Miniature Fuel Processors for Portable Fuel Cell Systems

Jamie Holladay, Evan Jones, Bob Rozmiarek, John Hu, Max Phelps, Ed Baker, Dan Palo, Yong Wang, and Robert Dagle.

Pacific Northwest National Laboratory

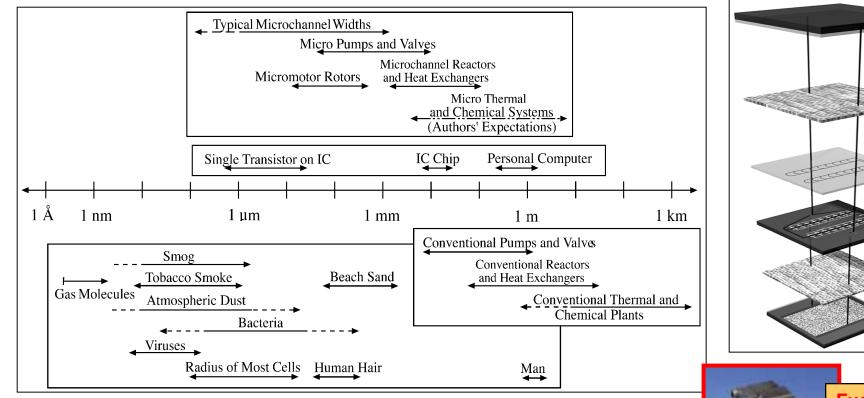
Operated by Battelle for the U.S. Department of Energy

200th Meeting of the Electrochemical Society Meeting September 2-7, 2001. San Francisco CA., USA

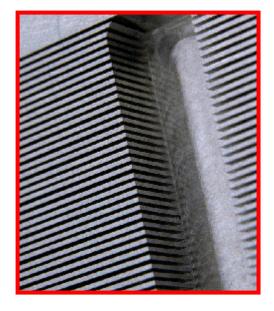
Battelle

Motivation

- Micro-electronics increased demand for high energy density power supplies
- Current Li-ion Batteries
 - <0.15kW_e-hr/kg
- Hydrocarbon fuels
 - $Diesel = 13.2 \ kW_t$ -hr/kg
 - Methanol = 5.6 kW_t -hr/kg


Even at 10% system efficiency a fuel cell with a reformer would have higher energy density than a battery.

Microsystems: A New Class of Process Technol ogy



Exploitation of Heat and Mass Transport Advantages in Engineered Microstructures

Microchannel Architecture

Micron-Scale Dimensions

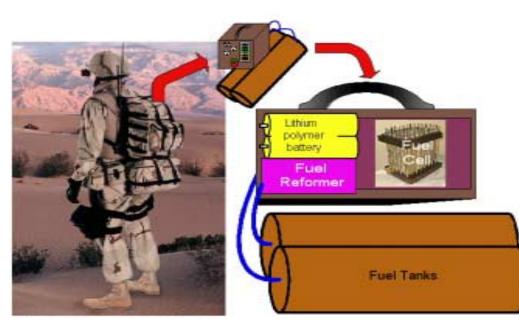
- 50-500 µm channels
- high aspect ratios
- negligible pressure drop

