Fuel Processor Development for Small Power Supplies

Jamie Holladay, Daniel Palo, Evan Jones, Max Phelps, Ya-Huei Chin, Robert Dagle, Jianli Hu, Yong Wang, and Ed Baker

> Pacific Northwest National Laboratories Battelle NW, Richland WA, USA

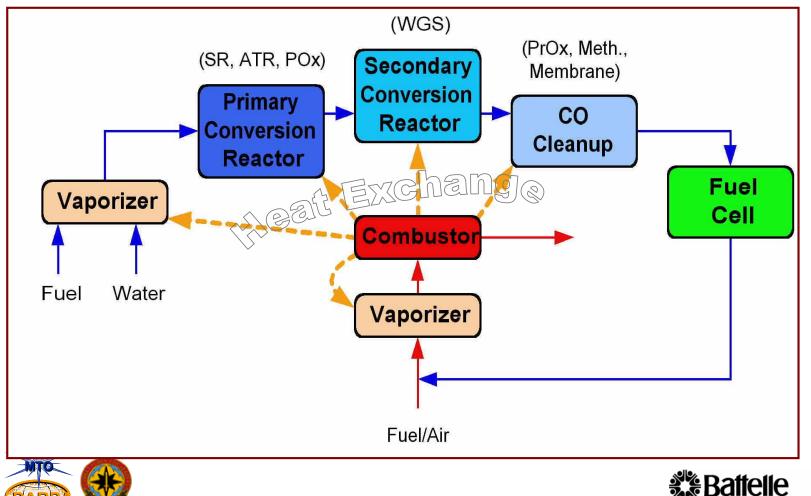
Small Fuel Cells for Portable Applications 2002 April 21-23, 2002 Washington, DC

> Acknowledgements: James Stephens, Army CECOM Dr. William Tang, DARPA MTO

Battelle

Need

- Broaden the possibilities for using self-sustaining devices in remote or difficult-to-access locations such as sensors or mobile devices.
- Battery replacement
- Self-sustaining portable power supply for wireless electronic devices
 - Wireless equipment & sensors
 - Remote operation
 - Sensors
 - ▲ MEMS
 - Hand-held devices


Required Fuel Efficiency to exceed battery performance

Fuel	LHV (kJ/mol)	Energy Density (kWh/kg)	Efficiency Required
Methanol 1:1 water:C	639	5.6 3.3	5.5%
<i>n</i> -Ocatane 2:1 water:C	5100	12.3 3.0	2.4%
<i>n</i> -Dodecane 2:1 water:C	7552	12.3 3.1	2.4%
H ₂ storage	242	0.5-1.0	30-60%
NaBH ₄ solution 1kg NaBH ₄ + 950g H ₂ O	495	3.6	12.1%
Lithium polymer battery		0.3 (projected)	2°2 Rquid

Typical Fuel Processing System

... Putting Technology To Work

Microtechnology

- Lightweight and compact
- Rapid heat and mass transport
- Extremely precise control of process conditions
- > High performance
 - High throughput per unit hardware volume
- Cost economies through mass production

