 | 648 | | 370 | 1.32 | 3 | 666 | | 380 | 1.35 | 3 | 684 | | 390 | 1.38 | 3 | 702 | | 400 | 1.41 | 3 | 720 | | 410 | 1.44 | 3 | 738 | | 420 | 1.47 | 3 | 756 | | 430 | 1.50 | 3 | 774 | | 440 | 1.53 | 3 | 792 | | 450 | 1.56 | 3 | 810 | | 460 | 1.59 | 3 | 828 | | 470 | 1.62 | 2 | 846 | | 480 | 1.64 | 3 | 864 | | 490 | 1.67 | 3 | 882 | | 500 | 1.70 | 3 | 900 | | 510 | 1.73 | 3 | 918 | | 520 | 1.76 | 2 | 936 | | 530 | 1.78 | 3 | 954 | | 540 | 1.81 | 3 | 972 | | 550 | 1.84 | 2 | 990 | | 560 | 1.86 | 3 | 1008 | | 570 | 1.89 | 3 | 1026 | | 580 | 1.92 | 2 | 1044 | | 590 | 1.94 | 3 | 1062 | | 600 | 1.97 | | 1080 | Table 8-10. PRANDTL NUMBER OF OXYGEN AT ATMOSPHERIC PRESSURE | η | Cp/ | | |---|-----|--| |---|-----|--| | | | | 7 | 9/9 | 1 | 1/9 | 1 | .1/9 | ,, op, | |---------------------------------|--------------------------------------|---------------------------------|--------------------------------------|---------------------------------|--------------------------------------|----------------------------|--------------------------------------|----------------------------|-------------------------------------| | о к | (N _P | r) | (N _P | ,)2/3 | (N _{Pr}) | 1/3 | (N _{Pr} |)1/4 | ° R | | 100
110
120
130
140 | .815
.800
.791
.784
.778 | -15
- 9
- 7
- 6
- 5 | .873
.862
.855
.850
.846 | -11
- 7
- 5
- 4
- 4 | .934
.928
.925
.922
.920 | -6
-3
-3
-2
-2 | .903
.894
.889
.885
.882 | -9
-5
-4
-3
-3 | 180
198
216
234
252 | | 150
160
170
180
190 | .773
.766
.761
.756
.751 | - 7
- 5
- 5
- 5
- 6 | .842
.837
.834
.830
.826 | - 5
- 3
- 4
- 4
- 4 | .918
.915
.913
.911 | -3
-2
-2
-2
-2 | .879
.875
.872
.869
.867 | -4
-3
-3
-2
-4 | 270
288
306
324
342 | | 200
210
220
230
240 | .745
.740
.736
.732
.728 | - 5
- 4
- 4
- 4
- 3 | .822
.818
.815
.812
.809 | - 4
- 3
- 3
- 3
- 2 | .907
.905
.903
.901
.900 | -2
-2
-2
-1
-2 | .863
.860
.858
.856
.853 | -3
-2
-2
-3
-2 | 360
378
396
414
432 | | 250
260
270
280
290 | .725
.722
.718
.717
.710 | - 3
- 4
- 1
- 7
- 1 | .807
.805
.802
.801
.796 | - 2
- 3
- 1
- 5
- 1 | .898
.897
.895
.895
.892 | -1
-2
-3 | .851
.850
.847
.847 | -1
-3
-4
-1 | 450
468
486
504
522 | | 300
310
320
330
340 | .709
.709
.703
.702 | - 6
- 1 | .795
.795
.791
.790 | - 4
- 1 | .892
.892
.889
.889 | -3 | .842
.842
.838
.838
.838 | -4 | 540
558
576
594
612 | | 350
360
370
380
390 | .702
.701
.696
.696 | - 1
- 5 | .790
.789
.785
.785
.785 | - 1
- 4 | .889
.888
.886
.886 | -1
-2 | .838
.837
.834
.834 | -1
-3 | 630
648
666
684
702 | | 400
410
420
430
440 | .695
.695
.695
.695 | - 1 | .785
.785
.785
.785
.784 | - 1 | .886
.886
.886
.886
.885 | -1 | .834
.834
.834
.834 | -1 | 720
738
756
774
792 | | 450
460
470
480
490 | .694
.694
.695
.697
.697 | 1 2 | .784
.784
.785
.786
.786 | 1 | .885
.885
.886
.887 | 1
1 | .833
.833
.834
.835
.835 | 1 | 810
828
846
864
882 | | 500
510
520
530
540 | .697
.697
.697
.700 | 3 | .786
.786
.786
.788
.788 | 2 | .887
.887
.887
.888 | 1 | .835
.835
.835
.837
.837 | 2 | 900
918
936
954
972 | | 550
560
570
580
590 | .700
.701
.702
.702
.704 | 1
1
2 | .788
.789
.790
.790
.791 | 1
1 | .888
.888
.889
.889 | 1
1 | .837
.837
.838
.838
.839 | 1 | 990
1008
1026
1044
1062 | | 600 | .704 | | .791 | | .890 | | .839 | | 1080 | Table 8-11. VAPOR PRESSURE OF OXYGEN | | | | | | | | |-------------------|---------|---------------------------------------|-------------------|-----------|--------------------|-----------------------------------| | 2/T | Т | Log ₁₀ P(atm) | * | P | т | 3.6/T | | o _K -1 | °K | · · · · · · · · · · · · · · · · · · · | | | °R | 01 | | | | 7.700 | | atm | | $^{\mathrm{o}}\mathrm{_{R}^{-1}}$ | | .037 | 54.054 | 7.133-10 | 197 | .0014 | 97.297 | .037 | | .036 | 55.556 | 7.330-10 | 197 | .0021 | 100,000 | .036 | | .035 | 57.143 | 7.527-10 | 197 | .0034 | 102.857 | .035 | | .034 | 58.824 | 7.724-10 | 197 | .0053 | 105.882 | .034 | | .033 | 60.606 | 7.921-10 | 197 | .0083 | 109.091 | .033 | | 022 | /2 500 | 0.110.44 | | | | | | .032 | 62.500 | 8.118-10 | 197 | .0131 | 112.500 | .032 | | .031 | 64.516 | 8.315 -10 | 196 | .0207 | 116.129 | .031 | | .030 | 66.667 | 8.511 -10 | 195 | .0324 | 120.000 | .030 | | .029 | 68.966 | 8.706 -10 | 194 | .0508 | 124.138 | .029 | | .028 | 71.429 | 8.900 -10 | | .0794 | 128.571 | .028 | | 1 /50 | | | | | | | | $1/\mathbf{T}$ | | | | | | 1.8/T | | | | | | | | | | .0140 | 71.429 | 8.8999 -10 | 385 | .0794 | 128.571 | .0140 | | .0139 | 71.942 | 8.9384 -10 | 384 | .0868 | 129.496 | .0139 | | .0138 | 72.464 | 8.9768-10 | 383 | .0948 | 130,435 | .0138 | | .0137 | 72.993 | 9.0 151-10 | 383 | .1035 | 131.387 | .0137 | | .0136 | 73.529 | 9.0534-10 | 382 | .1131 | 132.353 | .0136 | | 0105 | 74.074 | | | | | ***** | | .0135 | 74.074 | 9.0916-10 | 382 | .1235 | 133.333 | .0135 | | .0134 | 74.627 | 9.1298-10 | 382 | .1348 | 134.328 | .0134 | | .0133 | 75.188 | 9.1680-10 | 381 | .1472 | 135,338 | .0133 | | .0132 | 75.758 | 9.2061-10 | 381 | .1607 | 136.364 | .0132 | | .0131 | 76.336 | 9.2442-10 | 381 | .1755 | 137.404 | .0131 | | .0130 | 76,923 | 9.2823-10 | | 101/ | | | | .0129 | 77.519 | 9.3204-10 | 381 | .1916 | 138.462 | .0130 | | .0128 | 78.125 | 9.3584-10 | 380 | .2091 | 139.535 | .0129 | | .0127 | 78.740 | 9.3364-10 | 380 | .2282 | 140.625 | .0128 | | .0126 | 79.365 | 9.3964-10
9.4342-10 | 378 | .2491 | 141.732 | .0127 | | .0120 | 17.303 | 7,4342-10 | 377 | .2718 | 142.857 | .0126 | | .0125 | 80.000 | 9.4719-10 | 377 | .2964 | 144.000 | .0125 | | .0124 | 80.645 | 9.5096-10 | 376 | .3233 | 145.161 | .0124 | | .0123 | 81.301 | 9.5472-10 | 376 | .3525 | 146.341 | .0123 | | .0122 | 81,967 | 9.5848-10 | 375 | .3844 | 147.541 | | | .0121 | 82.645 | 9.6223-10 | 375 | .4191 | 148.760 | .0122 | | | | | 313 | • 7 + 7 1 | 140.700 | .0121 | | .0120 | 83.333 | 9.6598-10 | 375 | .4569 | 150,000 | .0120 | | .0119 | 84.034 | 9.6973-10 | 375 | .4981 | 151,260 | .0119 | | .0118 | 84.746 | 9.7348-10 | 374 | .5430 | 152,542 | .0118 | | .0117 | 85.470 | 9.7722-10 | 374 | .5918 | 153.846 | .0117 | | .0116 | 86.207 | 9.8096-10 | 373 | .6451 | 155.172 | .0116 | | 0115 | 0/ 057 | 0.04404 | | | | | | .0115 | 86.957 | 9.84686-10 | 3725 | .7029 | 156,522 | .0115 | | .0114 | 87.719 | 9.88411-10 | 3718 | .7658 | 157.895 | .0114 | | .0113 | 88.496 | 9.92129-10 | 3712 | .8342 | 159.292 | .0113 | | .0112 | 89.286 | 9.95841-10 | 3704 | .9087 | 160.714 | .0112 | | .0111 | 90.090 | 9.99545-10 | 3 69 7 | .9896 | 162.162 | .0111 | | .0110 | 90.909 | .03242 | 2400 | 1.0775 | 1/2/2/ | | | .0109 | 91.743 | | 3 69 0 | 1 1721 | 163.636 | .0110 | | .0108 | 92.593 | .06932
.10617 | 3685 | 1.1/31 | 165.138 | .0109 | | .0107 | 93.458 | | 3679 | 1.2769 | 166.667 | .0108 | | .0106 | 94.340 | .14296
.17970 | 3674 | 1.3898 | 168.224 | .0107 | | .0100 | 77.270 | .11710 | 3 66 9 | 1.5125 | 169,811 | .0106 | | .0105 | 95.238 | .21639 | 3663 | 1.6459 | 171.428 | .0105 | | .0104 | 96.154 | .25302 | 3659 | 1.7907 | 173.077 | .0103 | | .0103 | 97.087 | .28961 | 3654 | 1.9481 | 174.757 | .0104 | | .0102 | 98.039 | .32615 | 3649 | 2.1191 | | | | .0101 | 99.010 | .36264 | 3644 | 2.3048 | 176.470
178.218 | .0102 | | | | | | -1,5010 | 1.0.210 | .0101 | | .0100 | 100.000 | .39908 | | 2.5066 | 180,000 | .0100 | | *Tabulated | | | | | - | | ^{*}Tabulated values in this column are for interpolation with respect to reciprocal temperature. Table 8-11. VAPOR PRESSURE OF OXYGEN - Cont. | r | | | | | | | |------------------|-------------------|-------------------------|-------------------|-----------------|------------------|-------------------| | 1/ T | Т | Log ₁₀ P(atm | ı)* | P | T | 1.8/T | | о _{К-1} | o _K | | | | °R | o _R -1 | | | | | | atm | | | | .0100 | 100.000 | .39908 | 3641 | 2.5066 | 180.000 | .0100 | | .0099 | 101.010 | .43549 | 3639 | 2.7258 | 181.818 | .0099 | | .0098 | 102.041 | .47188 | 3636 | 2.9640 | 183.673 | .0098 | | .0097 | 103.093 | .50824 | 3634 | 3.2228 | 185,567 | .0097 | | .0096 | 104.167 | .54458 | 3630 | 3.5041 | 187.500 | .0096 | | | | | | | | | | .0095 | 105.263 | .58088 | 3627 | 3.8096 | 189.474 | .0095 | | .0094 | 106.383 | .61715 | 3623 | 4.1414 | 191.489 | .0094 | | .0093 | 107.527 | .65338 | 3622 | 4.5017 | 193.548 | .0093 | | .0092 | 108.696 | .68960 | 3 6 20 | 4.8933 | 195 . 652 | .0092 | | .0091 | 109.890 | .72580 | 3620 | 5.3186 | 197.802 | .0091 | | | | 7/200 | | F 7010 | 200 000 | 0000 | | .0090
 111.111 | .76200 | 3619 | 5.7810 | 200.000 | .0090 | | .0089 | 112.360 | .79819 | 3618 | 6.2833 | 202.247 | .0089 | | .0088 | 113.636 | .83437 | 3619 | 6.8292 | 204.545 | .0088 | | .0087 | 114.943 | .87056 | 3619 | 7.4227 | 206.896 | .0087 | | .0086 | 116.279 | .90675 | 3621 | 8.0677 | 209.302 | .0086 | | | | | | | | | | .0085 | 117.647 | .94296 | 3622 | 8.7692 | 211.765 | .0085 | | .0084 | 119.048 | .97918 | 3624 | 9.5319 | 214.286 | .0084 | | .0083 | 120.482 | 1.01542 | 3626 | 10.361 | 216.867 | .0083 | | .0082 | 121.951 | 1.05168 | 3631 | 11.264 | 219.512 | .0082 | | .0081 | 123.457 | 1.08799 | 3 636 | 12.246 | 222.222 | .0081 | | | | | | | | | | .0080 | 125.000 | 1.12435 | 3 64 0 | 1 3. 315 | 225.000 | .0080 | | .0079 | 126.582 | 1.16075 | 3646 | 14.479 | 227.848 | .0079 | | .0078 | 128,205 | 1.19721 | | 15.747 | 230.769 | .0078 | | | | | | | | | | 2/T | | | | | | 3,6/T | | | | | | | | | | .0156 | 128.2051 | 1.19721 | 1826 | 15.747 | 230.769 | .0156 | | .0155 | 129.0323 | 1.21547 | 1826 | 16.424 | 232.258 | .0155 | | .0154 | 12 9. 8701 | 1,23373 | 1829 | 17 . 129 | 233.766 | .0154 | | .0153 | 130.7190 | 1.25202 | 1832 | 17.866 | 235.294 | .0153 | | .0152 | 131.5789 | 1.27034 | 1834 | 18.635 | 236.842 | .0152 | | | | | | | | | | .0151 | 132.4503 | 1.28868 | 1836 | 19.439 | 238.410 | .0151 | | .0150 | 133.3333 | 1.30704 | 184 0 | 20.279 | 240.000 | .0150 | | .0149 | 134.2282 | 1.32544 | 1842 | 21.156 | 241.611 | .0149 | | .0148 | 135.1351 | 1.34386 | 1846 | 22.073 | 243.243 | .0148 | | .0147 | 136.0544 | 1.36232 | 1849 | 23,031 | 244.898 | .0147 | | | | | | | | | | .0146 | 136.9863 | 1.38081 | 1853 | 24.033 | 246.575 | .0146 | | .0145 | 137.9310 | 1.39934 | 1856 | 25.081 | 248.276 | .0145 | | .0144 | 138.8889 | 1.41790 | 1860 | 26.176 | 250.000 | .0144 | | .0143 | 139.8601 | 1.43650 | 1864 | 27.321 | 251.748 | .0143 | | .0142 | 140.8451 | 1.45514 | 18 69 | 28.519 | 253,521 | .0142 | | 0141 | 141 0440 | 1 47202 | 10 | 20 774 | 255 210 | 07.43 | | .0141 | 141.8440 | 1.47383 | 1875 | 29.774 | 255.319 | .0141 | | .0140 | 142.8571 | 1.49258 | 1880 | 31.087 | 257.143 | .0140 | | .0139 | 143.8849 | 1.51138 | 1886 | 32.462 | 258.993 | .0139 | | .0138 | 144.9275 | 1.53024 | 1893 | 33.903 | 260.870 | .0138 | | .0137 | 145.9854 | 1.54917 | 1900 | 35.414 | 262,774 | .0137 | | .0136 | 147.0588 | 1,56817 | 1000 | 36.997 | 264,706 | .0136 | | .0135 | 148.1481 | | 1909 | 38.660 | | .0135 | | | | 1.58726 | 1919 | | 266.667 | | | .0134 | 149.2537 | 1.60645 | 1930 | 40.406 | 268.657 | .0134 | | .0133 | 150.3759 | 1.62575 | 1942 | 42.243 | 270.677 | .0133 | | .0132 | 151.5152 | 1.64517 | 1956 | 44.174 | 272,727 | .0132 | | 0131 | 152,6718 | 1 66472 | 1077 | 46,209 | 274 909 | 0121 | | .0131 | | 1.66473 | 1977 | | 274.809 | .0131 | | .0130 | 153.8462 | 1.68450 | 2008 | 48.362 | 276.923 | .0130 | | .0129 | 155.0388 | 1.70458 | 2050 | 50.650 | 279.070 | .0129 | | .0128 | 156.2500 | 1.72508 | | 53.098 | 281.250 | .0128 | st Tabulated values in this column are for interpolation with respect to reciprocal temperature. Table 8-11/a. VAPOR PRESSURE OF OXYGEN | Table 6-11/a. VAFO | n FRESSURE | OF OXIGEN | | | | |---|------------|--------------------------------------|--------------------------------------|-------------------------------------|---| | Remarks | Т | P | P | P | т | | | ° к | mm Hg | atm | psia | O R | | Triple point Normal boiling point
Critical point | 90.190 | 1.14
760.0
381 ₀₉ . | .00150
1.000
50.1 ₄ | .022
14.696
736. ₉ | 97.853
162.342
278.6 ₀ | | | 55 | 1.38 | .00182 | .027 | 99 | | | 60 | 5.44 | .00716 | .105 | 108 | | | 65 | 17.4 | .0229 | .34 | 117 | | | 70 | 46.8 | .0616 | .90 | 126 | | | 75 | 108.7 | .1430 | 2.10 | 135 | | | 80 | 225.3 | .2964 | 4.36 | 144 | | | 85 | 425.4 | .5597 | 8.23 | 153 | | | 90 | 745.0 | .9803 | 14.41 | 162 | | | 95 | 1223.3 | 1.6096 | 23.65 | 171 | | | 100 | 1905.0 | 2.5066 | 36.84 | 180 | | | 105 | 2838.2 | 3.7345 | 54.88 | 189 | | | 110 | 4072.9 | 5.3591 | 78.76 | 198 | | | 115 | 5661.6 | 7.4495 | 109.48 | 207 | | | 120 | 7658.6 | 10.077 | 148.09 | 216 | | | 125 | 10120 | 13.316 | 195.7 | 225 | | | 130 | 13102 | 17.239 | 253.4 | 234 | | | 135 | 16670 | 21.934 | 322.3 | 243 | | | 140 | 20892 | 27.489 | 404.0 | 252 | | | 145 | 25843 | 34.004 | 499.7 | 261 | | | 150 | 31631 | 41.620 | 611.6 | 270 | Table 8-12. IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR MOLECULAR OXYGEN | 9 | C _p | | (H° – E° |) * | s° | | -(F° - E° | <u>,</u>) | | |-------------|------------------|--------------------|------------------|-------------------------------|--------------------|---------------------------|------------------|-------------|----------------------------| | °K | R | | RT _o | - | R | | RT | _ | °R | | | • | | • | | | | | | | | 10 | 3.5423 | -278 | .1222 | 1291 | 12.7490 | 24447 | 9.411 | 2350 | 18 | | 20
30 | 3.5145
3.5077 | - 68 | .2513
.3798 | 1285 | 15.1937 | 14043 | 11.761 | 1379 | 36
54 | | 40 | 3.5044 | - 33
- 15 | .5081 | 12 83
1283 | 16.5980
17.6256 | 10276
7860 | 13.140
14.156 | 1016
779 | 7 2 | | 50 | 3.5029 | - 6 | .6364 | 1282 | 18.4116 | 6345 | 14,935 | 630 | 90 | | 60 | 3.5023 | - 4 | .7646 | 1282 | 19.0461 | 5376 | 15.565 | 535 | 108 | | 70
80 | 3.5019
3.5016 | - 3
- 1 | .8928
1.0210 | 1282
1282 | 19.5837
20.0535 | 46 9 8
4121 | 16.100
16.567 | 467 | 126
144 | | 90 | 3.5015 | - 1 | 1.1492 | 1282 | 20.4656 | 3692 | 16.978 | 411
368 | 162 | | 100 | 3.5014 | - 1 | 1.2774 | 1282 | 20.8348 | 3336 | 17.346 | 33 2 | 180 | | 110
120 | 3.5013
3.5013 | - 1 | 1.4056
1.5337 | 1281 | 21.1684
21.4732 | 3048 | 17.678
17.982 | 304 | 198
216 | | 130 | 3.5012 | - 1
1 | 1.6619 | 1282
1282 | 21.7534 | 2802
2595 | 18.261 | 279
259 | 234 | | 140 | 3.5013 | • | 1.7901 | 1282 | 22.0129 | 2416 | 18,520 | 241 | 252 | | 150 | 3.5013 | 2 | 1.9183 | 1281 | 22.2545 | 2259 | 18.761 | 226 | 270 | | 160
170 | 3.5015
3.5017 | 2
3 | 2.0464
2.1746 | 1282
1282 | 22.4804
22.6927 | 2123
2002 | 18.987
19.199 | 212 | 288
306 | | 180 | 3.5020 | 5 | 2.3028 | 1282 | 22.8929 | 1894 | 19.398 | 199
189 | 324 | | 190 | 3.5025 | 7 | 2.4310 | 1283 | 23.0823 | 1796 | 19.587 | 179 | 342 | | 200 | 3.5032 | 10 | 2.5593 | 1282 | 23,2619 | 1710 | 19.766 | 171 | 360 | | 210 | 3.5042 | 14 | 2.6875 | 1283 | 23.4329 | 1630 | 19.937 | 163 | 378 | | 220
230 | 3.5056
3.5073 | 17 | 2.8158
2.9442 | 1284 | 23.5959
23.7518 | 1559 | 20.100
20.255 | 155 | 396
414 | | 240 | 3.5095 | 22
27 | 3.0726 | 1284
1286 | 23.9011 | 1493
1433 | 20.404 | 149
143 | 432 | | 2 50 | 3,5122 | 33 | 3.2012 | 1286 | 24.0444 | 1378 | 20.547 | 137 | 450 | | 260 | 3.5155 | 38 | 3.3298 | 1288 | 24.1822 | 1328 | 20.684 | 132 | 468 | | 270
280 | 3.5193
3.5238 | 45
50 | 3.4586
3.5875 | 12 89
1291 | 24.3150
24.4430 | 1280
12 3 8 | 20.816
20.943 | 127
123 | 486
504 | | 290 | 3.5288 | 56 | 3.7166 | 1293 | 24.5668 | 1197 | 21.066 | 119 | 522 | | 300 | 3,5344 | 63 | 3.8459 | 1295 | 24.6865 | 1160 | 21.185 | 115 | 540 | | 310 | 3.5407 | 69 | 3.9754 | 1297 | 24.8025 | 1125 | 21.300 | 111 | 558 | | 320
330 | 3.5476
3.5551 | 75 | 4.1051
4.2351 | 1300 | 24.9150 | 1093 | 21.411 | 108 | 576 | | 340 | 3.5631 | 80
86 | 4.3654 | 1303
1306 | 25.0243
25.1305 | 1062
1035 | 21.519
21.623 | 104
102 | 5 94
6 12 | | 3 50 | 3.5717 | 90 | 4.4960 | 1309 | 25.2340 | 1007 | 21.725 | 99 | 630 | | 360 | 3.5807 | 95 | 4.6269 | 1313 | 25.3347 | 982 | 21.824 | 96 | 648 | | 370
380 | 3,5902
3,6002 | 100
103 | 4.7582
4.8898 | 1316
1 3 20 | 25.4329
25.5268 | 959
936 | 21.920
22.014 | 94
91 | 666
684 | | 390 | 3.6105 | 107 | 5.0218 | 1324 | 25.6224 | 916 | 22.105 | 89 | 702 | | 400 | 3,6212 | 110 | 5.1542 | 1327 | 25,7140 | 896 | 22,194 | 87 | 720 | | 410 | 3.6322 | 113 | 5.2869 | 1332 | 25.8036 | 876 | 22.281 | 85 | 738 | | 420
430 | 3.6435
3.6550 | 115
118 | 5.4201
5.5537 | 1336
1340 | 25.8912
25.9771 | 859
841 | 22.366
22.449 | 83
81 | 756
774 | | 440 | 3.6668 | 119 | 5.6877 | 1345 | 26.0612 | 826 | 22.530 | 80 | 792 | | 450 | 3.6787 | 120 | 5.8222 | 1349 | 26.1438 | 810 | 22.610 | 77 | 810 | | 460 | 3.6907 | 122 | 5.9571 | 1353 | 26.2248 | 795 | 22.687 | 77 | 828 | | 470
480 | 3.7029
3.7151 | 122
12 3 | 6.0924
6.2282 | 1 3 58
1362 | 26.3043
26.3823 | 780
768 | 22.764
22.838 | 74
73 | 846
864 | | 490 | 3.7274 | 122 | 6.3644 | 1367 | 26.4591 | 754 | 22.911 | 72 | 882 | | 500 | 3.7396 | 124 | 6.5011 | 1371 | 26.5345 | 742 | 22.983 | 70 | 900 | | 510
520 | 3.7520
3.7643 | 123 | 6.6382
6.7758 | 1376 | 26.6087
26.6817 | 730
710 | 23.053 | 69
69 | 918
936 | | 520
530 | 3.7765 | 122
122 | 6.7758
6.9138 | 1380
1385 | 26.7535 | 718
707 | 23.122
23.190 | 68
67 | 954 | | 540 | 3.7887 | 121 | 7.0523 | 1389 | 26.8242 | 696 | 23.257 | 65 | 972 | | 550 | 3.8008 | 121 | 7.1912 | 1394 | 26.8938 | 686 | 23.322 | 65 | 990 | | 560
570 | 3.8129
3.8248 | 119
118 | 7.3306
7.4704 | 1 398
1 4 02 | 26.9624
27.0300 | 676
444 | 23.387
23.450 | 63
62 | 1008
1026 | | 580 | 3.8366 | 118 | 7.4704
7.6106 | 1402 | 27.0966 | 666
657 | 23.512 | 62
62 | 1026 | | 590 | 3.8483 | 116 | 7.7513 | 1411 | 27.1623 | 648 | 23.574 | 60 | 1062 | | 600 | 3.8599 | | 7.8924 | | 27.2271 | | 23.634 | | 1080 | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). Table 8-12. IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR MOLECULAR OXYGEN - Cont. | ſ° _A | C°p | | (H° – E | =°)* | s° | | -(F° - E° |) | • - | |----------------------|----------------------------
-------------------|-------------------------------|-------------------------------|-------------------------------|----------------------|----------------------------|-------------------|----------------------| | | R | | RTo | | R | | RT | _ | °R | | 600 | 3.8599 | 114 | 7.8924 | 1415 | 27.2271 | 639 | 23.634 | 59 | 1080 | | 610 | 3.8713 | 113 | 8.0339 | 1419 | 27.2910 | 630 | 23.693 | 59 | 1098 | | 620 | 3.8826 | 111 | 8.1758 | 1423 | 27.3540 | 622 | 23.752 | 58 | 1116 | | 630 | 3.8937 | 110 | 8.3181 | 1428 | 27.4162 | 614 | 23.810 | 56 | 1134 | | 640 | 3.9047 | 108 | 8.4609 | 1431 | 27.4776 | 607 | 23.866 | 57 | 1152 | | 650 | 3.9155 | 107 | 8.6040 | 1436 | 27.5383 | 598 | 23.923 | 55 | 1170 | | 660 | 3.9262 | 105 | 8.7476 | 1439 | 27.5981 | 591 | 23.978 | 54 | 1188 | | 670 | 3.9367 | 103 | 8.8915 | 1443 | 27.6572 | 584 | 24.032 | 54 | 1206 | | 650 | 3.9470 | 101 | 9.0358 | 1447 | 27.7156 | 577 | 24.086 | 53 | 1224 | | 690 | 3.9571 | 101 | 9.1805 | 1450 | 27.7733 | 570 | 24.139 | 52 | 1242 | | 700 | 3.9672 | 98 | 9.3255 | 1454 | 27.8303 | 564 | 24.191 | 52 | 1260 | | 710 | 3 9770 | 96 | 9.4709 | 1458 | 27.8867 | 557 | 24.243 | 51 | 1278 | | 720 | 3.9866 | 95 | 9.6167 | 1461 | 27.9424 | 550 | 24.294 | 50 | 1296 | | 730 | 3.9961 | 93 | 9.7628 | 1465 | 27.9974 | 545 | 24.344 | 50 | 1314 | | 740 | 4.0054 | 91 | 9.9093 | 1468 | 28.0519 | 538 | 24.394 | 49 | 1332 | | 750 | 4.0145 | 90 | 10.0561 | 1471 | 28.1057 | 532 | 24.443 | 49 | 1350 | | 760 | 4.0235 | 88 | 10.2032 | 1475 | 28.1589 | 527 | 24.492 | 48 | 1368 | | 770 | 4.0323 | 86 | 10.3507 | 1478 | 28.2116 | 521 | 24.540 | 47 | 1386 | | 780 | 4.0409 | 85 | 10.4985 | 1481 | 28.2637 | 515 | 24.587 | 47 | 1404 | | 790 | 4.0494 | 83 | 10.6466 | 1484 | 28.3152 | 510 | 24.634 | 46 | 1422 | | 800 | 4.0577 | 393 | 10.7950 | 7464 | 28.3662 | 2472 | 24.680 | 224 | 1440 | | 850 | 4.0970 | 357 | 11.5414 | 7532 | 28.6134 | 2352 | 24.904 | 213 | 1530 | | 900 | 4.1327 | 325 | 12.2946 | 7595 | 28.8486 | 22 43 | 25,117 | 202 | 1620 | | 950 | 4.1652 | 296 | 13.0541 | 7652 | 29.0729 | 2145 | 25,319 | 194 | 1710 | | 1000 | 4.1948 | 271 | 13.8193 | 7703 | 29.2874 | 2053 | 25,513 | 184 | 1800 | | 1050
1100
1150 | 4,2219
4,2469
4,2698 | 250
229 | 14.5896
15.3647
16.1442 | 7751
7795 | 29.4927
29.6897 | 1970
1893 | 25.697
25.874 | 177
170 | 1890
1980 | | 1200
1250 | 4.2912
4.3112 | 214
200
188 | 16.9278
17.7151 | 76 3 6
7873
7908 | 29.8790
30.0611
30.2367 | 1821
1756
1695 | 26.044
26.208
26.366 | 164
158
152 | 2070
2160
2250 | | 1300 | 4.3300 | 179 | 18.5059 | 7943 | 30.4062 | 1638 | 26.518 | 147 | 2340 | | 1350 | 4.3479 | 172 | 19.3002 | 7974 | 30.5700 | 1584 | 26.665 | 142 | 2430 | | 1400 | 4.3651 | 164 | 20.0976 | 8005 | 30.7284 | 1535 | 26.807 | 138 | 2520 | | 1450 | 4.3815 | 160 | 20.8981 21.7016 | 8035 | 30.8819 | 1488 | 26.945 | 134 | 2610 | | 1500 | 4.3975 | 155 | | 8064 | 31.0307 | 1444 | 27.079 | 130 | 2700 | | 1550 | 4.4130 | 152 | 22.5080 | 8091 | 31.1751 | 1404 | 27.209 | 126 | 2790 | | 1600 | 4.4282 | 149 | 23.3171 | 8119 | 31.3155 | 1364 | 27.335 | 122 | 2880 | | 1650 | 4.4431 | 147 | 24.1290 | 8147 | 31.4519 | 1329 | 27.457 | 120 | 2970 | | 1700 | 4.4578 | 146 | 24.9437 | 8172 | 31.5848 | 1294 | 27.577 | 116 | 3060 | | 1750 | 4.4724 | 144 | 25.7609 | 8200 | 31.7142 | 1262 | 27.693 | 114 | 3150 | | 1800 | 4.4868 | 143 | 26.5809 | 8227 | 31.8404 | 12 <i>3</i> 2 | 27.807 | 110 | 3240 | | 1850 | 4.5011 | 142 | 27.4036 | 8252 | 31.9636 | 1202 | 27.917 | 108 | 3330 | | 1900 | 4.5153 | 142 | 28.2288 | 8277 | 32.0838 | 1175 | 28.025 | 106 | 3420 | | 1950 | 4.5295 | 141 | 29.0565 | 8304 | 32.2013 | 1148 | 28.131 | 103 | 3510 | | 2000 | 4.5436 | 140 | 29.8869 | 8329 | 32.3161 | 1124 | 28.234 | 101 | 3600 | | 2050 | 4.5576 | 139 | 30.7198 | | 32.4285 | 1100 | 28.335 | 99 | 3690 | | 2100 | 4.5715 | 139 | 31.5554 | | 32.5385 | 1077 | 28.434 | 97 | 3780 | | 2150 | 4.5854 | 139 | 32.3935 | | 32.6462 | 1056 | 28.531 | 9 4 | 3870 | | 2200 | 4.5993 | 137 | 33.2341 | 8430 | 32.7518 | 1035 | 28.625 | 93 | 3960 | | 2250 | 4.6130 | 137 | 34.0771 | | 32.8553 | 1015 | 28.718 | 91 | 4050 | | 2300 | 4.6267 | 137 | 34.9227 | 8508 | 32.9568 | 997 | 28.809 | 90 | 4140 | | 2350 | 4.6404 | 136 | 35.7709 | | 33.0565 | 978 | 28.899 | 87 | 4230 | | 2400 | 4.6540 | 134 | 36.6217 | | 33.1543 | 961 | 28.986 | 86 | 4320 | | 2450 | 4.6674 | 134 | 37.4747 | 8555 | 33.2504 | 945 | 29.072 | 85 | 4410 | | 2500 | 4.6808 | 132 | 38.3302 | | 33.3449 | 928 | 29.157 | 83 | 4500 | | 2550 | 4.6940 | 131 | 39.1882 | 8627 | 33.4377 | 912 | 29.240 | 81 | 4590 | | 2600 | 4.7071 | 129 | 40.0487 | | 33.5289 | 898 | 29.321 | 81 | 4680 | | 2650 | 4.7200 | 128 | 40.9114 | | 33.6187 | 884 | 29.402 | 79 | 4770 | | 2700 | 4.7328 | 126 | 41.7765 | 8675 | 33.7071 | 869 | 29.481 | 77 | 4860 | | 2750 | 4.7454 | 125 | 42.6440 | | 33.7940 | 856 | 29.558 | 77 | 4950 | | 280 0 | 4.7579 | | 43.5138 | | 33.8796 | | 29,635 | | 5040 | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). Table 8-12. IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR MOLECULAR OXYGEN - Cont. | | 50 | | | . * | T . | | | | r | |-----------------------|------------------|------------|--------------------|--------------------------|--------------------|------------|------------------|----------|--------------| | °K | C _p | | (H° - E° |) ⁺ | s° | | -(F° - E°) | | °R | | | R | | RTo | | R | | RT | | π | | | | | | | | | ·· | | | | 2800 | 4.7579 | 124 | 43.5138 | 8720 | 33.8796 | 844 | 29.635 | 75 | 5040 | | 2850
