Reformate Stack Operation Issues and Improved Designs

Kirk Weisbrod
Jim Hedstrom
Jose Tafoya
Rod Borup
Mike Inbody

Objectives

- Subtask 4.1 Corrosion Cell for Evaluation of Bipolar Plate Materials
 - Develop a screening tool for evaluating candidate bipolar materials
- Subtask 4.2 Explore cold-start dynamics of a PEM stack
- Subtask 4.3 Improved Stack Diagnostics
 - Incorporated in cold-start studies
- Subtask 4.4 Hollow Fiber Fuel Cell Concept
 - Presented as Poster

Corrosion Cell Concept

APROACH

- -Simulate anode and cathode conditions
- -Measure long term contact resistance and ions release into solution

Corrosion Cell Progress Summary

- Summary of progress
 - -Began as summer student project in 1998
 - Continued at low level
 - -Materials previously evaluated:
 - 316 SS, high nickel alloys, Ti and TiN coatings
 - -Materials evaluated in FY 2000
 - -Carbon/carbon composite (T. Besmann Oak Ridge)
 - -Carbon/Polymer composite (SGL Carbon)
 - -Gas phase nitridation of alloys (M. Brady Oak Ridge)

lilestones

-Sept 00 Complete transfer of technology

4.2 Cold-Start Dynamics

APPROACH

- Develop a global model of heat requirements and water transients during start-up from sub-freezing temperatures
- Experimentally verify two cases
 - Auto-thermal startup applicable to stored hydrogen
 - Startup with coolant heated by fuel processor waste heat

Cold-Start Dynamics Summary of Progress

- Completed test apparatus in environmental chamber (-40°C)
- Two transient models developed
 - Auto-thermal cold-start
 - Cold-start with fuel processor waste heat
- Initial cold-startup tests performed with 12 cell stack from Energy Partners
- Auto-thermal startup planned

Cold-Start Dynamics Summary of Progress (Continued)

- Original Milestones
 - March 00 Complete first series of cold-start tests
 - Completed April 00
 - June 00 Complete experiments with contaminants at subambient temperature and develop start-up strategy
 - Sept 00 Perform tests after initial data from single cells is available from MST-11
- Future Plans
 - Sept 00 Complete auto-thermal cold-start tests
 - Use electrochemical impedance methods to characterize the stack and individual cells during steady-state and transient operation
- Industrial Interactions
 - Worked closely with Energy Partners
 - Transient cold-start models are available to industry

Auto-Thermal Model Basis

Assumptions

- Stack Model without coolant system
- Based upon measured polarization curves down to -10°C
- Below -10°C, curves are estimated
- Dry air available from compressor at 78°C (isentropic compression from -40°C)
- Gases leave at 100% relative humidity
- Bipolar plates are thermally isolated from end plates

Solution

Applied Engineering Equation Solver (EES) by F-Chart Software

Auto-Thermal Cold-Start Predictions Water Saturation with Stepped Current

Auto-Thermal Cold-Start Predictions Current vs. Voltage Control

Cold-Start Dynamics Cooling System with External Heat Source

LANL Fuel Cell Engineering

FY2000

Experimental Set-up For Cold Start-Up Measurements

• Test run in -40°C air bath

Measured Polarization Curves For 12-Cell Stack From Energy Partners

National,

Serving Socie

Temperature History During Cold Start-Up of Energy Partners Stack

Validation of Fuel Cell / Coolant System Model

Model Predictions for Fuel Cell /Coolant System

Design and Operating Guidelines to Minimize Cold Start-Up Time

Auto-Thermal Start-up

- Reduce thermal load of end plates
- Operate with constant low stack voltage to maximize stack heat production
- Air Preheat through compression provides small benefit
- Dry gas feed streams are required up to 0°C

Addition Fuel Processor Heat Source Issues

- Minimize thermal mass of auxiliary flow loop
- Faster Start-up times require less cooling system thermal mass or a larger external heat source