Reduced heat & mass transfer resistances

• allows use of more active catalysts

Integrated Monolith Catalysts

Laminate Fabrication Method

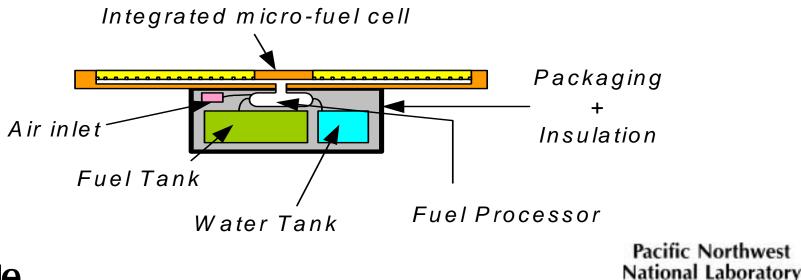


Pacific Northwest National Laboratory

Sol dier Portabl e Power (SPP): Goal s

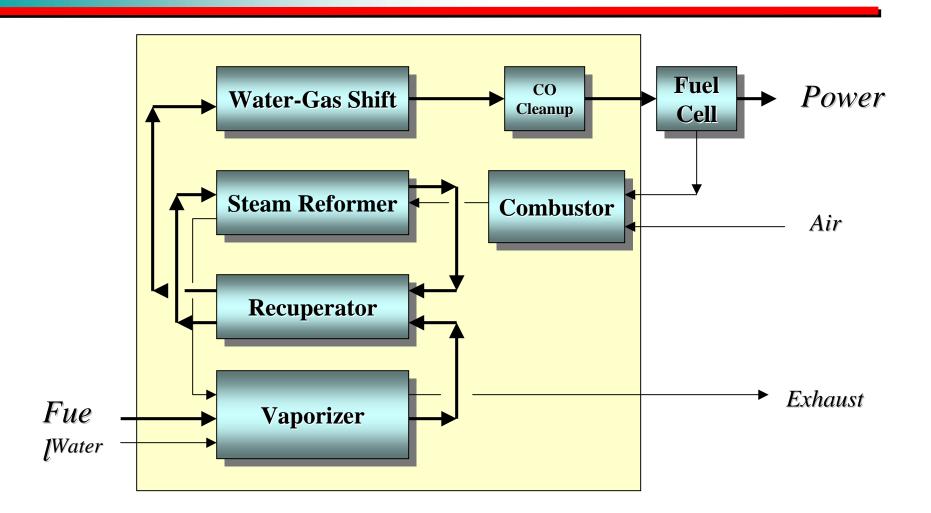
Soldier Needs

- Radio
- Laser sights
- Sensors
- Helmet mounted video display
- Video/thermal sights
- GPS Receiver



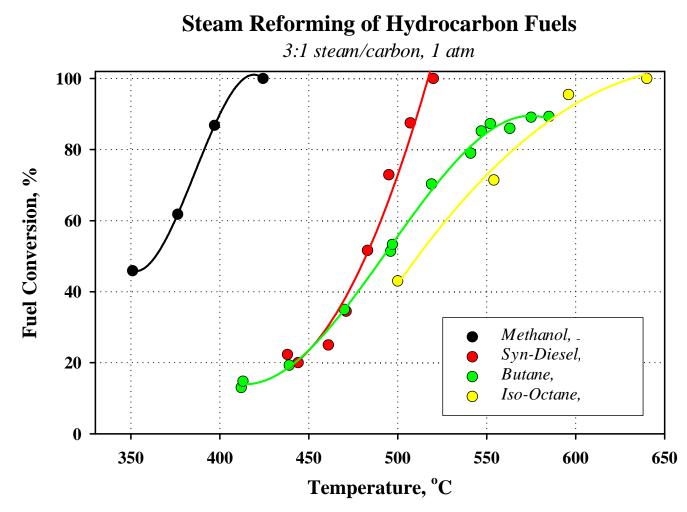
- Targets
 - 15 W_e average,
 - 25 W_e peak
 - ~100 cm³
 - ~ 1 kg (excluding fuel)
- Development path
 - Test individual components
 - Link components
 - Dis-integrated system demonstration
 - Integrated device prototype development

Pacific Northwest National Laboratory


Sub-Watt Power: Goal s

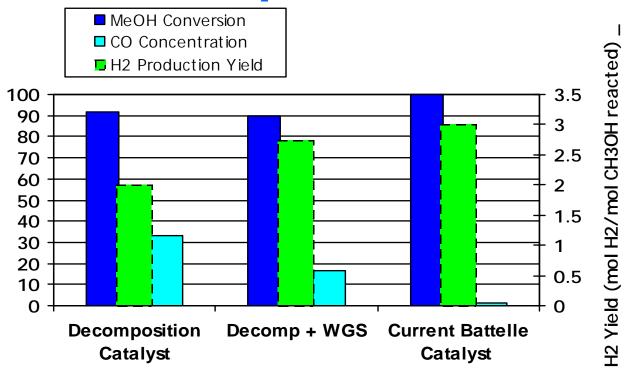
- Demonstrate 10-100
 mW_e fuel processor
 - Target- 20% efficiency (not including the fuel cell)
- Demonstrate 10-100 mW_e fuel cell. (CWRU)
- Demonstrate integrated mW_e fuel processor and fuel cell system.