2900 | 4.7703
4.7824 | 121
120 | 44.3858
45.2601 | 8743 | 33.9640 | 830 | 29.710 | 74 | 5130 | | 2950 | 4.7944 | 120 | 46.1366 | 8765
8786 | 34.0470
34.1289 | 819
807 | 29.784
29.857 | 73 | 5220 | | 3000 | 4.8062 | 115 | 47.0152 | 8809 | 34.2096 | 795 | 29.929 | 72
71 | 5310
5400 | | 3050 | 4.8177 | 114 | 47.8961 | 8829 | 34.2891 | 784 | 30.000 | 69 | 5490 | | 3100 | 4.8291 | 111 | 48.7790 | 8850 | 34.3675 | 774 | 30.069 | 69 | 5580 | | 3150
3200 | 4.8402
4.8512 | 110 | 49.6640 | 88 69 | 34.4449 | 763 | 30.138 | 68 | 5670 | | 3250 | 4.8512 | 107
105 | 50.5509
51.4398 | 8889 | 34.5212 | 753 | 30.206 | 67 | 5760 | | | • | | | 8909 | 34.5965 | 743 | 30.273 | 66 | 5850 | | 3300 | 4.8724 | 103 | 52.3307 | 8929 | 34.6708 | 734 | 30.339 | 65 | 5 940 | | 3350
3400 | 4.8827
4.8929 | 102 | 53.2236
54.1183 | 8947 | 34.7442 | 724 | 30.404 | 65 | 6030 | | 3450 | 4.9028 | 99
97 | 55.0148 | 8965
8982 | 34.8166
34.8881 | 715 | 30.469 | 63 | 6120 | | 3500 | 4.9125 | 95 | 55.9130 | 9002 | 34.9587 | 706
698 | 30,532
30,595 | 63
62 | 6210
6300 | | | | | | | | | | 62 | | | 3550
3600 | 4.9220
4.9312 | 92 | 56.8132 | 9018 | 35.0285 | 689 | 30.657 | 61 | 6390 | | 3650 | 4.9312 | 91
88 | 57.7150
58.6183 | 9033
9050 | 35.0974
35.1654 | 680 | 30.718 | 61 | 6480 | | 3700 | 4.9491 | 87 | 59.5233 | 9068 | 35 . 2327 | 673
665 | 30.779
30.838 | 59 | 6570 | | 3750 | 4.9578 | 84 | 60.4301 | 9083 | 35.2992 | 657 | 30.897 | 59
59 | 6660
6750 | | 3800 | 4.9662 | 82 | 61,3384 | 9098 | 35,3649 | 650 | 30,956 | 57 | 6840 | | 3850 | 4.9744 | · 81 | 62.2482 | 9112 | 35.4299 | 642 | 31.013 | 57 | 6930 | | 3900
3950 | 4.9825 | 78 | 63.1594 | 9127 | 35.4941 | 635 | 31.070 | 57 | 7020 | | 4000 | 4.9903
4.9979 | 76
75 | 64.0721
64.9862 | 9141 | 35.5576 | 628 | 31.127 | 56 | 7110 | | | | | | 9160 | 35,6204 | 622 | 31.183 | 55 | 7200 | | 4050 | 5.0054 | 72 | 65.9022 | 9171 | 35.6826 | 615 | 31.238 | 54 | 7290 | | 4100
4150 | 5.0126
5.0197 | 71 | 66.8193 | 9178 | 35.7441 | 608 | 31.292 | 54 | 7380 | | 4200 | 5.0265 | 68
67 | 67.7371
68.6561 | 9190
9204 | 35.8049
35.8650 | 601 | 31.346
31.400 | 54 | 7470 | | 4250 | 5.0332 | 65 | 69.5765 | 9204 | 35.9245 | 595
590 | 31.453 | 53
52 | 7560
7650 | | 4300 | * | | | | | | | 52 | | | 4300 | 5.0397
5.0460 | 63 | 70.4983
71.4217 | 9234 | 35.9835 | 583 | 31.505 | 52 | 7740 | | 4400 | 5.0521 | 61
59 | 72.3461 | 9244
92 5 4 | 36.0418
36.0995 | 577 | 31.557 | 51 | 7830 | | 4450 | 5.0580 | 58 | 73.2715 | 925 4
9261 | 36.1566 | 571
566 | 31.608
31.659 | 51
50 | 7920
8010 | | 4500 | 5.0638 | 55 | 74.1976 | 9270 | 36.2132 | 559 | 31.709 | 50 | 8100 | | 4550 | 5,0693 | 53 | 75.1246 | 9282 | 36.2691 | 555 | 31.759 | 49 | 8190 | | 4600 | 5.0746 | 51 | 76.0528 | 9299 | 36.3246 | 548 | 31.808 | 49 | 8280 | | 4650 | 5.0797 | 50 | 76.9827 | 9308 | 36.3794 | 544 | 31.857 | 49 | 8370 | | 4700
4750 | 5.0847
5.0896 | 49
47 | 77.9135
78.8445 | 9310 | 36.4338
36.4876 | 538 | 31.906
31.954 | 48 | 8460 | | | | | | 9315 | | 534 | | 47 | 8550 | | 4800
4850 | 5.0943 | 44 | 79.7760 | 9326 | 36.5410 | 528 | 32.001 | 47 | 8640 | | 4850
4 90 0 | 5.0987
5.1028 | 41 | 80.7086
81.6423 | 9337 | 36.5938
34.4461 | 523 | 32.048 | 47 | 8730 | | 4950 | 5.1068 | 40
41 | 82.5770 | 9347
9352 | 36.6461
36.6980 | 519
513 | 32.095
32.141 | 46 | 8820
8910 | | 5000 | 5,1109 | 74 | 83.5122 | 1,356 | 36.7493 | 21.7 | 32.187 | 46 | 9000 | | | - | | | | , | | >==== | | ,000 | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). Table 8-12/a. IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR ATOMIC OXYGEN | | C°p | | (H° - E° |)* | s° | | -(F° - E°) | | | |-----|--------|------|-----------------|-------|---------|-------|------------|-------|-------------| | °K | R | | RT _o | - | R | | RT | | °R | | 10 | 2.5000 | 9 | .09152 | 9153 | 10.3601 | 17330 | 7.8601 | 17329 | 18 | | 20 | 2.5009 | 171 | .18305 | 9177 | 12.0931 | 10162 | 9.5930 | 10140 | 36 | | 30 | 2.5180 | 512 | .27482 | 9302 | 13.1093 | 7306 | 10.6070 | 7209 | 54 | | 40 | 2.5692 | 726 | .36784 | 9536 | 13.8399 | 5810 | 11.3279 | 5624 | 72 | | 50 | 2.6418 | 724 | .46320 | 9806 | 14.4209 | 4881 |
11.8903 | 4635 | 90 | | 60 | 2.7142 | 589 | .56126 | 10049 | 14.9090 | 4231 | 12.3538 | 3959 | 108 | | 70 | 2.7731 | 414 | .66175 | 10233 | 15.3321 | 3732 | 12.7497 | 3466 | 126 | | 80 | 2.8145 | 250 | .76408 | 10354 | 15.7053 | 3331 | 13.0963 | 3087 | 144 | | 90 | 2.8395 | 115 | .86762 | 10420 | 16.0384 | 2998 | 13.4050 | 2786 | 162 | | 100 | 2.8510 | 13 | .97182 | 1044 | 16.3382 | 2719 | 13.6836 | 2539 | 180 | | 110 | 2.8523 | - 54 | 1.0762 | 1044 | 16.6101 | 2480 | 13.9375 | 2332 | 198 | | 120 | 2.8469 | -100 | 1.1806 | 1040 | 16.8581 | 2275 | 14.1707 | 2156 | 216 | | 130 | 2.8369 | -131 | 1.2646 | 1036 | 17.0856 | 2098 | 14.3863 | 2004 | 234 | | 140 | 2.8238 | -148 | 1.3882 | 1032 | 17.2954 | 1943 | 14.5867 | 1871 | 252 | | 150 | 2.8090 | -156 | 1.4914 | 1025 | 17.4897 | 1808 | 14.7738 | 1754 | 270 | | 160 | 2.7934 | -157 | 1.5939 | 1020 | 17.6705 | 1689 | 14.9492 | 1651 | 288 | | 170 | 2.7777 | -153 | 1.6959 | 1014 | 17.8394 | 1583 | 15.1143 | 1559 | 306 | | 180 | 2.7624 | -146 | 1.7973 | 1008 | 17.9977 | 1490 | 15.2702 | 1475 | 324 | | 190 | 2.7478 | -138 | 1.8981 | 1004 | 18.1467 | 1406 | 15.4177 | 1400 | 342 | | 200 | 2.7340 | -134 | 1.9985 | 999 | 18.2873 | 1327 | 15.5577 | 1328 | 360 | | 210 | 2.7206 | -125 | 2.0984 | 994 | 18.4200 | 1262 | 15.6905 | 1269 | 378 | | 220 | 2.7081 | -117 | 2.1978 | 989 | 18.5462 | 1202 | 15.8174 | 1214 | 396 | | 230 | 2.6964 | -109 | 2.2967 | 985 | 18.6664 | 1147 | 15.9388 | 1162 | 414 | | 240 | 2.6855 | -102 | 2.3952 | 981 | 18.7811 | 1096 | 16.0550 | 1114 | 432 | | 250 | 2.6753 | - 95 | 2.4933 | 978 | 18.8907 | 1046 | 16.1664 | 1068 | 450 | | 260 | 2.6658 | - 89 | 2.5911 | 974 | 18.9953 | 1004 | 16.2732 | 1027 | 468 | | 270 | 2.6569 | - 83 | 2.6885 | 971 | 19.0957 | 966 | 16.3759 | 989 | 486 | | 280 | 2.6486 | - 77 | 2.7856 | 968 | 19.1923 | 928 | 16.4748 | 954 | 504 | | 290 | 2.6409 | - 71 | 2.8824 | 965 | 19.2851 | 895 | 16.5702 | 920 | 5 22 | | 300 | 2.6338 | 67 | 2.9789 | 963 | 19.3746 | 861 | 16.6622 | 888 | 540 | | 310 | 2.6271 | 62 | 3.0752 | 961 | 19.4607 | 833 | 16.7510 | 859 | 558 | | 320 | 2.6209 | 58 | 3.1713 | 958 | 19.5440 | 806 | 16.8369 | 833 | 576 | | 330 | 2.6151 | 54 | 3.2671 | 957 | 19.6246 | 780 | 16.9202 | 807 | 594 | | 340 | 2.6097 | 51 | 3.3628 | 954 | 19.7026 | 756 | 17.0009 | 783 | 612 | | 350 | 2.6046 | - 48 | 3.4582 | 953 | 19.7782 | 733 | 17.0792 | 760 | 630 | | 360 | 2.5998 | - 44 | 3.5535 | 951 | 19.8515 | 712 | 17.1552 | 739 | 648 | | 370 | 2.5954 | - 42 | 3.6486 | 949 | 19.9227 | 691 | 17.2291 | 718 | 666 | | 380 | 2.5912 | - 39 | 3.7435 | 948 | 19.9918 | 674 | 17.3009 | 699 | 684 | | 390 | 2.5873 | - 37 | 3.8383 | 947 | 20.0592 | 654 | 17.3708 | 680 | 702 | | 400 | 2.5836 | - 34 | 3.9330 | 945 | 20.1246 | 638 | 17.4388 | 663 | 720 | | 410 | 2.5802 | - 33 | 4.0275 | 944 | 20.1884 | 621 | 17.5051 | 646 | 738 | | 420 | 2.5769 | - 31 | 4.1219 | 943 | 20.2505 | 605 | 17.5697 | 630 | 756 | | 430 | 2.5738 | - 29 | 4.2162 | 941 | 20.3110 | 592 | 17.6327 | 616 | 774 | | 440 | 2.5709 | - 28 | 4.3103 | 941 | 20.3702 | 578 | 17.6943 | 601 | 792 | | 450 | 2.5681 | - 26 | 4.4044 | 939 | 20.4280 | 563 | 17.7544 | 587 | 810 | | 460 | 2.5655 | - 25 | 4.4983 | 939 | 20.4843 | 553 | 17.8131 | 575 | 828 | | 470 | 2.5630 | - 23 | 4.5922 | 938 | 20.5396 | 539 | 17.8706 | 561 | 846 | | 480 | 2.5607 | - 22 | 4.6860 | 938 | 20.5935 | 529 | 17.9267 | 551 | 864 | | 490 | 2.5585 | - 20 | 4.7798 | 936 | 20.6464 | 516 | 17.9818 | 538 | 882 | | 500 | 2.5565 | - 20 | 4.8734 | 936 | 20.6980 | 507 | 18.0356 | 527 | 900 | | 510 | 2.5545 | - 18 | 4.9670 | 935 | 20.7487 | 495 | 18.0883 | 516 | 918 | | 520 | 2.5527 | - 18 | 5.0605 | 934 | 20.7982 | 487 | 18.1399 | 507 | 936 | | 530 | 2.5509 | - 17 | 5.1539 | 933 | 20.8469 | 476 | 18.1906 | 496 | 954 | | 540 | 2.5492 | - 16 | 5.2472 | 933 | 20.8945 | 467 | 18.2402 | 486 | 972 | | 550 | 2.5476 | - 15 | 5.3405 | 932 | 20.9412 | 459 | 18.2888 | 478 | 990 | | 560 | 2.5461 | - 15 | 5.4337 | 932 | 20.9871 | 451 | 18.3366 | 469 | ±008 | | 570 | 2.5446 | - 14 | 5.5269 | 931 | 21.0322 | 442 | 18.3835 | 460 | 1026 | | 580 | 2.5432 | - 13 | 5.6200 | 931 | 21.0764 | 435 | 18.4295 | 453 | 1044 | | 590 | 2.5419 | - 13 | 5.7131 | 930 | 21.1199 | 426 | 18.4748 | 444 | 1062 | | 600 | 2.5406 | | 5.8061 | | 21.1625 | | 18,5192 | | 1080 | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.160K (491.688°R). Table 8-12/a. IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR ATOMIC OXYGEN - Cont. | °K | C _p | - · - · | (H° - E° |)* | s° | | -(F° - E°) | | | |--------------------------------------|--|------------------------|---|--------------------------------------|---|---------------------------------|---|---------------------------------|--------------------------------------| | | R | | RT _o | • | R | | RT | | °R | | 600 | 2.5406 | - 12 | 5.8061 | 9 3 0 | 21.1625 | 420 | 18.5192 | 436 | 1080 | | 610 | 2.5394 | - 12 | 5.8991 | 930 | 21.2045 | 412 | 18.5628 | 430 | 1098 | | 620 | 2.5382 | - 11 | 5.9921 | 929 | 21.2457 | 406 | 18.6058 | 422 | 1116 | | 630 | 2.5371 | - 11 | 6.0850 | 928 | 21.2863 | 399 | 18.6480 | 415 | 1134 | | 640 | 2.5360 | - 10 | 6.1778 | 928 | 21.3262 | 394 | 18.6895 | 408 | 1152 | | 650 | 2.5350 | - 10 | 6.2706 | 928 | 21.3656 | 387 | 18.7303 | 403 | 1170 | | 660 | 2.5340 | - 9 | 6.3634 | 928 | 21.4043 | 381 | 18.7706 | 396 | 1188 | | 670 | 2.5331 | - 10 | 6.4562 | 927 | 21.4424 | 375 | 18.8102 | 390 | 1206 | | 680 | 2.5321 | - 9 | 6.5489 | 927 | 21.4799 | 370 | 18.8492 | 384 | 1224 | | 690 | 2.5312 | - 8 | 6.6416 | 927 | 21.5169 | 365 | 18.8876 | 379 | 1242 | | 700 | 2.5304 | - 8 | 6.7343 | 926 | 21.5534 | 359 | 18.9255 | 372 | 1260 | | 710 | 2.5296 | - 8 | 6.8269 | 926 | 21.5893 | 353 | 18.9627 | 368 | 1278 | | 720 | 2.5288 | - 7 | 6.9195 | 925 | 21.6246 | 349 | 18.9995 | 361 | 1296 | | 730 | 2.5281 | - 7 | 7.0120 | 926 | 21.6595 | 344 | 19.0356 | 357 | 1314 | | 740 | 2.5274 | - 7 | 7.1046 | 925 | 21.6939 | 339 | 19.0713 | 352 | 1332 | | 750 | 2.5267 | - 6 | 7.1971 | 924 | 21.7278 | 335 | 19.1065 | 347 | 1350 | | 760 | 2.5261 | - 7 | 7.2895 | 925 | 21.7613 | 330 | 19.1412 | 343 | 1368 | | 770 | 2.5254 | - 6 | 7.3820 | 924 | 21.7943 | 326 | 19.1755 | 337 | 1386 | | 780 | 2.5248 | - 6 | 7.4744 | 924 | 21.8269 | 321 | 19.2092 | 334 | 1404 | | 790 | 2.5242 | - 5 | 7.5668 | 924 | 21.8590 | 318 | 19.2426 | 329 | 1422 | | 800 | 2.5237 | - 26 | 7.6592 | 4618 | 21.8908 | 1529 | 19.2755 | 1584 | 1440 | | 850 | 2.5211 | - 22 | 8.1210 | 4614 | 22.0437 | 1441 | 19.4339 | 1491 | 1530 | | 900 | 2.5189 | - 18 | 8.5824 | 4608 | 22.1878 | 1361 | 19.5830 | 1407 | 1620 | | 950 | 2.5171 | - 16 | 9.0432 | 4605 | 22.3239 | 1291 | 19.7237 | 1332 | 1710 | | 1000 | 2.5155 | - 14 | 9.5037 | 4603 | 22.4530 | 1226 | 19.8569 | 1266 | 1800 | | 1050 | 2.5141 | - 12 | 9.9640 | 4601 | 22.5756 | 1169 | 19.9835 | 1205 | 1890 | | 1100 | 2.5129 | - 11 | 10.4241 | 4599 | 22.6925 | 1117 | 20.1040 | 1150 | 1980 | | 1150 | 2.5118 | - 10 | 10.8840 | 4597 | 22.8042 | 1069 | 20.2190 | 1099 | 2070 | | 1200 | 2.5108 | - 8 | 11.3437 | 4595 | 22.9111 | 1025 | 20.3289 | 1054 | 2160 | | 1250 | 2.5100 | - 7 | 11.8032 | 4594 | 23.0136 | 985 | 20.4343 | 1011 | 2250 | | 1300 | 2.5093 | - 7 | 12.2626 | 4593 | 23.1121 | 947 | 20.5354 | 972 | 2340 | | 1350 | 2.5086 | - 6 | 12.7219 | 4592 | 23.2068 | 912 | 20.6326 | 934 | 2430 | | 1400 | 2.5080 | - 6 | 13.1811 | 4591 | 23.2980 | 880 | 20.7260 | 904 | 2520 | | 1450 | 2.5074 | - 4 | 13.6402 | 4589 | 23.3860 | 850 | 20.8164 | 870 | 2610 | | 1500 | 2.5070 | - 4 | 14.0991 | 4588 | 23.4710 | 822 | 20.9034 | 842 | 2700 | | 1550 | 2.5066 | - 3 | 14.5579 | 4588 | 23.5532 | 797 | 20.9876 | 816 | 2790 | | 1600 | 2.5063 | - 3 | 15.0167 | 4588 | 23.6329 | 772 | 21.0692 | 789 | 2880 | | 1650 | 2.5060 | - 3 | 15.4755 | 4587 | 23.7101 | 748 | 21.1481 | 764 | 2970 | | 1700 | 2.5057 | - 3 | 15.9342 | 4585 | 23.7849 | 726 | 21.2245 | 742 | 3060 | | 1750 | 2.5054 | - 2 | 16.3927 | 4585 | 23.8575 | 706 | 21.2987 | 721 | 3150 | | 1800
1850
1900
1950
2000 | 2.5052
2.5051
2.5049
2.5049
2.5048 | - 1
- 2
- 1
1 | 16.8512
17.3097
17.7683
18.2268
18.6853 | 4585
4586
4585
4585
4584 | 23.9281
23.9967
24.0635
24.1286
24.1920 | 686
668
651
634
618 | 21.3708
21.4409
21.5090
21.5754
21.6400 | 701
681
664
646
630 | 3240
3330
3420
3510
3600 | | 2050
2100
2150
2200
2250 | 2.5049
2.5049
2.5051
2.5053
2.5055 | 2
2
2
3 | 19.1437
19.6022
20.0608
20.5195
20.9782 | 4585
4586
4587
4587
4587 | 24.2538
24.3142
24.3731
24.4307
24.4870 | 604
589
576
563
551 | 21.7030
21.7644
21.8244
21.8830
21.9402 | 614
600
586
572
560 | 3690
3780
3870
3960
4050 | | 2300 | 2.5058 | 4 | 21.4369 | 4587 | 24.5421 | 539 | 21.9962 | 547 | 4140 | | 2350 | 2.5062 | 5 | 21.8956 | 4587 | 24.5960 | 528 | 22.0509 | 536 | 4230 | | 2400 | 2.5067 | 5 | 22.3543 | 4588 | 24.6488 | 517 | 22.1045 | 524 | 4320 | | 2450 | 2.5072 | 6 | 22.8131 | 4588 | 24.7005 | 506 | 22.1569 | 514 | 4410 | | 2500 | 2.5078 | 6 | 23.2719 | 4591 | 24.7511 | 497 | 22.2083 | 503 | 4500 | | 2550 | 2.5084 | 8 | 23.7310 | 4592 | 24.8008 | 487 | 22.2586 | 494 | 4590 | | 2600 | 2.5092 | 8 | 24.1902 | 4593 | 24.8495 | 478 | 22.3080 | 484 | 4680 | | 2650 | 2.5100 | 9 | 24.6495 | 4596 | 24.8973 | 469 | 22.3564 | 475 | 4770 | | 2700 | 2.5109 | 10 | 25.1091 | 4597 | 24.9442 | 461 | 22.4039 | 466 | 4860 | | 2750 | 2.5119 | 11 | 25.5688 | 4599 | 24.9903 | 453 | 22.4505 | 458 | 4950 | | 2800 | 2,5130 | | 26.0287 | | 25.0356 | | 22.4963 | | 5040 | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R), Table 8-12/a. IDEAL-GAS
THERMODYNAMIC FUNCTIONS FOR ATOMIC OXYGEN - Cont. | | 00 | | | * | | | | | | |------|----------------|----|-----------------|-------------------|------------------|-------------|------------------------------|-------------|----------------| | °K | C _p | | (H° - E° |) ⁻ | s° | | $-(F^{\circ}-E_{0}^{\circ})$ | | ° _R | | | R | | RTo | | R | | RT | | | | | | | | | | | | | | | 2800 | 2.5130 | 12 | 26.0287 | 4601 | 25.0356 | 444 | 22.4963 | 449 | 5040 | | 2850 | 2.5142 | 13 | 26.4888 | 4603 | 25,0800 | 438 | 22.5412 | 441 | 5130 | | 2900 | 2.5155 | 13 | 26 9491 | 4606 | 25,1238 | 430 | 22.5853 | 434 | 5220 | | 2950 | 2.5168 | 14 | 27.4097 | 4608 | 25.1668 | 423 | 22.6287 | 427 | 5310 | | 3000 | 2.5182 | 15 | 27.8 705 | 4611 | 25.2091 | 417 | 22.6714 | 419 | 5400 | | 3050 | 2.5197 | 16 | 28.3316 | 4615 | 25,2508 | 410 | 22.7133 | 413 | 5490 | | 3100 | 2.5213 | 16 | 28.7931 | 4617 | 25 .29 18 | 403 | 22.7546 | 406 | 5580 | | 3150 | 2.5229 | 18 | 29.2548 | 4620 | 25.3321 | 398 | 22.7952 | 400 | 5670 | | 3200 | 2.5247 | 18 | 29.7168 | 4624 | 25.3719 | 392 | 22.8352 | 393 | 5760 | | 3250 | 2.5265 | 19 | 30.1792 | 4626 | 25.4111 | 386 | 22.8745 | 387 | 5850 | | 3300 | 2.5284 | 20 | 30.6418 | 4629 | 25.4497 | 380 | 22.9132 | 382 | 5940 | | 3350 | 2.5304 | 21 | 31.1047 | 4633 | 25.4877 | 375 | 22.9514 | 376 | 6030 | | 3400 | 2.5325 | 21 | 31.5680 | 4636 | 25.5252 | 369 | 22.9890 | 370 | 6120 | | 3450 | 2.5346 | 22 | 32.0316 | 4640 | 25.5621 | 365 | 23.0260 | 365 | 6210 | | 3500 | 2.5368 | 23 | 32.4956 | 4645 | 25.5986 | 360 | 23.0625 | 360 | 6300 | | 3550 | 2,5391 | 23 | 32,9601 | 4650 | 25.6346 | 3 55 | 23.0985 | 354 | 6390 | | 3600 | 2.5414 | 24 | 33.4251 | 4655 | 25.6701 | 351 | 23.1339 | 350 | 6480 | | 3650 | 2.5438 | 25 | 33.8906 | 4659 | 25.7052 | 346 | 23.1689 | 345 | 6570 | | 3700 | 2.5463 | 25 | 34.3565 | 4664 | 25.7398 | 342 | 23.2034 | 340 | 6660 | | 3750 | 2.5488 | 25 | 34.8229 | 466 8 | 25.7740 | 338 | 23,2374 | 336 | 6750 | | 3800 | 2.5513 | 26 | 35.2897 | 4672 | 25.8078 | 333 | 23.2710 | 33 2 | 6840 | | 3850 | 2.5539 | 27 | 35.7569 | 4677 | 25.8411 | 330 | 23.3042 | 3 27 | 6930 | | 3900 | 2.5566 | 27 | 36.2246 | 4681 | 25.8741 | 326 | 23.3369 | 324 | 7020 | | 3950 | 2.5593 | 28 | 36.6927 | 4687 | 25.9067 | 322 | 23.3693 | 319 | 7110 | | 4000 | 2.5621 | 28 | 37.1614 | 4 69 2 | 25.9389 | 319 | 23,4012 | 315 | 7200 | | 4050 | 2.5649 | 28 | 37.6306 | 4 69 8 | 25.9708 | 314 | 23.4327 | 312 | 7290 | | 4100 | 2.5677 | 29 | 38.1004 | 4703 | 26.0022 | 312 | 23.4639 | 308 | 7380 | | 4150 | 2. 5706 | 29 | 38.5707 | 4709 | 26.0334 | 308 | 23.4947 | 304 | 7470 | | 4200 | 2. 5735 | 29 | 39.0416 | 4714 | 26.0642 | 305 | 23,5251 | 300 | 7560 | | 4250 | 2,5764 | 30 | 39.5130 | 4719 | 26.0947 | 302 | 23.5551 | 297 | 7650 | | 4300 | 2.5794 | 30 | 39.9849 | 4724 | 26.1249 | 298 | 23,5848 | 294 | 7740 | | 4350 | 2.5824 | 29 | 40.4573 | 4730 | 26,1547 | 295 | 23,6142 | 290 | 7830 | | 4400 | 2.5853 | 30 | 40.9303 | 4735 | 26,1842 | 293 | 23,6432 | 287 | 7920 | | 4450 | 2.5883 | 30 | 41.4038 | 4741 | 26,2135 | 289 | 23,6719 | 284 | 8010 | | 4500 | 2.5913 | 31 | 41.8779 | 4747 | 26.2424 | 286 | 23.7003 | 281 | 8100 | | 4550 | 2.5944 | 30 | 42.3526 | 4752 | 26.2710 | 284 | 23,7284 | 278 | 8190 | | 4600 | 2.5974 | 31 | 42.8278 | 4758 | 26,2994 | 281 | 23.7562 | 275 | 8280 | | 4650 | 2.6005 | 31 | 43.3036 | 4764 | 26,3275 | 278 | 23.7837 | 272 | 8370 | | 4700 | 2.6036 | 30 | 43.7800 | 47 69 | 26,3553 | 276 | 23.8109 | 269 | 8460 | | 4750 | 2.6066 | 31 | 44.2569 | 4774 | 26.3829 | 27 3 | 23.8378 | 267 | 8550 | | 4800 | 2,6097 | 31 | 44.7343 | 4780 | 26.4102 | 271 | 23,8645 | 263 | 8640 | | 4850 | 2.6128 | 30 | 45.2123 | 4784 | 26.4373 | 268 | 23.8908 | 262 | 8730 | | 4900 | 2.6158 | 31 | 45.6907 | 4789 | 26,4641 | 266 | 23.9170 | 259 | 8820 | | 4950 | 2.6189 | 30 | 46.1696 | 4793 | 26.4907 | 263 | 23.9429 | 256 | 8910 | | 5000 | 2.6219 | | 46.6489 | | 26.5170 | | 23,9685 | | 9000 | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). Table 8-13. COEFFICIENTS FOR THE EQUATION OF STATE FOR OXYGEN $Z \ = \ 1 + B_1 P + C_1 P^2 + D_1 P^3$ | Т | B ₁ | c_1 | \mathbf{D}_1 | т | \mathbf{B}_1 | $\mathbf{c_1}$ | $\mathbf{D_1}$ | |------------|-------------------|--------------------|-------------------|------|-------------------|-------------------|--------------------| | οK | atm ⁻¹ | atm ⁻² | atm ⁻³ | οK | atm ⁻¹ | atm ⁻² | atm ⁻³ | | 100 | (1)218811 | (3)49949 | (3)3826 | 700 | .(3)3096 | . (6)26 | (9)7331 | | 110 | (1)168698 | (3)28147 | (4)8265 | 710 | . (3)3102 | . (6)25 | (9)7069 | | 120 | (1)132878 | (3)16757 | (4)2242 | 720 | . (3)3107 | . (6)24 | (9)6816 | | 130 | ,(1)106472 | (3)10412 | (5)7148 | 730 | (3)3110 | . (6)24 | (9)6573 | | 140 | (2)86512 | (4)6684 | (5)2525 | 740 | . (3)3112 | . (6)23 | (9)6338 | | 150 | (2)71105 | (4)4404 | (6)9312 | 750 | .(3)3112 | . (6)23 | (9)6111 | | 160 | (2)58993 | (4)2959 | (6)3290 | 760 | . (3)3112 | . (6)22 | (9)5893 | | 170 | (2)49330 | (4)2017 | (7)8969 | 770 | . (3)3108 | . (6)22 | (9)5683 | | 180 | (2)41515 | (4)1388 | . (8)5949 | 780 | .(3)3105 | . (6)20 | · · | | 190 | (2)35124 | (5)958 | . (7)4156 | 790 | . (3)3101 | . (6)20 | (9)5481
(9)5287 | | 200 | (2)29842 | (5)660 | . (7)5150 | 800 | . (3)3095 | .(6)19 | (9)5101 | | 210 | (2)25438 | (5)450 | . (7)5058 | 850 | . (3)3056 | . (6)17 | (9)4271 | | 220 | (2)21734 | (5)301 | . (7)4541 | 900 | . (3)3003 | . (6)15 | (9)3591 | | 230 | (2)18601 | (5)193 | . (7)3899 | 950 | . (3)2942 | . (6)13 | (9)3035 | | 240 | (2)15931 | (5)116 | . (7)3261 | 1000 | . (3)2875 | . (6)11 | (9)2577 | | 250 | (2)13644 | (6)59 | . (7)2683 | 1050 | . (3)2805 | . (6)10 | (9)2200 | | 260 | (2)11672 | (6)18 | . (7)2180 | 1100 | . (3)2734 | . (7)9 | (9)1887 | | 270 | (3)9966 | . (6)12 | .(7)1755 | 1150 | . (3)2663 | . (7)8 | (9)1626 | | 280 | (3)8482 | . (6)34 | .(7)1400 | 1200 | . (3)2590 | • | | | 290 | (3)7186 | .(6)49 | .(7)1106 | 1250 | . (3)2521 | . (7)7
. (7)7 | (9)1408
(9)1225 | | 300 | (3)6051 | . (6)60 | . (8)8649 | 1300 | . (3)2455 | .(7)6 | · | | 310 | (3)5053 | . (6)67 | . (8)6674 | | • | • | (9)1070 | | 320 | (3)4172 | • | . (8)5063 | 1350 | . (3)2389 | . (7)5 | (10)938 | | | • | . (6)72 | * 1 | 1400 | . (3)2328 | . (7)5 | (10)826 | | 330 | (3)3394 | . (6)75 | . (8)3753 | 1450 | . (3)2266 | . (7)5 | (10)730 | | 340 | (3)2704 | . (6)77 | . (8)2689 | 1500 | . (3)2208 | . (7)4 | (10)647 | | 350 | (3)2091 | . (6)78 | . (8)1828 | 1550 | . (3)2151 | . (7)4 | (10)576 | | 360 | (3)1544 | . (6)77 | . (8)1133 | 1600 | . (3)2097 | . (7)4 | (10)514 | | 370 | (3)1057 | . (6)76 | . (9)5738 | 1650 | . (3)2045 | . (7)3 | (10)460 | | 380
390 | (4)621
(4)231 | . (6)75
. (6)74 | .(9)1256 | 1700 | . (3)1994 | . (7)3 | (10)413 | | | • | • | (9)2315 | 1750 | . (3)1946 | . (7)3 | (10)371 | | 400 | . (4)119 | . (6)72 | (9)5143 | 1800 | . (3)1900 | . (7)3 | (10)335 | | 410 | . (4)433 | .(6)70 | (9)7362 | 1850 | . (3)1855 | . (7)3 | (10)303 | | 420 | . (4)715 | . (6)68 | (9)9083 | 1900 | . (3)1812 | . (7)2 | (10)275 | | 430 | . (4)969 | . (6)66 | (8)1039 | 1950 | . (3)1771 | . (7)2 | (10)250 | | 440 | . (3)1197 | . (6)64 | (8)1138 | 2000 | . (3)1731 | . (7)2 | (10)228 | | 450 | .(3)1403 | . (6)62 | (8)1209 | 2050 | . (3)1693 | . (7)2 | (10)208 | | 460 | . (3)1589 | . (6)59 | (8)1258 | 2100 | . (3)1656 | . (7)2 | (10)190 | | 470 | . (3)1756 | . (6)58 | (8) 1 289 | 2150 | .(3)1621 | . (7)2 | (10)174 | | 480 | . (3)1907 | . (6)55 | (8)1306 | 2200 | . (3)1587 | . (7)2 | (10)160 | | 490 | . (3)2044 | . (6)53 | (8)1311 | 2250 | . (3)1554 | . (7)2 | (10)147 | | 500 | . (3)2167 | . (6)52 | (8)1306 | 2300 | . (3)1522 | . (7)1 | (10)135 | | 510 | . (3)2277 | . (6)50 | (8)1295 | 2350 | . (3)1491 | . (7)1 | (10)1 25 | | 520 | . (3)2377 | . (6)48 | (8)1277 | 2400 | .(3)1462 | . (7)1 | (10)115 | | 530 | . (3)2467 | . (6)46 | (8)1255 | 2450 | .(3)1433 | . (7)1 | (10)107 | | 540 | . (3)2548 | . (6)45 | (8)1229 | 2500 | . (3)1406 | . (7)1 | (11)99 | | 550 | . (3)2621 | . (6)43 | (8)1200 | 2550 | . (3)1379 | . (7)1 | (11)92 | | 560 | . (3)2686 | . (6)42 | (8)1170 | 2600 | . (3)1353 | . (7)1 | (11)85 | | 570 | . (3)2745 | . (6)40 | (8)1138 | 2650 | . (3)1328 | . (7)1 | (11)79 | | 580 | . (3)2797 | . (6)39 | (8)1105 | 2700 | . (3)1304 | . (7)1 | (11)74 | | 590 | . (3)2843 | . (6)37 | (8)1072 | 2750 | . (3)1281 | . (7)1 | (11)69 | | 600 | . (3)2884 | . (6)36 | (8)1039 | 2800 | . (3)1258 | . (7)1 | (11)64 | | 610 | . (3)2921 | . (6)35 | (8)1005 | 2850 | . (3)1236 | . (7)1 | (11)60 | | 620 | . (3)2954 | . (6)34 | (9)9728 | 2900 | . (3)1215 | . (7)1 | (11)56 | | 630 | . (3)2982 | . (6)33 | (9)9403 | 2950 | . (3)1194 | . (7)1 | (11)53 | | 640 | . (3)3007 | . (6)32 | (9)9084 | 3000 | . (3)1174 | . (7)1 | (11)49 | | 650 | . (3)3029 | . (6)30 | (9)8771 | | • | • • | • | | 660 | . (3)3048 | . (6)29 | (9)8466 | | | | | | 670 | . (3)3063 | . (6)29 | (9)8169 | | | | | | 680 | . (3)3076 | . (6)28 | (9)7881 | | | | | | 690 | . (3)3087 | . (6)27 | (9)7601 | | | | | | | . 10,000 | . 10/41 | . (0,.001 | | | | | ^{*}Numbers in parentheses indicate the number of zeros immediately to the right of the decimal point. #### CHAPTER 9 ## THE THERMODYNAMIC PROPERTIES OF STEAM The most widely used tabulation of the properties of steam is that by Keenan and Keyes [1], based on experimental data up to 460°C and 360 atmospheres. Koch [2, 3, 4] has published a table in metric units, ranging from 0° to 550°C and from 0.01 to 300 atmospheres. Goff and Gratch [3] published an accurate table of low-pressure values of properties of water from -160° to 212°F. The recorrelation in 1949 by Keyes [4] of the existing data for steam and the recent experimental data of Kennedy [5] and Kirillin and Rumjanzev [6] prompted a reexamination of the situation. The tables given below are a result of this investigation. # Calculation of the Tables The tables of the