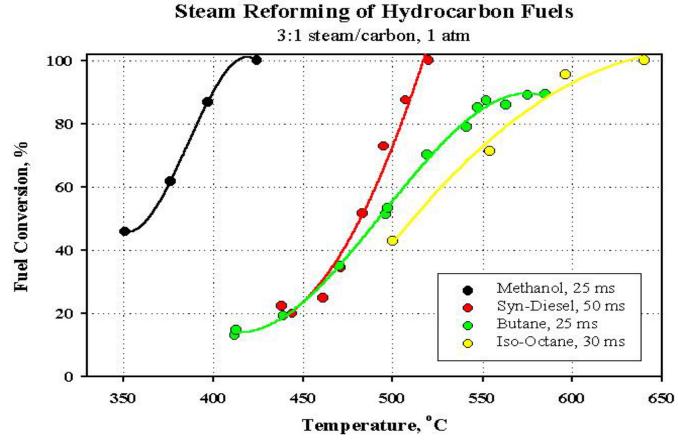
Versus economies of scale

>Available for distributed or mobile applications

Microchannel Architecture

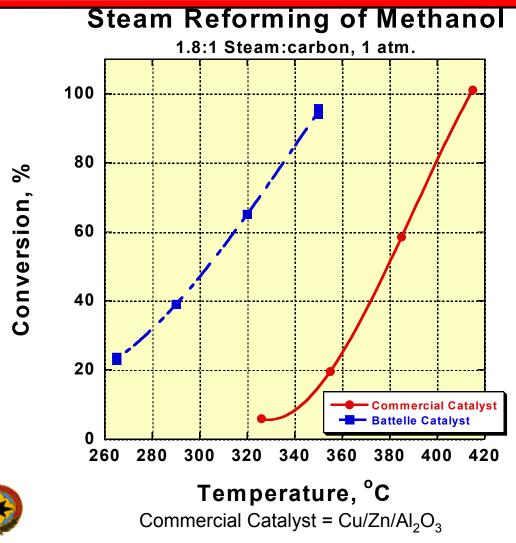
- Micron-Scale Dimensions
 - ▲50-500µm channels
 - high aspect ratios
 - negligible pressure drop
- Reduced heat & mass transfer resistances
 - Allows use of more active catalysts
- Integrated Monolith Catalysts
- Laminate Fabrication Method

Novel Monolith Catalysts


"Foam" supports

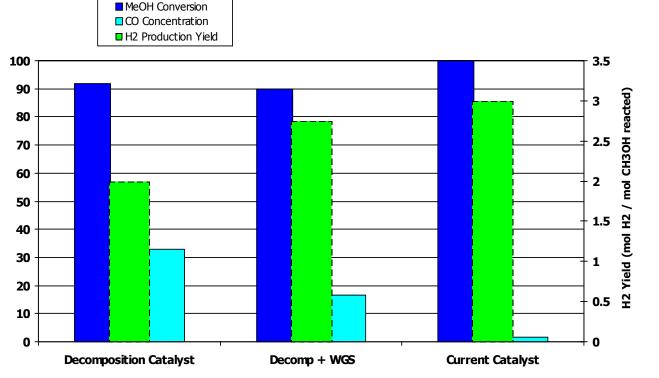
- \blacktriangleright Pore diameter \leq 200 μm
- Large effectiveness factors
 Iow mass transfer resistances
 - utilize high activity of catalysts
- \succ Low $\triangle P$ through monolith

Hydrocarbon Reforming



GHSV = 72,000

Methanol Reforming



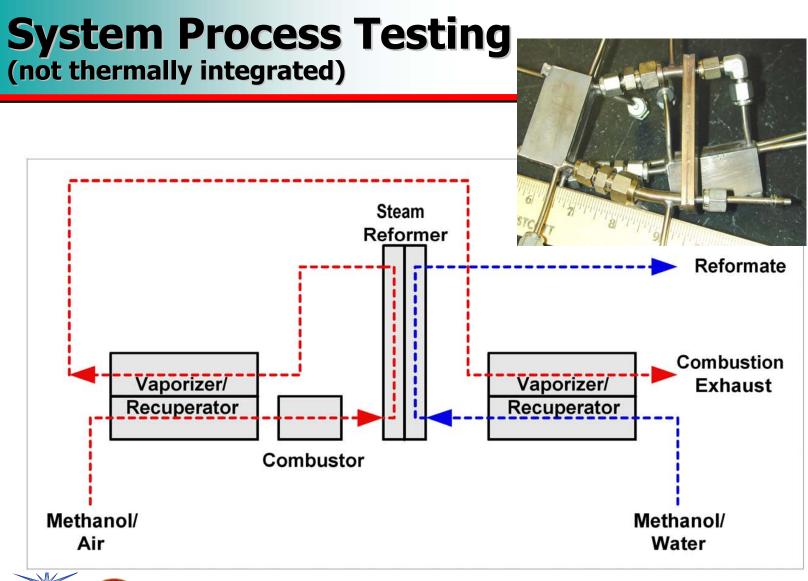
Methanol SR Catalyst:

