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INTRODUCTION 
The National Compensation Survey (NCS) is a 
business establishment survey for occupational wages 
and benefits.  This survey includes data on broad 
occupational classifications such as white-collar 
workers,  major occupational groups (MOGs) such as 
sales, and individual occupations such as cashiers.   
Another feature of this survey is that it includes data 
by level of the job.   The job level of an occupational 
series is derived from generic standards that apply to 
all occupations and occupational groups.  
 
An essential part of NCS is the estimation of mean 
wages for different localities.  In this study, an 
artificial Metropolitan Statistical Area (MSA) was 
created by combining NCS data from 16 different 
localities to serve as a sampling frame for 100 
simulated samples.  Then, the mean square error 
(MSE) for the 100 sample estimates was compared to 
variance estimates obtained with the linearized Taylor 
Series method of variance estimation and three 
different methods of replication:  balance repeated 
replication (BRR), Fay’s method, and a sample 
jackknife method. 
 
SAMPLE  DESIGN 
NCS uses a rotating panel design with three stages of 
selection used in selecting each panel.  The first stage 
of selection is of geographic area PSUs, which consist 
of both Metropolitan Statistical Areas (MSAs) and 
non-metropolitan counties.  Much of the focus in 
NCS, including all the analysis in this paper, is on the 
production of locality estimates, that is estimates for 
individual MSAs for which the first stage of sampling 
is not an issue.  Consequently, this stage of sampling 
is not addressed here.  In the second stage of 
sampling, establishments are selected pps from 
industry strata, with total employment the measure of 
size.  The sampling frame from which the 
establishments are selected is constructed from the 
unemployment insurance universe.  
 

In the third stage of sampling, occupations are 
selected separately from each establishment.  
Typically, the occupational selections are done from a 
complete list of in scope employees for the 
establishment obtained from the respondent.  (Certain 
cases of employees, such as those who set their own 
pay are out of scope).  A systematic equal probability 
sample of employees is selected.  Then, for each 
selected employee, wage data is obtained for all 
employees with the same detailed job as the selected 
employee within the particular establishment.  For 
example, if one of the employees selected is a full 
time, grade 9, non-union accountant, whose earnings 
are time based (as opposed to incentive based), then 
data is collected for all employees satisfying these 
criteria for that establishment.  Consequently, the 
equal probability selection of employees is equivalent 
to a pps selection of detailed jobs.  The number of 
occupational selections in each establishment depends 
upon the size of the establishment.   

 
The weight for each employee in a selected job is 
obtained by taking the product of the reciprocal of the 
probability of selecting the establishment, the 
reciprocal of the probability of selecting the job given 
that the establishment is selected, and nonresponse 
adjustment factors for establishment and occupational 
nonresponse. 
 
METHODS 
In order to compare variance estimation methods, we 
artificially created a “medium-sized” locality or MSA 
population from which we could draw simulated 
samples.  The artificial MSA was created using 1997 
NCS wage data from 16 different localities.  Based on 
the sampling weights of a typical “medium-sized” 
MSA, the appropriate number of establishments were 
determined and created in each industry and size 
class.  Since the establishments were originally 
selected using a pps design, we did not have enough 
data for workers from small establishments (generally 
establishments with less than 100 employees) to 
create all of the small establishments for the artificial 
population.  On the other hand, we had an over 
abundance of data for workers from large 
establishments.  Consequently, some workers were 



 

  

“borrowed” from the large establishments and 
separated into small establishments. 
 
Then, within each establishment the appropriate 
number of occupations for each MOG x Level 
(MOGL) cell were also determined by using sampling 
weights from NCS.  At the time the artificial MSA 
was created, we did not have enough data for some 
MOGLs.  Consequently, workers were “borrowed” 
from MOGLs where there was an over abundance of 
workers, and the wages were transformed so that a 
worker’s wage was typical of the MOGL to which the 
worker was moved.  For more information regarding 
the creation of the artificial MSA, see Springer, 
Walker, Paben, and Dorfman (SWPD, 1999). 
 
After the creation  of the artificial MSA, 100 samples 
were drawn using the same sampling methodology as 
a typical NCS survey of “medium” size with the 
exception that there were no non-respondents.  We 
determined that it was too burdensome to duplicate 
the NCS non-response adjustment procedures for 
each of the 100 samples for the believed small impact 
it would have on the results.  Next, the variance for 
each of the domains; including all workers, MOGs, 
job levels, and MOGLs, were calculated using a 
linearized Taylor series method and using three 
different methods of replication.  The variance results 
of each method were then compared to the true 
variance for the 100 simulated samples. 
 