compressibility factor and density for steam given here comprise newly calculated values obtained from the thorough correlation by Keyes [4] of all of the then existing data of state. During the course of the calculations, the data of Kennedy [5] were processed with a view of extending the temperature and pressure range of the tables. These data were found too inconsistent at the higher pressures and unreliable at the lower pressures to warrant their use (see figure 9a). In view of this and of the purely empirical nature of the correlation equation used, the tables could not be extended beyond the tabulated range. The data of Kirillin and Rumjanzev are in good agreement with the values of the compressibility factor obtained from the Keyes correlation as is shown in figure 9b. The data of state have been represented by Keyes [4] by the equations found on page 923 of reference 4. The implicit nature of this equation of state required an iterative procedure which was employed until each of the calculated values became constant to a part in 10,000. The values of the gas imperfection corrections to the heat capacity were calculated from an earlier correlation of Keyes, et al., [7], which is consistent with the PVT representation [4] and which was more amenable to computation. The corrections for enthalpy and entropy were obtained by integration of the above corrections. A fuller discussion of the details of the computation is to be found in the above cited works and in the report of Fano, Hubbell, and Beckett [8]. As a check of the consistency of the independent calculations of compressibility and gas imperfection corrections to the derived properties, the corrections to the free energy function were computed both from the tabulated compressibilities by numerical integration from the equation $$\frac{\mathbf{F} - \mathbf{F}^{0}}{\mathbf{R}\mathbf{T}} = \int_{0}^{\mathbf{p}} \frac{\mathbf{Z} - 1}{\mathbf{P}} d\mathbf{P}$$ and from the tabulated entropy and enthalpy. The agreement between the results was very satisfactory, the discrepancies being in the worst case about 2 percent of the correction. Figure 9a. A comparison of the experimental data of Kennedy [5] with this correlation Figure 9b. A comparison of the experimental data of Kirillin and Rumjanzev [6] with this correlation Figure 9c. Departures of low-pressure experimental thermal conductivities from the tabulated values for steam (table 9-7) Figure 9d. Departure of low-pressure experimental viscosities from the tabulated values for steam (table 9-6) The tabulated values of the thermodynamic functions for the ideal gas are those of Friedman and Haar [9]. These authors have calculated the properties of H₂O to temperatures of 5000°K employing a partition function expanded in closed form. The calculations include first order correction terms for anharmonicity, rotation-vibration interaction, and centrifugal stretching. The calculations are based on the best available molecular constants obtained from extensive spectroscopic measurements by Benedict, Gailor, and Plyler [10,11] and Benedict, Claassen, and Shaw [12]. The same spectroscopic data were employed by Glatt, Adams, and Johnston [13] in a term-by-term summation over the energy levels of the unexpanded partition function with appropriate rotational cut-off. The agreement of this tabulation with earlier tables [14,15,16] is discussed fully by Friedman and Haar [9]. The viscosity and thermal conductivity were computed from the equations given in summary tables 1-B and 1-C. A discussion of the correlation is given by Hilsenrath and Touloukian [17]. The vapor pressures tabulated for the liquid were taken from the tabulation of Osborne, Stimson, and Ginnings [18]. The vapor pressure for ice was taken from the tabulation given by Dorsey [19], who lists values for the critical constants, $t_c = 374.15^{\circ}C$, $p_c = 218.39$ atmospheres, and for the triple point pressure, p = 0.00603 atmospheres. # The Consistency and Reliability of the Tables The accuracy of the tables of thermodynamic functions depends largely on the precision of the correlation of experimental data of state by Keyes [4]. It is estimated that the uncertainty in the values of the compressibility factor (table 9-1) does not exceed a few percent of Z-1. The values of the density (table 9-2) are equally reliable, since they were computed directly from the compressibility factors. For the derived thermodynamic properties, namely, specific heat (table 9-3), enthalpy (table 9-4), entropy (table 9-5), and free energy function (table 9-8), the uncertainties should be approximately 10 percent of the gas imperfection correction. The estimated uncertainties in the tabulated ideal-gas values are given in the summary table 1-D. The tables of compressibility and density are in agreement with values obtained by appropriate interpolation methods from the table of specific volumes given in Keenan and Keyes [1]. The derived quantities, however, disagree by amounts corresponding to the differences between the values of the ideal-gas properties used here and those employed in the steam tables. A comparison of this tabulation with the Collins-Keyes [16] formulation for the ideal-gas specific heatshows table 9-10 to be higher by 0.015 in C_D^O/R in the temperature region 300°-500°K. Comparisons of tables of entropy and enthalpy must take into account the arbitrary values at the reference points for these functions. The reference point used here for both the enthalpy function and entropy is 0°K at which point the values of these properties are taken to be zero. The tabulated values of thermal conductivity (table 9-7) have an average deviation of 2.1 percent from the observed values reported by Keyes and Sandell [20], whose experimental data extend to 625°K and 150 atmospheres. The tabulated values depart appreciably from data of Vargaftik [21] Figure 9e. Departures of high-pressure experimental viscosities from the tabulated values for steam (table 9-6/a) and Timroth [22]. Figure 9c shows these departures in the low-pressure region (1 atmosphere). The broken line in that figure represents points calculated from the most recent correlation by F. G. Keyes [23]. The departures from the tabulated values of the low-pressure viscosity data for steam are shown in figure 9d to be less than 4 percent. The scatter of the reliable measurements at elevated pressures is higher (approximately 10 percent) as is indicated in figure 9e. The tables of vapor pressure are thought to be reliable to better than 0.1 percent. ## References - [1] J. H. Keenan and F. G. Keyes, Thermodynamic properties of steam, (John Wiley and Sons, Inc., New York, N. Y., 1936). - [2] W. Koch, Wasserdampftafeln, (Oldenbourg, Berlin, 1937). - [3] A. Goff and S. Gratch, Heating, Piping Air Conditioning 18, 125 (1946). - [4] F. G. Keyes, J. Chem. Phys. 17, 923 (1949). - [5] G. C. Kennedy, Am. J. Sci. 248, 540 (1950). - [6] W. A. Kirillin and L. L. Rumjanzev, Elek. Stantsii 21, 8 (1950). [Abstracted in Zeitschriftenschau. ges. Bauingenieurw. 4, 94 (1952). - [7] F. G. Keyes, L. B. Smith, and H. T. Gerry, Proc. Am. Acad. Arts Sci. 70, 319 (1936). - [8] L. Fano, J. H. Hubbell, and C. W. Beckett, Natl. Advisory Comm. Aeronaut. Tech. Note 3273. - [9] A. S. Friedman and L. Haar, J. Chem. Phys. 22, 2051 (1954). - [10] W. S. Benedict, N. Gailor, and E. K. Plyler, J. Chem. Phys. 21, 1301 (1953). - [11] W. S. Benedict, N. Gailor, and E. K. Plyler, J. Chem. Phys. 21, 1302 (1953). - [12] W. S. Benedict, H. H. Claassen, and J. H. Shaw, J. Research Natl. Bur. Standards 49, 91 (1952) RP2347. - [13] L. Glatt, J. Adams, and H. L. Johnston, Ohio State University Research Foundation Tech. Report No. 316-8 (1953). - [14] D. D. Wagman, W. J. Taylor, J. E. Kilpatrick, K. S. Pitzer, and F. D. Rossini, J. Research Natl.Bur. Standards 34, 143 (1945) RP1634. - [15] F. D. Rossini, K. S. Pitzer, R. L. Arnett, R. M. Braun, and G. C. Pimentel, Selected values of physical and thermodynamic properties of hydrocarbons and related compounds, (Carnegie Press, Pittsburgh, Penn., 1953). - [16] S. C. Collins and F. G. Keyes, Proc. Am. Acad. Arts Sci. 72, 283 (1938). - [17] J. Hilsenrath and Y. S. Touloukian, Trans. Am. Soc. Mech. Engrs. 76, 967 (1954). - [18] N. S. Osborne, H. F. Stimson, and D. C. Ginnings, J. Research Natl.Bur. Standards 23, 261 (1939) RP1229. - [19] N. E. Dorsey, Properties of ordinary water substance, (Reinhold Publishing Corp., New York, N. Y., 1940). - [20] F. G. Keyes and D. J. Sandell, Jr., Trans. Am. Soc. Mech. Engrs. 72, 767 (1950). - [21] N. Vargaftik, Tech. Phys. U. S. S. R. 4, 341 (1937). - [22] D. L. Timroth and N. Vargaftik, J. Phys. U. S. S. R. 2, 101 (1940). - [23] F. G. Keyes, Mass. Inst. Technol. Rept. 37 on Project Squid (April 1, 1952). - [24] W. Schugajew, Physik.Z. Sowjetunion 5, 659 (1934). - [25] C. F. Bonilla, R. D. Brooks, and P. L. Walker Jr., Proceedings of the general discussion on heat transfer, Section II, p. 167 (The Institution of Mechanical Engineers (London) and the American Society of Mechanical Engineers, 1951). - [26] C. J. Smith, Proc. Roy. Soc. (London) [A] 106, 83 (1924). - [27] G. A. Hawkins, H. L. Solberg, and A. A. Potter, Trans. Am. Soc. Mech. Engrs. <u>57</u>, 395 (1935). - [28] H. Braune and R. Linke, Z. physik. Chem. [A] 148, 195 (1930). - [29] H. Speyerer, Z. Ver. deut. Ing. 69, 747 (1925). - [30] K. Sigwart, Forsch. Gebiete Ingenieurw. [A] 7, 310 (1936). - [31] K. Sigwart, Forsch. Gebiete Ingenieurw. [A] 7, 125 (1936). - [32] T. W. Jackson, Doctoral Dissertation, Purdue Univ. (1949). - [33] D. L. Timroth, J. Phys. U. S. S. R. 2, 419 (1940). - [34] W. Koch and E. Schmidt, Wasserdampftafeln, 3rd Auf. (Oldenbourg, Munchen, 1952). Table 9-a. VALUES OF THE GAS CONSTANT, R, FOR STEAM Values of R for Steam for Temperatures in Degrees Kelvin | Pressure
Density | atm | kg/cm ² | mm Hg | lb/in ² | |-------------------------|-----------|--------------------|----------
--------------------| | g/cm ³ | 4. 55466 | 4.70660 | 3461.54 | 66.9353 | | mole/cm ³ | 82. 0567 | 84. 7832 | 62363. 1 | 1205. 91 | | mole/liter | 0.0820544 | 0.0847809 | 62. 3613 | 1. 20587 | | lb/ft ³ | 0.0729579 | 0.0753821 | 55.4480 | 1.07219 | | lb mole/ft ³ | 1.31441 | 1.35808 | 998.952 | 19.3166 | Values of R for Steam for Temperatures in Degrees Rankine | Pressure
Density | atm | kg/cm ² | mm Hg | lb/in ² | |-------------------------|-----------|--------------------|----------|--------------------| | g/cm ³ | 2.53037 | 2.61444 | 1923. 08 | 37.1863 | | mole/cm ³ | 45. 5871 | 47.1018 | 34646. 2 | 669.950 | | mole/liter | 0.0455858 | 0.0471005 | 34. 6452 | 0.669928 | | lb/ft ³ | 0.0405322 | 0.0418789 | 30.8044 | 0.595661 | | lb mole/ft ³ | 0.730228 | 0.754489 | 554.973 | 10.7314 | Table 9-b. CONVERSION FACTORS FOR THE STEAM TABLES Conversion Factors for Table 9-2 | To Convert
Tabulatéd
Value of | То | Having the Dimensions
Indicated Below | Multiply
by | |-------------------------------------|----|---|---| | ρ
in g cm ⁻³ | ρ | mole cm ⁻³ g liter ⁻¹ lb in ⁻³ lb ft ⁻³ | .055506
1.00003 x 10 ³
3.61275 x 10 ⁻²
62.4283 | Conversion Factors for Table 9-4 and 9-10 | To Convert
Tabulated
Value of | То | Having the Dimensions Indicated Below | Multiply
by | |---|------------------------|---|----------------------------------| | $(H^{O} - E_{0}^{O})/RT_{0}$ $(H - E_{0}^{O})/RT_{0}$ | | cal mole ⁻¹ | 542. 821
30. 1299 | | . 20,7,110 | (ii = 2 ₀) | joules g ⁻¹ Btu (lb mole) ⁻¹ Btu lb ⁻¹ | 126. 064
976. 437
54. 1983 | Conversion Factors for Tables 9-3, 9-5, 9-8, and 9-10 | To Convert
Tabulated
Value of | То | Having the Dimensions Indicated Below | Multiply
by | |---|--------------------------|--|----------------| | C _p /R, S ^o /R, | Co, so, | cal mole ⁻¹ oK ⁻¹ (or oC ⁻¹) | 1.98719 | | C _p /R, S/R, | C _p , S, | cal $g^{-1} \circ K^{-1}$ (or $\circ C^{-1}$) | 0.110301 | | -(F ^O - E ^O ₀)/RT. | -(F° - E°0)/T, | joules $g^{-1} \circ K^{-1}$ (or $\circ C^{-1}$) | 0.461500 | | | | Btu (lb mole) $^{-1}$ $^{0}R^{-1}$ (or $^{0}F^{-1}$) | 1.98588 | | $-(\mathbf{F} - \mathbf{E}_0^0)/\mathbf{R}\mathbf{T}$ | -(F - E ₀)/T | Btu lb ⁻¹ OR ⁻¹ (or OF ⁻¹) | 0.110229 | Molecular weight of steam is 18.016 g mole⁻¹. Unless otherwise specified, the mole is the gram-mole; the calorie is the thermochemical calorie; and the joule is the absolute joule. Table 9-b. CONVERSION FACTORS FOR THE STEAM TABLES - Cont. Conversion Factors for Table 9-6 | To Convert Tabulated Value of | То | Having the Dimensions Indicated Below | Multiply
by | |--|----|--|--| | η
in poise
or(g sec ⁻¹ cm ⁻¹) | η | kg hr $^{-1}$ m $^{-1}$ slug hr $^{-1}$ ft $^{-1}$ lb sec $^{-1}$ ft $^{-1}$ | 3. 6000×10^{2} 7. 5188 6. 7197×10^{-2} 2. 4191×10^{2} | Conversion Factors for Table 9-7 | To Convert Tabulated Value of | То | Having the Dimensions Indicated Below | Multiply
by | |-------------------------------|----|---|--| | k/k ₀ | k | cal cm ⁻¹ sec ^{-1 °} K ⁻¹ Btu ft ⁻¹ hr ^{-1 °} R ⁻¹ watts cm ^{-1 °} K ⁻¹ | 3.789×10^{-5} 9.160×10^{-3} 1.585×10^{-4} | Table 9-1. COMPRESSIBILITY FACTOR FOR STEAM | °K_ | 1 | atm | 10 | atm | 20 0 | tm | 40 (| atm | °R | |------------|------------------|------------|------------------|---------------------|------------------|------------|------------------|------------|--------------| | 380 | .98591 | 17/ | | | | | | | 404 | | 390 | .98767 | 176
145 | | | | | | | 684
702 | | 400 | .98912 | 120 | | | | | | | 720 | | 410 | .99032 | 101 | | | | | | | 738 | | 420 | .99133 | 86 | | | | | | | 756 | | 430
440 | .99219
.99294 | 75
65 | | | | | | | 774
792 | | 450 | .99359 | 56 | | | | | | | 810 | | 460 | .99415 | 50 | .93377 | 671 | | | | | 828 | | 470 | .99465 | 44 | .94048 | 5 69 | | | | | 846 | | 480 | .99509 | 39 | .94617 | 488 | | | | | 864 | | 490 | .99548 | 35 | .95105 | 423 | .89209 | 1065 | | | 882 | | 500
510 | .99583
.99614 | 31 | .95528
.95897 | 369 | .90274
.91176 | 902 | | | 900 | | 520 | .99642 | 28 | .96223 | 326 | .91176
.91953 | 777 | | | 918
936 | | 530 | .99667 | 25
23 | .96511 | 288
257 | .92626 | 673
589 | .83225 | 1613 | 954 | | 540 | .99690 | 23 | .96768 | 257
2 3 1 | .93215 | 521 | .84838 | 1367 | 972 | | 550 | | | | | | | | | | | 550
560 | .99711
.99730 | 19 | .96999 | 208 | .93736 | 462 | .86205 | 1174 | 990 | | 570 | .99747 | 17 | .97207
.97395 | 188 | .94198
.94611 | 413 | .87379 | 1021 | 1008
1026 | | 580 | .99763 | 16
14 | .97565 | 170
1 5 5 | .94983 | 372
335 | .88400
.89295 | 895
792 | 1044 | | 590 | .99777 | 13 | .97720 | 142 | .95318 | 304 | .90087 | 705 | 1062 | | 600 | .99790 | 12 | .97862 | 130 | .95622 | 277 | .90792 | 633 | 1080 | | 610 | .99802 | 12 | .97992 | 119 | .95899 | 253 | .91425 | 570 | 1098 | | 620 | .99814 | 10 | .98111 | 110 | .96152 | 232 | .91995 | 516 | 1116 | | 630 | .99824 | 10 | .98221 | 102 | .96384 | 212 | .92511 | 469 | 1134 | | 640 | .99834 | 9 | .98323 | 94 | .96596 | 195 | .92980 | 422 | 1152 | | 650 | .99843 | 9 | .98417 | 86 | .96791 | 178 | .93402 | 385 | 1170 | | 660 | .99852 | 8 | .98503 | 81 | .96969 | 168 | .93787 | 356 | 1188 | | 670 | .99860 | 7 | .98584 | 75 | .97137 | 155 | .94143 | 329 | 1206 | | 680
690 | .99867
.99874 | 7
6 | .98659
.98729 | 70
66 | .97292
.97436 | 144
134 | .94472
.94777 | 305
283 | 1224
1242 | | | • • • • • • | | | | | | | | | | 700 | .99880 | 6 | .98795 | 61 | .97570 | 125 | .95060 | 263 | 1260 | | 710 | .99886 | 6 | .98856 | 57 | .97695 | 118 | .95323 | 245 | 1278 | | 720
730 | .99892 | 5 | .98913 | 54 | .97813 | 110 | .95568 | 229 | 1296 | | 740 | .99897
.99902 | 5
5 | .98967
.99018 | 51
47 | .97923
.98026 | 103
97 | .95797
.96011 | 214
200 | 1314
1332 | | | | _ | | | | | | | | | 750
760 | .99907 | 4 | .99065 | 45 | .98123 | 90 | .96211 | 188 | 1350 | | 760
770 | .99911 | 4 | .99110 | 42 | .98213 | 86 | .96399 | 177 | 1368 | | 770
780 | .99915
.99919 | 4
4 | .99152
.99192 | 40
37 | .98299
.98379 | 80
76 | .96576
.96742 | 166
156 | 1386
1404 | | 790 | .99923 | 4 | .99229 | 36 | .98455 | 76
72 | .96898 | 147 | 1422 | | 800 | .99927 | 3 | .99265 | 33 | .98527 | 68 | .97045 | 139 | 1440 | | 810 | .99930 | 3 | .99298 | 32 | .98595 | 64 | .97184 | 131 | 1458 | | 820 | .99933 | 3 | .99330 | 30 | .98659 | 61 | .97315 | 124 | 1476 | | 830 | .99936 | 3 | .99360 | 29 | .98720 | 58 | .97439 | 117 | 1494 | | 840 | .99939 | 3 | .99389 | 27 | .98778 | 54 | .97556 | 111 | 1512 | | 850 | .99942 | | .99416 | | .98832 | | .97667 | | 1530 | | °K | 60 | atm | 80 a | tm | 100 at | m | 120 a | tm | °R | |---------------------------------|--|--------------------------------------|--|---------------------------------|--|------------------------------------|------------------------------------|------------------------------------|--------------------------------------| | 550
560
570
580
590 | .76634
.79031
.81014
.82692
.84133 | 2397
1983
1678
1441
1253 | .71657
.74683
.77141 | 3026
2458
2053 | .6840 | 340 | | | 990
1008
1026
1044
1062 | | 600 | .85386 | 1101 | .79194 | 1750 | .7180 | 274 | .6214 | 461 | 1080 | | 610 | .86487 | 975 | .80944 | 1514 | .7454 | 228 | .6675 | 350 | 1098 | | 620 | .87462 | 871 | .82458 | 1326 | .7682 | 194 | .7025 | 283 | 1116 | | 630 | .88333 | 782 | .83784 | 1171 | .7876 | 167 | .7308 | 234 | 1134 | | 640 | .89115 | 6 9 2 | .84955 | 1017 | .8043 | 142 | .7542 | 194 | 1152 | | 650
660
670
680
690 | .89807
.90432
.91004
.91530
.92015 | 625
572
526
485
448 | .85972
.86877
.87700
.88451
.89139 | 905
823
751
688
633 | .81848
.83090
.84207
.85218
.86138 | 1242
1117
1011
920
839 | .7736
.7902
.80493
.81809 | 166
147
1316
1185
1074 | 1170
1188
1206
1224
1242 | | 700 | .92463 | 415 | .89772 | 582 | .86977 | 769 | .84068 | 977 | 1260 | | 710 | .92878 | 385 | .90354 | 539 | .87746 | 707 | .85045 | 894 | 1278 | | 720 | .93263 | 358 | .90893 | 498 | .88453 | 652 | .85939 | 819 | 1296 | | 730 | .93621 | 334 | .91391 | 463 | .89105 | 603 | .86758 | 755 | 1314 | | 740 | .93955 | 312 | .91854 | 432 | .89708 | 559 | .87513 | 697 | 1332 | | 750 | .94267 | 291 | .92286 | 402 | .90267 | 520 | .88210 | 645 | 1350 | | 760 | .94558 | 273 | .92688 | 375 | .90787 | 484 | .88855 | 599 | 1368 | | 770 | .94831 | 255 | .93063 | 350 | .91271 | 451 | .89454 | 557 | 1386 | | 780 | .95086 | 241 | .93413 | 329 | .91722 | 421 | .90011 | 519 | 1404 | | 790 | .95327 | 226 | .93742 | 309 | .92143 | 395 | .90530 | 485 | 1422 | | 800 | .95553 | 213 | .94051 | 290 | .92538 | 370 | .91015 | 453 | 1440 | | 810 | .95766 | 200 | .94341 | 273 | .92908 | 348 | .91468 | 425 | 1458 | | 820 | .95966 | 190 | .94614 | 257 | .93256 |
327 | .91893 | 399 | 1476 | | 830 | .96156 | 179 | .94871 | 242 | .93583 | 308 | .92292 | 375 | 1494 | | 840 | .96335 | 169 | .95113 | 229 | .93891 | 290 | .92667 | 354 | 1512 | | 850 | .96504 | | .95342 | | .94181 | | .93021 | | 1530 | | °K | 120 | atm | 140 0 | tm | 160 at | m | 180 a | tm | ° R | |---------------------------------|--|---|--|------------------------------------|--|--------------------------------------|--|--------------------------------------|--------------------------------------| | 600
610
620
630
640 | .6214
.6675
.7025
.7308
.7542 | 461
350
283
234
194 | .6209
.6642
.6979 | 433
337
264 | .5797
.6315 | 518
371 | .5464 | 569 | 1080
1098
1116
1134
1152 | | 650
660
670
680
690 | .7736
.7902
.80493
.81809
.82994 | 166
147
1316
1185
1074 | .7243
.7461
.7651
.78194
.79689 | 218
190
168
1495
1342 | .6686
.6975
.7221
.7433
.76198 | 289
246
212
187
1652 | .6033
.6428
.6749
.7018
.72492 | 395
321
269
231
2016 | 1170
1188
1206
1224
1242 | | 700
710
720
730
740 | .84068
.85045
.85939
.86758
.87513 | 977
894
819
755
69 7 | .81031
.82243
.83343
.84347
.85266 | 1212
1100
1004
919
845 | .77850
.79328
.80660
.81866
.82965 | 1478
1332
1206
1099
1005 | .74508
.76291
.77882
.79312
.80606 | 1783
1591
1430
1294
1177 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | .88210
.88855
.89454
.90011
.90530 | 645
599
557
519
485 | .86111
.86891
.87611
.88280
.88901 | 780
720
669
621
579 | .83970
.84892
.85743
.86528
.87256 | 922
851
785
728
677 | .81783
.82859
.83847
.84756
.85596 | 1076
988
909
840
779 | 1350
1368
1386
1404
1422 | | 800
810
820
830
840 | .91015
.91468
.91893
.92292 | 453
425
399
375
354 | .89480
.90020
.90525
.90998
.91442 | 540
505
473
444
418 | .87933
.88563
.89151
.89700
.90214 | 630
588
549
514
485 | .86375
.87098
.87771
.88398
.88985 | 723
673
627
587
551 | 1440
1458
1476
1494
1512 | | 850 | .93021 | | .91860 | | .90699 | | .89536 | | 1530 | | °K_ | 180 | atm | 200 a | tm | 220 at | m | 240 0 | ıtm | °R | |--------------|---------|--------------------|----------------|-------|--------|------|-------|------|-------| | 640 | .5464 | 569 | | | | | | | 1162 | | 0.0 | .5 10 1 | 307 | | | | | | | 1152 | | 650 | .6033 | 395 | .5206 | 584 | .3763 | 1224 | | | 1170 | | 660 | .6428 | 321 | .5790 | 432 | .4987 | 625 | .3751 | 1120 | 1188 | | 670 | .6749 | 2 69 | .6222 | 344 | .5612 | 453 | .4871 | 628 | 1206 | | 680 | .7018 | 231 | .6566 | 287 | .6065 | 360 | .5499 | 459 | 1224 | | 690 | .72492 | 2016 | .6853 | 245 | .6425 | 298 | .5958 | 366 | 1242 | | | | | * | | | 2,0 | .3730 | 700 | ILTE | | 700 | .74508 | 1783 | .70978 | 21.37 | .6723 | 255 | .6324 | 305 | 1260 | | 710 | .76291 | 1591 | .73115 | 1884 | .69785 | 2220 | .6629 | 260 | 1278 | | 720 | .77882 | 1430 | .74999 | 1679 | .72005 | 1956 | .6889 | 227 | 1296 | | 730 | .79312 | 1294 | .76678 | 1508 | .73961 | 1743 | .7116 | 200 | 1314 | | 740 | .80606 | 1177 | .78186 | 1364 | .75704 | 1565 | .7316 | 178 | 1332 | | | | | | | | | | | | | 750 | .81783 | 1076 | . 79550 | 1240 | .77269 | 1415 | .7494 | 160 | 1350 | | 760 | .82859 | 988 | .80790 | 1133 | .78684 | 1287 | .7654 | 145 | 1368 | | 770 | .83847 | 909 | .81923 | 1039 | .79971 | 1176 | .7799 | 132 | 1386 | | 780 | .84756 | 840 | .82962 | 957 | .81147 | 1079 | .7931 | 121 | 1404 | | 7 9 0 | .85596 | 779 | .83919 | 885 | .82226 | 994 | .8052 | 110 | 1422 | | 800 | .86375 | 723 | .84804 | ma | .83220 | | 01/2 | | 3.440 | | 810 | .87098 | 673 | .85623 | 819 | .84138 | 918 | .8162 | 102 | 1440 | | 820 | .87771 | 627 | .86384 | 761 | | 851 | .8264 | 95 | 1458 | | 830 | .88398 | 62 <i>1</i>
587 | .87092 | 708 | .84989 | 790 | .8359 | 87 | 1476 | | 840 | .88985 | | | 660 | .85779 | 736 | .8446 | 81 | 1494 | | טדט | .00700 | 551 | .87752 | 619 | .86515 | 688 | .8527 | 76 | 1512 | | 850 | .89536 | | .88371 | | .87203 | | .8603 | | 1530 | | °K | 240 | atm | 260 0 | ıtm | 280 a | tm | 300 | ot m | °R | |---|--|--|---|--|---|---------------------------------|---|---------------------------------|--| | 660