Baffelle


Overall System

Pacific Northwest National Laboratory

Mul ti-Fuel Catal yst Testing-Steam Reforming of Different Fuels



Pacific Northwest National Laboratory

Methanol Specific SR Catal yst

100 ms contact time, H₂O/C=1.8, 300°C and 1 atm

+ For methanol reforming the H_2 yield is close to theoretical maximum

. . Putting Technology To Work

CO concentration (~1 vol%, dry gas basis) low enough to eliminate the need for WGS
 Pacific Northwest National Laboratory Operated by Battelle for the

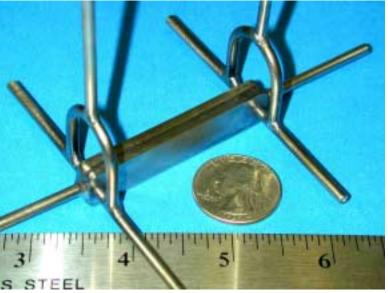
U.S. Department of Energy

Methanol Reforming Reactions

<u>Water-Gas-Shift Pathway</u> $CH_3OH \rightarrow CO + 2H_2$ $CO + H_2O \leftarrow \rightarrow CO_2 + H_2$

<u>Overall Reaction:</u> CH₃OH + H₂O → CO₂ + 3H₂ $\frac{\text{Alternate Pathway}}{\text{CH}_3\text{OH} \rightarrow \text{HCHO} + \text{H}_2}$ $\text{HCHO} + \text{H}_2\text{O} \rightarrow \text{HCOOH} + \text{H}_2$ $\text{HCOOH} \rightarrow \text{CO}_2 + \text{H}_2$

 $\frac{\text{Overall Reaction:}}{\text{CH}_3\text{OH} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + 3\text{H}_2}$


Pacific Northwest National Laboratory

SPP: MeOH Integrated SR and CR Performance

Estimates based on 14 day mission, 1 kg processor/fuel cell

- ► Current system (22.4 W_e)
 - Fuel/water = 6.6 L
 - System weight = 7.3 kg
 - Energy density = 1000 W_ehr/kg
 - Processor efficiency > 75%
 - Overall efficiency ~ 39%

Weight= 33.2 g (including tubing)

Volume= 4.6 cc (excluding tubing)

Equivalent Li-ion battery weight at 200 Whr/kg \approx 37.6 kg (200 Whr/kg is the anticipated Li-ion battery energy density)

Pacific Northwest National Laboratory

SPP: MeOH Integrated SR and CR Base Case Performance

 $T = 335 \ ^{\circ}C, P = 1 \ atm, \ steam: carbon = 1.8$

- MeOH conversion= >99%
- Dry gas composition
 - H₂ = 73-74%
 - CO₂ = 24.5-24.7%
 - CO = 1.3-1.5%
- Selectivity
 - to $H_2 = 100\%$
 - to CO₂ = 95-97%
 - to CO = 3-5%

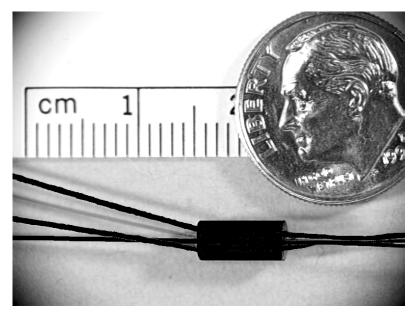
- ► H₂ Production
 - Flow rate = 260 sccm
 - Thermal power = 46.7 W_t (LHV of H₂)
 - Assumptions
 - FC efficiency = 60%
 - FC H₂ utilization = 80%
 - Electric power = 22.4 W_e