Taylor Series 
The hourly mean wage for a particular domain of 
interest (i.e., MOG x level, occupation x level, etc.) is 
calculated as the ratio of the weighted total annual 
wages paid to the weighted total annual hours 
worked.   
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where iDŶ  is the total annual wages and iDX̂  denotes 
the total number of annual hours worked in domain D 
in industry stratum i.  In order to calculate the weekly 
and annual mean wage, the denominator of (1) would 
simply have to be changed to the total number of 
annual weeks worked and the total number of 
employees, respectively.  
 
One method of estimating the variance of a nonlinear 
estimator, such as the ratio in (1), is to approximate 
the estimator by a linear function of the observations 
using a first-order Taylor series expansion.  Higher-
order approximations are possible by extending and 

retaining the additional terms of the Taylor Series 
expansion.  However, it has been shown for large, 
complex surveys that the first-order approximation 
usually yields satisfactory results.  Then, variance 
formulae appropriate to the sampling design are 
applied to the linear approximation.  This produces a 
biased, but typically consistent, estimator of the 
variance (Wolter, 1985). 
 
The linearized variance formulae for NCS have two 
components, a non-certainty establishment 
component and a certainty establishment component.  
The component of variance for the noncertainty 
establishments is estimated by a pps with replacement 
formula reflecting the fact that the first stage of 
sampling in a PSU is a pps sample of establishments.  
The component of variance for the certainty 
establishments is estimated by a simple random 
sample with replacement formula, since the sample of 
occupations within an establishment is typically 
obtained through a systematic sample of employees 
and for certainty establishments the first stage of 
sampling in a PSU is the sample of occupations 
(Tehonica, Ernst, and Ponikowski, 1997).  Since the 
subsampling is actually without replacement,  both 
the non-certainty and certainty variance components 
of the linearized form generally should be 
overestimated. 
 
The first-order Taylor series approximation for (1) 
within a constant is 
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where DX̂  denotes the total number of annual hours 

worked in domain D, DD YYE ˆ)( = , and the subscripts 
S and C respectively indicate the noncertainty and 
certainty portions of the variance. 
 
From the above Taylor series approximation, it 
follows that the estimated total variance for 
noncertainty establishments is 
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where the summation of ijDẐ  is over all non-certainty 
establishments j, and where  
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In equations (3) and (4), ni is the number of non-
certainty establishments in stratum i, ijDŶ  is an 
estimate of total annual wages in domain D for the jth 



 

  

establishment in the ith stratum, ijDX̂  is an estimate of 
the total annual hours worked (for hourly mean wage 
estimates) in domain D for establishment ij, and Wij is 
the sampling weight for establishment ij. 
 
From (2), it also follows that the variance of the 
certainty establishments is equation (5) 
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where the summation of ZijqD is over all certainty 
establishments j, and where  
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In equations (5) and (6), mij is the number of quotes 
for the jth certainty establishment in the ith stratum, 

ijqW is the product of the sampling weight for 
establishment ij and the sampling weight for quote 
ijq, ijqDY  is the total annual wages for all employees in 
domain D for the qth quote in certainty establishment 
ij, ijqDX  is the total annual hours worked for all 
employees (for hourly mean wage estimates) in 
domain D for the qth quote in certainty establishment 
ij.  
 
Replication 
Another method for estimating the variance of a 
nonlinear estimator, such as the ratio in (1), is 
replication.  Like the Taylor linearization method, 
replication methods generally produce a biased, but 
consistent estimator of the variance for nonlinear 
estimators (Wolter, 1985). The basic theory behind 
replication is to calculate the estimate of interest from 
the full sample as well as a number of subsamples.  
The variation among the subsample estimates is used 
to estimate the variance for the full sample.  One 
advantage replication has over the variance approach 
in the previous section is that there is usually no need 
to linearize a nonlinear estimator before calculating 
its variance.   This has been demonstrated many times 
empirically over the years, and was first shown to 
hold asymptotically as the number of strata increases 
by Krewski and Rao (1981). 
 