670
680
690
700
710
720 | .3751
.4871
.5499
.5958
.6324
.6629 | 1120
628
459
366
305
260
227 | .3888
.4840
.5444
.5895
.6260 | 952
604
451
365
305
261 | .4066
.4871
.5435
.5871
.6227 | 805
564
436
356
300 | .3323
.4254
.4944
.5463
.5876 | 931
690
519
413
344 | 1188
1206
1224
1242
1260
1278
1296 | | 730 | .7116 | 200 | .6826 | 228 | .6527 | 259 | .6220 | 292 | 1314 | | 740 | .7316 | 178 | .7054 | 202 | .6786 | 227 | .6512 | 254 | 1332 | | 750 | .7494 | 160 | .7256 | 180 | .7013 | 202 | .6766 | 224 | 1350 | | 760 | .7654 | 145 | .7436 | 162 | .7215 | 180 | .6990 | 199 | 1368 | | 770 | .7799 | 132 | .7598 | 147 | .7395 | 162 | .7189 | 179 | 1386 | | 780 | .7931 | 121 | .7745 | 134 | .7557 | 148 | .7368 | 161 | 1404 | | 790 | .8052 | 110 | .7879 | 122 | .7705 | 134 | .7529 | 147 | 1422 | | 800 | .8162 | 102 | .8001 | 113 | .7839 | 124 | .7676 | 134 | 1440 | | 810 | .8264 | 95 | .8114 | 104 | .7963 | 113 | .7810 | 123 | 1458 | | 820 | .8359 | 87 | .8218 | 96 | .8076 | 105 | .7933 | 114 | 1476 | | 830 | .8446 | 81 | .8314 | 89 | .8181 | 97 | .8047 | 105 | 1494 | | 840 | .8527 | 76 | .8403 | 83 | .8278 | 89 | .8152 | 97 | 1512 | | 850 | .8603 | | .8486 | | .8367 | | .8249 | | 1530 | | °K | ı atm | 10 atm | 20 atm | 40 atm | °R | |---------------------------------|--|---|---|---|--------------------------------------| | L | g/cm ³ | g/cm ³ | g/cm ³ | g/cm ³ | | | 380
390 | .00058604 -160
.00056999 -150 | | | | 684
702 | | 400
410
420
430
440 | .00055493 -141
.00054074 -134
.00052732 -127
.00051462 -120
.00050254 -114 | 2
0
B | | | 720
738
756
774
792 | | 450
460
470
480
490 | .00049105 -109
.00048010 -104
.00046965 - 99
.00045966 - 95
.00045011 - 91 | 0051115 - 1445
0049670 - 1327
0048343 - 1229 | .010045 — 317 | | 810
828
846
864
882 | | 500
510
520
530
540 | .00044095 - 87
.00043217 - 84
.00042374 - 81
.00041564 - 77
.00040785 - 75 | 3 .0044892 - 1012
0 .0043880 - 957
9 .0042923 - 907 | .0097284 - 2651
.0094433 - 2598
.0091835 - 2368
.0089447 - 2211
.0087236 - 2062 | .019910 - 740
.019170 - 647 | 900
918
936
954
972 | | 550
560
570
580
590 | .00040035 - 72
.00039313 - 69
.00038616 - 67
.00037944 - 64
.00037296 - 62 | 7 .0040333 - 784
2 .0039549 - 750
8 .0038799 - 718 | .0085174 — 1932
.0083242 — 1817
.0081425 — 1717
.0079708 — 1627
.0078081 — 1545 | .018523 - 576
.017947 - 518
.017429 - 472
.016957 - 434
.016523 - 402 | 990
1008
1026
1044
1062 | | 600
610
620
630
640 | .00036670 - 60
.00036064 - 58
.00035478 - 56
.00034911 - 54
.00034363 - 53 | 6 .0036730 - 636
7 .0036094 - 613
8 .0035481 - 590 | .0076536 - 1472
.0075064 - 1405
.0073659 - 1344
.0072315 - 1286
.0071029 - 1234 | .016121 - 374
.015747 - 350
.015397 - 329
.015068 - 310
.014758 - 292 | 1080
1098
1116
1134
1152 | | 650
660
670
680
690 | .00033831 - 51
.00033315 - 50
.00032815 - 48
.00032331 - 47
.00031860 - 45 | 0 .0033771 - 531
4 .0033240 - 514
1 .0032726 - 497 | .0069795 - 1184
.0068611 - 1140
.0067471 - 1099
.0066372 - 1058
.0065314 - 1022 | .014466 — 278
.014188 — 265
.013923 — 252
.013671 — 242
.013429 — 231 | 1170
1188
1206
1224
1242 | | 700
710
720
730
740 | .00031403 - 44
.00030959 - 43
.00030527 - 42
.00030107 - 40
.00029699 - 39 | 2 .0031281 - 452
0 .0030829 - 439
8 .0030390 - 426 | .0064292 - 986
.0063306 - 955
.0062351 - 923
.0061428 - 894
.0060534 - 866 | .013198 - 222
.012976 - 213
.012763 - 205
.012558 - 197
.012361 - 190 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | .00029301 - 38
.00028915 - 37
.00028538 - 36
.00028171 - 35
.00027813 - 34 | 7 .0029148 — 390
7 .0028758 — 381
8 .0028377 — 369 | .0059668 — 839
.0058829 — 815
.0058014 — 790
.0057224 — 768
.0056456 — 747 | .012171 - 184
.011987 - 177
.011810 - 172
.011638 - 165
.011473 - 161 | 1350
1368
1386
1404
1422 | | 800
810
820
830
840 | .00027464 - 33
.00027125 - 33
.00026793 - 32
.00026469 - 31
.00026154 - 30 | 2 .0027297 - 341
4 .0026956 - 333
5 .0026623 - 325 | .0055709 -
725
.0054984 - 706
.0054278 - 687
.0053591 - 669
.0052922 - 651 | .011312 - 156
.011156 - 150
.011006 - 147
.010859 - 142
.010717 - 138 | 1440
1458
1476
1494
1512 | | 850 | .00025845 | .0025982 | .0052271 | .010579 | 1530 | Table 9-2. DENSITY OF STEAM - Cont. | | | | , | | | | | | ρ | |-----|-------------|-------------------|--------------|--------|---------------|-----------------|--------------------|------------------|--------------| | °K | 60 | atm | 80 | atm | 100 6 | atm | 120 | atm | °R | | | g/cn | _n 3 | g/c | m3 | g/cr | _m 3 | g/o | | <u> </u> | | | • | | 8, - | | B , 02 | | g/ C | | | | 550 | .031254 | - 1489 | | | | | | | 000 | | 560 | .029765 | - 1238 | | | | | | | 990 | | 570 | .028527 | - 1060 | .043003 | - 2454 | | | | | 1008
1026 | | 580 | .027467 | - 928 | .040549 | - 1957 | | | | | 1026 | | 590 | .026539 | - 826 | .038592 | - 1627 | .05441 | - 345 | | | 1044 | | 600 | .025713 | ~ 743 | .036965 | - 1392 | .05096 | - 268 | .07066 | Por | 1080 | | 610 | .024970 | - 677 | .035573 | - 1217 | .04828 | -218 | .06471 | - 595 | 1098 | | 620 | .024293 | - 621 | .034356 | - 1080 | .04610 | - 185 | .06049 | - 422
- 327 | 1116 | | 630 | .023672 | - 574 | .033276 | - 971 | .04425 | -160 | .05722 | | | | 640 | .023098 | - 531 | .032305 | - 874 | .04265 | -138 | .05458 | - 264
- 218 | 1134
1152 | | 650 | .022567 | - 496 | .031431 | - 798 | .041269 | ~1233 | .05240 | 1.00 | 1170 | | 660 | .022071 | - 466 | .030633 | - 741 | .040036 | -1121 | .05052 | - 188 | | | 670 | .021605 | - 44 0 | .029292 | - 689 | .038915 | -1027 | .048853 | - 167 | 1188 | | 680 | .021165 | - 416 | .029203 | 646 | .037888 | - 1027
- 948 | .047360 | - 1493 | 1206 | | 690 | .020749 | - 396 | .028557 | 606 | .036940 | - 946
- 879 | .046008 | - 1352
- 1237 | 1224
1242 | | 700 | .020353 | - 376 | .027951 | 571 | .036061 | - 819 | .044771 | | 10/0 | | 710 | .019977 | - 359 | .027380 | - 541 | .035242 | - 819
- 767 | | - 1138 | 1260 | | 720 | .019618 | - 343 | .026839 | ~ 512 | .034475 | - 767
- 721 | .043633 | ~1053 | 1278 | | 730 | .019275 | - 328 | .026327 | - 486 | .033754 | - 680 | .042580 | - 980 | 1296 | | 740 | .018947 | - 314 | .025841 | 464 | .033074 | - 680
- 644 | .041600
.040684 | - 916
- 860 | 1314
1332 | | 750 | .018633 | ~ 302 | .025377 | - 443 | .032430 | 420 | 020004 | | | | 760 | .018331 | 290 | .024934 | - 423 | .031820 | - 610
- 579 | .039824 | - 809 | 1350 | | 770 | .018041 | - 279 | .024511 | - 405 | .031241 | - 552 | .039015 | - 765 | 1368 | | 780 | .017762 | - 2 69 | .024106 | - 388 | .030689 | - 552
- 527 | .038250 | - 724 | 1386 | | 790 | .017493 | - 260 | .023718 | - 374 | .030162 | - 527
- 504 | .037526
.036839 | 687
655 | 1404
1422 | | 800 | .017233 | - 251 | .023344 | - 359 | .029658 | 400 | | | | | 810 | .016982 | - 242 | .022985 | - 346 | .029175 | - 483 | .036184 | - 623 | 1440 | | 820 | .016740 | - 234 | .022639 | - 333 | .028711 | - 464 | .035561 | - 596 | 1458 | | 830 | .016506 | ~ 227 | .022306 | - 322 | .028266 | - 445
- 420 | .034965 | - 571 | 1476 | | 840 | .016279 | - 220 | .021984 | - 310 | .027838 | - 428
- 412 | .034394
.033847 | ~ 547
~ 525 | 1494
1512 | | 850 | .016059 | | .021674 | | .027426 | | .033322 | <i></i> | 1530 | | | · | | | | | |---------------------------------|---|--|--|--|--------------------------------------| | °K | 120 atm | 140 atm | 160 atm | 180 atm | ° ጽ | | | g/cm ³ | g/cm ³ | g/cm ³ | g/cm ³ | | | 600
610
620
630
640 | .07066 595
.06471 422
.06049 327
.05722 264
.05458 218 | .07985 - 637
.07348 - 466
.06882 - 353 | .09619 - 927
.08692 - 609 | .1130 – 122 | 1080
1098
1116
1134
1152 | | 650
660
670
680
690 | .05240 - 188
.05052 - 167
.048853 - 1493
.047360 - 1352
.046008 - 1237 | .06529 — 287
.06242 — 246
.05996 — 215
.057808 — 1906
.055902 — 1712 | .08083 - 452
.07631 - 370
.07261 - 312
.06949 - 268
.066814 - 2351 | .1008 - 76
.09315 - 575
.08740 - 459
.08281 - 380
.079009 - 3236 | 1170
1188
1206
1224
1242 | | 700
710
720
730
740 | .044771 - 1138
.043633 - 1053
.042580 - 980
.041600 - 916
.040684 - 860 | .054190 - 1550
.052640 - 1416
.051224 - 1303
.049921 - 1206
.048715 - 1121 | .064463 - 2093
.062370 - 1881
.060489 - 1708
.058781 - 1562
.057219 - 1439 | .075773 - 2813
.072960 - 2483
.070477 - 2219
.068258 - 2003
.066255 - 1825 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | .039824 - 809
.039015 - 765
.038250 - 724
.037526 - 687
.036839 - 655 | .047594 - 1048
.046546 - 982
.045564 - 925
.044639 - 873
.043766 - 827 | .055780 - 1332
.054448 - 1240
.053208 - 1159
.052049 - 1088
.050961 - 1024 | .064430 - 1673
.062757 - 1545
.061212 - 1433
.059779 - 1336
.058443 - 1251 | 1350
1368
1386
1404
1422 | | 800
810
820
830
840 | .036184 — 623
.035561 — 596
.034965 — 571
.034394 — 547
.033847 — 525 | .042939 - 784
.042155 - 747
.041408 - 711
.040697 - 680
.040017 - 650 | .049937 - 967
.048970 - 917
.048053 - 869
.047184 - 827
.046357 - 791 | .057192 - 1174
.056018 - 1108
.054910 - 1046
.053864 - 993
.052871 - 943 | 1440
1458
1476
1494
1512 | | 850 | .033322 | .039367 | .045566 | .051928 | 1530 | | °K | 180 atm | 200 atm | 220 atm | 240 atm | °R | |---------------------------------|--|--|--|--|--------------------------------------| | | g/cm ³ | g/cm ³ | g/cm ³ | g/cm ³ | | | 640 | .1130 – 122 | | | | 1152 | | 650
660
670
680
690 | .1008 - 76
.09315 - 575
.08740 - 459
.08281 - 380
.079009 - 3236 | .1298 + 149
.1149 - 96
.1053 - 70
.09835 - 547
.09288 - 450 | .1975 -507
.1468 -183
.1285 -114
.1171 -81
.1090 -64 | .2128 - 513
.1615 - 206
.1409 - 127
.1282 - 92 | 1170
1188
1206
1224
1242 | | 700
710
720
730
740 | .075773 - 2813
.072960 - 2483
.070477 - 2219
.068258 - 2003
.066255 - 1825 | .088380 - 3792
.084588 - 3270
.081318 - 2870
.078448 - 2553
.075895 - 2296 | .1026 - 51
.09749 - 432
.093169 - 3706
.089463 - 3242
.086221 - 2872 | .1190 - 70
.1120 - 58
.1062 - 48
.1014 - 41
.09733 - 358 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | .064430 - 1673
.062757 - 1545
.061212 - 433
.059779 - 1336
.058443 - 1251 | .073599 - 2083
.071516 - 1905
.069611 - 1753
.067858 - 1623
.066235 - 1511 | .083349 - 2576
.080773 - 2332
.078441 - 2128
.076313 - 1955
.074358 - 1806 | .09375 - 317
.09058 - 284
.08774 - 256
.08518 - 234
.08284 - 214 | 1350
1368
1386
1404
1422 | | 800
810
820
830
840 | .057192 - 1174
.056018 - 1108
.054910 - 1046
.053864 - 993
.052871 - 943 | .064724 - 1410
.063314 - 1323
.061991 - 1245
.060746 - 1174
.059572 - 1114 | .072552 - 1678
.070874 - 1565
.069309 - 1466
.067843 - 1378
.066465 - 1300 | .08070 — 198
.07872 — 184
.07688 — 171
.07517 — 160
.07357 — 151 | 1440
1458
1476
1494
1512 | | 850 | .051928 | .058458 | .065165 | .07206 | 1530 | Table 9-2. DENSITY OF STEAM - Cont. | *K | 24 | O atm | 260 | atm | 280 | atm | 300 | atm | °R | |---------------------------------|--|---|--|---|--|---|---|---|--------------------------------------| | | g/ | cm ³ | g | g/cm ³ | | g/cm^3 | | g/cm ³ | | | 660
670
680
690 | .2128
.1615
.1409
.1282 | - 513
- 206
- 127
- 92 | .2191
.1734
.1520 | 457
214
137 | .2223
.1829 | 394
213 | .2915
.2244 | - 671
- 341 | 1188
1206
1224
1242 | | 700
710
720
730
740 | .1190
.1120
.1062
.1014
.09733 | 70
58
48
41
358 | .1383
.1284
.1208
.1146
.1094 | - 99
- 76
- 62
- 52
- 45 | .1616
.1475
.1371
.1290
.1224 | - 141
- 104
- 81
- 66
- 55 | .1903
.1698
.1557
.1451
.1367 | - 205
- 141
- 106
- 84
- 69 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | .09375
.09058
.08774
.08518
.08284 | - 317
- 284
- 256
- 234
- 214 | .1049
.1010
.09757
.09449
.09171 | - 39
- 34
- 308
- 278
- 253 | .1169
.1121
.1080
.1043
.1010 | - 48
- 41
- 37
- 33
- 30 | .1298
.1240
.1190
.1146
.1107 | 58
50
44
39
34 | 1350
1368
1386
1404
1422 | | 800
810
820
830
840 | .08070
.07872
.07688
.07517 | 198
184
171
160
151 | .08918
.08685
.08471
.08272
.08037 | - 233
- 214
- 199
- 185
- 173 | .09803
.09531
.09283
.09054
.08841 | - 272
- 248
- 229
-
213
- 197 | .1073
.1041
.1013
.09862
.09619 | - 32
- 28
- 27
- 243
- 225 | 1440
1458
1476
1494
1512 | | 850 | .07206 | | .07914 | | .08644 | | .09394 | | 1530 | | | | | | | | | | | ρ. | |------------|----------------|------------|----------------|--------------|----------------|--------------|----------------|--------------|--------------------| | °K | 1 | atm | 10 | atm | 20 | atm | 40 | atm | °R | | 200 | 4.4/2 | | | | | | | | (04 | | 380
390 | 4.462
4.398 | -64
-43 | | | | | | | 68 4
702 | | 400 | 4.355 | -27 | | | | | | | 720 | | 410 | 4.328 | -16 | | | | | | | 738 | | 420
430 | 4.312
4.300 | -12 | | | | | | | 756
774 | | 440 | 4.291 | - 9
- 7 | | | | | | | 792 | | 450 | 4.284 | - 2 | | | | | | | 810 | | 460 | 4.282 | _ | 5.614 | -216 | | | | | 828 | | 470
480 | 4.282
4.285 | 3
3 | 5.398
5.231 | -167
-132 | | | | | 846
864 | | 490 | 4.288 | 6 | 5.099 | -105 | 6.574 | - 363 | | | 882 | | 500 | 4.294 | 7 | 4.994 | - 84 | 6.211 | -284 | | | 900 | | 510 | 4.301 | 7 | 4.910 | - 68 | 5.927 | -224 | | | 918 | | 520
530 | 4.308
4.317 | 9
9 | 4.842
4.788 | - 54
- 44 | 5.703
5.523 | -180
-145 | 8.041 | -609 | 936
954 | | 540 | 4.326 | 9 | 4.744 | - 36 | 5.378 | -118 | 7.432 | -465 | 972 | | 550 | 4.335 | 11 | 4.708 | - 27 | 5.260 | - 96 | 6.967 | - 365 | 990 | | 560 | 4.346 | 11 | 4.681 | - 22 | 5.164 | - 79 | 6.602 | -291 | 1008 | | 570
580 | 4.357
4.367 | 10
12 | 4.659
4.641 | - 18
- 13 | 5.085
5.019 | - 66 | 6.311
6.074 | -237
-193 | 1026
1044 | | 590 | 4.379 | 12 | 4.628 | - 10 | 4.965 | 54
44 | 5.881 | -158 | 1062 | | 600 | 4.391 | 13 | 4.618 | - 7 | 4.921 | - 37 | 5.723 | -132 | 1080 | | 610
620 | 4.404
4.416 | 12 | 4.611 | - 5 | 4.884 | - 30 | 5.591 | -110 | 1098 | | 630 | 4.416 | 13
13 | 4.606
4.604 | - 2
- 1 | 4.854
4.829 | - 25
- 21 | 5.481
5.389 | - 92
- 78 | 1116
1134 | | 640 | 4.442 | 12 | 4.603 | î | 4.808 | - 16 | 5.311 | - 65 | 1152 | | 650 | 4.454 | 13 | 4.604 | 2 | 4.792 | 13 | 5.246 | - 56 | 1170 | | 660 | 4.467 | 14 | 4.606 | 4 | 4.779 | - 9 | 5.190 | - 46 | 1188 | | 670
680 | 4.481
4.495 | 14
13 | 4.610
4.615 | 5
5 | 4.770
4.762 | - 8
- 5 | 5.144
5.104 | - 40
- 34 | 1206
1224 | | 690 | 4.508 | 14 | 4.620 | 7 | 4.757 | - 5
- 3 | 5.070 | - 27 | 1242 | | 700 | 4.522 | 13 | 4,627 | 7 | 4.754 | - 2 | 5.043 | - 25 | 1260 | | 710 | 4.535 | 15 | 4.634 | 8 | 4.752 | | 5.018 | - 19 | 1278 | | 720
730 | 4.550
4.564 | 14
14 | 4.642
4.651 | 9
8 | 4.752
4.754 | 2
2 | 4.999
4.983 | - 16 | 1296
1314 | | 740 | 4.578 | 14 | 4.659 | 10 | 4.756 | 4 | 4.970 | - 13
- 11 | 1332 | | 750 | 4.592 | 15 | 4.669 | 11 | 4.760 | 5 | 4.959 | - 8 | 1350 | | 760 | 4.607 | 14 | 4.680 | 10 | 4.765 | 5 | 4.951 | - B | 1368 | | 770
780 | 4.621
4.636 | 15
14 | 4.690
4.701 | 11
11 | 4.770
4.776 | 6
8 | 4.943
4.939 | - 4
- 2 | 1386
1404 | | 790 | 4.650 | 15 | 4.712 | 12 | 4.784 | 8 | 4.937 | - 2 | 1422 | | 800 | 4.665 | 15 | 4.724 | 12 | 4.792 | .8 | 4.937 | 1 | 1440 | | 810
820 | 4.680 | 14 | 4.736 | 12 | 4.800 | 9 | 4.938 | 1 | 1458
1476 | | 820
830 | 4.694
4.709 | 15
15 | 4.748
4.760 | 12
12 | 4.809
4.818 | 9
10 | 4.939
4.941 | 2
3 | 1476 | | 840 | 4.724 | 15 | 4.772 | 13 | 4.828 | 10 | 4.944 | 5 | 1512 | | 850 | 4.739 | 15 | 4.785 | 13 | 4.838 | 10 | 4.949 | 5 | 1530 | | °K | 40 |) atm | 60 | atm | 80 | atm | 100 | atm | °R | |-----|-------|-------|--------|-------|--------|-------|--------|-------|------| | 530 | 8.041 | 609 | | | | | - | | 954 | | 540 | 7.432 | -465 | | | | | | | 972 | | 550 | 6.967 | -365 | 10.328 | -1197 | | | | | 990 | | 560 | 6.602 | -291 | 9.131 | - 805 | | | | | 1008 | | 570 | 6.311 | -237 | 8.326 | - 601 | 12.503 | -1929 | | | 1026 | | 580 | 6.074 | -193 | 7.725 | - 468 | 10.574 | -1150 | | | 1044 | | 590 | 5.881 | -158 | 7.257 | - 371 | 9.424 | ~ 805 | 13.879 | -2366 | 1062 | | 600 | 5.723 | -132 | 6.886 | - 301 | 8,619 | - 611 | 11,513 | -1364 | 1080 | | 610 | 5.591 | -110 | 6.585 | - 247 | 8.008 | - 481 | 10.149 | - 934 | 1098 | | 620 | 5.481 | - 92 | 6.338 | - 203 | 7.527 | - 386 | 9.215 | - 698 | 1116 | | 630 | 5.389 | - 78 | 6.135 | - 169 | 7.141 | - 315 | 8,517 | - 547 | 1134 | | 640 | 5.311 | ~ 65 | 5.966 | - 141 | 6.826 | - 258 | 7.970 | - 439 | 1152 | | 650 | 5.246 | - 56 | 5,825 | - 121 | 6,568 | - 217 | 7,531 | - 359 | 1170 | | 660 | 5.190 | - 46 | 5.704 | - 100 | 6,351 | - 179 | 7.172 | - 294 | 1188 | | 670 | 5.144 | - 40 | 5.604 | - 86 | 6.172 | ~ 152 | 6.878 | - 244 | 1206 | | 680 | 5.104 | - 34 | 5.518 | - 73 | 6.020 | - 127 | 6.634 | - 204 | 1224 | | 690 | 5.070 | - 27 | 5.445 | - 62 | 5.893 | - 108 | 6.430 | - 171 | 1242 | | 700 | 5.043 | - 25 | 5.383 | - 54 | 5.785 | - 95 | 6,259 | - 148 | 1260 | | 710 | 5.018 | - 19 | 5.329 | - 45 | 5.690 | - 80 | 6.111 | - 124 | 1278 | | 720 | 4.999 | - 16 | 5.284 | - 39 | 5.610 | - 68 | 5.987 | - 106 | 1296 | | 730 | 4.983 | - 13 | 5,245 | - 34 | 5.542 | - 60 | 5.881 | - 92 | 1314 | | 740 | 4.970 | - 11 | 5.211 | - 29 | 5.482 | - 50 | 5.789 | 79 | 1332 | | 750 | 4.959 | - 8 | 5.182 | - 24 | 5,432 | - 45 | 5.710 | - 69 | 1350 | | 760 | 4.951 | - 8 | 5.158 | - 23 | 5.387 | - 41 | 5.641 | - 63 | 1368 | | 770 | 4.943 | - 4 | 5.135 | - 17 | 5.346 | - 32 | 5.578 | - 50 | 1386 | | 780 | 4.939 | - 2 | 5.118 | - 13 | 5.314 | - 27 | 5.528 | - 43 | 1404 | | 790 | 4.937 | | 5.105 | - 11 | 5.287 | - 23 | 5.485 | - 37 | 1422 | | 800 | 4.937 | 1 | 5.094 | - 8 | 5.264 | - 19 | 5.448 | - 31 | 1440 | | 810 | 4.938 | 1 | 5.086 | - 8 | 5.245 | - 18 | 5.417 | - 30 | 1458 | | 820 | 4.939 | 2 | 5.078 | - 5 | 5.227 | - 14 | 5.387 | - 24 | 1476 | | 830 | 4.941 | 3 | 5.073 | - 4 | 5.213 | - 12 | 5.363 | - 21 | 1494 | | 840 | 4.944 | 5 | 5.069 | - 2 | 5.201 | - 9 | 5.342 | - 18 | 1512 | | 850 | 4.949 | 5 | 5.067 | | 5.192 | - 6 | 5.324 | - 15 | 1530 | Table 9-4. ENTHALPY OF STEAM* | °K | 1 | atm | 10 | atm | 20 | atm | 40 | atm | °R | |------------|------------------|-----------------|------------------|------------|------------------|------------|------------------|------------------------|------------------------| | | | | | | | | | | | | 380 | 5.482 | 162 | | | | | | | 684 | | 390 | 5.644 | 160 | | | | | | | 702 | | 400 | 5.804 | 159 | | | | | | | 720 | | 410 | 5.963 | 158 | | | | | | | 738
756 | | 420
430 | 6.121
6.279 | 158
157 | | | | | | | 774 | | 440 | 6.436 | 157 | | | | | | | 792 | | 450 | 6.593 | 157 | | | | | | | 810 | | 460 | 6.750 | 157 | 6.306 | 201 | | | | | 828 | | 470
480 | 6.907
7.063 | 156 | 6.507
6.702 | 195
189 | | | | | 846
864 | | 490 | 7.005
7.220 | 157
157 | 6.891 | 184 | 6,432 | 233 | | | 882 | | 500 | 7,377 | 158 | 7.075 | 182 | 6,665 | 222 | | | 900 | | 510 | 7.535 | 157 | 7.257 | 178 | 6.887 | 213 | | | 918 | | 520 | 7.692 | 158 | 7.435 | 176 | 7.100 | 206 | | | 936 | | 530
540 | 7.850 | 158 | 7.611
7.786 | 175 | 7.306
7.505 | 199
195 | 6.528
6.811 | 283
263 | 954
9 72 | | | 8.008 | 159 | | 173 | | | | | | | 550 | 8.167 | 159 | 7.959 | 172 | 7.700 | 190 | 7.074 | 248 | 990
1008 | | 560
570 | 8.326
8.485 | 159
160 | 8.131
8.302 | 171
170 | 7.890
8.078 | 188
185 | 7.322
7.558 | 236
227 | 1026 | | 580 | 8,645 | 160 | 8.472 | 169 | 8.263 | 183 | 7.785 | 219 | 1044 | | 590 | 8.805 | 160 | 8.641 | 170 | 8.446 | 181 | 8.004 | 212 | 1062 | | 600 | 8.965 | 161 | 8.811 | 168 | 8.627 | 179 | 8.216 | 207 | 1080
1098 | | 610
620 | 9.126
9.288 | 162
162 | 8.979
9.148 | 169
169 | 8.806
8.984 | 178
177 | 8.423
8.625 | 202
1 99 | 1116 | | 630 | 9.450 | 162 | 9.317 | 168 | 9.161 | 177 | 8.824 | 196 | 1134 | | 640 | 9.612 | 163 | 9.485 | 169 | 9.338 | 175 | 9.020 | 193 | 1152 | | 650 | 9.775 | 163 | 9.654 | 168 | 9.513 | 176 | 9.213 | 191 | 1170 | | 660
670 | 9.938
10.102 | 164 | 9.822
9.991 | 169 | 9.689
9.863 | 174
175 | 9.404
9.593 | 189
188 | 1188
1206 | | 680 | 10.102 | 164
165 | 10.160 | 169
169 | 10.038 | 174 | 9.781 | 186 | 1224 | | 690 | 10.431 | 165 | 10.329 | 169 | 10.212 | 174 | 9.967 | 185 | 1242 | | 700 | 10.596 | 166 | 10.498 | 170 | 10,386 | 174 | 10.152 | 184 | 1260 | | 710 | 10.762 | 166 | 10.668 | 170 | 10.560 | 174 | 10.336 | 184 | 1278
1296 | | 720
730 | 10.928
11.095 | 167 | 10.838
11.008 | 170
170 | 10.734
10.908 | 174
174 | 10.520
10.703 | 183
182 | 1314 | | 740 | 11.262 | 167
168 | 11.178 | 171 | 11.082 | 174 | 10.885 | 181 | 1332 | | 750 | 11.430 | 169 | 11.349 | 171 | 11.256 | 175 | 11.066 | 182 | 1350 | | 760 | 11.599 | 1 69 | 11.520 | 171 | 11.431 | 174 | 11.248 | 181 | 1368 | | 770 | 11.768 | 169 | 11.691 | 172 | 11.605
11.780 | 175 | 11.429
11.610 | 181 | 1386
1404 | | 780
790 | 11.937
12.107 | 170
171 | 11.863
12.036 | 173
172 | 11.780 | 175
175 | 11.791 | 181
180 | 1422 | | | | | | | | | | | 1440 | | 800
810 | 12.278
12.449 | 171
171 | 12.208
12.381 | 173
174 | 12.130
12.306 | 176
176 | 11.971
12.152 | 181
181 | 1458 | | 820 | 12.620 | 172 | 12.555 | 174 | 12.482 | 176 | 12.333 | 181 | 1476 | | 830 | 12.792 | 173 | 12.729 | 174 | 12.658 | 176 | 12.514 | 181 | 1494 | | 840 | 12.965 | 173 | 12,903 | 175 | 12.834 | 177 | 12.695 | 181 | 1512 | | 850 | 13.138 | | 13.078 | | 13.011 | | 12.876 | | 1530 | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). Table 9-4. ENTHALPY OF STEAM - Cont.* | °K | 40 | atm | 60 | atm | 80 | atm | 100 | atm | °R | |------------|----------------|------------|--------|-----|--------|-----------------|--------|-----|------------| | | | | | | | | - | | | | 530
540 | 6.528
6.811 | 283
263 | | | | | | | 954
972 | | 550 | 7.074 | 248 | 6.237 | 355 | | | | | 990 | | 560 | 7.322 | 236 | 6.592 | 319 | | |