Different Approaches on Steam Reforming of Methanol

(100 ms contact time, H2O/C=1.8, 300°C and 1 atm)


- ✤ For methanol reforming the H₂ yield is close to theoretical maximum
- CO Concentration (~1 vol.%) low enough to eliminate the need for
 additional reactors

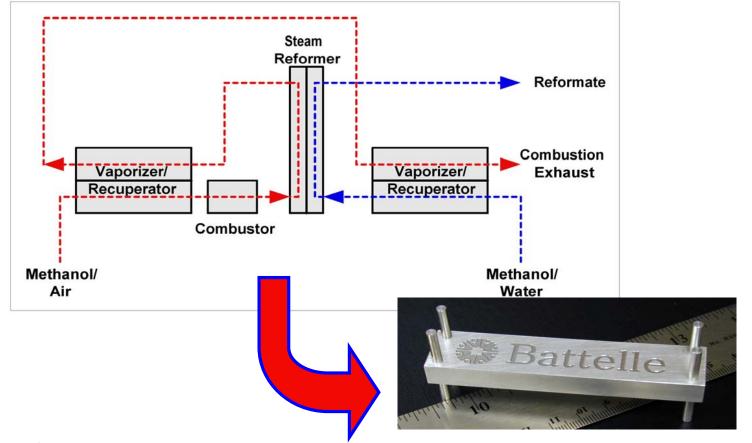
Soldier Power Goals


Targets

- 15 W_e average (25 W_e peak)
- < 100 cm³
- < 1 kg (excluding fuel)
- Operate on logistics fuel?

System Process Testing Results

Estimates based on 14-day mission, 1-kg processor/fuel cell:


- System Test Results
 - Thermally independent after startup
 - Fuel/water = 6.1 L
 - System weight = 6.1 kg
 - Energy density = 720 W-hr/kg
 - Processor efficiency = 45%
 - Overall efficiency = 22%

Li-ion battery (200 W-hr/kg) weight to provide the same energy = 22 kg

Fuel Processor Thermal Integration

Thermally Integrated 15-25 Watt Fuel Processor

Dimensions: 3.4" x 0.75" x 0.22"

Volume: ~9.2 cc (w/o tubes)

Weight: 50 grams (w/o tubes)

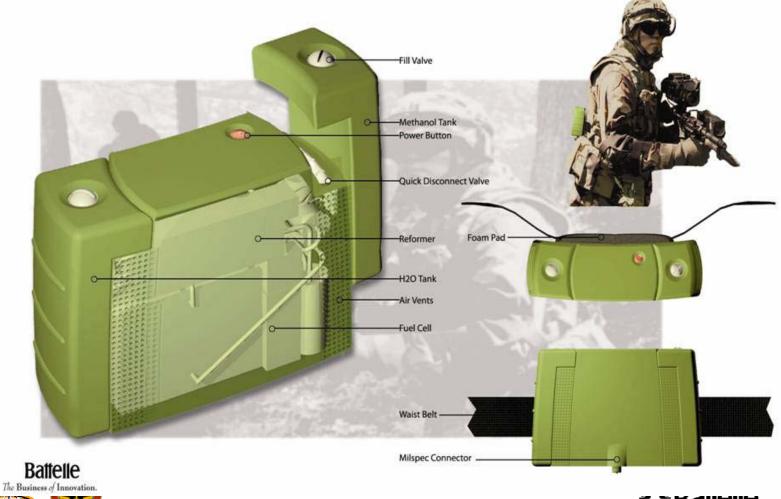
System Process vs TIFP

	System Process	TIFP
Power Level, W _e	13	14
Reformer Exit Temperature, °C	350	320
CO in Dry Gas, %	0.70	0.43
Energy Density, Whr/kg*	720	850
Efficiency, %, thermal (electric)	45 (22)	60 (29)
Total System Weight, kg (lbs)*	6.6 (14.5)#	5.3 (11.7)
*assuming 1-kg FP/FC system, 14-day mission #scaled to 14 watts		

Comparison to ARMY Batteries

(14-day mission, 23.3 W_e continuous)