There are many different ways of creating the 
subsamples in replication.  One approach is balanced 
repeated replication (BRR).  The standard BRR 
design assumes that a population of PSUs are able to 
be grouped into G strata with two PSUs selected from 
each stratum using with replacement sampling.  Then, 
h replicate half-sample estimates are formed by 
selecting one of the two PSUs from each stratum 

based on a Hadamard matrix and then using only the 
selected PSU to estimate the parameter of interest.  
The weights for the selected units are doubled to form 
the weights for the replicate estimate.  In order to 
obtain a balanced set of replicates the number of 
replicates used needs to be a multiple of four greater 
than or equal to the number of strata.   
 
Since BRR requires two PSUs per stratum and the 
NCS design has more than two PSUs, the two PSUs 
were artifically created by assigning the design-based 
PSUs to one of two variance PSUs.  For the non-
certainty establishments, the first stage of selection is 
a pps sample of establishments within industry strata 
with employment as the measure of size.  For the 
certainty establishments, the first stage of selection is 
equivalent to a pps sample of detailed jobs or quotes.  
Therefore, the variance PSUs for the noncertainty 
establishments are created at the establishment level, 
while the variance PSUs for the certainty 
establishments are formed at the quote level.  
 

The variance estimator for DŶ using BRR is then 
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where DŶ  is the estimate of hourly mean wage for 

domain D based on the full sample, )(
ˆ

hDY is the 
estimate of hourly mean wage for domain D based on 
the h-th replicate half-sample, G is the number of 
replicates and Gc /1= . 
 
Another method of replication investigated in this 
study was  Fay’s method.  Fay’s method was 
motivated by the observation that the standard half-
sample variance estimator runs into difficulty when 
the denominators are zero for some replicates 
(Judkins, 1990).  This method is a variant of BRR, 
where the basic idea is to modify the sample weights 
less than in BRR by using both half-samples in each 
replicate.   In each replicate, one half of the sample is 
weighted down by a factor K and the remaining half 
is weighted up by a compensating of factor of 2 - K.  
For example, if K = .70, then the weights decrease by 
30 percent in one half-sample and increase in the 
other half-sample by 30 percent.   When using Fay’s 
method, the variance of the replicates from the full 
sample estimate becomes too small by a factor of (1 - 
K)2  (Judkins, 1990).  Therefore, the constant c in (8) 
becomes 1/G(1- K)2.  In this study, Fay’s method was 
used with K = 0.5. 
 
The final method of replication investigated in this 
study is a sample jackknife method.  In general, the 



 

  

jackknife method consists of splitting the total sample 
into G disjoint and exhaustive PSUs, then dropping 
out a specified number of PSUs in turn, and 
estimating the parameter of interest from the 
remaining units each time. The variability among 
these estimates is then used to estimate the variance 
of the full-sample estimator. A sample jackknife 
method consists of dropping out only a sample of the 
PSUs from each replicate.  
 
A “general” sample jackknife variance estimator for 
an estimator, µ̂ , is  
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where )(ˆ ihµ  is the estimate of µ̂  with the ith 

subsample dropped out in stratum h, H is the number 
of strata, hl  is the number of subsamples in stratum 
h, and hg is the number of subsamples dropped out in 

stratum h, giving ∑
=

=
H
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replicates. 

 
The particular sample jackknife approach used in this 
study is the second method given in WesVarPC.   
This method uses the same sampling design as BRR, 
that is, two variance PSUs per stratum made with 
replacement.  Next, the weights for one variance PSU 
in a stratum are doubled, while the other variance 
PSU in that stratum drops out.  The other weights for 
the remaining strata remain unchanged.  This process 
is done separately for each stratum, and the number 
of replicates in this method equals the number of 

strata.  Therefore, the variance of DŶ for this method 
of the jackknife with hl  = 2, hg  = 1, and H = G  in 
(8) is of the same form as (7) with c = 1. 
 
ANALYSIS 
Evaluative statistics were calculated to compare the 
different variance estimation methods for the variance 
of average hourly wage in each domain D, that is 
each MOG, level, and MOGL.  In order to simplify 
the explanation of the evaluative statistics, the 
following definitions are given: 
 
(A)  The mean square error, the estimated variance 
plus the square of the bias, for Y in domain D is  

     22
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R = 100 simulated samples, rDŶ is the average hourly 
wage for the r-th simulated sample, DŶ  is the average 

hourly wage for all 100 samples, and pDY is the 
average hourly wage of the population.  
 