| | 1008 | | 570 | 7.558 | 227 | 6.911 | 293 | 6.051 | 420 | | | 1026 | | 580 | 7.785 | 219 | 7.204 | 274 | 6.471 | 365 | / 000 | | 1044 | | 590 | 8.004 | 212 | 7.478 | 258 | 6.836 | 329 | 6.000 | 462 | 1062 | | 600 | 8.216 | 207 | 7.736 | 247 | 7.165 | 304 | 6.462 | 395 | 1080 | | 610 | 8.432 | 202 | 7.983 | 236 | 7.469 | 284 | 6.857 | 353 | 1098 | | 620 | 8.625 | 199 | 8.219 | 228 | 7.753 | 2 69 | 7.210 | 324 | 1116 | | 630 | 8.824 | 196 | 8.447 | 222 | 8.022 | 255 | 7.534 | 302 | 1134 | | 640 | 9.020 | 193 | 8.669 | 216 | 8.277 | 245 | 7,836 | 283 | 1152 | | 650 | 9.213 | 191 | 8.885 | 210 | 8.522 | 236 | 8.119 | 269 | 1170 | | 660 | 9.404 | 189 | 9.095 | 207 | 8.758 | 230 | 8,388 | 257 | 1188 | | 670 | 9.593 | 188 | 9.302 | 204 | 8.988 | 223 | 8.645 | 247 | 1206 | | 680 | 9.781 | 186 | 9.506 | 201 | 9.211 | 218 | 8.892 | 239 | 1224 | | 690 | 9.967 | 185 | 9.707 | 198 | 9.429 | 213 | 9.131 | 233 | 1242 | | 700 | 10.152 | 184 | 9.905 | 196 | 9,642 | 210 | 9.364 | 226 | 1260 | | 710 | 10,336 | 184 | 10.101 | 194 | 9.852 | 207 | 9.590 | 221 | 1278 | | 720 | 10,520 | 183 | 10,295 | 193 | 10.059 | 204 | 9.811 | 217 | 1296 | | 730 | 10.703 | 182 | 10.488 | 191 | 10.263 | 202 | 10.028 | 214 | 1314 | | 740 | 10.885 | 181 | 10.679 | 190 | 10.465 | 200 | 10.242 | 211 | 1332 | | 750 | 11.066 | 182 | 10.869 | 190 | 10,665 | 198 | 10.453 | 207 | 1350 | | 760 | 11.248 | 181 | 11.059 | 188 | 10.863 | 196 | 10.660 | 206 | 1368 | | 770 | 11.429 | 181 | 11.247 | 188 | 11.059 | 195 | 10.866 | 203 | 1386 | | 780 | 11.610 | 181 | 11.435 | 187 | 11.254 | 194 | 11.069 | 201 | 1404 | | 790 | 11.791 | 180 | 11.622 | 186 | 11.448 | 193 | 11.270 | 200 | 1422 | | 800 | 11,971 | 181 | 11.808 | 187 | 11.641 | 193 | 11.470 | 199 | 1440 | | 810 | 12,152 | 181 | 11.995 | 186 | 11.834 | 191 | 11.669 | 198 | 1458 | | 820 | 12,333 | 181 | 12.181 | 186 | 12.025 | 191 | 11,867 | 197 | 1476 | | 830 | 12.514 | 181 | 12.367 | 185 | 12.216 | 191 | 12.064 | 196 | 1494 | | 840 | 12.695 | 181 | 12.552 | 186 | 12.407 | 190 | 12,260 | 195 | 1512 | | 850 | 12.876 | | 12.738 | | 12.597 | | 12,455 | | 1530 | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.160K (491.688°R). 26.604 26.665 26.726 26.786 26,845 26,903 26.961 27.019 27.076 27,132 27,188 24,280 24.342 24.403 24.463 24.523 24.583 24.642 24.700 24.757 24.814 24.871 23,562 23.625 23.687 23.749 23.810 23,870 23.930 23.989 24.047 24.105 24.162 22.818 22.883 22,948 23.012 23.075 23.137 23.198 23.259 23,319 23.378 23.436 Table 9-5 ENTROPY OF STEAM - Cont. S/R | °K | 40 | atm | 60 | atm | 80 | atm | 100 | atm | °R | |-----|--------|-----|--------|-----|--------|------------|--------|-----|------| | | | | | | | | | | | | 530 | 20.837 | 144 | | | | | | | 954 | | 540 | 20.981 | 132 | | | | | | | 972 | | 550 | 21,113 | 122 | 20.364 | 175 | | | | | 990 | | 560 | 21.235 | 114 | 20.539 | 155 | | | | | 1008 | | 570 | 21.349 | 108 | 20.694 | 139 | 20.060 | 200 | | | 1026 | | 580 | 21.457 | 102 | 20.833 | 128 | 20.260 | 170 | | | 1044 | | 590 | 21.559 | 98 | 20.961 | 119 | 20.430 | 152 | 19.880 | 212 | 1062 | | 600 | 21.657 | 93 | 21.080 | 111 | 20.582 | 137 | 20.092 | 178 | 1080 | | 610 | 21.750 | 90 | 21.191 | 105 | 20.719 | 126 | 20.270 | 157 | 1098 | | 620 | 21.840 | 87 | 21.296 | 100 | 20.845 | 117 | 20.427 | 142 | 1116 | | 630 | 21.927 | 84 | 21.396 | 95 | 20.962 | 110 | 20.569 | 130 | 1134 | | 640 | 22.011 | 82 | 21.491 | 91 | 21.072 | 104 | 20.699 | 120 | 1152 | | 650 | 22.093 | 80 | 21.582 | 88 | 21.176 | 98 | 20.819 | 112 | 1170 | | 660 | 22.173 | 77 | 21,670 | 85 | 21.274 | 95 | 20.931 | 106 | 1188 | | 670 | 22.250 | 76 | 21.755 | 83 | 21.369 | 90 | 21.037 | 100 | 1206 | | 680 | 22.326 | 74 | 21.838 | 80 | 21.459 | 87 | 21.137 | 95 | 1224 | | 690 | 22.400 | 73 | 21.918 | 78 | 21,546 | 84 | 21.232 | 91 | 1242 | | 700 | 22,473 | 72 | 21.996 | 76 | 21.630 | 81 | 21.323 | 88 | 1260 | | 710 | 22.545 | 70 | 22,072 | 74 | 21.711 | 7 9 | 21.411 | 84 | 1278 | | 720 | 22.615 | 68 | 22.146 | 72 | 21.790 | 77 | 21,495 | 82 | 1296 | | 730 | 22.683 | 68 | 22.218 | 72 | 21.867 | 75 | 21.577 | 80 | 1314 | | 740 | 22.751 | 67 | 22,290 | 69 | 21.942 | 73 | 21.657 | 77 | 1332 | | 750 | 22.818 | 65 | 22,359 | 69 | 22.015 | 72 | 21.734 | 75 | 1350 | | 760 | 22.883 | 65 | 22,428 | 67 | 22.087 | 70 | 21.809 | 73 | 1368 | | 770 | 22.948 | 64 | 22,495 | 66 | 22.157 | 69 | 21.882 | 72 | 1386 | | 780 | 23.012 | 63 | 22.561 | 65 | 22,226 | 68 | 21.954 | 70 | 1404 | | 790 | 23.075 | 62 | 22.626 | 64 | 22,294 | 66 | 22.024 | 69 | 1422 | | 800 | 23,137 | 61 | 22,690 | 64 | 22,360 | 65 | 22,093 | 67 | 1440 | | 810 | 23.198 | 61 | 22.754 | 62 | 22,425 | 64 | 22.160 | 67 | 1458 | | 820 | 23.259 | 60 | 22.816 | 62 | 22.489 | 64 | 22,227 | 65 | 1476 | | 830 | 23,319 | 59 | 22,878 | 60 | 22,553 | 62 | 22,292 | 64 | 1494 | | 840 | 23.378 | 58 | 22,938 | 60 | 22.615 | 61 | 22.356 | 63 | 1512 | | 850 | 23.436 | 58 | 22.998 | 59 | 22.676 | 61 | 22.419 | 62 | 1530 | | | | | | | | | | | | Table 9-6. VISCOSITY OF STEAM AT ATMOSPHERIC PRESSURE | Table | 9-6. VISCO | SITY OF ST | ГЕАМ АТ | |------------|----------------|------------|----------------| | οK | 7 | _ | o _R | | | poise | x 10-5 | | | 280* | 9.09 | *72 | 504 | | 300 | 9.81 | 72 | 540 | | 320
340 | 10.53
11.25 | 72 | 576 | | 360 | 11.25 | . 73 | 612
648 | | 380 | 12.70 | 72
72 | 684 | | 400 | 13.42 | 72 | 720 | | 420 | 14.14 | 72 | 756 | | 440 | 14.86 | 73 | 792 | | 460 | 15.59 | 72 | 828 | | 480 | 16.31 | 72 | 864 | | 500 | 17.03 | 72 | 900 | | 520 | 17.75 | 72 | 936 | | 540
560 | 18.47
19.20 | 73 | 972
1008 | | 580 | 19.20 | 72
72 | 1008 | | | | . 12 | | | 600 | 20.64 | 72 | 1080 | | 620 | 21.36 | 72 | 1116 | | 660 | 22.08
22.81 | 73 | 1152
1188 | | 680 | 23.53 | 72
72 | 1224 | | | | | | | 700 | 24.25 | 72 | 1260 | | 720
740 | 24.97
25.69 | 72 | 1296
1332 | | 760 | 26.42 | 73
72 | 1368 | | 780 | 27.14 | 72
72 | 1404 | | 000 | _ | | | | 800
820 | 27.86 | 73 | 1440 | | 840 | 28.59
29.32 | 73
75 | 1476
1512 | | 860 | 30.07 | 75
78 | 1548 | | 880 | 30.85 | 85 | 1584 | | 900 | 31.70 | | 1620 | | 1 | | | | | ° K | η | | OR. | |------------|-------|--------------------|------| | | poise | κ 10 ⁻⁵ | | | 1 | • | | | | l | | | | | 900 | 31.70 | 85 | 1620 | | 920 | 32.55 | 84 | 1656 | | 940 | 33.39 | 83 | 1692 | | 960
980 | 34.22 | 82 | 1728 | | 980 | 35.04 | 81 | 1764 | | 1000 | 35.85 | 80 | 1800 | | 1020 | 36.65 | 78 | 1836 | | 1040 | 37.43 | 78 | 1872 | | 1060 | 38.21 | 76 | 1908 | | 1080 | 38.97 | 75 | 1944 | | 1100 | 39.72 | 74 | 1980 | | 1120 | 40.46 | 74
72 | 2016 | | 1140 | 41.18 | 71 | 2052 | | 1160 | 41.89 | 70 | 2088 | | 1180 | 42.59 | 68 | 2124 | | | | - | | | 1200 | 43.27 | 66 | 2160 | | 1220 | 43.93 | - 66 | 2196 | | 1240 | 44.59 | 63 | 2232 | | 1260 | 45.22 | 63 | 2268 | | 1280 | 45.85 | 61 | 2304 | | 1300 | 46,46 | 60 | 2340 | | 1320 | 47.06 | 57 | 2376 | | 1340 | 47.63 | 57 | 2412 | | 1360 | 48.20 | 55 | 2448 | | 1380 | 48.75 | 53 | 2484 | | 1400 | 49.28 | 52 | 2520 | | 1420 | 49.80 | 51 | 2556 | | 1440 | 50.31 | 49 | 2592 | | 1460 | 50.80 | 48 | 2628 | | 1480 | 51.28 | 46 | 2664 | | 1500 | 51.74 | | 2700 | | 1 | | | | ^{*}Entries below 373.16°K refer to the viscosity of the vapor near the saturation pressure. | οK | 20 a | tm | 40 atı | 40 atm | | n | 80 atm | | OR | |--------------|-------|----------|---------------------------|--------|---------------------------|-----|---------------|------------|--------------| | | poise | s x 10-5 | poises x 10 ⁻⁵ | | poises x 10 ⁻⁵ | | poises x 10-5 | | | | 5 0 0 | 17.17 | 178 | | | | | • | | 900 | | 550 | 18.95 | 180 | 19.14 | 176 | 19,45 | 167 | | | 990 | | 600 | 20.75 | 179 | 20.90 | 177 | 21.12 | 170 | 21.42 | 164 | 1080 | | 650 | 22.54 | 180 | 22.67 | 179 | 22.82 | 178 | 23.06 | | 7170 | | 700 | 24,34 | 181 | 24.46 | 179 | 24.60 | 178 | 24.78 | 172 | 1170 | | 750 | 26.15 | 179 | 26.25 | 179 | 26.38 | 177 | 26.53 | 175 | 1260 | | 800 | 27,94 | 184 | 28.04 | 183 | 28.15 | 182 | 28.28 | 175 | 1350 | | 850 | 29.78 | 199 | 29.87 | 199 | 29.97 | 198 | 30.09 | 181
196 | 1440
1530 | | 900 | 31.77 | 210 | 31.86 | 209 | 31.95 | 208 | 32.05 | 204 | 1620 | | 950 | 33.87 | 205 | 33.95 | 204 | 34.03 | 204 | 34.09 | 204 | 1710 | | 000 | 35.92 | 196 | 35.99 | 196 | 36.07 | 196 | 36.16 | | 1800 | | 050 | 37.88 | 190 | 37.95 | 190 | 38.03 | 189 | 38.11 | 195 | 1890 | | 100 | 39.78 | | 39.85 | -,- | 39.92 | 107 | 39.99 | 188 | 1980 | | οK | 100 a | atm | 200 atm | | 250 atr | n. | 300 | 300 atm poises x 10 ⁻⁵ | | |------------------------------------|---|---------------------------------|---|----------------------------------|---|--------------------------|---|-----------------------------------|--| | 600 | poise
21.87 | s x 10 ⁻⁵ | poises x 10 ⁻⁵ | | poises | x 10 ⁻⁵ | poise | | | | 650
700
750
800
850 | 23.34
24.99
26.70
28.43
30.22 | 165
171
173
179
195 | 27.90
27.00
28.27
29.63
31.13 | - 90
127
136
150
182 | 29.29
29.31
30.39
31.79 | 2
108
140
171 | 34.01
31.08
31.50
32.61 | -293
42
111
153 | 1080
1170
1260
1350
1440
1530 | | 900
950
1000
1050
1100 | 32.17
34.23
36.25
38.20
40.08 | 206
202
195
188 | 32.95
34.92
36.86
38.75
40.57 | 197
194
189
182 | 33.50
35.38
37.26
39.10
40.89 | 188
188
184
179 | 34.14
35.91
37.71
39.49
41.25 | 177
180
178
176 | 1620
1710
1800
1890
1980 | | Table | 9-7. THEF | RMAL C | ONDUCTIVIT | TY OF ST | EAM | | | | k/k0 | |---------------------------------|---|----------------------------|---
----------------------------------|---|----------------------------|---|-----------------------------------|--------------------------------------| | °K | 0 atm limi | t | l atm | | 4 atm | | 7 a | tm | o R | | 300
310
320
330
340 | 1.126
1.173
1.221
1.269
1.318 | 47
48
48
49
49 | | | | | | | 540
558
576
594
612 | | 350
360
370
380
390 | 1.367
1.416
1.465
1.515
1.565 | 49
49
50
50 | 1.547
1.593 | 46
48 | | | | | 630
648
666
684
702 | | 400
410
420
430
440 | 1.615
1.665
1.716
1.767
1.818 | 50
51
51
51
52 | 1.641
1.689
1.737
1.786
1.835 | 48
48
49
49
50 | 1.809
1.850
1.893 | 41
43
45 | 1.962 | 37 | 720
738
756
774
792 | | 450
460
470
480
490 | 1.870
1.921
1.973
2.025
2.077 | 51
52
52
52
52 | 1.885
1.935
1.986
2.037
2.088 | 50
51
51
51
51 | 1.938
1.985
2.032
2.078
2.125 | 47
47
46
47
47 | 1.999
2.041
2.083
2.124
2.166 | 42
42
41
42
42 | 810
828
846
864
882 | | 500
510
520
530
540 | 2.129
2.181
2.233
2.286
2.338 | 52
52
53
52
53 | 2.139
2.190
2.242
2.294
2.346 | 51
52
52
52
52
52 | 2.172
2.221
2.271
2.320
2.369 | 49
50
49
49
50 | 2.208
2.255
2.302
2.348
2.395 | 47
47
46
47
47 | 900
918
936
954
972 | | 550
560
570
580
590 | 2.391
2.444
2.496
2.549
2.602 | 53
52
53
53
53 | 2.398
2.450
2.502
2.555
2.608 | 52
52
53
53
52 | 2.419
2.470
2.521
2.573
2.624 | 51
51
52
51
51 | 2.442
2.492
2.542
2.591
2.641 | 50
50
49
50
50 | 990
1008
1026
1044
1062 | | 600
610
620
630
640 | 2.655
2.709
2.762
2.815
2.868 | 54
53
53
53
54 | 2.660
2.713
2.766
2.819
2.872 | 53
53
53
53
53 | 2.675
2.727
2.779
2.832
2.884 | 52
52
53
52
52 | 2.691
2.742
2.793
2.845
2.896 | 51
51
52
51
51 | 1080
1098
1116
1134
1152 | | 650
660
670
680
690 | 2.922
2.975
3.029
3.082
3.136 | 53
54
53
54
54 | 2.925
2.979
3.032
3.085
3.139 | 54
53
53
54
53 | 2.936
2.989
3.042
3.094
3.147 | 53
53
52
53
53 | 2.947
2.999
3.051
3.104
3.156 | 52
52
53
52
52 | 1170
1188
1206
1224
1242 | | 700
710
720
730
740 | 3.190
3.243
3.297
3.351
3.404 | 53
54
54
53
54 | 3.192
3.245
3.299
3.353
3.406 | 53
54
54
53
54 | 3.200
3.253
3.306
3.360
3.413 | 53
53
54
53
53 | 3.208
3.261
3.314
3.366
3.419 | 53
53
52
53
53 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | 3.458
3.512
3.566
3.619
3.673 | 54
54
53
54
53 | 3.460
3.514
3.567
3.621
3.675 | 54
53
54
54
53 | 3.466
3.519
3.573
3.626
3.680 | 53
54
53
54
53 | 3.472
3.525
3.579
3.632
3.685 | 53
54
53
53
52 | 1350
1368
1386
1404
1422 | | 800 | 3.726 | | 3.728 | | 3.733 | | 3.737 | | 1440 | | Table | 9-7. TH | ERMAL CO | ONDUCTIV | TY OF ST | EAM - Con | t | | | k/k | |---------------------------------|---|------------------------------------|---|--------------------------------------|---|--------------------------------------|---|---|--------------------------------------| | οK | 10 | atm | <u> </u> | 40 atm | 70 a | tm | 100 | atm | o R | | 450
460
470
480
490 | 2.069
2.100
2.133
2.169
2.207 | 31
33
36
38
41 | | | | | | | 810
828
846
864
882 | | 500
510
520
530
540 | 2.248
2.291
2.335
2.379
2.423 | 43
44
44
44 | | | | | | | 900
918
936
954
972 | | 550
560
570
580
590 | 2.467
2.515
2.564
2.612
2.660 | 48
49
48
48
48 | 2.842
2.848
2.861
2.879
2.902 | 6
13
18
23
26 | 3.602
3.492
3.412
3.355
3.316 | -110
80
57
39
25 | 4.020 | ~132 | 990
1008
1026
1044
1062 | | 600
610
620
630
640 | 2.708
2.758
2.808
2.858
2.909 | 50
50
50
51
50 | 2.928
2.957
2.991
3.025
3.062 | 29
34
34
37
39 | 3.291
3.280
3.274
3.278
3.289 | - 11
- 6
4
11
16 | 3.888
3.788
3.713
3.660
3.622 | 100
75
53
38
24 | 1080
1098
1116
1134
1152 | | 650
660
670
680
690 | 2.959
3.011
3.062
3.114
3.165 | 52
51
5 2
51
51 | 3.101
3.144
3.186
3.229
3.271 | 43
42
43
42
43 | 3.305
3.326
3.350
3.378
3.409 | 21
24
28
31
33 | 3.598
3.585
3.581
3.584
3.594 | - 13
- 4
3
10
15 | 1170
1188
1206
1224
1242 | | 700
710
720
730
740 | 3.216
3.269
3.321
3.374
3.426 | 53
52
53
52
52 | 3.314
3.361
3.408
3.454
3.501 | 47
47
46
47
47 | 3.442
3.477
3.514
3.553
3.593 | 35
37
39
40
41 | 3.609
3.629
3.652
3.678
3.708 | 20
23
26
30
32 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | 3.478
3.531
3.584
3.636
3.689 | 53
53
52
53
52 | 3.548
3.597
3.646
3.696
3.745 | 49
49
50
49
49 | 3.634
3.676
3.719
3.763
3.808 | 42
43
44
45
47 | 3.740
3.774
3.810
3.847
3.886 | 34
36
37
39
40 | 1350
1368
1386
1404
1422 | | 800 | 3.741 | | 3.794 | | 3.855 | | 3.926 | | 1440 | | o _K | 150 a | ıtm | 200 at | m | 250 at | m | 300 a | atm | o _R | | 620
630
640 | 5.042
4.770
4.559 | -272
-211
-162 | 6.338 | ~48 2 | | | | | 1116
1134
1152 | | 650
660
670
680
690 | 4.397
4.271
4.174
4.102
4.048 | -126
97
72
54
38 | 5.856
5.480
5.186
4.957
4.778 | -376
-294
-229
-179
-141 | 8.522
7.611
6.911
6.372
5.950 | -911
-700
-539
-422
-332 | 13.388
11.368
9.852
8.711
7.834 | -2020
-1516
-1141
- 877
- 680 | 1170
1188
1206
1224
1242 | | 700
710
720
730
740 | 4.010
3.984
3.969
3.963
3.964 | - 26
- 15
- 6
1
7 | 4.637
4.527
4.442
4.378
4.330 | -110
- 85
- 64
- 48
- 34 | 5.618
5.356
5.148
4.984
4.854 | -262
-208
-164
-130
-102 | 7.154
6.622
6.201
5.870
5.604 | - 532
- 421
- 331
- 266
- 212 | 1260
1278
1296
1314
1332 | | 750
760
770
780
790 | 3.971
3.984
4.001
4.022
4.046 | 13
17
21
24
27 | 4.296
4.274
4.260
4.255
4.257 | - 22
- 14
- 5
2
7 | 4.752
4.673
4.612
4.567
4.551 | - 79
- 61
- 45
- 16
- 38 | 5.392
5.226
5.091
4.984
4.901 | - 166
- 135
- 107
- 83
- 65 | 1350
1368
1386
1404
1422 | | 800 | 4.073 | | 4.264 | | 4.513 | - | 4.836 | | 1440 | | Table 9-8. FREE ENERGY FUNCTION OF STEAM $-(F-E_0^\circ)$ | | | | | | | | O)/RT | | |---|------------------|------------|------------------|----------|------------------|------------------|------------------|----------|-------------------| | % | 1 | atm | 10 0 | ıtm | 20 at | m | 40 a | m | °R | | | | | | | | | | | 684 | | 380
390 | 19.687
19.790 | 103
100 | | | | | | | 702 | | 400
410 | 19.890
19.988 | 98
96 | | | | | | | 720
738 | | 420
430 | 20.084
20.178 | 94
92 | | | | | | | 756
774 | | 440 | 20.270 | 89 | | | | | | | 792 | | 450
460 | 20.359
20.447 | 88
87 | 18,200 | 81 | | | | | 810
828
846 | | 470
480 | 20.534
20.618 | 84
83 | 18.281
18.361 | 80
79 | | | | | 864 | | 490 | 20.701 | 82 | 18.440 | 78 | 17.798 | 74 | | | 882 | | 500
510 | 20.783
20.862 | 79
79 | 18.518
18.595 | 77
75 | 17.872
17.944 | 72
71 | | | 900
918 | | 520 | 20.941 | 77 | 18.670 | 75 | 18.015 | 73
70 | 17.472 | 64 | 936
954 | | 530
540 | 21.018
21.094 | 76
74 | 18.745
18.818 | 73
73 | 18.088
18.158 | 70 | 17.536 | 63 | 972 | | 550 | 21.168 | 73 | 18.891 | 71 | 18.228
18.297 | 69
69 | 17.599
17.663 | 64
64 | 990
1008 | | 560
570 | 21.241
21.313 | 72
71 | 18.962
19.032 | 70
70 | 18.366 | 66 | 17.727 | 63 | 1026
1044 | | 580
590 | 21.384
21.453 | 69
69 | 19.102
19.170 | 68
67 | 18.432
18.499 | 67
66 | 17.790
17.853 | 63
63 | 1062 | | 600 | 21.522 | 67 | 19.237 | 67 | 18.565 | 65
65 | 17.916
17.979 | 63
61 | 1080
1098 | | 610
620 | 21.589
21.656 | 67
66 | 19.304
19.369 | 65
65 | 18.630
18.695 | 63 | 18,040 | 61 | 1116 | | 630
640 | 21.722
21.786 | 64
64 | 19.434
19.497 | හ
හ | 18.758
18.821 | 63
61 | 18.101
18.161 | 60
60 | 1134
1152 | | 650 | 21.850 | 62 | 19.560 | 62 | 18.882 | 62 | 18.221 | 59 | 1170 | | 660 | 21.912 | 62 | 19.622 | 61
61 | 18.944
19.004 | 60
60 | 18.280
18.339 | 59
58 | 1188
1206 | | 670
680 | 21.974
22.036 | 62
60 | 19.683
19.744 | 90
91 | 19.064 | 59 | 18.397 | 58 | 1224
1242 | | 690 | 22.096 | 59 | 19.804 | 59 | 19.123 | 58 | 18.455 | 57 | | | 700 | 22.155
 59 | 19.863
19.921 | 58
57 | 19.181
19.239 | 58
57 | 18.512
18.568 | 56
56 | 1260
1278 | | 710
720 | 22.214
22.272 | 58
57 | 19.978 | 57 | 19.296 | 56 | 18.624 | 55 | 1296 | | 730
740 | 22.329
22.386 | 57
55 | 20.035
20.091 | 56
55 | 19.352
19.408 | 56
55 | 18.679
18.734 | 55
54 | 1314
1332 | | 750 | 22.441 | 55 | 20.146 | 55 | 19.463 | 54 | 18.788
18.841 | 53
52 | 1350
1368 | | 760
770 | 22,496
22,551 | 55
54 | 20.201
20.255 | 54
54 | 19.517
19.570 | 53
53 | 18.893 | 53 | 1386 | | 780 | 22,605 | 53 | 20.309 | 53 | 19.623
19.676 | 53
52 | 18.946
18.998 | 52
51 | 1404
1422 | | 790 | 22,658 | 53 | 20,362 | 52 | | _ | 19.049 | 51 | 1440 | | 800
810 | 22.711
22.763 | 52
52 | 20.414
20.466 | 52
51 | 19.728
19.779 | 51
52 | 19.100 | 51 | 1458 | | 820 | 22.815 | 51 | 20.517 | 51 | 19.831 | 50 | 19.151
19.200 | 49
49 | 1476
1494 | | 830
840 | 22.866
22.916 | 50
50 | 20,568
20,618 | 50
50 | 19.881
19.931 | 50
4 9 | 19.249 | 49 | 1512 | | 850 | 22.966 | | 20.668 | | 19.980 | | 19.298 | | 1530 | | Tab | Table 9-8. FREE ENERGY FUNCTION OF STEAM - Cont. | | | | | | | | E ₀)/RT | |-----|--|-----|------------------|----------|--------|-----|--------|-----|---------------------| | °K | 40 | atm | 60 | atm | 80 | atm | 100 | atm | °R | | | _,L | | | | | | | | | | 530 | 17.472 | 64 | | | | | | | 954 | | 540 | 17.536 | 63 | | | | | | | 972 | | 550 | 17,599 | 64 | 17.267 | 56 | | | | | 990
1008 | | 560 | 17.663 | 64 | 17.323 | 58 | | | | | 1008 | | 570 | 17.727 | 63 | 17.381 | 59 | 17.161 | 51 | | | 1044 | | 580 | 17.790 | 63 | 17.440 | 59 | 17.212 | 53 | 17,102 | 40 | 1062 | | 590 | 17.853 | 63 | 17.499 | 59 | 17.265 | 54 | 17.102 | 48 | 1002 | | 600 | 17,916 | 63 | 17.558 | 59 | 17.319 | 55 | 17.150 | 50 | 1080 | | 610 | 17.979 | 61 | 17.617 | 58 | 17.374 | 55 | 17.200 | 51 | 1098 | | 620 | 18.040 | 61 | 17.675 | 58 | 17.429 | 55 | 17.251 | 51 | 1116 | | 630 | 18.101 | 60 | 17.733 | 58 | 17.484 | 55 | 17.302 | 52 | 1134 | | 640 | 18.161 | 60 | 17.791 | 58 | 17.539 | 55 | 17.354 | 53 | 1152 | | 650 | 18,221 | 59 | 17.849 | 57 | 17.594 | 56 | 17.407 | 52 | 1170 | | 660 | 18.280 | 59 | 17.906 | 57 | 17.650 | 54 | 17.459 | 53 | 1188 | | 670 | 18.339 | 58 | 17,963 | 56 | 17.704 | 55 | 17.512 | 52 | 1206 | | 680 | 18.397 | 58 | 18,019 | 56 | 17.759 | 55 | 17.564 | 52 | 1224 | | 690 | 18.455 | 57 | 18.075 | 56 | 17.814 | 53 | 17.616 | 53 | 1242 | | 700 | 18,512 | 56 | 18.131 | 55 | 17.867 | 54 | 17.669 | 53 | 1260 | | 710 | 18,568 | 56 | 18.186 | 55
54 | 17.921 | 53 | 17.722 | 52 | 1278 | | 720 | 18.624 | 55 | 18.240 | 54 | 17.974 | 53 | 17.774 | 51 | 1296 | | 730 | 18.679 | 55 | 18.294 | 54 | 18.027 | 53 | 17.825 | 51 | 1314 | | 740 | 18.734 | 54 | 18.348 | 53 | 18.080 | 52 | 17.876 | 51 | 1332 | | | | | 10 401 | | 18,132 | 51 | 17,927 | 51 | 1350 | | 750 | 18.788 | 53 | 18.401
18.453 | 52 | 18.183 | 51 | 17.978 | 50 | 1368 | | 760 | 18.841 | 52 | | 52
52 | 18.234 | 50 | 18.028 | 49 | 1386 | | 770 | 18.893 | 53 | 18.505
18.557 | 52
51 | 18.284 | 50 | 18.077 | 50 | 1404 | | 780 | 18.946 | 52 | 18,608 | 50 | 18.334 | 50 | 18.127 | 49 | 1422 | | 790 | 18.998 | 51 | 10.000 | . 50 | 10.774 | 50 | | ., | | | 800 | 19.049 | 51 | 18,658 | 50 | 18.384 | 50 | 18.176 | 49 | 1440
1458 | | 810 | 19.100 | 51 | 18,708 | 50 | 18.434 | 49 | 18.225 | 49 | 1458 | | 820 | 19.151 | 49 | 18.758 | 49 | 18.483 | 49 | 18.274 | 48 | 1476 | | 830 | 19.200 | 49 | 18.807 | 49 | 18.532 | 48 | 18.322 | 47 | 1512 | | 840 | 19.249 | 49 | 18.856 | 48 | 18,580 | 48 | 18.369 | 47 | 1512 | | 850 | 19,298 | | 18.904 | | 18.628 | | 18.416 | | 1530 | | | | | | | | | | | | Table 9-9. VAPOR PRESSURE OF ICE | Table 9-9 | , VAPOR FRESS | 0. | | | | | | |------------|------------------------|------------------|----------------|---|------------|------------------------------|----------------| | | | | | | | | _ | | T | P | | Т | | Т | P | T | | | | | <u> </u> | | <u> </u> | | o _R | | °к | atm | | o _R | | °к | atm | R | | 154 | .0000000001 | 2 | 277.2 | | | | | | 15. | | | | | | 0000033/ | 369.0 | | 155 | .0000000003 | | 279.0 | | 205 | .00000336 52 | | | 156 | .0000000003 | | 280.8 | | 206
207 | .00000388 61
.00000449 69 | | | 157 | .0000000003 | 1 | 282.6 | | | .00000449 69
.00000518 79 | | | 158 | .0000000004 | 1 | 284.4 | | 208
209 | .00000597 % | | | 159 | .0000000005 | 3 | 286.2 | | 209 | .00000577 30 | 270.2 | | 160 | .0000000008 | 1 | 288.0 | | 210 | .00000687 104 | | | 161 | .0000000009 | - | 289.8 | | 211 | .00000791 114 | | | 162 | .000000001 | | 291.6 | | 212 | .00000905 13 | 381.6 | | 163 | .000000001 | | 293.4 | | 213 | .0000104 15 | 383.4 | | 164 | .000000001 | 2 | 295.2 | | 214 | .0000119 18 | 385.2 | | | | | 207.0 | | 215 | .0000137 18 | 387.0 | | 165 | .000000003 | | 297.0 | | 216 | .0000157 18 | 388.8 | | 166 | .000000003 | 1 | 298.8 | | 217 | .0000178 25 | 390.6 | | 167 | .000000004 | | 300.6 | | 217 | .0000178 25 | 392.4 | | 168 | .000000004 | 1 | 302.4
304.2 | | 219 | .0000229 33 | 394.2 | | 169 | .000000005 | 2 | 304.2 | | 217 | .0000227 | - | | 170 | .000000007 | 1 | 306.0 | | 220 | .0000262 34 | 396.0 | | 171 | .000000008 | • | 307.8 | | 221 | .0000296 41 | 397.8 | | 172 | .00000001 | | 309.6 | | 222 | .0000337 45 | 399.6 | | 173 | .00000001 | | 311.4 | | 223 | .0000382 50 | 401.4 | | 174 | .00000001 | | 313.2 | | 224 | .0000432 56 | 403.2 | | | | | 215.0 | | 225 | .0000488 62 | 405.0 | | 175 | .00000001 | 2 | 315.0
316.8 | | 226 | .0000550 71 | 406.8 | | 176 | .00000003 | | 318.6 | | 227 | .0000621 78 | 408.6 | | 177 | .00000003 | 1 | 320.4 | | 228 | .0000699 88 | 410.4 | | 178
179 | .00000004
.00000004 | 1 | 322.2 | | 229 | .0000787 96 | 412.2 | | 1/7 | .00000004 | • | > | | | | 43.4.0 | | 180 | .00000005 | 2 | 324.0 | | 230 | .0000883 109 | 414.0
415.8 | | 181 | .00000007 | 1 | 325.8 | • | 231 | .0000992 12 | 417.6 | | 182 | .00000008 | 1 | 327.6 | | 232 | .000111 14 | 417.0 | | 183 | .00000009 | | 329.4 | | 233 | .000125 15 | 421.2 | | 184 | .0000001 | 3 | 331.2 | | 234 | .0001397 166 | 421.2 | | 3.05 | .00000013 | 3 | 333.0 | | 235 | .0001563 183 | 423.0 | | 185
186 | .00000015 | 2 | 334.8 | | 236 | .0001746 202 | 424.8 | | 186 | .00000018 | 4 | 336.6 | | 237 | .0001948 226 | | | 188 | .00000018 | 4 | 338.4 | | 238 | .0002174 248 | 428.4 | | 189 | .00000022 | 6 | 340.2 | | 239 | .0002422 274 | 430.2 | | | · | | | | 240 | 0002404 202 | 432.0 | | 190 | .00000032 | 5 | 342.0 | | 240 | .0002696 303 | | | 191 | .00000037 | 6 | 343.8 | | 241
242 | .0002999 333
.0003332 368 | | | 192 | .00000043 | 8 | 345.6 | | 242 | .0003700 41 | 437.4 | | 193 | .00000051 | 10 | 347.4
349.2 | | 249 | .0003700 41 | 439.2 | | 194 | .00000061 | 11 | 247.2 | | 277 | - | | | 195 | .00000072 | 12 | 351.0 | | 245 | .000454 50 | 441.0 | | 196 | .00000084 | 15 | 352.8 | | 246 | .000504 53 | 442.8 | | 197 | .00000099 | 2 | 354.6 | | 247 | .000557 59 | 444.6
446.4 | | 198 | .0000012 | 1 | 356.4 | | 248 | .000616 66 | 448.2 | | 199 | .00000134 | 24 | 358.2 | | 249 | .000682 69 | 440.2 | | 200 | 00000150 | 24 | 360.0 | | 250 | .000751 78 | 450.0 | | 200 | .00000158 | 26
3 0 | 361.8 | | 251 | .000829 84 | 451.8 | | 201
202 | .00000184
.00000214 | 30
35 | 363.6 | | 252 | .000913 10 | 453.6 | | 202 | .00000214 | 40 | 365.4 | | 253 | .00101 10 | 455.4 | | 203 | .00000249 | 47 | 367.2 | | 254 | .00111 10 | 457 .2 | | 204 | .00000207 | 77 | | | | | | Table 9-9. VAPOR PRESSURE OF ICE - Cont. | Т | | P | Т | |---|---|---|---| | o K | : | atm | $\mathbf{o}_{\mathbf{R}}$ | | 254.0
254.5
255.0
255.5
256.0 | .00111
.00116
.00122
.00128
.001337 | 5
6
6
6 | 457.2
458.1
459.0
459.9
460.8 | | 256.5
257.0
257.5
258.0
258.5 | .001400
.001467
.001537
.001609
.001686 | 67
70
72
77
78 | 461.7
462.6
463.5
464.4
465.3 | | 259.0
259.5
260.0
260.5
261.0 | .001764
.001847
.001933
.002024 | 83
86
91
92
97 | 466.2
467.1
468.0
468.9
469.8 | | 261.5
262.0
262.5
263.0
263.5 | .002213
.002314
.002420
.002530
.002645 | 101
106
110
115
119 | 470.7
471.6
472.5
473.4
474.3 | | 264.0