Model	Chemistry	Energy Density (Whr/kg)	Weight (kg)	Energy Density (Whr/L)	Volume (L)	Recharge or Refill Time
BB-2590U	Li-Ion	84	93	109	71	Hours
L17	Li-ion	118	65	180	43	Hours
LI 1.5	Li-Ion	136	57	128	60	Hours
LM11	LiMnO ₂	196	40	265	29	Disposable
BA-x847A/U	LiMnO ₂	226	34	87	89	Disposable
LMP 13.5	LiMnO ₂	308	25	107	72	Disposable
Fuel Processor	Methanol Reforming	850	9	985	8	Minutes


Table adapted from Scott Feldman, GTS, L.L.C., Contractor to the NSC-Warrior Systems Integration Team. "Developing Power & Energy Design Goals for Land Warrior."

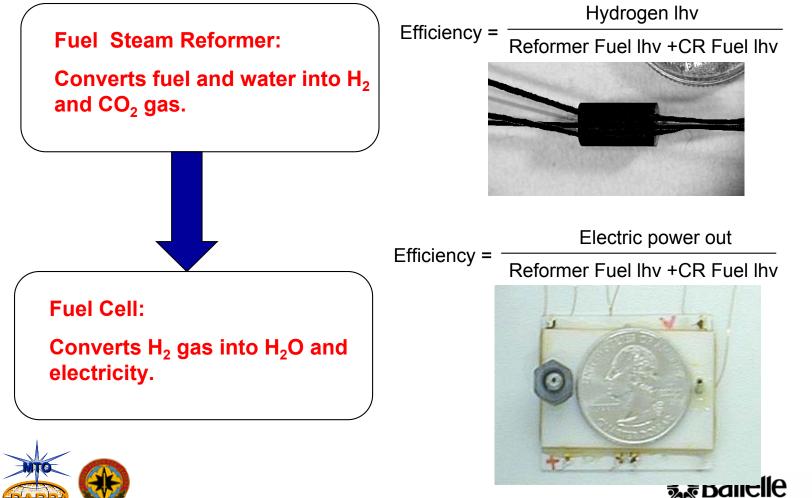
Presented at the Institute for Defense Analyses Soldier Systems and MEMs Meeting, November 2, 1999, Alexandria, New Jersey. Additional information provided by Steve Slane, U.S. Army CECOM RD&E Center, Fort Monmouth, New Jersey.

System Concept

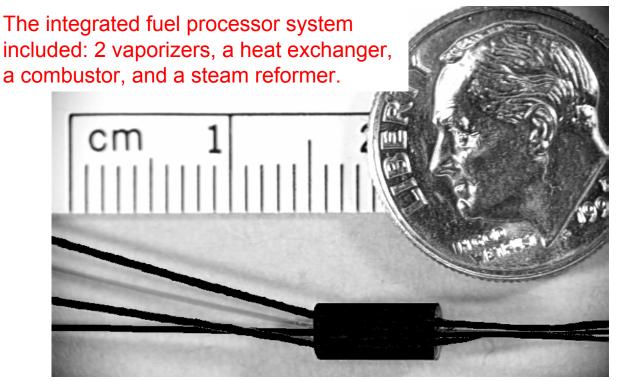
Daliclic ... Putting Technology To Work

Future Work

- CO cleanup
 - ▲ Goal: <100 ppm
- > Brassboard demonstration
 - ▲ Fuel processor
 - ▲ Fuel cell
 - Peripherals
- Lifetime demonstration
 - >14 days continuous
 - Thermal cycling


Sub-Watt Reformer: Goals and Objectives

- Develop an integrated fuel cell and fuel processor for microscale (10- to 500-mW_e) power generation.
- Demonstrate 10-500 mW_e fuel processor.
- ➤ Demonstrate 10-500 mW_e fuel cell.
- Demonstrate integrated mW_e fuel processor and fuel cell system.