 (B)  The average standard error for DŶ  is 
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)ˆ(ˆ Dr YV  is the estimated variance of DŶ  calculated 
using one of the four different variance estimation 
methods. 
 
(C) The mean square error of the estimated variances 
from )( DYM is 
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The two evaluative statistics calculated were the 
“bias” and “stability”.  The bias, in this case, was a 
relative measure.  It was defined to be the average 
standard error defined in (B) minus the square root of 
the MSE defined in (A) relative to the square root of 
the MSE.  The stability was defined to be the ratio of 
the square root of (C) to (A).  This ratio was 
calculated relative to (A) as a means of 
standardization.  For stability, a smaller ratio implies 
a more stable variance estimate.  
 
The bias of each variance estimation method by 
MOG (Table 1A) shows no dramatic differences 
between the variance methods. These estimates vary 
more across MOGs than they do across methods 
except for machine operators, which is 
underestimated more in the replication methods than 
in the Taylor linearization method.  The bias of each 
variance estimation method by job level (Table 1B) 
shows the lower levels (1-6) which have lower SEs 
tend to overestimate the root MSE, while the higher 
levels (13-15) with greater root MSEs tend to be 
underestimated by the Taylor linearization method 
and Fay’s method, overestimated by BRR, while the 
Jackknife is fairly close to one. 
 
One possible explanation for the Taylor linearization 
method tending to underestimate the variance for the 
higher levels is that there are a smaller number of 
observations generating the estimate (as can be seen 
by the average number of occupational selections for 
the 100 samples, mean occs in Table 1B).  When the 
sample size is a large, a first-order Taylor series 
approximation yields satisfactory results.  However, 
for small sample sizes or for less prevalent domain 
estimates, omitting the higher-order terms could 
cause the variance to be underestimated.  BRR may 



 

  

tend to overestimate the variance for domain 
estimates with a small number of observations, 
because of large weight differences between 
replicates or because some replicates may possibly be 
zero.  However, Fay’s method and the jackknife 
should not be as greatly affected by a small number of 
observations, because the perturbation of the weights 
is much less in those methods than in BRR.  

Although, Fay’s method underestimated the root 
MSE almost as much as BRR overestimated the root 
MSE for levels 13 and 15.  In general, it can be 
shown analytically that variance estimates for  ratio 
estimators calculated using Fay’s method are a 
decreasing function of K, and hence maximize when 
K=0, which is BRR. 

 
Table 1A.  Bias and Stability of Variance Estimation Methods by Major Occupational Group 

 Root    Taylor Series        BRR   Fay's Method      Jackknife 
MOG MSE bias stability bias stability bias stability bias stability

Professional 0.809 -0.04 0.43 -0.07 0.71 -0.07 0.71 -0.07 0.72 
Technical 1.067 -0.18 1.00 -0.13 1.14 -0.16 1.07 -0.16 1.05 
Exec., Admin., Mgr. 1.246 0.06 0.72 0.10 0.82 0.07 0.77 0.08 0.78 
Sales 2.014 0.00 2.17 0.02 2.33 0.00 2.24 0.01 2.38 
Admin. Support 0.330 -0.10 0.29 -0.06 0.41 -0.07 0.40 -0.07 0.40 
Precision, Production 0.758 0.00 0.54 0.04 0.68 0.02 0.65 0.02 0.66 
Machine Operators 0.613 -0.11 0.34 -0.24 0.61 -0.25 0.61 -0.24 0.63 
Transportation 0.877 -0.01 0.61 0.01 0.82 -0.03 0.76 -0.02 0.81 
Handlers, Laborers 0.527 0.07 0.47 0.08 0.75 0.06 0.71 0.06 0.74 
Service 0.630 -0.01 0.28 -0.01 1.05 -0.01 1.04 -0.02 1.00 
All Workers 0.340 -0.03 0.26 -0.03 0.57 -0.03 0.57 -0.03 0.57 

 
 

Table 1B.  Bias and Stability of Variance Estimation Methods by Job Level 
 Mean Root    Taylor Series          BRR   Fay's Method      Jackknife 