264.5
265.0
265.5
266.0 | .002764
.002888
.003017
.003151
.003292 | 124
129
1 34
141
145 | 475.2
476.1
477.0
477.9
478.8 | | 266.5
267.0
267.5
268.0
268.5 | .003437
.003589
.003747
.003911
.004080 | 152
158
164
169
178 | 479.7
480.6
481.5
482.4
483.3 | | 269.0
269.5
270.0
270.5
271.0 | .004258
.004442
.004633
.004832
.005038 | 184
191
199
206
215 | 484.2
485.1
486.0
486.9
487.8 | | 271.5
272.0
272.5
273.0 | .005253
.005475
.005707
.005946 | 222
232
239 | 488.7
489.6
490.5
491.4 | Table 9-9/a. VAPOR PRESSURE OF WATER | т | P | | т | т | P | | Т | |-------------|---------|-------------------|----------------|-----|--------|-----------------|-------| | °K | atm | | o _R | °K | atm | | oR. | | 274 | .006406 | 477 | 493.2 | | | | | | 27 5 | .006883 | 508 | 495.0 | 325 | .13329 | 667 | 585.0 | | 276 | .007391 | 5 4 2 | 496.8 | 326 | .13996 | 69 5 | 586.8 | | 277 | .007933 | 576 | 498.6 | 327 | .14691 | 724 | 588.6 | | 278 | .008509 | 614 | 500.4 | 328 | .15415 | 755 | 590.4 | | 279 | .009123 | 651 | 502.2 | 329 | .16170 | 786 | 592.2 | | 280 | .009774 | 692 | 504.0 | 330 | .16956 | 819 | 594.0 | | 281 | .010466 | 735 | 505.8 | 331 | .17775 | 852 | 595.8 | | 282 | .011201 | 781 | 507.6 | 332 |
.18627 | 887 | 597.6 | | 283 | .011982 | 827 | 509.4 | 333 | .19514 | 922 | 599.4 | | 284 | .012809 | 878 | 511.2 | 334 | .20436 | 959 | 601.2 | | 285 | .013687 | 930 | 513.0 | 335 | .21395 | 997 | 603.0 | | 286 | .014617 | 986 | 514.8 | 336 | .22392 | 1036 | 604.8 | | 287 | .015603 | 1043 | 516.6 | 337 | .23428 | 1077 | 606.6 | | 289 | .016646 | 1104 | 518.4 | 338 | .24505 | 1118 | 608.4 | | 289 | .017750 | 1167 | 520,2 | 339 | .25623 | 1162 | 610.2 | | 290 | .018917 | 1235 | 522.0 | 340 | .26785 | 1206 | 612.0 | | 291 | .020152 | 1305 | 523.8 | 341 | .27991 | 1251 | 613.8 | | 292 | .021457 | 1378 | 525.6 | 342 | .29242 | 1299 | 615.6 | | 293 | .022835 | 1455 | 527.4 | 343 | .30541 | 1346 | 617.4 | | 294 | .024290 | 1535 | 529.2 | 344 | .31887 | 1398 | 619.2 | | 295 | .025825 | 1620 | 531.0 | 345 | .33285 | 1448 | 621.0 | | | .027445 | 1707 | 532.8 | 346 | .34733 | 1501 | 622.8 | | 296 | .029152 | 1800 | 534.6 | 347 | .36234 | 1555 | 624.6 | | 297 | .030952 | | 536.4 | 348 | .37789 | 1611 | 626.4 | | 298
299 | .032848 | 1896
1996 | 538.2 | 349 | .39400 | 1669 | 628.2 | | 300 | .034844 | 2101 | 540.0 | 350 | .41069 | 1728 | 630.0 | | | .036945 | 2210 | 541.8 | 351 | .42797 | 1789 | 631.8 | | 301 | .039155 | 2325 | 543.6 | 352 | .44586 | 1851 | 633.6 | | 302 | | | 545.4 | 353 | .46437 | 1915 | 635.4 | | 303 | .041480 | 2444 | 547.2 | 354 | .48352 | 1981 | 637.2 | | 304 | .043924 | 2568 | 547.2 | | - | | | | 305 | .046492 | 2 69 7 | 549.0 | 355 | .50333 | 2049 | 639.0 | | 306 | .049189 | 2832 | 550.8 | 356 | .52382 | 2119 | 640.8 | | 307 | .052021 | 2972 | 552.6 | 357 | .54501 | 2189 | 642.6 | | 308 | .054993 | 3119 | 554.4 | 358 | .56690 | 2263 | 644.4 | | 309 | .058112 | 3270 | 556.2 | 359 | .58953 | 2337 | 646.2 | | 310 | .061382 | 3428 | 558.0 | 360 | .61290 | 2415 | 648.0 | | 311 | .064810 | 3593 | 559.8 | 361 | .63705 | 2493 | 649.8 | | 312 | .068403 | 3764 | 561.6 | 362 | .66198 | 2574 | 651.6 | | 313 | .072167 | 3941 | 563.4 | 363 | .68772 | 2658 | 653.4 | | 314 | .076108 | 4126 | 565.2 | 364 | .71430 | 2742 | 655.2 | | 315 | .080234 | 4317 | 567.0 | 365 | .74172 | 2829 | 657.0 | | | .084551 | 4517
4516 | 568.8 | 366 | .77001 | 2919 | 658.8 | | 316
317 | .089067 | 4723 | 570.6 | 367 | 79920 | 3010 | 660.6 | | 317
318 | .093790 | 4939 | 572.4 | 368 | .82930 | 3104 | 662.4 | | 319 | .098729 | 515 | 574.2 | 369 | .86034 | 3199 | 664.2 | | 220 | .10388 | 539 | 576.0 | 370 | .89233 | 3298 | 666.0 | | 320 | | | 577.8 | 371 | .92531 | 3398 | 667.8 | | 321 | .10927 | 563 | 579.6 | 372 | .95929 | 3501 | 669.6 | | 322 | .11490 | 587 | 581.4 | 373 | .99430 | 361 | 671.4 | | 323 | .12077 | 613
639 | 583.2 | 374 | 1.0304 | 371 | 673.2 | | 324 | .12690 | 750 | 307.2 | 717 | 1.000 | J. 2 | | Table 9-9/a. VAPOR PRESSURE OF WATER - Cont. | Т | P | | Т | Т | P | | Т | |-------------|--------|------------------|----------------------|-----|------------------|------|---------------------------| | °К | atm | | $\circ_{\mathbf{R}}$ | οK | atm | • | $^{\mathrm{o}}\mathbf{R}$ | | 375 | 1.0675 | 382 | 675.0 | 425 | 4.9338 | 1325 | 765.0 | | 376 | 1.1057 | 394 | 676.8 | 426 | 5.0663 | 1352 | 766.8 | | 377 | 1.1451 | 405 | 678.6 | 427 | 5.2015 | 1382 | 768.6 | | 378 | 1.1856 | 417 | 680.4 | 428 | 5.3397 | 1410 | 770.4 | | 379 | 1.2273 | 429 | 682.2 | 429 | 5.4807 | 1440 | 772.2 | | 380 | 1.2702 | 441 | 684.0 | 430 | 5.6247 | 1470 | 774.0 | | 381 | 1.3143 | 454 | 685.8 | 431 | 5.7717 | 1500 | 775.8 | | 382 | 1.3597 | 466 | 687.6 | 432 | 5.9217 | 1531 | 777.6 | | 383 | 1,4063 | 480 | 689.4 | 433 | 6.0748 | 1563 | 779.4 | | 384 | 1.4543 | 493 | 691.2 | 434 | 6.2311 | 1595 | 781.2 | | 385 | 1.5036 | 506 | 693.0 | 435 | 6.3906 | 1626 | 783.0 | | 386 | 1.5542 | 521 | 694.8 | 436 | 6.5532 | 1660 | 784.8 | | 387 | 1.6063 | 535 | 696.6 | 437 | 6.7192 | 1693 | 786.6 | | 388 | 1.6598 | 549 | 698.4 | 438 | 6.8885 | 1727 | 788.4 | | 389 | 1.7147 | 564 | 700.2 | 439 | 7.0612 | 1760 | 790.2 | | 390 | 1.7711 | 579 | 702.0 | 440 | 7.2372 | 1796 | 792.0 | | 391 | 1.8290 | 595 | 703.8 | 441 | 7.4168 | 1830 | 793.8 | | 392 | 1.8885 | 610 | 705.6 | 442 | 7.5998 | 1867 | 795.6 | | 393 | 1.9495 | 626 | 707.4 | 443 | 7. 7865 | 1902 | 797.4 | | 394 | 2.0121 | 643 | 709.2 | 444 | 7.9767 | 1939 | 799.2 | | 395 | 2,0764 | 659 | 711.0 | 445 | 8.1706 | 1976 | 801.0 | | 396 | 2.1423 | 676 | 712.8 | 446 | 8,3682 | 2014 | 802.8 | | 39 7 | 2,2099 | 693 | 714.6 | 447 | 8.5696 | 2051 | 804.6 | | 398 | 2,2792 | 711 | 716.4 | 448 | 8.7747 | 2091 | 806.4 | | 399 | 2.3503 | 729 | 718.2 | 449 | 8.9838 | 2130 | 808.2 | | 400 | 2,4232 | 748 | 720.0 | 450 | 9.1968 | 2170 | 810.0 | | 401 | 2,4980 | 766 | 721.8 | 451 | 9.4138 | 2210 | 811.8 | | 402 | 2,5746 | 785 | 723.6 | 452 | 9.6348 | 2250 | 813.6 | | 403 | 2.6531 | 804 | 725.4 | 453 | 9.8598 | 229 | 815.4 | | 404 | 2.7335 | 824 | 727.2 | 454 | 10.089 | 234 | 817.2 | | . 405 | 2.8159 | 844 | 729.0 | 455 | 10.323 | 237 | 819.0 | | 406 | 2,9003 | 865 | 730.8 | 456 | 10.560 | 242 | 820.8 | | 407 | 2.9868 | 885 | 732.6 | 457 | 10.802 | 246 | 822.6 | | . 408 | 3.0753 | 906 | 734.4 | 458 | 11.048 | 250 | 824.4 | | 409 | 3.1659 | 927 | 736.2 | 459 | 11.298 | 256 | 826.2 | | 410 | 3.2586 | 950 | 738.0 | 460 | 11.554 | 259 | 828.0 | | 411 | 3.3536 | 971 | 739.8 | 461 | 11.813 | 264 | 829.8 | | 412 | 3.4507 | 994 | 741.6 | 462 | 12.077 | 268 | 831.6 | | 413 | 3.5501 | 1018 | 743.4 | 463 | 12.345 | 273 | 833.4 | | 414 | 3.6519 | 1042 | 745.2 | 464 | 12,618 | 279 | 835.2 | | 415 | 3.7561 | 1063 | 747.0 | 465 | 12.897 | 282 | 837.0 | | 416 | 3.8624 | 1088 | 748.8 | 466 | 13.179 | 288 | 838.8 | | 417 | 3.9712 | 1114 | 750.6 | 467 | 13.467
13.759 | 292 | 840.6 | | 418 | 4.0826 | 1138 | 752.4 | 468 | 13.759 | 298 | 842.4 | | 419 | 4.1964 | 1163 | 754.2 | 469 | 14.057 | 302 | 844.2 | | 420 | 4.3127 | 1189 | 756.0 | 470 | 14.359 | 307 | 846.0 | | 421 | 4.4316 | 1215 | 757.8 | 471 | 14.666 | 313 | 847.8 | | 422 | 4.5531 | 1242 | 759.6 | 472 | 14.979 | 317 | 849.6 | | 423 | 4.6773 | 12 69 | 761.4 | 473 | 15.296 | 323 | 851.4 | | 424 | 4.8042 | 1296 | 763.2 | 474 | 15.619 | 328 | 853.2 | Table 9-9/a. VAPOR PRESSURE OF WATER - Cont. | т | P | | Т | Т | | | T | |------------|------------------------------------|------------|-------------------------|------------|------------------------------------|-----------------|------------------| | °K | atm | | o _R | oK | atm | | o _R | | 475 | 15.947 | 334 | 855.0 | 525 | 40.490 | 684 | 945.0 | | 476 | 16.281 | 339 | 856.8 | 526 | 41.174 | 692 | 946.8 | | 477 | 16.620 | 344 | 858.6 | 527 | 41.866 | 700 | 948.6 | | 478 | 16.964 | 350 | 860.4 | 528 | 42.566 | 710 | 950.4 | | 479 | 17.314 | 356 | 862.2 | 529 | 43.276 | 719 | 952.2 | | 480 | 17.670 | 361 | 864.0 | 530 | 43,995 | 728 | 954.0 | | 481 | 18.031 | 367 | 865.8 | 531 | 44.723 | 737 | 955.8 | | 482 | 18.398 | 372 | 867.6 | 532 | 45.460 | 746 | 957.6 | | 483 | 18.770 | 379 | 869.4 | 533 | 46.206 | 756 | 959.4 | | 484 | 19.149 | 384 | 871.2 | 534 | 46.962 | 7 66 | 961.2 | | 485 | 19.533 | 391 | 873.0 | 535 | 47.728 | 774 | 963.0 | | 486 | 19.924 | 396 | 874.8 | 536 | 48.502 | 784 | 964.8 | | 487 | 20.320 | 402 | 876.6 | 537 | 49.286 | 793 | 966.6 | | 488 | 20.722 | 409 | 878.4 | 538 | 50.079 | 804 | 968.4 | | 489 | 21.131 | 415 | 880.2 | 539 | 50.883 | 813 | 970.2 | | 490 | 21.546 | 421 | 882.0 | 540 | 51.696 | 824 | 972.0 | | 491 | 21.967 | 428 | 883.8 | 541 | 52.520 | 833 | 973.8 | | 492
493 | 22.395
22.828 | 433
441 | 885.6
887.4 | 542
543 | 53.353
54.196 | 843
853 | 975.6
977.4 | | 494 | 23.269 | 441
447 | 889.2 | 544 | 55.049 | 864 | 979.2 | | | | 447 | | | | 004 | | | 495 | 23.716 | 453 | 891.0 | 545 | 55.913 | 874 | 981.0 | | 496 | 24.169 | 460 | 892.8 | 546 | 56.787 | 884 | 982.8 | | 497
498 | 24.629
25.095 | 466 | 894.6 | 547
548 | 57 . 671
58 . 565 | 894 | 984.6 | | 499 | 25.569 | 474
481 | 896.4
898.2 | 549 | 59.471 | 906
916 | 986.4
988.2 | | | | | | | | | | | 500 | 26.050 | 487 | 900.0 | 550 | 60.387 | 927 | 990.0 | | 501 | 26.537 | 495 | 901.8 | 551 | 61.314 | 937 | 991.8 | | 502
503 | 27.032
27.533 | 501
508 | 903.6
905.4 | 552
553 | 62.251
63.199 | 948
960 | 993.6
995.4 | | 504 | 28.041 | 516 | 907.2 | 554 | 64.159 | 971 | 997.2 | | | | | _ | | | | | | 505 | 28.557 | 523 | 909.0 | 555 | 65,130 | 982 | 999.0 | | 506 | 29.080 | 530 | 910.8 | 556 | 66.112 | 993 | 1000.8 | | 507
508 | 29.610
30.148 | 538 | 912.6
914.4 | 557
558 | 67.105
68.109 | 1004 | 1002.6
1004.4 | | 508
509 | 30.146 | 545
553 | 916.2 | 559 | 69,125 | 1016
1028 | 1004.4 | | | | 535 | | | | 1020 | • | | 510 | 31.246 | 560 | 918.0 | 560 | 70.153 | 1039 | 1008.0 | | 511 | 31.806 | 568 | 919.8 | 561 | 71.192 | 1050 | 1009.8 | | 512 | 32.374 | 575 | 921.6
923.4 | 562
563 | 72,242 | 1063 | 1011.6
1013.4 | | 513
514 | 32 . 949
33 . 533 | 584
592 | 925.2
925.2 | 564 | 73.305
74.379 | 1074
1087 | 1015.4 | | | | 372 | | | | 1007 | | | 515 | 34.125 | 599 | 927.0 | 565 | 75.466 | 1099 | 1017.0 | | 516
517 | 34.724
35.332 | 608 | 928.8
930 . 6 | 566
567 | 76 . 565
77 . 675 | 1110
1123 | 1018.8
1020.6 | | 518 | 35 . 947 | 615
624 | 932.4 | 568 | 78 . 798 | 1136 | 1022.4 | | 519 | 36.571 | 632 | 934.2 | 569 | 79.934 | 1148 | 1024.2 | | 520 | 37,203 | 641 | 936.0 | 570 | 81.082 | 1161 | 1026.0 | | 521 | 37.844 | 649 | 937.8 | 571 | 82.243 | 1174 | 1027.8 | | 522 | 38.493 | 657 | 939.6 | 572 | 83.417 | 1186 | 1029.6 | | 523 | 39.150 | 666 | 941.4 | 573 | 84.603 | 1199 | 1031.4 | | 524 | 39.816 | 674 | 943.2 | 574 | 85.802 | 1212 | 1033.2 | | | | | | | | | | Table 9-9/a. VAPOR PRESSURE OF WATER - Cont. | | | | | Cont. | | | | |------------|--------|------|---------------|-------|--------|-----|------------------------------| | Т | P | | т | T | P | | T | | оK | atm | | $ m o_{ m R}$ | oK | atm | |
$^{\mathrm{o}}\mathrm{_{R}}$ | | 575 | 87.014 | 1226 | 1035.0 | 610 | 138.55 | 176 | 1098.0 | | 576 | 88.240 | 1238 | 1036.8 | 611 | 140.31 | 178 | 1099.8 | | 577 | 89.478 | 1251 | 1038.6 | 612 | 142.09 | 179 | 1101.6 | | 578 | 90.729 | 1266 | 1040.4 | 613 | 143.88 | 182 | 1103.4 | | 579 | 91.995 | 1279 | 1042.2 | 614 | 145.70 | 183 | 1105.2 | | | | 1277 | _ | 014 | 145,70 | 10) | 1105.2 | | 580 | 93.274 | 1292 | 1044.0 | 615 | 147.53 | 185 | 1107.0 | | 581 | 94.566 | 1306 | 1045.8 | 616 | 149.38 | 187 | 1108.8 | | 582 | 95.872 | 1319 | 1047.6 | 617 | 151.25 | 189 | 1110.6 | | 583 | 97.191 | 1334 | 1049.4 | 618 | 153.14 | 191 | 1112.4 | | 584 | 98.525 | 1349 | 1051,2 | 619 | 155.05 | 193 | 1114.2 | | 585 | 99.874 | 137 | 1053.0 | 620 | 156.98 | 195 | 1116.0 | | 586 | 101.24 | 137 | 1054.8 | 621 | 158.93 | 197 | 1117.8 | | 587 | 102.61 | 139 | 1056.6 | 622 | 160.90 | 199 | 1117.6 | | 588 | 104.00 | 141 | 1058.4 | 623 | 162.89 | 201 | 1121.4 | | 589 | 105.41 | 142 | 1060.2 | 624 | 164.90 | 201 | 1123.2 | | | 105,11 | 145 | 1000.2 | 024 | 104.70 | 203 | 1127.2 | | 590 | 106.83 | 144 | 1062.0 | 625 | 166.93 | 205 | 1125.0 | | 591 | 108.27 | 145 | 1063.8 | 626 | 168.98 | 207 | 1126.8 | | 592 | 109.72 | 146 | 1065.6 | 627 | 171.05 | 209 | 1128.6 | | 593 | 111.18 | 148 | 1067.4 | 628 | 173.14 | 212 | 1130.4 | | 594 | 112.66 | 150 | 1069.2 | 629 | 175.26 | 213 | 1132.2 | | 595 | 114.16 | | 1071 0 | (20 | 177 20 | | 73040 | | 596 | 115.67 | 151 | 1071.0 | 630 | 177.39 | 216 | 1134.0 | | 597 | | 153 | 1072.8 | 631 | 179.55 | 219 | 1135.8 | | 597
598 | 117.20 | 155 | 1074.6 | 632 | 181.74 | 220 | 1137.6 | | | 118.75 | 156 | 1076.4 | 633 | 183.94 | 223 | 1139.4 | | 599 | 120.31 | 157 | 1078.2 | 634 | 186.17 | 226 | 1141.2 | | 600 | 121.88 | 159 | 1080.0 | 635 | 188.43 | 228 | 1143.0 | | 601 | 123.47 | 161 | 1081.8 | 636 | 190.71 | 230 | 1144.8 | | 602 | 125.08 | 162 | 1083.6 | 637 | 193.01 | 232 | 1146.6 | | 603 | 126.70 | 164 | 1085.4 | 638 | 195.33 | 235 | 1148.4 | | 604 | 128.34 | 166 | 1087.2 | 639 | 197.68 | 238 | 1150.2 | | 605 | 130.00 | 168 | 1089.0 | 640 | 200.06 | 241 | 1152.0 | | 606 | 131.68 | 169 | 1090.8 | 641 | 202.47 | 244 | 1153.8 | | 607 | 133.37 | 171 | 1092.6 | 642 | 204.91 | 247 | 1155.6 | | 608 | 135.08 | 172 | 1094.4 | 643 | 207.38 | | 1157.4 | | 609 | 136.80 | 175 | 1096.2 | 644 | 207.36 | 249 | | | 007 | 170.00 | 1/5 | 1070.2 | 044 | 407.0/ | 253 | 1159.2 | | | | | | 645 | 212.40 | 256 | 1161.0 | | | | | | 646 | 214.96 | 260 | 1162.8 | | | | | | 647 | 217.56 | | 1164.6 | | | | | | | | | | Table 9-10 IDEAL-GAS THERMODYNAMIC FUNCTIONS FOR STEAM | Tabl | e 9-10 IDE | AL-GAS | THERMODY | NAMIC F | UNCTIONS I | FOR STE | AM | | | |------------|------------------|--|------------------|-------------------|--------------------|------------------|--------------------|------------------|----------------| | • | C°p | | (H° - E°)* | | -(F° - E°) S° | | | | • _R | | °K | R | | RTo | | RT | | R | | | | | 4 0070 | | 73.40 | | 11 6221 | | 15 5270 | 70.05 | 90 | | 50 | 4.0072 | - 9 | .7149 | 1467 | 11.6321 | 7137 | 15.5379 | 7305 | 108 | | 60 | 4.0063 | - 4 | .8616 | 1467 | 12.3458 | 6056 | 16.2684 | 6176 | | | 70 | 4.0059 | - 2 | 1.0083 | 1466 | 12.9514 | 5260 | 16.8860 | 5349 | 126 | | 80 | 4.0057 | | 1.1549 | 1467 | 13.4774 | 4649 | 17.4209 | 4718 | 144 | | 90 | 4.0057 | 1 | 1.3016 | 1466 | 13.9423 | 4165 | 17.8927 | 4220 | 162 | | 100 | 4.0058 | 2 | 1.4482 | 1467 | 14.3588 | 3773 | 18.3147 | 3819 | 180 | | 110 | 4.0060 | 2 | 1.5949 | 1466 | 14.7361 | 3448 | 18.6966 | 3485 | 198 | | 120 | 4.0062 | 3 | 1.7415 | 1467 | 15.0809 | 3174 | 19.0451 | 3207 | 216 | | 130 | 4.0065 | 3 | 1,8882 | 1467 | 15.3983 | 2941 | 19.3658 | 29 69 | 234 | | 140 | 4.0068 | 4 | 2.0349 | 1466 | 15.6924 | 2740 | 19.6627 | 2765 | 252 | | 150 | 4.0072 | 4 | 2,1815 | 1468 | 15.9664 | 2565 | 19.9392 | 2586 | 270 | | 160 | 4.0076 | 4 | 2,3283 | 1467 | 16.2229 | 2410 | 20,1978 | 2430 | 288 | | 170 | 4.0080 | 6 | 2,4750 | 1467 | 16.4639 | 2274 | 20.4408 | 2291 | 306 | | 180 | 4.0086 | 7 | 2,6217 | 1468 | 16.6913 | 2152 | 20.6699 | 2167 | 324 | | 190 | 4.0093 | 9 | 2.7685 | 1468 | 16.9065 | 2042 | 20.8866 | 2057 | 342 | | 200 | 4.0102 | | 2.9153 | 14/0 | 17.1107 | 1943 | 21.0923 | 1957 | 360 | | | | 11 | 3.0621 | 1468 | 17.3050 | 1853 | 21.2880 | 1866 | 378 | | 210 | 4.0113 | 14 | 3.2090 | 1469 | 17.4903 | | 21.4746 | 1784 | 396 | | 220 | 4.0127 | 18 | | 1469 | 17.6674 | 1771 | 21.6530 | 1709 | 414 | | 230
240 | 4.0145
4.0166 | 21
25 | 3.3559
3.5029 | 1470
1471 | 17.8371 | 1697
1627 | 21.8239 | 1641 | 432 | | | - | | | | | | 01 0000 | | | | 250 | 4.0191 | 30 | 3.6500 | 1472 | 17.9998 | 1565 | 21.9880 | 1577 | 450 | | 260 | 4.0221 | 36 | 3.7972 | 1473 | 18.1563 | 1506 | 22.1457 | 1518 | 468 | | 270 | 4.0257 | 40 | 3.9445 | 1474 | 18.3069 | 1451 | 22.2975 | 1465 | 486 | | 280
290 | 4.0297
4.0343 | 46
51 | 4.0919
4.2395 | 1476
1478 | 18.4520
18.5921 | 1401
1354 | 22.4440
22.5855 | 1415
1368 | 504
522 | | | | <i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | 2470 | | | | | | | 300 | 4.0394 | 57 | 4.3873 | 1480 | 18,7275 | 1311 | 22.7223 | 1326 | 540 | | 310 | 4.0451 | 63 | 4.5353 | 1482 | 18.8586 | 12 69 | 22.8549 | 1285 | 558 | | 320 | 4.0514 | 68 | 4.6835 | 1484 | 18,9855 | 1230 | 22.9834 | 1248 | 576 | | 330 | 4.0582 | 73 | 4.8319 | 1487 | 19.1085 | 1194 | 23.1082 | 1212 | 594 | | 340 | 4.0655 | 78 | 4.9806 | 1490 | 19,2279 | 1161 | 23,2294 | 1180 | 612 | | 350 | 4.0733 | 83 | 5,1296 | 1493 | 19.3440 | 1128 | 23.3474 | 1148 | 630 | | 360 | 4.0816 | 88 | 5.2789 | 1495 | 19.4568 | 1097 | 23.4622 | 1120 | 648 | | 370 | 4.0904 | 92 | 5.4284 | 1500 | 19.5665 | 1069 | 23.5742 | 1092 | 666 | | 380 | 4.0996 | 96 | 5.5784 | 1502 | 19.6734 | 1042 | 23.6834 | 1066 | 684 | | 390 | 4.1092 | 100 | 5.7286 | 1506 | 19.7776 | 1017 | 23.7900 | 1042 | 702 | | | | | | | | | | | | | 400 | 4.1192 | 547 | 5.8792 | 7589 | 19.8793 | 4737 | 23.8942 | 4882 | 720 | | 450 | 4.1739 | 606 | 6.6381 | 7 69 5 | 20,3530 | 4254 | 24.3824 | 4429 | 810 | | 500 | 4.2345 | 644 | 7.4076 | 7809 | 20,7784 | 3866 | 24.8253 | 4066 | 900 | | 550 | 4.2989 | 670 | 8.1885 | 7930 | 21.1650 | 3548 | 25.2319 | 3769 | 990 | | 600 | 4.3659 | 691 | 8.9815 | 8055 | 21.5198 | 3282 | 25.6088 | 3522 | 1080 | | 650 | 4.4350 | 709 | 9.7870 | 8182 | 21.8480 | 3058 | 25,9610 | 3312 | 1170 | | 700 | 4.5059 | 709
726 | 10.6052 | 8314 | 22.1538 | 2864 | 26.2922 | 3134 | 1260 | | 750
750 | 4.5785 | 740 | 11.4366 | 8448 | 22.4402 | 2697 | 26.6056 | 2978 | 1350 | | 800 | 4.6525 | 740
753 | 12.2814 | 8585 | 22.7099 | 2551 | 26.9034 | 2843 | 1440 | | 850 | 4.7278 | 760 | 13.1399 | 8723 | 22.9650 | 2422 | 27.1877 | 2724 | 1530 | | 000 | 4 0020 | | 14 0122 | 00/0 | 22 2072 | 2200 | 27,4601 | 2618 | 1620 | | 900 | 4.8038 | 766 | 14.0122 | 8863 | 23.2072 | 2308 | 27.7219 | 2523 | 1710 | | 950 | 4.8804 | 765 | 14.8985 | 9004 | 23.4380 | 2205 | | | 1800 | | 1000 | 4.9569 | 761 | 15.7989 | 9143 | 23.6585 | 2114 | 27.9742
28.2178 | 2436
2359 | 1890 | | 1050 | 5.0330 | 754 | 16.7132 | 9281 | 23.8699 | 2030 | | | 1980 | | 1100 | 5.1084 | 742 | 17.6413 | 9419 | 24.0729 | 1955 | 28.4537 | 2287 | 1700 | | 1150 | 5.1826 | 729 | 18.5832 | 9553 | 24.2684 | 1885 | 28.6824 | 2222 | 2070 | ^{*} The enthalpy function is divided here by a constant RT_0 where T_0 = 273.16°K (491.688°R). | Table 9-10 | TOTAL-GAS | THERMODYNAMIC | FUNCTIONS | FOR STEAM | - Cont | |------------|-----------|---------------|-----------|-----------|--------| | | | | | | | | 1 abi | | AL-GAS | I LERWOOT | TITIOI I | UNCTIONS F | | | | | |-------|---|--------|-----------|--------------------|------------|-------|--------------------|------------------|--------------| | | $\frac{C_p^{\bullet}}{(H^{\bullet} - E_o^{\bullet})^*}$ | | -(F° - E | 3) | s° | | °R | | | | °K | R | | RTo | | RT | | R | | 7 | | | , r | | 1 10 | | | | | | | | | | | | | 04 45/0 | | 20.004/ | | 22/0 | | 1200 | 5.2555 | 1405 | 19.5385 | 19499 | 24.4569 | 3587 | 28.9046 | 4262 | 2160
2340 | | 1300 | 5.3960 | 1326 | 21.4884 | 19999 | 24.8156 | 3371 | 29.3308 | 4048 | | | 1400 | 5.5286 | 1240 | 23.4883 | 20470 | 25.1527 | 3185 | 29.7356 | 3857 | 2520 | | 1500 | 5.6526 | 1152 | 25.5353 | 20907 | 25.4712 | 3022 | 30.1213 | 3686 | 2700 | | 1600 | 5.7678 | 1065 | 27.6260 | 21312 | 25.7734 | 2879 | 30.4899 | 3529 | 2880 | | 1700 | 5.8743 | 982 | 29,7572 | 21688 | 26,0613 | 2751 | 30.8428 | 3386 | 3060 | | 1800 | 5.9725 | 903 | 31,9260 | 22031 | 26.3364 | 2636 | 31.1814 | 3253 | 3240 | | 1900 | 6.0628 | 832 | 34,1291 | 22350 | 26,6000 | 2532 | 31.5067 | 3132 | 3420 | | 2000 | 6.1460 | 764 | 36,3641 | 22641 | 26.8532 | 2438 | 31.8199 | 3017 | 3600 | | 2100 | 6.2224 | 704 | 38,6282 | 22910 | 27.0970 | 2350 | 32.1216 | 2911 | 3780 | | | | | 40.0100 | | 27 2220 | | 32,4127 | | 3960 | | 2200 | 6.2928 | 648 | 40.9192 | 23158 | 27.3320 | 2271 | | 2812 | 4140 | | 2300 | 6.3576 | 598 | 43.2350 | 23385 | 27.5591 | 2196 | 32.6939 | 2718 | 4320 | | 2400 | 6.4174 | 553 | 45.5735 | 23596 | 27.7787 | 2128 | 32.9657 | 2631 | 4500 | | 2500 | 6.4727 | 511 | 47.9331 | 23789 | 27.9915 | 2063 | 33.2288 | 2549 | | | 2600 | 6.5238 | 474 | 50.3120 | 23971 | 28.1978 | 2004 | 33.4837 | 2471 | 4680 | | 2700 | 6.5712 | 441 | 52,7091 | 24139 | 28,3982 | 1948 | 33,7308 | 2398 | 4860 | | 2800 | 6.6153 | 410 | 55.1230 | 24293 | 28,5930 | 1894 | 33,9706 | 2329 | 5040 | | 2900 | 6.6563 | 382 | 57.5523 | 24439 | 28,7824 | 1845 | 34,2035 | 2263 | 5220 | | 3000 | 6.6945 | 691 | 59,9962 | 49273 | 28,9669 | 3552 | 34,4298 | 4343 | 5400 | | 7000 | 0.0743 | 071 | 37.7702 | 47617 | 201,007 | ,,,,, | 31 | | 2.00 | | | | | | | | | 24.07.42 | | 5760 | | 3200 | 6.7636 | 608 | 64.9235 | 49748 | 29.3221 | 3382 | 34.8641
35.2760 | 4119 | 6120 | | 3400 | 6.8244 | 538 | 69.8983 | 50168 | 29.6603 | 3229 | | 3916 | 6480 | | 3600 | 6.8782 |
481 | 74.9151 | 50539 | 29.9832 | 3091 | 35.6676 | 3732 | 6840 | | 3800 | 6.9263 | 431 | 79.9690 | 50872 | 30.2923 | 2964 | 36.0408 | 3564 | 7200 | | 4000 | 6.9694 | 389 | 85.0562 | 51173 | 30.5887 | 2848 | 36.3972 | 3410 | 7200 | | 4200 | 7.0083 | 353 | 90,1735 | 51444 | 30.8735 | 2740 | 36.7382 | 32 69 | 7560 | | 4400 | 7.0436 | 322 | 95.3179 | 51 69 1 | 31.1475 | 2642 | 37.0651 | 3138 | 7920 | | 4600 | 7.0758 | 295 | 100.4870 | 51917 | 31,4117 | 2550 | 37.3789 | 3018 | 8280 | | 4800 | 7.1053 | 272 | 105,6787 | 52124 | 31.6667 | 2464 | 37.6807 | 2906 | 8640 | | 5000 | 7.1325 | | 110.8911 | | 31.9131 | | 37.9713 | | 9000 | | | | | | | | | | | | ^{*}The enthalpy function is divided here by a constant RT_0 where $T_0 = 273.16^{\circ}K$ (491.688°R). | °K | °С | $^{ m o_F}$ | oR | ° _K | °c | o _F | °R | |------------------|----------------------|--------------------------|-----------------------|------------------|-------------------------------|-------------------|-----------------| | 0. | -273 . 16 | -459.69 | 0. | 100. | -173. 16 | -279, 69 | 180. | | 3. 16 | -270. | -454. 00 | 5. 69 | 103. 16 | -170. | -274.00 | 185. 69 | | 5. 38 | -267.78 | -450. | 9.69 | 105. 38 | -167.78 | - 270. | 189.69 | | 5. 55 | -267.61 | -449.69 | 10. | 105.56 | -167.60 | -269.69 | 190. | | 10. | -263.16 | -441.69 | 18. 00 | 110. | -163. 16 | -26 1. 69 | 198.00 | | 10.94 | -262. 22 | -44 0. | 19.69 | 110.96 | -162. 20 | -260. | 199.69 | | 11.11 | -262.05 | -439.69 | 20. | 111.11 | -162. Q5 | -259.69 | 200. | | 13. 16 | -260. | -436.00 | 23.69 | 113. 16 | -160. | -256.00 | 203.69 | | 16.49 | -256. 67 | -430. | 2 9. 69 | 116.49 | -156.67 | - 250. | 209.69 | | 16.67 | -256. 49 | -42 9.69 | 30. | 116.67 | -156.49 | -249.69 | 210. | | 20. | -253. 16 | -423 . 69 | 36. 00 | 120. | -153. 16 | -243.69 | 216.00 | | 22. 05 | -251.11 | -42 0. | 39.69 | 122. 05 | -151.11 | -240. | 2 19.69 | | 22. 22 | -250.94 | -419.69 | 40. | 122. 22 | -150.94 | -239.69 | 220. | | 23. 16 | -250. | -418.00 | 41.69 | 1 23 . 16 | -150. | -238. 00 | 22 1. 69 | | 27.60 | -245. 56 | -4 10. | 49.69 | 127.60 | -145. 56 | -230. | 229.69 | | 27.78 | -245.38 | -409.69 | 50. | 127.78 | -145. 38 | -22 9.69 | 230. | | 30.