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

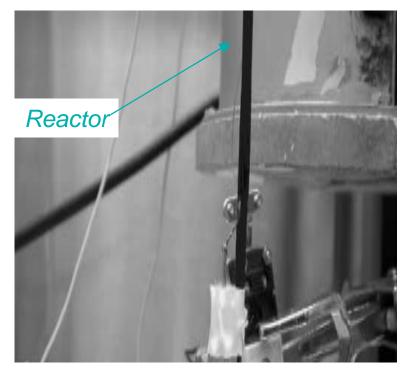
Sol dier Portable Power:

Summary

- Low operating temperature: 350°C
- Fuel processor efficiency: >75%
- Low CO concentrations out of steam reformer (<1%)
- Energy density = 1000 W-hr/kg
 - compare to Li-ion battery at ~150-200 W-hr/kg


- Future Work
 - Integrated prototype with methanol as fuel
 - Catalyst life-time testing
 - CO clean-up
 - Integration of prototype with fuel cell
 - Development of synthetic diesel reformer device

Pacific Northwest National Laboratory


Battelle

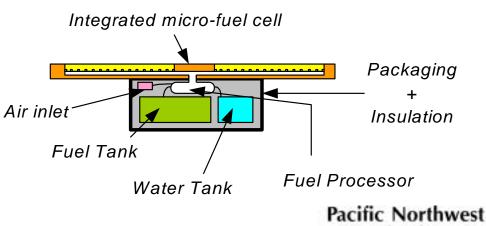
Sub-Watt Power-Fuel Reformer Integrated System

The integrated system included: 2 vaporizers, a heat exchanger, a combustor, and a steam reformer.

The system was mounted inside a larger tube (0.16") for testing.

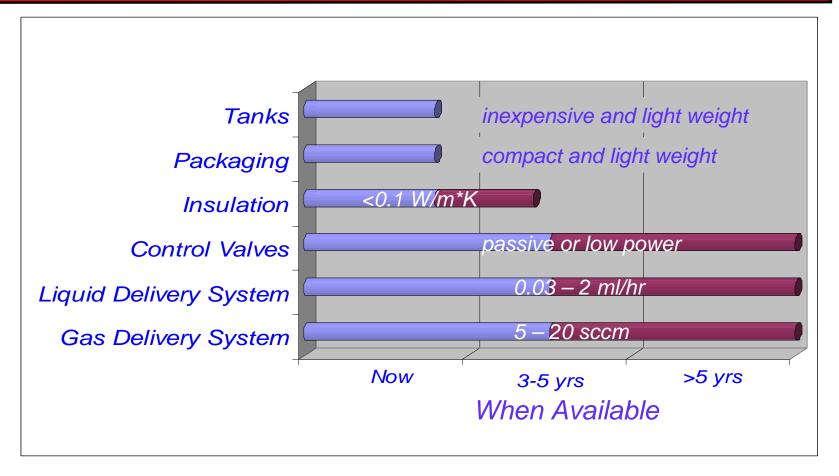
reformer volume: <5.0 mm³ reformer capacity: 200 mW combustor volume: <5.0 mm³ combustor capacity: 3 W National Laboratory Operated by Battelle for the

U.S. Department of Energy


Sub-Watt Power-Initial Results Reforming Reactor

Reactor Output:

- H_2 flow = 0.1 1.1 sccm
- *Power* = $18-200 \, mW_t$
- Efficiency 3%-9%
- Estimated electric power output
 - Assumptions
 - 60% efficient fuel cell
 - 80% H₂ utilization
 - *Power 9-100 mW*_e
 - Efficiency 1.5-4%


• Reactor Conditions:

- Contact time: 50-300 mS
- Temperature: 300-475°C
- Pressure ~ atmospheric

Sub-Watt Power: "Bal ance of Pl ant^{*}"

*These systems are available for the man portable power project.

Pacific Northwest National Laboratory

Sub-Watt Power

Summary

- Sub-Watt device developed
 - Self-sustaining operation attained
 - H_2 flow = 0.1 1.1 sccm
 - Power 18-200 mW_t
 - 9 % thermal efficiency
- System development begun

Future Work

- Reformer design improvements
- Integration with fuel cell
- System
 development
 - BOP investigation continued

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

Visit us at our Micro-Cats Website: www.pnl.gov/microcats

Pacific Northwest National Laboratory