Level Occs MSE bias stability bias stability bias stability bias stability
1 207.0 0.184 0.16 0.63 0.20 0.99 0.18 0.93 0.18 0.93 
2 212.2 0.301 0.03 0.57 0.06 0.74 0.04 0.71 0.04 0.69 
3 327.0 0.278 0.05 0.29 0.01 0.53 0.00 0.51 0.00 0.52 
4 290.8 0.283 0.31 0.83 0.29 1.07 0.28 1.03 0.27 1.03 
5 217.9 0.349 0.11 0.54 0.09 0.60 0.08 0.58 0.07 0.57 
6 134.8 0.602 0.02 0.63 0.09 0.92 0.07 0.88 0.07 0.96 
7 251.2 0.697 -0.07 1.69 -0.05 1.72 -0.06 1.71 -0.06 1.66 
8 214.4 0.923 -0.03 0.32 -0.05 1.19 -0.06 1.18 -0.07 1.14 
9 217.6 0.786 0.01 0.76 0.07 1.08 0.04 1.01 0.09 1.24 

10 53.9 2.188 -0.17 1.07 -0.06 1.53 -0.13 1.26 -0.07 2.00 
11 105.4 1.815 -0.02 1.15 0.02 1.58 -0.01 1.30 0.00 1.53 
12 69.7 1.657 -0.12 0.64 -0.10 0.67 -0.13 0.65 -0.11 0.76 
13 32.8 1.885 -0.04 0.48 0.04 0.85 -0.04 0.72 -0.02 0.77 
14 21.1 2.933 -0.11 0.64 0.13 1.29 -0.01 0.97 0.01 0.99 
15 5.1 11.863 -0.21 1.62 0.18 2.67 -0.16 1.77 -0.07 1.71 

JNL 48.6 4.159 0.03 0.60 0.07 0.82 0.03 0.75 0.02 0.79 
                     *JNL = Job not able to be leveled  
 
 

Table 2.  Average Bias and Stability of Variance Estimation Methods by Domain 
 No. of Mean Root    Taylor Series           BRR    Fay's Method       Jackknife 

Domain Estimates Occs MSE bias stability bias stability bias stability bias stability
MOGs 10 240.9 0.792 -0.04 0.56 -0.03 0.84 -0.05 0.81 -0.05 0.82 
Levels 16 150.6 0.988 -0.01 0.74 0.06 1.10 0.00 0.99 0.02 1.06 
MOGLs  76 30.7 1.282 -0.11 0.76 0.07 1.21 -0.09 0.91 -0.01 1.25 



 

  

 
The stability of the variance estimation methods by 
MOG (Table 1A) and by job level (Table 1B) suggests 
that the Taylor linearization method is more stable than 
the replication methods.  This is consistent with the 
work of Kish and Frankel (1974).  There are no 
dramatic differences in relative stability among the 
replication methods, although the stability of Fay’s 
method was always less than or equal to the stability of 
BRR.  It is unclear, however, if this must always be the 
case. 
 
The average bias and stability of each variance 
estimation method (Table 2) for the 10 MOGs, 16 job 
levels, and 76 MOGLs (the MOGLs present in all 100 
samples) summarizes the observed trends of Tables 1A 
and 1B.  The average of the two ratios for the different 
domains was calculated as a geometric mean.  The 
Taylor linearization method tends to underestimate the 
variance for less populous domains such as the MOGLs, 
while BRR tends to overestimate the variance for the 
less populous domains.    Fay’s method tended to 
underestimate the variance for the MOGLs.  The 
jackknife method seemed to be the most consistent in 
terms of relative bias.  As for the stability of the 
variance estimation methods, the Taylor linearization 
method was the most stable for all methods, while Fay’s 
method was the most stable of the replication methods.   
 
CONCLUSION 
The estimates of most interest from NCS are locality 
estimates of mean wages for all workers, MOGs, job 
levels, and MOGLs.  The basic idea of this study was to 
compare different variance estimation methods for a 
ratio estimator with many domains and sub-domains.  
The results showed that for prevalent domains there is 
little difference in terms of bias for the Taylor 
linearization method, BRR, Fay’s method, and the 
jackknife method.  This is reasonable, since all of the 
methods are valid asymptotically.  For less prevalent 
domains, the jackknife method seemed to be the closest 
to the true value of the variance, while the Taylor 
linearization method tended to underestimate the 
variance and BRR overestimate the variance.  The 
Taylor linearization method produced the most stable 
estimates, while Fay’s method was the most stable of 
the replication methods. 
 
Any opinions expressed in this paper are those of the 
author and do not constitute policy of the Bureau of 
Labor Statistics. 
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