33. 16 | -243. 16 | -405.69 | 54.00 | 130. | -143. 16 | -225. 69 | 234 . 00 | | | -240. | -400. | 59.69 | 133. 16 | -140. | -220. | 239.69 | | 33. 33 | -239.83 | -399.69 | 60. | 133. 33 | -1 3 9.83 | -219.69 | 240. | | 38.72 | -234. 44 | -390. | 69, 69 | 138.72 | -134.44 | -210. | 249.69 | | 38. 89 | -234. 27 | -389.69 | 70. | 138.89 | -134. 27 | -209.69 | 250. | | 40. | -233. 16 | -387.69 | 72.00 | 140. | -133. 16 | -207.69 | 252 . 00 | | 43. 16
44. 27 | -230.
-228.89 | -382.00
- 380. | 77.69 | 143. 16 | -130. | -202. 00 | 257.69 | | 44. 44 | -228. 72 | -379.69 | 79.69 | 144. 27 | -128.89 | -200. | 259.69 | | 49.83 | -223. 33 | -379. 69
-370. | 80 .
89. 69 | 144.44 | -128.62 | -199.69 | 260. | | 50. | -223. 16 | -369.69 | 90. | .149.83 | -123. 33
-1 23 . 16 | -190.
-189.69 | 269.69 | | 53. 16 | -220. | -364. 00 | 95. 69 | 150.
153.16 | -123. 10
-120. | -184.00 | 270.
275. 69 | | 55. 38 | -217.78 | -360. | 99. 69 | 155. 38 | -117.78 | -180. | 279.69 | | 55. 56 | -217.60 | -359.69 | 100. | 155. 56 | -117.60 | -179.69 | 280. | | 60. | -213. 16 | -351.69 | 108.00 | 160. | -113. 16 | -171.69 | 288.00 | | 60.94 | -212. 22 | -350. | 109.69 | 160.94 | -112. 22 | -170. | 289.69 | | 61.11 | -212. 05 | -349.69 | 110. | 161.11 | -112.05 | -169.69 | 290. | | 63. 16 | -210. | -346.00 | 113.69 | 163. 16 | -110. | -166.00 | 293.69 | | 66.49 | -206.67 | -340. | 11969 | 166.49 | -106.67 | -160. | 299. 69 | | 66.67 | -206.49 | -339.69 | 120. | 166.67 | -106.49 | -159.69 | 300. | | 70. | -203.16 | -333. 69 | 126.00 | 170. | -103. 16 | -153.69 | 306.00 | | 72.05 | -201.11 | -330. | 129.69 | 172. 05 | -101.11 | -150. | 309.69 | | 72. 22 | -200.94 | -329.69 | 130. | 172. 22 | -100.94 | -149.69 | 310. | | 73.16 | -200. | -328.00 | 131.69 | 173. 16 | -100. | -148.00 | 311.69 | | 77.60 | -195. 56 | -320. | 1 3 9.69 | 177.60 | -95. 56 | -140. | 319.69 | | 77.78 | -195. 38 | -319.69 | 140. | 177.78 | -95. 38 | -139.69 | 320. | | 80. | -193. 16 | -315.69 | 144. 00 | 180. | -93.16 | -135.69 | 324. 00 | | 83. 16 | -190. | -310. | 149.69 | 183. 16 | -90. | -130. | 329. 69 | | 83. 33 | -189.83 | -309.69 | 150. | 183. 33 | -89. 83 | -129.69 | 330. | | 88.72 | -184.44 | -300. | 159.69 | 188.72 | -84. 44 | -120. | 339.69 | | 88.89 | -184. 27 | -299.69 | 160. | 188.89 | -84. 27 | -119.69 | 340. | | 90. | -183. 16 | -297.69 | 162.00 | 190. | -83. 16 | -117.69 | 342.00 | | 93. 16 | -180. | -292. 00 | 167.69 | 193.16 | -80. | -112.00 | 347.69 | | 94. 27 | -178.89 | -290. | 169.69 | 194. 27 | -78.89 | -110. | 349.69 | | 94.44 | -178.72 | -289.69 | 170. | 194.44 | -78.72 | -109.69 | 350. | | 99.83 | -173. 33
-173. 16 | -280.
-279.69 | 179.69 | 199.83 | -73. 33 | -100. | 359. 69
360 | | | -1:3.10 | -218.08 | 180. | 200. | -73. 16 | -99. 69 | 360. | | °K | $^{ m o}_{ m R}$ | |--------------------|------------------| | °C | °F | | 1 | 1.8 | | 2 | 3.6 | | 3 | 5.4 | | 4 | 7. 2 | | 5 | 9. 0 | | 6 | 10. 8 | | 7 | 12.6 | | 8 | 14.4 | | 9 | 16.2 | | 10 | 18.0 | | $^{ m o}_{ m R}$ | οK | | $o_{\mathbf{F}}$. | °C | | 1 | 0.56 | | 2 | 1.11 | | 3 | 1.67 | | 4 | 2. 22 | | 5 | 2. 78 | | 6 | 3. 33 | | 7 | 3.89 | | 8 | 4.44 | | 9 | 5.00 | | 10 | 5. 56 | | 11 | 6. 11 | | 12 | 6. 67 | | 13 | 7. 22 | | 14 | 7. 78 | | 15 | 8. 33 | | 16 | 8.89 | | 17 | 9.44 | | 18 | 10.00 | | | | | _ | | | | | | | | | |---|--------------------|--------------------|--------------------------------|-----------------|----------|-------------------------|------------------|---------------| | | ٩ĸ | °C | $^{\mathbf{o}}\!_{\mathbf{F}}$ | °R | οK | °C | $^{ m o}_{ m F}$ | °R | | ١ | 200. | -73.16 | -99.69 | 360. | 300. | 26.84 | 80. 31 | 540. | | ١ | 203. 16 | -70 . | -94. 00 | 365. 69 | 303.16 | 30. | 86.,00 | 545. 69 | | l | 205. 38 | -67.78 | -90. | 369.69 | 305. 38 | 32. 22 | 90. | 549.69 | | ١ | 205. 56 | -67.60 | -89.99 | 370. | 305.56 | 32.40 | 90. 31 | 5 5 0. | | ١ | 210. | -63. 16 | -81.69 | 378.00 | 310. | 36.84 | 98. 31 | 558.00 | | ١ | 210.94 | -62. 22 | -80. | 379.69 | 310.94 | 37.78 | 100. | 559.69 | | ı | 210. 94 | -62. 05 | -79.69 | 380. | 311.11 | 37.95 | 100. 31 | 560. | | l | 213. 16 | -60. | -76. 00 | 383. 69 | 313. 16 | 40. | 104.00 | 563. 69 | | l | 216.41 | -56. 67 | -70.00
-70. | 389.69 | 316.41 | 43. 33 | 110. | 569.69 | | l | 216. 41
216. 67 | -56.49 | -69.69 | 390. | 316.67 | 43. 51 | 110. 31 | 570. | | l | 220. | -53.16 | -63. 69 | 396.00 | 320. | 46. 84 | 116. 31 | 576.00 | | l | 222. 05 | -51. 11 | -60. | 399.69 | 322. 05 | 48. 89 | 120. | 579.69 | | ĺ | 222. 22 | -50.94 | -59.69 | 400. | 322. 22 | 49.06 | 120. 31 | 580. | | I | 223. 16 | -50. 54
-50. | -58. 00 | 401. 69 | 323. 16 | 50. | 122.00 | 581.69 | | l | 223. 10
227. 60 | -45. 56 | -50. | 409.69 | 327.60 | 54.44 | 130. | 589.69 | | ١ | 227.60
227.78 | -45. 38 | -30.
-49.69 | 410. 69 | 327. 78 | 54. 62 | 130. 31 | 590 . | | ١ | 230. | -45. 38
-43. 16 | -49.69
-45.69 | 414.00 | 330. | 56.84 | 134. 31 | 594.00 | | ļ | 230.
233. 16 | -43. 16
-40. | -45. 69
-40. | 414.00 | 333. 16 | 60. | 140. | 599.69 | | 1 | 233. 16
233. 33 | -40.
-39.83 | -40.
-39.69 | 420. | 333. 33 | 60. 17 | 140. 31 | 600. | | 1 | | -39.83
-34.44 | -39. 69
-30. | 429.69 | 338.72 | 65. 56 | 150. | 609.69 | | 1 | 238. 72
238. 89 | -34. 44
-34. 27 | -30.
-29.69 | 429.69 | 338. 89 | 65.73 | 150. 31 | 610. | | 1 | 238. 89
240. | -34. 27
-33. 16 | -29.69
-27.69 | 430.
432. 00 | 340. | 66. 84 | 152. 31 | 612.00 | | ļ | 240.
243. 16 | -33.10
-30. | -27. 09
-22. 00 | 432.69 | 343.16 | 70. | 158.00 | 617.69 | | 1 | 243. 16
244. 27 | -30.
-28. 89 | -22.00
-20 . | 431.69 | 344. 27 | 71.11 | 160. | 619.69 | | 1 | 244. 21 | -28. 72 | -20.
-19.69 | 440. | 344. 44 | 71. 28 | 160. 31 | 620. | | 1 | 244. 44
249. 83 | -28. 12
-23. 33 | -10. | 449.69 | 349.83 | 76.67 | 170. | 629.69 | | | 250. | -23. 35
-23. 16 | -9.69 | 450. | 350. | 76.84 | 170. 31 | 630. | | 1 | 253. 16 | -20. | -4. 00 | 455. 69 | 353.16 | 80. | 176.00 | 635. 69 | | 1 | 255. 38 | -17. 78 | 0. | 459.69 | 355. 38 | 82. 22 | 180. | 639.69 | | 1 | 255. 56 | -17.60 | +. 31 | 460. | 355. 56 | 82.40 | 180. 31 | 640. | | 1 | 260. | -13. 16 | +8. 31 | 468. 00 | 360. | 86.84 | 188. 31 | 648.00 | | | 260.94 | -12. 22 | 10. | 469.69 | 360.94 | 87.78 | 190. | 649.69 | | - | 261. 11 | -12. 05 | 10.31 | 470. | 361.11 | 87.95 | 190.31 | 6 5 0. | | ١ | 263. 16 | -10. | 14.00 | 473.69 | 363.16 | 90. | 194.00 | 653.69 | | ł | 266. 49 | -6. 67 | 20. | 479.69 | 366.49 | 93. 33 | 200. | 659.69 | | 1 | 266, 67 | -6. 49 | 20. 31 | 480. | 366. 67 | 93. 51 | 200. 31 | 660. | | 1 | 270. | -3. 16 | 26. 31 | 486. 00 | 370. | 96. 84 | 206. 31 | 666.00 | | ١ | 272. 05 | -1. 11 | 30. | 489.69 | 372.05 | 98.89 | 210. | 669.69 | | 1 | 272. 22 | 9 4 | 30. 31 | 490. | 372. 22 | 99. 06 | 210.31 | 670. | | 1 | 273. 16 | 0. | 32. 00 | 491.69 | 373.16 | 100. | 212.00 | 671.69 | | 1 | 277.60 | +4. 44 | 40. | 499.69 | 377.60 | 104.44 | 220. | 679.69 | | I | 277.78 | 4. 62 | 40. 31 | 500. | 377.78 | 104.62 | 220. 31 | 680. | | Ì | 280. | 6. 84 | 44. 31 | 504.00- | 380. | 106.84 | 224. 31 | 684.00 | | | 283. 16 | 10. | 50. | 509.69 | 383. 16 | 110. | 230. | 689. 69 | | ļ | 283. 33 | 10. 17 | 50. 31 | 510. | 383. 33 | 110.17 | 230. 31 | 690. | | | 288.72 | 15. 56 | 60. | 519.69 | 388.72 | 115. 56 | 240. | 699. 69 | | | 288. 89 | 15.73 | 60. 31 | 520. | 388. 89 | 115.73 | 240. 31 | 700. | | 1 | 290. | 16.84 | 62. 31 | 522. 00 | 390. | 116.84 | 242. 31 | 702.00 | | | 293. 16 | 20. | 68.00 | 527.69 |
393.16 | 120. | 248.00 | 707.69 | | ļ | 294. 27 | 21.11 | 70. | 529.69 | 394. 27 | 121.11 | 250. | 709.69 | | ļ | 294.44 | 21. 28 | 70. 31 | 530. | 394.44 | 121. 28 | 250. 31 | 710. | | ļ | 299.83 | 26.67 | 80. | 539.69 | 399.83 | 126.67 | 260. | 719.69 | | | 300. | 26.84 | 80. 31 | 540. | 400. | 1 2 6. 84 | 260. 31 | 720. | | | | | | | <u> </u> | | | | | °К | $^{\mathrm{o}}\mathrm{_{R}}$ | |--------------|------------------------------| | °C | ^o F | | 1 | 1.8 | | 2 | 3.6 | | 3 | 5.4 | | 4 | 7.2 | | 5 | 9.0 | | 6 | 10.8 | | 7 | 12.6 | | 8 | 14.4 | | 9 | 16.2 | | 10 | 18.0 | | $^{\rm o_R}$ | οK | | $^{ m o_F}$ | °C | | 1 | 0. 56 | | 2 | 1. 11 | | 3 | 1. 67 | | 4 | 2. 22 | | 5 | 2. 78 | | 6 | 3. 33 | | 7 | 3. 89 | | 8 | 4. 44 | | 9 | 5. 00 | | 10 | 5. 56 | | 11 | 6. 11 | | 12 | 6. 67 | | 13 | 7. 22 | | 14 | 7. 78 | | 15 | 8. 33 | | 16 | 8.89 | | 17 | 9.44 | | 18 | 10.00 | | _ | | | | | | | | | |-----|---------|---------|----------------------|---------|---------|---------|--------------|-------------------| | | °K | °C | $\circ_{\mathbf{F}}$ | °R | °К | °C | ° F | °R | | ı | 400. | 126.84 | 260. 31 | 720. | 500. | 226. 84 | 440. 31 | 900. | | | 403. 16 | 130. | 266. 00 | 725. 69 | 503. 16 | 230. | 446.00 | 905. 69 | | ı | 405. 38 | 132. 22 | 270. | 729.69 | 505. 38 | 232. 22 | 450. | 909.69 | | Т | 405. 56 | 132. 40 | 270. 31 | 730. | 505. 56 | 232. 40 | 450. 31 | 910. | | ł | 410. | 136.84 | 278. 31 | 738.00 | 510. | 236, 84 | 458. 31 | 918.00 | | Į | 410.94 | 137.78 | 280. | 739.69 | 510.94 | 237.78 | 460. | 919.69 | | 1 | 411.11 | 137.95 | 280. 31 | 740. | 511.11 | 237.95 | 460. 31 | 920. | | i | 413. 16 | 140. | 284.00 | 743.69 | 513. 16 | 240. | 464.00 | 923. 69 | | ı | 416.41 | 143. 33 | 290. | 749.69 | 516.41 | 243. 33 | 470. | 929.69 | | Ł | 416.67 | 143. 51 | 290. 31 | 750. | 516.67 | 243. 51 | 470.31 | 930. | | ı | 420. | 146.84 | 296. 31 | 756.00 | 520. | 246.84 | 476.31 | 936.00 | | ١ | 422. 05 | 148. 89 | 300. | 759.69 | 522. 05 | 248. 89 | 480. | 939.69 | | ł | 422. 22 | 149.06 | 300. 31 | 760. | 522. 22 | 249.06 | 480. 31 | 940. | | ١ | 423. 16 | 150. | 302.00 | 761.69 | 523. 16 | 250. | 482.00 | 941.69 | | ı | 427.60 | 154. 44 | 310. | 769.69 | 527.60 | 254. 44 | 490. | 949.69 | | Т | 427.78 | 154. 62 | 310. 31 | 770. | 527.78 | 254. 62 | 490. 31 | 950. | | Т | 430. | 156.84 | 314. 31 | 774.00 | 530. | 256. 84 | 494. 31 | 954.00 | | 1 | 433. 16 | 160. | 320. | 779.69 | 533. 16 | 260. | 500. | 959.69 | | ١ | 433. 33 | 160.17 | 320. 31 | 780. | 533. 33 | 260. 17 | 500. 31 | 960. | | 1 | 438.72 | 165. 56 | 330. | 789.69 | 538.72 | 265. 56 | 510. | 969. 69 | | ı | 438. 89 | 165.73 | 330. 31 | 790. | 538. 89 | 265.73 | 510. 31 | 970. | | ı | 440. | 166.84 | 332. 31 | 792. 00 | 540. | 266. 84 | 512. 31 | 972. 00 | | ı | 443. 16 | 170. | 338. 00 | 797.69 | 543. 16 | 270. | 518.00 | 977.69 | | ١ | 444. 27 | 171.11 | 340. | 799.69 | 544. 27 | 271.11 | 520. | 979.69 | | 1 | 444. 44 | 171. 28 | 340. 31 | 800. | 544. 44 | 271. 28 | 520. 31 | 980. | | 1 | 449.83 | 176.66 | 350. | 809.69 | 549.83 | 276.66 | 530. | 989.69 | | ١ | 450. | 176.84 | 350. 31 | 810. | 550. | 276.84 | 530. 31 | 990. | | 1 | 453. 16 | 180. | 356.00 | 815.69 | 553. 16 | 280. | 536.00 | 995. 69 | | ١ | 455. 38 | 182. 22 | 360. | 819.69 | 555. 38 | 282. 22 | 540. | 999.69 | | - | 455. 56 | 182. 40 | 360. 31 | 820. | 555, 56 | 282. 40 | 540. 31 | 1000. | | 1 | 460. | 186.84 | 368. 31 | 828.00 | 560. | 286. 84 | 548.31 | 1008.00 | | 1 | 460.94 | 187.78 | 370. | 829.69 | 560, 94 | 287.78 | <i>55</i> 0. | 1009.69 | | ١ | 461.11 | 187.95 | 370. 31 | 830. | 561.11 | 287.95 | 550. 31 | 1010. | | 1 | 463. 16 | 190. | 374.00 | 833. 69 | 563. 16 | 290. | 554.00 | 1013.69 | | - | 466.49 | 193. 33 | 380. | 839.69 | 566. 49 | 293. 33 | <i>5</i> 60. | 1019.69 | | - | 466.67 | 193. 51 | 380. 31 | 840. | 566, 67 | 293. 51 | 560. 31 | 1020. | | ١ | 470. | 196.84 | 386. 31 | 846.00 | 570. | 296.84 | 566. 31 | 1026.00 | | | 472. 05 | 198. 89 | 390. | 849.69 | 572. 05 | 298.89 | 570. | 1 02 9. 69 | | -1 | 472. 22 | 199. 06 | 390. 31 | 850. | 527. 22 | 299.06 | 570. 31 | 1030. | | - | 473.16 | 200. | 392.00 | 851.69 | 573.16 | 300. | 572.00 | 1031.69 | | - [| 477.60 | 204. 44 | 400. | 859.69 | 577.60 | 304. 44 | 580 , | 1039.69 | | ١ | 477.78 | 204. 62 | 400.31 | 860. | 577.78 | 304.62 | 580. 31 | 1040. | | - | 480. | 206. 84 | 404.31 | 864.00 | 580. | 306.84 | 584. 31 | 1044.00 | | | 483. 16 | 210. | 410. | 869.69 | 583. 16 | 310. | 590. | 1049.69 | | | 483. 33 | 210.17 | 410.31 | 870. | 583. 33 | 310. 17 | 590. 31 | 1050. | | | 488.72 | 215.56 | 420. | 879.69 | 588.72 | 315. 56 | 600. | 1059.69 | | | 488. 89 | 215.73 | 420. 31 | 880. | 588. 89 | 315. 73 | 600. 31 | 1060. | | | 490. | 216.84 | 422. 31 | 882. 00 | 590. | 316.84 | 602. 31 | 1062.00 | | | 493. 16 | 220. | 428.00 | 887.69 | 593. 16 | 320. | 608.00 | 1067.69 | | | 494. 27 | 221.11 | 430. | 889.69 | 594. 27 | 321. 11 | 610. | 1069.69 | | | 494. 44 | 221. 28 | 430. 31 | 890. | 594. 44 | 321. 28 | 610. 31 | 1070. | | | 499.83 | 226. 67 | 440. | 899.69 | 599.83 | 326.67 | 620. | 1079.69 | | | 500. | 226. 84 | 440.31 | 900. | 600. | 326.84 | 620. 31 | 1080. | | | , | | | | L | | | | | οĸ | °R | |---------------------------|----------------| | °c | o _F | | 1 2 | 1. 8
3. 6 | | 3 | 5. 4 | | 4
5 | 7.2
9.0 | | 6 | 10.8 | | 7
8 | 12.6
14.4 | | 9 | 16.2 | | 10 | 18. 0 | | $o_{\mathbf{R}}$ | o _K | | $^{\mathrm{o}}\mathbf{F}$ | °C | | 1
2 | 0.56
1.11 | | 3 | 1.67 | | 4
5 | 2. 22
2. 78 | | 6 | 3. 33 | | 7
8 | 3.89
4.44 | | 9 | 5.00 | | 10
11 | 5.56
6.11 | | 12 | 6. 67 | | 13
14 | 7.22
7.78 | | 15 | 8. 33 | | 16 | 8.89
9.44 | | 17
18 | 10.00 | | | | | | | | | | | | | |------------------|-----------------|---------------------------|----------------------|--------------------|--------------------|-------------------------|----------------------| | °K | °C | $^{\mathrm{o}}\mathbf{F}$ | ° R | °K | °C | o _F | °R | | 600. | 326. 84 | 620 . 3 1 | 1080. | 700. | 426.84 | 800. 31 | 1260. | | 603, 16 | 330. | 626. 00 | 1085.69 | 703. 16 | 430. | 806.00 | 1265. 69 | | 605. 38 | 332. 22 | 630. | 1089.69 | 705. 38 | 432. 22 | 810. | 1269.69 | | 605. 56 | 332.40 | 630. 31 | 1090. | 705. 56 | 432.40 | 810. 31 | 1270. | | 610. | 336.84 | 638. 31 | 1098.00 | 710. | 436.84 | 818. 31 | 1278.00 | | 610.94 | 337.78 | 640. | 1099.69 | 710.94 | 437.78 | 820. | 1279.69 | | 611.11 | 337.95 | 640. 31 | 1100. | 711.11 | 437.95 | 820 . 3 1 | 1280, | | 613. 16 | 340. | 644.00 | 1103.69 | 713.16 | 440. | 824. 00 | 1283.69 | | 616.41 | 343. 33 | 6 5 0. | 1109.69 | 716.41 | 443. 33 | 8 30. | 1 28 9. 69 | | 616.67 | 343 . 51 | 650. 3 1 | 1110. | 716.67 | 443. 51 | 830. 31 | 1290. | | 620. | 346. 84 | 656. 3 1 | 1116. 00 | 720. | 446. 84 | 836. 31 | 1296.00 | | 622. 05 | 348. 89 | 660. | 1119.69 | 722. 05 | 448. 89 | 840. | 1 2 99. 69 | | 622. 22 | 349.06 | 660. 31 | 1120. | 722. 22 | 449.06 | 840. 31 | 1300. | | 623. 16 | 350. | 662. 00 | 1121.69 | 723. 16 | 450. | 842. 00 | 1301.69 | | 627.60 | 354. 44 | 670. | 1129.69 | 727.60 | 454. 44 | 850. | 1309.69 | | 627.78 | 354. 62 | 670. 31 | 1130. | 727.78 | 454. 62 | 850. 31 | 1310. | | 630. | 356. 84 | 674. 31 | 1134. 00 | 730. | 456. 84 | 854. 31 | 1314.00 | | 633. 16 | 360. | 680. | 1139.69 | 733. 16 | 460. | 860. | 1319.69 | | 633. 33 | 360. 17 | 680. 31 | 1140. | 733. 33 | 460.17 | 860. 31 | 1320. | | 638.72 | 365. 56 | 690. | 1149, 69 | 738.72 | 465. 56 | 870. | 1329.69 | | 638.89
640. | 365.73 | 690. 31
692. 31 | 1150. | 738. 89 | 465.73 | 870. 31
872. 31 | 1330. | | 643.16 | 366.84
370. | 698. 00 | 1152. 00
1157. 69 | 740.
743. 16 | 466.84
470. | 878. 00 | 1332. 00
1337. 69 | | 644. 27 | 371.11 | 700. | 1157.69 | 744. 27 | 471.11 | 880. | 1339.69 | | 644. 44 | 371. 28 | 700. | 1160. | 744. 44 | 471. 28 | 880. 31 | 1340. | | 649.83 | 376.66 | 710. | 1169.69 | 749.83 | 476.66 | 890. | 1349.69 | | 650. | 376.84 | 710. 31 | 1170. | 750. | 476.84 | 890. 31 | 1350. | | 653. 16 | 380. | 716.00 | 1175.69 | 753.16 | 480. | 896. 00 | 1355.69 | | 655. 38 | 382. 22 | 720 . | 1179.69 | 755. 38 | 482. 22 | 900. | 1359.69 | | 655. 56 | 382. 40 | 720. 31 | 1180. | 755. 56 | 482.40 | 900. 31 | 1360. | | 660. | 386.84 | 728. 31 | 1188.00 | 760. | 486.84 | 908. 31 | 1368.00 | | 660.94 | 387.78 | 730. | 1189.69 | 760.94 | 487.78 | 910. | 1369.69 | | 661.11 | 387. ∙95 | 730. 31 | 1190. | 761.11 | 487.95 | 910. 31 | 1370. | | 663. 16 | 390. | 734.00 | 1193.69 | 763. 16 | 490. | 914.00 | 1 373. 69 | | 666.49 | 393. 33 | 740. | 1199.69 | 766.49 | 493. 33 | 920. | 1379.69 | | 666. 67 | 393. 51 | 740. 31 | 1200. | 766.67 | 493. 51 | 920. 31 | 1380. | | 670. | 396.84 | 746. 31 | 1206.00 | 770. | 496.84 | 926. 31 | 1386. 00 | | 672.05 | 398. 89 | 750. | 1209.69 | 772. 05 | 498.89 | 930. | 1389. 69 | | 672.22
673.16 | 399.06 | 750. 31
752. 00 | 1210.