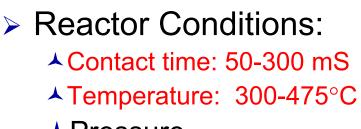


Overall System and System efficiency

. . . Putting Technology To Work

Experimental Reactor

reformer volume: <5 mm³ reformer capacity: 200 mW combustor volume: < 5 mm³ combustor capacity: 3 W



Reforming Reactor Test Results

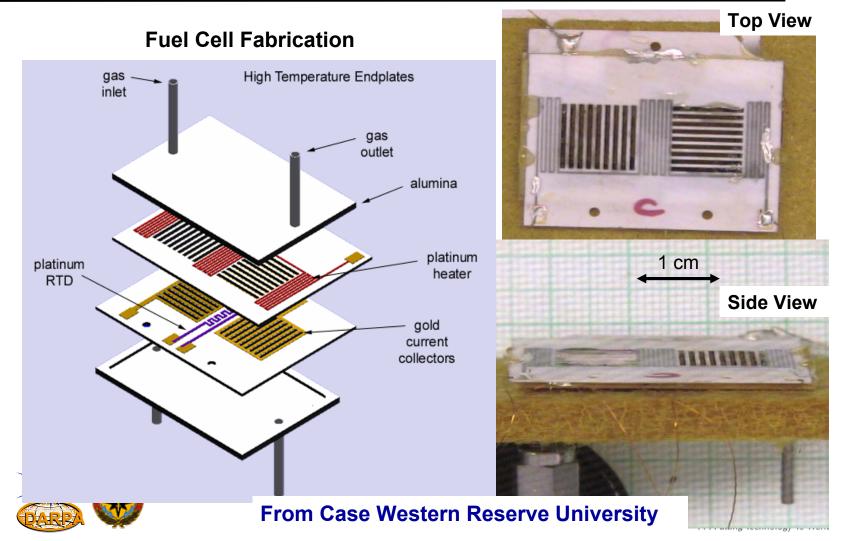
Reactor Output:

- $-H_2$ flow = 0.1 1.1 sccm
- ▲ Power = 18-200 mW_t
- ▲Efficiency 3%-9%
- Estimated electric power output
 - Assumptions
 - 60% efficient fuel cell
 - 80% H₂ utilization
 - ▲ Power 9-100 mW_e
 - ▲Efficiency 1.5-4.8%

Pressure ~ atmospheric

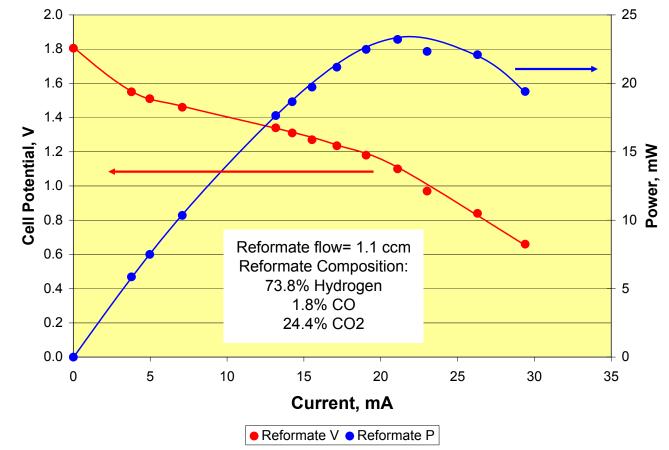
High Temperature Mesoscale Fuel Cells

- Joint Effort with PNNL and Case Western Reserve University
- > Electrode areas $\approx 1 \text{ cm}^2$
- Electrodes, current collectors printed on PBI electrolyte membrane
- Cell interconnects, heaters, RTD printed on alumina
- > Adhesive assembly of components
- Cathodes exposed to ambient air


Greek "Mesos"; middle

• this is an intermediate sized device, and the construction uses both microfabricated and conventionally fabricated components

High Temperature Mesoscale Fuel Cells



Size Comparison

Baffelle

Fuel Processor and Fuel Cell System Testing

Future Work

Sub-Watt Power

- Improved System
 Fuel processor development
 Fuel Cell improvement
- Systemization
 Thermal integration
 BOP
- See us at www.pnl.gov/microcats/