1211.69 | 772. 22
773. 16 | 499.06 | 930. 31
932. 00 | 1390. | | 677.60 | 400.
404. 44 | 760 . | 1211.69 | 777.60 | 500.
504.44 | 940. | 1391.69
1399.69 | | 677.78 | 404. 62 | 760. 3 1 | 1219.69 | 777.78 | 504. 44
504. 62 | 940. 31 | 1400. | | 680. | 406.84 | 764. 31 | 1224. 00 | 780. | 506.84 | 944. 31 | 1404. 00 | | 683.16 | 410. | 770. | 1229.69 | 783. 16 | 510. | 950. | 1409.69 | | 683. 33 | 410.17 | 770. 31 | 1230. | 783. 33 | 510.17 | 950. 31 | 1410. | | 688. 72 | 415.56 | 780. | 1239.69 | 788.72 | 515. 56 | 960. | 1419.69 | | 688. 89 | 415.73 | 780. 31 | 1240. | 788.89 | 515.73 | 960. 31 | 1420. | | 690. | 416.84 | 782. 31 | 1242.00 | 790. | 516.84 | 962. 31 | 1422.00 | | 693.16 | 420. | 788. 00 | 1247.69 | 793.16 | <i>5</i> 20. | 968. 00 | 1427.69 | | 694. 27 | 421.11 | 790. | 1249.69 | 794.87 | 52 1. 11 | 970. | 1 429. 69 | | 694.44 | 421.28 | 790. 31 | 1250. | 794.44 | 521. 28
 970. 31 | 1430. | | 699.83 | 426.67 | 800. | 1259.67 | 799.83 | 526. 67 | 980. | 1 439. 69 | | 700. | 426.84 | 800. 31 | 1260. | 800. | 526.84 | 980. 31 | 1440. | | °K | o _R | |-------------|-----------------------| | °C | ° _F | | 1
2
3 | 1.8
3.6
5.4 | | 4
5
6 | 7. 2
9. 0
10. 8 | | 7
8
9 | 12.6
14.4
16.2 | | 10 | 18.0 | | | <u> </u> | | °R | °К | | °F | °C | | 1 | 0. 56 | | 2 | 1.11 | | 3 | 1.67 | | 4. | 2. 22 | | 5 | 2. 78 | | 6 | 3. 33 | | 7 | 3.89 | | 8 | 4.44 | | 9 | 5. 00 | | 10 | 5. 56 | | 11 | 6.11 | | 12 | 6.67 | | 13 | 7. 22 | | 14 | 7.78 | | 15 | 8. 33 | | 16 | 8.89 | | 17 | 9.44 | | 18 | 10.00 | | ' | °K | °C | $^{\mathrm{o}}\mathbf{F}$ | $o_{\mathbf{R}}$ | °K | °C | $^{ m o_F}$ | o _R | |----|----------------|------------------|---------------------------|----------------------|--------------------|------------------|------------------|------------------| | 80 | 0. | 526. 84 | 980. 31 | 1440. | 900. | 626. 84 | 1160. 31 | 1620 | | 80 | 3. 16 | 530. | 986.00 | 1445. 69 | 903. 16 | 630. | 1166.00 | 1625. 69 | | 1 | | 532. 22 | 990. | 1449.69 | 905. 38 | 632. 22 | 1170. | 1629.69 | | | | 532. 40 | 990. 31 | 1450. | 905.56 | 632.40 | 1170. 31 | 1630. | | 81 | | 526. 84 | 998. 31 | 1458.00 | 910. | 636.84 | 1178. 31 | 1638.00 | | | - • | | 1000. | 1459.69 | 910.94 | 637.78 | 1180. | 1639.69 | | | | 537.95 | 1000.31 | 1460. | 911.11 | 637.95 | 1180. 31 | 1640. | | | | 540. | 1004.00 | 1463.69 | 913.16 | 6 4 0. | 1184.00 | 1643.69 | | 81 | 6.41 | 543. 33 | 1010. | 1469.69 | 916.41 | 643. 33 | 1190. | 1649.69 | | 81 | 6. 67 | 543 . 51 | 1010. 31 | 1470. | 916.67 | 643. 51 | 1190. 31 | 1650. | | 82 | ٥. | 546. 84 | 1016.31 | 1476.00 | 920. | 646.84 | 1196. 3 1 | 1656. 00 | | 82 | 2. 05 | 548.89 | 1020. | 1479.69 | 922.05 | 648. 89 | 1200. | 1659. 69 | | 82 | 2. 22 | 549.06 | 1020. 31 | 1480. | 922. 22 | 649.06 | 1200. 31 | 1660. | | 82 | 3. 16 | 550 . | 1022.00 | 1481.69 | 923 . 16 | 650. | 1202. 00 | 1661.69 | | 82 | 7.60 | 554. 44 | 1030. | 1489.69 | 927.60 | 654. 44 | 1210. | 1669.69 | | 82 | | 554.62 | 1030. 31 | 1490. | 927.78 | 654.62 | 1210. 31 | 1670. | | 83 | | 556. 84 | 1034. 31 | 1494.00 | 930. | 656.84 | 1214. 31 | 1674. 00 | | 83 | 3. 16 | 560. | 1040. | 1499.69 | 933. 16 | 660. | 1220. | 1679.69 | | 83 | | 560. 17 | 1040. 31 | 1500. | 933. 33 | 660. 17 | 1220. 31 | 1680. | | 83 | | 565. 56 | 1050. | 1509.69 | 938.72 | 665. 56 | 1230. | 1689. 69 | | | | 565.73 | 1050. 31 | 1510. | 938.89 | 665.73 | 1230. 31 | 1690. | | 84 | | 566. 84 | 1052. 31 | 1512.00 | 940. | 666.84 | 1232.31 | 1692.00 | | 1 | | 570. | 1058.00 | 1517.69 | 943. 16 | 670. | 1238. 00 | 1697.69 | | 1 | , | 571.11 | 1060. | 1519.69 | 944. 27 | 671.11 | 1240. | 1699.69 | | | | 571. 28 | 1060. 31 | 1520. | 944. 44 | 671. 28 | 1240.31
1250. | 1700.
1709.69 | | 1 | | 576.66 | 1070. | 1529.69 | 949.83 | 676.66
676.84 | 1250. 31 | 1710. | | | • | 576.84 | 1070. 31 | 1530. | 950. | 680. | 1256. 00 | 1715.69 | | | 3. 16 | 580. | 1076.00
1080. | 1535. 69
1539. 69 | 953. 16
955. 38 | 682. 22 | 1260. | 1719.69 | | | 5. 38 | 582. 22 | | 1540. | 955. 56 | 682. 40 | 1260. 31 | 1720. | | | | 582. 40 | 1080. 31
1088. 31 | 1548.00 | 960. | 686. 84 | 1262. 31 | 1722. 00 | | 1 | 0. | 586. 84 | | 1549.69 | 960.94 | 687. 78 | 1270. | 1729.69 | | 1 | 0.94 | 587.78
587.95 | 1090.
1090.31 | 1550. | 961.11 | 687.95 | 1270. 31 | 1730. | | 1 | 1. 11
3. 16 | 590. | 1094. 00 | 1553.69 | 963. 16 | 690. | 1274.00 | 1733. 69 | | | 6. 48 | 593. 33 | 1100: | 1559.69 | 966, 49 | 693.33 | 1280. | 1739.69 | | 1 | 6. 67 | 593. 51 | 1100.31 | 1560. | 966.67 | 693. 51 | 1280. 31 | 1740. | | | 70. | 596. 84 | 1106. 31 | 1566.00 | 970. | 696. 84 | 1286.31 | 1746.00 | | | 2. 05 | 598. 89 | 1110. | 1569.69 | 972. 05 | 698. 89 | 1290. | 1749.69 | | | 2. 22 | 599. 06 | 1110. 31 | 1570. | 972. 22 | 699.06 | 1290. 31 | 1750. | | 1 | | 600. | 1112. 00 | 1571.69 | 973.16 | 700. | 1292.00 | 1751.69 | | | 7.60 | 604.44 | 1120. | 1579.69 | 977.60 | 704.44 | 1300. | 1759.69 | | | 7.78 | 604.62 | 1120. 31 | 1580. | 977.78 | 704.62 | 1300. 31 | 1760. | | | 30. | 606.84 | 1124. 31 | 1584.00 | 980. | 706.84 | 1304. 31 | 1764.00 | | 88 | 3. 16 | 610. | 1130. | 1589.69 | 983. 16 | 710. | 1310. | 1769.69 | | 88 | 3. 33 | 610.17 | 1130.31 | 1590. | 983. 33 | 710. 17 | 1310. 31 | 1770. | | 88 | 8.72 | 615.56 | 1140. | 1599.69 | 988.72 | 715. 56 | 1320. | 1779. 69 | | 88 | 8. 89 | 615.73 | 1140. 31 | 1600. | 988. 89 | 715.73 | 1320. 31 | 1780. | | 89 | 90. | 616.84 | 1142. 31 | 1602.00 | 990. | 716.84 | 1322. 31 | 1782. 00 | | | | 620. | 1148.00 | 1607.69 | 993. 16 | 720. | 1328. 00 | 1787.69 | | 89 | 4. 27 | 621.11 | 1150. | 1609.69 | 994. 27 | 721. 11 | 1330. | 1789.69 | | | 4.44 | 621. 28 | 1150. 31 | 1610. | 994. 44 | 721. 28 | 1330. 31 | 1790. | | 1 | 9.83 | 626.67 | 1160. | 1619.69 | 999.83 | 726.67 | 1340. | 1799.69 | | 90 | 00. | 626.84 | 1160. 31 | 1620. | 1000. | 726.84 | 1340. 31 | 1800. | | L | | | | | | | | | | <u> </u> | | |------------------|----------------| | °K
°C | o _R | | 1 | 1.8 | | 2 | 3.6 | | 3 | 5.4 | | 4 | 7. 2 | | 5 | 9. 0 | | 6 | 10. 8 | | 7 | 12.6 | | 8 | 14.4 | | 9 | 16.2 | | 10 | 18.0 | | o _R | °K | | $^{ m o}_{ m F}$ | °C | | 1 | 0. 56 | | 2 | 1. 11 | | 3 | 1. 67 | | 4 | 2. 22 | | 5 | 2. 78 | | 6 | 3. 33 | | 7 | 3. 89 | | 8 | 4. 44 | | 9 | 5. 00 | | 10 | 5. 56 | | 11 | 6. 11 | | 12 | 6. 67 | | 13 | 7. 22 | | 14 | 7. 78 | | 15 | 8. 33 | | 16 | 8.89 | | 17 | 9.44 | | 18 | 10.00 | Appendix - Cont. ## CONVERSION FACTORS FOR UNITS OF LENGTH | Multiply by appropriate entry to obtain | cm | mm | μ | mμ | Å | |---|------------------|------------------|------|------------------|-----------------| | 1 Centimeter (cm) | 1 | 10 | 104 | 10 ⁷ | 10 ⁸ | | 1 Millimeter (mm) | 10-1 | 1 | 103 | 10 ⁶ | 10 ⁷ | | 1 Micron (μ) | 10-4 | 10-3 | 1 | 103 | 104 | | 1 Millimicron (mμ) | 10 ⁻⁷ | 10 ⁻⁶ | 10-3 | 1 | 10 | | 1 Angstrom Unit (Å) | 10-8 | 10-7 | 10-4 | 10 ⁻¹ | 1 | ## CONVERSION FACTORS FOR UNITS OF LENGTH - Cont. | Multiply by appropriate entry to obtain | cm | m | in | ft | yd | |---|-----------|-------------|--------|-------------|-------------| | 1 cm | 1 | 0.01 | 0.3937 | 0.032808333 | 0.010936111 | | 1 m | 100. | 1 | 39.37 | 3.2808333 | 1.0936111 | | 1 in | 2.5400051 | 0.025400051 | 1 | 0.083333333 | 0.027777778 | | 1 ft | 30.480061 | 0.30480061 | 12. | 1 | 0.33333333 | | 1 yd | 91.440183 | 0.91440183 | 36. | 3. | 1 | #### CONVERSION FACTORS FOR UNITS OF AREA | Multiply by appropriate entry to obtain | cm ² | m ² | sq in | sq ft | sq yd | |---|-----------------|---------------------------------|------------|---------------------------------|---------------------------------| | 1 cm ² | 1 | 10-4 | 0.15499969 | 1.0763867
x 10 ⁻³ | 1.1959853
x 10 ⁻⁴ | | 1 m ² | 10 ⁴ | 1 | 1549.9969 | 10.763867 | 1.1959853 | | 1 sq in | 6.4516258 | 6.4516258
x 10 ⁻⁴ | 1 | 6.9444444
x 10 ⁻³ | 7.7160494
x 10 ⁻⁴ | | 1 sq ft | 929.03412 | 0.092903412 | 144. | 1 | 0.11111111 | | 1 sq yd | 8361.3070 | 0.83613070 | 1296. | 9. | 1 | ## CONVERSION FACTORS FOR UNITS OF VOLUME | Multiply by appropriate entry to obtain | ml | liter | gal | |---|-----------|------------------------------|----------------------------| | 1 cm ³ | 0.9999720 | 0.9999720 x 10 ⁻³ | 2.6417047×10^{-4} | | 1 cu in | 16.38670 | 1.638670 x 10 ⁻² | 4.3290043×10^{-3} | | 1 cu ft | 28316.22 | 28.31622 | 7.4805195 | | 1 ml | 1 | 0.001 | 2.641779×10^{-4} | | 1 liter | 1000. | 1 | 0.2641779 | | 1 gal | 3785.329 | 3.785329 | 1 | #### CONVERSION FACTORS FOR UNITS OF VOLUME - Cont. | Multiply by appropriate entry to obtain ——— | cm ³ | cu in | cu ft | |---|-----------------|-------------|------------------------------| | 1 cm ³ | 1 | 0.061023378 | 3.5314455 x 10 ⁻⁵ | | 1 cu in | 16.387162 | 1 | 5.7870370 x 10 ⁻⁴ | | 1 cu ft | 28317.017 | 1728. | 1 | | 1 ml | 1.000028 | 0.06102509 | 3.531544×10^{-5} | | 1 liter | 1000. 028 | 61. 02509 | 0.03531544 | | 1 gal | 3785. 4345 | 231. | 0.13368056 | Appendix - Cont. # CONVERSION FACTORS FOR UNITS OF MASS | Multiply by appropriate entry to obtain | g | kg | lb | metric ton | ton | |---|-----------------|------------|---------------------------------|---------------------------------|---------------------------------| | 1 g | 1 | 10-3 | 2.2046223
x 10 ⁻³ | 10 ⁻⁶ | 1.1023112
x 10 ⁻⁶ | | 1 kg | 103 | 1 | 2.2046223 | 10-3 | 1.1023112
x 10 ⁻³ | | 1 lb | 453.59243 | 0.45359243 | 1 | 4.5359243
x 10 ⁻⁴ | 0.0005 | | 1 metric ton | 10 ⁶ | 103 | 2204.6223 | 1 | 1.1023112 | | 1 ton | 907184.86 | 907.18486 | 2000. | 0.90718486 | 1 | # CONVERSION FACTORS FOR UNITS OF DENSITY | Multiply by appropriate entry to obtain | g/cm ³ | g/ml | lb/cu in | lb/cu ft | lb/gal | |---|-------------------|------------|---------------------------------|-----------|------------| | 1 g/cm ³ | 1 | 1.000028 | 0.036127504 | 62.428327 | 8.3454535 | | 1 g/ml | 0.9999720 | 1 | 0.03612649 | 62.42658 | 8.345220 | | 1 lb/cu in | 27.679742 | 27.68052 | 1 | 1728. | 231. | | 1 lb/cu ft | 0.016018369 | 0.01601882 | 5.7870370
x 10 ⁻⁴ | 1 | 0.13368056 | | 1 lb/gal | 0.11982572 | 0.1198291 | 4.3290043
10 ⁻³ | 7.4805195 | 1 | 1.4503830×10^{-5} lb(wt)/sq in 0.0193368500.491157014. 696006 14.503830 14, 223398 x 10-5 29, 52993 2.952993 29.92120 28.95897 2,036009 in Hg 0.03937x 10-4 735.5592mm Hg 7.500617 51,71473 750.0617 0.03342112 0.03453162 25.40005 760. $kg(wt)/cm^2$ 0.06804570 0.07030669 1.01971621.0332275 $\times 10^{-3}$ 1.3595098 1.0197162x 10-6 -1.3157895 x 10⁻³ 0.9869233 0.9869233 x 10-6 0.9678411 atm -0.03386395 0.06894731 1.3332237 $\times 10^{-3}$ 0.9806651.013250 $^{10}^{-6}$ bar
CONVERSION FACTORS FOR UNITS OF PRESSURE 1333, 2237 $_{\rm dyne/cm^2}$ 33863,95 68947.31 1013250. 10^{6} 980665. -Multiply by appropriate entry to obtain 1 lb(wt)/sq in $1 \, \mathrm{kg(wt)/cm^2}$ 1 dyne/cm^2 1 mm Hg 1 in Hg 1 atm 1 bar CONVERSION FACTORS FOR UNITS OF ENERGY | Multiply by appropriate entry to obtain | g mass
(energy equiv) | abs. joule | int. jou'le | cal | I.T. cal | BTU | int. kilowatt
-hr | |---|------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|--------------------------------|--------------------------------| | 1 g mass (energy equiv) | 1 | 8.98656
x 10 ¹³ | 8.98508
x 10 ¹³ | 2.14784
x 10 ¹³ | 2.14644
x 10 ¹³ | 8.51775
x 10 ¹⁰ | 2.49586
× 10 ⁷ | | 1 abs. joule | 1.112772×10 ⁻¹⁴ | ч | 0.999835 | 0.239006 | 0.238849 | 0.947831
x 10 ⁻³ | 2.77732
x 10 ⁻⁷ | | 1 int. joule | 1.112956×10 ⁻¹⁴ | 1.000165 | 1 | 0.239045 | 0.238889 | 0.947988
x 10 ⁻³ | 2.777778
x 10 ⁻⁷ | | l cal | 4.65584 x 10-14 | 4.1840 | 4.1833 | 1 | 0.999346 | 3.96573
x 10 ⁻³ | 1.162030
x 10 ⁻⁶ | | 1 I. T. cal | 4.65888 x 10 ⁻¹⁴ | 4.18674 | 4.18605 | 1.000654 | 1 | 3.96832
x 10 ⁻³ | 1.162791
x 10 ⁻⁶ | | 1 BTU | 1.174019 x 10 ⁻¹¹ | 1055.040 | 1054.866 | 252.161 | 251.996 | 1 | 2.93018
x 10 ⁻⁴ | | 1 int. kilowatt-hr | 4.00664×10 ⁻⁸ | 3,600,594. | 3,600,000. | 860,563. | 860,000. | 3412.76 | 1 | | 1 horsepower-hr | 2.98727 x 10 ⁻⁸ | 2,684,525. | 2,684,082. | 641,617. | 641,197. | 2544.48 | 0.745578 | | 1 ft-lb(wt) | 1.508720x10 ⁻¹⁴ | 1.355821 | 1.355597 | 0.324049 | 0.323837 | 1.285089
x 10 ⁻³ | 3.76555
x 10 ⁻⁷ | | 1 cu ft - lb(wt)/sq in | 2.17256 x 10 ⁻¹² | 195.2382 | 195.2060 | 46.6630 | 46.6325 | 0.1850529 | 5.42239
x 10 ⁻⁵ | | 1 liter-atm | 1.127548 x 10 ⁻¹² | 101.3278 | 101.3111 | 24.2179 | 24.2021 | 0.0960417 | 2.81420
x 10 ⁻⁵ | # CONVERSION FACTORS FOR UNITS OF ENERGY - Cont. | Multiply by appropriate entry to obtain | ft-lb(wt) | cu ft-
lb(wt)/sq in. | liter-atm | horsepower | |---|------------------|--------------------------------|--------------------------------|--------------------------------| | 1 g mass(energy equiv) | 6. 62814
x 10 | 4.60287
x 10 ¹¹ | 8.86880
x 10 ¹¹ | 3. 34754
× 10 ⁷ | | 1 abs. joule | 0.737561 | 5. 12195
x 10 ⁻³ | 9.86896
x 10 ⁻³ | 3.72505
x 10 ⁻⁷ | | 1 int. joule | 0.737682 | 5. 12279
x 10 ⁻³ | 9.87058
x 10 ⁻³ | 3.72567
× 10 ⁻⁷ | | 1 cal | 3. 08595 | 2. 14302
x 10 ⁻² | 4.12917
x 10 ⁻² | 1.558562
x 10 ⁻⁶ | | 1 I.T. cal | 3. 08797 | 2. 14443
x 10 ⁻² | 4.13187
x 10 ⁻² | 1.559582
x 10 ⁻⁶ | | 1 BTU | 778. 156 | 5.40386 | 10.41215 | 3.93008
x 10 ⁻⁴ | | 1 int. kilowatt-hr | 2,655,656. | 18442.06 | 35534. 1 | 1. 341241 | | 1 horsepower-hr | 1,980,000. | 13750. | 26493. 5 | 1 | | 1 ft-lb(wt) | 1 | 6.94444
× 10 ⁻³ | 1.338054
x 10 ⁻² | 5. 05051
x 10 ⁻⁷ | | 1 cu ft - lb(wt)/sq in | 144. | 1 | 1.926797 | 7.27273
x 10 ⁻⁵ | | 1 liter-atm | 74.7354 | 5. 18996 | 1 | 3.77452
x 10 ⁻⁵ | CONVERSION FACTORS FOR UNITS OF MOLECULAR ENERGY | | | | | | Cont. | | | |--|---|---|---------------------------------|-------------------------------|-----------------------------------|-----------------------------------|---------------------------------| | wave no. (cm ⁻¹) | 5.03581 $\times 10^{15}$ | 8.36121
x 10 ⁻² | 8.36259
x 10 ⁻² ; | 0.349833 | 8067.34 | 8070.00 | 1 | | int. electron-
volt/molecule | $6.24017 \times 10^{11} \times 10^{15}$ | 1.036086
x 10 ⁻⁵ | 1.036257
× 10 ⁻⁵ | 4.33498
x 10 ⁻⁵ | 0.999670 | 1 | 1. 239158
x 10 ⁻⁴ | | abs. electron-
cal/mole volt/molecule | .439491
x 10 ¹⁶ 6.24222 x 10 ¹¹ | 0.239006 1.036427
x 10 ⁻⁵ | 0.239046 | 4.33641
x 10 ⁻⁵ | 1 | 1.000330 | 1.239567
x 10 ⁻⁴ | | cal/mole | 1.439491
x 10 ¹⁶ | 0.239006 | 0.239046 | 1 | 23060. 5 | 23068. 1 | 2.85851 | | int. joule/mole | 6. 02184×10^{16} $\times 10^{16}$ $\times 10^{16}$ | 0.999835 | 1 | 4.1833 | 96469.4 | 96501.2 | 11.95802 | | abs. joule/mole | 6.02283×10 ¹⁶ | 1 | 1. 000165 | 4.18400 | 96485.3 | 96517.1 | 11.95999 | | erg/molecule | 1 | 1.660349
x 10 ⁻¹⁷ | 1.660623
× 10 ⁻¹⁷ | 6.94690 $\times 10^{-17}$ | 1.601992
× 10 ⁻¹² | 1. 602521
x 10 ⁻¹² | 1.985776
x 10 ⁻¹⁶ | | Multiply by appropriate entry to obtain | 1 erg/molecule | 1 abs. joule/mole | 1 int. joule/mole | 1 cal/mole | 1 abs. electron-volt/
molecule | 1 int. electron-volt/
molecule | 1 wave no. (cm ⁻¹) | # CONVERSION FACTORS FOR UNITS OF SPECIFIC ENERGY | Multiply by appropriate entry to obtain | abs.joule/g | int. joule/g | cal/g | I. T. cal/g | BTU/lb | | |---|-------------|--------------|----------|-------------|----------|--| | 1 abs. joule/g | 1 | 0.999835 | 0.239006 | 0.238849 | 0.429929 | | | 1 int. joule/g | 1:000165 | 1 | 0.239045 | 0.238889 | 0.430000 | | | 1 cal/g | 4.1840 | 4.1833 | 1 | 0.999346 | 1.798823 | | | 1 I. T. cal/g | 4.18674 | 4.18605 | 1.000654 | 1 | 1.8 | | | 1 BTU/lb | 2.32597 | 2.32558 | 0.555919 | 0.555556 | 1 | | # CONVERSION FACTORS FOR UNITS OF SPECIFIC ENERGY PER DEGREE | Multiply by appropriate entry to obtain | abs. joule/
g deg C | int. joule/
g deg C | cal/
g deg C | I. T. cal/
g deg C | BTU/
lb deg F | |---|------------------------|------------------------|-----------------|-----------------------|------------------| | 1 abs. joule/g deg C | 1 | 0.999835 | 0.239006 | 0.238849 | 0. 238849 | | 1 int. joule/g deg C | 1.000165 | 1 | 0.239045 | 0.238889 | 0.238889 | | 1 cal/g deg C | 4.1840 | 4.1833 | 1 | 0.999346 | 0.999346 | | 1 I. T. cal/g deg C | 4.18674 | 4.18605 | 1.000654 | 1 | 1 | | 1 BTU/lb deg F | 4.18674 | 4.18605 | 1.000654 | 1 | 1 | CONVERSION FACTORS FOR UNITS OF VISCOSITY * | Multiply by appropriate entry to obtain | Centipoise | Poise | g _F sec cm ⁻² | lb _F sec in ⁻² | lb _F sec ft ⁻² | lb _F hr in ⁻² | lb _F hr ft | |---|---------------------------|--------------------------|-------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|---------------------------| | ↓
Centipoise | 1 | 1×10 ² | 1.0197 x 10 ⁻⁵ | 1.4504 x 10 ⁻⁷ | 2.0886 x 10 ⁵ | 4.0289×10 ⁻¹¹ | 5.8016×10 | | Poise | 1. × 10 ² | 1 | 1.0197 x 10 ⁻³ | 1.4504 x 10 ⁻⁵ | 2.0886 x 10 ⁻³ | 4.0289 x 10 ⁻⁹ | 5.8016×10 ⁻⁷ | | $g_{ m F}$ sec cm $^{-2}$ | 9.8067 x 10 ⁴ | 9.8067 x 10 ² | 1 | 1.4224 x 10 ⁻² | 2.0482 | 3.9510×10 ⁻⁶ | 5.6895 x 10 ⁻⁴ | | $^{-2}_{ m F}$ sec in | 6.8947 x 10 ⁶ | 6.8947 x 10 ⁴ | 7.0305 x 10 ¹ | 1 | 1.4400 x 10 ² | 2.7778 x 10 ⁻⁴ | 4.0000 x 10 ⁻² | | $^{ m lb}_{ m F}$ sec ft $^{-2}$ | 4.7880×10 ⁴ | 4.7880×10 ² | 4.8823×10 ⁻¹ | 6.9445×10^{-3} | 1 | 1.9290 x 10 ⁻⁶ | 2.7778×10 ⁻⁴ | | $^{ m lb_F}$ hr in $^{-2}$ | 2.4821 x 10 ¹⁰ | 2.4821 x 10 ⁸ | 2.5310 x 10 ⁵ | 3.6000 x 10 ³ | 5.1841 x 10 ⁵ | 1 | 1.4400×10 ² | | $^{1b}_{ m F}$ hr ft $^{-2}$ | 1.7237 x 10 ⁸ | 1.7237 x 10 ⁶ | 1.7577 x 10 ³¹ | 2.5001 x 10 ¹ | 3.6001 x 10 ³ | 6.9446 x 10 ⁻³ | 1 | | $ m g_M~sec^{-1}~cm^{-1}$ | 1 x 10 ² | 1 | 1.0197 x 10 ⁻³ | 1.4504 x 10 ⁻⁵ | 2.0886 x 10 ⁻³ | 4.0289 x 10 ⁻⁹ | 5.8016×10 ⁻⁷ | | $^{ m lb}_{ m M}~{ m sec}^{-1}~{ m in}^{-1}$ | 1.7858×10 ⁴ | 1.7858×10 ² | 1.8210 x 10 ⁻¹ | 2.5901 x 10 ⁻³ | 3.7298×10^{-1} | 7.1948 x 10 ⁻⁷ | 1.0360x10 ⁻⁴ | | $^{ m lb}_{ m M}{ m sec}^{-1}{ m ft}^{-1}$ | 1.4882×10 ³ | 1.4882×10^{1} | 1.5175×10 ⁻² | 2.1585 x 10 | 3.1083×10^{-2} | 5.9958 x 10 | 8.6339 x 10 | | $^{\mathrm{lb}}_{\mathbf{M}}^{\mathrm{hr}^{-1}}^{\mathrm{in}^{-1}}$ | 4.9605 | 4.9605 x 10 | 5.0582×10 | 7.1947 x 10 | 1.0361 x 10 | 1.9985 x 10 | 2.8779×10^{-8} | | $^{-1}$ fr $^{-1}$ | 4.1338 x 10 ⁻¹ | 4.1338 x 10 ³ | 4.2152×10 ⁻⁶ | 5.9957 x 10 | 8.6339 x 10 | 1.6655 x 10 | 2.3983 x 10 | | | | | | | | | | * The conversion factors for viscosity are based on a tabulation by Hawkins, Solberg, and Sibbitt, Power Plant Eng. 45, 62 (1941). CONVERSION FACTORS FOR UNITS OF VISCOSITY - Cont. | g _M sec cm | 1 x 10 ⁻² | 1 | 9.8067 x 10 ² | 6.8947 x 10 ⁴ | 4.7880×10 ² | 2.4821 x 10 ⁸ | 1.7237 x 10 ⁶ | 1 | 1.7858 x 10 ² | 1.4882×10 ¹ | 4.9605 x 10 | 4.1336 x 10 ⁻³ | |--|---------------------------|---------------------------|---------------------------|--------------------------------------|-------------------------------|------------------------------|-----------------------------|-----------------------------|--|--|---|---| | slug hr ⁻¹ ft | 7.5188 x 10 ⁻² | 7.5188 | 7.3733×10 | 5.1840 x 10 ⁵ | 3.6000×10 ³ | 1.8662×10 ⁹ | 1.2960×10 ⁷ | 7.5188 | 1.3427 x 10 ³ | 1.1189×10 ² | 3.7297×10^{-1} | 3.1081 x 10 ⁻² | | slug sec ⁻¹ in ⁻¹ | 1.7405 x 10 ⁻⁶ | 1.7405×10^{-4} | 1.7068 x 10 | 1.2000×10 ¹ | 8.3335×10^{-2} | 4.3199×10 ⁴ | 3.0000 x 10 ² | 1.7405×10^{-4} | 3.1081 x 10 ⁻² | 2.5902×10 ⁻³ | 8.6337×10^{-6} | 7.1946×10 ⁻⁷ | | $^{ m lb_{ m Mhr}^{-1}ft^{-1}}$ | 2.4191 | 2.4191×10^{2} | 2.3723 × 10 ⁵ | 1.6679 x 10 ⁷ | 1.1583×10 ⁵ | 6.0044 x 10 | 4.1698 x 10 ⁸ | 2.4191 x 10 ² | 4.3200 x 104 | 3.6000 x 10 ³ | 1.2000×10 ¹ | 1 | | $ \mathrm{lb_{\mathbf{M}}}\mathrm{sec}^{-1}\mathrm{in}^{-1} $ $ \mathrm{lb_{\mathbf{M}}}\mathrm{hr}^{-1}\mathrm{ft}^{-1} $ | 5.5998 x 10 ⁻⁵ | 5.5998 x 10 ⁻³ | 5.4916 | 3.8609 x 10 ² | 2.6812 | 1.3899 × 10 ⁶
 9.6524×10^{3} | 5.5998 x 10 ³ | 1 | 8.3333 x 10 | 2.7778×10^{-4} | 2.3148×10^{-5} | | Multiply by appropriate entry | Centipoise | Poise | $ m g_F^{ m sec~cm}^{-2}$ | $^{1b}_{ m F}~{ m sec}~{ m in}^{-2}$ | $^{1b}_{ m F}$ sec ft $^{-2}$ | $^{1b_{ m F}}$ hr in $^{-2}$ | $^{1b_{f F}}$ hr ft $^{-2}$ | $g_{ m M~sec^{-1}~cm^{-1}}$ | $^{ m lb}_{ m M}~{ m sec}^{-1}~{ m in}^{-1}$ | $^{ m lb}_{ m M}~{ m sec}^{-1}~{ m ft}^{-1}$ | $^{\mathrm{lb}_{\mathbf{M}}}\mathrm{hr}^{-1}\mathrm{in}^{-1}$ | lb _M hr ⁻¹ ft ⁻¹ |